Browsing by Author "Jardin, Axel"
Results Per Page
Sort Options
Item Badanie wpływu domieszek wolframu na dynamikę elektronów w plazmie termojądrowej uwięzionej w tokamaku(Institute of Nuclear Physics Polish Academy of Sciences, 2024) Walkowiak, Jędrzej; Bielecki, Jakub; Jardin, Axel; Chomiczewska, Agata; Pawelec, Ewa; Sienkiewicz, JózefWraz z decyzją o zabezpieczeniu wewnętrznej ściany komory próżniowej ITERa za pomocą warstwy wolframu, oddziaływanie elektronów nadtermicznych z domieszkami tego pierwiastka stało się ważną kwestią w modelowaniu plazmy. Mikrofalowe systemy ogrzewania plazmy i generowania w niej prądu, zwłaszcza za pomocą niższej częstotliwości hybrydowej (ang. Lower-Hybrid Current Drive - LHCD), mogą powodować powstawanie znaczącej populacji elektronów nadtermicznych. Ponadto, w przypadku niekontrolowanie rozpędzonych elektronów (ang. runaway electrons - RE) i zapobiegania im poprzez wtrysk dużej ilości gazów do plazmy, zderzenia z domieszkami mogą mieć znaczący wpływ na hamowanie elektronów. Szczegółowy opis zderzeń szybkich elektronów z nie w pełni zjonizowanymi domieszkami wymaga wyznaczenia dwóch parametrów: atomowego współczynnika kształtu dla zderzeń sprężystych i średniej energii wzbudzenia (ang. Mean Excitation Energy - MEE) dla zderzeń niesprężystych. Można to zrobić za pomocą metod ab initio, które pozwalają uzyskać dokładne wyniki, jednak ich praktyczne zastosowanie wiąże się z czasochłonnymi obliczeniami. W przypadku MEE, czas obliczeń dla pierwiastków o dużej liczbie atomowej Z jest zaporowy. W niniejszej pracy porównałem istniejące przybliżenia atomowego współczynników kształtu, oparte na modelach Thomasa-Fermiego oraz Pratta-Tsenga. Obliczenia ab initio za pomocą teorii funkcjonału gęstości (ang. Density Functional Theory - DFT) są wykorzystywane jako metoda referencyjna do określenia dokładności porównywanych modeli. Na podstawie tej analizy zaproponowałem pewne modyfikacje istniejących modeli, zoptymalizowane za pomocą metod numerycznych, które zapewniają wyższą dokładność przy zachowaniu krótkiego czasu obliczeń. Modyfikacje te obejmują zastosowanie kilku członów eksponencjalnych modelu Pratta-Tsenga i dopasowanie parametrów równania współczynnika kształtu do wyników opartych na DFT. Przedstawiono zastosowania prezentowanych modeli do obliczania częstotliwości zderzeń sprężystych i niesprężystych dla równania Fokkera-Plancka, wykazując dobrą zgodność między wynikami uzyskanymi metodą DFT a proponowanymi modelami. Prezentowana praca dostarcza wartości MEE dla atomów i ich jonów o liczbach atomowych 1 ≤ Z ≤ 86. Aby wypełnić luki w dostępnych danych, zaproponowałem przybliżony model dla jonów pierwiastków o dużej liczbie atomowej Z, który wykorzystuje półempiryczny wzór oparty na tzw. lokalnym przybliżeniu plazmy (ang. Local Plasma Approximation - LPA). Pomimo, że LPA w swojej oryginalnej postaci nie przewiduje dokładnie wartości MEE dla silnie zjonizowanych atomów, stosunkowo prosta modyfikacja pozwoliła znacznie poprawić otrzymywane wyniki. W pracy oszacowałem także wpływ efektów relatywistycznych na wyznaczone wartości MEE dla silnie zjonizowanych atomów i porównałem proponowany wzór z innymi przybliżeniami dostępnymi dla pierwiastków o dużej liczbie atomowej Z. Opracowane modele i uzyskane dane zostały wykorzystane do rozszerzenia możliwości kodu numerycznego służącego do analizy zaburzeń plazmy i niekontrolowanie rozpędzonych elektronów, poprzez uwzględnienie domieszek wolframu w plazmie. Zbadano zależność prądu RE od następujących parametrów plazmy: stężenia wolframu, wielkości zaburzeń pola magnetycznego, modeli populacji elektronów użytych do obliczeń, czasu stygnięcia plazmy oraz geometrii sznura plazmowego – wzorowanej na konfiguracji ITER-a lub ASDEX-a. Przeprowadzona analiza pokazuje, że stężenie wolframu poniżej 10-3 nie powoduje znaczącej samoistnej generacji RE. Jednak przy wyższych stężeniach domieszek W możliwe jest osiągnięcie bardzo wysokiego prądu RE. Z dwóch testowanych modeli elektronów w plazmie: płynowego i izotropowego (kinetycznego), wyniki z modelu płynowego są bardziej konserwatywne, co jest przydatne w kontekście analizy bezpieczeństwa. Wyniki te są jednak przeszacowane względem modelu izotropowego, który opiera się na bardziej wiarygodnych założeniach. Wyniki pokazują również, że mechanizm generowania RE z nadtermicznego ogona (ang. Hot-tail) rozkładu prędkości jest dominującym źródłem RE w zakłóceniach wywołanych wolframem, zwykle zapewniając o rząd wielkości wyższe liczby pierwotnych RE niż mechanizm Dreicera. W przedstawionej pracy zbadano różne podejścia do symulacji plazmy o wysokim stężeniu wolframu i przygotowano na tej podstawie rekomendacje dla przyszłych prac obliczeniowych. Zbadano zależność limitów bezpieczeństwa od zastosowanych modeli oraz ich parametrów i określono największe problemy obecnych technik symulacji. Przeprowadzone prace torują drogę do szerszej analizy wpływu wolframu na dynamikę plazmy, w tym technik zapobiegania RE w ITER w przypadku silnego zanieczyszczenia plazmy wolframem. The selection of tungsten as a plasma-facing material for the ITER tokamak has raised the importance of suprathermal electron interactions with partially ionized impurities in plasma modeling. Heating and current drive methods, particularly electron cyclotron and lower hybrid current drive, can produce a substantial population of such electrons in the plasma. Additionally, during runaway electron generation and mitigation through massive injection of gas, the electron drag force can be significantly affected by collisions with impurity ions. A detailed description of fast electrons collisions with non-fully ionized impurities requires calculation of two parameters: the atomic form factor for elastic collisions and the Mean Excitation Energy (MEE) for inelastic collisions. The ab initio models that can be used for this purpose are accurate, but very time consuming in practice. In the case of MEE, the computational time for high-Z elements is prohibitive. In this thesis, I evaluate existing approximations of the atomic form factor derived from the Pratt–Tseng and Thomas–Fermi models. I consider ab initio density functional theory (DFT) calculations as a reference to assess the accuracy of these models. I then propose several changes to the Pratt–Tseng model, optimized with numerical parameter adjustments, which enhance accuracy while keeping computation time short. These modifications involve incorporating several exponents in the Pratt–Tseng model and fitting the parameters of the atomic form factor expression to the results obtained from DFT. I also present applications of the revised models for calculating the elastic and inelastic collision frequencies for the Fokker–Planck solver, demonstrating strong agreement between the proposed models and the DFT approach. In a second part, I determine values of MEE for each atom and its ions, with the atomic number ranging from 1 to 86. To address gaps in the existing data, I introduce an approximation for ions with high atomic number, employing a semi-empirical formula based on the Local Plasma Approximation (LPA). Although the original LPA is not able to predict MEE accurately for high ionization states, a straightforward modification using a fitting function can correct this limitation. I evaluate the significance of relativistic effects on the MEE for highly ionized atoms and compare the proposed formula with other available approximations for high-Z elements. The obtained models and data were used to extend the disruption and runaway electron analysis model code DREAM, allowing to include tungsten impurities in disruption simulations, with the aim of studying runaway electron (RE) generation. In this work, I examine the sensitivity of runaway electron (RE) current to various plasma parameters and modeling choices, including magnetic perturbation strength, tungsten concentration, electron modeling approach (fluid vs. kinetic), thermal quench time and tokamak geometry - specifically ITER-like and ASDEX-like configurations. The study reveals that tungsten concentrations below 10−3 do not alone cause significant RE generation. Nevertheless, very high RE currents can be achieved at higher tungsten concentrations. Among the two tested models of electrons in plasma - fluid and isotropic (kinetic) - the fluid model yields more conservative results, which is useful for safety assessments. Nonetheless, these findings are more pessimistic than the isotropic model, which relies upon a more reliable approach. The results also indicate that the mechanism of hot-tail RE generation is the dominant source of RE during tungsten-induced disruptions, typically providing a RE seed larger by orders of magnitude with respect to Dreicer generation. I assess best practices for simulating plasma disruption in the presence of tungsten impurities. I discuss how the calculated safety limits depend on modeling choices, and emphasize key shortcomings of current simulation approaches. The findings lay the groundwork for a more comprehensive analysis of tungsten impact on the dynamics of disruptions, including potential mitigation strategies for ITER in cases of significant tungsten influx into the plasma.Item Fast electron dynamics in tokamak plasmas with high-Z impurities(Institute of Nuclear Physics Polish Academy of Sciences, 2021) Król, Krzysztof; Scholz, Marek; Mazon, Didier; Jardin, Axel; Słabkowska, Katarzyna; Rzadkiewicz, JacekNa drodze do energii termojądrowej, tokamaki stanowią obecnie najbardziej obiecującą metodę przeprowadzenia kontrolowanej reakcji termojądrowej. Aby uniknąć problemu retencji trytu, jaki ma miejsce w przypadku ścian tokamaka wykonanych z komponentów węglowych, divertor Międzynarodowego Eksperymentalnego Reaktora Termojądrowego (ITER) będzie wykonany z wolframu (W). W związku z tym małe stężenia domieszek wolframu będą obecne w plazmie ITER-a. Niewielkie stężenia wolframu są wystarczające, aby znacząco wpłynąć na działanie tokamaka, a mogą nawet prowadzić do zakończenia wyładowania plazmowego. W szczególności krytycznym zagadnieniem, które musi być zbadane, jest wpływ domieszek o wysokiej liczbie atomowej Z na dynamikę szybkich (supratermalnych) elektronów. Zagadnienie to jest ważne z ze względu na dwa aspekty. Po pierwsze konieczne jest rozwijanie metod tłumienia wiązek elektronów uciekających w plazmie po zerwaniu sznura plazmowego. Po drugie domieszki wolframowe mają negatywny wpływ na efektywność generowania prądu szybkich elektronów w plazmie tokamakowej. Jak dotąd, główny nacisk kładziono na badania dotyczące domieszek o niskiej liczbie atomowej Z, takich jak węgiel, azot czy argon. Jednak obecnie konieczne jest rozszerzenie metod badania dynamiki szybkich elektronów na cięższe domieszki, takie jak krypton, molibden czy wolfram. W związku z tym niezbędne jest uwzględnienie efektu częściowego ekranowania podczas oddziaływania pomiędzy jonami domieszek a szybkimi elektronami w plazmie. Cel ten został osiągnięty poprzez konsekwentne włączenie teorii częściowego ekranowania do obliczeń kinetycznych. Wykorzystany w pracy łańcuch kodów numerycznych C3PO/LUKE/R5-X2 jest standardowym narzędziem do modelowania LHCD w tokamaku Tore Supra, ostatnio zmodernizowanym do tokamaka WEST. W przedstawionej pracy szczególny nacisk został położony na konsekwencje obecności nie w pełni zjonizowanych domieszek o wysokiej liczbie atomowej Z na generowanie przepływu prądu za pomocą fal LH oraz intensywność promieniowania hamowania emitowanego przez szybkie elektrony dla przypadku tokamaka WEST.Item Study of the mutual dependence between Lower Hybrid current drive and heavy impurity transport in tokamak plasmas. Part 1. Preparatory work and theoretical background(Institute of Nuclear Physics Polish Academy of Sciences, 2020) Jardin, Axel; Bielecki, Jakub; Król, Krzysztof; Peysson, Y.; Mazon, D.; Dworak, Dominik; Scholz, MarekThis document reports the activities performed during the year 2019-2020 in the framework of the HARMONIA 10 project entitled “Study of the mutual dependence between Lower Hybrid current drive and heavy impurity transport in tokamak plasmas” as well as the preliminary results obtained during the first year of project execution. The project is founded by the Polish National Science Centre (NCN) and carried out in a close collaboration with the foreign partner - Institute for Magnetic Fusion Research (IRFM) of the French Alternative Energies and Atomic Energy Commission (CEA).Item Using X-ray measurements to assess uncertainties in plasma temperature and impurity profiles in tokamaks(49th European Physical Society (EPS) Conference on Plasma Physics, 2023-07) Jardin, Axel; Krzysztof, Król; Mazon, Didier; Bielecki, Jakub; Dworak, Dominik; Guibert, Denis; Peysson, Yves; Scholz, Marek; Walkowiak, JędrzejIn tokamaks, the local X-ray plasma emissivity is a complex quantity resulting from the contribution of several plasma parameters, i.e. electron temperature, density and concentration of impurities in multiple ionization states. In particular, the impurity core concentration can be estimated from the emissivity in the soft X-ray (SXR) range 0.1 – 20 keV, while information about the superthermal electron population can be obtained in the hard X-ray (HXR) range 20 keV – 200 keV. The estimation of the tungsten concentration profile is subject to many uncertainties, in particular it requires accurate knowledge of plasma temperature, magnetic equilibrium, atomic processes leading to its cooling factor and the spectral response of the diagnostic. A global W concentration can, for example, be inferred with integrated simulation codes in order to match the total radiated power. When all other plasma parameters are well-known, the impurity density profile can be reconstructed in the core with the help of SXR tomographic tools. Nevertheless, in the case of a significant fraction of superthermal electrons e.g. due to RF heating, accurate estimation of electron temperature from ECE measurements can become a challenging task. Therefore, the goal of this contribution is to establish a methodology to assess the uncertainty in the core electron temperature and impurity concentration profiles based on X-ray measurements. The proposed strategy is to define a grid of candidates (Te, cW) scenarios and identify the ones having the highest consistency with respect to multiple line-integrated measurements. In order to determine the capabilities and limitations of such an approach, the method is first tested on well-known synthetic profiles in an arbitrary tokamak geometry. In a second step, first experimental tests are presented for some selected WEST discharges.