Rozprawy doktorskie IFJ PAN (Doctoral dissertations of IFJ PAN)
Permanent URI for this collection
Browse
Browsing by Author "Bednarek, Włodzimierz"
Results Per Page
Sort Options
Item Particle acceleration and heating in mildly-relativistic magnetized shocks(Institute of Nuclear Physics Polish Academy of Sciences, 2020) Arianna, Ligorini; Niemiec, Jacek; Nalewajko, Krzysztof; Bednarek, WłodzimierzDżety aktywnych jąder galaktyk i błyski gamma emitują silne promieniowanie elektromagnetyczne wysokich energii i są głównymi kandydatami na źródła promieni kosmicznych najwyższych energii. Często przyjmuje się, że przyspieszenie cząstek w dżetach zachodzi w relatywistycznych falach uderzeniowych. Szoki te sa˛ zwykle zmagnetyzowane i quasi-prostopadłe (ponadświetlne). Ich fizyka jest dość dobrze z badana w reżimie ultrarelatywistycznym, natomiast fale średnio relatywistyczne są mało poznane. Celem niniejszej rozprawy jest badanie średnio relatywistycznych szoków w zmagnetyzowanej plazmie elektronowo-protonowej za pomocą symulacji kinetycznych typu cząstka w komórce. Zastosowane symulacje wielkiej skali odznaczają się bardzo wysoką rozdzielczością i wykonane zostały dla warunków typowych dla wewnętrznych szoków w rdzeniach blazarów. Uwzględniają one efekty w skali jonowej, które prowadzą do pofałdowania powierzchni szoku, i wykonywane są w dwóch wymiarach dla dwóch różnych konfiguracji średniego prostopadłego pola magnetycznego, które znajduje się w płaszczyźnie symulacji lub tworzy z nią kąt 90°. W moich badaniach skupiłam się na procesach grzania i przyspieszania cząstek, które skutkują przekazem energii od protonów do elektronów w fali uderzeniowej. Moje wyniki pokazują, że synchrotronowa niestabilność maserowa zachodzi w średnio relatywistycznych szokach zgodnie z przewidywaniami teoretycznymi i generuje emisję spójnych fal elektromagnetycznych rozchodzących się przed szokiem. Pofałdowania powierzchni fali są wzbudzane dla obu konfiguracji średniegopola, wzmacniając te fale. Ich oddziaływanie z plazmą z przodu fali generuje fale elektrostatyczne, które przyspieszają elektrony w procesie WFA. Proces ten nie jest jednak wydajny, a transfer energii odbywa się głównie w szoku i w obszarze za szokiem, gdzie procesy grzania elektronów odbiegają od adiabatycznej kompresji w szoku. Po raz pierwszy pokazuję, że pofałdowanie szoku ma kluczowe znaczenie dla nieadiabatycznych procesów przyspieszania elektronów. Przekaz energii proton-elektron zachodzi znacznie poniżej warunku ekwipartycji, niezależnie od konfiguracji średniego pola magnetycznego. Widma energii elektronów z tyłu szoku są bliskie rozkładom termicznym, choć występują również składowe ponadtermiczne w ograniczonym zakresie energii. Moje wyniki pokazują, że proces WFA w średnio relatywistycznych zmagnetyzowanych szokach dżetów aktywnych galaktych nie może być źródłem wysokoenergetycznych promieni kosmicznych. Ograniczony poziom sprzężenia elektron-proton stoi w sprzeczności z leptonowymi modelami emisji blazarów w ramach scenariusza średnio relatywistycznych szoków wewnętrznych, chyba że obecność składowej pozytronowej może znacznie wspomóc transfer energii protonów do elektronów