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Abstract

In this Thesis, a theoretical analysis of exclusive production of mesons for various reac-
tions in nucleon-nucleon collisions is presented. Detailed studies of the central exclusive produc-
tion of the resonance states and the light dimeson pairs (π+π−, K+K−) within the Regge-based
framework as well as the exclusive production of forward neutral particles has been performed in
a broad range of collision energy. Different aspects of production mechanism for the considered
processes have been discussed, such as the model of soft pomeron, the absorption corrections,
the off-shell effects of exchanged mesons. The cross section and many differential distributions
were calculated and compared with existing experimental data wherever possible. Predictions
for experiments at PANDA, RHIC, Tevatron and LHC energies have been presented. In addition,
diffractive and electromagnetic production of the diboson pairs (γγ, W+W−, ZZ) at high ener-
gies has been considered in the framework of kt-factorization approach with the formalism of
unintegrated gluon distribution functions. The production of technipions in dominant photon-
photon channel as complementary possibility of search of particles beyond the Standard Model
at the LHC has been studied.

Streszczenie

Wniniejszej pracy przedstawiono teoretyczna̧ analizȩ eksluzywnej produkcji mezonów
w różnych reakcjach w zderzeniach nukleon-nukleon. Przeanalizowano mechanizm centralnej
ekskluzywnej produkcji stanów rezonansowych i par lekkich mezonów (π+π−, K+K−) w ra-
mach formalizmu Reggego, jak równieżmechanizmy eksluzywnej produkcji neutralnych cza̧stek
produkowanych “do przodu”, w szerokim zakresie energii zderzeń. Omówiono różne aspekty
mechanizmu produkcji rozważanych procesów, takie jakmodel “miȩkkiego” pomeronu, poprawki
absorpcyjne, efekty pozapowłokowewymienianychmezonów. Policzono przekroje czynne i wy-
znaczono szereg różniczkowych rozkładów dla rozważanych reakcji. Wyniki obliczeń zostały
porównane z istnieja̧cymi danymi eksperymentalnymi. Przedstawiono przewidywania dla eks-
perymentówPANDA, RHIC, Tevatron i LHC. Rozważono także dyfrakcyjna̧ i elektromagnetyczna̧
produkcjȩ par bozonów (γγ, W+W−, ZZ) przy wysokich energiach. Dyfrakcyjne procesy poli-
czono w formalizmie kt-faktoryzacji z uwzglȩdnieniem funkcji nieprzecałkowanych rozkładów
gluonów. Jako uzupełnienie przebadano produkcjȩ technipionóww dominuja̧cym kanale foton-
foton, jako przykład poszukiwania cza̧stek poza Modelem Standardowym w eksperymentach
przy LHC.
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Preface

The main goal of the Thesis is a theoretical investigation of various exclusive reactions
and careful discussion of unique and novel associated phenomena from low to high energies.
The processes, when we measure all particles in the final state are called exclusive processes.
The mechanism of exclusive production of particles in nucleon-nucleon collisions both at low
and high energies became recently a very active field of research. This study provides an unique
tool to deepen our insight into the properties of strong and electromagnetic interactions. Various
exclusive production mechanism involving in the final state some light unflavoured mesons,
but also strange mesons and charmonium states, dimeson pairs, single photon as well as gauge
dibosons and technipion resonance are considered and discussed. We analyse the interplay of
different mechanisms both in two-body, three-body, and in a quite rich four-body phase space.
The fully differential studies of exclusive cross sections are executed and the influence of various
kinematical cuts on some distributions is investigated.

The outline of this Thesis is as follows:
InChapter 1we describe the pion-pion rescatteringmechanism to the NN → NNπ+π−

reactions and discuss some of their characteristics. We compare our results with the close-to-
threshold experimental data. The pion-pion rescattering contribution is found there to be negli-
gible. The predictions for future experiments with PANDAdetector at High Energy Storage Ring
(HESR) in GSI Darmstadt are presented. It is discussed how to cut off the dominant Roper res-
onance and double-∆ excitation mechanisms leading to the pp̄π+π− channel in final state. Dif-
ferential distributions in momentum transfers, transverse momentum, two-pion invariant mass,
relative azimuthal angle between outgoing pions, and pion rapidities are presented.

In the second part, we evaluate differential distributions for exclusive scalar f0(1500)
meson (glueball candidate) production for proton-antiproton (FAIR@GSI) and proton-proton (J-
PARC@Tokai) collisions. Both the QCD diffractive, the pion-pionmeson exchange current (MEC)
components as well as the nonperturbative central diffractive mechanism with the intermediate
pionic loop are calculated. The pion-pion MEC component, which can be reliably calculated,
dominates close to the threshold while the diffractive component (only an upper limit can be ob-
tained)may take over only for larger energies. The perturbative QCD calculations for production
of f0(1500) meson has no region of validity at the PANDA energy. The QCD diffractive compo-
nent is calculated based on two-gluon impact factors as well as in the kt-factorization framework
of Khoze-Martin-Ryskin approach with unintegrated gluon distribution functions (UGDFs) for
the proton. Rather large cross sections due to pion-pion fusion are predicted for PANDA ener-
gies, where the gluonic mechanism is shown to be negligible. The production of f0(1500) close
to threshold could limit the so-called πNN form factor in the region of larger pion virtualities.
Furthermore, we discuss in detail the two-pion background to the production of the f0(1500)
meson. We include a new mechanism relevant at lower energies (FAIR, J-PARC) relying on the
exchange of two pion. Cross section for non-resonant background is large and some cuts are
needed to extract the f0(1500) signal.

In Chapter 2 we evaluate differential distributions for the four-body NN → NNMM̄
(MM̄ = π+π− or K+K−) reactions. These processes constitute an irreducible background to
the three-body processes pp → ppR, where R are a broad resonances, and provide a valuable
tool to investigate in detail the properties of resonance states. We consider central diffractive
contribution mediated by pomeron and reggeon exchanges as well as the pion-pion rescatter-
ing contribution. The first process dominates at higher energies and small pion-pion invariant
masses while the second becomes important at lower energies and higher pion-pion invariant
masses. The amplitudes are calculated in the Regge approach. We include absorption effects
due to proton-proton interaction and meson-meson rescattering. We compare our results with
measured cross sections for the FNAL at Fermilab and the ISR at CERN experiments. We make
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predictions for experiments at RHIC, Tevatron and LHC energies. Two-dimensional distribution
in the (yM, yM̄)meson rapidities space is particularly interesting. For the central diffractive mech-
anism, the higher the incident energy the higher preference for the same-hemisphere emission
of mesons. The processes considered here constitute a sizeable contribution to the total proton-
proton cross section as well as to pion/kaon inclusive cross section. Furthermore, for the K+K−

production we consider completely new mechanism of emission of kaons directly from proton
lines and we find that the kaons are produced rather forward and backward but the correspond-
ing cross section is rather small at the LHC.We discuss the relationships between the various cuts
and how the cross section depends on them. We also make predictions for observable quantities
such as the transverse momentum of meson and two-meson invariant mass distributions, which
can directly reveal important features of the production mechanism. The soft hadronic models
required to calculate the absorption effects. We present how future experiments may further test
some aspects of diffractive mechanisms calculate in the Regge-based approach.

Next, we consider a measurement of exclusive production of scalar χc(0++) meson
via χc0 → π+π− and K+K− decays in the proton-proton collisions at RHIC and LHC and in
the proton-antiproton collisions at the Tevatron. The corresponding amplitude for exclusive
central diffractive χc0 (cc̄) meson production is calculated within the kt-factorization approach
(in heavy quark approximation) and the corresponding cross section is calculated with unin-
tegrated gluon distribution functions (UGDFs). We calculate several differential distributions
for pp( p̄) → pp( p̄)χc0 process including the absorptive corrections. Predictions for signal-to-
background ratio are shown and a proposal of kinematical cuts for experimental studies is pre-
sented.

After that, we focus on the possibility of measurement of the pp → ppπ+π− reaction,
during the special low luminosity LHC runs, with the help of the ATLAS central detector for
measuring pions and the ALFA stations for tagging the scattered protons. A visible cross section
is estimated to be 21 µb for

√
s = 7 TeV. Differential distributions in pion pseudorapidities, pion

and proton transverse momenta as well as π+π− invariant mass are shown and discussed.
In Chapter 3 the exclusive diffractive production of scalar ( f0(980), f0(1370), f0(1500))

and pseudoscalar (η, η′(958)) mesons in proton-proton collisions is discussed. As an interesting
extension of the standard Donnachie-Landshoff pomeron, a new model of soft pomeron with
an effective spin 2 exchange is discussed. A model of soft high-energy scattering is formulated
in terms of effective propagators and vertices for the exchanged pomeron and reggeons. Dif-
ferent pomeron-pomeron-meson tensorial coupling structures are possible in general. In most
cases two lowest orbital angular momentum - spin couplings are necessary to describe exper-
imental differential distributions. For f0(980) and η production reggeon-pomeron, pomeron-
reggeon, and reggeon-reggeon exchanges are included in addition, which seems to be necessary
at relatively low energies. The theoretical results are compared with the WA102 experimen-
tal data in order to determine the model parameters. Correlations in azimuthal angle between
outgoing protons, distributions in rapidities and transverse momenta of outgoing protons and
mesons, in a special “glueball filter variable”, as well as some two-dimensional distributions
are presented. We discuss differences between results of the “vectorial pomeron” and “tensorial
pomeron” models. We show that high-energy central production, in particular of pseudoscalar
mesons, could provide crucial information on the spin structure of the soft pomeron.

Chapter 4 describes the NN → NNX processes at high energies, where X is a very
forward system X = π0,γ,ω or neutron. Because at high energies the pomeron exchange is
the driving mechanism of bremsstrahlung it is logical to call these mechanisms as diffractive
bremsstrahlung to distinguish from the low-energy bremsstrahlung driven by meson exchanges.
For the pp → ppπ0 process the diffractive bremsstrahlung (the Drell-Hiida-Deck–type model),
photon-photon and photon-omega exchange mechanisms are included. Large cross sections of
the order of mb are predicted. The corresponding differential cross sections in rapidities and
transverse momenta of outgoing protons and pions as well as relative azimuthal angle between
outgoing protons are calculated for RHIC and LHC energies. The hadronic bremsstrahlung con-
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tributions dominate at large (forward, backward) pion rapidities. The diffractive nonresonant
background contributes at small π0p invariant mass and could be therefore misinterpreted as the
Roper resonance. We predict strong dependence of the slope in t (squared four-momentum trans-
fer between ingoing and outgoing proton) on the mass of the supplementary excited π0p system.
At high energies and midrapidities, the photon-photon contribution dominates over the diffrac-
tive components, however, the corresponding cross section is rather small. The photon-odderon
and odderon-photon contributions are included in addition and first estimates (upper limits) of
their contributions to rapidity and transverse momentum distribution of neutral pions are pre-
sented. We suggest a search for the odderon contribution at midrapidity and p⊥,π0 ≃ 0.5 GeV at
the LHC. The bremsstrahlung mechanisms discussed here contribute also to the pp → p(nπ+)
reaction. Both channels give a sizable contribution to the low-mass single diffractive cross sec-
tion and must be included in extrapolating the measured experimental single diffractive cross
section.

Next, we discuss differential distributions for the pp → ppω reaction at RHIC, Tevatron
and LHC energies. First we calculate cross section for the γp → ωp reaction from the thresh-
old to very large energies. At low energies the pion exchange is the dominant mechanism. At
large energies the experimental cross section can be well described within the kt-factorization
approach by adjusting light-quark constituent mass. We consider photon-pomeron (pomeron-
photon), photon-pion (pion-photon) as well as diffractive hadronic bremsstrahlungmechanisms.
The latter are included in the meson/reggeon exchange picture with parameters fixed from the
known phenomenology. Absorptions effects are included and discussed. Interesting rapidity
distributions are predicted. The hadronic bremsstrahlung contributions dominate at large (for-
ward, backward) rapidities. Our predictions are ready for verification at RHIC and LHC. At
small energies the photon-pomeron contribution is negligible compared to the bremsstrahlung
contributions. It could be, however, easily identified at LHC energies at the ω-meson midrapid-
ity.

For the pp → ppγ reaction at the LHC energy
√
s = 14 TeV we consider the diffrac-

tive bremsstrahlung mechanisms including effects of non point-like nature of protons. In addi-
tion, we take into account (vector meson)-pomeron, photon-pion as well as photon-pomeron ex-
change processes for the first time in the literature. Predictions for the total cross section and sev-
eral observables related to these processes e.g. differential distributions in pseudorapidities and
transverse momenta of photons or protons are shown and discussed. The integrated diffractive
bremsstrahlung cross section (Eγ > 100 GeV) is only of the order of µb. We try to identify regions
of the phase space where one of the mechanisms dominates. The γ-bremsstrahlung dominates at
large forward/backward photon pseudorapidities, close to the pseudorapidities of scattered pro-
tons. In contrast, the photon-pomeron (pomeron-photon) mechanism dominates at midrapidi-
ties but the related cross section is rather small. In comparison the virtual-omega–rescattering
mechanism contributes at smaller angles of photons (larger photon rapidities). Photons in the
forward/backward region can be measured by the Zero Degree Calorimeters (ZDCs) installed
in experiments at the LHC while the midrapidity photons are difficult to measure (small cross
section, small photon transverse momenta). Protons could be measured by the ALFA+ATLAS
detector or the TOTEM+CMS detector. The exclusivity could be checked with the help of main
central detectors.

Finally, we evaluate differential distributions for the four-body pp → nnπ+π+ reaction.
The amplitude for the process is calculated in the phenomenological Regge approach including
many diagrams. We make predictions for possible future experiments at RHIC and LHC ener-
gies. Very large cross sections are found which is partially due to interference of a few mech-
anisms. Presence of several interfering mechanisms precludes extraction of the elastic π+π+

scattering cross section. Absorption effects are estimated. Differential distributions in pseudo-
rapidity, rapidity, invariant two-pion mass, transverse-momentum and energy distributions of
neutrons are presented for proton-proton collisions at

√
s = 500 GeV (RHIC) and

√
s = 0.9, 2.36

and 7 TeV (LHC). Cross sections with experimental cuts are presented.
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Chapter 5 presents results of the evaluation of diffractive mechanism of central exclu-
sive production of W+W− pairs in proton-proton collisions at the LHC. We include diagrams
with intermediate virtual Higgs boson as well as quark box diagrams. Several observables re-
lated to this process are calculated. Predictions for the total cross section and differential dis-
tributions in W-boson rapidity and transverse momentum as well as WW invariant mass are
presented. We also show results for different polarization states of the final W± bosons. We
compare the contribution of the γγ → W+W− mechanism considered in the literature with the
contribution of the diffractive mechanism through the gg →W+W− subprocess for the different
observables. The phase space integrated diffractive contribution when separated is only a small
fraction of fb compared to 115.4 fb of the γγ-initiated contribution without absorption. The lat-
ter contribution dominates at small four-momentum transfers in the proton lines and in a broad
range of W+W− invariant masses. This offers a possibility of efficient searches for anomalous
triple-boson (γWW) and quartic-boson (γγWW) couplings and testing models beyond the Stan-
dard Model. We discuss shortly also the pp → ppγγ process, where the box contribution is very
similar to that for gg → W+W− reaction and compare our results with recent CDF data. Nice
agreement has been achieved without additional free parameters. Several tests of the applicabil-
ity of many models of unintegrated gluon distribution functions are done by direct comparison
of the theoretical predictions with experimental data.

We focus also on exclusive production of neutral technipion π0
T in pp collisions at the

LHC, i.e. on the pp → ppπ0
T reaction. The dependence of the cross section on parameters of

recently proposed vector-like Technicolor model is studied. Characteristic features of the dif-
ferential distributions are discussed. For not too large technipion masses the diphoton decay
channel has the dominant branching fraction. This is also the main reason for an enhanced pro-
duction of neutral technipions in γγ-fusion reaction. We discuss backgrounds of the QCD and
QED origin to the pp → pp(π0

T → γγ) process at large invariant γγ masses. We conclude that
compared to inclusive case the signal-to-background ratio in the considered exclusive reaction is
vary favorable which thereby could serve as a good probe for Technicolor dynamics searches at
the LHC.

The Summary and Outlook close the Thesis. It also discussed possible extensions of
the exclusive reactions in view of future phenomenological and experimental studies. In four
Appendices we have collected some useful formulae concerning details of the calculations.
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Exclusive π+π− Production at the LHC with Forward Proton Tagging,
Acta Phys. Polon. B42 (2011) 1861, arXiv:1104.3568 [hep-ex].

[8]. P. Lebiedowicz and A. Szczurek,
pp → ppK+K− reaction at high energies,
Phys. Rev. D85 (2012) 014026, arXiv:1110.4787 [hep-ph].

[9]. P. Lebiedowicz and A. Szczurek,
Exclusive pp → ppπ0 reaction at high energies,
Phys. Rev. D87 (2013) 074037, arXiv:1303.2882 [hep-ph].

[10]. P. Lebiedowicz and A. Szczurek,
Exclusive diffractive photon bremsstrahlung at the LHC,
Phys. Rev. D87 (2013) 114013, arXiv:1302.4346 [hep-ph].

[11]. P. Lebiedowicz, R. Pasechnik, and A. Szczurek,
QCD diffractive mechanism of exclusive W+W− pair production at high energies,
Nucl. Phys. B867 (2013) 61, arXiv:1203.1832 [hep-ph].

[12]. P. Lebiedowicz, R. Pasechnik, and A. Szczurek,
Search for technipions in exclusive production of diphotons with large invariant masses at the LHC,
Nucl. Phys. B881 (2014) 288, arXiv:1309.7300 [hep-ph].

[13]. P. Lebiedowicz, O. Nachtmann, and A. Szczurek,
Exclusive central diffractive production of scalar and pseudoscalar mesons; tensorial vs. vectorial
pomeron,
Annals Phys. 344 (2014) 301, arXiv:1309.3913 [hep-ph].

15



They were also presented during international conferences including [14–22]:

1. P. Lebiedowicz and A. Szczurek,
Exclusive scalar f0(1500) meson production,
PoS (EPS-HEP 2009) 457, arXiv:1206.2065 [hep-ph].
2009 Europhysics Conference on High Energy Physics (EPS-HEP 2009), 16-22 Jul 2009, Cra-
cow, Poland.

2. P. Lebiedowicz and A. Szczurek,
Exclusive production of π+π− pairs in proton-proton and proton-antiproton collisions,
Int. J. Mod. Phys. A26 (2011) 748, arXiv:1008.4469 [hep-ph].
11th International Workshop on Meson Production, Properties and Interaction (MESON
10), 10-15 Jun 2010, Cracow, Poland.

3. P. Lebiedowicz, R. Pasechnik, and A. Szczurek,
Exclusive production of χc(0+) meson and its measurement in the π+π− channel,
Nucl. Phys. B219 (Proc. Suppl.) (2011) 284, arXiv:1108.2522 [hep-ph].
5th Joint International Hadron Structure’11 Conference (HS 11), 27 Jun - 1 Jul 2011, Tatran-
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Chapter 1

Exclusive Production of Meson Pairs at
Low Energies

1.1 The two-pion rescattering in pp → ppπ+π− and pp̄ → pp̄π+π−

reactions

The light mesons production in nucleon-nucleon collisions is one of the sources of
information on the nucleon-nucleon interaction and the resonance properties. The exclusive
NN → NNπ+π− reaction, which is one of the reactions with four charged particles in the fi-
nal state, can be easily measured. The Roper resonance N∗(1440) and ∆(1232) are the first ex-
cited states of the nucleon. They play an important role for pion production at nucleon-nucleon
c.m. energies near threshold value sthr = (2mp + 2mπ)2. The two-pion production mechanism
close to threshold is dominated by the excitation of one of the nucleons into the Roper resonance
N∗(1440) and its subsequent decay into nucleon and two pions N∗ → p(ππ)l=I=0. At interme-
diate energies the other decay channel N∗ → ∆π is the main contribution. At higher energies the
simultaneous ∆(1232) excitation of both nucleons (produced via π, ρ t-channel exchanges) con-
stitutes the dominant reaction mechanism [23–26]. This is understandable, because more energy
is needed to excite both ∆ than is needed for one N∗(1440). It is the aim of this Section to evalu-
ate the pion-pion rescattering contribution shown in Fig.1.1 for the measured close-to-threshold
region of the pp → ppπ+π− reaction as well as to make predictions for the future experiments
with the PANDA detector at HESR in GSI Darmstadt [27] for the pp̄ → pp̄π+π− reaction.

On the other hand a significant progress in studying pion-pion scattering at low-energy
has been recently achieved due to works based on dispersive analyses of experimental data
[28–33]. These works, led to precise determination of the ππ scattering amplitudes consistent
with analyticity, unitarity and crossing symmetry. Strong theoretical constraints from forward
dispersion relations and sum rules allowed to test several, sometimes conflicting sets of data [32].
The twice subtracted dispersion relations (Roy‘s equations) used in [28, 29] allowed to calculate
very precisely sigma pole position and S-wave scattering lengths a0 and a2. In other works,
also using the Roy‘s equations, [30–33] these results were even improved. In Ref. [31] the sigma
position was determined from first principles with unprecedented precision. Recent works on
once subtracted dispersion relations give results with similar precision [34, 35]. Application of
Roy’s equations in another dispersive analysis of experimental data allowed to eliminate the long
standing “up-down” ambiguity below 1 GeV in S0 wave 1 [36]. The simple and model indepen-
dent amplitudes of the S0, P, S2, D0, D2, F and G waves presented in series of works [32–35]
seem to be efficient and easy to use in analyses of ππ interactions. Amplitudes presented in [33]
have been applied in this analysis to parametrise the final state interactions π0π0 → π+π−; see
also [37], where the description of pion-pion scattering data have been improved.

1Here we use following notation to denote the ππ partial wave by l I = S0, P, S2, D0, D2, etc., where l is angular
momentum between pions and I is the total isospin of the pion pair.

17



The study of the ππ system also bears on current issues in the spectroscopy of conven-
tional qq̄ mesons and non-qq̄ mesons such as glueballs or mesonic molecules. In particular, the
isoscalar scalar and tensor sectors have more states than can be accommodated within the con-
ventional quarkmodel. A recent review of light meson spectroscopy [38–40] includes a summary
of the current both theoretical and experimental situation in these sectors. Non-qq̄ candidates in-
clude the poorly understood f0(980) and the scalar glueball candidates f0(1500) and f0(1710),
all of which couple to the ππ system. Information about the masses, widths, and decay modes
of these states, along with knowledge of their production mechanisms, as revealed by their |t|
dependences, will help in unraveling their substructure [41]. It is worth to mention that the ππ
partial wave analysis have been obtained e.g. from the charge exchange π−p → π0π0n reac-
tion at incident π− momentum Plab = 18.3 GeV/c by the E853 experiment at BNL [42] and at
Plab = 100 GeV/c (

√
s = 13.729 GeV) by the GAMS Collaboration at CERN [43]. A bump-dip

structure of the S-wave at low momentum transfer is shown in Ref. [43]. The combined analysis
in the π+π−, π0π0, K+K−, ηη, ηη′, etc. systems can be used to provide information on how cross
sections of produced states and relative ratios of partial wave contributions depend on center-
of-mass energy. In Ref. [44] the authors stressed that the number of observables provided by
such experiment is much smaller then the number of real parameters needed to describe the par-
tial waves. Consequently, a special physical assumptions (generally connected with ignoring of
the role of nucleon spin) were made in most studies of the ππ systems. The knowledge of the
ππ → ππ reaction can almost directly be used in our pp → ppππ reaction (2→ 4 reaction 2).

1.1.1 The two-pion rescattering amplitude

Before we go to the four-body pion-pion rescattering mechanism shown in Fig.1.1 let us
focus first on the π0π0 → π+π− scattering. This reaction contains both isospin I = 0 and I = 2
states. We illustrate how the ππ isospin amplitude for a given angular momentum l arise. For
the scattering process 1+ 2→ 3+ 4 both the initial and final states can be expressed in terms of
isospin states |I, Iz〉 and the scattering amplitude may be decomposed as

〈

π+π−
∣

∣

∣Al
∣

∣

∣π0π0
〉

= ∑
I

〈I3, I4, I3z, I4z | I, Iz〉∗ 〈I1, I2, I1z, I2z | I, Iz〉 Al,I , (1.1)

where 〈I1, I2, I1z, I2z | I, Iz〉, 〈I3, I4, I3z, I4z | I, Iz〉 are the isospin Clebsch-Gordan coefficients and
Al,I is independent of Iz. In terms of isospin states we can write

∣

∣π0π0〉 = − 1√
3
|0, 0〉+

√

2
3
|2, 0〉 ,

∣

∣π+π−
〉

=
1√
3
|0, 0〉+ 1√

2
|1, 0〉+ 1√

6
|2, 0〉 , (1.2)

so we have
〈

π+π−
∣

∣

∣
Al
∣

∣

∣
π0π0

〉

= Al(π0π0 ↔ π+π−) = −1
3
Al,I=0 +

1
3
Al,I=2 . (1.3)

Let us notice that the isospin I = 1 amplitude will not contribute to the π0π0 → π+π− reaction.
The on-shell amplitude can be expanded into partial-wave amplitudes f Il (s)with angu-

lar momentum l and isospin I:

M(s, z) = 16π ∑
I

∑
l

(2l + 1)Pl(z) f Il (s) , (1.4)

where the scattering angle cosθ = z and Pl(z) is a Legendre polynomial containing the angular
dependence. The differential cross-section for spinless particles is

dσ

dz
=

1
32πs

|M(s, z)|2 . (1.5)

22→ 4 reaction denotes a type of the reaction with two initial and four final particles.
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In our calculation f Il (s) can be parametrised in terms of the pion-pion phase shifts δIl (s)
and the inelasticities η I

l (s) taken from [33]

f Il (s) =

√

s

s− 4m2
π

η I
l (s)e

2iδIl (s) − 1
2i

, (1.6)

where the inelasticity (absorption) coefficients obey 0 6 η I
l (s) 6 1. Clearly, η I

l (s) = 1 for elastic
scattering. Below the inelastic threshold (when only the elastic channel is open) the scattering
amplitude is completely specified by

f Il (s) =

√

s

s− 4m2
π

eiδ
I
l (s) sin δIl (s) =

√

s

s− 4m2
π

1
cot δIl (s)− i

. (1.7)

pa

pb

p1

p2

t1

t2

π0∗

π0∗

π−(p4)

π+(p3)

FπNN(t1)

FπNN(t2)

Figure 1.1: The pion-pion rescattering mechanisms of exclusive production of π+ and π− in proton-
proton and proton-antiproton collisions. Some kinematical variables are shown explicitly. The stars at-
tached to π0 mesons denote the fact that they are off-mass-shell.

It is straightforward to evaluate the pion-pion rescatteringmechanism shown in Fig.1.1.
If we assume the iγ5 type coupling of the pion to the nucleon then the Born amplitude according
to the Feynman rules can be written

M2→4
λaλb→λ1λ2ππ = ū(p1,λ1)iγ5u(pa,λa)

×gπNN

√

Tk Sπ(t1) FπNN(t1)M2→2
π∗π∗→ππ gπNN

√

Tk Sπ(t2) FπNN(t2)

×ū(p2,λ2)iγ5u(pb,λb) , (1.8)

where u(p,λ), ū(p′,λ′) = u†(p′,λ′)γ0 are the Dirac spinors of the incident and outgoing protons
with the four-momentum p and the helicities λ; normalized as ū(p′)u(p) = 2mp. The factor gπNN

is the familiar pion nucleon coupling constant and is relatively well known [45] (g2πNN/(4π) =
13.5− 14.6). In our calculations the coupling constants was fixed to g2πNN/4π = 13.5. The isospin
factor Tk equals 1 for the π0π0 fusion and equals 2 for the π+π− fusion. In the case of proton-
antiproton collisions both NN̄π+π− and NN̄π0π0 final state channels are possible (where N
denotes p or n), i.e. both π0π0 and π+π− exchanges are allowed. In the case of π+π− scattering,
isospin 0 and 1 are allowed in the s-channel, so for example it contains the ρ, f0 and f2 resonances,
but in π0π0 scattering the ρ meson is excluded. The four-momentum transfers along the pion line
defined in Fig.1.1 are t1,2 = q21,2 = (pa,b− p1,2)

2. In the following for brevity we shall use notation
t1,2 which means t1 or t2. The propagator of the off-shell pion is

Sπ(t1,2) =
i

t1,2 −m2
π

. (1.9)

The off-shell amplitude for the subsystemM2→2
π∗π∗→ππ is discussed below (1.12).
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Explicitly, we obtain the 2 → 4 amplitude squared averaged over initial and summed
over final spin polarization of nucleons as

|M|2 =
(

Ea +mp

) (

E1 +mp

)

(

p2
a

(Ea +mp)2
+

p2
1

(E1 +mp)2
− 2pa · p1

(Ea +mp)(E1 +mp)

)

× g2πNNTk
(t1 −m2

π)
2 F

2
πNN(t1) |Mπ0∗π0∗→π+π−(s34, cos θ∗, t1, t2)|2

g2πNNTk
(t2 −m2

π)
2 F

2
πNN(t2)

×
(

Eb +mp

) (

E2 +mp

)

(

p2
b

(E2 +mp)2
+

p2
2

(E2 +mp)2
− 2pb · p2

(Eb +mp)(E2 +mp)

)

,

(1.10)

where mπ and mp is the mass of the nucleon and the pion, respectively; Ea, Eb and E1, E2 are the
energies of initial and outgoing nucleons, pa,pb and p1,p2 are the corresponding three-momenta.

In the case of central production of pion pairs not far from the threshold region rather
large transferred four-momenta squared t1 and t2 are involved and one has to include non-point-
like and off-shellness nature of the particles involved in corresponding vertices. This is incor-
porated via the FπNN(t1) or FπNN(t2) vertex form factors. In the meson exchange approach [46]
they are parametrised in the monopole form as

FπNN(t) =
Λ2 −m2

π

Λ2 − t
(1.11)

normalised to 1 at the on-shell point FπNN(m
2
π). Typical values of the form factor parameters are

Λ = 1.2− 1.4 GeV [46,47], however theGottfried SumRule violation prefers smaller Λ ≈ 0.8 GeV
[48–50]. We shall discuss how the uncertainties of the form factors influence our final results.

The amplitude of the subprocess π0∗π0∗ → π+π− with virtual initial pions is written
in terms of the amplitude for real initial pions and the correction factors as:

Mπ0∗π0∗→π+π−(s34, cos θ∗, t1, t2) = Mπ0π0→π+π−(s34, cos θ∗)Fπ0∗(t1)Fπ0∗(t2) , (1.12)

where we use exponential form factors of the type

Fπ0∗(t) = exp

(

t−m2
π

Λ2
o f f

)

, (1.13)

i.e. normalized to unity on the pion-mass-shell Fπ0∗(m2
π) = 1. In general, the parameter Λo f f is

not known but in principle could be fitted to the experimental data providing that our mecha-
nism is the dominant mechanism which can be true only in a limited corner of the phase space.
From our general experience in hadronic physics we expect Λo f f to be of the order 1 GeV.

The cos θ∗ in Eq. (1.12) requires a separate discussion. In the on-shell and spinless par-
ticles case the cos θ can be expressed in terms of the two-body Mandelstam invariants t̂ and û in
two equivalent ways:

cos θt̂ = 1+
2t̂

s34 − 4m2
π

, cos θû = −1− 2û
s34 − 4m2

π

. (1.14)

This can be generalized to the case of off-shell initial pions as:

cos θ∗t̂ = 1+
2t̂

s34 −m2
π −m2

π − t1 − t2
, cos θ∗û = −1− 2û

s34 −m2
π −m2

π − t1 − t2
. (1.15)

In our case of the 2 → 4 reaction we have to deal with off-shell initial pions and an analytical
continuation of formula (1.15) is required. In the following we use the most straightforward
prescription:

cos θ∗ =
1
2
(cos θ∗t̂ + cos θ∗û) =

t̂− û

s34 −m2
π −m2

π − t1 − t2
. (1.16)

The formula above reproduces the on-shell formula (1.14) when t1 → m2
π and t2 → m2

π , is sym-
metric with respect to t̂ and û and fulfils the requirement −1 < cos θ∗ < 1.
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1.1.2 Reactions via Roper resonance excitation and its decay

Close to the two-pion production threshold the dominant mechanism for the reaction
pp → ppπ+π− is the Roper resonance excitation and its subsequent three-body decay [23, 51].
As was shown in Ref. [25] below Tp = 1 GeV the N∗(1440) → Nσ term is the largest while the
N∗(1440) → ∆π term is the next in size. Of these two terms the σ-meson exchange gives much
bigger contribution than the π-meson exchange and this shows the importance of the isoscalar
excitation of the Roper resonance. This mechanism constitutes an “unwanted background” to
our pion-pion rescattering. At low energy the sigma and pion exchanges are the dominant mech-
anisms of Roper resonance excitation (see [52]). Here we show how to approximately estimate
the phase-space integrated contribution of the mechanism shown in Fig.1.2 not very close to the
threshold 3.

N

N N

N

t π0, σ
π−

π+

N∗(1440)

pa

pb

pN

pN∗

N

N

N

N

u π0, σ
π−

π+

N∗(1440)
pa pN∗

pb pN

Figure 1.2: The dominant mechanisms of Roper resonance production via π, σ-meson exchanges at low
energy proton-proton scattering.

The amplitudes for the Roper resonance N∗(1440) excitation via π, σ-meson exchanges
can be written as

Mσ−exch.
λaλb→λNλN∗

(k2) = gσNNFσNN(k
2) ū(pN ,λN)u(pa,λa)

i

k2 −m2
σ

×gσNN∗FσNN∗(k
2) ū(pN∗ ,λN∗)u(pb,λb) , (1.17)

Mπ−exch.
λaλb→λNλN∗

(k2) = gπNNFπNN(k
2) ū(pN ,λN)iγ5u(pa,λa)

i

k2 −m2
π

×gπNN∗FπNN∗(k
2) ū(pN∗ ,λN∗)iγ5u(pb,λb) , (1.18)

where k2 = t or u are the four-momentum transfers and mπ and mσ are the mass of the pion
and sigma mesons; u(pa,λa), u(pb,λb), u(pN ,λN), u(pN∗ ,λN∗) are the spinors of the proton and
Roper resonance.

In our calculations the coupling constants are taken as g2πNN/(4π) = 13.5 [45], g2σNN/(4π) =
5.69 [46], g2πNN∗/(4π) = 2 and g2σNN∗/(4π) = 2. Because numerically the σ-exchange is the
dominant mechanism and the π-exchange is only a small correction 4, in practice the latter can
be neglected. The coupling constant gσNN∗ is in fact an unknown parameter which in princi-
ple should be determined from the experimental data. Different values have been used in the
literature [46, 53]. Our number is an average value of those found in the literature.

We parametrise the form factors FMNN(k
2) (where M denotes π or σ) either in the

monopole form with cut-off parameter ΛM as traditionally used for low energy processes:

FMNN(k
2) =

Λ2
M −m2

M

Λ2
M − k2

, (1.19)

or in the exponential form often used at high energies with cut-off parameter ΛE:

FMNN(k
2) = exp

(

k2 −m2
M

Λ2
E

)

. (1.20)

3Very close to the threshold the reaction must be treated as genuine four-body reaction due to the presence of
nucleon-nucleon interaction effects that should be properly taken into account, especially the NN final state interac-
tions (FSI), which could be strong close to threshold (see [23, 24]).

4The difference is due to scalar coupling for σ-meson exchange or pseudoscalar iγ5 coupling for pion exchange.
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The angular distribution for single Roper resonance excitation can be calculated from
the amplitude above as

dσpp→pN∗(1440)

dΩ
=

1
64π2s

(

q f

qi

)

1
4 ∑

λaλbλNλN∗

|M(t)
λaλb→λNλN∗

(z)−M(u)
λaλb→λNλN∗

(z)|2 , (1.21)

where s is a square of the proton-proton center-of-mass energy; qi and q f are center-of-mass
momenta in the initial pp or the final pN∗ systems, respectively and z = cos θ, where θ is the
center-of-mass angle between the outgoing and initial nucleon. The factor 1

4 and ∑λaλbλNλN∗
emerge for the simple reason that the polarization of initial and final particles is not consid-
ered. In general, one should calculate the cross section for 2 → 4 reaction based on diagrams
shown in Fig. 1.2 with the Roper resonance in the intermediate state (in general off-shell parti-
cle). However, for sufficiently high energies the total cross section for the ppπ+π− final state can
be written approximately as a cross section for the Roper resonance excitation and a probability
for the N∗(1440) → pπ+π− decay (on-shell approximation):

σpp→ppπ+π−(
√
s) ≈ σpp→pN∗(

√
s)BR(N∗(1440) → pπ+π−) . (1.22)

This formula will be used to calculate the total cross section for the Roper resonance mechanism
to show as a reference for the discussed above two-pion rescattering contribution. The branching
ratio into the pπ+π− channel is not very well known and the mechanism of the Roper resonance
decay can be complicated. Particle Data Book contains only branching fraction for all Nππ states.
Our decay channel (pπ+π−) is only one out of three possible (pπ0π0, pπ+π−, nπ+π0). We take
BR(N∗(1440) → pπ+π−) = 0.1.

In principle, all processes (pion rescattering, Roper resonance production and decay,
etc.) add coherently and can interfere. At low energy, where the phase space is very limited the
interference seems unavoidable. Some distance from the threshold (of our main interest) they
may occupy different regions of the phase space. This automatically means small interference
effects. In our preliminary calculation we have estimated the Roper resonance contribution in
a simplified way (in terms of the two-body reaction amplitude and a probability of the 3-body
decay). In order to address numerically the interference effects with pion rescattering the Roper
resonance must be treated as a genuine four-body processes. This requires a modelling of the
3-body Roper resonance decay (not necessarily simple as different sequential processes are possi-
ble). To avoid the rather complicated problem of the interference we proposed instead imposing
extra kinematical cuts which is possible at sufficiently large energies. In the next section we shall
show our predictions for several differential distributions in different variables.

1.2 Results

Before we go to our four-body reaction let us stay for a moment with the π0π0 → π+π−

on-shell scattering. In Fig.1.3 we show the total (angle-integrated) cross section for the π0π0 →
π+π− process which constitutes the subprocess in the NN → NNπ+π− reactions. Here the
partial wave expansion (1.4) with δIl and η I

l parametrisations from Ref. [33] were used. In the
present work we have limited to the pion-pion c.m. energies Wππ < 1.45 GeV. We show also
individual contributions of different partial waves (l, I) = (0, 0), (0, 2), (2, 0) and (2, 2). Because of
identity of particles in the initial state only partial waves with even l contribute. The sum of the
individual contributions is not equal to the cross section calculated with the sum of the partial
wave amplitudes because of relatively strong interference effects. One can see characteristic
bumps related to the famous scalar-isoscalar σ-meson at Wππ ≈ 0.5− 0.6 GeV and the tensor-
isoscalar f2(1270). The dip atWππ = 980 MeV is due to interference of the σ meson with another
scalar-isoscalar narrow f0(980) meson and a broad background. Generally the contributions of
partial waves with I = 2 are much smaller than those for I = 0.

In Fig.1.4 we present angular distributions dσ/dz, z = cos θ, at the pion-pion collision
energiesWππ = 0.6, 1, and 1.275 GeV. As explained in the figure caption we show results for the
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Figure 1.3: The angle-integrated cross section for the π0π0 → π+π− reaction in logarithmic (left panel)
and linear (right panel) scale as a function of pion-pion c.m. energy. The thick solid line represents the
coherent sum of all partial waves. The contributions for individual partial waves S0, S2, D0 and D2 are
shown for comparison.

coherent sum of all partial waves as well as the individual contributions. By comparing panels
at differentWππ we infer that the interference effects are rather large.

θcos
-1 -0.5 0 0.5 1

) 
(m

b)
θ

/d
(c

os
σd

-410

-310

-210

-110

1

10

210
-π+π → 0π0π

 = 0.6 GeVππW
total
S0
S2
D0

 10)×D2 (

θcos
-1 -0.5 0 0.5 1

) 
(m

b)
θ

/d
(c

os
σd

-410

-310

-210

-110

1

10

210
-π+π → 0π0π

 = 1 GeVππW
total
S0
S2
D0
D2

θcos
-1 -0.5 0 0.5 1

) 
(m

b)
θ

/d
(c

os
σd

-410

-310

-210

-110

1

10

210
-π+π → 0π0π

 = 1.275 GeVππW
total
S0
S2
D0
D2

Figure 1.4: Differential cross section for the process π0π0 → π+π−. The thick solid line represents the
coherent sum of all partial waves. The individual contributions to the cross section for partial waves S0,
S2, D0 and D2 are shown for comparison.

In Fig. 1.5 we show the proton energy excitation function of the integral cross section for
the pp → ppπ+π− reaction. The differential cross sections for the 2 → 4 reaction are calculated
using the general formula given by Eq. (A.32), see Appendix A. The beam energy Tp = 1.4 GeV
corresponds to a center-of-mass energy of

√
s = 2.48 GeV.We compare our results with the exper-

imental data for the pp → ppπ+π− reaction (from Refs. [54–62]). and for the pp̄→ pp̄π+π− one
(only data from the JETSET (PS202) experiment at LEAR [63]). We present previous data (open
symbols) with low statistics coming mainly from bubble-chamber measurements on hydrogen
or on deuterium from Refs. [54,56,57] as well as one datum point from an inclusive spectrometer
measurement at 800 MeV [55]. The newer data taken from Refs. [58–63] (full symbols) are much
closer to the threshold of the reaction, where the final state interactions between protons (FSI)
may be important 5, and are an order of magnitude smaller. We show how the uncertainties of

5In Refs. [23, 24] the FSI is found to cause a strong enhancement of the cross section (up to a factor 10 close to
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the form factor parameters Λ affect our final results. For the pion-pion rescattering we mod-
ify the cut-off parameter Λ in Eq. (1.11) (Λ ∈ (0.8, 1.4) GeV) and the cut-off parameter Λo f f in
Eq. (1.13) (Λo f f ∈ (0.5, 2) GeV). The thick solid line show theoretical predictions from the model
calculations with Λ = 0.8 GeV and Λo f f = 1 GeV. We see that at low energies the pion-pion
rescattering contribution gives a negligible contribution to the cross section.
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Figure 1.5: The phase-space integrated cross section for the pp→ ppπ+π− and pp̄→ pp̄π+π− reactions
as a function of the incoming proton kinetic energy in the laboratory frame Tp together with the experi-
mental data from Refs. [54–63]. The thick solid line corresponds to the pion-pion rescattering contribution
as explained in the text. The uncertainties band is also shown. In all cases a coherent sum of all partial
waves is taken.

As discussed in Section 1.1.1, the two-pion rescattering amplitude used for the π0π0 →
π+π− reaction can, after a small “correction” for the virtualities of both initial π0’s, be used
for the four-body process of our main interest. In Fig.1.6 (left panel) we show the total cross
section (integrated over the whole phase space with the restriction Mππ < 1.45 GeV) for the
four-body reaction as a function of the overall center-of-mass energy

√
s. We show the coherent

sum of partial waves for different angular momentum (l) and isospin (I) as well as individual
contributions. The maximum of the cross section occurs at

√
s ≈ 5 GeV, i.e. at the highest

energy planned for the FAIR HESR. There, the S0 (l, I) = (0, 0) partial wave has the dominant
contribution.

In the right panel of Fig. 1.6 we compare the pion-pion rescattering contribution and the
contribution of Roper resonance excitation through σ-meson exchange. In both cases we have
estimated the uncertainties of the contributions. For the pion-pion rescattering we modify Λ in
Eq.(1.11) (Λ ∈ (0.8, 1.4) GeV) and Λo f f in Eq.(1.13) (Λo f f ∈ (0.5, 2) GeV). The bottom dashed line
was obtained with Λ = 0.8 GeV and Λo f f = 0.5 GeVwhile the top dashed line with Λ = 1.4 GeV
and Λo f f = 2 GeV. For the contribution of the Roper resonance excitation through σ-meson ex-
change we modify ΛM ∈ (1.5, 2) GeV (band with vertical lines) in the monopole parametrisation
and ΛE ∈ (1, 1.5) GeV (band with horizontal lines) in the exponential parametrisation.

Because at low energies the Roper resonance excitation and double-∆ excitation play the
dominant role [25, 26] it is not obvious how to extract the pion-pion rescattering contributions.

threshold and about a factor 2 at Tp ∼ 900 MeV). This increase is concentrated at low pp invariant masses, since
the FSI is stronger when the protons move in the same direction. This effect is not taken into account in our model
calculation. Although the ISI and FSI (the initial and final state interaction, respectively) could be taken into account by
some approaches [64–67], there is still some model dependence. Since, we mainly investigate the relative importance
of ππ-rescattering contribution, we have not included complicated treatments of ISI and FSI which are not expected
to influence our main conclusions.
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Figure 1.6: The phase-space integrated cross section for the reaction pp̄ → pp̄π+π− as a function of
center of mass energy

√
s. In the left panel the thick solid line represents the coherent sum of all partial

waves. The contributions for individual partial waves S0, S2, D0 and D2 are shown. The pions are
restricted to lie in the region Mππ < 1.45 GeV. In the right panel we compare the pion-pion rescattering
contribution and the Roper resonance contribution (only σ-meson exchange included). The uncertainty
bands for both contributions are also shown. The area of uncertainties for the pion-pion rescattering
contribution is indicated by the dashed lines.

To cut off the Roper resonance excitation contribution we eliminate from the phase space those
cases when

(MN∗ − ∆MN∗ < M134 < MN∗ + ∆MN∗) or (MN∗ − ∆MN∗ < M234 < MN∗ + ∆MN∗) . (1.23)

The pp̄ → pp̄π+π− reaction is interesting because its double-∆ contribution mainly comes from
the simultaneous ∆̄−− and ∆++ excitation; see Ref. [26]. To suppress the double-∆ excitation we
eliminate from the phase space those cases when

(M∆ − ∆M∆ < M13 < M∆ + ∆M∆ and M∆ − ∆M∆ < M24 < M∆ + ∆M∆) or
(M∆ − ∆M∆ < M14 < M∆ + ∆M∆ and M∆ − ∆M∆ < M23 < M∆ + ∆M∆) . (1.24)

Above Mijk and Mik represent effective mass of the pππ and pπ systems, respectively; ∆MN∗ and
∆M∆ are cut-off parameters. We take MN∗ = 1.44 GeV, ∆MN∗ = 0.4 GeV, and M∆ = 1.22 GeV,
∆M∆ = 0.2 GeV which are considerably bigger than the decay width.

In Fig.1.7 we present differential cross section as a function of the (anti)proton trans-
verse momentum, the pion transverse momentum, the transferred four-momentum squared be-
tween the initial and final nucleons (t) as well as the p⊥,sum = |~p⊥,sum| = |~p⊥,34| = |~p3⊥(π+) +
~p4⊥(π−)| for pion-pion rescattering only. The shape of the |t| = |t1| = |t2| distribution reflects
tensorial structure of the πNN vertices (see Eq. (1.10)) and t1 or t2 dependence of vertex form
factor (see Eq. (1.11)). This plot illustrates how virtual are "initial" pions. In principle, measur-
ing such distributions would allow to limit, or even extract, the πNN form factor in relatively
broad range of t1 or t2. This is not possible in elastic nucleon-nucleon scattering where many
different exchange processes contribute. For collinear (parallel to the parent nucleons) initial
pions the dσ/dp⊥,sum distribution would be proportional to the Dirac δ(p⊥,sum). The deviation
from δ(p⊥,sum) is therefore a measure of non-collinearity and is strongly related to virtualities of
“initial” pions (see panel (c)).

The two-pion invariant mass distribution given by the differential cross section dσ/dMππ

is particularly interesting, see Fig. 1.8. In the left panel we show the coherent sum and the in-
dividual contributions of different partial waves (l, I) = (0, 0), (0, 2), (2, 0) and (2, 2). Here one
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Figure 1.7: Differential cross section dσ/dp⊥,N (panel(a)), dσ/dp⊥,π (panel(b)), dσ/d|t| (panel(c)), and
dσ/dp⊥,sum (panel(d)), integrated over all other variables, for the pp̄→ pp̄π+π− reaction at

√
s = 5.5 GeV.

The pions are restricted to lie in the region Mππ < 1.45 GeV. The solid line is the cross section without
additional cuts, the long-dashed line includes cuts to remove regions of Roper resonance and double-∆
excitations.

can see two characteristic bumps corresponding to the broad scalar σ meson and tensor f2(1270)
meson as well as the dip from the interference with f0(980) and σ as in elastic ππ scattering (see
Fig 1.3). However, here a size of bumps corresponding to scalar mesons are in contrast to elastic
ππ scattering. In the right panel we can see how the cuts applied to remove regions of Roper
resonance (1.23) and double-∆ excitation (1.24) modify the spectral shapes. The cuts to remove
regions of Roper resonance decrease the cross section only in the region Mππ < 0.85 GeV while
the cuts to remove regions of double-∆ excitation modify the whole region of two-pion invariant
mass. In Fig. 1.9 we present distributions in the Nπ and Nππ systems.

In Fig.1.10 (top panels) we show two-dimensional distributions in (t,Mππ) when all
partial waves (left panel) and S0wave (central panel) and D0 wave (right panel) only contributed
to the cross section. In the bottom two panels we show the ππ invariant mass distribution with
restrictions on both four-momentum transfers t1 and t2: |t| < t0 (short-dashed line) and |t| > t0
(long-dashed line), where t0 = 0.1 GeV2 and 0.2 GeV2 in the panel (a) and (b), respectively. If we
impose a |t| < 0.1 GeV2 cut, we can see in the panel (a) that the D0 wave contribution is strongly
reduced.
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Figure 1.8: Differential cross section dσ/dMππ for the pp̄ → pp̄π+π− reaction at
√
s = 5.5 GeV. The

thick solid line represents the coherent sum of all partial waves. In the left panel the contributions for
individual partial waves S0, S2, D0 and D2 are shown. In the right panel we show the cross section with
additional cuts. The long-dashed line includes cuts to remove both regions of N∗(1440) resonance and
double-∆ excitations. The violet dotted line corresponds to cut on Roper resonance regions and the red
short-dashed line correspondsto cut on double-∆ excitation regions, separately).

 (GeV)πNM
1 1.5 2 2.5 3 3.5

b/
G

eV
)

µ
 ( π

N
/d

M
σd

0

2

4

6
-π+π p p→ pp

 rescatteringππ
 = 5.5 GeVs

 (GeV)ππNM
1 1.5 2 2.5 3 3.5 4

b/
G

eV
)

µ
 ( ππ

N
/d

M
σd

0

1

2

3

4
-π+π p p→ pp

 rescatteringππ
 = 5.5 GeVs

Figure 1.9: Differential cross section dσ/dMpπ (left panel) and dσ/dMpππ (right panel) for the pp̄ →
pp̄π+π− reaction at

√
s = 5.5 GeV. The pions are restricted to lie in the region Mππ < 1.45 GeV. The

solid line is the cross section without additional cuts, the long-dashed line includes cuts to remove both
regions of N∗(1440) resonance and double-∆ excitations (the violet dotted line corresponds to cut on
Roper resonance regions, the red short-dashed line to cut on ∆ and ∆̄ excitation regions, separately).

In Fig.1.11 we show two-dimensional distributions in (cos θ∗,Mππ) (left panel) and in
(p⊥,π,Mππ) (right panel). It is apparent that the bulk of f2(1270)meson is emitted at cos θ∗ = ±1.
The kinematic variable cos θ∗ is given by Eq. (1.16).

The PANDA detector is supposed to be a 4π solid angle detector with good particle
identification for charged particles and photons. This opens a possibility to study several cor-
relation observables for outgoing particles. One of them is azimuthal angle correlation between
charged outgoing pions φππ = φ34. In Fig.1.12 we present differential cross sections dσ/dφpp̄ and
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Figure 1.10: Distributions in (t,Mππ) for the pp̄→ pp̄π+π− reaction at
√
s = 5.5 GeV. The bottom panels

(a) and (b) show two-pion invariant mass distribution for different cuts on both four-momentum transfers
|t1| and |t2|.
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Figure 1.11: Two-dimensional distributions in (cos θ∗,Mππ) (left panel) and (p⊥,π,Mππ) (right panel)
for the pp̄→ pp̄π+π− reaction at

√
s = 5.5 GeV.

dσ/dφππ . Clearly a preference of back-to-back emissions can be seen. Imposing cuts on the Roper
resonance and double-∆ excitation lowers the cross section and strongly modifies the shape in
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φpp̄ distribution but only mildly in φππ distribution. Because the shape of the azimuthal an-
gle correlations strongly depends on the reaction mechanism, measuring such correlation would
provide then very valuable information.

 (deg)
pp

φ
0 50 100 150

b)µ
 ( ppφ

/dσd

0.5

1

1.5

2
-π+π p p→ pp

 rescatteringππ
 = 5.5 GeVs

 (deg)
ππ

φ
0 50 100 150

b)µ
 ( ππφ

/dσd

0

1

2

3

4
-π+π p p→ pp

 rescatteringππ
 = 5.5 GeVs

Figure 1.12: The distributions in azimuthal angle between outgoing nucleons (left panel) and outgoing
pions (right panel) for the pp̄→ pp̄π+π− reaction at

√
s = 5.5 GeV. In both cases the pions are restricted

to lie in the region Mππ < 1.45 GeV. The solid line is the cross section without additional cuts, the long-
dashed line includes cuts to remove both regions of N∗(1440) resonance and double-∆ excitations (the
violet dotted line corresponds to cut on Roper resonance region, the red short-dashed line to cut on ∆ and
∆̄ excitation regions, separately).

In Fig. 1.13 we present the Feynman-x distribution. We see that the xF,π distribution for
the π+ meson (or equivalently π− meson) peaks at xF = 0 (A.16) and the scattered nucleons at
xF ≈ ±0.75.
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Figure 1.13: The xF distribution of pions (at xF = 0) and the nucleons (at xF → ±0.75) for the pp̄ →
pp̄π+π− reaction at

√
s = 5.5 GeV. The pions are restricted to lie in the region Mππ < 1.45 GeV. We have

included the additional cuts to remove regions of Roper resonance and double-∆ excitations.

Finally, in Fig.1.14 we show differential cross section dσ/dy3dy4 in the two-dimensional
space (y3, y4)when extra cuts to remove regions of Roper resonance (1.23) (left panel) or double-
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∆ excitation (1.24) (right panel) are imposed. These cuts do not much affect the region of pion
midrapidities y3, y4 ≈ 0. In practice, the cuts on the Roper resonance region almost not at all
modify the distribution. The cuts on Roper resonance act for (y3 < 0 and y4 < 0) or (y3 > 0 and
y4 > 0), i.e. in the rapidity region where the two-pion rescattering contribution is very small.
The cuts on double-∆ excitation act for (y3 < 0 and y4 > 0) or (y3 > 0 and y4 < 0), i.e. in the
region where the two-pion rescattering contribution is sizeable. This shows that the double-∆
excitation is more critical than the Roper resonance excitation in the context of extracting the
pion-pion rescattering contribution.
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Figure 1.14: Two-dimensional differential cross section dσ/dy3dy4 in (y3(π+), y4(π−)) for the pp̄ →
pp̄π+π− reaction at

√
s = 5.5 GeV (left panel). The pions are restricted to lie in the region Mππ <

1.45 GeV. In the right panel we have included in addition cuts to remove regions of Roper resonance and
double-∆ excitations.

1.3 Conclusions

We have calculated both differential and total cross sections for the pp → ppπ+π− and
pp̄→ pp̄π+π− reactions close to threshold and for future PANDA experiments. Our results have
been comparedwith very close to threshold datameasured by theWASACollaboration. We have
shown that very close to threshold the pion-pion rescattering mechanism gives much smaller
contribution than the excitation of the Roper resonance via σ-exchange and its subsequent decay
N∗(1440) → N(ππ)S−wave

I=0 as well as the double-∆ excitation and subsequent decays studied in
the past [23, 24]. At low energies all these mechanisms overlap and it is not possible to extract
the pion-pion rescattering contributions and therefore not possible to study the π0π0 → π+π−

process.
Going to higher energies allows to find regions of the final state phase space where

the pion-pion rescattering process dominates over the Roper resonance and double-∆ excita-
tion mechanisms. We stress that the PANDA (anti-Proton ANnihilation at DArmstadt) experi-
ment [27] at GSI-FAIR (Facility of Antiproton and Ion Research) could play an important role in
understanding of the baryon spectrum, provide an excellent place for studying the properties of
relevant barionic resonances and open a possibility to study the pion-pion rescattering processes.
At present it is not clear how precisely the pion-pion rescattering can be studied experimentally
as the PANDA detector is in the exploratory phase and its detailed final design is still an open
issue. We expect that theminimal scenario would be to verify models like the one discussed here.
If the phase shift analysis is possible requires extra Monte Carlo studied including efficiencies of
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the PANDA detector. We hope that the cross section for exclusive production and the line shape
(position and width) of the Roper resonance can be studied with the PANDA detector. Such ex-
clusive production of pion pairs can be useful in planning of experiments at GSI-FAIR which is
the only possible place where the exclusive pp̄ → pp̄(π0π0 → π+π−) reaction can be studied at
sufficiently large energy. The channels of pp̄ → pn̄π0π−, pp̄ → np̄π+π0, pp̄ → nn̄π+π−, can
also be measured by the PANDA experiment. A simultaneous study of these reactions may help
to pin down contributions from various meson exchanges. At the Tevatron the pion rescattering
cross section is completely negligible and other mechanisms become important.

We have presented several distributions which could be measured in the future with the
PANDA detector at the GSI HESR. Particularly interesting is the distribution in two-pion invari-
ant mass, see Fig. 1.8, where one should observe bumps related to the famous scalar-isoscalar σ-
meson and to tensor-isoscalar f2(1270) meson as well as a dip from the interference with f0(980)
and σ mesons. This distribution is slightly different compared to the dependence of the total
π0π0 → π+π− cross section onWππ , see Fig. 1.3. This is caused mainly by the four-body phase
space modifications.

The pions from the pion-pion rescattering are produced preferentially in opposite hemi-
spheres, i.e. if one pion is produced at positive center-of-mass rapidities the second pion is pro-
duced at negative ones. This is similar to the double-∆ excitation mechanism. Imposing cuts
on double-∆ excitation leaves untouched the region of midrapidities. Also the region of large
p⊥,sum stays unmodified by the cuts on double-∆ excitations. A direct comparison of our theoret-
ical results with the measured total cross sections and invariant-mass distributions will certainly
provide useful information about the mechanisms governing this process.

1.4 Exclusive scalar f0(1500) meson production

Many theoretical calculations, including lattice QCD, predicted existence of non-qq̄ scalar
objects, such as glueballs, that is, the particles dominantly made of gluons with masses M(G) >
1.5 GeV. No one of them was up to now unambiguously identified. The nature of scalar mesons
below 2 GeV is also not well understood. Lattice QCD approach with quenched quarks find a
scalar gluonium (glueball) at approximately 1.6 GeV [68–70] 6. Also the analyses in the frame-
work of chiral Lagrangians [72–74] indicate that f0(1500) meson is dominantly gluonium state.
The QCD Sum Rules [75–82] suggest that the states at approximately 1 GeV and 1.5− 1.6 GeV
are admixtures of gluonium and qq̄ states. A recent analysis in the framework of Gaussian QCD
Sum Rules [83], which is well suited to qq̄ - gluonium mixing, find that the states at about 1 GeV
( f0(980) meson) and at about 1.4 GeV are strongly mixed with the preference of the higher-mass
state to have slightly larger gluonium admixture. Summarizing this discussion, it may be very
difficult to find a clear signal of gluonium. Further studies of the scalar meson production in
several processes may shed more light on the quite complicated problem.

The lowest mass meson considered as a glueball candidate is a scalar f0(1500) [84, 85]
discovered by the Crystall Barrel Collaboration in proton-antiproton annihilation [86–88]. The
branching fractions are consistent with the dominant glueball component [89]. It was next ob-
served by theWA102 Collaboration in central production in charged two-pion and two-kaon [90]
as well four-pion [91] decay channels at

√
s ≈ 30 GeV in proton-proton collisions. Close and

Kirk [92, 93] proposed a phenomenological model of central exclusive f0(1500) production. In
their language the pomerons (transverse and longitudinal) are the effective (phenomenological)
degrees of freedom [94, 95]. The Close-Kirk amplitude was parametrised as

M(t1, t2, φ′) = aT exp
(

bT
2
(t1 + t2)

)

+ aL exp
(

bL
2
(t1 + t2)

) √
t1t2
µ2 cos φ′ , (1.25)

where the φ′ dependence applies in the meson rest frame (current-current c.m.). In their ap-

6The approaches with dynamical quarks find relatively large mixing with qq̄ states [71].
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proach there is no explicit f0(1500)-rapidity dependence of the corresponding amplitude. Since
the parameters were rather fitted to the not-normalized WA102 experimental data [90] no ab-
solute normalization can be obtained within this approach. Furthermore the parametrisation is
not giving energy dependence of the cross section, so predictions for other (not-measured) en-
ergies are not possible. In this Section we will investigate rather a QCD-inspired approach. It
provides absolute normalization 7, energy dependence and dependence on meson rapidity (or
equivalently on Feynman-x of the meson).

In the present analysis we shall concentrate on central exclusive production of scalar
f0(1500) in the following reactions:

p+ p→ p+ f0(1500) + p ,
p+ p̄→ p+ f0(1500) + p̄ ,
p+ p̄→ n+ f0(1500) + n̄ .

(1.26)

While the first process can be measured at J-PARC, the latter two reactions could be measured
by the PANDA Collaboration at the new complex FAIR at GSI Darmstadt. The combination of
these processes could shed more light on the mechanism of f0(1500) meson production as well
as on its nature. Our aim here is to explore a possibility of studying exclusive f0(1500) meson
production in the FAIR and J-PARC energy range and explore the potential of these facilities.

Since the two-pion channel is one of the dominant decay channels of f0(1500) (34.9 ±
2.3) % [96] one may expect the two-pion fusion (see Fig.1.15) to be one of the dominant mech-
anisms of exclusive f0(1500) production at the FAIR energies. The two-pion fusion can be also
relative reliably calculated in the framework of meson exchange theory. The pion coupling to
the nucleon is well known [97]. The πNN form factor for larger pion virtualities is somewhat
less known. This may limit our predictions close to the threshold, where rather large virtuali-
ties are involved due to specific kinematics. At largest HESR (antiproton ring) energy, as will be
discussed in this Section, this is no longer a limiting factor as average pion virtualities are rather
small.

FπNN(t1)

FπNN(t2)

f0(1500)

t1

t2

π

π

h1 h
′

1

h2 h
′

2

Vππ→f0
(t1, t2)

Figure 1.15: The sketch of the pion-pionMECmechanism for production of the f0(1500)meson in proton-
(anti)proton collisions. Form factors appearing in different vertices and kinematical variables are shown
explicitly.

If the f0(1500) meson is a scalar glueball (or has a strong glueball component [98]) then
the mechanism shown in Fig. 1.16 (a) may be important, at least in the high-energy regime.
This mechanism is often considered as the dominant mechanism of exclusive Higgs boson [99–
103] and χc(0+) meson [104] production at high energies. At intermediate energies the same
mechanism is, however, not able to explain large cross section for exclusive η′ production [105]
as measured by the WA102 Collaboration.

While there are some ideas about the reaction mechanism at higher energies, the mech-
anism at lower energies was never studied. We shall investigate new mechanisms of pion-pion

7As will be discussed later it is rather upper limit which can be easily obtained.
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Figure 1.16: The sketch of the “bare” perturbative QCD mechanism (panel (a)) and the “bare” non-
perturbative mechanism with the intermediate pionic triangle (panel (b)) for diffractive central exclusive
production of the f0(1500) meson (glueball candidate). The kinematical variables are shown in addition.
In panel (b) the stars attached to π mesons denote the fact that they are off-mass-shell.

fusion shown in Fig.1.15, the QCD mechanism shown in Fig.1.16 (a) and the non-perturbative
mechanism with the intermediate pionic loop shown in Fig.1.16 (b). The QCD mechanism is
typical for high energies but here we wish to investigate its role at intermediate energies and in
particular its vanishing at low energies and the interplay with the pion-pion fusion mechanism.

1.4.1 Pion-pion MEC amplitude

It is straightforward to evaluate the pion-pion meson exchange current (MEC) contri-
bution shown in Fig.1.15. The Born amplitude is similar as (1.8) withMπ0∗π0∗→π+π−(s34, t1, t2)
replaced by off-shell vertex function

Γπ∗π∗→ f0(1500)(t1, t2) = g f0(1500)ππ Vππ→ f0(1500)(t1, t2) , (1.27)

where the coupling constant g f0(1500)ππ (the normalization constant |C f0→ππ| in the formula be-
low) can be calculated from the partial decay width as

Γ f0→ππ =
3

32πm f0

|C f0→ππ|2
(

1− 4m2
π

m2
f0

)1/2

, (1.28)

where

Γ f0→ππ = Γ f0→π0π0 + Γ f0→π+π− ,

Γ f0→ππ = 3Γ f0→π0π0 =
3
2

Γ f0→π+π− . (1.29)

From [96] we have Γ f0→ππ as

Γ f0(1500)→ππ = Γ f0(1500),tot BR( f0(1500) → ππ) , (1.30)

where Γ f0(1500),tot = 0.109± 0.007 GeV is the average value of f0(1500) width and BR = 0.349±
0.023 is the branching ratio f0(1500) → ππ mode.

Limiting to nucleons in the final state, in the case of proton-proton collisions only pp f0(1500)
final state channel is possible and therefore the π0π0 fusion is allowedwhile in the case of proton-
antiproton collisions both pp̄ f0(1500) and nn̄ f0(1500) final state channels are possible, i.e. both
π0π0 and π+π− MEC are allowed. In the hadronic vertices we have to take into account form
factors (1.11) since the hadrons are extended objects. The influence of the t-dependence of the
form factors will be discussed in the result section.
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The off-shellness of pions is also included for the ππ → f0(1500) transition through the
extra Vππ→ f0(1500)(t1, t2) form factor which we take in the factorized form

Vππ→ f0(1500)(t1, t2) = FM(t1)FM(t2) =
Λ2

ππ f0
−m2

π

Λ2
ππ f0
− t1

Λ2
ππ f0
−m2

π

Λ2
ππ f0
− t2

. (1.31)

It is normalized to unity when both pions are on mass shell F(t1 = m2
π, t2 = m2

π) = 1. In the
present calculation we shall take Λππ f0 = 1 GeV.

1.4.2 Diffractive QCD amplitude

According to Khoze-Martin-Ryskin approach (KMR) [99–103], the amplitude of exclu-
sive double diffractive colour singlet production pp→ pp f0(1500) can be written as

Mg∗g∗ =
s

2
π2 1

2
δc1c2

N2
c − 1

Im
∫

d2q0⊥V
c1c2
J

f
o f f
g,1 (x1, x′1, q

2
0⊥, q

2
1⊥, t1) f

o f f
g,2 (x2, x′2, q

2
0⊥, q

2
2⊥, t2)

q20⊥ q21⊥ q22⊥
. (1.32)

The normalization of this amplitude differs from the KMR one [99–103] by the factor s/2 and
coincides with the normalization in a previous work on exclusive η′-production [105]. The am-
plitude is averaged over the colour indices and over two transverse polarisations of the incoming
gluons [99–103]. The bare amplitude above is subjected to absorption corrections which depend
on collision energy (the bigger the energy, the bigger the absorption corrections). We shall discuss
this issue shortly when presenting our results.

The vertex factorVc1c2
J = Vc1c2

J (q21⊥, q
2
2⊥, P

2
M⊥) in expression (1.32) describes the coupling

of two virtual gluons to f0(1500) meson. Recently the vertex was obtained for off-shell values of
q1⊥ and q2⊥ in the case of χc(0) exclusive production [104]. An almost alternative way to describe
the vertex is to express it via partial decay width Γ(M→ gg). 8 The latter (approximate) method
can be used also for the f0(1500) meson production.

In the original Khoze-Martin-Ryskin (KMR) approach [99–103] the amplitude is written
as

M = N
∫

d2q0⊥P[ f0(1500)]
q20⊥q

2
1⊥q

2
2⊥

f KMR
g (x1, x′1,Q

2
1⊥, µ

2; t1) f KMR
g (x2, x′2,Q

2
2⊥, µ

2; t2) , (1.33)

where only one transverse momentum is taken into account somewhat arbitrarily as

Q2
1⊥ = min{q20⊥, q21⊥} , Q2

2⊥ = min{q20⊥, q22⊥} , (1.34)

and the normalization factor N can be written in terms of the f0(1500) → gg decay width. Other
prescriptions are also possible [104, 106]. In the KMR approach the large meson mass approxi-
mation M≫ |q1⊥|, |q2⊥| is adopted, so the gluon virtualities are neglected in the vertex factor

P[ f0(1500)] ≃ (q1⊥q2⊥) = (q0⊥ + p1⊥)(q0⊥ − p2⊥) . (1.35)

The KMR UGDFs are written in the factorized form:

f KMR
g (x, x′,Q2

⊥, µ
2; t) = f KMR

g (x, x′,Q2
⊥, µ

2) exp(b0t) (1.36)

with b0 = 2 GeV−2 [99–103]. In our approach we use somewhat different parametrisation of
the t-dependent isoscalar form factors 9. The KMR skewed distributions are given in terms of

8The last value is not so well known. We shall take Γ(M → gg) = Γ f0(1500),tot. This will give us an upper estimate.
As a consequence this will allow us to show that the gluonic component is negligible for future experiments with the
PANDA detector.

9Please note that the KMR and our (general) skewed UGDFs have different number of arguments. In the KMR
approach there is only one effective gluon transverse momentum (see Eq. (1.34)) compared to two independent trans-
verse momenta in general case (1.41).
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conventional integrated densities g(x,Q2
⊥) and the so-called Sudakov form factor Tg (5.19) (see

discussion in Section 5.1) as follows

f KMR
g (x, x′,Q2

⊥, µ
2) = Rg

∂

∂ lnQ2
⊥

[

√

Tg(Q2
⊥, µ

2)xg(x,Q2
⊥)
]

. (1.37)

The square root here was taken using arguments that only survival probability for hard gluons
is relevant. It is not so-obvious if this approximation is reliable for light meson production.
The factor Rg in the KMR approach approximately accounts for the single logQ2 skewed effect
[99–103]. Usually this factor is estimated to be 1.3− 1.5. In our evaluations here we take it to
be equal 1 to avoid further uncertainties. Please note also that in contrast to our approach the
skewed KMR UGDFs does not explicitly depend on x′ (assuming x′ ≪ x ≪ 1). Following the
KMR notations we write the total amplitude (1.32) (averaged over colour and polarisation states
of incoming gluons) in the limit M≫ q1,t, q2,t as

M = C f0(1500)→gg π2 s

2

∫

d2q0⊥P[ f0(1500)]
f
o f f
g,1 (x1, x′1, q

2
0⊥, q

2
1⊥, t1) f

o f f
g,2 (x2, x′2, q

2
0⊥, q

2
2⊥, t2)

q20⊥ q21⊥ q22⊥
,

(1.38)

where the normalization constant obtained from the decay of f0(1500) into two soft gluons is

|C f0(1500)→gg|2 =
64π

(N2
c − 1)m3

f0

Γ f0(1500)→gg . (1.39)

Of course the partial decay width is limited from above:

Γ f0(1500)→gg < Γtot . (1.40)

In addition to the standard KMR approach we could use other off-diagonal gluon dis-
tributions (for details and a discussion see Ref. [104,105]). In the present work we shall use a few
sets of unintegrated gluon distributions which aim at the description of phenomena where small
gluon transverse momenta are involved. Some details concerning the distributions can be found
in Ref. [107]. We shall follow the notation there.

In the general case we do not know off-diagonal UGDFs very well. In [104, 105] a pre-
scription how to calculate the off-diagonal UGDFs was proposed:

f
o f f
g,1 =

√

f
(1)
g (x′1, q

2
0⊥, µ

2
0) f

(1)
g (x1, q21⊥, µ

2) F1(t1) ,

f
o f f
g,2 =

√

f
(2)
g (x′2, q

2
0⊥, µ

2
0) f

(2)
g (x2, q22⊥, µ

2) F1(t2) , (1.41)

where F1(t1) and F1(t2) are isoscalar nucleon form factors. They can be parametrised as (B.2),
where t1 and t2 are total four-momentum transfers in the first and second proton line, respec-
tively. While in the emission line the choice of the scale is rather natural, there is no so-clear
situation for the second screening-gluon exchange [105].

Even at intermediate energies (
√
s = 10− 50 GeV) typical x

′
1 = x

′
2 are relatively small

(∼ 0.01). However, characteristic x1, x2 ∼ m f0/
√
s are not too small (typically > 0.1). Therefore

here we cannot use the small-x models of UGDFs. In the latter case a Gaussian smearing of the
collinear distribution seems a reasonable solution:

f Gauss
g (x, k2⊥, µ

2
F) = xgcoll(x, µ2

F) FGauss(k
2
⊥; σ0) , (1.42)

where gcoll(x, µ2
F) are standard collinear (integrated) gluon distribution and FGauss(k

2
⊥; σ0) is a

Gaussian two-dimensional function

FGauss(k
2
⊥, σ0) =

1
2πσ2

0
exp

(

−k2⊥/2σ2
0
)

/π , (1.43)
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where σ0 is a free parameter which one can expect to be of the order of 1 GeV. We expect strong
sensitivity to the actual value of the parameter σ0; see [105]. Summarizing, a following prescrip-
tion for the off-diagonal UGDF seems reasonable:

f (x, x′, k2⊥, k
′2
⊥, t) =

√

fsmall−x(x′, k
′2
⊥) f

Gauss
g (x, k2⊥, µ

2
F) F(t) , (1.44)

where fsmall−x(x′, k
′2
⊥) is one of the typical small-x UGDFs (see e.g. [107]). So exemplary combi-

nations are: KL⊗Gauss, BFKL⊗Gauss, GBW⊗Gauss (for notation see [107]). The natural choice
of the scale is µ2

F = m2
f0
. This relatively low scale is possible with the GRV-type of PDF parametri-

sation [108]. We shall call (1.44) a “mixed prescription” for brevity.
The smaller energies

√
s the larger values of x1 and x2 are involved. Many of uninte-

grated gluon distributions in the literature are formulated in the region of very small x. Extrapo-
lation of the method down to small energies automatically means going to the region of large x.
In Fig.1.17 we wish to demonstrate this fact. We show the ratio of the cross sections

Ratio =
σ(
√
s; x1 < x0, x2 < x0)

σ(
√
s)

, (1.45)

as a function of center-of-mass energy. Above x0 was introduced to define the region of small/large
x. The solid line corresponds to x0 = 0.1 and the dashed line to x0 = 0.2. At the largest HESR
energies one stays in the region of x1, x2 < 0.2.
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Figure 1.17: The ratio of the cross sections (see Eq. (1.45)) as a function of center-of-mass energy. The
solid line corresponds to x0 = 0.1 and the dashed line to x0 = 0.2.

1.4.3 Two-gluon impact factor approach for subasymptotic energies

The amplitude in the previous section, written in terms of off-diagonal UGDFs, was
constructed for rather large energies. The smaller the energy the shorter the QCD ladder. It is
not obvious how to extrapolate the diffractive amplitude down to lower (close-to-threshold) en-
ergies. Here we present slightly different method which seems more adequate at lower energies.

At not too large energies the amplitude of elastic scattering can be written as amplitude
for two-gluon exchange [109–111]

Mpp→pp(s, t) = is
N2

c − 1
N2

c

∫

d2k⊥ αs(k
2
1⊥)αs(k

2
2⊥)

3F(k1⊥,k2⊥)3F(k1⊥,k2⊥)
(k21⊥ + µ2

g)(k
2
2⊥ + µ2

g)
. (1.46)
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In analogy to dipole-dipole or pion-pion scattering (see e.g. [111]) the impact factor can be
parametrised as:

F(k1⊥,k2⊥) =
Λ2

Λ2 + (k1⊥ + k2⊥)2
− Λ2

Λ2 + (k1⊥ − k2⊥)2
. (1.47)

At high energy the net four-momentum transfer: t = −(k1⊥ + k2⊥)2. Λ in Eq.(1.47) is a free
parameter which can be adjusted to elastic scattering. For our rough estimate we take Λ = mρ.
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Figure 1.18: The sketch of the two-gluon impact factor approach. Some kinematical variables are shown
explicitly.

Generalizing, the amplitude for exclusive f0(1500) production can be written as the
amplitude for three-gluon exchange shown in Fig.1.18:

Mpp→pp f0(1500)(s, y, t1, t2, φ) = is
N2

c − 1
N2

c

∫

d2k0⊥
(

αs(k
2
0⊥)αs(k

2
1⊥)
)1/2 (

αs(k
2
0⊥)αs(k

2
2⊥)
)1/2

× 3F(k0⊥,k1⊥)3F(k0⊥,k2⊥)
(k20⊥ + µ2

g)(k
2
1⊥ + µ2

g)(k
2
2⊥ + µ2

g)
Vgg→ f0(1500)(k1⊥,k2⊥) .

(1.48)

At high energy and y ≈ 0 the four-momentum transfers can be calculated as:
t1 = −(k0⊥ + k1⊥)2, t2 = −(k0⊥ − k2⊥)2.
At low energy and/or y 6= 0 the kinematics is slightly more complicated. Let us define effective
four-vector transfers:

q1 = (p′1 − p1) = (q10, q1x, q1y, q1z) ,
q2 = (p′2 − p2) = (q20, q2x, q2y, q2z) . (1.49)

Then t1 ≡ q21 = q21‖ + q21⊥ and t2 ≡ q22 = q22‖ + q22⊥. Close to threshold the longitudinal compo-
nents q21‖ = q210 − q21z ≪ 0 and q22‖ = q220 − q22z ≪ 0. Then the amplitude (1.48) must be corrected.
Then also four-vectors of exchanged gluons (k0, k1 and k2) cannot be purely transverse and longi-
tudinal components must be included as well. To estimate the effect we use formula (1.48) 10 but
modify the transferred four momenta of gluons entering the g∗g∗ → f0(1500) production vertex:

k1 = (0,k1⊥, 0)→ (q10,k1⊥, q1z) ,
k2 = (0,k2⊥, 0)→ (q20,k2⊥, q2z) (1.50)

and leave k0 purely transverse. This procedure is a bit arbitrary but comparing results obtained
with formula (1.48) with that from the formula with modified four-momenta would allow to
estimate related uncertainties.

10It would be more appropriate to calculate in this case a four-dimensional integral instead of the two-dimensional
one.
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We write the vertex function gg → f0(1500) in the following tensorial form 11:

V(k1, k2) = C f0(1500)→gg gµνk
µ
1 k

ν
2 . (1.51)

The normalization factor is obtained from the decay of f0(1500) into two soft gluons; see (1.39).
The amplitudes discussed here involve transverse momenta in the infra-red region.

Then a prescription how to extend the perturbative αs(k2⊥) dependence to a nonperturbative
region of small gluon virtualities is unavoidable. In the following αs(k2⊥) is obtained from an
analytic freezing proposed by Shirkov and Solovtsov [112].

1.4.4 Central diffractive mechanism with intermediate pionic triangle

The f0(1500) → ππ is the second most probable decay channel [96]. As a consequence
the mechanism with an intermediate pionic triangle shown in Fig.1.19 may play important role
in the exclusive production of f0(1500). It is relatively easy to estimate the contribution of this
mechanism at high energies. Here we shall make an estimate of the corresponding cross section
not far from the threshold, where the situation is slightly more complicated.

IP , IR

IP , IR

f0(1500)

k2

k1

k

Foff(k, k2)

Foff(k, k1)

q2

q1

Figure 1.19: A sketch of the central diffractive mechanism with pionic loop for exclusive production of
the glueball candidate f0(1500)meson. Some kinematical variables are shown explicitly.

The amplitude of the process pp → pp f0(1500) sketched in Fig.1.16 (b) can be written
in a simplified form as

Mλaλb→λ1λ2M(y, p1⊥, p2⊥, φ12) ≈ T̃IPIPM(q1, q2, pM)M(s1,e f f , t1)M(s2,e f f , t2) δλ1λa
δλ2λb

×Fcont(s1,e f f ) Fcont(s2,e f f ) , (1.52)

where the Regge (sub)amplitudes

M(si,e f f , ti) = i si,e f f C
πp
IP

(

si,e f f

s0

)αIP(ti)−1
exp

(

BπN
IP

2
ti

)

+ηIR si,e f f C
πp
IR

(

si,e f f

s0

)αIR(ti)−1
exp

(

BπN
IR

2
ti

)

. (1.53)

The delta functions are related to helicity conservation in hadronic processes. While the pomeron
(sub)amplitudes are dominantly imaginary, the reggeon (sub)amplitudes have both real and
imaginary parts (ηIR ≈ i− 1). In the formula above we use the parameters (see [113, 114]) of the
Regge trajectories (2.12). The strength parameters for the πN scattering fitted to the correspond-
ing total cross sections [113]: Cπp

IP = 13.63 mb and C
πp
IR = (27.56+ 36.02)/2 mb 12. At not too high

11In general, another tensorial forms are also possible. This may depend on the structure of the considered meson.
In principle, the details depend on the form of the vertex. To avoid uncertainties in the kt-factorization approach
we work in the on-shell approximation. In the on-shell approximation (or infinitely heavy meson approximation)
the vertex is expressed through decay width and all vertices should be equivalent. Even if the off-shell effects are
included we do not expect very different energy dependence of the cross section for different tensorial forms as due
to kinematics only small virtualities of gluons enter into game.

12We take average value for the π+p and π−p scattering.
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energies the slope parameter BπN
IP = BπN

IR ≈ 6 GeV−2. The subchannel Mandelstam variable s1,e f f
and s2,e f f are related to center-of-mass energies of relevant πN subsystem. In principle, they are
functions of pion-fourmomenta in the triangle: s1,e f f = s1,e f f (k, k1, p1) and s2,e f f = s2,e f f (k, k2, p2)
and in general should be put inside of the triangle function T̃IPIP f0(q1, q2, pM) which depend on
the three-body kinematics, i.e. on four-momenta of the two exchanged pomerons (in general
the pomeron-reggeon, the reggeon-pomeron or the reggeon-reggeon). In order to simplify the
calculation we take instead average values as

s1,e f f = (p1 + pM/2)2 , s2,e f f = (p2 + pM/2)2 . (1.54)

The factors Fcont in (1.52) are added to cut off the low-energy region of relevant πN
subsystem,where the naive Regge parametrisation does not apply. We parametrise them in terms
of purely phenomenological smooth cut-off correction factor (2.20); see Section 2.2. Here we take
W0 = 2 GeV and a0 = 0.1 GeV. The parameterW0 gives the position of the cut and parameter a0
describes how sharp is the cut off. However, the latter parameter can have significant influence
on the numerics.

The effective Regge parametrisations of πN interactions [113] are for both colliding
particles being on-mass-shell. In our case the triangle pions are off-mass-shell. We “correct” the
Regge strength parameters by multiplying by two vertex form factors Fo f f (k, ki) (see Fig.1.19).
We take them in the following factorized form:

Fo f f (k, ki) = exp
(

−|k2 −m2
π|/Λ2

o f f

)

exp
(

−|k2i −m2
π |/Λ2

o f f

)

, (1.55)

where Λo f f is in principle a free parameter. In the calculation shown in the result section we
shall take Λo f f = 1 GeV. The dependence on triangle four-momenta forces us to merge the form
factors inside the triangle integration which leads to a modified pion-triangle function:

T̃IPIPM(q1, q2, pM) =
∫

d4k

(2π)4
T̂(k; q1, q2, pM)Fo f f (k, k1)Fo f f (k, k2) , (1.56)

where standard triangle integrand T̂(k; q1, q2, pM) reads

T̂(k; q1, q2, pM) =
F(q1, k1, k)

(q1 − k)2 −m2
π + iǫ

F(q2, k2, k)
(q2 + k)2 −m2

π + iǫ

gππM F(k1, k2, pM)

k2 −m2
π + iǫ

. (1.57)

In addition to three pion propagators we have written three vertex form factors which are func-
tions of four momenta of corresponding legs. In principle, these functions are relatively well
known for space-like pions. We parametrise the triangle-vertex form factors in the following
factorized exponential form

F(q1, k1, k) = exp
(

−|k21 −m2
π|/Λ2

π

)

exp
(

−|k2 −m2
π |/Λ2

π

)

,

F(q2, k2, k) = exp
(

−|k22 −m2
π|/Λ2

π

)

exp
(

−|k2 −m2
π |/Λ2

π

)

,

F(k1, k2, pM) = exp
(

−|k21 −m2
π |/Λ2

π

)

exp
(

−|k22 −m2
π |/Λ2

π

)

. (1.58)

In this factorized form each exponent is associated with individual leg in the vertex. Such form
factors (exponents) are normalized to unity when pions in the loop are on-mass shell. Please
note that we symmetrically (modulus in (1.58)) damp configurations above and below pion-mass
shell. Λπ is related to the size of the pions in the triangle. It is natural to expect: Λπ < Λo f f . In
the calculation presented here we shall take Λπ = 0.5 GeV. Since the configurations close to the
mass shells give the biggest contributions the sensitivity to the actual value of the form factor F
(see Eqs.(1.57) and (1.58)) is not substantial. The gππM coupling constant can be calculated from
the corresponding partial decay width; see (1.28).
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Calculating the triangle function for running kinematics of the papb → p1p2 f0(1500)
process (each point of the phase space) is in practice impossible. We calculate numerically the
triangle function for:

q1 →
(

〈q10〉y=0 , 0, 0, 〈q1z〉y=0

)

,

q2 →
(

〈q20〉y=0 , 0, 0, 〈q2z〉y=0

)

. (1.59)

Transverse components are on average small and are neglected in the present approximation.
Close to threshold | 〈q10〉y=0 | 6= | 〈q1z〉y=0 | and | 〈q20〉y=0 | 6= | 〈q2z〉y=0 |.

1.5 Results

1.5.1 Gluonic QCD mechanism

Let us start with the QCD mechanism relevant at higher energies. We wish to present
differential distributions in xF, t1 or t2 and relative azimuthal angle φ between outgoing nucleons.
In the following we shall assume:

Γ f0(1500)→gg = Γ f0(1500),tot , (1.60)

where Γ f0(1500),tot = 0.109 GeV [96]. This assumption means that our differential distributions
mean upper limit of the cross section. If the fractional branching ratio is known, our results
should be multiplied by its value. There are almost no absolutely normalized experimental data
on exclusive f0(1500) production in the literature, except of Ref. [115]. The absolutely normalized
data of the ABCDHW Collaboration [116] put emphasis rather on f2(1270) meson production.
In principle, some (model-dependent) information on glueball wave function could be obtained
from radiative decays J/ψ → γ f0(1500) and Υ→ γ f0(1500) [117]. The present data are not good
enough to provide a detailed information on coupling of gluons to f0(1500) meson.

In Fig.1.20 we show as example distribution in Feynman xF,M for the Kharzeev-Levin
UGDF (the solid lines) and the mixed distribution KL⊗Gaussian (the dashed lines) for several
values of collision energy in the interval

√
s = 10− 50 GeV and 100 GeV. In general, the higher

collision energy the larger cross section. With the rise of the initial energy the cross section be-
comes peaked more and more at xF,M ∼ 0. The mixed UGDF produces slightly broader distribu-
tion in xF,M.

In Fig.1.21 we present corresponding distributions in |t| = |t1|, |t2|. The slope depends
on UGDF used, but for a given UGDF is almost energy independent.

In Fig. 1.22 we present corresponding distributions in relative azimuthal angle between
outgoing protons or proton and antiproton 13. These distributions have maximum when outgo-
ing nucleons are back-to-back (φpp = π) and the shape seems to be only weekly energy depen-
dent.

Finally, in Fig. 1.23 we present different differential observables (in yM meson rapid-
ity, p1⊥ proton transverse momenta as well as in φpp relative azimuthal angle between outgoing
protons) for the central exclusive production of f0(1500) meson in the two-gluon impact factor
approach at several center-of-mass energies

√
s. As explained in the figure caption we show

results for both transverse and longitudinal components as well as the distributions for trans-
verse components only in the g∗g∗ → f0(1500) vertex (1.51). As can be seen from the left panel
distributions for both transverse and longitudinal components are placed at midrapidity region
yM ≈ 0. The distributions for transverse components only are placed at larger region of yM.
These distributions have maximum when outgoing nucleons are back-to-back. Again the shape
seems to be only weekly energy dependent.

13The QCD gluonic mechanism is of course charge independent.
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Figure 1.20: The distribution in Feynman xF,M for the central exclusive f0(1500) meson production at√
s = 10, 20, 30, 40, 50 and 100 GeV (from bottom to top). In the calculation the Kharzeev-Levin UGDF

(the black solid lines) and the mixed distribution KL⊗Gauss with the parameter σ0 = 1 GeV (the blue
dashed lines) were used. In the right panel we compare the KL⊗Gauss (the short dashed, dashed and
long-dashed curves correspond to calculations with σ0 = 0.5, 1 and 1.5 GeV) and the Gauss UGDFs (the
dotted line, σ0 = 1 GeV) with the KL UGDF at

√
s = 100 GeV.
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Figure 1.21: The |t| distributions for f0(1500) meson production at
√
s = 10, 20, 30, 40, 50 and 100 GeV

(from bottom to top) for the Kharzeev-Levin UGDF (the black solid lines) and the mixed distribution
KL⊗Gauss (the blue dashed lines). In the right panel we compare the KL⊗Gauss and Gauss UGDFs
obtained for different σ0 parameters with the KL UGDF at

√
s = 100 GeV. The notation here is the same

as in Fig. 1.20. The WA102 experimental data points from [90] have been normalized to the mean value of
the total cross section given in Table 3.2 as obtained from [115].

1.5.2 Diffractive versus pion-pion mechanism

What about the pion-pion fusion mechanism? Can it dominate over the gluonic mech-
anism discussed in the previous subsection? In Fig.1.24 we show the integrated cross section
for the exclusive f0(1500) elastic production (pp̄ → p f0(1500) p̄) and for double charge exchange
reaction (pp̄ → n f0(1500)n̄).
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Figure 1.22: Distribution in relative azimuthal angle between outgoing nucleons at
√
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distribution KL⊗Gauss (the blue dashed lines). In the right panel we compare the KL⊗Gauss and Gauss
UGDFs obtained for different σ0 parameters with the KL UGDF at

√
s = 100 GeV. The notation here is the

same as in Fig.1.20.

M
y

-4 -2 0 2 4

 (
nb

)
M

/d
y

σd

0

2

4

6

8

 = 10 - 50, 200 GeVs
(1500)                    IF model0 f→ *g*g

T (transverse comp. only)

T&L

 (GeV)
1t

p
0 0.5 1

 (
nb

/G
eV

)
1t

/d
p

σd

1

10

210

 = 10 - 50, 200 GeVs
IF model

(1500)0 f→ *g*g

 (deg)
pp

φ
0 50 100 150

 (
nb

)
ppφ

/dσd

-110

1

10

210

 = 10 - 50, 200 GeVs
(1500)                     IF model0 f→ *g*g

T&L components

T components only

Figure 1.23: The differential observables for the central exclusive production of f0(1500) meson by two-
gluon impact factor approach at

√
s = 10, 20, 30, 40, 50 and 200 GeV (from bottom to top). We show the

distributions to the cross sections with transverse components only (the upper blue dashed lines) andwith
both transverse and longitudinal components (the lower black solid lines).

The thick solid line represents the pion-pion component calculated with monopole ver-
tex form factors (1.11) with Λ = 0.8 GeV (lower) and Λ = 1.2 GeV (upper). The difference
between the lower and upper curves represents uncertainties on the pion-pion component. The
pion-pion contribution grows quickly from the threshold, takes maximum at

√
s ≈ 6− 7 GeV

and then slowly drops with increasing energy. The gluonic contribution calculated with uninte-
grated gluon distributions drops with decreasing energy towards the kinematical threshold and
seems to be about order of magnitude smaller than the pion-pion component at

√
s = 10 GeV.We

show the result with the Kharzeev-Levin UGDF (dashed line) which includes gluon saturation
effects relevant for small-x, the Khoze-Martin-Ryskin UGDF (dotted line) used for the exclusive
production of the Higgs boson and the result with the “mixed prescription” (KL⊗Gaussian) for
different values of the σ0 parameter: 0.5 GeV (the upper thin solid line), 1 GeV (the lower thin
solid line). In the latter case results rather strongly depend on the value of the smearing pa-
rameter. The experimental data point of the WA102 Collaboration from Ref. [115] which lies
between the results obtained with “KL” and “mixed” off-diagonal UGDFs. For comparison, the
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(violet) thick long-dashed line corresponds to the second diffractive mechanism with pionic tri-
angle contribution which is above the WA102 experimental data point. This is probably because
of absorption effects not included in the present calculation. This contribution stays below the
pion-pion fusion contribution at the GSI HESR energies.
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Figure 1.24: The integrated cross section as a function of the center of mass energy for pp̄→ pp̄ f0(1500)
(left panel) and pp̄ → nn̄ f0(1500) (right panel) reactions. The thick solid lines are for pion-pion MEC
contribution (Λ = 0.8, 1.2 GeV - the lower and upper curves, respectively), the dashed line is for QCD
diffractive contribution obtained with the Kharzeev-Levin UGDF, the dotted line for the KMR approach
and the (blue) thin solid lines are for “mixed” UGDF (KL⊗Gaussian) with σ0 = 0.5, 1 GeV (the upper and
lower curves, respectively). The dash-dotted line represents the two-gluon impact factor result. The thick
long-dashed line corresponds to the second diffractive mechanism with intermediate pionic triangle. The
experimental data point at

√
s = 29.1 GeV is from Ref. [115] and the experimental point at

√
s = 12.7 GeV

has been obtained from ratio of the cross section; see Table 3.1.

We calculate the gluonic contribution down to
√
s = 10 GeV. Extrapolating the gluonic

component to even lower energies in terms of UGDFs seems rather unsure. At lower energies the
two-gluon impact factor approach seems more relevant. The two-gluon impact factor approach
result is even order of magnitude smaller than that calculated in the KMR approach (see the (red)
lowest dash-dotted line in Fig. 1.24), so it seems that the diffractive contribution is completely
negligible at the FAIR energies. Our calculation suggests that quite different energy dependence
of the cross section may be expected in elastic and charge-exchange channels. Experimental
studies at FAIR and J-PARC could shed more light on the glueball production mechanism.

1.5.3 Predictions for PANDA at HESR

Let us concentrate now on pp̄ collisions at energies relevant for future experiments at
HESR at the FAIR facility in GSI [27]. Here the pion-pionMEC (see Fig.1.15) seems to be the dom-
inant mechanism, especially for the charge exchange reaction pp̄→ nn̄ f0(1500). As discussed in
the previous section the gluonic component can be there safely neglected.

Below we shall present cross sections for the pp̄ → nn̄ f0(1500) reaction. The cross
section for the pp̄ → pp̄ f0(1500) reaction can be obtained by rescaling by the factor of 1/4. In
Fig.1.25 we show average values of t1 (or t2) for the two-pion MEC as a function of the center
of mass energy. Close to threshold

√
s = 2mN +m f0(1500) the transferred four-momenta squared

are the biggest, of the order of about 1.5 GeV2. The bigger energy the smaller the transferred
four-momenta squared. Therefore experiments close to threshold open a unique possibility to
study physics of large transferred four-momenta squared at relatively small energies. This is a
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quite new region, which was not studied so far in the literature.
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Figure 1.25: Average value of < t1 >=< t2 > as a function of the center-of-mass collision energy for the
two-pion exchange mechanism. In this calculation Λ = 0.8 GeV.

The maximal energy planned for the HESR is
√
s = 5.5 GeV. At this energy the phase

space is still very limited. In Fig.1.26 (left panel) we show rapidity distribution of f0(1500) calcu-
lated including pion-pion fusion only. For comparison the rapidity of incoming antiproton and
proton is 1.74 and -1.74, respectively. This means that in the center-of-mass system the f0(1500)
- glueball is produced at midrapidities, on average between rapidities of outgoing nucleons. In
the right panel we present distribution in the meson transverse momentum.
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Figure 1.26: Rapidity yM and transverse momentum p⊥,M distributions of f0(1500) meson produced in
the reaction pp̄ → nn̄ f0(1500) (π+π− fusion only) at

√
s = 3.5, 4.0, 4.5, 5.0, 5.5 GeV (from bottom to top).

In this calculation Λ = 1 GeV.

In Fig.1.27 we show the transverse momentum distribution of neutrons or antineutrons
(left panel) and the azimuthal angle correlation between outgoing hadrons (right panel) pro-
duced in the reaction pp̄ → nn̄ f0(1500). The p⊥ distribution depends on the πNN form factors
FπNN(t1) and FπNN(t2). The preference for back-to-back configurations is caused merely by the
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limitations of the phase space close to the threshold (the matrix element for pion-pion fusion is
φ-independent). This correlation vanishes in the limit of infinite energy. At high energy, where
the phase space limitations are small, the distributions are isotropic, there is no dependence on
azimuthal angle. In practice far from the threshold the distribution becomes almost constant
in azimuth. This has to be contrasted with similar distributions for pomeron-pomeron fusion
shown in Fig.1.22 which are clearly peaked for the back-to-back configurations. Therefore a de-
viation from the constant distribution in relative azimuthal angle for the highest HESR energy
of
√
s = 5.5 GeV for pp̄ → p f0(1500) p̄ can be a signal of the gluon induced processes and/or the

presence of subleading reggeon exchanges, e.g. ρρ. It is not well understood what happens with
the gluon induced diffractive processes when going down to intermediate (

√
s = 5-10 GeV) en-

ergies. Our calculations shows, however, that the diffractive component is negligible compared
to the pion-pion fusion at

√
s < 10 GeV. Possible future experiments performed at J-PARC could

bring some new insights into this issue by studying distortions (probably very small) from the
pion-pion fusion mechanism. In Fig.1.28 we showwe show the distributions in transferred four-
momentum squared (t) between the initial and final nucleons at

√
s = 3.5, 4.0, 4.5, 5.0, 5.5 GeV as

well as two-dimensional distribution in (t1, t2) at
√
s = 5.5 GeV.
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Figure 1.27: Transverse momentum distribution of neutrons or antineutrons (left panel) and azimuthal
angle correlations between outgoing nucleons (right panel) produced in the reaction pp̄ → nn̄ f0(1500)
(π+π− fusion only) at

√
s = 3.5, 4.0, 4.5, 5.0, 5.5 GeV (from bottom to top). In this calculation Λ = 1 GeV.

Up to now we have neglected interference between pion-pion and pomeron-pomeron
contributions (for the same final channel). This effect may be potentially important when both
components are of the same order of magnitude. At J-PARC energies there could be, in prin-
ciple, some small interference effect 14 While the pomeron-pomeron contribution is dominantly
nucleon helicity preserving the situation for pion-pion fusion is more complicated. In the latter
case we define 4 classes of contributions with respect to the nucleon helicities: cc (both helicities
conserved), c f (first conserved, second flipped), f c (first flipped, second conserved) and f f (both
helicities flipped). The corresponding ratios of individual contributions to the sum of all contri-
butions are shown in Fig.1.29. In practice, only the cc ππ contribution may potentially interfere
with the gluonic one. From the figure one can conclude that this can happen only when both
transverse momenta of the final nucleons are small. We shall leave numerical studies of the in-
terference effect for future investigations, when experimental details of such measurements will
be better known; but already now one can expect them to be rather small.

Now we wish to show the size of the central diffractive mechanism with intermediate
pionic triangle (TDD) component at the GSI HESR energy range. In Fig.1.30 we compare it with

14At the PANDA energies the problem is rather academic as the diffractive component can be neglected.

45



)2|t| (GeV
0 0.2 0.4 0.6 0.8 1

)2
/d

|t|
 (

nb
/G

eV
σd

1

10

210

310

410

(1500))0 f→ -π+π (n n→ pp
 = 3.5 - 5.5 GeVs

)2

 (GeV
2t

-1

-0.5

0

)2
 (GeV

1
t

-1

-0.5

0

)2
 (

nb
/G

eV
2

dt 1
/d

t
σd 1

10

210

310

410

(1500)0 fp p→ pp
 = 5.5 GeVs

 - fusionππ
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fusion) at
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Figure 1.29: Helicity decomposition of the cross section on the (p1t, p2t) plane at
√
s = 10 GeV. The

corresponding ratios of individual contributions to the sum of all contributions are shown: Rc f (panel
(a)), Rcc (panel (b)), R f f (panel (c)), R f c (panel (d)).

the pion-pion fusion component. The TDD component vanishes quickly with decreasing energy
and stays below the pion-pion fusion component for the HESR energy range. The quick decrease
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of the cross section is caused mainly by the Fcont(s1,e f f ) and Fcont(s2,e f f ) factors (2.20) in Eq.(1.52)
and reflects smallness of πN subchannel energies.
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Figure 1.30: Comparison of the pion-pion fusion component (the lower and upper curves for Λ =
0.8 GeV and 1.2 GeV, respectively) and the central diffractive one with the intermediate pionic triangle
(dashed line). The details concerning the central diffractive component (the violet long-dashed line) are
explained in Section 1.4.4. The vertical gray band shows the range of the center-of-mass energy available
by the PANDA experiment at the FAIR in Darmstadt.

1.6 Measurement of f0(1500) meson via f0(1500) → π+π− decay

In the previous subsection we have shown that in the PANDA energy range the pion-
pion fusion is the dominant reaction mechanism for the production of the glueball candidate
f0(1500). Up to now we have calculated the cross section for production of f0(1500) meson – a
process with three particles (p, p̄ and f0(1500)) in the final state. In practice one must select a
given decay channel of f0(1500) meson. There are a few options:

• ππ decay (π+π− or π0π0) – Is attractive due to its simplicity but may have a large back-
ground. The branching ratio f0(1500) → ππ mode is BR( f0(1500) → ππ) = (34.9± 2.3)%
[96].

• ππππ decay (4π0, 2π+2π−, ρρ, π(1300)π, a1(1260)π) – Requires more complicated analy-
sis but may have smaller background. All investigations agree that the 4π decay mode rep-
resents about half of the f0(1500) decay width BR( f0(1500) → 4π) = (49.5± 3.3)% [96].
The pp̄, pn̄/np̄ measurements show a single enhancement in the invariant 4π mass spec-
tra, which is resolved into f0(1370) and f0(1500) mesons [118, 119]. The data on 4π from
central production [120] require both resonances, but disagree on the relative content of ρρ
and σσ in 4π. The pp̄ → pp̄ππππ reaction may be more favourable as far as the signal-
to-background ratio is considered. Unfortunately theoretical calculation of background are
not feasible in this case. It is not clear to us at present if the 6-body channel can be measured
by the PANDA detector at FAIR.

• KK̄ decay – The relevant branching fraction BR( f0(1500) → KK̄) = (8.6± 0.1)% is smaller
by a factor of about 4 than for the two-pion channel [96]. On the other hand the contribution
from nucleon resonances is probably considerably smaller. There is, however, unreduce-
able contribution from the K∗ exchange in the π0π0 → K+K− subprocess. The parameters
for the latter reaction are less known than those for the π0π0 → π+π− subprocess.
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• ηη or ηη′(958) decays – The relevant branching fractions BR( f0(1500) → ηη) = (5.1±
0.9)% and BR( f0(1500) → ηη′) = (1.9± 0.8)% [96] are small but not negligible. These
channels are considered to be promising places to look for glueballs since it is thought
likely that glueballs will decay with the emission of η and η′; see [121].

p

p̄

p

p̄

π0∗

π0∗ π−

π+

f0(1500)

Figure 1.31: Representative diagram for the 2 → 4 reaction through the f0(1500) meson (scalar glueball
candidate) in proton-(anti)proton collisions. The stars attached to π0 mesons denote the fact that they are
off-mass-shell.

We can write the Born amplitude as (1.8) withMπ0∗π0∗→π+π− replaced by

Mπ0∗π0∗→ f0(1500)→π+π−(s34, t1, t2) = gππ f0

Ff0(s34)Ff0(s34)

s34 −m2
f0
+ im f0Γ f0(1500),tot

g f0ππ

×Vππ→ f0(1500)(t1, t2) , (1.61)

where the off-shell Γπ∗π∗→ f0(1500) vertex given in Section 1.4.1 is used and the gππM = gMππ

coupling constant can be calculated from the corresponding partial decay width; see (1.28). We
take the Vππ→ f0(1500)(t1, t2) vertex form factor (1.31). We have added an extra Ff0(s34) form factor
taking into account that a variation of the f0ππ coupling with off-shellness of the f0(1500)meson
must be expected. A convenient parametrisation of such a form factor is the exponential form

Ff0(s34) = exp

(

−
(s34 −m2

f0
)2

Λ4
f0

)

(1.62)

or alternatively, we can use the form

Ff0(s34) =
Λ4

f0

(s34 −m2
f0
)2 + Λ4

f0

(1.63)

with Λ f0 = 1 GeV. Here the normalization condition FM(m2
M) is clearly satisfied.

Let us consider now an estimate of the background to the pp̄ → pp̄π+π− reaction.
In Fig.1.31 we present our reaction of interest – the reaction which proceeds through the scalar
resonance f0(1500). This reaction is viewed now as a process with four particles (p, p̄,π+,π−) in
the final state. Unavoidably there exists a nonreduceable background to this reaction sketched
in Fig. 1.32. We shall call the two first complex diagrams (a) as ρ-meson(reggeon) exchanges or
ππ-induced background for brevity and the diagrams (b) as the central diffractive exchanges.
The underlying mechanism was proposed at high energies long ago in Ref. [122]. The central
diffractive (reggeon and pomeron exchanges) mechanism as the two-pion continuum will be
discussed in more details in Chapter 2.

The region ofWππ ∼ 1.5 GeV is slightly above the region of application of the standard
meson-exchange formalism and slightly below the region of application of high-energy Regge
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Figure 1.32: A sketch of the 2 → 4 amplitudes for the non-perturbative exclusive production of the
π+π− pair as an example of the background for the f0(1500) meson production. Diagram (a) represents
the intermediate t-channel off-shell ρ-meson (reggeon) exchange mechanism and diagram (b) the cen-
tral diffractive mechanism with an intermediate off-shell pion. In the latter mechanism both the leading
pomeron (IP) and subleading reggeon (IR) exchanges are possible. At the highest PANDA center-of-mass
energy

√
s = 5.5 GeV the two f2-reggeon ( f2IR) exchanges is the dominant contribution.

approach. In principle, one should consider both approaches. In the ρ-meson exchange formal-
ism the reduced amplitude for the π0π0 → π+π− process can be written as:

Mρ−exchange
π0π0→π+π− = gππρFππρ(t̂)

(q
µ
1 + p

µ
3 )Pµν(kt)(qν

2 + pν
4)

t̂−m2
ρ + imρΓρ,tot

gππρFππρ(t̂)

+gππρFππρ(û)
(q

µ
1 + p

µ
4 )Pµν(ku)(qν

2 + pν
3)

û−m2
ρ + imρΓρ,tot

gππρFππρ(û) , (1.64)

where t̂ = k2t , û = k2u and Pµν(k) = −gµν + kµkν/m2
ρ. The quantities Fππρ(k2) in (1.64) describe

couplings of extended objects: pions and the exchanged ρ-meson. We parametrise them in the
exponential form

Fππρ(k
2) = exp

(

k2 −m2
ρ

Λ2

)

= exp
(

Bππ
ρ

4
(k2 −m2

ρ)

)

. (1.65)

Consistent with the definition of the coupling constant the form factors are normalized to unity
when ρ meson is on-mass-shell. We take g2ππρ/(4π) = 2.6, which reproduces the ρ-meson decay
width [96], and Λ = 1 GeV (Bππ

ρ = 4 GeV−2).
At larger pion-pion c.m. energies, Wππ ≫ Wthr, one should use reggeons rather than

mesons. The “reggeization” of the amplitude given in Eq. (1.64) is included here only approxi-
mately by a factor assuring asymptotically correct high energy dependence

F(s34, k2) =
(

s34
sthr

) 2
π arctan[(s34−sthr)/Λ2

thr](αIR(k
2)−1)

, (1.66)

where Λthr = 4 GeV and αIR(0) = 0.5 and α′IR = 0.9 GeV−2.
In the case of ρ-reggeon (ρIR) exchange the pion-pion scattering amplitude of the sub-

process π0π0 → π+π− can be written as

MρIR−exchange
π0π0→π+π−(s34, t̂, û) = s34ηρIR

Cππ
ρIR

(

s34
s0

)αIR(t̂)−1
exp

(

Bππ
ρIR

2
t̂

)

+s34ηρIR
Cππ

ρIR

(

s34
s0

)αIR(û)−1
exp

(

Bππ
ρIR

2
û

)

, (1.67)

where the signature factor is ηρIR
≈ i + 1. We parametrised the vertex form factors in the

exponential form used conveniently in the Regge phenomenology with the slope parameter
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Bππ
ρIR

= 4− 6 GeV−2. The reggeon trajectory parameters (2.12) we take from the phenomenol-
ogy [113]. The strength parameter Cππ

ρIR
can be obtained assuming Regge factorization (see e.g.

[111])

Cππ
ρIR

=
(CπN

ρIR
)2

CNN
ρIR

(1.68)

and using the known strength parameters for the NN and πN scattering fitted to the correspond-
ing total cross sections [113]. The corresponding value of strength parameters are collected in
Table 2.1. In our case of pion-pion scattering energies of Wππ =

√
s34 ∼ 1.5 GeV are of interest.

Here a small modification of the Regge formula (1.67) may be in order. Consistent with meson-
exchange formalism (spin-1 exchange) one may expect saturation of the π0π0 → π+π− cross
section at lower energies. The following freezing of the energy factor in (1.67) seems a reasonable
correction:

(

sππ

s0

)αρ

→
(

s f reez

s0

)αρ

, (1.69)

where s f reez = W2
f reez. One may expect W f reez = 1.5 − 2 GeV. The compatibility of the Regge

formalism with low-energy approaches for pion-pion scattering was discussed in Ref. [123].
The 2 → 2 amplitudes (1.64) and (1.67) may be inserted into the 2 → 4 amplitude of

Fig.1.32(a). When doing so we include in addition the correction factors due to off-shellness of
incoming pions as was done for the f0(1500) meson using exponential form factors Fπ∗(t1,2) of
the type (1.13). Now we can perform a genuine 2 → 4 calculation including four-body phase
space; see Appendix A.

Before we go to our four-body reaction let us focus for a moment on π0π0 → π+π−

on-shell scattering. In Fig.1.33 (left panel) we show the total (angle-integrated) cross section for
the π0π0 → π+π− process. We include both the pion-pion rescattering contribution obtained
from partial wave analysis (Section 1.1) as well as contribution from the Regge phenomenology
relevant at higher energies. The parameters of the Regge amplitude for the ππ → ππ scattering
were obtained from different isospin combinations of nucleon-(anti)nucleon, and pion-nucleon
scattering assuming Regge factorization (1.68). For our case of π0π0 → π+π− reaction only the
ρ-reggeon exchange is relevant. We show predictions for the Regge contribution for corrected
(W0 = 1.5, 2 GeV and a0 = 0.2 GeV in Eq.(2.20)) extrapolations to low energies and for two values
of the slope parameter: Bππ

ρIR
= 4 GeV−2 (the long dashed lines) and Bππ

ρIR
= 6 GeV−2 (the solid

lines). A relatively good matching is achieved without extra fitting the model parameters. In the
right panel we show angular dependence for corresponding contributions atWππ = 1.5 GeV.

Now we discuss the results for the two-pion involved ρIR (ρ-reggeon) exchange and the
central diffractive exchanges contribution at

√
s = 5.5 GeV. We have checked that the ρ-meson

exchangemechanism provides approximately the same results atWππ < 1.2 GeV as themodified
ρIR exchange with W f reez = 1.5− 2 GeV (see formula (1.69)). Therefore the modified reggeon-
exchange calculation provides a realistic predictions in the broad range of pion-pion energies,
both above and below the f0(1500) resonance. In Fig.1.34 we show the two-pion invariant mass
distribution (left panel) and the distribution in pion rapidity (right panel). We show results of the
central diffractive background calculating with the smooth cut-off formula (2.20) (W0 = 2 GeV,
a0 = 0.2 GeV) andwith the pion off-shell form factors (Λ2

o f f ,E = 1.6 GeV2) as well as we use usual
(mesonic) propagator of the off-shell pion. In this calculation the integration over whole phase
space was done. We show the cross section for all ingredients in the amplitude included and
for some exchanges separately. At low energies all individual cross sections when isolated are
comparable, see also Table 2.2. The IPIP and f2IR f2IR components peak at midrapidities of pions,
while the IP f2IR and f2IR IP components at backward and forward pion rapidities, respectively.
They strongly interfere leading to increase of the cross section.

In Fig.1.35 we show two-pion invariant mass distribution. In this calculation the inte-
gration over whole phase space was done. The red solid line corresponds to our resonance con-
tribution calculated without (the dotted line) and with (the solid (1.62) and long-dashed (1.63)
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Figure 1.33: In the left panel we show the angle-integrated cross section as a function of pion-pion c.m.
energy Wππ and in the right panel we show the angular dependence at Wππ = 1.5 GeV for the π0π0 →
π+π− reaction. The blue solid line present a contribution obtained from the partial wave analysis [2].
The black lines present the ρ-reggeon contribution from the Regge phenomenology [111] for a naive (the
dotted line) and corrected (W0 = 1.5, 2 GeV and a0 = 0.2 GeV in Eq.(2.20)) extrapolations to low energies.
The violet lines present the ρ-meson contribution for a naive (the dotted line) and reggeized approaches
(for the cut-off parameter Λ = 1 GeV and 0.9 GeV in (1.65) correspond to the short-dashed line and long-
dashed line, respectively). For comparison, the red solid line presents the f0(1500)meson contribution.
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Figure 1.34: Two-pion invariant mass (left panel) and π+ rapidity (right panel) distributions in the
pp̄ → pp̄π+π− reaction at

√
s = 5.5 GeV. In the calculations of central diffractive contribution we use

the exponential form factors (2.29) for Λ2
o f f ,E = 1.6 GeV2 and we include the smooth cut-off formula (2.20)

(W0 = 2 GeV and a0 = 0.2 GeV). The black solid line corresponds to the upper (blue) long-dashed line in
Fig. 1.35. We show the individual Regge contributions to the cross section and their coherent sum (total,
denoted by the thick solid line). The double-pomeron exchange (IPIP) is plotted by the long-dashed line,
the pomeron- f2 reggeon (IP f2IR) and the f2 reggeon-pomeron ( f2IR IP) exchanges by the short-dashed line,
and the double-reggeon exchange ( f2IR f2IR) by the dotted line. In the calculations we use usual (mesonic)
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51



lines) off-shell form factors and the black dashed lines correspond to the background contri-
bution. In the left panel we can see that the signal contribution is much lower than the ρIR-
exchange background. As explained in the figure caption we show results with different values
of W f reez parameter (1.69). In the right panel we show the distribution of the central diffractive
background together with the f0(1500) signal. In our calculation we include both pomeron and
reggeon exchanges, see Section 2.3. The strength parameters were found from fitting the total πN
cross sections to the world experimental data [96, 124], see Table 2.1. The difference between the
lower and upper curves of the same type represent the uncertainties from the exponential pion
off-shell form factors for the parameter Λ2

o f f ,E = 1 GeV2 and 1.6 GeV2, respectively. In order to
exclude barionic resonance regions we multiply the amplitude by the smooth cut-off correction
factor (2.20). The two top curves correspond to the parametersW0 = 1.5 GeV and a0 = 0.2 GeV,
while two bottom curves correspond to W0 = 2.0 GeV and a0 = 0.2 GeV. For these two set of
parameters and Λ2

o f f ,E = 1 GeV2 we obtained the total cross section σtot = 60 µb and 0.6 µb,
respectively. The results suggest that the central diffractive background, that is, without regions
of baryon resonances, should not disturb in the observation of the f0(1500) signal at the highest
PANDA experiment energy.
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Figure 1.35: Two-pion invariant mass distribution in the pp̄→ pp̄π+π− reaction at the highest PANDA
center-of-mass energy

√
s = 5.5 GeV. Here the full phase space has been included. In the figures the red

lines show the contribution of f0(1500) meson obtained without (the dotted line) and with extra form
factors given by Eq.(1.62) and Eq.(1.63) (the solid and long-dashed line, respectively). In the calculations
of signal ( f0(1500)meson) contribution we use off-shell form factors for the cut-off parameter Λ = 1 GeV.
The black lines correspond to the background contribution obtained by the fusion of two neutral pions (the
ρIR exchange) (left panel) and the contribution initiated by the fusion of two reggeon/pomeron exchanges
(right panel). The ππ-induced background was calculated with the pion off-shell monopole form factors
(1.11) for Λo f f ,M = 1 GeV and Bππ

ρIR
= 4 GeV−2 in (1.65). We show the results for naive (the upper line)

and corrected (two lower lines with W f reez = 1.5, 2 GeV) extrapolations to low energies. For comparison,
the black long-dashed line corresponds to calculations with with the smooth cut-off function given by
Eq. (2.20) (W0 = 1.5 GeV and a0 = 0.2 GeV). In the right panel we show the central diffractive background
for the smooth cut-off function (2.20) (the short-dashed lines for W0 = 1.5 GeV and a0 = 0.2 GeV and the
long-dashed lines for W0 = 2 GeV and a0 = 0.2 GeV). The difference between the lower black and the
upper blue curves of the same type represent the uncertainties from the pion off-shell form factors taken
in the exponential form (2.29) for Λ2

o f f ,E = 1 GeV2 and 1.6 GeV2, respectively.

In Fig.1.36 (top panels) we show corresponding distributions in pion rapidity. In order
to better see the overlap of the signal and background for the ρIR exchange (see left panel) we
impose in addition 1.4 GeV< Mππ < 1.6 GeV (the region of the f0(1500) resonance). Limiting to
very small pion rapidities one can further improve the signal-to-background ratio. In the right
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panel we show the contribution for the central diffractive background. In this case, unlike for the
intermediate ρIR exchange, imposing cuts on pion rapidities would not be helpful as the central
diffractive contribution is concentrated at midrapidities, i.e for both outgoing pions |yπ | → 0.
At lower HESR energies the situation is better, the central diffractive background is relatively
smaller. In the bottom panels we show two-pion invariant mass distribution with extra cuts
−0.5 < yπ+ , yπ− < 0.5. While the f0(1500) contribution is only slightlymodified, the ππ-induced
background contribution is reduced by more than order of magnitude. One can clearly see the
signal over background in this case. Especially the high-energy side of the f0(1500) meson is
now free of the ρ/ρIR-exchange background. A better separation can be done by using pion-pion
partial wave analysis.
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Figure 1.36: In the top panels we show rapidity distribution of pions from the decay of the glueball can-
didate f0(1500) (the red solid line) and from the ππ-induced background (left panel) for naive (upper
line) and corrected (two lower lines) extrapolations to low energies as well as from the central diffrac-
tive background (right panel) for the smooth cut-off function in the πN systems (2.20). The curves are
explained in the caption of Fig. 1.35. The calculation was performed at

√
s = 5.5 GeV and we impose in

addition 1.4 GeV < Mππ < 1.6 GeV on both the signal and background contributions. In the bottom pan-
els we show two-pion invariant mass distribution for the f0(1500)meson (solid line) and the background
(dashed lines) with an additional condition on center-of-mass rapidities −0.5 < yπ+ , yπ− < 0.5.
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In Fig. 1.37 we show differential cross section for angular distributions (cos θ∗ is de-
fined as (1.16)) obtained from our signal and background models. The ππ-induced background
contribution is dominantly produces at cosθ∗ ≈ ±0.95 while the central diffractive background
contribution may interplay with the signal contribution at cosθ∗ ≈ 0.
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Figure 1.37: Differential cross section for the polar angle in the ππ subsystem for the f0(1500) meson
(solid line) and the background (dashed lines) contributions with an additional condition on two-pion
invariant mass 1.4 GeV < Mππ < 1.6 GeV. The calculation was performed at

√
s = 5.5 GeV. The curves

are explained in the caption of Fig. 1.35.

Finally, in Fig. 1.38 we show two-pion invariant mass distribution (left panel) and dis-
tribution in pion rapidity with condition 1.4 GeV < Mππ < 1.6 GeV (right panel). Both in the
signal and background calculations we include the “sharp” cut-off for MπN = WπN subsystems:
WπN,min = 1.8, 1.9 and 2 GeV corresponding to the dotted, short-dashed and long-dashed lines,
respectively.

Close to the two-pions production threshold the Roper resonance excitation and its sub-
sequent decay (N∗(1440) → Nππ) is known to give the dominant contribution to the pp →
ppπ+π− reaction [23]. The same may be expected also for the pp̄ → pp̄π+π− reaction. The
Roper resonance produces the two-pions in dominantly the l = 0 and I = 0 state 15 (the tail of
the σ meson), i.e. the strength is concentrated at Mππ much lower than f0(1500) meson. The
kinematical constraint gives Mππ < MN∗(1440) − MN ≈ 0.5 GeV. In addition, this contribution
could be eliminated by extra cuts on invariant masses M(pπ+π−) and M( p̄π+π−) (1.23). The
same method can, at least in principle, be used to eliminate the ∆ and ∆̄ excitations followed by
their decays ∆++ → π+p and ∆̄−− → π− p̄ 16. In this sense the last two contributions (the Roper
resonance and the double isobar excitations) are reduceable. To which extend precision of the
real apparatus will allow such a reduction is a matter of further investigations. Certainly com-
plete analysis requires including more processes and an analysis of the role of cuts in improving
the signal-to-background ratio.

15Here l is the angular momentum between pions and I indicates the total isospin of the ππ system.

16We have checked that eliminating the region of double-∆ excitation (1.24) at the highest PANDA energy
√
s =

5.5 GeV with an additional condition on two-pion invariant mass 1.4 GeV < Mππ < 1.6 GeV reduces the signal by
less than about 10%.
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Figure 1.38: Differential distributions of the two-pion invariant mass (left panel) and pion rapidity (right
panel) imposing cuts on πN subsystem on both signal and background contributions. The dotted, short-
dashed and long-dashed lines correspond to “sharp” cut-off values on πN invariant mass: MπN > 1.8, 1.9
and 2 GeV, respectively, and for the pion off-shell form factors for Λo f f ,E = 1 GeV. The calculation was
performed at

√
s = 5.5 GeV. The curves are explained in the caption of Fig. 1.35.

1.7 Conclusions

We have estimated the cross section for exclusive f0(1500) meson (glueball candidate)
production not far from the threshold. We have included both the gluon-induced diffractive and
the pionic-triangle diffractive mechanisms as well as the pion-pion exchange contributions.

The QCD diffractive component was obtained by extrapolating down the cross section
in the Khoze-Martin-Ryskin approach with unintegrated gluon distributions from the literature
as well as using two-gluon impact factor approach. A rather large uncertainties are associated
with the QCD diffractive component. At present only upper limit can be obtained for the diffrac-
tive component as the f0(1500) → gg decay coupling constant remains unknown. The coupling
constant could be extracted only in high-energy exclusive production of f0(1500) meson where
other mechanisms are negligible. We have found rather large contribution of pionic-triangle
diffractive component at higher energies (

√
s > 10 GeV). However, at the GSI HESR energies

this contribution is strongly damped because of the phase space limitations on the πN subchan-
nel energies. Future experimental data at high energies could contribute to shed some light on
the competition of the both diffractive mechanisms.

The calculation of the MEC contribution requires introducing extra vertex form factors.
At largest PANDA energies they are relatively well known and the pion-pion fusion can be re-
liably calculated. The situation becomes more complicated very close to the threshold where
rather large |t1| and |t2| are involved. The cross section for energies close to the threshold is very
sensitive to the functional form and parameters of vertex form factor. Therefore a measurement
of f0(1500) close to its production threshold could limit the so-called πNN form factors in the
region of exchanged four-momenta never tested before.

We predict the dominance of the pion-pion contribution close to the threshold. Our
calculation shows that the diffractive components (in fact its upper limit for theQCDmechanism)
are by more than order of magnitude smaller than the pion-pion fusion component in the energy
region of future PANDA experiment. The diffractive components may dominate over the pion-
pion component only for center-of-mass energies

√
s > 15 GeV.

Disentangling the mechanism of the exclusive f0(1500) production not far from the
meson production threshold would require study of the pp̄ → pp̄ f0(1500), pp̄ → nn̄ f0(1500)
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processes with the PANDA detector at FAIR and pp → pp f0(1500) reaction at J-PARC. In the
case the pion exchange mechanism is the dominant process one expects σ(pp̄ → nn̄ f0(1500)) =
4× σ(pp̄ → pp̄ f0(1500)). At high energies the gluon-induced or the intermediate pionic-triangle
diffractive components dominate overMEC components σ(pp̄ → pp̄ f0(1500)) > σ(pp̄ → nn̄ f0(1500)).

At intermediate energies one cannot exclude a priori subleading reggeon exchanges like
ρρ for instance. However, we do not know how to reliably calculate them from first principles.
We believe that the distortions from the pion-pion at low energies and/or distortions from the
QCD gluonic mechanism at high energy may tell us more and allow for a phenomenological
analysis taking into account the ρρ component explicitly.

Only a careful studies of different final channels in the broad range of energies could
help to shed light on coupling of (nonperturbative) gluons to f0(1500) and therefore would give
a new hint on its nature. The experimental studies of exclusive production of f0(1500) are not
easy at all as in the ππ decay channel one expects a large continuum. We have performed an
involved calculation of the four-body pp̄π+π− background. Our calculation shows that impos-
ing extra cuts should allow to extract the signal of the glueball f0(1500) candidate at the highest
PANDA energy. A partial wave ππ analysis should be helpful in this context. Scalar resonances
are difficult to resolve because some of them have large decay widths which cause a strong over-
lap between resonances and background. A smaller continuum may be expected in the KK̄ or
four-pion of f0(1500) decay channels. This requires, however, a good geometrical (full solid
angle) coverage and high registration efficiencies. The PANDA detector seems to fulfill these
requirements, but planning real experiment requires a dedicated Monte Carlo simulation of the
apparatus.

It is a central problem of our field if f0(1500) state is a qq̄ or glueball type. Unfortunately,
our analysis does not allow to give a definite answer to this important question. Some informa-
tion on baryon-baryon correlation may be helpful but certainly not decisive. New large-scale
devices being completed (J-PARC at Tokai, COMPASS at CERN) or being constructed (FAIR at
GSI) may open a new possibility to study the production of scalar mesons and an exotic states in
more details.

If the cross section at high energies (where the contribution of subleading reggeon ex-
changes may be neglected) is much smaller than predicted based on the KMR method it means
that gluons only weakly couple to f0(1500) meson. This could provide some indirect informa-
tion on the f0(1500) structure. A direct comparison of the shape of differential distributions at
high energies may provide a valuable test of the KMR method originally proposed for exclusive
Higgs production. A possible disagreement with the prediction for exclusive f0(1500) produc-
tion at high energies could put into question the KMR approach, at present state of art in the
field. Experiments at high energies (RHIC, LHC) could be useful in this context and could shed
light on the nonperturbative coupling of gluons to f0(1500) state.
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Chapter 2

Exclusive Production of Meson Pairs at
High Energies

Diffractive processes although very difficult from the point of view of perturbative QCD
are very attractive from the general point of view of the reaction mechanism. There are several
classes of soft diffractive-type processes in high-energy nucleon-nucleon collisions such as: (1)
elastic scattering; (2) single-diffractive excitation of one of the nucleons; (3) central diffractive
excitation of both participating nucleons; (4) central diffractive production of a simple final state.
The energy dependence of the first three types of the reaction was measured and can be nicely
described [125,126] in a somewhat academic two-state (but fulfilling unitarity) the Good-Walker
model [127]. Diffractive reaction channels contribute about 30% to the total hadronic cross section
at the energies of the Large Hadron Collider LHC at CERN. A good understanding of hadronic
diffraction is therefore necessary for a comprehensive understanding of proton-proton collisions.
The last case was almost not studied in much detail both experimentally and theoretically. There-
fore, the processes of central exclusive production became recently a very active field of research
(for recent reviews see [128] and references therein). Although the attention is paid mainly to
high-p⊥ processes that can be used for new physics searches (exclusive Higgs boson, γγ interac-
tions, etc.), measurements of low-p⊥ signals are also very important as they can help to constrain
models of the backgrounds for the former ones.

Recently there is a growing interest in understanding exclusive three-body reactions
NN → NNR (3.1) at high energies, where the meson (resonance) R is produced in the central ra-
pidity region, that is, separated by rapidity gaps from both nucleons. Many of these resonances
decay into ππ and/or KK channels. The representative examples are: R = σ, ρ0, f0(980), φ,
f2(1270), f0(1500), χc0. Various decay channels can be studied. It is clear that these resonances
are seen (or will be seen) “on” the background of ππ or KK continuum 1, see Section 1.6 and
Ref. [1]. The aim of this Section is to discuss mechanisms of exclusive π+π− and K+K− produc-
tion in hadron-hadron collisions at high energies. Similar analysis can be done for π0π0 exclusive
production 2.

2.1 Regge phenomenology

In this Section we provide a very basic introduction to the Regge theory concepts to
hadronic reactions. For a detailed treatment of Regge theory we refer instead to Refs. [114, 130,
131]. The Regge theory is based on the unitarity, analyticity and crossing symmetry of the scat-

1In general, the resonance and continuum contributions may interfere. This may produce even a dip. A good
example is the f0(980) production (see e.g. Ref. [2, 129])

2We recall that the π0π0 central exclusive production is approximately 1/2 of the π+π− cross section due to the
identity of particles in the final state.
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tering matrix. The Regge phenomenology was developed originally to describe the behaviour of
total hadronic cross sections and diffractive/elastic scattering at high energies. It is very success-
ful in describing the cross section behaviour in the high energy limit. With the advent of quantum
chromodynamics (QCD) the emphasis shifted to the investigation of scattering processes at short
distances (at large momentum transfer) for which the strong coupling is small and perturbative
methods can be applicable. However, for low momentum transfers, in the long-range regime,
the QCD has not yet given accurate predictions. This regime of soft interactions is dominated
by phenomenological or QCD-inspired models constrained by the asymptotic theorems. Since,
the soft diffraction and elastic scattering processes cannot be described by perturbative QCD
(pQCD), and Regge theory remains an important tool.

The Regge approach establishes a connection between the high energy scattering and a
spectrum of particles and resonances. The reggeon/pomeron t-channel exchanges are dual to the
low energy s-channel resonances/non-resonance background. This is two-component duality;
see e.g. Section 4.3 of [114]. The theory uses a concept of the complex angular momentum to
describe the scattering amplitude. In its relativistic formulation a high energy behaviour of the
amplitude is related to the singularities in the complex momentum plane of the partial waves in
crossed channel. It makes use of the crossing symmetry which relates the two-body scattering
processes ab → cd and ac̄ → b̄d. In the former the centre-of-mass energy is s = (pa + pb)

2 and
the four-momentum transfer t = (pa − pc)2 defines the scattering angle. In the latter reaction the
role of the two variables is interchanged. The crossing symmetry implies that the two processes
are described by the same amplitude since the objects exchanged there has the same quantum
numbers. The simplest singularities are the Regge poles the exchange of which is a generalisation
of an exchange of a particle with spin J to complex values of J. The Regge theory describes the
interaction by including exchanges with all possible J-values (with the same quantum numbers)
fulfilling the Froissart-Martin bound [132,133] for the asymptotic behaviour of total cross sections
which implies that σtot

ab (s) cannot grow faster than Cab log2(s/s0) with Cab and s0 constants.
A plot of the exchanged particles spin J versus its squared mass m2

J shows that all pos-
sible exchanges form trajectories called the Regge trajectories or reggeons (IR). In Fig. 2.1 we
show the so called Chew-Frautschi plots [134]. To good approximation the two C = +1 ( f2, a2)
trajectories and the two C = −1 (ω, ρ) trajectories are all degenerate with intercept α(0) ≈ 0.5,
so they all contribute terms that behave approximately like 1/

√
s. However, the measurements

show that the cross section after the initial decrease starts to increase slowly with energy. This
cannot be explained by α(t = 0) < 1 trajectories. To generate a non-falling total cross section a
new trajectory (Pomeranchuk trajectory) with the leading pole called the pomeron (IP) was pos-
tulated. It has α(t = 0) slightly above 1 and the isospin zero and even charge parity, C = +1, i.e.
it has the quantum numbers of the vacuum. In the Regge theory the t-channel Regge exchanges
(IR) correspond to a sum of ordinary mesons (ρ0, ω, etc.) with the same quantum numbers. In
QCD, the pomeron exchange is described in terms of multi-gluon exchange and a point-like cou-
pling to quarks and gluons. A color singlet two-gluon exchange with C = +1 corresponds to the
pomeron exchange while the color singlet three-gluon exchange with C = −1 describes the so
called odderon exchange.
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Figure 2.1: Chew-Frautschi plots of the particle spin versus their squared masses t = m2
J . The me-

son (panel (a)) and baryon (panel (b)) states lie on approximately linear, parallel, exchange-degenerate
Regge trajectories α(t) = α(0) + α′t. The linearity of the Regge trajectories allows a simple extrapo-
lation from t-channel physical region t > 4m2

π to the s-channel scattering region t < 0. Left panel
shows the “leading trajectory” contains four near degenerate meson trajectories ( f2(1270), f4(2050), ...),
(a2(1320), a4(2040), ...), (ω(780),ω3(1670), ...), and (ρ(770), ρ3(1690), ...). The pomeron trajectory has a
small slope but an intercept αIP(0) slightly above 1. All the well established mesons and less well verified
ρ5 state are listed in the data tables [96]. Right panel shows two baryon (N and ∆) trajectories. The proton
trajectory, also called N+ trajectory, contains the baryons with corresponding JP: p 1/2+, N(1680) 5/2+,
and N(2220) 9/2+ and N(2700) 13/2+. The slope α′N is comparable to that for the meson trajectories.
Apart from the well established proton trajectory, there is a prominent resonance I = 1/2, JP = 1/2+

with mass 1440 MeV, known as the Roper resonance. The Roper resonance may appear on the daughter
trajectory of N∗ states treated above, although its status is still disputable.

2.2 Total cross sections and elastic scattering

In order to fix parameters in our central diffractive model we analyse various experi-
mental data of the elastic ab → ab scattering. The forward amplitudes Mab→ab(s, t = 0) of the
few elastic reactions can be written in terms of the Regge exchanges Ai(s, t = 0), as

Mπ±p→π±p(s) = AIP(s) + A f2IR(s)∓ AρIR
(s) , (2.1)

MK±p→K±p(s) = AIP(s) + A f2IR(s) + Aa2IR(s)∓ AωIR
(s)∓ AρIR

(s) , (2.2)
MK±n→K±n(s) = AIP(s) + A f2IR(s)− Aa2IR(s)∓ AωIR

(s)± AρIR
(s) , (2.3)

Mpp→pp(s) = AIP(s) + A f2IR(s) + Aa2IR(s)− AωIR
(s)− AρIR

(s) , (2.4)
M p̄p→ p̄p(s) = AIP(s) + A f2IR(s) + Aa2IR(s) + AωIR

(s) + AρIR
(s), (2.5)

Mpn→pn(s) = AIP(s) + A f2IR(s)− Aa2IR(s)− AωIR
(s) + AρIR

(s) , (2.6)
M p̄n→ p̄n(s) = AIP(s) + A f2IR(s)− Aa2IR(s) + AωIR

(s)− AρIR
(s) . (2.7)

Under p↔ n odd-isospin ρIR and a2IR change sign of contribution. Under particle↔ anti-particle
the odd-C ρIR and ωIR change sign.

The optical theorem relates the total cross section σtot(s) for the scattering of a pair of
hadrons a and b to the amplitude Mab→ab(s, t = 0) for elastic ab scattering. When the centre-of-
mass energy

√
s is large, the theorem reads

σtot(s) ∼ s−1 ImMab→ab(s, t = 0) (2.8)

and a Regge trajectory α(t) contributes a term to σtot(s) that behaves as Cis
α(0)−1. The total cross

section tests, via optical theorem (2.8), only imaginary part of the scattering amplitude. In writ-
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Table 2.1: The strength parameters of pomeron and reggeon exchanges determined from the
elastic and the total cross sections used in the present calculations.

Regge exchange, i CNN
i (mb) CπN

i (mb) CKN
i (mb) Cππ

i (mb) CKK
i (mb)

IP 21.7 13.63 11.82 ≃ 8.56 ≃ 6.44
f2IR 75.4875 31.79 15.67 ≃ 13.39 ≃ 3.25
ρIR 1.0925 4.23 2.05 ≃ 16.38 ≃ 3.85
a2IR 1.7475 − 1.585 − ≃ 1.44
ωIR 20.0625 − 7.055 − ≃ 2.48

ing the above amplitudes we have omitted indices related to helicities as we have assumed he-
licity conservation. At low energies, the total cross sections for π+p and π−p show a significant
energy-dependent asymmetry defined as |σπ+ p

tot (s) − σ
π−p
tot (s)|/(σπ+ p

tot (s) + σ
π−p
tot (s)). In contrast

to the total cross section the π±p elastic scattering cross sections show at low energies rather
small asymmetry.

The elastic ab scattering amplitude Mab→ab(s, t) is a sum of Regge terms

Ai(s, t) = ηi s C
ab
i

(

s

s0

)αi(t)−1
exp

(

Bab
i

2
t

)

, where i = IP, f2IR, ρIR, a2IR ,ωIR (2.9)

and the slope of the elastic ab scattering is

B(s) = Bab
i + 2α′i ln

(

s

s0

)

, (2.10)

where the energy scale s0 is fixed at s0 = 1 GeV2 and only the Bab
i parameters must be fitted to the

existing experimental data of the elastic ab scattering. We can see, that the Regge exchange with
linear trajectory predicts an exponential fall-off of the t-distribution with the slope parameter
which increases with increasing energy. This means that small scattering angles become more
preferable or in other words the forward scattering peak becomes sharper or “shrinks” with
increasing energy. The values of strength parameters Cab

i , are obtained from the Donnachie-
Landshoff analysis of the total cross section in several hadronic reactions [113] and are listed
in Table 2.1. This means that our effective phenomenological model describes the available total
cross sections. The reggeons and pomeron trajectories, αIR(t) and αIP(t), respectively, are assumed
to be of standard form, see for instance [114], that is, linear in t:

αIP(t) = αIP(0) + α′IP t , αIP(0) = 1.0808, α′IP = 0.25 GeV−2 , (2.11)
αIR(t) = αIR(0) + α′IR t , αIR(0) = 0.5475, α′IR = 0.93 GeV−2 . (2.12)

The factors ηi in Eq.(2.9) are the signature factors 3. If the energy variation is parametrised as an
effective power sα(t), the phase eiφ(α(t)) depends on the C-parity of the dominant exchange

η+
i =

−(1+ exp (−iπαi))

sin (παi)
= i− cot

(παi

2

)

=
− exp

(

−iπ
2 αi

)

sin
(

π
2 αi

) , (2.14)

η−i =
−(1− exp (−iπαi))

sin (παi)
= −i− tan

(παi

2

)

=
−i exp

(

−iπ
2 αi

)

cos
(

π
2 αi

) . (2.15)

3If αi = 0.5 then we can use a simple form

η+
i = −

√
2 exp

(

−iπ

2
αi

)

, η−i = −
√
2 exp

(

−iπ

2
(αi − 1)

)

. (2.13)
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As an example, the amplitude for the elastic scattering of pions on nucleons can be
explicitly written in the Regge-like form as

Mπ±p→π±p(s, t) = i s C
πp
IP

(

s

s0

)αIP(t)−1
exp

(

BπN
IP

2
t

)

+η f2IR s C
πp
f2IR

(

s

s0

)αIR(t)−1
exp

(

BπN
IR

2
t

)

±ηρIR
s C

πp
ρIR

(

s

s0

)αIR(t)−1
exp

(

BπN
IR

2
t

)

, (2.16)

where η f2IR = −0.860895+ i and ηρIR
= −1.16158− i. The first term describes the leading trajec-

tory (the pomeron exchange) while the next terms describe the subleading reggeon exchanges.
Above, the BπN slope parameters are only free parameters and must be adjusted to the elastic
scattering data.

The differential elastic cross section is expressed with the help of the elastic scattering
amplitude as usually

dσel
dt

=
1

16πs2
|Mel(s, t)|2 . (2.17)

The differential distributions dσel/dt for three representative incident-beam momenta of Plab =
5 GeV, Plab = 50 GeV, and Plab = 200 GeV for both π±p and K±p elastic scattering are shown in
Figs 2.4 and 2.5, respectively. We can see that with the slope parameters for Regge exchanges

BπN
IP = BKN

IP = 5.5 GeV−2 , BπN
IR = BKN

IR = 4 GeV−2 (2.18)

a rather good description of experimental dσel/dt is achieved. The exception is the low energy
K+p scattering. There the Λ baryon exchange (with the strangeness q.n. S = −1) is a possible
mechanism in addition to the pomeron and reggeon exchanges. Under a detailed inspection one
can observe that the local slope parameter

Be f f (t) ≡
d

dt
ln
(

dσel
dt

)

(2.19)

is t-dependent and is slightly larger for π−p than for π+p. The local slope decreases with in-
creasing t. Such an effect was observed experimentally in Ref. [135–139]. 4.

The integrated cross sections for πN and KN total and elastic scattering versus center-
of-mass energy

√
s are presented in Figs. 2.2 and 2.3, respectively. We can see, that the high

energy cross section is dominated by the pomeron exchange while the reggeon exchanges play
the crucial role in the nucleon resonance region. While the total cross section is just a sum of the
pomeron and reggeon terms, the elastic cross section have the interference term. We describe
the existing experimental data of the elastic scattering for

√
s > 3 GeV, but in the case of the

K+p → K+p process only for
√
s > 7 GeV. For instance, the K+p and K−p scattering have the

same t-channel quantumnumbers but very different s-channel quantum numbers. At sufficiently
high energy, when pomeron exchange dominates, the two cross sections come together. However
at lower energies they are very different.

The Donnachie-Landshoff parametrisation can be used only above resonance regions
for the energy

√
sab = Wab > 2.5 GeV. The region below contains nucleon resonances and is there-

fore very difficult for modelling. In principle, their contribution could and should be included
explicitly. In order to exclude resonance region we shall “correct” the Regge parametrisation
(Eq. (2.9)) multiplying it by a purely phenomenological smooth cut-off correction factor

f abcont(Wab) =

(

exp
(

Wab −W0

a0

))

/
(

1+ exp
(

Wab −W0

a0

))

, (2.20)

4The effective slope observed in t-distributions is of course much larger (B(s) = 7 − 10 GeV−2 for Plab = 3 −
200 GeV [135–139]).
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where the parameter W0 = 2 GeV gives the position of the cut and the parameter a0 = 0.2 GeV
describes how “sharp” the cut-off is. For large energies f abcont(Wab) ≈ 1 and close to kinemati-
cal threshold f abcont(Wab ≃ ma + mb) ≈ 0. As will be discussed in the Results Section, the small
meson-nucleon energies in four-body processes, where we fail to describe the experimental data,
are important only at large meson (pseudo)rapidities, where a measurement is practically im-
possible.
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Figure 2.2: Integrated cross section for πN total and elastic scattering as a function of center-of-mass
energy compared with the experimental data from PDG (Particle Data Group) [96, 124]. The high energy
cross section is dominated by the pomeron exchange while at smaller energies, secondary, non-leading
trajectories contribute as well, see the red and blue long-dashed line, respectively. The black short-dashed
line corresponds to the interference term. We exclude resonance regions multiplying the Regge parametri-
sation (Eq. (2.9)) by a purely phenomenological smooth cut-off correction factor (2.20) with parameters
W0 = 1.5 GeV, a0 = 0.2 GeV andW0 = 2 GeV, a0 = 0.2 GeV, see the black solid lines, respectively.
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Figure 2.3: Integrated cross section for the KN total and elastic scattering. The experimental data are
taken from PDG [96, 124]. The lines are explained in the main text and in Fig.2.2.

In Fig.2.6 we nicely describe the existing experimental data for elastic nucleon-nucleon
scattering with the slope parameters fixed as

BNN
IP = 9 GeV−2 , BNN

IR = 6 GeV−2 . (2.21)
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Figure 2.4: Differential distributions for π+p (left) and π−p (right) elastic scattering for three incident-
beam momenta of Plab = 5, 50, and 200 GeV. A fit calculated with the amplitude (2.16) and parameters
as given in the text to the world πN elastic scattering data, taken from Ref. [135–139], suggest that the
pomeron and reggeon slopes may be slightly different. The solid lines show results with BπN

IP = 5.5 GeV−2

and BπN
IR = 4 GeV−2 while the dashed lines results with the same value of slope parameter for the

pomeron and reggeons BπN
IP = BπN

IR = 5.5 GeV−2.

Similarly as in meson-nucleon elastic scattering, there is a region of energies where the interfer-
ence term dominates, see the black long-dashed lines. The high energy cross section is domi-
nated by pomeron exchange while the low energies by the reggeon exchanges, see the red and
blue long-dashed line, respectively. The high energy experiments deliver also possibility to test
another asymptotic prediction, i.e. the pp and pp̄ cross section difference vanishes at asymptotic
energies. The data on hadronic interactions seem to support this view. It is worth stressing that
due to slow increase of the cross section its high energy behaviour can only be testedwith precise
high energy data.

The differential distribution dσel/dt for pp elastic scattering at
√
s = 7 TeV is shown

in Fig.2.7. A rather good description of experimental dσel/dt data is achieved, where t is not
large. The experimental cross section dσ

pp→pp
el /dt |t=0= 506.4± 22.98 mb [140] fitted at t = 0 is

a slightly larger in comparison to 420.7 mb from our phenomenological analysis. Reproducing a
dip requires the simultaneous near-vanishing of both the real and imaginary parts of the ampli-
tude. In Ref. [141] has been reported some ideas how to doing this. The energies at which the dip
is seen are quite large, so the contributions from reggeon exchanges are too small, and to cancel
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Figure 2.5: Differential distributions for K+p (left panels) and K−p (right panels) elastic scattering for
different energies. The experimental data are taken from Refs. [135–139].

the imaginary part of single pomeron exchange is needed also IPIP exchange. We do not have the
theoretical knowledge correctly to calculate any of the IP terms beyond single exchange, though
we do have some knowledge of their general properties, which enables one to make models. To
cancel the real part they bring in triple-gluon exchange, since this appears to dominate the elastic
amplitude at large values of t, giving it an energy-independent behaviour t−4, see [141].

Summarizing, a model presented here sufficiently well describes the elastic scattering
data at not to small (> 0.01 GeV2) and not to large four-momentum transfer |t| and includes
absorption effects due to meson-nucleon rescatterings in an effective way. This has advantage
for an applications to the four-body soft processes, where the meson-nucleon absorption effects
do not need to be included explicitly. This considerably simplifies the calculation for the 2 → 4
reaction and actually this makes it feasible. Having fixed the parameters we can proceed to the
four-body ppπ+π− and ppK+K− final states.
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Figure 2.6: Integrated cross section for the NN total and elastic scattering. The lines are explained in the
main text and in Fig. 2.2. The experimental data are taken from PDG [96,124] and from a recent publication
by the TOTEM Collaboration [140] at

√
s = 7 TeV which cover the |t| range 0.005− 0.4 GeV2.
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Figure 2.7: Differential distribution for pp elastic scattering at
√
s = 7 TeV. The CERN-LHC-TOTEM

experimental data [140], which cover the |t| range 0.005− 0.4 GeV2, were collected using Roman Pot
detectors very close to the outgoing beam. The data measurement in the higher |t| range are taken from
[142].

2.3 Central diffractive mechanism

We shall study exclusive central meson pair production in proton-proton (proton-antiproton)
collisions:

p(pa,λa)p(pb,λb)→ p(p1,λ1) + M(p3)M̄(p4) + p(p2,λ2) . (2.22)

Here pa,b, p1,2 and λa,b, λ1,2 denote the four-momenta and helicities of the protons, respectively,
and central system M(p3)M̄(p4) denotes a meson pair (π+π− or K+K−) with corresponding
four-momenta p3 and p4.
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Figure 2.8: A sketch of the central double diffractive mechanism of exclusive production of meson pairs
including the Regge exchanges (IP, IR) and an intermediate (off-shell) meson exchange (M∗). The absorp-
tive corrections due to proton-proton interactions and meson-meson rescattering (indicated by the blobs)
are very relevant at high energies.

The dominant mechanism of the exclusive production of pion/kaon meson pair at high
energies is sketched in Fig. 2.8. This mechanism is relatively simple compared to that of the pp →
nnπ+π+ reaction [4], see Fig. 4.43 in Section 4.7. In calculations of the amplitude related to the
central diffractive mechanism (2.22) for the pp → ppπ+π− reaction we follow the general rules
of Pumplin and Henyey [122] (for early rough estimates see also Refs. [126, 143] and references
therein). This mechanism can be used to calculate an expected non-resonant background and
can be modelled using a “non-perturbative” framework, mediated by pomeron-pomeron fusion
with an intermediate off-shell meson (M∗) exchange.

The Born amplitude for the pp→ ppπ+π− reaction can be written as

|MBorn|2 = |MI=0|2 + |MI=1|2 + |MI=2|2 , (2.23)

where I denotes the isospin of the π+π− system. The isospin amplitudes can be decomposed to
the Regge ingredients as

MI=0 =MIPIP +MIP f2IR +M f2IR IP +M f2IR f2IR + 〈1, 0; 1, 0 | 0, 0〉MρIRρIR , (2.24)
MI=1 =MIPρIR +MρIR IP +M f2IRρIR +MρIR f2IR , (2.25)
MI=2 = 〈1, 0; 1, 0 | 2, 0〉MρIRρIR , (2.26)

where the Clebsch-Gordan coefficients 〈j1,m1; j2,m2 | j,m〉 are

〈1, 0; 1, 0 | 0, 0〉 =
√
2/3 and 〈1, 0; 1, 0 | 2, 0〉 = −

√
1/3 .

Not only leading double pomeron exchanges contribute, but also the subleading f2IR and ρIR

reggeon exchanges. For the pomeron-pomeron fusion we have C-parity C = +1 and I = 0.
In order to deeper insight we calculate the percentage shared by the isospin contribu-

tions (2.24), (2.25), and (2.26) to the total cross section in the pp → ppπ+π− reaction. At low
energy

√
s = 5.5 GeV (PANDA), where the dominance of the reggeon exchanges is justified, we

get 5 σI=0 : σI=1 : σI=2 = 97.339% : 2.258% : 0.003% of total cross section. At higher energies√
s = 18.9 GeV (COMPASS) (σtot = 66.2 µb) and

√
s = 62 GeV (ISR) (σtot = 115.1 µb) the contri-

butions of isospin I = 1 and I = 2 amplitudes are even smaller: 98.941% : 1.058% : 0.001% and
99.907% : 0.093% : < 0.001%, respectively. This can be summarized:

|MI=0|2 ≫ |MI=1|2 ≫ |MI=2|2 . (2.27)

5In this calculations we used exponential type of off-shell pion form factor discussed below (2.29) and Λo f f ,E =
1 GeV. In order to exclude resonance regions we used (2.20) with the parameters W0 = 2 GeV and a0 = 0.2 GeV. We
obtained the total cross section σtot = 0.6 µb at

√
s = 5.5 GeV.
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Table 2.2: A percentage share of cross sections for different combinations of Regge exchanges in
diagrams in Fig. 2.8.

√
s IPIP IP f2IR ( f2IR IP) f2IR f2IR

5.5 GeV 3.2 7.6 16.8
18.9 GeV 9.8 8.8 6.5
62 GeV 21.3 9.4 1.6

In similar way, in Table 2.2 we present a percentage shared by cross sections for the
individual Regge exchanges in theMI=0 amplitude (2.24). The ρIRρIR component is negligible
(see the strength parameters Table 2.1) and was omitted in further analysis. One can observe that
at lower energies the subleading f2IR exchanges constitutes a large contribution to the total cross
section andmust be included in addition to the pomeron exchanges. Furthermore, there is a large
interference effect between components in the amplitude of about 55-60%. (respect to the total
cross section in full phase space). As we shall see in the results section imposing limitations on
meson rapidity |yM| < 1 and go to higher energies reduces the role of subleading f2IR exchanges,
however, due to their non-negligible interference effects with the leading IPIP termwe keep them
in our calculations.

Thus, the Born amplitude with the intermediate meson M∗ exchange follows

MBorn = M13(s13, t1)FM∗(t̂)
1

t̂−m2
M∗

FM∗(t̂)M24(s24, t2)

+M14(s14, t1)FM∗(û)
1

û−m2
M∗

FM∗(û)M23(s23, t2) , (2.28)

where the Mik(sik, ti) elastic amplitudes denotes “interaction” between forward proton (i = 1)
or backward proton (i = 2) and one of the two mesons (k = 3 for M or k = 4 for M̄). sik =
W2

ik, where Wik is the center-of-mass energy in the (ik) subsystems. The energy dependence of
the subsystem amplitudes Mik is parametrised in terms of the pomeron and the f2IR reggeon
exchanges, as explained in Section 2.2. We found the corresponding strength parameters from
fitting total meson-nucleon cross sections as a function of the center-of-mass energy [113] to the
world experimental data [96, 124], see Table 2.1). In order to exclude resonance regions the Mik

terms are “corrected” by a purely phenomenological smooth cut-off correction factors (2.20). At
high subsystem energiesWik > 20 GeV only the pomeron exchange survive.

The extra form factors, F(t̂/û), “correct” for the off-shellness of the intermediatemesons
in the middle of the diagrams, see Fig. 2.8. In the following for brevity we shall use notation t̂/û
which means off-shell t̂ or û-channel meson exchange. Because the form of the form factor is
unknown, in particular at higher values of |t̂/û| (see the < |t̂| > (MMM̄ distributions in Fig. 2.9),
they are treat as a phenomenological input in our model and are parametrised as

FM∗(t̂/û) = exp

(

t̂/û−m2
M∗

Λ2
o f f ,E

)

, (2.29)

FM∗(t̂/û) =
Λ2

o f f ,M −m2
M∗

Λ2
o f f ,M − t̂/û

, (2.30)

FM∗(t̂/û) = exp
(

−
√

−(t̂/û−m2
M∗)/Λo f f

)

. (2.31)

All form factors are normalized to unity on the meson-mass-shell, i.e. if the squared four-
momentum transfer is equal to m2

M∗ . In general, the parameter Λo f f is not known precisely but,
in principle, could be fitted to the normalized experimental data. From our general experience
in hadronic physics we expect Λo f f ∼ 1 GeV. How to extract the off-shell parameters will be
discussed in Section 2.6.
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Figure 2.9: Mean value of |t̂| as a function of two-meson invariant mass for the pp → ppπ+π− (black
lines) and the pp → ppK+K− (blue lines) reactions at

√
s = 1.96 GeV (left panel) and 7 TeV (right

panel). These calculations were done with the usual (mesonic) propagator and with the cut-off param-
eter Λo f f ,E = 1 GeV.

2.3.1 Reggeization of the exchanged meson

The intermediate pion/kaon exchange as a meson exchange is a correct description at
rather low energies. At higher energies we may have to account for the fact that the exchanged
object in t̂/û-channel is not a simple meson but can correspond to a whole family of exchanges,
that is, the pion/kaon reggeization is required. We have written ŝ, t̂, û to stress that these are
quantities for a subprocess rather than for a full reaction. In order to preserve meson physics at
low pion-pion energies (ŝ < 1 GeV) and get the Regge form of the amplitude at higher energies
ŝ we propose to use a generalized propagator

1
t̂/û−m2

M∗
→ βM(ŝ)

1
t̂/û−m2

M∗
+ βR(ŝ)PM∗(t̂/û, ŝ) , (2.32)

where we have introduced the pion/kaon Regge propagator (see [144, 145]) with the Euler’s
gamma function PM∗ = PK = Pπ

PM∗(t̂/û, ŝ) =
πα′M∗

2Γ(αM∗(t̂/û) + 1)
1+ exp(−iπαM∗(t̂/û)

sin παM∗(t̂/û)

(

ŝ

ŝ0

)αM∗ (t̂/û)

, (2.33)

gives a suppression for large values of t̂/û. 6 The scale parameter ŝ0 is taken as 1 GeV2 and
αM∗(t̂/û) = α′M∗(t̂/û−m2

M∗) is the Regge trajectory to which the exchangedmeson belongs with
the slope parameter α′M∗ = α′π = α′K = 0.7 GeV−2. We have introduced also extra phenomeno-
logical functions βM(ŝ) and βR(ŝ) which role is to interpolate between the meson and Regge
exchange. We parametrise them as

βM(ŝ) = exp
(

−(ŝ− 4m2
M∗)/Λ2

int

)

, βR(ŝ) = 1− βM(ŝ) , (2.35)

where the parameter Λint can be fitted to experimental data.

2.3.2 Proton-proton rescattering

In a more microscopic approach one has to include the absorption effects due to proton-
proton interaction and the meson-meson final state interaction (FSI) (see 2.7.2) marked in Fig. 2.8

6For simplicity, we may replace the meson propagator by form:

1
t̂/û−m2

M∗
→ 1

t̂/û−m2
M∗

(

ŝ

ŝ0

)αM∗ (t̂/û)
. (2.34)

Sometimes in the literature a different form for the t̂/û-dependence of the reggeized meson exchange is used, see for
example Eq. (8) of [146].
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by the blobs. The first type of the interaction was studied e.g. for three-body reactions [147]. For
the four-body reaction discussed here a similar effect is expected, i.e. large energy-dependent
damping of the cross section which is often embodied in the soft gap survival probability.

The absorptive corrections due to pp-interactions to the bare amplitude (Eq. (2.28)) can
be written as:

Mpp−rescatt.
pp→ppMM̄

= i
∫

d2k⊥
2(2π)2

App(s, k2⊥)
s

MBorn
pp→ppMM̄(p

∗
a⊥ − p1⊥, p

∗
b⊥ − p2⊥) , (2.36)

where p ∗a = pa − k⊥, p ∗b = pb + k⊥ and k⊥ is the transverse momentum exchanged in the blob.
App(s, k2⊥) is an elastic proton-proton amplitude for the appropriate energy (2.9). Again the
Donnachie-Landshoff parametrisation [113] of the total pp or pp̄ cross sections can be used to
calculate the rescattering amplitude.

The amplitude for the exclusive process pp → ppMM̄ (with the four-momenta pa +
pb → p1 + p2 + p3 + p4) which includes the proton-proton interactions can be written as

Mpp→ppMM̄(s, y3, y4, p1⊥, p2⊥, pm⊥) = MBorn
pp→ppMM̄(s, y3, y4, p1⊥, p2⊥, pm⊥)

+Mpp−rescatt.
pp→ppMM̄

(s, y3, y4, p1⊥, p2⊥, pm⊥) , (2.37)

where the auxiliary quantity pm⊥ = p3⊥ − p4⊥.
The 2 → 4 amplitude described above (2.37) is used to calculate the corresponding

cross section including limitations of the four-body phase-space. The details how to conveniently
reduce the number of kinematical integration variables are discussed in Appendix A.

2.4 Other diffractive processes
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Figure 2.10: Resonance contributions leading to the pp → ppπ+π− channel through diffractive single
resonance excitation (DSRE) (panels (a)) and leading to the pp̄ → pp̄π+π− channel through diffractive
double resonance excitation (DDRE) (panel (b)).

Up to now we have discussed only central diffractive (CD) contribution to the pp →
ppπ+π− reaction. In general, there are also contributions with diffractive single or double pro-
ton/antiproton excitations followed by the nucleon resonance decays shown in Fig. 2.10. At high
energy the first mechanism (panel (a)) contribute both to the pp → ppπ+π− and pp̄ → pp̄π+π−

reaction while the second mechanism (panel (b)) only to the pp̄ → pp̄π+π− reaction. In single
and double diffractive dissociation, one or both of the protons get diffractively excited, and the
proton remnants are very much forward focussed. The charge exchange reactions in proton-
proton collisions (e.g. pp → ∆0 + ∆++ → pπ− + pπ+ with dominating the pion-trajectory
exchange at low energies and the ρ-trajectory exchange at high energies) were recently examined
in Ref. [148]. The charge exchange reactions can, however, also be initiated by the exchange of a
photon.

In general, there are also contributions with other diffractive processes leading to K+K−

production shown in Fig.2.11 The exclusive pp → ppK+K− reaction was studied only at low
energies [149, 150], where the dominant mechanisms are exclusive a0(980) and f0(980) produc-
tion [149] or excitation of nucleon and Λ resonances [150].
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Figure 2.11: Other diffractive contributions leading to the pp→ ppK+K− channel.

+K
y

5 6 7 8 9 10

 (
nb

)
+

K
/d

y
σd

-510

-410

-310

-210

-110

1

10
-K+ pp K→pp 

 = 7 TeVs

(d)
(a)

-K
y

5 6 7 8 9 10

 (
nb

)
-

K
/d

y
σd

-510

-410

-310

-210

-110

1

10
-K+ pp K→pp 

 = 7 TeVs

(d) (a)(c)(b)

(e)

Figure 2.12: Differential cross sections dσ/dyK+ (left panel) and dσ/dyK− (right panel) for the pp →
ppK+K− reaction at

√
s = 7 TeV. The solid line represents the coherent sum of all amplitudes. The dotted,

dashed, dash-dotted, long-dashed, long-dash-dotted lines correspond to contributions from diagrams (a)
- (e) in Fig.2.11. The reggeization of particle exchange was included here.

It is straightforward to evaluate the new diffractive contributions of diagrams (a) - (e).
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The Born amplitudes are given below:

M(a)
λaλb→λ1λ2K+K− = ū(p1,λ1)iγ5SΛ(p

2
1 f l)iγ5Sp(p

2
1 f p)u(pa,λa) g

2
ΛKN F2

p(p
2
1 f p) F

2
Λ(p

2
1 f l)

×isCNN
IP

(

s

s0

)αIP(t2)−1
exp

(

BNN
IP t2
2

)

δλ2λb
, (2.38)

M(b)
λaλb→λ1λ2K+K− = ū(p1,λ1)iγ5SΛ(p

2
1 f l)SΛ(p

2
1il)iγ5u(pa,λa) g

2
ΛKN F2

Λ(p
2
1il) F

2
Λ(p

2
1 f l)

×is124CΛN
IP

(

s124
s0

)αIP(t2)−1
exp

(

BΛN
IP t2
2

)

δλ2λb

×
(

s134/s
pKK
th

)αΛ(p
2
1il)−1/2

, (2.39)

M(c)
λaλb→λ1λ2K+K− = ū(p1,λ1)Sp(p

2
1ip)iγ5SΛ(p

2
1il)iγ5u(pa,λa) g

2
ΛKN F2

Λ(p
2
1il) F

2
p(p

2
1il)

×is12CNN
IP

(

s12
s0

)αIP(t2)−1
exp

(

BNN
IP t2
2

)

δλ2λb

×
(

s14/s
pK
th

)αN(p
2
1ip)−1/2 (

s34/sKKth
)αΛ(p

2
1il)−1/2 , (2.40)

M(d)
λaλb→λ1λ2K+K− = ū(p1,λ1)iγ5SΛ(p

2
1 f l)iγ5u(pa,λa) SK(p

2
1 f k) g

2
ΛKN F2

Λ(p
2
1 f l) F

2
K(p

2
1 f k)

×is23CKN
IP

(

s23
s0

)αIP(t2)−1
exp

(

BKN
IP t2
2

)

δλ2λb

×
(

s134/s
pKK
th

)αK(p
2
1 f k)−1

, (2.41)

M(e)
λaλb→λ1λ2K+K− = ū(p1,λ1)iγ5SΛ(p

2
1il)iγ5u(pa,λa) SK(p

2
1ik) g

2
ΛKN F2

Λ(p
2
1il) F

2
K(p

2
1ik)

×is24CKN
IP

(

s24
s0

)αIP(t2)−1
exp

(

BKN
IP t2
2

)

δλ2λb

×
(

s14/s
pK
th

)αK(p
2
1ik)−1 (

s13/s
pK
th

)αΛ(p
2
1il)−1/2

, (2.42)

where s0 = 1 GeV2 and s
pK
th = (mN + mK)

2, spKKth = (mN + 2mK)
2. In the above equations

u(pi,λi), ū(p f ,λ f ) = u†(p f ,λ f )γ
0 are the Dirac spinors (normalized as ū(p)u(p) = 2mN) of the

initial and outgoing protons with the four-momenta p and the helicities λ. Here sij = (pi + pj)
2,

sijk = (pi + pj + pk)
2 are squared invariant masses of the (i, j) and (i, j, k) systems. The four-

momenta squared of the virtual particles are: p21il,2il = (pa,b − p3)2, p21 f l,2 f l = (p1,2 + p4)
2 = s14,24,

p21ik,2ik = (p1il,2il − p1,2)
2, p21 f k,2 f k = (pa,b − p1il,2il)

2, p21ip,2ip = (p1il,2il − p4)
2, p21 f p,2 f p = (p1 f l,2 f l +

p3)2 = s134,234. While the four-momenta squared of transferred kaons and protons are < 0, it
is not the case for transferred Λ’s, where p21il,2il < m2

Λ. The propagators for the intermediate
particles are respectively

SK(k
2) =

i

k2 −m2
K

, Sp(k
2) =

i(kνγν +mN)

k2 −m2
N

, SΛ(k
2) =

i(kνγν +mΛ)

k2 −m2
Λ

. (2.43)

The form factors, Fi(k2), correct for the off-shellness of the virtual particles and are parametrised
as

Fi(k
2) = exp

(

−|k2 −m2
i |

Λ2
o f f

)

, (2.44)

where the parameter Λo f f = 1 GeV is taken in practical calculations. In our calculation the ΛKN

coupling constant is taken as g2ΛKN = 14 [151].
The Regge parameters in diagram (b) in Fig.2.11 (see Eq.(2.39)) are not known precisely

and are assumed to be CΛN
IP ≈ CNN

IP (see Table 2.1) and BΛN
IP ≈ BNN

IP = 9 GeV−2. To reproduce the
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high-energy Regge dependence the amplitudes given in Eqs (2.39 - 2.42) are corrected, e.g. the
amplitude of (2.41) is multiplied by a factor (s134/s

pKK
th )αK(p

2
1 f k)−1. The parameters of the Regge

trajectories used in the calculation are given as αK(k
2) = 0.7(k2 − m2

K), αp(k2) = −0.3+ 0.9k2,
αΛ(k

2) = −0.6+ 0.9k2 for the kaon, proton and Λ exchanges, respectively.
In Fig.2.12 we present rapidity distribution of K+ (left panel) and rapidity distribution

of K− (right panel) including only diagrams shown in Fig.2.11. The contribution for individual
diagrams (a) - (e) are also shown. In the discussed here new mechanism not only protons but
also kaons are produced dominantly in very forward or very backward directions. The two kaons
have, however, similar rapidities which means that there is no gap between kaons. This means
that both kaons are preferentially produced very forward or very backward forming a large size
gap between kaons and one of the protons (backward or forward, respectively). Please note a
very limited range of rapidities shown in the figure. The reggeization leads to an extra damping
of the cross section. The cross section is much smaller than that for the DPEmechanism discussed
above. It is particularly interesting that the distributions for K+ and K− have slightly different
shape.

2.5 Review of new experimental results

The recent experiments at COMPASS, RHIC, Tevatron, and LHC are expected to pro-
vide new opportunities for studying the central exclusive production of mesons at high energies
in the exclusive processes pp → pMM̄p and pp̄ → pMM̄p̄ (Tevatron). Here we present the
preliminary measurements of the invariant mass spectra of two charged pions only. Much more
new data sets will soon be available.

The physicsmotivation is understanding of the scalar meson spectrum and perturbative
and non-perturbative aspects of meson production. One of the goals of these experiments is to
study the existence and signatures of exotic mesons and glueball (i.e. objects composed entirely
of valence gluons) candidates at central rapidities, in continuation of the efforts that weremade in
the past [115]. Since pomerons are considered to have no valence quark contribution, pomeron-
pomeron fusion was proposed to be well suited for the production of glueballs.

This process can be realised in a fixed-target experiment by the scattering of a proton
beam on a proton target pbeamptarget → p f astπ

+π−pslow, where a system of π+π− particles is
produced centrally. In Fig. 2.13 we show the π+π− invariant mass distribution measured at the
fixed-target experiments at CERN Omega spectrometer [152] and by the COMPASS Collabora-
tion at CERN SPS [153–155]. In the COMPASS experiment in order to separate the π+π− system
from the fast proton, a cut on the invariant mass combinations Mpπ > 1.5 GeV was introduced
and after this kinematic cuts the centrally ππ system lies in the region |xF| 6 0.25. At all three
different centre-of-mass energies the ρ(770), the f2(1270) and the sharp drop due to the f0(980),
can be observed. Above the ππ threshold, there is a maximum corresponding probably to the
σ (or f0(500)) resonance, then close to 1 GeV a characteristic dip due to the f0(980) meson and
the enhancement at 1.2− 1.4 GeV related to the tensor f2(1270) meson and other scalar mesons
present in the ππ channel. The relative yield of ρ(770) signal decreased rapidly with increas-
ing
√
s up to the ISR energies where the ρ signal almost vanishes [156]. On the other hand the

enhancement at low masses as well as f0(980) remain particularly unchanged.
It is worth mentioning that in the previous experiments at

√
s = 23.8 GeV [152] (WA76

Collaboration) and
√
s = 29.1 GeV [90] (WA102 Collaboration) a study of the centrally pro-

duced π+π− and K+K− channels in pp collisions has been performed. The suppression of ρ and
f2(1270) signals in the low t region (t < 0.3 GeV2) has been observed at

√
s = 12.7, 23.8 GeV,

see Fig. 29 in Ref. [152]. In the latter paper a study of resonance production rate as a function of
the difference in the transverse momentum vectors (dPT) between the particles exchanged from
vertices has been performed. An analysis of the dPT dependence of the four-momentum trans-
fer behaviour shows that the ρ0(770), φ(1020), f2(1270) and f ′2(1525) mesons are suppressed at
small dPT in contrast to the scalar f0(980), f0(1500) and f0(1710) mesons. Different distributions
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are observed in the azimuthal angle (defined as the angle between the p⊥ vectors of the two out-
going protons) for the different resonances [90]. For more information about some differential
distributions from previously carried out experiments we refer to Section 3.2.

Figure 2.13: Invariant mass spectrum of π+π− system measured with the COMPASS [154, 155] (central
panel) and the Omega [152] (left and right panel) at three proton beam energies Plab = 85, 190, 300 GeV
correspond to the centre-of-mass energies

√
s = 12.7, 18.9, 23.8 GeV, respectively.

In Fig. 2.14 the preliminary spectrum of the invariant mass of π+π− pairs produced in
central exclusive process (2.22) is presented. The exclusive measurement was obtained with the
STAR detector at RHIC at

√
s = 200 GeVwith forward protons tagged using Roman Pots (at very

small four-momentum transfer squared range 0.003 GeV2 < −t1,−t2 < 0.035 GeV2) and using
two opposite charge tracks reconstructed in the STAR Time Projection Chamber (TPC) [157] (for
the centrally produced mesons |ηM| < 1 and with transverse momentum p⊥,M > 0.15 GeV).
The spectrum is not corrected for acceptance, but preliminary acceptance study indicates that
correctionswill not change shape of the spectrum significantly [158]. This spectrum is dominated
by the low invariant mass pairs and it shows the same characteristic features to the one published
by the AFS Collaboration at ISR [156]. There is very small like-sign (non-exclusive) background,
which gives a measure of exclusivity of the process. Preparation for analogous measurement at√
s = 500 GeV and higher four-momentum transfers (0.1 GeV2 < −t1,−t2 < 1.5 GeV2) is in

progress.

Figure 2.14: Invariant mass distribution of π+π− pairs produced in central exclusive process pp →
pπ+π−p at

√
s = 200 GeV measured by the STAR detector, at very small four-momentum transfer

squared −t range 0.003 GeV2 < −t1,−t2 < 0.035 GeV2, |ηM| < 1 and with transverse momentum
p⊥,M > 0.15 GeV [158]. The spectrum is not corrected for acceptance.

Fig. 2.15 shows the low mass region on a linear scale, and at both energies
√
s =

0.9, 1.96 TeV. The f0(980) signal is seen, and a dominant enhancement in the region of f2(1270)
resonance (also dominant in γγ→ π+π−). A possible shoulder on the high mass side ( f0(1370))
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is followed by a distinct change of slope at 1500 MeV, which was also seen at lower energies [156].
While the cross section shapes are similar at the two energies, they differ in detail as seen in the
ratio plot. In Refs. [159–161] the authors observe that the ratio is lower in the region of the
f2(1270) than it is below 1 GeV, expected to be dominated by S-wave. They also find that the
mean p⊥,ππ has a minimum in the f2(1270) region, and rises abruptly at 1.5 GeV. There is more
rapidity available for proton dissociation at 1.96 TeV [161], the beam rapidities being 6.87 and
7.64 while the detector extends to η = 5.9 in both cases.
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Figure 2.15: Invariant mass distribution of two particles, assumed to be π+π− produced in proton-
antiproton collisions at

√
s = 0.9, 1.96 TeV (the red and black data points, respectively) measured by the

CDF detector at the Fermilab Tevatron [161]. The π+π−-pair was required to have |yππ| < 1, |ηM| < 1.3,
p⊥,M > 0.4 GeV, and there are no other particles detected in |η| < 5.9. The distribution shown [161] is
corrected for acceptance. The right panel shows ratio of cross sections dσ/dMππ at

√
s = 1.96 GeV and

0.9 TeV as a function of mass. In both cases rapidity gaps extend to η = 5.9, and p-dissociation is included.

In Fig. 2.16 we show the invariant mass of two-pions measured by the ALICE Collabo-
ration at the LHC at CERNwhich analysedmeson production in double gap events in minimum-
bias proton-proton collisions at

√
s = 7 TeV [162] in the pseudorapidity range |ηM| < 0.9 and

with transverse momenta p⊥,M > 0.3 GeV. The information from the V0, T0, FMD, SPD and
TPC detectors define the gaps spanning the range −3.7 < ηM < −0.9 and 0.9 < ηM < 5.1,
see [162]. Events with and without detector signals in these two ranges are defined to be no-gap
and double gap events, respectively. A double rapidity gap can be induced by a combination
of the pomeron, reggeon and photon exchanges. Also in this experiment the like-sign pairs are
estimated to be very small (less than 5%, see Fig. 3 in [162]). In the double gap distribution the
ρ(770) (JPC = 1−−) state is strongly suppressedwhile other resonant-like structure f0(980) (0++)
and f2(1270) (2++) states can be seen.

Figure 2.16: Invariant mass distributions of pion pair produced in proton-proton collisions at
√
s = 7 TeV

measured by the ALICE detector for double and for no-gap events (left panel) and distribution of like and
unlike sign pion pairs (right panel) in the pseudorapidity range |ηM| < 0.9 and with transverse momenta
p⊥,M > 0.3 GeV [162]. The distribution shown is not corrected for acceptance.
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2.6 Model results

2.6.1 Comparison with low energy data

Let us start our predictions with integrated cross section, before we go to differential
distributions. In Fig.2.17 we present the total cross section for the pp → ppπ+π− reaction, i.e.
the cross section integrated over full phase space, as a function of the center-of-mass energy.
We show the experimental cross sections for the pp → ppπ+π− reaction (the filled black cir-
cles) and for the pp̄ → pp̄π+π− reaction (the filled blue triangles) which are more than 1 mb
for (2.5 <

√
s < 10) GeV. This is a significant contribution to the total nucleon-nucleon cross

section. For references of experimental data see [3]. Our results depend on the value of the
nonperturbative, a priori unknown, parameter of the form factor responsible for off-shell effects
of exchanged mesons. The low-Mππ (Mππ < 1.45 GeV) and high-Mππ (the Regge formalism)
rescattering contributions discussed in Sections 1.1 and 1.6, respectively, are found to be neg-
ligible compared with the experimental data. Clearly for low energies (

√
s < 20 GeV) neither

exclusive double diffraction nor the pion-pion rescattering constitute the dominant mechanism,
see Section 2.4. Here the production of single and double nucleon resonance states is the dom-
inant mechanism; e.g. the single Roper resonance excitation and its decay, see Section 1.1. In
central diffraction, a hadronic system is formed by the fusion of two pomerons/reggeons. We
show theoretical predictions of central diffractive contribution including the absorptive correc-
tions due to pp-rescattering and for different model parameters. The cross section for the central
diffractive contribution slowly grows with energy. The search for double pomeron exchange
(DPE) mechanism contribution leads to an upper limits of ≃ 20 µb (for Mππ 6 0.7 GeV) [163],
(49 ± 5.5) µb [164], (30 ± 11) µb [165] and (44 ± 15) µb [166]. The experimental value of the
cross section taken from [165] was obtained for Mpπ > 2 GeV and no limitation on Mππ; reduces
however to 9 µb for Mππ 6 0.6 GeV [165]. We should remember, however, that the DPE cross
section is quite sensitive to kinematical cuts which are used to define DPE candidate events.

Fig. 2.18 shows the theoretical uncertainties for the central diffractive contributions at
midrapidity of both pions yπ < 1. We show the theoretical uncertainties due to different values
of the cut-off parameter in form factor (2.29). The coherent sum of all Regge exchanges is shown
by the black lines while the IPIP exchange contribution alone by the blue lines. As we will discuss
below, there is a large interference between Regge exchanges in the amplitude. The bare cross
section rises with c.m.s. energy while the absorption corrections lower the rise; from a factor
∼ 2 at

√
s = 20 GeV to a factor ∼ 5 at

√
s = 14 TeV In general, the higher energy the higher

absorption effects. We predict that the integrated cross section of meson pair production will
decrease gently with c.m.s. energy.

In Fig.2.19 we compare our results with the experimental data [164, 167–174]. The ex-
perimental cuts on the rapidity of both pions (yπ > 1.0 see the left panel, yπ > 1.5 see the right
panel) and xF,p > 0.9 of both protons (A.16) are included in the calculations. As explained in the
figure caption, we use different values of the off-shell meson form-factor parameter. In the cal-
culations the absorption effects due to pp-rescattering have been included. Furthermore, we see
that requiring xF,p > 0.9 on both protons is especially important at lower energies

√
s < 60 GeV.

The large discrepancy between experimental cross sections [172] (in the left panel the full triangle
versus other experimental points) is the result of fitting the slope in t-distribution, i.e. their large
error is due to the uncertainty in the extrapolation to low |t| ≈ 0.

In Fig. 2.20 we show the two-meson invariant mass distribution at the center-of-mass
energy of the CERN ISR

√
s = 62 GeV and with the experimental cuts on the rapidity of both

mesons |yM| 6 1.5 and on the longitudinal momentum fractions |xF,p| > 0.9 of both outgoing
protons. We compare our results with the two-pion/kaon invariant mass spectrum from [174]
(see Ref. [173] for early studies) 7. The experimental data show some peaks above the non-

7The mass spectrum of the exclusive K+K− system at the CERN ISR is shown e.g. in Ref. [156] at
√
s = 63 GeV

and in Ref. [173] at
√
s = 62 GeV.
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Figure 2.17: The total cross section (integrated over full phase space) for the pp → ppπ+π− reaction as
a function of the center-of-mass energy. We compare the pion-pion rescattering and the central diffractive
contributions as well as the single Roper resonance excitation contribution with the experimental data.
The theoretical uncertainties for these contributions are shown. The open symbols represent DPE contri-
bution from Refs. [163–166] and filled symbols show the cross sections for the pp → ppπ+π− reaction
(black circles) and the pp̄→ pp̄π+π− reaction (blue triangles); for references of experimental data see [3].
Details about the low ππ-mass rescattering and the single Roper resonance excitation contributions can
be found in Fig. 1.6 of Section 1.1. The high ππ-mass rescattering contribution was obtained with the ex-
ponential type of πNN form factor for Λ2

o f f ,E = 0.5 GeV2 (the lower line) and Λ2
o f f ,E = 1 GeV2 (the upper

line) and Bππ
ρIR

= 4 GeV−2, see Section 1.6. In calculating the central diffractive contribution we take into
account the absorption corrections. We exclude resonance regions multiplying the πN subsystem ampli-
tudes (in Eq. (2.28)) by a purely phenomenological smooth cut-off correction factor (2.20) with parameters
W0 = 1.5 GeV, a0 = 0.2 GeV and W0 = 2 GeV, a0 = 0.2 GeV, see the dotted and solid lines, respectively.
We show results for Λ2

o f f ,E = 1 GeV2 (the lower lines) and Λ2
o f f ,E = 1.6 GeV2 (the upper lines).

resonant background which correspond to the π+π−/K+K− resonances (σ, f2(1270)/ f ′2(1525),
f0(1500), etc.) which are not included explicitly in the calculations. These resonant states in-
terfere with the continuum contribution; the production of lower mass resonances was recently
examined in Ref. [13], see also Chapter 3. In the bottom panels we show the coherent sum of
all (the upper line) as well as an individual Regge contributions (similarly as in Fig. 1.34 in Sec-
tion 1.6). Absorption effects due to pp-interaction have been included in this calculation. The
results depend on the value of the nonperturbative, a priori unknown parameter of the form fac-
tor (2.29) responsible for off-shell meson effects. Our model with the Λo f f ,E parameter fitted to
the data provides an educated extrapolation to the unmeasured region MMM̄ & 2 GeV. We show
results with the cut-off parameters Λ2

o f f ,E = 1, 1.6, 2 GeV2 as represented by the solid lines from
bottom to top, respectively.

2.6.2 Predictions for high energy experiments

The distribution in the (y3, y4) space is particularly interesting. In Fig.2.21 we show
distributions for the exclusive central diffractive and the pion-pion rescattering contributions
for three c.m. energies

√
s = 0.5, 1.96 and 7 TeV. The shape of the distributions strongly de-

pends on the collision energy. In the first case the pions are emitted preferentially in the same
hemispheres, i.e. y3, y4 > 0 or y3, y4 < 0. One can see a shape of the ridge form elongated
along the line y3 = y4. The minimum of the cross section on the top of the ridge occurs when
y3 = y4 = 0 and two maxima close to the phase space ends. The minimum occurs in the part
of the phase space where the pomeron-pomeron contribution dominates, i.e. when both Wik are
comparable and large. The maxima are related to the dominance of the pomeron-reggeon and
reggeon-pomeron mechanisms, i.e. where one of Wik is small and the second one is large. The
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Figure 2.18: The integrated cross section at midrapidity of both pions yπ < 1.0 for the pp → ppπ+π−

reaction as a function of the center-of-mass energy. We present the central diffractive contribution with
different components in the amplitude. The coherent sum of IPIP, IRIP, IPIR and IRIR exchanges is shown by
the black solid lines. The contribution of IPIP exchange alone is presented by the blue dashed lines. Results
correspond to different values of the cut-off parameter in form factor (2.29): Λ2

o f f ,E = 1.2 GeV2 (left panel)

and Λ2
o f f ,E = 1.6 GeV2 (right panel). At energies

√
s < 60 GeV the top and bottom lines correspond to

calculations withW0 = 1.5 GeV and 2 GeV (2.20), respectively. The role of absorption effects is also shown.
The thick lower line is calculated by enhancing the absorptive amplitude (2.36) by a factor cabs = 1.2.
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Figure 2.19: Cross section for the pp → ppπ+π− reaction integrated over phase space with cuts rele-
vant for a given experiment [164, 167–174]. The theoretical results are corrected by extrapolations to low
energies by formula (2.20) with W0 = 2 GeV and a0 = 0.2 GeV and include the absorption effects. The
experimental value from [168] (marked as open circle in the right panel) was obtained for the forward ra-
pidity gaps ∆y = |yp − yπ| > 2. We show results for different values of the parameter Λ2

o f f ,E = 1.2 GeV2

(the lower lines), Λ2
o f f ,E = 1.6 GeV2 (the upper lines). For comparison, the dashed lines at low energies

show the results without cut on xF,p.

reggeon-reggeon contribution is completely negligible which is due to the fact that bothWik can-
not be small simultaneously. In the second case, for the pion-pion rescattering mechanism, the
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Figure 2.20: In the top panels we show the differential cross section dσ/dMMM̄ for the pp → ppπ+π−

reaction (left panel) and the pp → ppK+K− reaction (right panel) at
√
s = 62 GeV with experimental

cuts relevant for the CERN ISR experimental data from [173, 174]. The proton-proton rescattering effects
has been included in the calculations. In the top panels we show results for different values of the cut-off
parameter Λ2

o f f ,E = 1, 1.6, 2 GeV2 correspond to the solid lines from bottom to top, respectively. We in-
clude also the smooth cut-off formula (2.20) (W0 = 2 GeV and a0 = 0.2 GeV). The dotted line is calculated
for Λo f f ,E = 1 GeV and the absorptive amplitude (2.36) is multiplied somewhat arbitrarily by an extra
factor cabs = 1.2. The long-dashed line represent result obtained for Λ2

o f f = 2 GeV2 with the generalized
off-shell meson propagator (2.32), where Λint = 2 GeV. In the bottom panels we show the individual
Regge exchange contributions to the cross section and their coherent sum (total, the solid line) as a func-
tion of the two-pion invariant mass (left panel) and the pion rapidity (right panel) calculated for the usual
(mesonic) pion propagator and Λ2

o f f ,E = 1.6 GeV2. The double-pomeron exchanges (IPIP) are plotted by
the long-dashed line, the pomeron- f2 reggeon (IP f2IR) and the f2 reggeon-pomeron ( f2IR IP) exchanges by
the short-dashed line, and the double-reggeon exchanges ( f2IR f2IR) by the dotted line.

cross section drops quickly with
√
s. The rescattered pions are emitted preferentially in differ-

ent hemispheres, i.e. (π+ at positive y3 and π− at negative y4) or (π+ at negative y3 and π− at
positive y4). While at low energies (PANDA) both contributions overlap, see Fig. 1.34, at high en-
ergies (RHIC, Tevatron, LHC) they are well separated, i.e. can, at least in principle, be measured.
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Figure 2.21: Differential cross section in (y3, y4) space for the central diffractive (top panels) and the pion-
pion rescattering (bottom panels) contributions for different incident energies

√
s = 0.5, 1.96, 7 TeV. In this

calculation for the central diffractive contribution we used the cut-off parameter Λ2
o f f ,E = 2 GeV2, while

for the pion-pion rescattering contribution Λ = Λo f f ,M = 1 GeV and Bππ
ρIR

= 6 GeV−2.

In Fig.2.22 we show distributions in the (Z1,Z2) space for both contributions. The Z1,2
variables used to define the exclusive double-pomeron exchange (DPE) region (see e.g. [164,166])
are given as

Z1 = ln(s/s134), Z2 = ln(s/s234) , (2.45)

where s is the square of the total center-of-mass energy, sijk = M2
ijk is the invariant mass squared

of the pππ system, and M2
ijk/s ≃ 1− |xF,i| for nucleon i.

The ’camel-like’ shape of the meson rapidity distribution requires a separate discus-
sion. In our calculation we include both pomeron and reggeon exchanges. In Fig.2.23 (top
panels) we show the cross section in pion rapidity at the RHIC, Tevatron and LHC energies
for all ingredients included (total, thick solid line) and when only some Regge exchanges are
included. The IPIP cross section peaks at midrapidities of pions, while IP f2IR and f2IR IP at back-
ward and forward pion rapidities, respectively. At higher energies each of the “isolated” cross
section peaks in different region of pion rapidities. When interfering the Regge components
in the amplitude produce significant enhancements of the cross section at forward/backward
rapidities. It would be desirable to identify the ’camel-like’ structure experimentally. At even
more forward/backward rapidities one may expect single-diffraction contributions (e.g. diffrac-
tive production of nucleon resonances and their decays) not included in the present analysis. In
the bottom panels we show the two-pion invariant-mass distribution. We recall that at the low-
est energy the pion-pion rescattering and the central diffractive components strongly overlap.
While the central diffractive component dominates at low two-pion invariant masses, the pion-
pion rescattering component dominates only at very large invariant masses (Mππ & 20 GeV
at
√
s = 0.2 GeV, see Fig. 12 in [3]). At the Tevatron and LHC energies the central diffractive

component dominates over the pion-pion rescattering in the whole range of Mππ.
In Fig. 2.24 we show differential distributions in pion rapidity for the pp → ppπ+π−
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Figure 2.22: Differential cross section in (Z1,Z2) space for the central diffractive (top panels) and the
pion-pion rescattering (bottom panels) contributions for different incident energies

√
s = 0.5, 1.96, 7 TeV.

In this calculation for the central diffractive contribution we used the cut-off parameter Λ2
o f f ,E = 2 GeV2,

while for the pion-pion rescattering contribution Λ = Λo f f ,M = 1 GeV and Bππ
ρIR

= 6 GeV−2.

reaction at
√
s = 0.5, 1.96, 14 TeVwithout (upper lines) andwith (bottom lines) absorption effects.

The integrated cross section slowly rises with incident energy. The reader is asked to notice that
the energy dependence of the cross section at yπ ≈ 0 is reversed by the absorption effects which
are stronger at higher energies.

RHIC

We present predictions of two-meson pair production in the pp → ppMM̄ reaction for
the RHIC experiment with the corresponding cuts. We shall show how the absorptive effects due
to pp-interaction and the uncertainties of the off-shell meson form factor parameters affect our
final results.

In Fig. 2.25 (top panels) we show the t = t1 = t2 distribution for the pp → ppπ+π−

Table 2.3: The integrated cross sections in µb for the exclusive π+π− production at RHIC ener-
gies. The corresponding cuts in the calculations were imposed: p⊥,π > 0.15 GeV, |ηπ | < 1 on
both pions, and 0.003 GeV2 < −t1,−t2 < 0.035 GeV2 at

√
s = 200 GeV or 0.1 GeV2 < −t1,−t2 <

1.5 GeV2 at 500 GeV. The different values of the off-shell-pion form-factor parameters (2.29) have
been used: Λ2

o f f ,E = 1.0 GeV2 and 1.6 GeV2 (for the second case result in the parentheses).

Model 200 GeV 500 GeV
Born, cuts on p⊥,π, ηπ 14.85 13.16
with pp-rescattering, cuts on p⊥,π, ηπ 5.78 4.52
Born, cuts on p⊥,π, ηπ and t 0.79 (1.53) 2.29 (4.60)
with pp-rescattering, cuts on p⊥,π, ηπ and t 0.37 (0.69) 0.77 (1.41)
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Figure 2.23: The distributions in pion rapidity (top panels) and in the two-pion invariant mass (bottom
panels) for different center-of-mass energies. The different lines correspond to the situation when all
(total, the solid line) and only some components in the amplitude are included. The usual (mesonic)
propagator of the off-shell pion and the exponential form of form factors (2.29) with the cut-off parameter
Λ2

o f f ,E = 2 GeV2 have been used. Here the absorption effects were not included. The double-pomeron
exchange (IPIP) is plotted by the long-dashed line, the pomeron- f2 reggeon (IP f2IR) and the f2 reggeon-
pomeron ( f2IR IP) exchanges by the short-dashed line, and the double- f2 reggeon exchange ( f2IR f2IR) by the
dotted line.
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Figure 2.24: Differential cross section dσ/dyπ for the pp → ppπ+π− reaction at
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o f f ,E = 2 GeV2. The results without (upper lines) and with (bottom lines) absorption effects due to

pp-interaction are shown. The ππ-rescattering effects was not included in the calculations.
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reaction at two c.m. energies
√
s = 0.2, 0.5 TeVwith the corresponding cuts on both pions p⊥,π >

0.15 GeV and |ηπ | < 1. The results without and with the absorptive corrections due to pp-
interaction are shown. We can see from Table 2.3 that the predicted cross section at

√
s = 200 GeV

is larger than at
√
s = 500 GeV even without the absorption effects. This fact highlights a huge

role of interference effects in the amplitude due to presence of subleading f2IR exchange. In the
calculations we use a typical “soft” exponential form of the off-shell-meson form factor (2.29)
for two cut-off parameters Λ2

o f f ,E = 1.0, 1.6 GeV2 corresponding to the dotted and dashed lines,
respectively. In bottom panels we present distributions in proton transverse momentum p⊥,p
with the same cuts on both pions (the upper lines) and with the additional cut on t (the lower
lines): 0.003 GeV2 < −t1,−t2 < 0.035 GeV2 at

√
s = 200 GeV or 0.1 GeV2 < −t1,−t2 < 1.5 GeV2

at 500 GeV.
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Figure 2.25: Differential cross sections dσ/dt (top panels) and dσ/dp⊥,p (bottom panels) at the RHIC
c.m. energies

√
s = 200 GeV (left panels) and 500 GeV (right panels) with the cuts on both pions

p⊥,π > 0.15 GeV and |ηπ | < 1. In bottom panels we show the distributions in proton transverse mo-
mentum without and with extra limitation on the momentum transfer squared: 0.003 GeV2 < −t1,−t2 <
0.035 GeV2 at

√
s = 200 GeV and 0.1 GeV2 < −t1,−t2 < 1.5 GeV2 at 500 GeV. Absorption effects due

to the pp-interaction have been included in this calculation. The dotted and dashed lines correspond to
Λ2

o f f ,E = 1.0, 1.6 GeV2, respectively.
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In Fig. 2.26 we show the Mππ two-pion invariant mass distribution and in the p⊥,π
pion transverse momentum distribution as well as the p⊥,ππ distribution; p⊥,34 = |~p3⊥ + ~p4⊥| =
√

(p3x + p4x)2 + (p3y + p4y)2. Results for
√
s = 0.2, 0.5 TeV (the red lines) and 0.5 TeV (the black

lines) with cuts on both pions p⊥,π > 0.15 GeV and |ηπ | < 1 are shown. The absorption effects
included in these calculations reduce the Born cross section by about a factor 3.
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Figure 2.26: Differential cross sections dσ/dMππ (left panel), dσ/dp⊥,π (center panel), and dσ/dp⊥,ππ

(right panel) at the RHIC energies
√
s = 0.2 TeV (the red lines) and 0.5 TeV (the black lines) with the

cuts on both pions p⊥,π > 0.15 GeV and |ηπ | < 1. The dotted and dashed lines correspond to Λ2
o f f ,E =

1.0, 1.6 GeV2, respectively. The absorption effects due to pp-interaction have been included.

In Fig. 2.27 (left panel) we show two-pion invariant mass distribution at
√
s = 0.2, 0.5 TeV

with the corresponding cuts, see the red and black lines, respectively. In the next two panels we
show results both for the pions (the black lines) and for the kaons (the blue lines) at

√
s = 0.2 TeV

(left panel) and 0.5 TeV (right panel) in different t ranges.
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Figure 2.27: Two-pion (the black lines) and two-kaon (the blue lines) invariant mass distributions at√
s = 0.2 TeV (left panel) and 0.5 TeV (right panel) with the cuts on both mesons p⊥,M > 0.15 GeV and
|ηM| < 1 with the corresponding limitation on both t. Absorption effects due to the pp-interaction have
been included. Here Λ2

o f f ,E = 1.0, 1.6 GeV2 correspond to the dotted and dashed lines, respectively.

In Fig. 2.28 we show the p⊥,M (top panels) and the p⊥,MM̄ (bottom panels) distributions
for the pp→ ppπ+π− reaction (the black lines) and the pp → ppK+K− reaction (the blue lines).

In Fig. 2.29 we present the cross sections in the two-dimensional space: (p⊥,π ,Mππ)
(top panels) and (p⊥,ππ,Mππ) (bottom panels) for two considered c.m. energies and relevant t
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Figure 2.28: Differential cross sections dσ/dp⊥,M (top panels) and dσ/dp⊥,sum (bottom panels) at
√
s =

0.2 TeV (left panel) and 0.5 TeV (right panel) We show the distributions without and with limitation on
both t. Here Λ2

o f f ,E = 1.0, 1.6 GeV2 correspond to the dotted and dashed lines, respectively. Absorption
effects due to the pp-interaction have been included in this calculation.

ranges.
Finally, we consider what additional information can be provided by measuring the

momenta of the outgoing intact protons. In particular, a measurement of the distribution in the
relative azimuthal angle between the p⊥ vectors of the outgoing protons (Fig. 2.30 (top panels))
can provide a fully differential test of the soft survival factors. The φpp distribution is sensitive,
in general, to both the structure of the production subprocess and spin/parity of the centrally
produced state, as well as absorption effects due to the pp-interaction. For comparison, the bot-
tom panels present the φππ distributions. We can see how these angular distributions depend on
cuts in t imposed on phase space. In Fig. 2.31 we show the cross sections in the two-dimensional
space (p⊥,p, φpp) at

√
s = 200 GeV without (left panel) and with the absorption effects due to

the pp-interaction (right panel). We can observe a very distinct dip structure with the φpp dis-
tribution reaching a minimum at a certain value of φpp. This is a consequence of the destructive
interference between the bare and screened amplitudes in Eq. (2.37).
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Figure 2.29: Differential cross section in two-dimensional space for different variables for the two-pion
central diffractive contribution at

√
s = 200, 500 GeV. In this calculation the cut-off parameter Λ2

o f f ,E =

1.6 GeV2 and the absorption effects due to the pp-interaction have been included.

Tevatron

In the few plots presented below we discuss the different aspects of our non-resonant
central diffractive model of production ofmeson pair in the pp̄→ pp̄MM̄ reaction at the Tevatron
c.m. energy

√
s = 1.96 TeV and with the corresponding cuts on both mesons: p⊥,M > 0.4 GeV,

|ηM| < 1.3, and |yMM̄| < 1, where yMM̄ is the rapidity of central MM̄ system expressed by
formula

y34 =
1
2
ln
(

(p30 + p40) + (p3z + p4z)

(p30 + p40)− (p3z + p4z)

)

, (2.46)

with the four-momenta p3 (π+ or K+ meson) and p4 (π− or K− meson).
We shall show how the uncertainties due to the off-shell form factor type affect our final

results. In the calculations we include the enhanced absorptive effects due to the pp̄-interaction,
i.e. the absorptive amplitude is multiplied somewhat arbitrarily by a factor cabs = 1.2. We
should also consider the possibility of additional meson-meson rescattering, that is, due to final-
state interactions. However, following [146, 175], it may be necessary to introduce an additional
factor corresponding to the small Poisson probability of not to emit other secondary particles
in the IPIP → MM̄ subprocess. We refer the reader to [146, 175] for a more detailed discussion
of this issue. This suppression factor may be described as the reggeization of the meson M∗

exchange, see (2.34). More precisely, we expect no additional suppression in the lower mass
resonance region MMM̄ =

√
ŝ < mR, while in the region MMM̄ =

√
ŝ > mR we take the form:

exp(−c ln(ŝ/ŝ0)) with ŝ0 = m2
R, where mR = m f2(1270) for the case of MM̄ = π+π− production

and m f ′2(1525)
for the case of K+K− production. In both cases the parameter c defines the strength

of this additional ’Poisson suppression’, and can, in principle, be extracted from data [161, 176].
In the present calculations we take c = 0.5.

In Fig. 2.32 we show the invariant mass distributions of pion pair (left panel) and the
kaon pair (right panel) produced in the pp̄ → pp̄MM̄ reaction at

√
s = 1.96 TeV (top panels) and
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Figure 2.30: Differential cross sections dσ/dφpp and dσ/dφππ at the RHIC energies. Here Λ2
o f f ,E =

1.0, 1.6 GeV2 correspond to the dotted and dashed lines, respectively. Absorption effects due to the pp-
interaction have been included in this calculation.

in the pp → ppMM̄ reaction at
√
s = 62 GeV (bottom panels). One can observe that our predic-

tions are sensitive to the form of the off-shell meson form factor (2.29) - (2.31) given in Section 2.3
with the cut-off parameters Λ2

o f f ,E = 1.0 GeV2 (1), Λ2
o f f ,M = 0.7 GeV2 (2), and Λo f f = 1.2 GeV

(3), respectively. The choice of form factor leads to dramatically different behaviour at higher t̂/û
(Fig. 2.9), beyond the region probed by the ISR data, that is, in the region MMM̄ < 1.5 GeV. Since
in the calculations we use the ’Poisson suppression’ formula with a factor c = 0.5, which oper-
ates at higher MMM̄ and in effective way describes the additional particle contributions in the
MM̄ subproces, we do not include any meson reggeization. We note that preliminary measure-
ments of two-pion invariant mass distribution by the CDF Collaboration have been presented
in [161] (see also [176]). In Table 2.4 we collected some values of the integrated cross sections at√
s = 1.96 TeV for exclusive π+π− production with and without the ’Poisson suppression’ for-

mula. We can see that the MKK distribution is below the Mππ distribution with the same choice
of model parameters, with the exception of form-factor type (2.31) where it should be taken other
parametrisation. At invariant mass larger than 2 GeV the KK contribution constitutes about 40%
of the ππ contribution.
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Figure 2.31: Differential cross section in two-dimensional (p⊥,p, φpp) space for the two-pion central
diffractive contribution at

√
s = 200 GeV without (left panel) and with the absorption effects due to

the pp-interaction (right panel). In this calculation the cut-off parameter Λ2
o f f ,E = 1.0 GeV2 has been used.

Table 2.4: The integrated cross sections in µb for exclusive π+π− production at
√
s = 1.96 TeV

with cuts for the CDF experiment [161]: p⊥,π > 0.4 GeV and |ηπ | < 1.3 of both pions, and the
rapidity of π+π− system |yππ | < 1. The three choices of the pion off-shell form-factors have
been used: (1) (2.29) for Λo f f ,E = 1.0 GeV , (2) (2.30) for Λ2

o f f ,M = 0.7 GeV2, and (3) (2.31) for
Λo f f = 1.2 GeV. We show results with the additional Poisson suppression for a factor c = 0.5 and
without this effect (in the parentheses).

Model / form-factor type (1) (2.29) (2) (2.30) (3) (2.31)
Born 4.82 (5.44) 5.41 (6.88) 5.99 (8.49)
with pp-rescattering (cabs = 1.2) 0.92 (1.04) 0.97 (1.21) 1.04 (1.44)

Another observable which can be very sensitive to the choice of meson off-shell form
factor is the meson transverse momentum distribution. In Fig. 2.33 we show the p⊥,π, p⊥,ππ, ηπ ,
and the angular distribution of the π+ meson cos θ

r. f .
π+ , where cosθ r. f .

π+ is the angle of the π+ meson
with respect to the beam axis, in the π+π− rest frame, see Eq. (A.39) of Appendix A.

In Fig. 2.34 we show the cos θ
r. f .
π+ distribution for two ranges of two-pion invariant mass:

2mπ < Mππ < 1GeV (left panel) and 1GeV < Mππ < 1.5GeV (right panel) without and with
all kinematical cuts included as well as with individual cut on p⊥,π, |ηπ |, or |yππ |, see the upper
and lower solid lines, respectively. The influence of individual cuts to the angular distribution is
also shown. We can see that these cuts strongly modify the shape of the angular distribution.

In Fig. 2.36we present cross section in the two-dimensional spaces (p⊥,ππ,Mππ), (p⊥,π ,Mππ),
and (cosθ r. f .

π+ ,Mππ) for Tevatron cuts on some kinematical variables. One can observe that differ-
ent parametrisations of pion off-shell form factor (2.29) - (2.31) give different characteristic of
distributions, in particularly, at higher Mππ.

In Fig. 2.37 (top panels) we show the dependence of < p⊥,π > and < p⊥,ππ > as a
function of two-pion invariant mass. It has been already shown that the cuts p⊥,π > 0.4 GeV on
both pions strongly distort the region of low Mππ < 1 GeV. Since the distributions have a rapid
change of the slope below Mππ > 1 GeV and increase slowly at higher masses.

A few of distributions in p⊥,π , p⊥,ππ, cosθ
r. f .
π , and ηπ for some Mππ mass ranges at

√
s =

1.96 TeV are shown in Figs. 2.38, 2.39, 2.40, and 2.41, respectively. The π+ meson distributions
are equivalent to the π− meson distributions.

In Figs. 2.42, 2.43, and 2.44 we present results of < PLeven(cos θ
r. f .
π+ ) > (Mππ). Note that
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Figure 2.32: Two-pion (left panel) and two-kaon (right panel) invariant mass distributions at
√
s =

1.96 TeV (top panels) and at
√
s = 62 GeV (bottom panels). We show results for three different forms

of off-shell meson form factor given in Section 2.3 with the cut-off parameters Λ2
o f f ,E = 1.0 GeV2 (1),

Λ2
o f f ,M = 0.7 GeV2 (2), and Λo f f = 1.2 GeV (3) given by the black, blue and red lines, respectively. We

present results without the Poisson suppression (the upper dotted lines) andwith the Poisson suppression
(the lower solid lines), where we take a factor c = 0.5. In the calculations we do not include any meson
reggeization. The enhanced absorptive effects due to the pp̄-interaction were included, i.e. the absorptive
amplitude was multiplied somewhat arbitrarily by a factor cabs = 1.2.

the predicted angular distributions are even in cos θ r. f . and so the odd L contributions vanish, i.e.
< PLodd(cos θ

r. f .
π+ ) > (Mππ) = 0. One can observe that the contribution of L = 4 is small at lower

energy when cuts are neglected and significant already at Mππ ≈ 1 GeV when cuts are applied,
This suggests that kinematical cuts may distort the partial wave content. This makes conclusions
more difficult. The average contributions can be calculated as

< PL(cos θ r. f .) > (Mππ) =

∫

dPS PL(cos θ r. f .) dσ/dPS (Mππ)
∫

dPS dσ/dPS (Mππ)
, (2.47)

where the integral is done over phase space. These contributions satisfy the relation:

< PL(cos θ
r. f .
π+ ) > (Mππ) = (−1)L < PL(cos θ

r. f .
π− ) > (Mππ) . (2.48)

We can see in Fig. 2.43 that cut on cos θ r. f . strongly modify the region of Mππ < 1 GeV, see
also Fig. 2.36 (bottom panels). The difference between the form factors (2.29) - (2.31) is huge
at higher invariant masses and thus such observables may prove very useful in distinguishing
between these choices. We found that these distributions are largely unaffected by the absorption
effects. We note that preliminary measurements of these distributions by the CDF Collaboration
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Figure 2.33: Differential cross sections at
√
s = 1.96 TeV. We show results for three different forms of

off-shell meson form factor given in Section 2.3 with the cut-off parameters Λ2
o f f ,E = 1.0 GeV2, Λ2

o f f ,M =

0.7 GeV2, and Λo f f = 1.2 GeV correspond to black, blue and red lines, respectively. The other details are
the same as in Fig. 2.32.

 r.f.θcos
-1 -0.5 0 0.5 1

b)µ
 (

 r
.f.

θ
/d

co
s

σd

-210

-110

1

10

210

310
 = 1.96 TeVs    -π+π pp →pp 

 < 1 GeVππM
no cuts

 > 0.4 GeV
πT, 

p

| < 1.3
π

η|

| < 1.0
ππ

|y

all cuts

 r.f.θcos
-1 -0.5 0 0.5 1

b)µ
 (

 r
.f.

θ
/d

co
s

σd

-210

-110

1

10

210

310
 = 1.96 TeVs    -π+π pp →pp 

 < 1.5 GeVππ1.0 GeV < M

no cuts

 > 0.4 GeV
πT, 

p

| < 1.3
π

η|

| < 1.0
ππ

|y

all cuts

Figure 2.34: The cos θ
r. f .
π+ distribution for two ranges of two-pion invariant mass: 2mπ < Mππ < 1GeV

(left panel) and 1GeV < Mππ < 1.5GeV (right panel), without (the upper thin solid line) and with all
kinematical cuts imposed (the lower thick solid line). The long-dashed, the dotted, and the short-dashed
lines correspond to the contributions with cut on p⊥,π > 0.4 GeV of both pions, |ηπ | < 1.3 of both pions,
and the rapidity of the π+π− system |yππ| < 1, respectively.

have been presented in [161] (see also [176]) and are in good agreement at higher Mππ with our
predictions, but with exception of typical exponential form (2.29).
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Figure 2.35: Differential cross section in two-dimensional (yπ+ , cos θ
r. f .
π+ ) space for the central diffractive

contribution at
√
s = 1.96 TeV in the full phase space (left panel) and with the additional cuts imposed

(right panel). In this calculation the exponential type of the off-shell form factor has been used with the
cut-off parameter Λo f f ,E = 1 GeV and no absorption effects due to the pp̄-interaction.

The angular distribution z = cos θ
r. f .
π+ in the recoil ππ center of mass systemwith z-axis

parallel to the proton direction can be expanded in terms of Legendre palynomials as:

dσ

dz
= ∑

L

aLPL(z) . (2.49)

The expansion coefficients can be calculated as:

aL =
∫ 1

−1
dz PL(z)

dσ

dz
(z) . (2.50)

It is useful to define:

ãL =

∫ 1
−1 dz PL(z)

dσ
dz (z)

∫ 1
−1 dz

dσ
dz

. (2.51)

They have a simple interpretation of relative contribution of different partial waves with respect
to that of L = 0. This can be generalized to include interesting dependence on two-pion invariant
mass as follows:

ãL(Mππ) =

∫ 1
−1 dz PL(z)

dσ
dzdMππ

(z)
∫ 1
−1 dz

dσ
dzdMππ

. (2.52)

The normalized expansion coefficients can be calculated from the final dσ/dz or dσ/(dzdMππ)
distributions obtained by binning in the four-body integration. This method seems equivalent to
the previous calculations of < PL >.

LHC

Nowwe present results for production of two-meson pairs in the pp → ppMM̄ reaction
and with the corresponding cuts for the ALICE experiment at the LHC (

√
s = 7 TeV): p⊥,M >

0.1 GeV or 0.3 GeV and |ηM| < 0.9 on both mesons. We present results for the pp → ppπ+π−

(black lines) and the pp → ppK+K− (blue lines) reactions at
√
s = 7 TeV.

In our model we include the pomeron and secondary reggeon exchange contributions.
It was mention that the type of off-shell meson form factor strongly modify the higher values of
MMM̄. Here we consider the exponential type of form factor (2.29) with the cut-off parameter
Λ2

o f f ,E = 1.2 GeV2 (left panels). In the right panels we show calculations with two choice of
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Figure 2.36: Differential cross section for the central diffractive contribution in two-dimensional spaces
(p⊥,ππ,Mππ), (p⊥,π,Mππ), and (cosθ r. f .

π+ ,Mππ) at
√
s = 1.96 TeV and for cuts on some kinematical vari-

ables. The three columns present results with different forms of off-shell meson form factor given in
Section 2.3 with the cut-off parameters Λ2

o f f ,E = 1.0 GeV2, Λ2
o f f ,M = 0.7 GeV2, and Λo f f = 1.2 GeV,

respectively. The absorption effects due to the pp̄-interaction enhanced by a factor cabs = 1.2 have been
included in the calculations. Results were calculated with the Poisson suppression (c = 0.5) and the
standard pion propagator.

Λ2
o f f ,E = 1.2, 1.6 GeV2 correspond to the solid and the dotted line, respectively. We show how

the uncertainties of the form factor parameters affect our final results. The short-dashed lines
correspond to the results without the absorptive corrections. In the calculations we include the
soft absorptive effects due to the pp-interaction. The thick solid lines correspond to the results
with the absorptive corrections (for comparison, see the long-dashed lines which show the result
when the absorptive amplitude is multiplied by an extra factor cabs = 1.2).

It was mention in the section above that at large masses MMM̄ the possibility to pro-
duce additional particles in the pomeron/reggeon fusion subprocess is rather high. Here we do
not include this effect and the calculations were done only with the usual (mesonic) propagator,
that is, do not include any meson reggeization. However, as we can see in Fig. 2.20 (top pan-
els), the off-shell meson reggeization formula (2.33) suppresses the cross section, for example, at
larger values of two-meson invariant masses or equivalently at larger values of meson transverse
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Figure 2.37: Mean value of p⊥,π and p⊥,ππ as a function of two-pion invariant mass. We show results
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lines, respectively. Results were calculated with the Poisson suppression (c = 0.5) and the standard pion
propagator.
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Figure 2.38: The p⊥,π distribution for a few Mππ windows for the pp̄ → pp̄π+π− reaction at
√
s =

1.96 TeV using the three choices of pion off-shell form factor given in Section 2.3. Results were calculated
with the Poisson suppression (c = 0.5) and the standard pion propagator. Absorption effects due to the
pp̄-interaction enhanced by a factor cabs = 1.2 have been included in this calculation.

momenta.
In Fig. 2.45 we present the meson transverse momenta distribution (top panels), the

invariant mass distribution (centre panels), and the p⊥,ππ distribution (bottom panels) both for
the pions and kaons (the black and blue lines, respectively). The dashed lines correspond to the
Born calculations and the solid and long-dashed lines to calculations with the absorption effects
due to the pp-rescattering. The long-dashed lines show the result obtained by multiplying the
absorption amplitude by a factor cabs = 1.2. In Fig. 2.46 we present the differential cross section in
two-dimensional spaces (p⊥,π ,Mππ) and (p⊥,ππ,Mππ), the top and bottom panels, respectively.
The dependence of < p⊥,M > and < p⊥,MM̄ > as a function of two-meson invariant mass is
presented in Fig. 2.47. It is worth recalling that the absorption effects change the shape of p⊥,p
and t distributions, see Fig. 2.49, and strongly modify the distribution in relative azimuthal angle
between the outgoing protons φpp, see Fig. 2.50. The φMM̄ distribution peaks in the back-to-back
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Figure 2.39: The p⊥,ππ distribution for a few Mππ windows for the pp̄ → pp̄π+π− reaction at
√
s =

1.96 TeV. Here Λ2
o f f ,E = 1.0 GeV2, Λ2

o f f ,M = 0.7 GeV2, and Λo f f = 1.2 GeV correspond to the black,
blue, and red lines, respectively. Results were calculated with the Poisson suppression (c = 0.5) and the
standard pion propagator. Absorption effects due to the pp̄-interaction enhanced by a factor cabs = 1.2
have been included in this calculation.
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Figure 2.40: The cosθ
r. f .
π+ distribution for a few Mππ windows for the pp̄ → pp̄π+π− reaction at

√
s =

1.96 TeV using the three choices of pion off-shell form factor given in Section 2.3. Results were calculated
with the Poisson suppression (c = 0.5) and the standard pion propagator. Absorption effects due to the
pp̄-interaction enhanced by a factor cabs = 1.2 have been included in this calculation.

configuration φMM̄ = π.
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Figure 2.41: The ηπ distribution for a few Mππ windows for the pp̄→ pp̄π+π− reaction at
√
s = 1.96 TeV

using the three choices of pion off-shell form factor given in Section 2.3. Results were calculated with
the Poisson suppression (c = 0.5) and the standard pion propagator. Absorption effects due to the pp̄-
interaction enhanced by a factor cabs = 1.2 have been included in this calculation.

Table 2.5: The integrated cross sections in µb for exclusive π+π− production at
√
s = 7 TeV

with the corresponding cuts on both mesons in the calculations. Different values of the off-shell-
pion form-factor parameters (2.29) have been used: Λ2

o f f ,E = 1.2 GeV2, 1.6 GeV2 (result in the
parentheses). In the case of calculation with pp-rescattering first values (blue) correspond to the
results when the absorptive amplitude was multiplied by an extra factor cabs = 1.2.

Model π+π− K+K−

Born, cuts on p⊥,M > 0.1 GeV and |ηM| < 0.9 19.70 (29.55) 1.16 (2.74)
Born, cuts on p⊥,M > 0.3 GeV and |ηM| < 0.9 10.76 (18.36) 0.77 (2.01)
with pp-rescattering, p⊥,M > 0.1 GeV and |ηM| < 0.9 3.44 (4.86) - 4.32 (6.18) 0.18 (0.42) - 0.24 (0.54)
with pp-rescattering, p⊥,M > 0.3 GeV and |ηM| < 0.9 1.67 (2.74) - 2.14 (3.53) 0.12 (0.30) - 0.15 (0.38)
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Figure 2.42: Mean value of the first even Legendre polynomials PL(cos θ
r. f .
π+ ) as a function of two-pion

invariant mass without (left panels) and with the additional cuts (right panels) p⊥,π > 0.4 GeV, |ηπ | < 1.3,
and |yππ| < 1.0 imposed, as in [161, 176]. The results correspond to three types of off-shell pion form
factors (2.29) - (2.31), given in Section 2.3, with the cut-off parameters Λ2

o f f ,E = 1.0 GeV2 (the thick lines),

Λ2
o f f ,E = 1.2 GeV2 (the thin lines), Λ2

o f f ,M = 0.7 GeV2, and Λo f f = 1.2 GeV.
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Figure 2.44: Mean values of the Legendre polynomials PL=2,4(cos θ
r. f .
π+ ) as a function of two-pion mass

in the full phase space (left panels) and with the additional cuts (right panels). The L = 2 contributions
correspond to the black lines, while the L = 4 contributions correspond to the blue lines. Here, we present
results for two type of off-shell meson form factors given by Eq. (2.29) (top panels), and Eq. (2.31) (bottom
panels). The solid line represents the coherent sum of all the Regge exchanges included in the amplitude,
while the long-dashed line when the double-pomeron exchanges only, the dashed line correspond to the
pomeron-reggeon exchanges, and the dotted line to the double-reggeon exchanges. We note that prelim-
inary measurements of these distributions by the CDF Collaboration have been presented in [161] (see
also [176]).
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Figure 2.45: Differential cross sections dσ/dp⊥,M (top panels), dσ/dMMM̄ (centre panels), and dσ/dp⊥,ππ

(bottom panels) at
√
s = 7 TeV. Results without (the dashed lines) and with (the solid and long-dashed

lines) absorption effects due to the pp-interaction are shown. The long-dashed lines show the result ob-
tained by multiplying the absorption amplitude by a factor cabs = 1.2. The black lines correspond to the
pions and the blue lines to the kaons. These calculations were done with the usual (mesonic) propagator
and with the cut-off parameter Λ2

o f f ,E = 1.2, 1.6 GeV2in the off-shell meson form factor (2.29).
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these calculation cuts on both meson pseudorpidities |ηM| < 0.9 and transverse momenta p⊥,M > 0.1 GeV
(left panel) or 0.3 GeV (right panel) have been included. In this calculation the cut-off parameter Λ2
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1.2 GeV2 and the absorption effects due to the pp̄-interaction have been included.
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s = 7 TeV,

without (the dashed lines) and with (the solid and long-dashed lines) the absorption effects due to the pp-
interaction. The long-dashed lines show the result obtained by multiplying the absorption amplitude by a
factor cabs = 1.2. The black lines correspond to the pions and the blue lines to the kaons. These calculations
were done with the usual (mesonic) propagator and with the cut-off parameter Λ2

o f f ,E = 1.2, 1.6 GeV2.
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Figure 2.49: Differential cross sections dσ/dp⊥,p (top panels) and dσ/dt (bottom panels) at
√
s = 7 TeV,

without (the dashed lines) and with (the solid and long-dashed lines) the absorption effects due to the pp-
interaction. The long-dashed lines show the result obtained by multiplying the absorption amplitude by a
factor cabs = 1.2. The black lines correspond to the pions and the blue lines to the kaons. These calculations
were done with the usual (mesonic) propagator and with the cut-off parameter Λ2

o f f ,E = 1.2, 1.6 GeV2.
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Figure 2.50: Differential cross sections dσ/dφMM̄ (top panels) and dσ/dφpp (bottom panels) at
√
s =

7 TeV, without (the dashed lines) and with (the solid and long-dashed lines) the absorption effects due
to the pp-interaction. The long-dashed lines show the result obtained by multiplying the absorption
amplitude by a factor cabs = 1.2. The black lines correspond to the pions and the blue lines to the
kaons. These calculations were done with the usual (mesonic) propagator and with the cut-off param-
eter Λ2

o f f ,E = 1.2, 1.6 GeV2.
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2.7 Measurement of χc0 meson via χc0 → π
+

π
− and K+K− decays

The mechanism of exclusive production of mesons at high energies became recently a
very active field of research (see e.g. Ref. [128] and references therein). Central exclusive pro-
duction processes represent a very promising and novel way to study QCD in hadron-hadron
collisions. Recently, there is a growing interest in understanding exclusive three-body reactions
pp → ppR at high energies, where the meson (resonance) R is produced in the central rapid-
ity region. The four-body pp → ppMM̄ reactions constitute an irreducible background to the
exclusive χc0 meson production in a relevant channel. The two-pion background to exclusive
production of f0(1500) meson was already discussed in Ref. [1]. The recent works concentrated
on the production of χc mesons (see e.g. Refs. [104, 106, 177–179] and references therein) where
the QCD mechanism is similar to the exclusive production of the Higgs boson.

The CDF Collaboration has measured the cross section for exclusive production of χc

mesons in proton-antiproton collisions at the Tevatron [180], by selecting events with large ra-
pidity gaps separating the centrally produced state from the dissociation products of the in-
coming protons. In this experiment χc mesons are identified via decay to the J/ψ + γ with
J/ψ → µ+µ− channel. The cross section dσ/dy|y=0 = 76± 10 (stat) ±10 (syst) nb, assuming all
the events were χc0(3415), has been measured [180]. At the Tevatron the experimental invariant
mass resolution was not sufficient to distinguish between scalar, axial and tensor χc. While the
branching fractions to this channel for axial and tensor mesons are large [96] (B = (34.4± 1.5)%
and B = (19.5± 0.8)%, respectively) the branching fraction for the scalar meson is very small
B = (1.16± 0.08)% [96]. On the other hand, theoretical calculations [177] have shown that the
cross section for exclusive χc0 production obtained within the kt-factorization is much bigger
than that for χc1 and χc2. As a consequence, all χc mesons give similar contributions to the
J/ψ + γ decay channel. Clearly, the measurement via decay to the J/ψ + γ channel at Tevatron
cannot provide precise cross section for different species of χc.

Could other decay channels be used? The scalar χc0 meson decays into several two-
body channels (e.g. ππ, K+K−, pp̄) or four-body hadronicmodes (e.g. π+π−π+π−, π+π−K+K−).
The branching ratios are shown in Table 2.6. The observation of χc0 production via two-body de-
cay channels is of special interest for studying the dynamics of heavy quarkonia. The measure-
ment of exclusive production of χc0 meson in proton-(anti)proton collisions via χc0 → π+π−,K+K−

decays has been already discussed in Refs. [6, 8, 18]. The advantage of this channel is that the
π+π− continuum has been studied recently [3] and is relatively well known. In addition the
axial χc1 does not decay to the ππ channel and the branching ratio for the χc2 decay into two
pions is smaller. A much smaller cross section for χc2 production as obtained from theoretical
calculation than that for χc0 means that only χc0 will contribute to the signal.

Table 2.6: Branching fractions for the χcJ two- and four-body hadronic decays, taken from
Ref. [96].

Channel B(χc0) B(χc1) B(χc2)
π+π− (0.56± 0.03)× 10−2 − (0.16± 0.01)× 10−2

K+K− (0.610± 0.035)× 10−2 − (0.109± 0.008)× 10−2

pp̄ (2.28± 0.13)× 10−4 (0.73± 0.04)× 10−4 (0.72± 0.04)× 10−4

π+π−π+π− (2.27± 0.19)× 10−2 (0.76± 0.26)× 10−2 (1.11± 0.11)× 10−2

π+π−K+K− (1.80± 0.15)× 10−2 (0.45± 0.10)× 10−2 (0.92± 0.11)× 10−2

We wish to calculate differential distributions for the exclusive production χc0 meson
with the UGDFs taken from the literature relevant for small gluon virtualities (transverse mo-
menta). This process is especially important because the χc0 has the same quantum numbers
as the Higgs boson (apart from its strong interactions) and is produced the same way but with
a c-loop replacing the t-loop, so it is a good test of the theoretical calculations. We shall use
matrix element for the off-shell gluons as obtained in Ref. [104]. The expected non-resonant
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background can be modeled using a “non-perturbative” framework, mediated by the pomeron-
pomeron fusion with an intermediate off-shell pion/reggeon exchanged between the final-state
particle pairs. Thus, we consider pp( p̄) → pp( p̄)π+π− reaction as a genuine four-body process
with exact kinematics which can be easily used when kinematical cuts are improved.

Exclusive charmonium decays have been a subject of interest at the e+e− colliders as
they are an excellent laboratory for studying quark-gluon dynamics at relatively low energies.
Thus, a measurement of many exclusive hadronic χc decays as possible is very valuable. Al-
though these χc states are not directly produced in e+e− collisions, they are copiously produced
in the radiative decays ψ(2S)→ γχc, each of which has a branching ratio of around 9% [96]. The
CLEO Collaboration has studied exclusive χc(0,1,2) decays into four-hadron final states involv-
ing two charged and two neutral mesons [181]: π+π−π0π0, K+K−π0π0, pp̄π0π0, K+K−ηπ0 and
K±π∓K0π0. The BESIII Collaboration has studied two-body χc(0,2) decays into π0π0 and ηη [182]
8 and four-body χc(0,1,2) decays into π0π0π0π0 [183] final states, where χcJ signals appear in ra-
diative photon energy spectrum. Recently the BESIII Collaboration performed a measurement
of the hadronic decays of the three χcJ states to pp̄K+K− (p̄K+Λ(1520), Λ(1520)Λ̄(1520) and
φpp̄) [184]. In the proton-(anti)proton collisions the continuum backgrounds are expected to be
larger than in the e+e− collisions.

2.7.1 Diffractive QCD amplitude for exclusive χc0 production

pa

pb

p1

p2

χc0Seik q0

q1

q2

x2

x1x′1
x′2

Figure 2.51: The QCDmechanism of exclusive diffractive production of χc0 meson including the absorp-
tive correction.

The QCD mechanism for the diffractive production of heavy central system has been
proposed by Khoze, Martin and Ryskin (KMR) and developed in collaboration with Kaidalov
and Stirling for Higgs production (see e.g. Refs. [99–103]). In the framework of this approach the
amplitude of the exclusive pp → ppχc0 process is described by the diagram shown in Fig. 2.51,
where the hard subprocess g∗g∗ → χc0 is initiated by the fusion of two off-shell gluons and the
soft part is represented in terms of the off-diagonal unintegrated gluon distributions (UGDFs).
The formalism used to calculate the exclusive χc0 meson production is explained in detail else-
where [104] and so we will only review relevant aspects here.

The amplitude for the exclusive χc0 meson production can be written as

Mpp→ppχc(s, y,−p1⊥,−p2⊥) = MBorn
pp→ppχc

(s, y,−p1⊥,−p2⊥)

+Mrescatt.
pp→ppχc

(s, y,−p1⊥,−p2⊥) . (2.53)

8The χc1 decay into these final states are not considered as they are forbidden by the spin-parity conservation.
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We can write the Born amplitude [104] as

MBorn
pp→ppχc

(s, y,−p1⊥,−p2⊥) =

s

2
π2 1

2
1

N2
c − 1

Im
∫

d2q0⊥V(q1⊥, q2⊥)
f
o f f
g,1 (x1, x′, q20⊥, q

2
1⊥, t1) f

o f f
g,2 (x2, x′, q20⊥, q

2
2⊥, t2)

q20⊥ q21⊥ q22⊥
, (2.54)

where the objects f
o f f
g,1/g,2 are skewed (or off-diagonal) unintegrated gluon distributions of both

nucleons. t1,2 are the momentum transfers along each nucleon line, q1⊥, q2⊥, q0⊥, x1,2, x′1 ∼
x′2 ≪ x1,2 are the transverse momenta and the longitudinal momentum fractions for active and
screening gluons, respectively. UGDFs are nondiagonal both in the x and q2t space. The usual
off-diagonal gluon distributions are nondiagonal only in x. In the limit x1,2 → x′1,2, q

2
0⊥ → q21/2⊥

and t1,2 → 0 they become the usual UGDFs.
The vertex factor V(q1⊥, q2⊥) describes the coupling of two virtual gluons to χc0 meson

is obtained in heavy quark approximation (including virtualities of active gluons) and can be
written as

V(q1⊥, q2⊥) = KNLO
8ig2s
M

R′(0)√
πMNc

3M2q1⊥q2⊥ − 2q21⊥q
2
2⊥ − (q1⊥q2⊥)(q

2
1⊥ + q22⊥)

(M2 + q21⊥ + q22⊥)
2 , (2.55)

where M is the χc0 mass, g2s = 4παs(M2) and the strong coupling constant is calculated in the
leading order and extended to the nonperturbative region according to Shirkov-Solovtsov an-
alytical model [112]. The value of the P-wave radial wave function at the origin is taken to
be [185] R′χcJ

(0) =
√
0.075 GeV5/2 and the radiative corrections factor in the vertex KNLO is

known [186–188], KNLO ≃ 1.68.
The rescattering correction shown in Fig. 2.51 by the extra blob can be written in the

form

Mrescatt.
pp→ppχc

(s, y,−p1⊥,−p2⊥) =
∫

d2k⊥
2(2π)2

App(s, k2⊥)
s

MBorn
pp→ppχc

(s, y, k1⊥, k2⊥) , (2.56)

where k1⊥ = −p1⊥ − k⊥ and k2⊥ = −p2⊥ − k⊥ with momentum transfer k⊥. The amplitude for
elastic proton-proton scattering at an appropriate energy is parametrised as (2.9)

App(s, k2⊥) = A0(s) exp(−Bk2⊥/2) (2.57)

with the leading pomeron exchange and the effective slope (2.21) adjusted to the elastic NN
scattering data. From the optical theorem we have ImA0(s, t = 0) = sσtot(s) (the real part is
small in the high energy limit).

The KMR UGDFs, unintegrated over q⊥, are calculated from the conventional (inte-

grated) distributions g(x, q2⊥) and the so-called Sudakov form factor
√

Tg(q2⊥, µ
2) as follows:

f KMR
g (x, x′,Q2

⊥, µ
2; t) = Rg

∂

∂ ln q2⊥

[

xg(x, q2⊥)
√

Tg(q2⊥, µ
2)

]

q2⊥=Q2
⊥

F(t) . (2.58)

The Sudakov factor suppresses real emissions from the active gluon during the evolution, so
that the rapidity gaps survive up to the hard scale µ. The factor Rg approximately accounts
for the single lnQ2

⊥ skewed effect [189]. In the calculations presented here we take Rg = 1.3,
and the value of the hard scale is µ2 = M2. The choice of the scale is somewhat arbitrary, and
consequences of this choice were discussed in Ref. [104].

In Ref. [190] a procedure was presented which allows to calculate the generalized (or
skewed) parton distributions of the proton, H(x, ξ; q2⊥, µ

2), unintegrated over the partonic trans-
verse momenta, from the conventional parton distributions, q(x, µ2) and g(x, µ2), for small val-
ues of the skewedness parameter ξ2 ≪ 1 and any x. The momentum fractions carried by the
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emitted and absorbed partons are defined as x1,2 = x± 1
2ξ with support −1 ≤ x ≤ 1. The result

is a simple approximate phenomenological form for the distribution:

Hg

(

ξ

2
, ξ; q2⊥, µ

2
)

=
√

Tg(q2⊥, µ
2)

[

Rg
∂xg(x, q2⊥)

∂ ln q2⊥
+ xg(x, q2⊥)

Ncαs

2π

(

ln
µ + 1

2q⊥
q⊥

+ 1.2
µ2

µ2 + q2⊥

)

+ 5
αs

2π

(

xuval(x, q2⊥) + xdval(x, q2⊥)
)

]

x=ξ
. (2.59)

In evaluating fg’s we have used the GRV NLO [108] and GJR NLO [191, 192] collinear
gluon distributions, which allow to use rather low values of gluon transverse momenta Q2

⊥ =
q20⊥, q

2
1⊥, q

2
2⊥ ≥ 0.5 GeV2. The collinear distributions such as CTEQ and MRST are defined

for higher factorization scales (Q2
⊥ > 1 GeV2), and therefore are less useful in the applications

discussed here.
The t-dependence of the unintegrated gluon distribution fg’s is not well known and is

isolated in the effective form factors of the QCD pomeron-proton vertex, which are parametrised
in the forward scattering limit in the exponential form as F(t) = exp(b t/2) with the t-slope
parameter b = 4 GeV−2. Then the integral in Eq. (2.56) can be evaluated as [193]

Mrescatt.
pp→ppχc

(s, y,−p1⊥,−p2⊥) =
iA0

4πs(B+ 2b)
exp

(

b2|p1⊥ − p2⊥|2
2(B+ 2b)

)

×MBorn
pp→ppχc

(s, y,−p1⊥,−p2⊥) . (2.60)

In practical integrations of the exclusive χc0 meson cross section we choose the trans-
verse momenta of outgoing nucleons (p1⊥, p2⊥), the meson rapidity (y) and the relative az-
imuthal angle between outgoing nucleons (φ12).

In Fig. 2.52 we show distributions of the central exclusive χc0 production cross sec-
tion at

√
s = 14 TeV without (dashed line) and with (solid line) absorptive corrections. These

calculations were done with GJR NLO [191, 192] collinear gluon distribution, to generate the
KMR UGDFs (see Eq. (2.58)), which allows to use low values of the gluon transverse momenta
Q2
⊥ ≥ Q2

cut = 0.5 GeV2. The bigger the value of the cut-off parameter, the smaller the cross
section (see Ref. [104]). In the calculations we take the value of the hard scale to be µ2 = M2.
The bigger µ2, the smaller the cross section [104]. The absorption effects lead to a damping of the
cross section. In most distributions the shape is almost unchanged. Exception is the distribution
in proton transverse momentumwhere the absorption effects lead to a damping of the cross sec-
tion at small proton p⊥ and an enhancement of the cross section at large proton p⊥. In relative
azimuthal angle distribution we observe a minimum at φ12 ∼ π/2. Transverse momentum dis-
tribution of χc0 shows a small minimum at p⊥ ∼ 2.5 GeV. The main reason of its appearance is
the functional dependence of matrix elements on its arguments [104].

In Fig. 2.53 we compare distributions of the central exclusive χc0 production cross sec-
tion at

√
s = 14 TeV calculated for two collinear gluon distributions: GRV94 NLO (upper lines)

and GJR08 NLO (bottom lines). We show results here only for distributions with absorptive cor-
rections calculated with the KMR off-diagonal UGDFs given by Eq. (2.58) (solid lines) and with
off-diagonal UGDFs given in the phenomenological form given by Eq. (2.59). The peaks at large
rapidities appear only when we use formula (2.58). In this region one of off-diagonal UGDFs
changes a sign. This shows limitations in applying formula (2.58).

2.7.2 Background mechanism with MM̄ rescattering

The full amplitude for the four-body process (2.22) is a sum of the Born and rescattering
amplitudes

M f ull

pp→ppMM̄
=MBorn +Mpp−rescattering+MMM̄−rescattering. (2.61)
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Figure 2.52: Differential cross sections for the pp → ppχc0 reaction at
√
s = 14 TeV without (dashed

line) and with (solid line) the absorption effects taken into account. These calculations were done with the
GJR08 NLO [191, 192] distribution to generate UGDFs.

The formulae presented so far (see Section 2.3) does not include the MM̄ rescattering. Inclusion
of MM̄ rescattering at low energies is rather difficult and is often done with the help of the
Lippmann-Schwinger formalism.

When going from the Born approximation to the higher-order diagrams with the pion-
pion FSI the following replacement is formally required:

FA
o f f (k)F

B
o f f (k)

k2 −m2
π

→
∫

d4k

(2π)4
1

k2 −m2
π

FA
o f f (k, k3)

k23 −m2
π

FB
o f f (k, k4)

k24 −m2
π

∑
ij

Mo f f−shell
πiπj→π±π∓(k3k4 → p3p4) , (2.62)

where the sum runs over different isospin combinations of pions. In general the integral above is
complicated (singularities, unknown elements), the vertex form factors (A and B) with two pions
being off-mass-shell are not well known, and even the off-shell matrix element is not fully under
control. Usually a serious simplifications are done to make the calculation useful on a practical
level. Limiting to the S-wave (L = 0) one can correct the Born amplitude by a phenomenological
function which causes an enhancement close to the two-pion threshold and damping at Mππ ∼
0.8 GeV. Dealing with higher partial waves is more complicated, see e.g. [41]. At even larger
Mππ the interaction becomes absorptive and was not much studied. Some work can be found
in Ref. [111]. Clearly much more theoretical afford is required. In the present approach we are
interested rather at somewhat larger pion-pion energies close to the χc0 mass.
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Figure 2.53: Differential cross sections for the pp → ppχc0 reaction at
√
s = 14 TeV with the absorption

effects taken into account. The results with the KMR off-diagonal UGDFs given by Eq. (2.58) (solid lines)
and with off-diagonal UGDFs given by Eq. (2.59) (dashed lines) are shown. These calculations were done
for GRV94NLO GDFs (upper lines) and GJR08NLO GDFs (bottom lines).

The pion-pion rescattering contribution leads to a redistribution of the strength but
seems to modify the pion-pion integrated cross section very little [122]. The effect of pion-pion
FSI must be, however, included if the spectrum of invariant mass is studied. At high invariant
masses one may expect also a strong damping due to absorption in the pion-pion subsystem.
Only low-invariant-mass spectra were studied in the past experiments [156]. The experiments
at the LHC could study the potential damping of large-mass dipion production and therefore
could shed more light on the not fully understood problem of absorption effects in a few-body
hadronic systems.

The pion-pion interaction at high energies was studied e.g. in Refs. [111, 194]. In full
analogy to those works at the higher energies one can include the pion-pion rescattering for our
four-body reaction by replacing the normal (or reggeized) pion propagators (including vertex
form factors) as:

F2
π(t̂)

t̂−m2
π

→ i

16π2 ŝ

∫

d2κ
F2

π(t̂1)

t̂1 −m2
π

Mπ+π−→π+π−(t̂2) ,

F2
π(û)

û−m2
π

→ i

16π2 ŝ

∫

d2κ
F2

π(û1)

û1 −m2
π

Mπ+π−→π+π−(û2) (2.63)
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for t and u diagrams, respectively. The integration is over momentum in the loop (see [194]).
Above we have written ŝ, t̂, û to stress that these are quantities for a subprocess rather than for a
full reaction. The quantities t̂1, t̂2, û1 and û2 are four-momenta squared of the exchanged objects
in the first and the second step of the rescattering process. Other details are explained in [111].
The corresponding pion-pion rescattering amplitude is to be added to the amplitudes given by
Eq. (2.37).

The Regge parametrisation of the π+π− → π+π− scattering amplitude from Ref. [111]
includes both the pomeron as well as the f2 and ρ reggeon exchanges very important at the en-
ergies considered here. The low pion-pion subenergies (Wππ < 2 GeV) require a special care of
resonant scattering, coupled channel effects, which goes beyond the scope of the present work.
The Regge-type interaction applies at higher energies. At low energies the Regge type of inter-
actions is not realistic and should be switched off. To achieve this requirement we can multiply
the Regge amplitude by an extra (in principle unknown) threshold factor Sthr(ŝ). In the present
approach we take it in a simple purely phenomenological form:

Sthr(ŝ) =

{

0, ŝ 6 ŝthr ,
1− exp(−(ŝ− ŝthr)/∆ŝ), ŝ > ŝthr

(2.64)

with ∆ŝ being the only free parameter and ∆ŝ = 9 GeV2 value is taken. As sthr we take (2mK)
2.

Below this value physics is certainly different and a resonant ππ-rescattering known as σ-meson
and a ππ − KK coupled-channel approach are necessary. We leave this low-energy part, not
important for the χc0 background, for an independent analysis. So-modified Regge amplitude
will be used then to included extra pion-pion interactions in Eq. (2.63).

The KK → KK subprocess amplitude for t and u diagrams in Fig. 2.8 is written in the
high-energy approximation

F2
K(t̂)

t̂−m2
K

→ i

16π2 ŝ

∫

d2κ
F2
K(t̂1)

t̂1 −m2
K

MK+K−→K+K−(ŝ, t̂2) ,

F2
K(û)

û−m2
K

→ i

16π2 ŝ

∫

d2κ
F2
K(û1)

û1 −m2
K

MK−K+→K−K+(ŝ, û2) . (2.65)

The elastic amplitudes in the KK→ KK subprocesses are written as

MKK→KK(ŝ, t̂2/û2) = β′M(ŝ)AV−exch.
KK→KK(t̂2/û2) + β′R(ŝ)A

Regge
KK→KK(ŝ, t̂2/û2) , (2.66)

for the vector meson (V = ρ,ω, φ) exchanges and β′M(ŝ) = exp(−(ŝ− 4m2
K)/∆ŝ), β′R(ŝ) = 1−

β′M(ŝ), ∆ŝ = 9 GeV2.
The Regge-type interaction which includes the pomeron and reggeon ( f2, a2, ρ and ω)

exchanges applies at higher s34 energies:

A
Regge
K+K−→K+K−(ŝ, t̂2) = ηi ŝ C

KK
i

(

ŝ

ŝ0

)αi(t̂2)−1
exp

(

BKK
i

2
t̂2

)

,

A
Regge
K−K+→K−K+(ŝ, û2) = ηi ŝ C

KK
i

(

ŝ

ŝ0

)αi(û2)−1
exp

(

BKK
i

2
û2

)

, (2.67)

where the scale parameter ŝ0 = 1 GeV2 and the CKK
i coupling constants can be evaluated assum-

ing Regge factorisation (1.68) and are listed in Table 2.1.
At low s34 energies the Regge type of interactions is not realistic and rather V = ρ,ω, φ

meson exchanges must be taken into account:

AV−exch.
K+K−→K+K−(t̂2) = gKKVFKKV(t̂2)

(p
∗µ
3 + p

µ
3 )Pµν(p∗ν4 + pν

4)

t̂2 −m2
V + imVΓV

gKKVFKKV(t̂2) ,

AV−exch.
K−K+→K−K+(û2) = gKKVFKKV(û2)

(p
∗µ
3 + p

µ
4 )Pµν(p∗ν4 + pν

3)

û2 −m2
V + imVΓV

gKKVFKKV(û2) , (2.68)
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where Pµν(k) = −gµν + kµkν/m2
V and the KKV coupling constants gKKV are given from SU(3)

symmetry relations 2 gKKω =
√
2 gKKφ = 2 gKKρ = gρππ = 6.04 [195], where the value of gρππ is

determined by the decay width of the ρ meson.
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Figure 2.54: The central diffractive mechanism of exclusive production of K+K− pairs via the K∗(892)
meson exchanges.

Again the ππ → KK subprocess amplitude is written in the high-energy approximation
as

F2
π(t̂)

t̂−m2
π

→ i

16π2 ŝ

∫

d2κ
F2

π(t̂1)

t̂1 −m2
π

MK∗−exch.
ππ→K+K−(t̂2) ,

F2
π(û)

û−m2
π

→ i

16π2 ŝ

∫

d2κ
F2

π(û1)

û1 −m2
π

MK∗−exch.
ππ→K−K+(û2) , (2.69)

with

MK∗−exch.
ππ→K+K−(t̂2) = gπKK∗FπKK∗(t̂2)

(p
∗µ
3 + p

µ
3 )Pµν(p∗ν4 + pν

4)

t̂2 −m2
K∗ + imK∗ΓK∗

gπKK∗FπKK∗(t̂2) ,

MK∗−exch.
ππ→K−K+(û2) = gπKK∗FπKK∗(û2)

(p
∗µ
3 + p

µ
4 )Pµν(p∗ν4 + pν

3)

û2 −m2
K∗ + imK∗ΓK∗

gπKK∗FπKK∗(û2) , (2.70)

where now Pµν(k) = −gµν + kµkν/m2
K∗ and we take gπKK∗ = − 1

2 gρππ [195].
The quantities F(k2) in Eqs. (2.68 and 2.70) describe couplings of extended ω and K∗

mesons, respectively, and are parametrised in the exponential form:

F(k2) = exp
(

BV

4
(k2 −m2

V)

)

. (2.71)

Consistent with the definition of the coupling constant the form factors are normalized to unity
when ω or K∗ meson is on-mass-shell. We take BV = 4 GeV−2.

The amplitudes given by formula (2.70) are corrected by the factors (ŝ/ŝ0)αK∗(k
2)−1 to

reproduce the high-energy Regge dependence. We take K∗ meson trajectory as αK∗(k
2) = 0.25+

α′K∗ k
2, with α′K∗ = 0.83 GeV−2 [144, 145].

To demonstrate the role of the KK-rescattering corrections below we present various
differential distributions without (the upper lines) and with (the two bottom lines) absorption ef-
fects. In Fig. 2.55 we show the distributions of kaon rapidity yK for the pp → ppK+K− reaction at√
s = 0.5, 1.96, 7 TeV. In our calculation we include both pomeron and reggeon exchanges which

produce the ’camel-like’ shape of the distributions. The reader is asked to notice, by comparison
of the doted lines with the long-dashed lines, that the energy dependence of the cross section at
yK ≈ 0 is reversed by the absorption effects which are stronger at higher energies. The integrated
cross section slowly rises with incident energy.

In Fig. 2.56 we show differential distributions for the pp → ppK+K− reaction at
√
s =

7 TeV without (dotted line) and with (solid line) the absorptive corrections. In most distribu-
tions the shape is almost unchanged. The only exception is the distribution in proton transverse
momentumwhere we predict a damping of the cross section at small proton p⊥ and an enhance-
ment of the cross section at large proton p⊥. This effect is caused by multiple proton scattering
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Figure 2.55: Differential cross section dσ/dyK for the pp→ ppK+K− reaction at
√
s = 0.5, 1.96, 7 TeV. The

results without (upper dotted lines) and with (bottom lines) absorption effects due to pp-interaction (the
long-dashed lines) and KK-rescattering (the solid lines) are shown. These calculations were done with the
cut-off parameter Λ2

o f f ,E = 2 GeV2 and Λint = 2 GeV.

(double-scattering in our model). Such an effect is well known e.g. in elastic proton-proton scat-
teringwheremultiple scattering leads to the appearance of dips andmaxima of the t-dependence
of the cross section observed in experimental distributions. In the literature for simplicity often
three- or four-body cross sections are multiplied by an average gap survival factor which leads to
a uniform damping of the cross section. This is not sufficient approximation for some observables
as discussed here.

2.7.3 Results

In the present analysis we are interested mostly what happens above Mππ > 2.5 GeV,
i.e. above the resonance region where there are no yet experimental data points. In Fig. 2.57 (left
panel) we compare results without (solid line) and with (dashed lines) the ππ-rescattering effect.
The calculation without ππ-rescattering roughly describe the background below a pronounced
f2(1270) resonance. As seen from the figure the ππ-rescattering leads to an extra modification of
the shape. While the rescattering with mesonic propagator fails to describe the data the calcula-
tion with reggeized pion describes the dipion invariant mass distribution above Mππ = 2 GeV
with sufficient, for the present purpose, precision. As a consequence of the interference of bare
and rescattering amplitudes an extra dip under the f2(1270) resonance (not included here explic-
itly) and a shoulder at Mππ ∼ 2 GeV, which could be wrongly interpreted as resonance(s) appear.
Above Mππ > 2.5 GeV our predictions does not depend on the “manipulations” done at the KK
threshold. At the χc0 mass the ππ-rescattering leads therefore to an enhancement compared to
the calculation without ππ-rescattering. In the right panel we can see that at the χc0 mass the
KK-rescattering leads also to an enhancement of the cross section compared to the calculation
without KK-rescattering. The contribution from the central diffractive mechanism of exclusive
production of K+K− pairs via the K∗(892) meson exchanges is small.

Now we wish to compare differential distributions of pions from the χc0 decay with
those for the continuum pions. The amplitude for exclusive central diffractive χc0 meson pro-
duction was calculated within the kt-factorization approach including virtualities of active glu-
ons [104] and the corresponding cross section is calculated with the help of unintegrated gluon
distribution functions (UGDFs) known from the literature. We apply the following simple pro-
cedure. In the first step we calculate the two-dimensional distribution dσ(y, p⊥)/dydp⊥ , where
y and p⊥ is the rapidity and transverse momentum of χc0 meson, respectively. The decay of
χc0 → π+π− is included then in a simple Monte Carlo program assuming isotropic decay of the
scalar χc0 meson in its rest frame. The kinematical variables of pions are transformed to the over-
all center-of-mass frame where extra cuts are imposed, see Eq. (A.41) of Appendix A. Including
the simple cuts allows us to construct several differential distributions in different kinematical
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Figure 2.56: Differential cross sections for the pp→ ppK+K− reaction at
√
s = 7 TeV without (the upper

dotted lines) and with (bottom lines) absorption effects due to pp-interaction (the long-dashed lines) and
KK-rescattering (the solid lines). These calculations were done with the cut-off parameter Λ2

o f f = 2 GeV2

and Λint = 2 GeV.

variables. In Fig. 2.58 we show distributions in the pion transverse momenta. The pions from
the decay are placed at slightly larger transverse momenta. This can be therefore used to get rid
of the bulk of the continuum by imposing an extra cut on the pion transverse momenta.

In Fig. 2.59 we show two-pion invariant mass distribution for the central diffractive
ππ continuum and the contribution from the decay of the χc0 meson (see the peak at Mππ ≃
3.4 GeV). In these figures the resonant χc0 distribution was parametrised in the Breit-Wigner
form:

dσ

dMππ
= B(χc0 → π+π−) σpp→ppχc0 2Mππ

1
π

MππΓ

(M2
ππ −M2)2 + (MππΓ)2

, (2.72)

with parameters according to particle data book [96]. In the calculation of the χc0 distribution
we have used GRV94 NLO and GJR08 NLO collinear gluon distributions. The cross sections for
the χc0 production and for the background include absorption effects. While upper row shows
the cross section integrated over the full phase space at different energies, the lower row shows
results including the relevant pion pseudorapidities restrictions −1 < ηπ+ , ηπ− < 1 (RHIC and
Tevatron) and −2.5 < ηπ+ , ηπ− < 2.5 (LHC).

The question now is whether the situation can be improved by imposing extra cuts. In
Fig. 2.60 we show results with additional cuts on both pion transverse momenta p⊥π > 1.5 GeV.
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dashed lines) given by Eq. (2.32) for Λint = 2 GeV. Here the pp-rescattering was included in the calcula-
tions. In the right panel we compare results without (the short-dashed line) and with (the solid line) the
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Figure 2.58: Differential cross section dσ/dp⊥π at
√
s = 0.5, 1.96, 14 TeV with cuts on the pion pseu-

dorapidities. The diffractive background was calculated for the meson propagators and with the cut-off
parameters Λ2

o f f = 1.6, 2 GeV2 (lower and upper dashed lines, respectively) and for the generalized pion
propagators and the ππ-rescattering (solid line). Results for the pions from the decay of the χc0 meson
including the π+π− branching ratio, for the GRV94 NLO (upper lines) and GJR08 NLO (bottom lines)
gluon distribution used to generate UGDFs, are shown. The proton-proton absorption effects have been
included in the calculations.

Now the signal-to-background ratio is somewhat improved especially at the Tevatron and LHC
energies. Shown are only purely theoretical predictions. In reality the situation is, however,
somewhat worse as both protons and, in particular, pion pairs are measured with a certain pre-
cision which leads to an extra smearing in Mππ. While the smearing is negligible for the back-
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Figure 2.59: The π+π− invariant mass distribution at
√
s = 0.5, 1.96, 14 TeV integrated over the full

phase space (upper row) and with the detector limitations in pion pseudorapidities (lower row). The
dashed lines represent the ππ continuum with the meson propagators and with the cut-off parameters
Λ2

o f f = 1.6, 2 GeV2 (lower and upper dashed lines, respectively) and the solid lines are for the generalized
pion propagators and for the ππ-rescattering. The χc0 contribution is calculated with GRV94 NLO (dotted
lines) and GJR08 NLO (filled areas) collinear gluon distributions. The absorption effects for the χc0 meson
and for the background have been included in the calculations.

ground, it leads to a modification of the Breit-Wigner peak for the χc0 meson 9. The results with
more modern GJR GDF are smaller by about a factor of 2-3 than those for somewhat older GRV
GDF.

The main experimental task is to measure the distributions in the χc0 rapidity and trans-
verse momentum. Can one recover such distributions based on the measured ones in spite of the
severe cuts on pion kinematical variables? In Fig. 2.61 we show the two-dimensional ratio of the
cross sections for the χc0 meson in its rapidity and transverse momentum:

Ratio(y, p⊥) =
dσ

pp→ppχc0(→π+π−)
with cuts /dydp⊥
dσpp→ppχc0/dydp⊥

. (2.73)

The numerator includes limitations on ηπ and p⊥,π . These distributions provide a fairly precise
evaluation of the expected acceptances when experimental cuts are imposed. The experimental
data could be corrected by our two-dimensional acceptance function to recover the distributions
of interest.

Now we wish to compare differential distributions of kaon from the χc0 decay with
those for the continuum kaons at different energies. In Fig. 2.62 we show two-kaon invariant
mass distribution for the central diffractive KK continuum and the contribution from the decay
of the χc0 meson and the contribution from the decay of the φ meson. The cross section for exclu-
sive production of the φ meson has been calculated within a pQCD kt-factorization approach in

9An additional experimental resolution not included here can be taken into account by an extra convolution of the
Breit-Wigner shape with an additional Gaussian function.
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Figure 2.60: The π+π− invariant mass distribution at
√
s = 0.5, 1.96, 14 TeV with the relevant restrictions

in the pion pseudorapidities and pion transverse momenta. The dashed lines present the ππ continuum
with the meson propagators and with the cut-off parameters Λ2

o f f = 1.6, 2 GeV2 (lower and upper dashed
lines, respectively) and for the generalized pion propagators and the ππ-rescattering. In calculating the
χc0 contribution we use GRV94 NLO (dotted lines) and GJR08 NLO (filled areas) collinear gluon dis-
tributions. The absorption effects for the χc0 meson and for the background have been included in the
calculations. Clear χc0 signal with relatively small background for the Tevatron and LHC energies can be
observed when imposing the extra cuts on p⊥π.
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Figure 2.61: Ratio of the two-dimensional cross sections for the χc0 meson in its rapidity and transverse
momentum (in (y, p⊥) space) for the pp→ ppχc0 reaction with the relevant limitations on the pion pseu-
dorapidities and a few lower cuts on the pion transverse momenta p⊥π. These calculations were done
with GJR08 NLO [191, 192] GDFs. The upper row is for the STAR detector (|ηπ | < 1) and the lower row
for the ATLAS or CMS detectors (|ηπ | < 2.5).

Ref. [196]. In these figures the resonant R = φ,χc0 distributions was parametrised in the Breit-
Wigner form; similarly as for π+π− decay (2.72). The cross sections for the φ and χc0 production
and for the background include absorption effects. One can be observed a clear χc0 signal with
relatively small background for the detector limitations in kaon pseudorapidities. In Fig. 2.63 we
show distributions in the kaon transverse momenta. An extra cut on the kaon transverse mo-
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menta can significantly improve the signal-to-background ratio. It is not the case for the kaons
from the φ decay which are placed at lower p⊥,K.
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Figure 2.62: The K+K− invariant mass distribution at
√
s = 0.5, 1.96 and 7 TeV. While the upper

row shows the cross section integrated over the full phase space, the lower row shows results in-
cluding the relevant kaon pseudorapidity restrictions −1 < ηK+ , ηK− < 1 (RHIC and Tevatron) and
−2.5 < ηK+ , ηK− < 2.5 (LHC). The solid lines present the KK continuum with the cut-off parameter
Λ2

o f f ,E = 2 GeV2. The χc0 contribution is calculated with the GRV94 NLO (dotted lines) and GJR08 NLO
(filled areas) collinear gluon distributions. The cross section for the φ meson contribution at

√
s = 7 TeV

is calculated as in Ref. [196]. The absorption effects have been included in the calculations.
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Figure 2.63: Differential cross section dσ/dp⊥,K at
√
s = 0.5, 1.96, 7 TeV with cuts on the kaon pseudo-

rapidities. The diffractive background was calculated with the cut-off parameter Λ2
o f f = 2 GeV2. Results

for the kaons from the decay of the χc0 meson including the K+K− branching ratio, for the GRV94 NLO
(upper lines) and GJR08 NLO (bottom lines) GDFs, are shown. In the right panel φ meson contribution is
shown in addition. The absorption effects have been included in the calculations.

Finally, in Table 2.7 we have collected numerical values of the integrated cross sections
(see σpp→ppχc0 in Eq. (2.72)) for exclusive χc0 meson production for some selected GDFs at dif-
ferent energies. The new π+π− and K+K− data obtained in CDF at the Tevatron in the central
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region and presented in [161] can provide an upper limit on χc0 cross sections of dσ/dy|y=0 =
21.4± 4.2 (syst.) nb and 18.9± 3.8 (syst.) nb, respectively. The data presented there do not show
a significant χc0(3415) signal.

Table 2.7: Integrated cross sections in nb (with absorption corrections included) for exclusive
χc0 production at different energies with GRV94 NLO [108] and GJR08 NLO [191, 192] collinear
gluon distributions. In these calculations we have taken into account the relevant limitations
in the pion/kaon pseudorapidities |ηπ/K| < 1 at RHIC and Tevatron, |ηπ/K| < 2.5 at LHC and
lower cut on both pion/kaon transverse momenta p⊥,π/K > 1.5 GeV.

√
s full phase space with cuts on ηπ/K with cuts on ηπ/K and p⊥,π/K

(TeV) GRV GJR GRV GJR GRV GJR
0.5 82.9 44.0 17.3/17.9 9.4/9.7 5.7/9.1 3.1/4.9
1.96 406.3 165.1 63.7/65.7 25.9/26.7 20.7/32.8 8.3/13.2
7 1076.7 347.7 540.0/548.6 176.3/177.1 60.4/114.5 20.7/36.6
14 1566.3 449.2 735.0/744.7 210.9/213.7 152.1/244.2 43.1/69.4

2.8 Measurement of π
+

π
− pairs at the LHCwith Forward Proton Tag-

ging

The dominant mechanism of the exclusive production of the π+π− pairs at high ener-
gies is sketched in Fig. 2.8. The formalism used in calculations is explained in detail in Section 2.3,
see also [3, 6, 8]. In this calculation the absorption effects due to proton-proton interaction only
has been included. The cross section is obtained by integration over the four-body phase space,
which was reduced to 8 dimensions and performed numerically. A weighted Monte Carlo gen-
erator based on this model has been developed and was used in the following analysis, see [7]
for more details.

2.8.1 Exclusive measurement

The final state of the pp → ppπ+π− consists of four charged particles – two protons
and two pions. At the LHC the pions are produced in the rapidity range |yπ | < 10, whereas the
protons are scattered at very small angles (of the order of microradians) into the accelerator beam
pipe. Therefore, to perform a fully exclusive measurement, there is a need of two different types
of detectors (see Fig. 2.64): a central detector (for pion detection) and very forward detectors (for
proton tagging). The analysis presented here assumes ATLAS as the central detector and ALFA
as the proton tagging detectors, see [7].

Figure 2.64: A scheme of themeasurement concept – pions are registered in the central detectors,
whereas protons in the very forward detectors.
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The ATLAS detector [197] is located at the LHC Interaction Point 1 (IP1). It has been
designed as a general purpose detector with a large acceptance in pseudorapidity, full azimuthal
angle coverage, good charged particle momentum resolution and a good electromagnetic calorime-
try completed by full-coverage hadronic calorimetry. The ATLAS tracking detector provides
measurement of charged particles momenta in the |ηπ | < 2.5 region and the calorimeter covers
|ηπ | < 4.9.

The ALFA (Absolute Luminosity For ATLAS) detectors [198] are designed for proton-
proton elastic scattering measurement in the Coulomb-nuclear amplitude interference region.
These detectors are placed about 240 m from the IP1, symmetrically on both sides, inside roman
pots. These are special devices that allow to place detectors inside the beam pipe and to control
the distance between their edge and the proton beam. This is of primordial importance for the
detectors safety, since the proton beam can cause serious radiation damage. Measurement of
protons scattered at very small angles (like in the elastic scattering) requires a special tune of the
LHC accelerator with very small angular dispersion at the IP. This is granted by a high value of
the betatron function (β∗). Due to limited radiation hardness, the ALFA detector will be used
only during dedicated runs.

It is worth mentioning that at the LHC, apart from ALFA, there are also similar stations
of the TOTEM [199] experiment placed around the CMS central detector. Although, the present
study was carried out for ALFA and ATLAS, similar results can be expected for TOTEM and
CMS. In addition, two other proton tagging detectors are presently at the planning stage – AFP
(ATLAS Forward Proton) for ATLAS and HPS (High Precision Spectrometer) for CMS. Their
purpose is to tag forward protons during high luminosity LHC runs and to look at high-p⊥
signals. The acceptance of these detectors will be completely different than the one of ALFA and
TOTEM. Actually, the AFP and HPS detectors will be able to detect protons which lost some part
of their initial energy [200] and will not register protons originating from elastic scattering. Since
for the pp → pπ+π−p process the energy loss of the protons is rather small, only the tails of
this signal could be seen in AFP or HPS. Taking into account the fact that these detectors will
work during normal LHC runs, when there will be many independent interactions in one bunch
crossing, it is clear that exclusive pion pair production can be measured only with help of ALFA
or TOTEM.

A crucial element of the pp → pπ+π−p measurement is the tagging of the forward
protons with the ALFA detectors. Thus, a very important ingredient of this analysis is a proper
simulation of the proton transport from the Interaction Point to the ALFA stations through the
LHC magnetic lattice. One needs to remember that the ALFA detectors are designed only for
the special LHC runs so a corresponding description of the LHC magnets has to be used in the
simulation. In this analysis the

√
s = 7 TeV and β∗ = 90 m LHC optics was taken.

2.8.2 Results

The cross section for exclusive π+π− production at
√
s = 7 TeV is 234 µb [7]. The re-

quirement that both protons are tagged in the ALFA stations causes that not all events can be fully
registered. This is due to limited acceptance of the detectors. In fact, the visible cross section de-
pends on the distance between the ALFA detector edge and the beam centre (it will be changed
during runs, accordingly to beam conditions). This dependence is presented in Fig. 2.65 (left
panel). For the rest of the present analysis a distance of 4 mm is assumed, which corresponds
to 75 µb of cross section visible in the ALFA detectors. Fig. 2.65 (right panel) presents the dis-
tribution of forward proton transverse momentum before and after requesting that protons are
tagged in ALFA.

Pions produced in the discussed process will be measured in the central detector. The
pion pseudorapidity distribution is presented in Fig. 2.66 (left panel), whereas the right panel of
Fig. 2.66 shows a correlation between pseudorapidities of both pions. The model used for the
simulation predicts a strong correlation between the pseudorapidities of π+ and π−, which is
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Figure 2.65: Left panel shows the cross section for pp → pπ+π−p with both protons tagged
by the ALFA detectors as a function of the distance between the detectors edge and the beam
centre (assumed to be identical in all ALFA stations). Right panel shows the proton transverse
momentum distribution; the dotted line marks the distribution for the events with both protons
tagged by ALFA detectors positioned at 4 mm.

not expected for pions originating from pp → pπ+π0π−p or pp → pπ+π−π+π−p processes10.
Although the majority of the events contains pions with ηπ too large to be detected in ATLAS,
the remaining cross section is still large enough to make the measurement possible.
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Figure 2.66: Left panel shows the total cross section as a function of pion pseudorapidity. Right
panel shows the correlation between the pion pseudorapidies. The black frames represent re-
gions of tracker (|ηπ | < 2.5) and forward calorimeters (|ηπ | < 4.9).

The pions can be detected in the ATLAS tracking detector (|ηπ | < 2.5) or in the ATLAS
calorimetry system (|ηπ | < 4.9). From the experimental point of view these are two different
measurements, as the tracker enables the particle momentum and charge determination, whereas
the calorimeter is sensitive only to the particle energy. One should note that the preferable mea-
surement is the one with the tracker, as it provides very high precision and allows to efficiently
discriminate against the like-charge background pairs. Since the correlation between the pseu-
dorapidities of both pions is very large, the following analysis is performed independently for
the tracking detector (|ηπ | < 2.5) and the forward calorimetry (2.5 < |ηπ | < 4.9).

The two adequate distributions: pion transversemomentum in the central region (|ηπ | <
2.5) and pion energy in the forward region (2.5 < |ηπ | < 4.9) are presented in Fig. 2.67 (left panel)
and Fig. 2.68 (left panel). Requirement of both protons being tagged in the ALFA detectors in-

10Such reactions are a natural background, when only two pions are inside the detector acceptance. This contribu-
tion can be estimated experimentally by studying the three and four pion final states.
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fluences the shapes of the distributions only very little, but it reduces both by a factor close to
three.
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Figure 2.67: Left panel shows the pion transverse momentum distribution in the tracking detec-
tor. Right panel shows the cross section for |ηπ | < 2.5 as a function of p⊥,π threshold. The grey
area and the dash-dotted line marks the lower boundary of the region accessible by the main
ATLAS detector.
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Figure 2.68: Left panel shows the pion energy distribution in the calorimeter. Right panel shows
the cross section for 4.9 < |ηπ | < 2.5 as a function of energy threshold. The grey area and the
dash-dotted line marks the lower boundary of the region accessible by the main ATLAS detector.

Obviously, the number of events that can be observed depends on the minimal pion
transverse momentum and minimal pion energy that are experimentally accessible. Fig. 2.67
(right panel) and Fig. 2.68 (right panel) show the visible cross section as a function of reconstruc-
tion thresholds for measurements in the tracker and the calorimeter. Clearly, the cross section
falls very steeply with increasing thresholds values. The vertical dash-dotted lines show the
thresholds that should be possible to obtain: measurements of p⊥,π = 0.1 GeV were performed
for ATLAS minimum bias analysis [201] and particles with energy Eπ > 4 GeV were shown to
be well above the noise [202]. It should be mentioned that in the minimum bias analysis the
efficiency for such low-p⊥,π tracks was quite small (about 10%). However, in that analysis, the
reconstruction algorithms had to simultaneously deal with many particle tracks. For very clean
events that are considered in this work (only two tracks) it should be possible to adjust the re-
construction to obtain a much better efficiency.

An interesting study that can bemadewhen data are collected is themeasurement of the
π+π− invariant mass distribution. Fig. 2.69 presents the theoretical predictions and a possible
measurement with 100 µb−1 integrated luminosity (30 hours of data acquisition time assuming
the luminosity value of 1027 cm−2s−1) for pions detected in the ATLAS tracker (systematic uncer-
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tainty of such a measurement is not considered, only the statistical errors are presented). If the
collected statistics is high enough, it should be possible to see resonances, especially the f2(1270)
meson, on top of the presented distribution.
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Figure 2.69: Left panel shows the distribution of π+π− invariant mass reconstructed in the track-
ing detector. Right panel shows a possible measurement of the π+π− invariant mass distribution
for 100 µb−1 integrated luminosity (only the statistical errors are plotted).

2.9 Conclusions

We have calculated several differential observables for the exclusive pp → ppMM̄ and
pp̄ → pp̄MM̄ reactions, where in the MM̄ central system we have charged pion or kaon pairs.
Both central diffractive and pion-pion rescattering processes were considered. In the first case,
the full amplitude was calculated in a simple model with parameters adjusted to the low energy
data, i.e. the energy dependence of the amplitudes of MN subsystems was parametrised in the
Regge form which describes total and elastic cross section for MN scattering. This parametrisa-
tion includes both leading pomeron trajectory as well as subleading reggeon exchanges. Even at
relatively high energies the inclusion of reggeon exchanges is crucial as amplitudes with differ-
ent combination of exchanges interfere or/and MN subsystem energies can be relatively small
WπN < 10 GeV. The latter happens when yπ+ , yπ− ≫ 0 or yπ+ , yπ− ≪ 0. In this region of the
phase space one can expect a competition of single diffractive mechanism. In the present anal-
ysis we have excluded baryon resonance contributions. Further work is required to estimate
contribution of such a processes.

We have predicted large cross sections of the order of 100 µb for RHIC, Tevatron and
LHC which allows to hope that presented by us distributions will be measured. At high en-
ergies we find a preference for the same hemisphere (same-sign rapidity) emission of π+ and
π−. At ISR energies the same size emission is about 50% while at LHC energies the same hemi-
sphere emission constitutes about 90% of all cases. The integrated cross section of the central
diffractive component grows slowly with incident energy if absorption effects are ignored. The
absorption effectsmay even reverse the trend. The energy dependence of the “diffractive” central
production of two-pions is quite different than the one for elastic scattering, single- or double-
diffraction. This is due to the specificity of the reaction, where rather the subsystem energies
dictate the energy dependence of the process.

In the second case the pion-pion amplitude was parametrised using a recent phase shift
analysis at the low pion-pion energies and a Regge form of the continuum obtained by assump-
tion of Regge factorization. The factorization assumption is made to estimate the process contri-
bution. The two contributions occupy slightly different parts of the phase space, have different
energy dependence and in principle can be resolved experimentally. The interference of ampli-
tudes of the both processes is almost negligible.
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The general situation at high energies is sketched in Fig.2.70. The central diffractive
(CD) contribution lays along the diagonal y3 = y4 and the classical double pomeron exchange
(DPE) is placed in the center y3 ≈ y4. While the diffractive single resonance excitation (DSRE)
contribution (the Roper resonance excitation is a good example) from diagrams in Fig. 2.11 is
predicted at y3, y4 ∼ ybeam or y3, y4 ∼ ytarget, i.e. situated at the end points of the CD contribu-
tion, the diffractive double resonance excitation (DDRE) contribution is predicted at (y3 ∼ ybeam
and y4 ∼ ytarget) or (y3 ∼ ytarget and y4 ∼ ybeam), i.e. well separated from the central diffractive
contribution. The seperation in the (y3, y4) space can be used to seperate the two contributions
experimentally. We have calculated also contributions of several diagrams where kaons are emit-
ted from the proton lines (Fig. 2.11). These mechanisms contribute at forward and backward
regions but the corresponding cross section is rather small at the LHC and also do not disturb
the observation of the central diffractive component.

(a)

CD

DDRE DSRE

DSRE DDRE

rescatteringππ

y3(π
+)

y4(π
−)

ππ rescattering

(b)

CD

other

other

ππ → KK

y3(K
+)

y4(K
−)

ππ → KK

Figure 2.70: A schematic localization of different mechanisms at high energies leading to the π+π−

production (panel (a)) and the K+K− production (panel (b)).

We have analysed a possibility to measure the exclusive production of χc0 meson in
the proton-(anti)proton collisions at the LHC, Tevatron and RHIC via χc0 → π+π− and K+K−

decay channels. It was realized recently that at the Tevatron the measurement of exclusive pro-
duction of χc via decay in the J/ψ + γ channel cannot give production cross sections for dif-
ferent species of χc. In this decay channel the contributions of χc mesons with different spins
are similar and experimental resolution is not sufficient to distinguish them. However, at the
LHC situation should be better. Since the cross section for exclusive χc0 production in the ππ or
KK channel is much larger than that for χc1 and χc2 these two-meson channels should provide
an useful information about the χc0 exclusive production. We have performed detailed studies
of several differential distributions and demonstrated how to impose extra cuts in order to im-
prove the signal-to-background ratio. We have shown that relevant measurements at Tevatron
and LHC are possible. At RHIC the signal-to-background ratio is much worse but measurements
should be possible as well. Imposing cuts distorts the original distributions for χc0 in rapidity
and transverse momentum. We have demonstrated how to recover the original distributions and
presented the correction functions for some typical experimental situations.

Finally, a possibility of measuring the central diffractive process at the LHCwas investi-
gated for the ATLAS central detector and the ALFA very forward detectors. We recall that tagged
protons, can act as a very sensitive test of themodels of soft diffraction (absorption effects). There
are three main experimental parameters that limit the visible cross section: the distance between
the ALFA detector edge and the proton beam centre, a minimal p⊥,π that can be measured in the
tracking detector (for pions produced in |ηπ | < 2.5) and minimal energy that can be measured
in the calorimeter (for 2.5 < |ηπ | < 4.9 range). For the values of these parameters set to 4 mm,
0.1 GeV and 4 GeV, respectively, the visible cross section is 21 µb. For 100 µb−1 of integrated
luminosity that can be collected during the ALFA runs this gives over 2000 events within the
detector acceptance.
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Chapter 3

Central Exclusive Diffractive Production
of Scalar and Pseudoscalar Mesons

Double pomeron exchange mechanism is known to be responsible also for high-energy
central production of mesons with IG = 0+. While it is clear that the effective pomeron must
be a colour singlet, the spin structure of the pomeron and its coupling to hadrons is, however,
not finally established. It is commonly assumed that the pomeron has effectively a vectorial na-
ture; see for instance [93–95, 114, 131] for the history and many references. This model of the
pomeron is being questioned in [13, 203]. Here we wish to concentrate on central exclusive me-
son production in the nonperturbative region using the notion of effective pomeron. In general,
such an object may have a nontrivial spin structure. In the present analysis we explore the hy-
pothesis of “tensorial pomeron” in the central meson production. The theoretical arguments for
considering an effective tensorial ansatz for the nonperturbative pomeron are discussed in detail
in [13]. Hadronic correlation observables could be particularly sensitive to the spin aspects of the
pomeron.

Indeed, tests for the helicity structure of the pomeron have been devised in [204] for
diffractive contributions to electron-proton scattering, that is, for virtual-photon–proton reac-
tions. For central meson production in proton-proton collisions such tests were discussed in
[93–95] and in the following we shall compare our results with those of Ref. [93–95] whenever
suitable.

There are some attempts to obtain the pomeron-pomeron-meson vertex in special mod-
els of the pomeron. In [93–95] results were obtained from the assumption that the pomeron acts
as a JPC = 1++ conserved and non-conserved current. The general structure of helicity ampli-
tudes of the simple Regge behaviour was also considered in Ref. [102, 205]. On the other hand,
the detailed structure of the amplitudes depends on dynamics and cannot be predicted from
the general principles of Regge theory. The mechanism for central production of scalar glueball
based on the “instanton” structure of QCD vacuum was considered in [206–209].

Recent activity in the field concentrated rather on perturbative aspects of the pomeron.
For instance, the production of heavy objects (χc mesons [6,210], Higgs bosons [211], dijets [211],
W+W− pairs [11], etc.) has been considered in the language of unintegrated gluon distributions.
Exclusive π+π− [3, 6, 175, 179] and K+K− [8] pairs production mediated by pomeron-pomeron
fusion has been a subject of both theoretical and experimental studies. Particularly interesting is
the transition between the nonperturbative (small meson transverse momenta) and perturbative
(large meson transverse momenta) regimes.

In this Chapter we shall consider some examples of central meson production and
compare results of our calculations for the “tensorial pomeron” with those for the “vectorial
pomeron” as well as with experimental data whenever possible. The aim of the present study
is to explore the potential of exclusive processes in order to better pin down the nature of the
pomeron exchange. Therefore, we shall limit ourselves to Born level calculations leaving other,
more complicated, effects for further studies. Nevertheless, we hope that our studies will be
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useful for planned or just being carried out experiments 1. In Section 3.1 we discuss the formal-
ism. We present amplitudes for the exclusive production of scalar and pseudoscalar mesons
and we also briefly report some experimental activity in this field. In Section 3.3 we com-
pare results of our calculations with existing data, mostly those from the WA102 experiment
[90, 91, 115, 212–214]. In Appendices B and C we discuss properties and useful relations for the
tensorial and vectorial pomeron, respectively. In Appendices A and D we have collected some
useful formulae concerning details of the calculations.

3.1 Formalism - Tensorial versus Vectorial Pomeron

3.1.1 Basic elements

We shall study exclusive central meson production in proton-proton collisions at high
energies

p(pa,λa) + p(pb,λb)→ p(p1,λ1) + M(k) + p(p2,λ2) . (3.1)

Here pa,b, p1,2 and λa,b, λ1,2 denote, respectively, the four-momenta and helicities of the protons
and M(k) denotes a meson with IG = 0+ and four-momentum k. Our kinematic variables are
defined as follows

q1 = pa − p1, q2 = pb − p2, k = q1 + q2,
s = (pa + pb)

2 = (p1 + p2 + k)2, s13 = (p1 + k)2, s23 = (p2 + k)2,
t1 = q21, t2 = q22, m2

M = k2 . (3.2)

For the totally antisymmetric symbol εµνρσ we use the convention ε0123 = 1. Further kinematic
relations, in particular those valid in the high-energy small-angle limit, are discussed in Ap-
pendix A.1.

At high c.m. energies
√
s the dominant contribution to (3.1) comes from pomeron-

pomeron (IPIP) fusion; see Fig.3.1. Non-leading terms arise from reggeon-pomeron (IRIP) and
reggeon-reggeon (IRIR) exchanges. We shall be mainly interested in the IPIP-fusion giving the

p (pa)

p (pb)

p (p1)

p (p2)

IP, IR

M (k)
IP, IR

IG = 0+

Figure 3.1: The exchangemechanisms for central exclusivemeson production in proton-proton collisions.

meson M. It is clear from Fig.3.1 that in order to calculate this contribution we must know the
IPpp vertex, the effective IP propagator and the IPIPM vertex. This propagator and these vertices
will now be discussed, both, for the tensorial and vectorial ansatz for the pomeron IP.

1Predictions for experiments at RHIC, Tevatron, and LHC are rather straightforward and will be presented
elsewhere.
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3.1.2 Scalar and pseudoscalar meson production

In this section we study central production of scalar and pseudoscalar mesons, that is,
the reaction (3.1) with JPC = 0++ and 0−+ mesons M. We shall consider pomeron-pomeron
fusion, see Fig.3.1, for both, the tensorial- and the vectorial-pomeron approaches. In Table B.2 of
Appendix B we list mesons M in which we are interested. There we also give the values of the
lowest orbital angular momentum l and of the corresponding total spin S which can lead to the
production of M in the fictitious fusion of two tensorial and vectorial “pomeron particles”. The
lower the values of l is, the lower is the angular momentum barrier in the reaction.

We discuss first the tensor-pomeron case. For scalar mesons, JPC = 0++, the effec-
tive Lagrangians and the vertices for IPIP → M are discussed in Appendix B. For the tensorial
pomeron the vertex corresponding to the lowest values of (l, S), that is (l, S) = (0, 0) plus (2, 2),
is given in (B.20). For pseudoscalar mesons, JPC = 0−+, the tensorial pomeron-pomeron-meson
(IPIPM̃) coupling corresponding to (l, S) = (1, 1), see Table B.1 of Appendix B, has the form

L′
IPIPM̃

(x) = − 2
M0

g′
IPIPM̃

[

∂ρ IPµν(x)
]

[∂σ IPκλ(x)] g
µκ ενλρσ χ̃(x) . (3.3)

Here χ̃(x) and IPµν(x) are the pseudoscalar meson and effective tensor-pomeron field operators,
respectively; M0 ≡ 1 GeV, and g′

IPIPM̃
is a dimensionless coupling constant. The IPIPM̃ vertex

(a)
IPκλ

M̃(k)
IPµν

JPC = 0−+

q1
q2

(b)
IPV ν

M̃(k)
IPV µ

JPC = 0−+

q1
q2

Figure 3.2: A sketch of the pomeron-pomeron-pseudoscalar meson vertex for the tensorial (a) and vecto-
rial (b) pomeron fusion.

corresponding to (l, S) = (1, 1) obtained from (3.3), see Fig.3.2 (a), including a form factor, reads
as follows:

iΓ
′(IPIP→M̃)
µν,κλ (q1, q2) = i

g′
IPIPM̃

2M0

(

gµκενλρσ + gνκεµλρσ + gµλενκρσ + gνλεµκρσ

)

(q1 − q2)
ρkσ

×FIPIPM̃(q21, q
2
2) , (3.4)

where the meson four-momentum k = q1 + q2. Another form for the IPIPM̃ coupling correspond-
ing to (l, S) = (3, 3) is

L′′
IPIPM̃

(x) = −
g′′
IPIPM̃

M3
0

εµ1µ2ν1ν2 (∂µ1 χ̃(x))

×[
(

∂µ3 IPµ4ν1(x)− ∂µ4 IPµ3ν1(x)
)
↔

∂µ2

(

∂µ3 IP
µ4
ν2 (x)− ∂µ4 IP

µ3
ν2 (x)

)

] , (3.5)

where the asymmetric derivative has the form
↔
∂µ=

→
∂µ −

←
∂µ. From (3.5) we get the vertex, includ-

ing a form factor, as follows

iΓ
′′(IPIP→M̃)
µν,κλ (q1, q2) = i

g′′
IPIPM̃

M3
0
{ενλρσ

[

q1κq2µ − (q1q2)gµκ

]

+ εµλρσ [q1κq2ν − (q1q2)gνκ ]

+ ενκρσ

[

q1λq2µ − (q1q2)gµλ

]

+ εµκρσ [q1λq2ν − (q1q2)gνλ]}(q1 − q2)
ρkσ

×FIPIPM̃(q21, q
2
2) (3.6)
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with g′′
IPIPM̃

a dimensionless coupling constant. As complete vertex we take the sum of (3.4) and
(3.6)

iΓ
(IPIP→M̃)
µν,κλ (q1, q2) = iΓ

′(IPIP→M̃)
µν,κλ (q1, q2) + iΓ

′′(IPIP→M̃)
µν,κλ (q1, q2) . (3.7)

It can be checked that this vertex satisfies the identities

Γ
(IPIP→M̃)
µν,κλ (q1, q2) = Γ

(IPIP→M̃)
κλ,µν (q2, q1) ,

gµνΓ
(IPIP→M̃)
µν,κλ (q1, q2) = 0 , gκλΓ

(IPIP→M̃)
µν,κλ (q1, q2) = 0 . (3.8)

Now we can write down the IPIP-fusion contributions to the Born amplitudes for the
scalar and pseudoscalar meson exclusive production. We find for a 0++ meson M

〈p(p1,λ1), p(p2,λ2),M(k) | T | p(pa,λa), p(pb,λb)〉 |IPIP ≡
M2→3

λaλb→λ1λ2M
|IPIP = (−i)ū(p1,λ1)iΓ

(IPpp)
µ1ν1 (p1, pa)u(pa,λa)

×i∆(IP) µ1ν1,κ1λ1(s13, t1) iΓ
(IPIP→M)
κ1λ1,κ2λ2

(q1, q2) i∆(IP) κ2λ2,µ2ν2(s23, t2)

×ū(p2,λ2)iΓ
(IPpp)
µ2ν2 (p2, pb)u(pb,λb) . (3.9)

Here ∆(IP) and Γ(IPpp) denote the effective propagator and proton vertex function, respectively,
for the tensorial pomeron. For the explicit expressions, see Appendix B, (B.1) to (B.4) and for the
IPIPM vertex (B.20). For a pseudoscalar meson M̃ the amplitude is similar with Γ

(IPIP→M)
κ1λ1,κ2λ2

replaced

by Γ
(IPIP→M̃)
κ1λ1,κ2λ2

in (3.9).
Explicitly we obtain from (3.9), using the expressions from Appendix B, the amplitude

for exclusive production of a scalar meson M as

M2→3
λaλb→λ1λ2M

|IPIP = − (3β IPNN)
2 F1(t1) F1(t2) FIPIPM(t1, t2)

×ū(p1,λ1)γ
µ1(p1 + pa)

ν1u(pa,λa)
1

2s13

(

−is13α′IP
)αIP(t1)−1

×
[

g′IPIPMM0

(

gµ1µ2gν1ν2 + gµ1ν2gν1µ2 −
1
2
gµ1ν1gµ2ν2

)

+
g′′IPIPM
2M0

×
(

q1µ2q2µ1gν1ν2 + q1µ2q2ν1gµ1ν2 + q1ν2q2µ1gν1µ2 + q1ν2q2ν1gµ1µ2 − 2(q1q2)(gµ1µ2gν1ν2 + gν1µ2gµ1ν2)
)]

× 1
2s23

(

−is23α′IP
)αIP(t2)−1 ū(p2,λ2)γ

µ2(p2 + pb)
ν2u(pb,λb) . (3.10)

The coupling constants β IPNN , g′IPIPM, and g′′IPIPM are defined in (B.1), (B.16), and (B.18), and the
form factors F1 and FIPIPM in (B.2) and (B.21), respectively. Similarly, we obtain the amplitude for
production of a pseudoscalar meson M̃ as

M2→3
λaλb→λ1λ2M̃

|IPIP = −(3β IPNN)
2 F1(t1) F1(t2) FIPIPM̃(t1, t2)

×ū(p1,λ1)γ
µ1(p1 + pa)

ν1u(pa,λa)
1

2s13

(

−is13α′IP
)αIP(t1)−1

×
[( gIPIPM̃

2M0
−

g′′
IPIPM̃

M3
0

(q1q2)
)(

gµ1µ2εν1ν2ρσ + gν1µ2εµ1ν2ρσ + gµ1ν2εν1µ2ρσ + gν1ν2εµ1µ2ρσ

)

+
g′′
IPIPM̃

M3
0

(

εν1ν2ρσq1µ2q2µ1 + εµ1ν2ρσq1µ2q2ν1 + εν1µ2ρσq1ν2q2µ1 + εµ1µ2ρσq1ν2q2ν1

)]

(q1 − q2)
ρkσ

× 1
2s23

(

−is23α′IP
)αIP(t2)−1 ū(p2,λ2)γ

µ2(p2 + pb)
ν2u(pb,λb) ; (3.11)

see (3.4), (3.6), (B.1), (B.2), and (B.21).
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The same steps can now be repeated in the model of the vector pomeron. The Born
amplitude for the production of a 0++ meson M via IPV IPV-fusion can be written as

M2→3
λaλb→λ1λ2M

|IPV IPV = (−i)ū(p1,λ1)iΓ
(IPV pp)
µ1 (p1, pa)u(pa,λa)

×i∆(IPV) µ1ν1(s13, t1) iΓ
(IPV IPV→M)
ν1ν2 (q1, q2) i∆(IPV ) ν2µ2(s23, t2)

×ū(p2,λ2)iΓ
(IPV pp)
µ2 (p2, pb)u(pb,λb) . (3.12)

The effective Lagrangian and the vertices for IPV IPV → M are discussed in Appendix C; see (C.1),
(C.2), and (C.9). Explicitly we obtain

M2→3
λaλb→λ1λ2M

|IPV IPV = −(3β IPNN)
2 F1(t1) F1(t2) FIPIPM(t1, t2)

×ū(p1,λ1)γ
µ1u(pa,λa) gµ1ν1

(

−is13α′IP
)αIP(t1)−1

×
[ 2
M0

g′IPV IPVM
gν1ν2 +

2
M3

0
g′′IPV IPVM

(

qν1
2 qν2

1 − (q1q2)g
ν1ν2
)]

×gν2µ2

(

−is23α′IP
)αIP(t2)−1 ū(p2,λ2)γ

µ2u(pb,λb) . (3.13)

Now we turn to the production of a pseudoscalar meson M̃ via IPV IPV-fusion. The first
step is to construct an effective coupling Lagrangian IPV IPVM̃. Traditionally this is done in anal-
ogy to the γγπ0 coupling which is given by the Adler-Bell-Jackiw anomaly (for a review see
chapter 22 of [215]). In this way we get

L′
IPV IPV M̃

(x) =
g′
IPV IPV M̃

16M0

[

∂µ IPVν(x)− ∂ν IPVµ(x)
] [

∂ρ IPVσ(x)− ∂σ IPVρ(x)
]

εµνρσ χ̃(x)

(3.14)

with g′
IPV IPV M̃

a dimensionless coupling constant.
The corresponding vertex, including a form factor, reads as follows (see Fig.3.2 (b)):

iΓ
′(IPV IPV→M̃)
µν (q1, q2) = i

g′
IPV IPV M̃

2M0
εµνρσq

ρ
1q

σ
2 FIPIPM̃(q21, q

2
2) . (3.15)

It is easy to see that in the fictitious reaction (C.4) the coupling (3.14), (3.15) gives (l, S) = (1, 1).
Note that in our framework we have for IPT IPT-fusion two values, (l, S) = (1, 1) and (3, 3), which
can lead to a pseudoscalar meson; see Table B.1 in Appendix B. Correspondingly, we have two
independent couplings, (3.3) and (3.5). For IPV IPV-fusion, on the other hand, we find from Ta-
ble C.1 in Appendix C that only (l, S) = (1, 1) can lead to a pseudoscalar meson, thus, only the
coupling (3.14) is possible there. This clear difference between the IPT and IPV ansätze can be
exploited for experimentally distinguishing the two cases.

The amplitude for the production of a JPC = 0−+ meson M̃ via IPV IPV-fusion can now
be written down as in (3.12) with the IPV IPVM̃ vertex from (3.15). Explicitly this gives

M2→3
λaλb→λ1λ2M̃

|IPV IPV = −(3β IPNN)
2 F1(t1) F1(t2) FIPIPM̃(t1, t2)

g′
IPV IPV M̃

2M3
0

×ū(p1,λ1)γ
µ1u(pa,λa) gµ1ν1

(

−is13α′IP
)αIP(t1)−1

×ǫν1ν2ρσ q1ρq2σ

×gν2µ2

(

−is23α′IP
)αIP(t2)−1 ū(p2,λ2)γ

µ2u(pb,λb) . (3.16)

In [216] also (vector pomeron)-(vector pomeron) fusionwas considered as the dominant
mechanism of the η′-meson production. In order to estimate this contribution, the Donnachie-
Landshoff energy dependence of the pomeron exchange [113] was used.
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We shall now consider the high-energy small-angle limit, see Appendix A.1, for both
the tensorial and vectorial pomeron fusion reactions giving the mesons M and M̃. With (A.9) to
(A.21) we get from (3.10) and (3.11) for the tensorial pomeron

M2→3
λaλb→λ1λ2M

|IPIP ∼= −2s (3β IPNN)
2 F1(t1) F1(t2) FIPIPM(t1, t2)

×M0

m2
M

(

g′IPIPM + g′′IPIPM
1
M2

0
~p1⊥ ·~p2⊥

)

×
(

−is13α′IP
)αIP(t1)−1 (−is23α′IP

)αIP(t2)−1

×δλ1λa
δλ2λb

, (3.17)
M2→3

λaλb→λ1λ2M̃
|IPIP ∼= −(3β IPNN)

2 F1(t1) F1(t2) FIPIPM̃(t1, t2)

× 1
m2

M̃

[ g′
IPIPM̃

M0
+

g′′
IPIPM̃

sM3
0

(

(q1, p2 + pb)(q2, p1 + pa)− (q1, q2)(p1 + pa, p2 + pb)
)]

×εµνρσ(p1 + pa)
µ(p2 + pb)

ν(q1 − q2)
ρkσ

×
(

−is13α′IP
)αIP(t1)−1 (−is23α′IP

)αIP(t2)−1

×δλ1λa
δλ2λb

∼= −4s (3β IPNN)
2 F1(t1) F1(t2) FIPIPM̃(t1, t2)

× 1
m2

M̃
M0
|~p1⊥||~p2⊥| sin φpp

(

g′
IPIPM̃

+ g′′
IPIPM̃

2
M2

0
|~p1⊥||~p2⊥ | cos φpp

)

×
(

−is13α′IP
)αIP(t1)−1 (−is23α′IP

)αIP(t2)−1

×δλ1λa
δλ2λb

. (3.18)

For the vectorial pomeron we get in this limit from (3.13) and (3.16) the expressions (3.17) and
(3.18), respectively, but with the replacements:

g′IPIPM →
2m2

M

M2
0

g′IPV IPVM , g′′IPIPM →
2m2

M

M2
0

g′′IPV IPVM
, (3.19)

g′
IPIPM̃

→
m2

M̃

4M2
0
g′
IPV IPV M̃

, g′′
IPIPM̃

→ 0 . (3.20)

We see that for the vectorial pomeron the term ∝ cosφpp sin φpp in (3.18) is absent.
Going now from high to intermediate collision energieswemust expect besides pomeron-

pomeron fusion also reggeon-pomeron (pomeron-reggeon) and reggeon-reggeon fusion to be-
come important; see Fig.3.1. The relevant scales for these non-leading terms should be given
by the subenergies squared s13 and s23 in (3.2). We have to consider for the first non-leading
contributions those from the Regge trajectories with intercept αIR(0) ≈ 0.5, that is, the f2, a2, ω
and ρ trajectories which we shall denote by f2IR, a2IR, ωIR and ρIR, respectively. In [13, 203] effec-
tive propagators for these reggeons and reggeon-proton-proton vertices are given. The C = +1
reggeons f2IR and a2IR are treated as effective tensor exchanges, the C = −1 reggeons ωIR and ρIR

as effective vector exchanges.
To give an example we discuss the contribution of ωIRωIR-fusion to the production of a

pseudoscalar meson M̃; see Fig.3.1 with IR = ωIR and M→ M̃. The effective ωIR propagator and
the ωIRpp vertex are given in [13, 203] as follows:

• ωIR propagator

i∆
(ωIR)
µν (s, t) = i gµν

1
M2
−

(

−isα′IR
)αIR(t)−1 (3.21)

with the parameters of the Regge trajectory (2.12), see [114]. In this calculations we use
α′IR = 0.9 GeV−2 and the mass scale M− = 1.41 GeV.
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• ωIRpp vertex

iΓ
(ωIRpp)
µ (p′, p) = −i gωIRpp F1

(

(p′ − p)2
)

γµ , (3.22)

where gωIRpp = 8.65.

For the ωIRωIRM̃ vertex we shall make an ansatz in complete analogy to (3.14), (3.15) for
the vectorial pomeron. We get then

iΓ
(ωIRωIR→M̃)
µν (q1, q2) = i

gωIRωIRM̃

2M0
εµνρσq

ρ
1q

σ
2 FωIRωIRM̃

(q21, q
2
2) , (3.23)

where gωIRωIRM̃
is a dimensionless coupling constant.

Using (3.21) to (3.23) the Born amplitude for the ωIRωIR-fusion giving a pseudoscalar
meson M̃ can be parametrised as

M2→3
λaλb→λ1λ2M̃

|ωIRωIR
= (gωIRpp)

2 F1(t1) F1(t2) FωIRωIRM̃
(t1, t2)

gωIRωIRM̃

2M0

×ū(p1,λ1)γ
µ1u(pa,λa)

×gµ1ν1 (M−)
−2 (−is13α′IR

)αIR(t1)−1

×ǫν1ν2ρσ q1ρq2σ

×gν2µ2 (M−)
−2 (−is23α′IR

)αIR(t2)−1

×ū(p2,λ2)γ
µ2u(pb,λb) . (3.24)

At even lower energies, for s13 and s23 near the threshold value sthr = (mp + mM̃)2,
respectively sthr = (mp + mM)2 for a 0++ meson M, the exchange of reggeons in Fig.3.1 should
be replaced by particle exchanges. As an example we give the amplitudes for η and η′ production
at low energies

√
s13 and

√
s23. It is known from the low energy phenomenology that both ρρ and

ωω mesons couple to η and η′ mesons. The ωωM̃ vertex required for constructing the meson-
exchange current is derived from the Lagrangian densities 2

LωωM̃(x) =
gωωM̃

2mω

[

∂µων(x)
] [

∂ρωσ(x)
]

εµνρσ χ̃(x) (3.25)

and reads

iΓ
(ωω→M̃)
µν (q1, q2) = i

gωωM̃

mω
εµνρσq

ρ
1q

σ
2 FωωM̃(q21, q

2
2) . (3.26)

The Born amplitude for the ωω-fusion giving M̃ = η′ or η can be written as

M2→3
λaλb→λ1λ2M̃

|ωω= (gωpp)
2 Fω(t1) Fω(t2) FωωM̃(t1, t2)

gωωM̃

mω

×ū(p1,λ1)γ
µ1u(pa,λa)

×−gµ1ν1 + q1µ1q1ν1/m
2
ω

t1 −m2
ω

ǫν1ν2ρσ q1ρq2σ
−gν2µ2 + q2ν2q2µ2/m

2
ω

t2 −m2
ω

×ū(p2,λ2)γ
µ2u(pb,λb) . (3.27)

The coupling constants gωωη ′ = 4.9 [217,219], gωωη = 4.84 [218,220] are known from low energy
phenomenology. In the present calculations we take the ωpp coupling constant gωpp = 10. Here
we use form factors FωωM̃(t1, t2) = Fω(t1) Fω(t2) for both exponential (B.25) or monopole (B.24)
approaches. At larger subsystem energies squared, s13, s23 ≫ sthr , one should use reggeons

2The Lagrangian (3.25) is as given in (2.11) of [217] and (A.11b) of [218] taking into account that we use the opposite
sign convention for εµνρσ; see after (3.2).
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rather than mesons. The “reggeization” of the amplitude given in Eq. (3.27) is included here only
approximately by a factor assuring asymptotically correct high energy dependence

F =

(

s13
sthr

) 2
π arctan[(s13−sthr)/Λ2

thr](αIR(t1)−1) ( s23
sthr

) 2
π arctan[(s23−sthr)/Λ2

thr](αIR(t2)−1)
, (3.28)

where Λthr = 1 GeV and αIR(0) = 0.5 and α′IR = 0.9 GeV−2.

3.2 Existing experimental data

A big step in the investigation of central meson production process (3.1) was taken by
the WA91 and WA102 Collaborations, which reported remarkable kinematical dependences and
different effects; see Ref. [90, 91, 115, 212–214, 221]. The WA102 experiment at CERN was the first
to discover a strong dependence of the cross section on the azimuthal angle between the mo-
menta transferred to the two protons, a feature that was not expected from standard pomeron
phenomenology. This result inspired some phenomenological works [93–95] pointing to a pos-
sible analogy between the pomeron and vector particles as had been suggested in [113, 222–228]
(see also chapter 3.7 of [114]).

Close and his collaborators have even proposed to use transverse momentum correla-
tions of outgoing protons as a tool to discriminate different intrinsic structures of the centrally
produced object (“glueball filter”); see [92–95]. In particular, the production of scalar mesons
such as f0(980), f0(1500), f0(1710) was found to be considerably enhanced at small dP⊥, while
the production of pseudoscalars such as η, η′ at large dP⊥; see Fig.3 of [115]. Here dP⊥ = |d~P⊥|
with d~P⊥ the difference of the transverse momenta of the two outgoing protons in (3.1); see (A.5).
In Ref. [90,115] a study was performed of resonance production rates as a function of dP⊥. It was
observed that all the undisputed qq̄ states (i.e. η, η′, f1(1285) etc.) are suppressed as dP⊥ → 0,
whereas the glueball candidates, e.g. f0(1500), f2(1950) are prominent. It is also interesting
that the f1(1420) state disappears at small dP⊥ relative to large dP⊥. As can be seen from [115]
the ρ0(770), f2(1270), and f ′2(1525) mesons are produced preferentially at large dP⊥ and their
cross sections peak at φpp = π, i.e. the outgoing protons are on opposite sides of the beam. 3

In contrast, for the ’enigmatic’ f0(980), f0(1500) and f0(1710) states the cross sections peak at
φpp = 0. So far, no dynamical explanation of this empirical observation has been suggested, so
the challenge for theory is to understand the dynamics behind this “glueball filter”.

In Ref. [152] the study of the |t| = |t1 + t2| dependence of the resonances observed in
the π+π− and K+K− mass spectra at

√
s = 23.8 GeV was considered. It has been observed

that ρ(770), φ(1020), f2(1270) and f ′2(1525) resonances are produced more at the high-|t| region
(|t| > 0.3 GeV2) and at low |t| their signals are suppressed. The suppression of the ρ and f2(1270)
signals in the low-|t| region is also present at

√
s = 12.7 GeV for the π+p → π+(π+π−)p reac-

tion; see [152]. In addition, the dP⊥, φpp and |t| distributions observed in the analysis of the π+π−

final state for the f0(1370) and f0(1500)mesons are similar to what was found in the π+π−π+π−

channel [91].
The ratios of the experimental cross sections for the different mesons at

√
s = 29.1 GeV

and 12.7 GeV has also been determined, see Table 3.1. Moreover, the WA76 Collaboration re-
ported that the ratio of the ρ0(770) cross section at 23.8 GeV and 12.7 GeV is 0.44± 0.07; cf. [115].

3Here φpp is the azimuthal angle between the momentum vectors of the outgoing protons; see (A.4).

Table 3.1: Experimental results for the ratios of the cross sections for the different mesons at√
s = 29.1 GeV and 12.7 GeV.

η′ ρ(770) f0(980) f0(1500) f2(1270)
σ(
√
s=29.1GeV)

σ(
√
s=12.7GeV)

0.72 ± 0.16 [214] 0.36 ± 0.05 [90] 1.28 ± 0.21 [90] 1.07 ± 0.14 [90] 0.98 ± 0.13 [90]
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Since the I = 1 states cannot be produced by pomeron-pomeron fusion, the ρ meson signal
decreases at high energy. However, large enhancement of the ρ signal at

√
s = 29.1 GeV and

strong correlation between the directions of the outgoing protons have been observed [212, 221].
Similarly, in the case of the ω meson production, where some ’non-central’ mechanisms are pos-
sible [5], the cross section is more than twice larger than for the f0(1500)meson, the lightest scalar
glueball candidate [1, 115].

We turn now to our present calculations of cross sections and distributions for the cen-
tral production reaction (3.1) with scalar and pseudoscalar mesons.

3.3 Model results

Now we wish to compare results of our calculations with existing experimental data.
Theoretical predictions for production of various JPC mesonic states for RHIC, Tevatron and
LHC, with parameters fixed from the fit to the WA102 experimental data, can then be easily
done.

3.3.1 Scalar meson production

We start with discussing the WA102 data at
√
s = 29.1 GeV where total cross sections

are given in Table 1 of Ref. [115]. We show these cross sections for the mesons of interest to
us in Table 3.2. We assume that here the energy is high enough that we can consider only
pomeron-pomeron-meson (IPIPM) fusion. We have then determined the corresponding IPIPM
coupling constants by approximately fitting the results of our calculations to the total cross sec-
tions given in Table 3.2 and the shapes of experimental differential distributions (specific details
will be given when discussing differential distributions below). The results depend also on the
pomeron-pomeron-meson form factors (B.21), as discussed in Appendix B, which are not well
known, in particular for larger values of t. In Table 3.3 we show our results for these IPIPM
coupling constants for the tensorial and vectorial pomeron ansätze. The figures in bold face rep-
resent our “best” fit. We show the resulting total cross sections, from the coupling g′IPIPM alone,
from g′′IPIPM alone, and from the total which includes, of course, the interference term between
the two components. The column “no cuts, total” has to be compared to the experimental re-
sults shown in Table 3.2. For the cross section with the cuts in |t1t2| only normalised differential
distributions are available; see below. Thus, our results for the corresponding cross sections are
predictions to be checked in future experiments.

In Fig.3.3 we present our result for the integrated cross sections of the exclusive f0(980)
(left panel) and f0(1500) (right panel) scalar meson production as a function of centre-of-mass
energy

√
s. For this calculation we have taken into account pion-pion fusion and pomeron-

pomeron fusion; see Fig.3.1. The ππ-fusion mechanism has been discussed in Section 1.4.1 and
in Ref. [1]. We see that at low energy the ππ-fusion contribution dominates, i.e. grows quickly
from the threshold, has a maximum at

√
s ≈ 5− 7 GeV and then slowly drops with increasing

energy. This contribution was calculated with monopole vertex form factor (B.24) with param-
eters ΛπNN = 0.8 GeV, ΛππM = 1 GeV (the lower line) and ΛπNN = 1.2 GeV, ΛππM = 1 GeV
(the upper line). In this calculation the coupling constants were calculated from the correspond-
ing partial decay width (1.28) (g f0(1500)ππ = 1.4 GeV and g f0(980)ππ = 1.55 GeV). The difference
between the lower and upper curves represents the uncertainties on the pion-pion component.
At intermediate energies other exchange processes such as the pomeron- f2IR, f2IR-pomeron and
f2IR- f2IR exchanges are possible. For the f2IRpp vertex and the f2IR exchange effective propagator
we shall make an ansatz in complete analogy to (B.1) and (B.3) for the tensorial pomeron, respec-
tively, with the coupling constant g f2IRpp = 11.04 and the trajectory as (2.12); see [13, 203]. The
f2IR f2IR f0(980) and f2IR IPT f0(980) vertices should have the general structure of the IPT IPT f0(980)
vertex (B.20), but, of course, with different and independent coupling constants. In panel (c) we
show results with IPT IPT (black solid line (1)) and f2IR f2IR (violet solid line (3)) exchanges, obtained
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Table 3.2: Experimental results for total cross sections of various mesons in pp collisions at
√
s =

29.1 GeV; from Table 1 of Ref. [115].
η η′ f0(980) f0(1370) f0(1500) f0(1710) f0(2000)

σ(µb) 3.86 ± 0.37 1.72 ± 0.18 5.71 ± 0.45 1.75 ± 0.58 2.91 ± 0.30 0.25 ± 0.07 3.14 ± 0.48

Table 3.3: The values of the pomeron-pomeron-meson coupling constants of the two models
of the pomeron exchanges are approximately fitted to reproduce the experimental total cross
sections from Table 3.2 and shapes of differential distributions of the WA102 data as discussed
below. The resulting cross sections (in µb) for scalar meson central production at

√
s = 29.1 GeV

without cuts and with cuts in |t1t2| are also shown. The figures in bold face represent our “best
fit” values for the IPIPM coupling constants.

σ (µb) at
√
s = 29.1 GeV

Vertex g′IPIPM g′′IPIPM no cuts |t1t2| 6 0.01 GeV4 |t1t2| > 0.08 GeV4

(0, 0) term (2, 2) term (0, 0) (2, 2) total (0, 0) (2, 2) total (0, 0) (2, 2) total
IPT IPT f0(980) 0.788 4 5.73 1.16 5.71 3.56 0.12 3.51 0.21 0.41 0.3

0.75 5.5 5.19 2.19 5.83 3.22 0.23 3.23 0.19 0.77 0.55
IPV IPV f0(980) 0.27 0.8 5.37 0.48 5.72 2.85 0.04 2.87 0.34 0.2 0.49

0.26 1.1 4.98 0.9 5.71 2.64 0.07 2.69 0.31 0.38 0.63
0.24 1.5 4.24 1.67 5.7 2.25 0.12 2.36 0.27 0.71 0.9
0.2 2 2.94 2.97 5.69 1.56 0.22 1.76 0.19 1.27 1.36

IPT IPT f0(1500) 1.22 6 2.69 0.53 2.9 1.55 0.05 1.56 0.12 0.19 0.21
1 10 1.81 1.47 2.83 1.04 0.14 1.13 0.08 0.53 0.47

IPV IPV f0(1500) 0.208 0.725 2.64 0.32 2.9 1.37 0.02 1.39 0.17 0.13 0.28
0.185 1.22 2.08 0.89 2.91 1.09 0.06 1.14 0.13 0.38 0.48
0.164 1.5 1.64 1.35 2.91 0.85 0.1 0.94 0.1 0.57 0.64

IPT IPT f0(1370) 0.81 – 1.75 – – 1.02 – – 0.07 – –
IPV IPV f0(1370) 0.165 – 1.75 – – 0.91 – – 0.11 – –

for the coupling constants (g′IPIPM, g′′IPIPM) = (0.788, 4) and (g′f2IR f2IRM, g′′f2IR f2IRM) = (9.5, 80), respec-
tively. We see that fixing the IPT or f2IR contributions to the point at

√
s = 29.1 GeV the IPT curve is

below, the f2IR curve above the experimental point at
√
s = 12.7 GeV. Clearly, we have to include

all IPT and f2IR exchanges. The corresponding curve (2) reproduces the experiment. The indi-
vidual contributions are also shown in Fig.3.3(c), corresponding to (g′IPIPM, g′′IPIPM) = (0.47, 2.4),
(g′IP f2IRM

, g′′IP f2IRM
) = (g′f2IR IPM, g′′f2IR IPM) = (0.63, 3.2), (g′f2IR f2IRM, g′′f2IR f2IRM) = (0.79, 3.9). In panel (d)

we show results at larger c.m. energies
√
s for two parameter sets of the IPT IPT f0(1500) coupling

constants (g′IPIPM, g′′IPIPM) = (1.22, 6) (the black solid line) and (g′IPIPM, g′′IPIPM) = (1, 10) (the blue
solid line). The resulting cross sections with cuts in rapidity of f0(1500) meson are also shown.

In Fig.3.4 we show the distribution in azimuthal angle φpp between outgoing protons
for central exclusive f0(1370) meson production by the fusion of two tensor (solid line) or two
vector (long-dashed line) pomerons at

√
s = 29.1 GeV. The results of the two models of pomeron

exchanges are compared with the WA102 data. The tensorial pomeron with the (l, S) = (0, 0)
coupling alone already describes the azimuthal angular correlation for f0(1370) meson reason-
able well. The vectorial pomeron with the (l, S) = (0, 0) term alone is disfavoured here. The
preference of the f0(1370) for the φpp ≈ π domain in contrast to the enigmatic f0(980) and
f0(1500) scalars has been observed by the WA102 Collaboration [90].

The distributions in azimuthal angle φpp between the outgoing protons for the central
exclusive production of the f0(980) and f0(1500) mesons at

√
s = 29.1 GeV are shown in Fig.3.5

and 3.6, respectively. We compare results obtained by the fusion of two pomerons (the tensor
pomeron exchanges are shown in panels (a) - (c) and the vector pomeron exchanges are shown
in panels (d) - (f)) with the data measured by the WA102 Collaboration in [90] (the black filled
points) and [214] (the blue circle points). In the left panels we show the φpp distribution with-
out experimental cuts, the middle panels show the φpp distribution for |t1t2| 6 0.01 GeV4 and
the right panels show the corresponding distribution for |t1t2| > 0.08 GeV4. Note that in [90]
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Figure 3.3: The integrated cross section as a function of the proton-proton center-of-mass energy for the
pp → pp f0(980) (panel (a)) and pp → pp f0(1500) (panel (b)) reactions. We show data points obtained
by the WA102 experiment [90, 115]. The two long-dashed lines peaked at

√
s ≈ 5− 7 GeV correspond

to pion-pion fusion contribution. The pomeron-pomeron fusion dominates at higher energies. In panels
(a) and (b) we show the individual contributions to the cross section with (l, S) = (0, 0) (short-dashed
line) and (l, S) = (2, 2) (dotted line). In panels (a) and (b) we show results when only the IPT IPT-fusion is
included. In panel (c) the black solid line (1) represents the IPT IPT-fusion, the blue solid line (2) correspond
to the results with tensor pomeron and f2IR exchanges (the long-dashed, dash-dotted and dotted lines
represent the IPT IPT, IPT f2IR and f2IR f2IR contributions, respectively). The violet solid line (3) represents the
f2IR f2IR-fusion alone normalized to the total cross section from [115] as given in our Table 3.2. Panel (d)
shows the IPT IPT contributions obtained for two parameter sets of (l, S) components (see Table 3.3 and 3.6)
normalized to the data point at

√
s = 29.1 GeV.

and [214] only normalised distributions are given. We have multiplied these distributions with
the value of the total cross sections from Table 3.2 for panels (a) and (d). For panels (b), (c), (e), and
(f) we have multiplied the normalised data distributions given in [214] with the cross sections ob-
tained from our calculations in the tensorial and vectorial pomeron models, respectively; see Ta-
ble 3.3. These normalisation factors are different for the IPT and IPV cases. Therefore, also the data
shown in panels (b) and (e), as well as in (c) and (f), are different. Also note that the difference
in the data from [90] and [214] shown in panels (a) and (d) has an experimental origin. Corre-
spondingly, in the panels (a) the black filled and the blue circle experimental points are described
by the tensorial pomeron exchanges for different values of (l, S). For the f0(980) (Fig.3.5(a)) we
obtain (g′IPIPM , g′′IPIPM) = (0.788, 4) (the black solid line) and (g′IPIPM, g′′IPIPM) = (0.75, 5.5) (the blue
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Figure 3.4: The distribution in azimuthal angle between the outgoing protons for central exclusive
f0(1370)meson production by a fusion of two tensor (solid line) and vector (long-dashed line) pomerons
at
√
s = 29.1 GeV. The WA102 experimental data points from [90] have been normalized to the total cross

section from [115] as given in our Table 3.2. The corresponding IPIPM coupling constants are given in
Table 3.3.

solid line), respectively. The values of the couplings for f0(1500) production shown in Fig.3.6(a)
are (g′IPIPM, g′′IPIPM) = (1.22, 6) (the black solid line) and (g′IPIPM, g′′IPIPM) = (1, 10) (the blue solid
line), respectively. From our results we conclude that both (l, S) contributions are necessary if
the distributions in azimuthal angle are to be described accurately. The (l, S) = (2, 2) contribu-
tion increases the cross section at large φpp while decreasing it for small φpp. The panels (d) - (f)
show the results obtained for two vector pomerons coupling to the mesons. The curves repre-
sent contributions from different (l, S) couplings collected in Table 3.3. In the panel (d) of Fig.3.5
( f0(980) production) the black long-dashed line corresponds to (g′IPIPM, g′′IPIPM) = (0.27, 0.8) and
the blue long-dashed line to (g′IPIPM , g′′IPIPM) = (0.24, 1.5). For f0(1500) production shown in panel
(d) of Fig.3.6 the black long-dashed line corresponds to (g′IPIPM, g′′IPIPM) = (0.208, 0.725), the blue
long-dashed line to (g′IPIPM, g′′IPIPM) = (0.164, 1.5). With these values we are able to describe well
the black filled and blue circle experimental points, respectively. For panels (e) and (f) we have
multiplied the normalised data from [214] with the cross sections obtained from our calcula-
tions. In panels (g) - (i) the results obtained with the two models of pomeron are compared.
From Fig.3.5 and 3.6 we conclude that, especially for |t1t2| > 0.08 GeV4, the tensorial pomeron
ansatz is in better (qualitative) agreement with the data than the vectorial ansatz. But let us recall
that for panels (b), (c), (e), and (f) the normalisation is taken from the models themselves for lack
of experimental information.

At present we have calculated only so-called bare amplitudes which are subjected to
absorption corrections. The absorption effects lead usually to a weak energy dependent damping
of the cross sections. At the energy of the WA102 experiment (

√
s = 29.1 GeV) the damping

factor is expected to be at most of the order of 2 and should increase with rising collision energy.
The absorption effects both in initial and final states have been considered in Ref. [205]. It was
stressed in Ref. [205] that at the WA102 energies absorptive effects are not so significant and the
azimuthal angle dependence looks like the “bare” one.

In Fig.3.7 we show the distributions in transferred four-momentum squared t between
the initial and final protons at

√
s = 29.1 GeV for f0(980), f0(1370), and f0(1500) mesons. While

for f0(1370) the (l, S) = (0, 0) coupling is sufficient (see discussion of azimuthal correlations
in Fig.3.4) for f0(980) and f0(1500) both the (0, 0) and (2, 2) couplings are included. A different
structure of the central vertex for vector and tensor leads to a difference in t distribution; see pan-
els (a) - (c). The difference seems, however, too small to be verified experimentally. In addition,
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Figure 3.5: The distribution in azimuthal angle between outgoing protons for the central exclusive
f0(980) meson production by the fusion of both tensor (panels (a) - (c)) and both vector (panels (d) -
(f)) pomerons at

√
s = 29.1 GeV. Results in the left panels and the WA102 data points from [90] (black

filled points) and from [214] (blue open points) have been normalized to the value of the total cross sec-
tion given in Table 3.2, obtained from Ref. [115]. The φpp distributions have also been analysed in two
intervals of |t1t2| and compared with experimental data. These data are obtained from [214] with the
normalisation calculated in the tensorial and vectorial pomeron models themselves. We show in panels
(a) - (c) the results in the tensorial pomeron model. For tensorial pomeron the individual contributions to
the cross sections with (l, S) = (0, 0) (short-dashed line) and (l, S) = (2, 2) (dotted line) are also shown.
Panels (d) - (f) show the results obtained for the vectorial pomeron model. In panels (g) - (i) the results
obtained in the two models of pomeron are compared.

in panels (a) - (c) we compare distributions obtained for two types of pomeron-pomeron-meson
form factors of the exponential form (B.23) and the monopole form (B.21). The calculations with
the exponential form factor (B.23) and for the cut-off parameter Λ2

E = 0.6 GeV2 give a sizeable
decrease of the cross sections at large |t|. In panel (d) we show contributions for two tensor
pomerons (the line (1)) and f2IR reggeons (the line (3)) exchanges alone, since the contribution
with tensorial pomeron and f2IR reggeon is included as well (the line (2)). We conclude that the
f2IR f2IR component alone does not describe the WA102 data. In panels (e) and (f) we show a
decomposition of the t-distribution into (0, 0) and (2, 2) components for the tensor pomeron ex-
changes. At t = 0 the (2, 2) component vanishes, in contrast to the (0, 0) component. Therefore,
the latter dominates at small |t|. As previously, we show lines for the two parameter sets ob-
tained from the fits to the two different experimental azimuthal angular correlations (see panels
(a) in Fig.3.5 and 3.6).
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Figure 3.6: Same as Fig.3.5, but for the central exclusive f0(1500)meson production.

In Fig.3.8 we present different differential observables (in proton and meson transverse
momenta as well as in the so-called “glueball filter variable” dP⊥) at

√
s = 29.1 GeV for the cen-

tral exclusive production of three different scalar mesons, f0(980) (left panel), f0(1500) (middle
panel) and f0(1370) (right panel). As explained in the figure caption we show results for both
tensor (solid line) and vector (long-dashed line) pomerons as well as the individual spin (l, S)
contributions for tensor pomeron only. The coherent sum of the (0, 0) and (2, 2) components is
shifted to smaller dP⊥ with respect to the (0, 0) component alone. This seems to be qualitatively
consistent with the WA102 Collaboration result presented in Table 2 of Ref. [115]. Further stud-
ies how different scalar mesons are produced as a function of dP⊥ will be presented in the next
section; see discussion of Fig.3.18. For meson transverse momentum one can see a shift in the
opposite direction.

In Fig.3.9 we show distributions in transverse momenta of protons, mesons and in the
dP⊥ for the f0(980) meson production. The three tensorial scenarios of meson production, as in
Fig.3.7 (b), are presented. One conclusion is that the f2IR f2IR contribution, indicated in the figure
as curve (3), does not give the expected dP⊥ distribution as in Table 2 of Ref. [115].

In Fig.3.10 we show distributions in rapidity of f0(980) and f0(1500) mesons and the
corresponding distributions in pseudorapidity ηM at

√
s = 29.1 GeV. In these observables both

(l, S) components and their coherent sum have similar shape. Theminimum in the pseudorapid-
ity distributions can be understood as a kinematic effect; see Appendix A.1. In addition, for the
f0(980) meson production we have included the tensorial f2IR contributions; see the central pan-
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Figure 3.7: The t distributions for f0(980) (panels (a), (d) and (e)), f0(1370) (panel (b)), and f0(1500)
(panels (c) and (f)) meson production at

√
s = 29.1 GeV. The WA102 experimental data points from [90]

have been normalized to the value of the total cross sections given in Table 3.2 as obtained from [115].
In panels (a) - (c) the results for the fusion of two tensor (solid line) and two vector (long-dashed line)
pomerons are shown. The lower lines correspond to calculations with the exponential form factor (B.23)
and for the cut-off parameter Λ2

E = 0.6 GeV2, the upper lines to calculations with the monopole form
factor (B.21) for Λ2

0 = 0.5 GeV2. In panel (d) the black solid line (1) corresponds to the IPT IPT-fusion
only, the blue solid line (2) corresponds to the tensor pomeron and f2IR exchanges (the long-dashed, dash-
dotted and dotted lines present the IPT IPT, IPT f2IR ( f2IR IPT) and f2IR f2IR contributions, respectively), and the
violet solid line (3) presents the f2IR f2IR-fusion alone normalized to the integrated cross section from [115].
In panels (e) and (f) we show the individual spin contributions to the cross sections with (l, S) = (0, 0)
(short-dashed line) and (l, S) = (2, 2) (dotted line) as well as lines for the two sets of couplings fixed
previously by comparison with the experimental azimuthal angular correlations (see panels (a) in Fig.3.5
and 3.6).

els. The IPT IPT and the f2IR f2IR exchanges contribute at midrapidity of the meson, while the IPT f2IR
and f2IR IPT exchanges at backward and forward meson rapidity, respectively. The interference of
these components in the amplitude produces an enhancement of the cross section at large meson
(pseudo)rapidity.

In Fig.3.11 we show the distribution in Feynman-xF for the central exclusive f0(980)
meson (the only available experimentally) production at

√
s = 29.1 GeV. The good agreement of

the IPT IPT-fusion result (see the solid line in the left panel) with the WA102 data suggests that for
the tensor pomeron model the pomeron-reggeon and reggeon-reggeon contributions are small.

Up to now we have observed some differences of the results for (l, S) = (0, 0) and
(2, 2) couplings. The differences can be made better visible in two-dimensional distributions. In
Fig.3.12 we show, as an example, two-dimensional distributions in (dP⊥, φpp). We show results
for the fusion of two tensor (left panels) and two vector (right panels) pomerons. In panels (a)
and (b) we show the results for both (l, S) components added coherently. In panels (c, d) and (e, f)
we show the individual components for (l, S) = (0, 0) and (2, 2), respectively. The distributions
for both cases are very different. By comparing panels (a) and (b) to panels (c, e) and (d, f),
respectively, we see that the interference effects are rather large.
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Figure 3.8: The different differential observables for the central exclusive production of f0(980) (left
panel), f0(1500) (central panel) and f0(1370) (right panel) mesons by the fusion of two tensor (solid line)
and two vector (long-dashed line) pomerons at

√
s = 29.1 GeV. The results have been normalized to the

value of the total cross sections given in Table 3.2. For the tensorial pomeron case we show the individual
spin contributions to the cross sections with (l, S) = (0, 0) (short-dashed line) and (l, S) = (2, 2) (dotted
line).

3.3.2 Pseudoscalar meson production

We turn now to the presentation of our results for pseudoscalarmesons. It is known that
the η and η′ mesons, the isoscalar members of the nonet of the lightest pseudoscalar mesons,
play an important role in the understanding of various aspects of nonperturbative effects of
QCD; see for instance [230]. The η′-meson being dominantly (α |ss̄〉 + β |gg〉) state, with pres-
ence of a sizeable gluonic component [231], is particularly interesting for our study as here the
pomeron-pomeron fusion should be the dominant mechanism in central production. For central
production of the η meson the situation may be more complicated and requires consideration
of additional f2IR reggeon exchanges [216, 232]. In contrast to η′ production, no good fit with
(tensorial or vectorial) pomeron-pomeron component only is possible for the η meson produc-
tion. Therefore we have decided to include in addition f2IR IP, IP f2IR and f2IR f2IR contributions
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Figure 3.9: Different differential observables for the central exclusive production of f0(980) meson at√
s = 29.1 GeV. The results have been normalized to the value of the total cross section given in Table 3.2.

The black solid line (1) corresponds to the IPT IPT-fusion, the blue solid line (2) to the results with tensor
pomeron and f2IR exchanges (the long-dashed, dash-dotted and dotted lines present the IPT IPT, IPT f2IR, and
f2IR f2IR contributions, respectively), and the violet solid line (3) presents the f2IR f2IR-fusion alone normal-
ized to the integrated cross section from [115].
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Figure 3.10: Rapidity and pseudorapidity distributions of f0(980) and f0(1500) produced by the fusion
of two tensor (solid line) and two vector (long-dashed line) pomerons at

√
s = 29.1 GeV. The results

have been normalized to the value of the total cross sections given in Table 3.2. For tensorial pomeron
the individual contributions of (l, S) = (0, 0) (short-dashed line), (l, S) = (2, 2) (dotted line), and their
coherent sum (solid line) are shown. In the center panels we show the results for the f0(980) meson
production included the tensorial f2IR contributions.

into our analysis. 4 The corresponding coupling constants were roughly fitted to existing experi-
mental differential distributions (some specific details will be given when discussing differential
distributions); see Table 3.4. We recall from the discussion in Section 3.1.2 that for the tensorial

4In addition some other ’non-central’ mechanisms are possible [5, 9, 10]. One of them is diffractive excitation of
N(1535) JP = 1/2− which decays into the p + η channel with branching fraction of about 50 % [96]. The issue of
diffractive excitation of nucleon resonances is so far not well understood and requires further studies.
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Figure 3.11: The xF,M distribution for the central exclusive f0(980)meson production at
√
s = 29.1 GeV.

The WA102 experimental data points from [229] have been normalized to the values of the total cross
section given in Table 3.2. In the left panel we show the results obtained by the fusion of two tensor
pomerons. In addition, the individual (l, S) = (0, 0) and (2, 2) contributions denoted by the short-dashed
and dotted lines, respectively, are presented. In the right panel the black solid line (1) corresponds to
the IPT IPT-fusion, the blue solid line (2) to the results with tensor pomeron and f2IR exchanges (the long-
dashed, dash-dotted and dotted lines represent the IPT IPT, IPT f2IR and f2IR f2IR (enlarged by a factor 20)
contributions, respectively), and the violet solid line (3) represents the f2IR f2IR-fusion contribution alone
normalized to the value of the total cross section given in Table 3.2.

Table 3.4: The values of the pomeron-pomeron-meson M̃ coupling constants of the twomodels of
the pomeron exchanges which are approximately fitted to reproduce the correct normalization,
see Table 3.2, and shapes of differential distributions of the WA102 experiment. In addition, the
cross sections (in µb) for the individual (l, S) contributions at

√
s = 29.1 GeV are shown.

Meson Exchanges g′
IPIPM̃

g′′
IPIPM̃

σ (µb) at
√
s = 29.1 GeV

M̃ (1, 1) term (3, 3) term (1, 1) (3, 3) total
η IPT IPT, IPT f2IR, f2IR IPT, f2IR f2IR 0.8, 2.45, 2.45, 2 1.4, 4.29, 4.29, 3.5 5.05 0.85 3.85

IPT IPT 2 2.25 4.83 0.55 3.85
IPV IPV 8.47 - 3.86 – –

η′ IPT IPT 2.61 1.5 1.86 0.05 1.71
IPV IPV 6.08 - 1.72 – –

pomeron two IPIPM̃ couplings, (l, S) = (1, 1) and (3, 3), are possible. For the vectorial pomeron
we have only (l, S) = (1, 1). As will be discussed below in addition to pomeron-pomeron fusion
the inclusion of secondary reggeons is required for a simultaneous description of dσ/dφpp, dσ/dt
and dσ/dxF experimental data for the η production.

In Fig.3.13 we present energy dependences of the cross sections for η (panels (a) and
(c)) and η′ (panels (b) and (d)) meson production. It was argued in Ref. [232] that f2IR-pomeron
and pomeron- f2IR exchanges could be important for both η and η′ central production. For com-
parison, we show the results where f2IR exchanges are included for η production. We observe
a large interference of different components in the amplitude (the long-dashed line denotes the
pomeron-pomeron component, the dash-dotted line – f2IR-pomeron (or pomeron- f2IR) compo-
nent, and the dotted line – f2IR f2IR component). In the diffractive mechanism we use vertex
form factor given by Eqs. (B.21) and (B.22). Our results have been normalized to the experi-
mental total cross sections given in Table 3.2 and take into account (see the dash-dotted line
in panels (a) and (b)) the limited Feynman-xF domain 0 6 xF,M 6 0.1 for the corresponding
data points; see [213]. Moreover, at lower energies we can expect large contributions from ωω
exchanges due to the large coupling of the ω meson to the nucleon. The dashed bottom and
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Figure 3.12: Distributions in (dP⊥, φpp) for the central exclusive f0(1500) meson production via the ten-
sorial (left panels) and vectorial (right panels) pomeron exchanges at

√
s = 29.1 GeV. The individual con-

tributions of (l, S) = (0, 0) (panels (c) and (d)) and (l, S) = (2, 2) (panels (e) and (f)) are shown separately.

upper lines at low energies represent the ωω-contribution calculated with the monopole (B.24)
and exponential (B.25) form factors, respectively. In the case of meson exchanges we use val-
ues of the cut-off parameters ΛE = ΛM = 1.4 GeV. We have taken rather maximal ΛE and ΛM
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in order to obtain an upper limit for this contribution. As explained in Section 3.1.2 at higher
subsystem squared energies s13 and s23 the meson exchanges are corrected to obtain the high
energy behaviour appropriate for reggeon exchange, cf. Eq. (3.28). In both panels (a) and (b)
in Fig. 3.13 the dotted line represents the ωIRωIR-contribution calculated with coupling constant
gωIRωIRM̃

= 60. Due to charge-conjugation invariance the η and η′ cannot be produced by ω-
pomeron exchange and isospin conservation forbids ρ-pomeron exchange. In the region of small
momentum transfer squared the contribution from other processes such as photon-(vector me-
son) and photon-photon fusion is possible [233], but the cross section is expected to be several
orders of magnitude smaller [105, 234] than for the double pomeron processes 5.

In Fig.3.14 we show the cross section as a function of the azimuthal angle φpp between
the transverse momentum vectors of the two outgoing protons; see (A.4). The vertex form factor
(B.21) was used in calculations. For tensor pomeron the strengths of the (l, S) = (1, 1) and (3, 3)
were adjusted to roughly reproduce the azimuthal angle distribution. The contribution of the
(1, 1) component alone is not able to describe the azimuthal angular dependence (see panel (b)).
For both models the theoretical distributions are somewhat skewed with respect to a simple
sin2(φpp) dependence as obtained e.g. from vector-vector-pseudoscalar coupling alone without
phase space effects. The small deviation in this case is due to phase space angular dependence.
The matrix element squared itself is proportional to sin2(φpp). For comparison, the dash-dotted
line in the panel (c) corresponds to γγ-fusion for the η′ production calculated as in [105].

In Fig.3.15 we present distribution in |t1| and |t2|, which are, of course identical. There-
fore we label them by |t|. As can be seen from panels (a) and (c) the results for the tensorial
exchanges give a better description of t distribution than the vector pomeron exchanges. The
t-dependence of η and η′ production is very sensitive to the form factor FIPIPM(t1, t2), cf. (B.21), in
the pomeron-pomeron-meson vertex.

In Fig.3.16 we present the dσ/dxF distribution. We see that η (panels (a) and (b)) and
η′ (panels (c) and (d)) meson distributions are peaked at xF,M ≈ 0, which is consistent with
the dominance of the pomeron-pomeron exchange. In the calculations we use the pomeron-
pomeron-meson couplings collected in Table 3.4. For the description of the η production in the
case of the tensorial pomeron the f2IR exchanges in the amplitude were included. In panel (a)
the solid line corresponds to the model with tensorial pomeron plus f2IR exchanges and the long-
dashed line to the model with vectorial pomeron. The enhancement of the η distribution at
larger values of xF,M can be explained by significant f2IR-pomeron and pomeron- f2IR exchanges.
As can be seen from panel (a) these contributions have maxima at xF,M 6= 0. The corresponding
couplings constants were fixed to differential distributions of the WA102 Collaboration [213]. In
panel (b) we show for the tensorial pomeron the individual contributions to the cross section
with (l, S) = (1, 1) (the short-dashed line), (l, S) = (3, 3) (the dotted line), and their coherent
sum (the solid line). In panel (c) we show the Feynman-xF distribution of the η′ meson and the
theoretical curves for IPT IPT and IPV IPV fusion, respectively. The diffractively scattered outgoing
protons are placed at xF ≈ ±1; see panel (d).

In Fig.3.17 we present distributions in meson transverse momentum p⊥,M and proton
transverse momentum p⊥,p. As already explained above for η meson production we include
in addition tensorial reggeon exchanges. Their individual contributions are shown in the left
panels. In addition, we show the individual spin contributions to the cross section with (l, S) =
(1, 1) (short-dashed line) and (l, S) = (3, 3) (dotted line). The coherent sum of (1, 1) and (3, 3)
tensorial components is shifted with respect to the (1, 1) vectorial component alone.

In Fig.3.18 we present the “glueball variable” dP⊥ distribution. Theoretical predictions
of dP⊥ seem to be qualitatively consistent with the WA102 data presented in Table 2 of Ref. [115].
We show results for the mesons of interest to us in Table 3.5. In addition, in Fig.3.18(d), the ratio
of production at small dP⊥ to large dP⊥ has been compared with the experimental results taken

5In Ref. [209] the authors considered glueballs and η′ production in semiclassical theory based on interrupted
tunneling (instantons) or QCD sphaleron production and predicted cross section (with the cut 0 6 xF,M 6 0.1)
σ(η′) ≈ 255 nb in comparison to the 588± 63 nb observed empirically [213].
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Figure 3.13: Cross section for the pp → ppη (panel a) and pp → ppη′(958) (panel b) reaction as a func-
tion of proton-proton center-of-mass energy

√
s. The experimental data are from the WA102 experiment

at
√
s = 29.1 GeV; see Table 3.2 obtained from [115], and for the Feynman-xF interval 0 6 xF,M 6 0.1 [213].

There is also a data point at
√
s = 12.7 GeV obtained from Table 3.1. The ωω-fusion contribution is im-

portant only at lower energies while tensorial pomeron fusion contribution dominates at higher energies.
In the diffractive mechanism we use vertex form factor (B.21) and the value of coupling constants col-
lected in Table 3.4. For the η meson production the tensorial contributions of IPIP, f2IR IP (IP f2IR) and f2IR f2IR
exchanges were included. Their coherent sum is shown by the solid line. For the η′ meson production
the solid line represents the cross section obtained via tensor pomeron exchanges only. For comparison,
in the panels (c) and (d), we show the individual contributions to the cross section with (l, S) = (1, 1)
(short-dashed line) and (l, S) = (3, 3) (dotted line).

from [115]; see also [90]. It can be observed that scalar mesons which could have a large ’gluonic
component’ have a large value for this ratio. The fact that f0(1370) and f0(1500) have different
φpp and dP⊥ dependences confirms that these are not simply J dependent phenomena. This is
also true for the J = 2 states, where the f2(1950) has a different φpp dependence compared to the
f2(1270) and f ′2(1525) states; see Fig.5 of [115]. The dP⊥ and φpp effects are in our present work
understood as being due to the fact that in general more than one coupling structure, IPIPM re-
spectively IPIPM̃, is possible. It remains a challenge for theory to predict these coupling structure
from calculations in the framework of QCD.

In Fig.3.19 we show two-dimensional distributions in (dP⊥, φpp) for the η (left panels)
and η′(958) (right panels) meson production in the fusion of two tensor pomerons. In panels
(a) and (b) we show the result for (l, S) components added coherently. In panels (c) - (d) and
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Figure 3.14: Differential cross section dσ/dφpp for the pp → ppη and pp → ppη′(958) reactions at√
s = 29.1 GeV. The WA102 experimental data from [213] have been normalized to the values of the total

cross sections given in Table 3.2. Panel (a) shows the results for η production. The solid line is the result
for the tensorial pomeron including two (l, S) couplings as well as f2IR IP, IP f2IR, and f2IR f2IR exchanges.
The red long-dashed line corresponds to vector pomeron exchange only and (l, S) = (1, 1) coupling. In
panel (b) the two (l, S) contributions from the tensorial pomeron exchanges and their total are shown. In
panel (c) we show the results for η′ production for the case of tensor and vector pomeron exchanges as
well as the γγ-fusion enlarged by a factor 104. Panel (d) shows the results for IPT IPT-fusion.

(e) - (f) we show the individual spin components for (l, S) = (1, 1) and (3, 3), respectively. By
comparing panels (a) - (f) we infer that the interference effects are rather large.

For completeness, differential distributions in the η or η′ rapidity and pseudorapidity
are shown in Fig. 3.20. As explained in the figure caption we show results for both tensor (solid
line) and vector (long-dashed line) pomerons as well as the individual spin (l, S) contributions
for tensorial case. For η production the f2IR exchanges in the amplitude were included in addition
which modify the yM and ηM distributions. The dip in the ηM distribution for |ηM| → 0 is a
kinematic effect; see Appendix A.1.
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Figure 3.15: Differential cross section dσ/d|t| for the pp → ppη (panels (a) and (b)) and pp → ppη′

(panels (c) and (d)) reactions at
√
s = 29.1 GeV. The WA102 experimental distributions from [213] have

been normalized to the values of the total cross sections given in Table 3.2. The solid line corresponds
to the model with tensorial pomeron while the dashed line to the model with vectorial pomeron. For
η production the f2IR exchanges were included in addition. In the present calculations we use vertex
form factor given by Eqs. (B.21) and (B.22). For comparison, in panel (d), we also show the results for
exponential form factor (B.23) and for Λ2

E = 0.7 GeV2.
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Figure 3.16: Differential cross section dσ/dxF,M for the pp → ppη (panels (a) and (b)) and pp → ppη′

(panels (c) and (d)) reactions at
√
s = 29.1 GeV. The WA102 experimental data [213] are shown for com-

parison and have been normalized to the values of the total cross sections given in Table 3.2. In the present
calculations we use vertex form factor (B.21) and two model of pomeron exchanges. In panel (a) the re-
sults for the tensorial pomeron and f2IR exchanges are shown; the pomeron-pomeron component peaks
at xF,M = 0 (the long-dashed line), the pomeron- f2IR ( f2IR-pomeron) peaks at backward (forward) xF,M,
respectively, and the coherent sum of pomeron- f2IR and f2IR-pomeron component effectively dominates
in the central region of xF,M (the short-dashed line). In panels (b) and (c) we show the individual contri-
butions to the cross section with (l, S) = (1, 1) (the short-dashed line), (3, 3) (the dotted line), and their
coherent sum (the solid line). The long-dashed line in panel (c) corresponds to the model with vectorial
pomeron. In panel (d) the xF distributions for η′ (at xF = 0) and for the protons (at xF → ±1) are shown
for the IPT IPT fusion.
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Figure 3.17: Differential cross sections dσ/dp⊥,M and dσ/dp⊥,p (the forward proton p1) for the central
exclusive η and η′ meson production at

√
s = 29.1 GeV. The solid line corresponds to the model with

tensorial pomeron while the dashed line to the model with vectorial pomeron. For η production the f2IR
exchanges in the amplitude were included in addition as discussed in the text. We show for the tensorial
case also the individual contributions to the cross section with (l, S) = (1, 1) (short-dashed line) and
(l, S) = (3, 3) (dotted line).

Table 3.5: Results of meson production as a function of dP⊥ expressed as a percentage of its
total contribution at the WA102 collision energy

√
s = 29.1 GeV. The numbers in parentheses are

obtained for second parameter set of (l, S) components, see Table 3.3, to describe the blue circle
points in Fig.3.5 and 3.6. In addition, the ratios of dσ/d(dP⊥6 0.2 GeV)

dσ/d(dP⊥> 0.5 GeV) are given. The experimental
numbers are from Table 2 of Ref. [115].

Meson Exchanges dP⊥ 6 0.2 GeV 0.2 6 dP⊥ 6 0.5 GeV dP⊥ > 0.5 GeV Ratio
η IPT and f2IR 3.0 46.8 50.1 0.06

IPT IPT 1.8 33.4 64.8 0.03
IPV IPV 1.1 21.0 77.8 0.01
exp. 6± 2 34± 2 60± 3 0.10± 0.03

η′ IPT IPT 1.4 28.3 70.4 0.02
IPV IPV 1.2 22.1 76.7 0.02
exp. 3± 2 32± 2 64± 3 0.05± 0.03

f0(980) IPT and f2IR 25.3 59.2 15.2 1.67
IPT IPT 22.7 (23.9) 57.9 (57.0) 19.3 (19.1) 1.18 (1.25)
IPV IPV 19.3 (21.6) 54.9 (56.4) 25.9 (21.9) 0.74 (0.99)
exp. 23± 2 51± 2 26± 3 0.88± 0.12

f0(1370) IPT IPT 15.5 49.0 35.5 0.44
IPV IPV 15.2 48.5 36.3 0.42
exp. 18± 4 32± 2 50± 3 0.36± 0.08

f0(1500) IPT IPT 22.5 (23.7) 57.8 (54.3) 19.7 (22.0) 1.15 (1.07)
IPV IPV 20.4 (22.4) 56.0 (54.9) 23.6 (22.7) 0.86 (0.99)
exp. 24± 2 54± 3 22± 4 1.05± 0.18
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Figure 3.18: Differential cross section dσ/d(dP⊥) for the central exclusive η (panels (a) and (c)) and η′

(panel (b)) mesons production at
√
s = 29.1 GeV. The WA102 experimental distributions from [213] have

been normalized to the values of the total cross sections from Table 3.2. Results for the tensorial and vec-
torial pomeron models are presented. For η production the f2IR exchanges in the amplitude were included
in addition. The (l, S) contributions to the differential cross sections are also shown. Panel (d) shows
the ratio of production at small dP⊥ to large dP⊥ for each pseudoscalar and scalar meson discussed here
and collected in Table 3.5. Experimental results for the ratio are taken from Table 2 of Ref. [115]. For the
f0(980) and f0(1500) meson production we show results obtained for the two sets of (l, S) contributions
fitted to the experimental azimuthal angular correlations data shown in Fig.3.5 and 3.6. For the f0(980)
and f0(1500) the filled points correspond to (g′IPT IPTM, g′′IPT IPTM) = (0.788, 4) and (1.22, 6), the open points
to (g′IPT IPTM, g′′IPT IPTM) = (0.75, 5.5) and (1, 10), respectively, see Table 3.3.
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Figure 3.19: Distributions in (dP⊥, φpp) for the η (left panels) and η′(958) (right panels) meson production
at
√
s = 29.1 GeV, Results for η meson correspond to the model with the tensor pomeron and f2-reggeon

exchanges while η′ meson production to the model with tensorial pomeron only. The individual contri-
butions of (l, S) = (1, 1) (panels (c) and (d)) and (l, S) = (3, 3) (panels (e) and (f)) are shown separately.

148



M
y

-2 0 2

b)µ
 (

M
/d

y
σd

0

0.5

1

η pp →pp 

 = 29.1 GeVs

TIP2 IRf2 IRfTIP

TIP2 IR+ f2 IRfTIP

TIPTIP

VIPVIP
TIPTIP

sum

10)× (2 IRf2 IRf

M
η

-2 0 2

b)µ
 (

Mη
/dσd

0

0.2

0.4

0.6

0.8

1
η pp →pp 

 = 29.1 GeVs

TIP2 IRf2 IRfTIP

TIP2 IR+ f2 IRfTIP

TIPTIP

VIPVIP

TIPTIP

sum

10)× (2 IRf2 IRf

M
y

-2 0 2

b)µ
 (

M
/d

y
σd

0

0.5

1

η pp →pp 

 = 29.1 GeVs

(l,S) = (1,1)

(l,S) = (3,3)

sum
 exch.2 IR and fTIP

M
η

-2 0 2

b)µ
 (

Mη
/dσd

0

0.2

0.4

0.6

0.8

1
η pp →pp 

 = 29.1 GeVs
(l,S) = (1,1)

(l,S) = (3,3)

sum
 exch.2 IR and fTIP

M
y

-2 0 2

b)µ
 (

M
/d

y
σd

0

0.2

0.4

0.6
’(958)η pp →pp 

 = 29.1 GeVs

T IPTIP

V IPVIP

(l,S) = (1,1)

(l,S) = (3,3)

sum

M
η

-2 0 2

b)µ
 (

Mη
/dσd

0

0.1

0.2

0.3

0.4

’(958)η pp →pp 
 = 29.1 GeVs

 - fusionT IPTIP

V IPVIP

(l,S) = (1,1)

(l,S) = (3,3)

sum

Figure 3.20: Differential cross section dσ/dyM and dσ/dηM for the η and η′ production at
√
s = 29.1 GeV.

The solid line corresponds to the model with tensorial pomeron while the long-dashed line to the model
with vectorial pomeron. The different lines correspond to the situation when all or only some components
of the pomeron and f2IR exchanges in the amplitude are included (the pomeron-pomeron component dom-
inates at midrapidities of η and the pomeron-reggeon (reggeon-pomeron) peaks at backward (forward)
rapidities of η, respectively).
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3.4 Conclusions

We have analysed proton-proton collisions with the exclusive central production of
scalar and pseudoscalar mesons. We have presented the predictions of two different models
of the soft pomeron. The first one is the commonly used model with vectorial pomeron which is,
however, difficult to be supported from a theoretical point of view. The second one is a recently
proposed model of tensorial pomeron, which, in our opinion, has better theoretical foundations.
We have presented formulae for corresponding pomeron-pomeron-meson vertices and ampli-
tudes for the pp → pMp reaction. In general, different couplings with different orbital angular
momentum and spin of two “pomeron particles” are possible. In most cases one has to add co-
herently amplitudes for two couplings. The corresponding coupling constants are not known
and have been fitted to existing experimental data.

We have performed calculations of several differential distributions. We wish to em-
phasize that the tensorial pomeron can, at least, equally well describe experimental data on the
exclusive meson production discussed here as the less theoretically justified vectorial pomeron
frequently used in the literature. This has been illustrated for the production of several scalar
and pseudoscalar mesons. The existing low-energy experimental data do not allow to clearly
distinguish between the two models as the presence of subleading reggeon exchanges is at low
energies very probable for many reactions. This seems to be the case for the η meson production.
In these cases we have included in our analysis also exchanges of subleading trajectories which
improve the agreement with experimental data. Production of η′ meson seems to be less affected
by contributions from subleading exchanges.

For the resonances decaying e.g. into the ππ channel an interference of the resonance
signals with the two-pion continuum has to be included in addition. This requires a consistent
model of the resonances and the non-resonant background. It would clearly be interesting to
extend the studies of central meson production in diffractive processes to higher energies, where
the dominance of the pomeron exchange can be better justified. Furthermore, absorption effects
are frequently taken into account by simply multiplying cross sections with a gap survival factor.
But absorption effects may also change the shapes of t1/t2, φpp, etc. distributions. The deviation
from “bare” distributions probably is more significant at high energies where the absorptive
corrections should be more important.

To summarise: our study of scalar and pseudoscalar meson production certainly shows
the potential of these reactions for testing the nature of the soft pomeron. Pseudoscalar meson
production could be of particular interest in this respect since there the distribution in the az-
imuthal angle φpp between the two outgoing protons may contain, for the tensorial pomeron,
a term which is not possible for the vectorial pomeron; see the discussion after (3.15) and after
(3.20) in Section 3.1.2. Clearly, our study can be extended to the central exclusive production of
other mesons like the f2(1270) meson. Our main aim in these studies was to provide detailed
models for central meson production, for both the tensorial and the vectorial pomeron ansatz,
where all measurable distributions of the particles in the final state can be calculated. The mod-
els contain only a few free coupling parameters to be determined by experiment. The hope is,
of course, that future experiments will be able to select soft pomeron model. In any case, our
models should provide good “targets” for experimentalists to shoot at. Supposing that only one
model survives the experimental tests we have then the theoretical challenge of deriving the
corresponding IPIPM coupling constants from QCD.

Future experimental data on exclusive meson production at high energies should thus
provide good information on the spin structure of the pomeron and on its couplings to the
nucleon and the mesons. On the other hand, the low energy data could help in understand-
ing the role of subleading trajectories. Several experimental groups, e.g. COMPASS [153–155],
STAR [158], CDF [159–161] (see for more information [176]), ALICE [162], ATLAS [7] have po-
tential to make very significant contributions to this program aimed at understanding the spin
structure of the soft pomeron.
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Chapter 4

Exclusive Diffractive Bremsstrahlung at
High Energies

It was realized over the last decade that the measurement of forward particles can be
an interesting and useful supplement to the multipurpose LHC detectors for central particles
detection (ATLAS/CMS) and for proton tagging (ALFA/TOTEM) [199, 235]. Here we consider
processes

h1(pa)h2(pb)→ h1(p1)h2(p2) + X(p3) , (4.1)

where X represents a very forward system in the final state (e.g. π0, ω, γ, n) which could be
measured with the help of Zero Degree Calorimeters (ZDCs). The ZDCs are installed at about
140 meters on each side of the interaction region. They will measure the spectra of very forward
photons, neutrons and π0 mesons radiated off the initial and final state protons in the pseudo-
rapidity region |η| > 8.5 at CMS [236], |η| > 8.3 at ATLAS [237], and |η| > 6 at RHIC [238].
The main effort concentrated on the design and construction of forward proton detectors [239].
Furthermore, the proposed Forward Shower Counters, to detect and trigger on rapidity gaps in
diffractive events, would improve the measurements at the LHC significantly [240]. In addition
to a measurement of the elastic pp cross section the bremsstrahlung photons could allow for the
evaluation of the total pp cross section, luminosity and relative alignment of the ZDCs and of the
Roman Pot detectors.

4.1 Exclusive π
0 meson production

The exclusive process pp → ppπ0 was measured in detail only near to the pion thresh-
old at the IUCF (Bloomington) [241, 242], CELSIUS (Uppsala) [243–245] and the COSY (Jülich)
[246]. The total cross section for single pion production grows from threshold to about 10 µb at
the c.m. energy

√
s ≈ 3 GeV. Although only a few partial waves are involved close to threshold,

the theoretical description is not easy (see e.g. [247–249] and references therein). For a summary
of close-to-threshold meson production experiments in hadronic interactions see [250].

What happens when the energy increases? In the range of center-of-mass energies√
s = 3− 10 GeV the nucleon resonances can be excited via meson exchange processes. Evidence

of proton excitation can be observed in the pπ0 mass spectrum (∆+ or N∗+). A nice summary
of the intermediate energy data for pp → ppπ0 can be found in Ref. [251]. In this region of
energy the corresponding cross section systematically decreases which is consistent with the me-
son exchange picture. When energy increases further the role of many of the nucleon resonances
diminishes and the mechanism becomes simpler.

In Refs [115, 213] a study of pseudoscalar mesons produced centrally by the CERN-
WA102 Collaboration at

√
s = 29.1 GeV was performed. The results show that the η and η′

mesons appear to have a similar production mechanism which considerably differs from that for
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the π0 production [213]. To our knowledge this was never explained theoretically. The WA102
Collaboration concentrated on very central production of mesons and therefore measured pro-
tons with large Feynman xF (A.16). This condition eliminates contribution of the diffractive
mechanisms discussed here. Reactions of this type pp → pMp are expected to be mediated
by double exchange processes, with a mixture of pomeron-pomeron, reggeon-pomeron, and
reggeon-reggeon exchanges. For instance, the η and η′ mesons are produced dominantly by
double pomeron exchange (see [13] and references therein). For the central exclusive π0 pro-
duction at intermediate energies the ρ-ω exchange may be the dominant mechanism. The ρ-a2
exchange could be another potential candidate. The validity of these exchanges could be verified
experimentally by the COMPASS Collaboration (see [153]).

In this Section we wish to concentrate on the production of single neutral pions in the
pp→ ppπ0 reaction at large energies (RHIC, LHC).We hope that this process could bemeasured,
at least in some corners of the phase space, at the LHC. We shall refer also to pp → p(nπ+)
and np → (pπ−)p reactions measured at lower energies at Intersecting Storage Rings (ISR)
and Fermilab in the 1970’s [252–257] (for a nice review we refer to [126]). The mechanism of
these reactions is closely related to the pp → ppπ0 reaction discussed here and will be there-
fore a good reference point for our calculation. As discussed in the past, the dominant hadronic
bremsstrahlung-type mechanism is the Drell-Hiida-Deck (DHD) mechanism for diffractive pro-
duction of πN final states in NN collisions [258, 259]; for a review, see e.g. [125, 126].

The π0’s can be also produced by γγ, γω and ωγ exchanges, but not by γIP-fusion
since the π0 meson has positive C-parity. Unlike pomeron which corresponds to the vacuum
quantum numbers and so to the positive charge conjugation the odderon (O), the hypothetical
counterpart of the pomeron (IP), is characterised by odd charge parity C = 1 (and I = 0), i.e. it
carries the same quantum numbers as the ω Regge pole. Therefore, the γO and Oγ exchanges
are also possible, however, the soft odderon couples very weakly to the nucleon. In Refs. [234,
260] the authors discussed some results of exclusive pseudoscalar meson production in high
energy ep scattering. It was shown in [260, 261] (see also [262]) that odderon exchange leads
to a much larger inelastic than elastic π0 production cross section. As shown in Ref. [260], the
photon exchange is larger than the odderon exchange only at very small transverse momenta of
π0. Here we shall consider the odderon contribution in proton-proton collisions using a simple
phenomenological approach for the odderon exchange. We shall discuss how it can be separated
from the contribution of photon-photon fusion.

4.1.1 π0-bremsstrahlung mechanisms

(a)

p (pa) p (p1)

p (p2)p (pb)

π0(p3)π0∗(q1)

IP (q2)

(b)

p (pa)

p (p1)

p (p2)p (pb)

π0(p3)

p∗(p1i)

IP (q2)

(c)

p (pa)

p (p1)

p (p2)p (pb)

π0(p3)

p∗(p1f)

IP (q2)

Figure 4.1: Diagrams of the π0-bremsstrahlung amplitudes driven by the pomeron exchange in proton-
proton collisions: (a) pion exchange, (b) proton exchange, and (c) direct production. The direct-channel
p∗ in (c) is an off-shell proton, not a proton resonance. Some kinematical variables are shown in addition.

The exclusive π0 meson production mechanism is similar to exclusive production of
the ω meson [5] and γ [10]. The diffractive π0-bremsstrahlung mechanisms are driven by the
pomeron/reggeon (IP/IR) exchanges as depicted in Fig.4.1. At high c.m. energies

√
s the dom-

inant contribution comes from the pomeron exchange. There are two processes when the π0

meson emitted by one of the protons interacts with the second proton (diffractive π0 rescatter-

152



ing), 1 as depicted in Fig.4.1(a), and four processes in which protons interact and the π0 emission
may occur, see Figs.4.1(b) and 4.1(c). In general, the amplitudes of these processes may interfere
but in practise the interference is negligible as the two processes are well separated in rapidity
as will be discussed in Section 4.2. The Born amplitudes for these processes, see Fig.4.1, can be
written as

M(π−exchange)
λaλb→λ1λ2π0 = ū(p1,λ1)iγ5u(pa,λa) Sπ(t1, s13) gπNN Fπ∗NN(t1)FIPπ∗π(t1)

×AπN
IP (s23, t2) /(2s23)(q1 + p3)µ ū(p2,λ2)γ

µu(pb,λb) , (4.2)

M(p−exchange)
λaλb→λ1λ2π0 = gπNN ū(p1,λ1)γ

µSN(p
2
1i)iγ5u(pa,λa) FπNN∗(p

2
1i) FIPN∗N(p

2
1i)

×ANN
IP (s12, t2) /(2s12) ū(p2,λ2)γµu(pb,λb) , (4.3)

M(direct production)
λaλb→λ1λ2π0 = gπNN ū(p1,λ1)iγ5SN(p

2
1 f )γ

µu(pa,λa) FπN∗N(p
2
1 f ) FIPNN∗(p

2
1 f )

×ANN
IP (s, t2) /(2s) ū(p2,λ2)γµu(pb,λb) , (4.4)

where u(p,λ), ū(p′,λ′) = u†(p′,λ′)γ0 are the Dirac spinors of the incident and outgoing protons
with the four-momentum p and the helicities λ; normalized as ū(p′)u(p) = 2mp. The factors
1/(2sij) or 1/(2s) appear here as a consequence of using spinors. The four-momenta squared of
intermediate particles are defined in Fig.4.1 and p21i,2i = (pa,b − p3)2, p21 f ,2 f = (p1,2 + p3)2, q21,2 =
(pa,b− p1,2)

2, the four-momentum transfers along the pomeron line t1,2 = q21,2 and sij = (pi + pj)
2

are squared invariant masses of the (i, j) system. In the present study we use a generalized pion
propagator Sπ(ti, sik) (see 2.32) at an appropriate pπ subsystem energy and t. Here we use the
parameter Λint

∼= 1 GeV. The propagator of the off-shell proton is

SN(p
2) =

i(p/+mp)

p2 −m2
p

, (4.5)

where p/ = pµγµ.
The energy dependence of the ab elastic scattering amplitude Aab

IP (s, t)was parametrised
in the Regge-like form, see Eq. (2.9). If the energy in the πp or the pp system is small, then the
secondary exchanges (trajectories) are also important, e.g. we have in Eq. (4.2) Aπ0p = AIP + A f2 .
The strength parameters Ci, the values of signature factors ηi, and the (linear) Regge trajectories
αi(t) ((2.11), (2.12), and Fig. 2.1) are taken from the Donnachie-Landshoff analysis [113] of the
total NN and πp cross sections, see Table 2.1. The running slope for elastic ab scattering can be
written as (2.10), where BNN

IP = 9 GeV−2, BπN
IP = 5.5 GeV−2 and BNN

IR = 6 GeV−2, BπN
IR = 4 GeV−2

for pomeron and reggeon exchanges, respectively.
Usually a high-energy approximate formula is used in the literature in calculating dif-

ferential cross sections. We use a precise calculation of the phase space (see e.g., [1]). This is
important if one wants to go to lower energies and/or to large rapidities. As will be discussed in
the next section, for this particular reaction the cross section has maximum just at large rapidities,
where the often used formula is too approximate. In the high-energy limit we can obtain

(q1 + p3)µ ū(p2,λ2)γ
µu(pb,λb) ∼= (q1 + p3)µ (p2 + pb)

µδλ2λb
∼= 2s23 δλ2λb

. (4.6)

In the bremsstrahlung processes discussed here the intermediate nucleons are off-mass
shell. In the above equations (4.3) and (4.4) the off-shell effects related to the non-point-like
protons in the intermediate state are included by the following form factors:

F(p2) =
Λ4

N

(p2 −m2
p)

2 + Λ4
N

. (4.7)

1Discussed here diffractive mechanisms of exclusive π0 production are similar to the diffractive mechanism of
pp→ ppω [5] and pp→ ppγ [10] processes.
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Such a form was used e.g. in Ref. [263] for ω photoproduction. In general, the cutoff parameters
in the form factors are not known but could be fitted in the future to the (normalized) experi-
mental data. From our general experience in hadronic physics we expect ΛN ∼ 1 GeV. We shall
discuss how the uncertainties of the form factors influence our final results.

The pion-nucleon coupling constant gπNN is relatively well known [45, 97]. In our cal-
culations we take g2πNN/4π = 13.5. Fπ∗NN(t) is a vertex form factor due to the extended nature
of particles involved. Unfortunately, the off-shell form factor is not well known as it is due to
nonperturbative effects related to the internal structure of the respective objects. This discussion
of form factors applies also to other IPπ∗π vertices in (4.2). We parametrise these form factors in
the simple exponential form,

Fπ∗NN(t) = FIPπ∗π(t) = exp
(

t−m2
π

Λ2
π

)

, (4.8)

which is conventionally normalized to unity on the pion-mass shell and Λπ = 1 GeV is a reason-
able choice.

We improve the parametrisation of p-exchange amplitude (4.3) to reproduce the high-

energy Regge dependence by the factor (s13/sthr)
αN(p

2
1i)− 1

2 or by the factor (s23/sthr)
αN(p

2
2i)− 1

2 ,
where the threshold factor sthr = (mp +mπ0)2 and the nucleon trajectory is αN(p

2
1i,2i) = −0.3+

α′N p21i,2i with α′N = 0.9 GeV−2, see Fig. 2.1(b).
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Figure 4.2: Typical absorptive correction diagrams to: (a) pion exchange and (b) proton exchange. The
stars attached to protons and π0 meson denote the fact that they are off-mass shell.

Let us estimate absorptive corrections δM shown in Fig.4.2. Diagrams which involve
the elastic scattering of the incident protons are termed “initial-state” absorption. From physical
reasons discussed in [126, 264] the diagrams, when the transition of excited proton p∗ → pπ0

occurs inside, do not contribute significantly at high energies. Diagrams with the “final-state"
absorption corrections provide the dominant absorptive effect [264]. In the eikonal approxima-
tion which takes into account contribution of elastic rescatterings the absorbed amplitudes can
be expressed as

Mabs(−p1⊥,−p2⊥) =M(−p1⊥,−p2⊥)− δM(−p1⊥,−p2⊥) , (4.9)

where δM for the diagrams with “initial-state” absorption is the sum of convolution integral

δMinitial state abs
λaλb→λ1λ2π0(−p1⊥,−p2⊥) =

i

8π2s

∫

d2k⊥ ANN
λaλb→λ′aλ′b

(s, k⊥)

×
[

M(π−exchange)
λ′aλ′b→λ1λ2π0 (−p̃1⊥,−p̃2⊥) +M

(p−exchange)
λ′aλ′b→λ1λ2π0(−p̃1⊥,−p̃2⊥)

]

(4.10)

and in the case of diagrams with “final-state" absorption we have

δMfinal state abs
λaλb→λ1λ2π0(−p1⊥,−p2⊥) =

i

8π2

∫

d2k⊥
1
s12
M(π−exchange)

λaλb→λ′1λ′2π0 (−p̃1⊥,−p̃2⊥) A
NN
λ′1λ′2→λ1λ2

(s12, k⊥)

+
i

8π2

∫

d2k⊥
1
s23
M(p−exchange)

λaλb→λ1λ′2π0(−p̃1⊥,−p̃2⊥) A
πN
λ′2→λ2

(s23, k⊥) , (4.11)

154



where the two-dimensional transverse vectors −p̃1⊥ = −p1⊥ + k⊥ and −p̃2⊥ = −p2⊥ − k⊥
are the transverse components of the momenta of final state protons and k⊥ is the momentum
transfer. Ael(s, k⊥) is an elastic scattering amplitude given by Eq.(2.9) at an appropriate energy
and for the momentum transfer k⊥. Since in our calculations we include effective pomeron and
reggeon exchanges, i.e. pomerons and reggeons describing approximately nucleon-nucleon or
pion-nucleon elastic scattering, no explicit absorption corrections have to be included in addition.

Experience from hadronic phenomenology (for several analyses of two-body reactions
see [265]) suggest that the purely elastic rescattering taken into account by Eq. (4.9) are insuffi-
cient, and inelastic intermediate states (screening corrections) lead to an enhancement of absorp-
tive corrections. This is sometimes included in a phenomenological way by a factor λsc (λsc > 1).
Taking into account absorption corrections, the DHDmechanismwas shown to give a reasonable
explanation for the main properties of the low-mass diffractive dissociation [266]. The effect of
the absorption in diffractive dissociation is also discussed in [267].

4.1.2 γγ and γω exchanges
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Figure 4.3: A sketch of the photon-photon (a) and photon-omega meson (b) exchanges leading to pro-
duction of π0 meson in proton-proton collisions.

In the followingwewish to investigate competitive mechanisms to the diffractive mech-
anisms discussed in the previous subsection. The newmechanisms, never discussed so far in the
literature, are shown schematically in Fig.4.3. In the most general case the corresponding Born
amplitudes read

Mγγ−exchange
λaλb→λ1λ2π0 = e ū(p1,λ1)γ

µu(pa,λa) F1(t1)

× gµµ′

t1
(−i) e2 ǫµ′ν′ρσ q1,ρq2,σ Fγ∗γ∗→π0(t1, t2)

gνν′

t2
×e ū(p2,λ2)γ

νu(pb,λb) F1(t2) , (4.12)

Mγω−exchange
λaλb→λ1λ2π0 = e ū(p1,λ1)γ

µu(pa,λa) F1(t1)

× gµµ′

t1
(−i) gγωπ0 ǫµ′ν′ρσ q1,ρq2,σ Fγ∗ω∗→π0(t1, t2)

−gνν′ +
qνqν′
m2

ω

t2 −m2
ω

×gωNN ū(p2,λ2)γ
νu(pb,λb) FωNN(t2)F(s23, t2) , (4.13)

Mωγ−exchange
λaλb→λ1λ2π0 = gωNN ū(p1,λ1)γ

µu(pa,λa) FωNN(t1)F(s13, t1)

×
−gµµ′ +

qµqµ′
m2

ω

t1 −m2
ω

(−i) gγωπ0 ǫµ′ν′ρσ q1,ρq2,σ Fγ∗ω∗→π0(t2, t1)
gνν′

t2
×e ū(p2,λ2)γ

νu(pb,λb) F1(t2) . (4.14)

At larger subsystem energies, sij ≫ sthr, one should rather use reggeons than mesons. The
“reggeization” is included here only approximately by a factors F(sik, ti) (1.66) assuring asymp-
totically correct high energy dependence and Λthr ≃ 1 GeV.
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The γ∗NN vertices are parametrised by the proton’s Dirac electromagnetic form factor
(B.2). The central vertices involve off-shell particles. The t dependences of Fγ∗γ∗→π0(t1, t2) elec-
tromagnetic off-shell form factor are the least known ingredients in formula (4.12). It is known
experimentally only for one virtual photon γγ∗ → π0 (see [268]). In the present calculation we
use a vector meson dominance model inspired parametrisation of the γ∗γ∗ → π0 transition form
factor,

Fγ∗γ∗→π0(t1, t2) =
Fγ∗γ∗π0(0, 0)

(1− t1/m2
ρ)(1− t2/m2

ρ)
, (4.15)

where mρ is the ρ meson mass. The form factor is normalized to Fγ∗γ∗π0(0, 0) = Nc

12π2 fπ
, where

Nc = 3 is the number of quark colors and fπ = 93 MeV is the pion decay constant.
The coupling of the omega meson to the nucleon is described by the coupling constant

g2ωNN/4π = 10 and the corresponding form factor is taken in the exponential form:

FωNN(t) = exp
(

t−m2
ω

Λ2
ωNN

)

, (4.16)

where ΛωNN = 1 GeV. The gωπ0γ ≃ 0.7 GeV−1 constant was obtained from the omega partial
decay width as discussed in Ref. [5]. The γω and ωγ form factors are taken in the following
factorized form:

Fγ∗ω∗→π0(t1, t2) =
m2

ρ

m2
ρ − t1

exp

(

t2 −m2
ω

Λ2
ωπγ

)

. (4.17)

The factor describing the virtual photon coupling is taken as in the vector dominance model.
In practical calculations we take Λωπγ = 0.8 GeV [5] as found from the fit to the γp → ωp
experimental data.

In the high energy limit we can write a relatively simple formula of two-photon fu-
sion amplitude squared and averaged over initial and summed over final spin polarizations
(see [105]):

|Mγγ−exchange
pp→ppπ0 |2 ∼= 4s2e8

F2
1 (t1)

t21

F2
1 (t2)

t22
|Fγ∗γ∗→π0(t1, t2)|2 |q1⊥|2|q2⊥|2 sin2(φ12) , (4.18)

where φ12 = φ1− φ2 is the azimuthal angle between the two outgoing protons.
The amplitude for processes shown in Fig.4.3 are calculated numerically for each point

in the phase space. In calculating cross sectionwe perform integration in log10(p1⊥) and log10(p2⊥)
instead in p1⊥ and p2⊥, which is useful numerically because of photon propagators.

4.1.3 γO and Oγ exchanges

As will be shown in Section 4.2, at the π0 midrapidity only the γγ → π0, out of the
mechanisms considered so far, contributes, i.e. the corresponding cross section is rather small.
This gives a chance to search for γO and Oγ exchange processes shown in Fig.4.4. We should
keep inmind that the odderon couples to quarks rather more weakly than does the pomeron. The
γp→ π0p reaction was proposed some time ago as a good candidate for identifying the odderon
exchange, the C = −1 partner of the pomeron [260, 269]. They have predicted cross section of
about 341 nb at the HERA energy. However, the search performed at HERA [270] was negative
and found only an upper limit for this process σγp→π0p < 49 nb. Ewerz and Nachtmann [271]
found an explanation of this discrepancy within a nonperturbative approach using approximate
chiral symmetry and partially conserved axial vector current (PCAC). They have found that the
amplitude for diffractive neutral pion production is proportional tom2

π and vanishes in the chiral
limit (mπ → 0). They have estimated that the cross section is probably damped by a factor of
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Figure 4.4: Diagrams with the photon-odderon (a) and odderon-photon (b) exchanges in the pp→ ppπ0

reaction.

50 (see [272]) compared to the early estimate in [260]. The exclusive production of neutral pions
at midrapidity can be used to search for odderon exchange as well as to test the predictions of
Ref. [271].

The cross section for photon-odderon and odderon-photon exchanges can be estimated
in the Equivalent Photon Approximation (EPA). In this approach the distribution of the neutral
pions can be written as

dσ

dydp2⊥
= z1 f (z1)

dσγp→π0p

dt2

(

s23, t2 ≈ −p2⊥
)

+z2 f (z2)
dσγp→π0p

dt1

(

s13, t1 ≈ −p2⊥
)

, (4.19)

where f (z) is an elastic photon flux in the proton; an explicit formula can be found e.g. in [273].

In the formula above, z1/2 =
m⊥√
s
exp(±y) with m⊥ =

√

m2
π + p2⊥.

The differential cross section γp→ π0p is parametrised as

dσγp→π0p

dt
= −B2 t exp(Bt) σγp→π0p (4.20)

and vanishes at t = 0 which is due to helicity flip in the γ → π0 transition. The slope parameter
can be expected to be typically as for other soft processes B ∼ 4− 8 GeV−2. At the LHC and
at midrapidities typical energies in the photon-proton subsystems are similar as at the HERA.
In the following we shall consider two scenarios: HERA upper limit (σγp→π0p = 49 nb) and
Ewerz-Nachtmann estimate (σγp→π0p = 6 nb).

4.2 Results

Now we present results of our calculations of cross sections and distributions of the
exclusive π0 meson production in proton-proton collisions. The rapidity distributions of π0 are
shown in Fig.4.5 at center-of-mass energies

√
s = 45 GeV (ISR), 500 GeV (RHIC), and 14 TeV

(LHC). We present results for the π0-bremsstrahlung mechanism driven by the pomeron (the
black solid lines) or driven by the photon exchange (the green solid lines) as well as photon-
photon fusion (the blue dotted lines) and photon-omega (omega-photon) exchange processes
(the violet dashed lines) not discussed so far in the literature. The higher the energy, the two
π0-bremsstrahlung contributions become better separated. At the LHC energy and in the ra-
pidity region −2 < yπ0 < 2 the two-photon fusion mechanism dominates over the diffractive
π0-bremsstrahlung mechanism. The cross section for the π0-bremsstrahlung contribution at the
LHC energy and at midrapidity is much smaller than e.g. for the production of heavy quarkonia:
J/ψ [147], Υ [274] or χc0 [6, 104]. Clearly an experimental measurement there would be a chal-
lenge. The γω or ωγ exchanges have been found to be significant only in backward or forward
rapidities, respectively, and are small at midrapidities due to ω-reggeization.
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Figure 4.5: The distribution of π0 in rapidity at
√
s = 45 GeV (ISR), 500 GeV (RHIC), and 14 TeV (LHC).

The π0-bremsstrahlung contribution via the pomeron and photon exchanges (the black and green solid
lines, respectively) and the ωγ (γω) exchanges (the violet dashed lines) peak at forward (backward) region
of yπ0, respectively. The γγ fusion (the blue dotted lines) peaks at midrapidity region. In this calculation
we have used ΛN = Λπ = 1 GeV of the hadronic form factors. No absorption effects are included here.

Let us look now how absorption effects discussed in the theory section (see Fig.4.2) can
modify the results obtained with the “bare” amplitudes (see Fig.4.1). In Fig.4.6 we present, in
addition, individual contributions for the π0-bremsstrahlung mechanism. We observe a large
cancellation between the two terms in the amplitude (between the initial (p-exchange) and final
state radiation (direct production)). Because of destructive interference of “bare” and absorptive
correction amplitudes, the resulting cross section is by a factor 2 to 3 smaller than that for the
“bare” amplitude. The difference between the solid (ΛN = Λπ = 1 GeV) and dashed (ΛN =
0.6 GeV and Λπ = 1 GeV) curves represents the uncertainties of the form factor parameters.

In Fig.4.7 we show corresponding distribution in π0 meson pseudorapidity. At large
yπ0 another mechanism may come into the game – diffractive excitation of nucleon resonances.
The resonances may occur when the energy in the πN subsystem WπN ∈ R, where R is the
nucleon resonance domain. In Fig.4.8 we present the average value of subsystem energies 〈W13〉
and 〈W23〉 as a function of yπ0 at

√
s = 0.5, 14 TeV. If 〈W13〉 (yπ0) ∈ R or 〈W23〉 (yπ0) ∈ R then

an extra strength due to resonance excitation may occur. Only some baryon resonances can be
excited diffractively 2. At the LHC they can occur for 8 < |yπ0 | < 11 and at the RHIC for
4.5 < |yπ0 | < 7.5. One way to introduce resonances in the DHD model is to include them as
intermediate states in the direct production term in Eq.(4.4) (see also Fig.4.1(c)). The reader can
find some theoretical attempts in Ref. [275].

In Fig.4.9 we show corresponding distribution in proton pseudorapidity again without
(upper lines) and with (lower lines) absorption effects and for two sets of Λπ and ΛN parameters.
At the LHC protons could be measured by the ALFA (ATLAS) or TOTEM (CMS) detectors.

The effect of absorption on transverse momentum spectra of protons and neutral pions
is more complicated. In Fig.4.10 we show distribution in transverse momentum of outgoing
protons. Absorption causes a transverse momentum dependent damping of the cross section at
small p⊥,p and an enhancement at large p⊥,p (compare upper and lower solid line).

In Fig.4.11 we show distribution in transverse momentum of π0 meson. As in the pre-
vious figure we show results without and with absorption effects. The distributions are peaked

2As it was described by the Gribov-Morrison rule for the production of a resonance by pomeron exchange (see e.g.
Section 3.9 in [114]): Pout = (−1)∆J Pin, where ∆J is the change in spin between the incident particle and the outgoing
resonance, Pin is the parity of the incident particle and Pout the parity of the outgoing resonance.
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Figure 4.6: The distribution of π0 in rapidity for
√
s = 0.5, 7, 14 TeV. In panel (a) we show individual

contributions to the Born cross section. A large cancellation between the initial (p-exchange) and final
state radiation (direct production) can be observed. In panels (b)-(d) the upper solid line corresponds to
calculations without absorption effects, the lower solid line with absorption effects. The solid lines are for
ΛN = Λπ = 1 GeV while the dashed lines are for ΛN = 0.6 GeV and Λπ = 1 GeV.

at p⊥,π ∼ 0.2 GeV.
In Fig.4.12 we show distribution in the square of four-momentum transfer between ini-

tial and final protons. In panels (a) and (b) we show separate contributions of different exchange
terms. As in the previous figure we show results without and with absorption effects. One can
observe much large tails of distributions in t1 than in t2 (yπ0 > 0 was assumed).

In Fig.4.13we showdistribution in two-dimensional space (t1, t2) for the π0-bremsstrahlung
contribution at

√
s = 14 TeV (top panels) and

√
s = 500 GeV (bottom panels) without (left panel)

and with (right panel) absorption effects. The distributions in t1 or t2 are different because we
have limited to the case of yπ0 > 0 only. The distributions discussed here could in principle be
obtained with the TOTEM detector at CMS to supplement the ZDC detector for the measure-
ment of neutral pions. Similar analysis could be done by the ALFA detector for proton tagging
at ATLAS.

The pion energy spectrum for yπ0 > 0 drops relatively slowly with pion energy which
is shown in Fig.4.14. We show results without and with absorption effects.

In Fig.4.15 we compare distribution in invariant mass of the forward produced pπ0
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√
s = 7 TeV. In the left panel we show
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line) at

√
s = 0.5, 14 TeV. Here ΛN = Λπ = 1 GeV.

system for the π0-bremsstrahlung contribution and yπ0 > 0. The discussed here pp → ppπ0

process gives a sizable contribution to the low mass (MX > mp + mπ0) single diffractive cross
section.

In Fig.4.16 we show correlation function in azimuthal angle between outgoing protons.
As can be seen in panel (d) the π0-bremsstrahlung contribution is peaked at back-to-back con-
figuration (φ12 = π). For comparison, the contribution for γγ- and γω-fusions are peaked at
φ12 = π/2 and are much smaller. We observe a strong cancellation between the initial and the
final state radiation. There is (see panels (a)-(c)) a sizeable difference in shape between the result
obtained with the “bare” amplitude and the result with inclusion of absorption effects. We doubt
if such a correlation can be measured at the LHC in the future.

In Fig.4.17 we show distribution in two-dimensional space (t2,M13). One can observe
different behavior of slope in four-momentum transfer squared t2 for different masses of the pπ0

system. A similar effect was observed for pp → p(nπ+) [253] and np → (pπ−)p [256, 257] reac-
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Figure 4.9: The distribution in pseudorapidity of protons in the backward (left panel) and forward (right
panel) hemisphere at

√
s = 7 and 14 TeV and for yπ0 > 0. Here ΛN = Λπ = 1 GeV (solid line) or

ΛN = 0.6 GeV and Λπ = 1 GeV (dashed line).

tions at much lower energies. As can be seen in Figs.4.12 and 4.15 the large contribution comes
from the π-exchange diagram and the baryon-exchange terms are suppressed due to amplitude
cancellations. The differential cross section peaks for invariant masses close to threshold and dis-
appears rapidly with increasing invariant mass, giving an approximately exponential behavior
for large masses. The absorptive effects could be partially responsible for the irregular structure
in two-dimensional space (t2,M13) at small |t2| and M13 ∼ 1.3 GeV.

In Fig.4.18 we show corresponding two-dimensional (M13, yπ0) distributions. We can
see characteristic features of distribution at large p1π subsystem energy Mp1π ≈ 3.5 GeV. It is
due to presence of different components (amplitudes), that is, the pion exchange mechanism
contributes at yπ ≈ 6 while the proton exchange mechanism at yπ ≈ 11, see also Figs. 4.6(a) and
4.15(d). There is a window for another mechanisms such as the diffractive excitation of nucleon
resonances; see Fig. 4.8 (right panel).

In Table 4.1 we have collected numerical values of the integrated cross section σDHD
pp→ppπ0

taking into account only the forward region (yπ0 > 0). Our results depend on the Λ parameters of
the hadronic form factors. The cross section obtained from ISR experiments (see e.g., Ref. [253])
are roughly reproduced.

For completeness, in Fig.4.19 (left panel) we compare the photon-odderon and odderon-
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Figure 4.10: The distribution of outgoing protons in transverse momentum for
√
s = 7, 14 TeV and for

yπ0 > 0. As in the previous figure we show results without and with absorption effects. Here ΛN = Λπ =
1 GeV (solid line) or ΛN = 0.6 GeV and Λπ = 1 GeV (dashed line).

photon contributions with the γγ contribution. We show results for B = 6 GeV−2 and two dif-
ferent estimates of the γp → π0p cross section (energy independent) as specified in the figure
caption. The total cross section for the odderon contributions, corresponding to the HERA upper
limit, is less than 20 nb in the rapidity region |yπ0 | < 2.5. The corresponding cross section is
more than an order of magnitude larger than the photon-photon contribution. In the right panel
we make similar comparison of the two contributions for transverse momentum distribution of
neutral pions and in the region |yπ0 | < 2.5. We show the photon-odderon contribution for dif-
ferent values of slope parameters B in Eq. (4.20). The curve corresponding to the HERA upper
limit is considerably larger than the photon-photon contribution starting from p⊥,π0 > 0.2 GeV.
Even with the Ewerz and Nachtmann limit, one can observe deviations from the γγ curve at
transverse momenta p⊥,π0 > 0.3 GeV. The cut on meson p⊥,π0 should enhance relative odderon
contribution. In principle, the ALICE collaboration could try to measure the transverse momen-
tum distribution of exclusively produced neutral pions.
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Figure 4.11: The distribution of π0 mesons in transverse momentum for
√
s = 0.5, 7, 14 TeV and for

yπ0 > 0. In panels (a)-(c), as in the previous figures, we show theoretical uncertainties (in e.g. form
factors). Here ΛN = Λπ = 1 GeV (solid line) or ΛN = 0.6 GeV and Λπ = 1 GeV (dashed line). In panel
(d) we show individual contributions to the Born cross section.

4.2.1 A comment on single diffractive cross section at low proton excitations

The measurement of inelastic proton-proton cross section is one of the standard and
obligatory measurements at each collision energy. At the LHC single diffraction (SD) and double
diffraction (DD) processes constitute a large contribution to the inelastic cross section (about a
half). Unfortunately it is very difficult to truly measure the cross section for the low mass exci-
tation at the LHC and often educated extrapolations are required. Usually 1/M2 triple-Regge fit
is used for this purpose. Do we have expertise on the very low mass excitations? This issue was
critically discussed recently [275]. The authors presented predictions of a dual-Reggemodel with
a nonlinear proton Regge trajectory [276] with parameters fitted to the single diffractive cross sec-
tion measured at low energies (for a review of the low energy SD data see e.g. [126,277]). In their
fit the low mass excitation is dominated by the excitation of the proton resonances N∗(1440)
with JP = 1

2
+

and N∗(1680) with JP = 5
2
+
. While the presence of the latter is rather natural

– it is a member of the same Regge trajectory as proton, see Fig. 2.1(b) – the huge contribu-
tion of the Roper resonance is not so clear to us. The low-energy experimental SD data [277]
show up a huge peak at the nominal position of the Roper resonance. This is the region where
the absorbed Drell-Hiida-Deck mechanism (the nonresonant background model) predicts an en-
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Figure 4.12: Distribution in the four-momentum transfer squared between initial and final protons at√
s = 7, 14 TeV and for yπ0 > 0. In panels (a) and (b) we show individual contributions to the Born cross

section. The theoretical uncertainties are shown in panels (c)-(f). Here ΛN = Λπ = 1 GeV (solid line) or
ΛN = 0.6 GeV and Λπ = 1 GeV (dashed line).

hancement (see Fig.4.15). The arguments against large Roper contribution in single diffraction
at high energies were exposed in Ref. [278]. We wish to emphasize that the DHD contribution
was not included in the analysis of the SD mass spectrum in [275] where only a purely math-
ematical fit was used. The fitted background seems to have quite different properties than the
discussed here DHD mechanism with absorption (different both in MX and in t). In our opinion
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Figure 4.13: Distribution in (t1, t2) for the π0-bremsstrahlung contribution at
√
s = 14 TeV (top pan-

els) and
√
s = 500 GeV (bottom panels) and for yπ0 > 0 without (left panels) and with (right panels)

absorption effects. Here ΛN = Λπ = 1 GeV.

inclusion of a realistic absorbed DHD contribution could dramatically change, or even eliminate,
the contribution of the Roper resonance. This issue requires further studies.

The resonances contributing to the SD cross section discussed in [275] naturally con-
tribute also to the pp → ppπ0 channel and the corresponding cross section is

σN∗
pp→ppπ0 = σN∗

SD × BR(N∗ → Nπ)× 1
3
. (4.21)

The last factor comes from the fact that the considered diffractively excited baryon resonances
have isospin I = 1

2 . The branching fractions BR(N∗ → Nπ) have been measured [96] and
are about 65% for both discussed states. The same situation occurs in the pp → p(nπ+) and
np → (pπ−)p reactions (a factor 2 larger cross section), where no clear signal of the Roper
N∗(1440) resonance was identified (see e.g., [253–255]) while the N∗(1680) resonance was ob-
served 3. The situation should be better clarified in the future. The discussed there resonances
were not included in our analysis but could be included in principle.

Our DHD mechanism contributes to the single diffraction cross section as

σDHD
SD = 3 σDHD

pp→ppπ0 . (4.22)

3In Ref. [253] results on diffractive dissociation of protons into (nπ+) in pp collisions at the CERN ISR
√
s = 45 GeV

energy were shown and the cross sections σpp→p(nπ+) = (400± 110) µb, σpp→pN∗(1680) = (170± 60) µb was reported.
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Figure 4.14: Energy spectrum of pions at
√
s = 0.5, 7 and 14 TeV and for yπ0 > 0. Theoretical uncertain-

ties are shown in panels (a)-(c). Here ΛN = Λπ = 1 GeV (solid lines) or ΛN = 0.6 GeV and Λπ = 1 GeV
(dashed lines). In panel (d) we show individual contributions to the Born cross section.

The factor 3 comes from the isospin symmetry of the NNπ coupling constant. Taking our num-
bers from Table 4.1 we predict certainly not a negligible contribution to the total inelastic cross
section at high energies (for both-side SD the σDHD

pp→ppπ0 should be multiplied by a factor 2). To our
knowledge the DHD contribution is not included in the existing Monte Carlo codes simulating
high-energy diffractive processes.

In Fig. 4.20 we present inclusive transverse momentum spectra of the neutral pions. For
an example, the experimental spectra in the forward rapidity ranges were measured by the Large
Hadron Collider forward (LHCf) experiment at

√
s = 7 TeV [279]. The π0s are identified by their

decay into two photons. The inclusive cross section of π0 production is given by the expression

1
σinel

E
d3σ

dp3
=

1
σinel

d3σ

dφdy p⊥dp⊥
⇒ 1

σinel

d2σ

πdyd(p2⊥)
⇒ 1

σinel

dσ

2π p⊥dp⊥

1
∆y

, (4.23)

where the inelastic cross section σinel = 73.6 mb was assumed for proton-proton collisions at√
s = 7 TeV [280]. The second form of Eq. (4.23) is obtained using the identity dy/dpz = 1/E,

and the third form represents average over φ.
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Figure 4.15: Distribution in proton-pion invariant mass M13 at
√
s = 0.5, 7, 14 TeV and for yπ0 > 0.

Theoretical uncertainties are presented in panels (a) - (c). Here ΛN = Λπ = 1 GeV (solid line) or ΛN =
0.6 GeV and Λπ = 1 GeV (dashed line). In panel (d) we show individual contributions to the Born cross
section.

Table 4.1: The integrated value of cross sections in µb for the pp → ppπ0 reaction at
√
s = 45 GeV

(ISR), 500 GeV (RHIC), 7 and 14 TeV (LHC). Here yπ0 > 0 is taken into account only. The lower
limit corresponds to the result when ΛN = 0.6 GeV and Λπ = 1 GeV and the upper limit when
ΛN = Λπ = 1 GeV.

Model
√
s = 45 GeV

√
s = 500 GeV

√
s = 7 TeV

√
s = 14 TeV

No absorption 103− 146 177− 251 337− 481 402− 575
Absorption in initial state 46− 76 62− 125 85− 273 94− 357
Absorption in final state 60− 91 84− 139 118− 244 128− 290
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Figure 4.16: The distribution in azimuthal angle between outgoing protons for
√
s = 0.5, 7, and 14 TeV

are presented in panels (a), (b), and (c), respectively, without (black lines) and with (red lines) absorption
effects. Here ΛN = Λπ = 1 GeV (solid lines) or ΛN = 0.6 GeV and Λπ = 1 GeV (dashed lines). The
difference between the results with various of Λ parameters of form factors illustrates theoretical uncer-
tainties. In panel (d) we show individual bremsstrahlung contributions to the Born cross section and also
the γω-fusion contribution enlarged by a factor 104 (violet dashed line).
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Figure 4.17: Distribution in (t2,M13) for the π0-bremsstrahlung contribution at
√
s = 14 TeV and for

yπ0 > 0 without [panel (a)] and with absorption effects in the final state only [panels (b) and (c)] and
absorption effects in the initial state only [panel (d)]. Here ΛN = Λπ = 1 GeV [panels (a) and (b)] and
ΛN = 0.6 GeV, Λπ = 1 GeV [panels (c) and (d)].
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√
s = 14 TeV and yπ0 > 0 for the π0-bremsstrahlung contribu-
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Figure 4.19: Rapidity distribution of neutral pions (left panel) produced in γO-fusion and Oγ-fusion
(black upper solid lines) compared to the γγ contribution (blue lowest solid line) for

√
s = 14 TeV. In-

dividual contributions of photon-odderon (short dashed line) and odderon-photon (long dashed line)
are shown separately. We show predictions for the HERA upper limit (σγp→π0p = 49 nb) and for the
Ewerz-Nachtmann estimate (σγp→π0p = 6 nb). In the right panel we make similar comparison of con-
tributions of the two mechanisms for transverse momentum distribution of π0’s in the rapidity region
−2.5 < yπ0 < 2.5. For the odderon contributions we have used different values of slope parameters
B = 4, 6, 8 GeV−2.
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Figure 4.20: The inclusive neutral pion transverse momentum spectra in different ranges of π0 rapidity at√
s = 7 TeV. Experimental results from LHCf experiment [279] are compared with our theoretical predic-

tions of two absorbed DHD model calculations. The solid lines correspond to calculations for the “final-
state” absorption corrections and the dashed lines for the “initial-state” absorption corrections. In order to
estimate theoretical uncertainties of our contributions two sets of cut-off parameters ΛN = Λπ = 1 GeV
(the upper lines) and ΛN = 0.6 GeV, Λπ = 1 GeV (the lower lines) was used.
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4.3 Exclusive ω meson production

The (virtual) photoproduction of vector mesons in γ∗p collisions is also vivid and active
field of research. Here the main interest was related to the wealth of experimental data obtained
by the H1 and ZEUS Collaborations at the HERA collider. For a review of the experimental and
theoretical status until 2006, see [281]. The subject continues to be actively researched also in re-
cent years. The focus being e.g. on saturation phenomena in the small-x gluon distribution [282],
on models based on the general principles of Regge theory [283], as well as on investigations of
systematic treatment of higher twist contributions in the high Q2 limit [284].

The exclusive photoproduction of vector mesons can also be studied in hadron-hadron
collisions [285]. Here the dominant mechanism is photon-pomeron (pomeron-photon) fusion
which for heavy vector quarkonia (J/Ψ, Υ) probes the proton’s gluon density at small x (see
e.g. [147, 274, 286]). Recently also the quasi-diffractive large-t, the large rapidity gap, the photo-
production of vector mesons in hadronic collisions has attracted some interest, see e.g. [287,288],
the latter calculation using a theoretical framework developed in [289,290]. These works have in
common that they involve a hard scale of some sort, either the large mass of a heavy quark, or a
large momentum transfer.

The soft mechanism of exclusive light vector meson production in proton-proton colli-
sions at high energies was almost not studied in the literature; the exception is the φ meson [196]
and the ω meson [5]. Here we will show that exclusive production of ω mesons in proton-
proton collisions is very different than similar processes for φ [196], J/Ψ [147] or Υ [274]. The
pp→ ppω process was studied before only close to its production threshold. Various theoretical
models (see Refs. [291–296]) were developed to describe the lower-energy data [297] (for more
references, see [5]). Here the dominant mechanisms are meson exchange processes as well as
the ω-meson bremsstrahlung driven by meson exchanges. How the situation changes at high-
energy is very interesting. While at low energy the meson exchanges (π, ρ, ω, σ) are the driv-
ing t-channel exchanges, for the ω-bremsstrahlung at high energy their role is taken over by
the pomeron exchange. The latter will be treated here purely phenomenologically. A similar
hadronic bremsstrahlung-type mechanism is the Deck-mechanism for diffractive production of
πN final states in pp collisions [258, 259], for a review, see e.g. [125].

We intend to make predictions for being in operation colliders RHIC, Tevatron and
LHC. The hadronic bremsstrahlung mechanisms are expected to be enhanced for exclusive pro-
duction of ω meson compared to other vector mesons as the gωNN coupling constant is known
to be large from low-energy phenomenology [46, 296, 298]. We will also show how important
are the photoproduction mechanisms discussed in Refs. [147,196,274] in the context of exclusive
heavy vector quarkonium production. At this point it is interesting to remember, that the exclu-
sive production of vector mesons at high energies has been proposed as a promising channel for
a discovery/study of the odderon [299,300]. This fact is simply related to the odd C-parity of the
vector meson. It now turns out, that for the exclusive J/Ψ and Υ mesons production, the main
competitor to the odderon-pomeron fusion mechanism exchange is the photoproduction mech-
anism. Moreover, in Ref. [301] the authors noted that the measurement of the ηc (cc̄ bound state)
photo- or electroproduction is a useful tool for probing the QCD odderon and is similar to the
measurement of the J/Ψ photo- or electroproduction which probes the BFKL pomeron implied
by QCD 4.

In this regard it is important to stress, that the unique hadronic bremsstrahlung mech-
anism active in the exclusive ω-production precludes an interpretation of a possible excess over

4The magnitude of the ηc photoproduction cross section was estimated to be equal about 11− 45 pb [301]. The
photoproduction cross section is also characterized by the relatively weak t dependence at large t, where the diagrams
with the gluons coupling to three different quarks in a proton dominate. The t-dependence of the differential cross
section was also discussed in Ref. [301]. It should be noted that the two gluon exchange mechanism of diffractive
J/Ψ production generates strong suppression of the differential cross-section in the large-t region due to the nucleon
form-factor effects. This fact can be useful in experimental separation of the ηc mesons produced through the odderon
exchange from those which are the decay products of the diffractively produced J/Ψ mesons.

172



photoproduction in terms of an odderon. Indeed, as will be shown below, the strong coupling
of the ω to protons entails a surprisingly large cross section for central ω production at high en-
ergies. This is despite the fact that formally the t-channel exchange of ω’s is decreasing with the
size of the rapidity gap in comparison to the odderon.

In this context we mention, that it has also been proposed to search for the odderon
in the photoproduction of C-even pion pairs. Their interference with the pomeron-produced C-
odd pions will lead to characteristic angular asymmetries [302, 303] (for the case of large photon
virtualities, see [304]). While in principle photoproduction of continuum pion pairs is just as well
possible as the production of vector meson resonances studied here, the relevant asymmetries
will be heavily diluted by the C-even pion pairs produced from the pomeron-pomeron fusion.

4.3.1 Photoproduction mechanism for γp → ωp

Pomeron exchange

Let us concentrate on the γp→ ωp reaction which is a building block for the pp → ppω
reaction. Photoproduction of the vector meson in photon-proton collisions is very interesting
from both experimental and theoretical side. The corresponding cross sections have been mea-
sured by the ZEUS Collaboration at HERA at virtuality of photon Q2 ≃ 0 GeV2 for ω photopro-
duction [305] and at large values Q2 for ω electroproduction ep → epω [306]. The amplitude for

q

q̄

F(x, κ) = ∂G(x, κ)/∂ log κ2

(1− z,−~k⊥)

(z,~k⊥) ψV (z, k⊥)

ωγ

x2, ~κ2x1, ~κ1

p p

W 2

Figure 4.21: A sketch of the amplitude for exclusive photoproduction γp → ωp process. Some kinemat-
ical variables are shown in addition.

this reaction is shown schematically in Fig.4.21. The pomeron exchange is modelled by a pQCD
gluon ladder. The details how to calculate the amplitude are explained in Refs. [274, 281]. The
following representation for the imaginary part of the amplitude for the transverse polarization
for forward photoproduction γp→ ωp process is used:

ImM(W,∆2 = 0,Q2 = 0) = W2 cV
√
4παem

4π2

∫

dzd2k d2κψV(z, k2)F(xe f f , κ2)I(z, k, κ),

(4.24)

where the precise form of the function I(z, k, κ) derives from the quark loop in Fig.4.21 and
can be found in [281]. Here F(xe f f , κ2) is an unintegrated gluon distribution, taken from [307],
which following [281] is evaluated at xe f f = cskewed(m

2
ω/W2), cskewed = 0.41. Notice that this

particular unintegrated glue incorporates also the region of soft gluon transverse momenta κ,
where it can be viewed as a model of the soft pomeron in terms of nonperturbative gluons. The
process at hand is sensitive to this domain of soft momenta. The charge-isospin factor cV is
cω = 1/

√
2(eu + ed) = 1/(3

√
2).

The full amplitude for the γp→ ωp process at finite momentum transfer is given as

M(W,∆2,Q2 = 0) = (i+ ρ̃) ImM(W,∆2 = 0,Q2 = 0) exp
(−B(W)∆2

2

)

, (4.25)
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where ρ̃ is a ratio of real to imaginary part of the amplitude and B(W) is the slope parameter
dependent on the photon-proton center-of-mass energy and is parametrised as B(W) = B0 +
2α′e f f ln(W

2/W2
0 ) with: W0 = 95 GeV, B0 = 11 GeV−2, α′e f f = 0.25 GeV−2 [308].

Our amplitude is normalized to the total cross section:

σ(γp → ωp) =
1+ ρ̃2

16πB(W)

∣

∣

∣Im
M(W,∆2 = 0,Q2 = 0)

W2

∣

∣

∣

2
. (4.26)

The radial light-cone wave function of the vector meson can be regarded as a function
of three-momentum p = (~p, pz), where ~p =~k, pz = (2z− 1)M/2 then

ψV(z,~k2)→ ψV(p
2),

dzd2~k

z(1− z)
→ 4d3p

M
, p2 =

M2− 4m2
q

4
. (4.27)

Following [281], in our calculation we use a Gaussian wave function, representing a standard
harmonic-oscillator type quark model, which turned out to be superior over a Coulomb wave
function (which has a power-law tail in momentum space) for J/Ψ, Υ and φ mesons exclusive
photoproduction [147, 196, 274]

ψV(p
2) = N exp

(

− p2a21
2

)

. (4.28)

The parameter a1 is obtained by fitting to the electronic decay width

Γ(V → e+e−) =
4πα2

emc
2
V

3m3
ω

· g2V , (4.29)

where Γ(ω → e+e−) = 0.6 keV [96] and imposing the normalization condition

1 =
Nc4π

(2π)3

∫ ∞

0
p2dp 4Mψ2

V (p
2) . (4.30)

In our calculation we use leading-order approximation, i.e. we neglect a possible NLO K-factor.
The parameter gV can be expressed in terms of the ω-meson wave function as [281]

gV =
8Nc

3

∫

d3~p

(2π)3
(M+mq)ψV(p

2) . (4.31)

Having in view theoretical uncertainties in defining light quark mass it is treated here
as a model parameter. In Fig.4.22 we show the total cross section for the exclusive γp→ ρ0p (left
panel) and γp → ωp (right panel) processes as a function of the γp center-of-mass energy Wγp

for the photon virtuality Q2 = 0 GeV2. Our results for exclusive ρ0 and ω mesons production
are compared with the corresponding experimental data. For the ρ0 meson we present results
for three different values of the u and d quark masses assumed here to be identical. The dashed
line (bottom) is for mq = 0.33 GeV, the dotted line (top) for mq = 0.22 GeV and the thick solid
line (fitted to experimental data) for mq = 0.3 GeV. Because the results for mq = 0.3 GeV give
the best description of experimental data, this mass will be used in further calculations. In our
calculation the Gaussian wave function is used. We see that it gives quite good description of the
high-energy ω-meson data. At low energies the pion exchange mechanism dominates [263,313].

Pion exchange

The amplitude for the π-exchange shown in Fig.4.23 can be written as:

Mπ0−exch.
λγ,λN→λω,λN′

= gωπ0γ Fωπγ(t) εβµνλ kµ k′ν εβ(k,λγ) ε∗λ(k
′,λω)

×gπ0NN FπNN(t)
1

t−m2
π

ū(pN ′ ,λN ′)iγ5u(pN ,λN) . (4.32)
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Figure 4.22: Total cross section for the photoproduction γp → ρ0p (left panel) and γp → ωp
(right panel) processes as a function of the photon-proton center-of-mass energy. In the calcula-
tion of the IP-exchange mechanism the Gaussian wave function of the ρ0 and ω mesons is used.
At low energies π-exchange is the dominant mechanism. The curves are described in the text.
Our results are compared with the HERA data [305, 309–312] (solid marks) and with a compila-
tion of low energy data (open circles); see Ref. [5] for more references.

γ(k)

p(pN)

ω(k′)

p(pN ′)
π0∗

Figure 4.23: Diagram with the π-exchange for exclusive photoproduction γp→ ωp.

The gωπ0γ coupling constant in the formula above is obtained from the ω partial decay
width through the relation:

Γ(ω → π0γ) = BR(ω → π0γ) · Γtot =
g2

ωπ0γ

96π
·m3

ω

(

1− m2
π

m2
ω

)3

. (4.33)

Taking experimental partial decay width Γ(ω → π0γ) from [96] we get gωπ0γ ≈ 0.7 GeV−1

which is consistent with the values used in Refs. [263,314] 5. The pion-nucleon coupling constant
gπNN is relatively well known [45]. In our calculations the coupling constant g2πNN/4π = 13.5.
εβ(k,λγ) and ε∗λ(k

′,λω) are the polarization vectors of the photon and ω meson, respectively.
We describe the low energy data shown in Fig.4.22 (right panel) with Λmon ≈ 0.7 GeV

for the monopole form factors by the dashed line

F(t) =
Λ2

mon−m2
π

Λ2
mon − t

(4.34)

5Please note different normalization convention of the coupling constant in all the references.
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or with Λexp ≈ 0.8 GeV for the exponential form factors by the solid line

F(t) = exp

(

t−m2
π

Λ2
exp

)

. (4.35)

The cut-off parameters obtained from the fit are significantly smaller than e.g. those
used in the Bonn model [46, 298]. Such soft form factors may be due to active coupling with
the πN and ρN channels not included explicitly both here nor in the literature. The pion ex-
change describes only angular distributions at forward angles. At larger angles there are other
mechanisms as nucleon exchanges or s-channel nucleon resonances [263, 315]. A more refined
analysis in the peak region would require description of new very precise CLAS Collaboration
data [316] for full range of angular distributions. Such an analysis would need to include also
channel couplings discussed above.

The form factors found here will be used when discussing γπ0 and π0γ exchanges in
the pp → ppω reaction.

4.3.2 γIP and IPγ exchanges

γ

γ

V M
V M

IP

IP

h1

h2

h1 h1
h1

h2
h2 h2

Sel
Sel

Figure 4.24: A sketch of the exclusive photoproduction pp → ppω amplitudes with absorptive
corrections.

The diagrams for the pp and pp̄ collisions in Fig.4.24 show schematically the amplitudes
for photon-pomeron (pomeron-photon) exchanges with absorptive correction, including elastic
rescattering. The full amplitude (with absorptive correction) for the pp → ppω or pp̄ → pp̄ω
reactions can be written as

M(~p1, ~p2) =
∫

d2~k

(2π)2
Sel(~k)M

(0)(~p1 −~k, ~p2 +~k)

= M(0)(~p1, ~p2)− δM(~p1, ~p2) , (4.36)

where
Sel(~k) = (2π)2δ(2)(~k)− 1

2
T(~k) , T(~k) = σ

pp
tot(s) exp

(

− 1
2
Bel
~k2
)

. (4.37)

Here ~p1 and ~p2 are the transverse momenta of outgoing protons (RHIC, LHC) or proton and
antiproton (Tevatron). In practical evaluations we take Bel = 14 GeV−2, σ

pp
tot = 52 mb for the

RHIC energyW = 200 GeV, Bel = 17 GeV−2, σ
pp̄
tot = 76 mb [317] for the Tevatron energyW = 1.96

TeV and Bel = 21 GeV−2, σ
pp
tot = 100 mb for the LHC energyW = 14 TeV.

The Born-amplitude (without absorptive correction) can be written in the form of a two-
dimensional vector (corresponding to the two transverse (linear) polarizations of the final state
vector meson) [147] as

M(0)(~p1, ~p2) = e1
2
z1

~p1
t1
Fλ′1λ1

(~p1, t1)Mγ∗h2→Vh2(s2, t2,Q
2
1)

+ e2
2
z2

~p2
t2
Fλ′2λ2

(~p2, t2)Mγ∗h1→Vh1(s1, t1,Q
2
2) , (4.38)
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whereMγ∗h2→Vh2(s2, t2,Q
2
1) andMγ∗h1→Vh1(s1, t1,Q

2
2) are the amplitudes for photoproduction

discussed above (see (4.25)). Because of the presence of the Dirac electromagnetic form factor of
the proton/antiproton only small Q2

1 and Q2
2 enter the amplitude for the hadronic process. This

means that in practice one can put Q2
1 = Q2

2 = 0 GeV2 for the γ∗p → Vp amplitudes. We have
used the assumption of s-channel helicity conservation in the γ→ ω transition, λγ = λV .

The absorptive correction for the amplitude have the form:

δM(~p1, ~p2) =
∫

d2~k

2(2π)2
T(~k)M(0)(~p1 −~k, ~p2 +~k) . (4.39)

The differential cross section is expressed in terms of the full amplitude M as

dσ =
1

512π4s2
|M|2 dyωdt1dt2 , dφ . (4.40)

where yω is rapidity of the ω meson, t1,2 ≃ −~p 2
1,2 and φ is the azimuthal angle between transverse

momenta ~p1 and ~p2. 6

4.3.3 γπ0 and π0γ exchanges

As shown in Fig.4.22 the QCDmechanism does not describe the huge close-to-threshold
enhancement of the cross section. This indicates a presence of another mechanisms of omega
photoproduction. Neutral pion exchange is the best candidate which describes the low energy
data as discussed in 4.3.1 (Pion exchange). Therefore for the pp → ppω reaction we should
include also photon-pion and pion-photon exchanges. The underlying mechanisms are shown
in Fig. 4.25.

p(pa)

p(pb)
t2

ω(p3)

p(p1)

γ∗(q1)

p(p2)
π0∗

p(pa)

p(pb)

t1
ω(p3)

p(p1)

γ∗(q2)

p(p2)

π0∗

Figure 4.25: Diagrams with the γπ0 and π0γ exchange amplitudes in the pp→ ppω reaction.

The amplitudes for the two new processes can be written easily as:

Mγπ0−exchange
λaλb→λ1λ2λ3

= e F1(t1) ū(p1,λ1)γ
αu(pa,λa)

×−gαβ

t1
gωπ0γFγπ→ω(t1, t2) εβµνλ q1µ p3νε∗λ(p3,λ3)

×gπ0NNFπNN(t2)
1

t2 −m2
π

ū(p2,λ2)iγ5u(pb,λb) , (4.41)

Mπ0γ−exchange
λaλb→λ1λ2λ3

= gπ0NNFπNN(t1)
1

t1 −m2
π

ū(p1,λ1)iγ5u(pa,λa)

×−gαβ

t2
gωπ0γFγπ→ω(t2, t1) εβµνλ q2µ p3νε∗λ(p3,λ3)

×e F1(t2) ū(p2,λ2)γ
αu(pb,λb) , (4.42)

where F1(t1,2) are the Dirac electromagnetic form factors of participating protons. The gωπ0γ

constant was obtained from the omega partial decay width as discussed in 4.3.1 (Pion exchange).

6In the following for brevity we shall use notation t1,2 which means t1 or t2.
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The coupling of the pion to the nucleon g2πNN/4π = 13.5 is relatively well known (see e.g. [45])
and the corresponding form factor is taken in the exponential form:

FπNN(t1,2) = exp
(

t1,2 −m2
π

Λ2
πNN

)

. (4.43)

The central vertices involve off-shell particles. Here the γπ0 and π0γ form factors Fγπ→ω(t1, t2)
are taken in the factorized form given by Eq. (4.17). In practical calculations we take: ΛπNN = 0.8
GeV and Λωπγ = 0.8 GeV as found from the fit to the γp→ ωp experimental data.

At high-energies often light-cone form factors are used instead of the t1 or t2 dependent
ones discussed above (see Eq.(4.43)). In such an approach the pion is rather a constituent of the
initial proton. Then the form factors are parametrised in terms of the squared invariant masses
of the πN system:

M2
2,πN(z2, p

2
2t) =

m2
N + p22t
z2

+
m2

π + p22t
1− z2

,

M2
1,πN(z1, p

2
1t) =

m2
N + p21t
z1

+
m2

π + p21t
1− z1

, (4.44)

where the longitudinal momentum fractions of outgoing protons with respect to the initial pro-
tons can be calculated from energies and z-components of momenta of participating protons

z2 = (p20 − p2z)/(pb0 − pbz) ,
z1 = (p10 + p1z)/(pa0 + paz) . (4.45)

The light-cone form factors are parametrised then as

FπNN(M
2
2,πN) = exp

(

−
M2

2,πN(z2, p
2
2t)−m2

N

2Λ2
LC

)

,

FπNN(M
2
1,πN) = exp

(

−
M2

1,πN(z1, p
2
1t)−m2

N

2Λ2
LC

)

. (4.46)

The parameter ΛLC in the light-cone parametrisation was fitted in Ref. [318] to the data on for-
ward nucleon production and the value ΛLC = 1.1 GeV was found.

The amplitude for processes shown in Fig.4.25 is calculated numerically for each point
in the phase space. In calculating cross section we perform integration in log10(p1⊥) (for γπ-
exchange) and log10(p2⊥) (for πγ-exchange) instead in p1⊥ and p2⊥.

4.3.4 ω-bremsstrahlung mechanisms

The strong coupling of the ω meson to the nucleon causes that the hadronic bremsstrahlung
mechanisms become important. The bremsstrahlung mechanisms for exclusive production of
ω discussed here are shown schematically in Fig.4.26. In the case of ω production the dia-
grams with intermediate nucleon resonances are negligible (see [96]). Because at high energy
the pomeron is the driving mechanism of bremsstrahlung it is logical to call the mechanisms
diffractive bremsstrahlung to distinguish from the low-energy bremsstrahlung driven by meson
exchanges.

It is straightforward to evaluate the contribution of diagrams shown in Fig.4.26. The
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Figure 4.26: Diagrams of the ω bremsstrahlung amplitudes. The absorption effects due to proton-proton
interaction are included.

Born amplitudes read:

M(a)
λaλb→λ1λ2λ3

= ū(p1,λ1)ε
∗
µ(p3,λ3)γ

µSN(p
∗
1 f )u(pa,λa) gωNN FωN∗N(p

∗2
1 f ) FIPNN∗(p

∗2
1 f )

×isabCNN
IP

(

sab
s0

)αIP(t2)−1
exp

(

BNN
IP t2
2

)

δλ2λb
, (4.47)

M(b)
λaλb→λ1λ2λ3

= ū(p2,λ2)ε
∗
µ(p3,λ3)γ

µSN(p
∗2
2 f )u(pb,λb) gωNN FωN∗N(p

∗2
2 f ) FIPNN∗(p

∗2
2 f )

×isabCNN
IP

(

sab
s0

)αIP(t1)−1
exp

(

BNN
IP t1
2

)

δλ1λa
, (4.48)

M(c)
λaλb→λ1λ2λ3

= ū(p1,λ1)SN(p
∗2
1i )ε

∗
µ(p3,λ3)γ

µu(pa,λa) gωNN FωNN∗(p
∗2
1i ) FIPN∗N(p

∗2
1i )

×is12CNN
IP

(

s12
s0

)αIP(t2)−1( s13
sthr

)αN(p
∗2
1i )−1

exp
(

BNN
IP t2
2

)

δλ2λb
, (4.49)

M(d)
λaλb→λ1λ2λ3

= ū(p2,λ2)SN(p
∗2
2i )ε

∗
µ(p3,λ3)γ

µu(pb,λb) gωNN FωNN∗(p
∗2
2i ) FIPN∗N(p

∗2
2i )

×is12CNN
IP

(

s12
s0

)αIP(t1)−1( s23
sthr

)αN(p
∗2
2i )−1

exp
(

BNN
IP t1
2

)

δλ1λa
. (4.50)

The amplitudes for the interaction with emitted ω meson:

M(e)
λaλb→λ1λ2λ3

= ū(p1,λ1)γ
µu(pa,λa)Sµν(t1)ε

ν∗(p3,λ3) gωNN Fω∗NN(t1)FIPω∗ω(t1)

×is23CωN
IP

(

s23
s0

)αIP(t2)−1 ( s13
sthr

)αω(t1)−1
exp

(

BωN
IP t2
2

)

δλ2λb
, (4.51)

M( f )
λaλb→λ1λ2λ3

= ū(p2,λ2)γ
µu(pb,λb)Sµν(t2)ε

ν∗(p3,λ3) gωNN Fω∗NN(t2)FIPω∗ω(t2)

×is13CωN
IP

(

s13
s0

)αIP(t1)−1 ( s23
sthr

)αω(t2)−1
exp

(

BωN
IP t1
2

)

δλ1λa
, (4.52)

where s0 = 1 GeV2 and sthr = (mN +mω)2. The absorption effect for the hadronic bremsstrahlung
contributions requires a short comment. Since in practice for the pomeron exchanges in diagrams
(a) - (d) we use phenomenological interactions which effectively describe the total and elastic
data an additional use of absorption would be a double counting. This is not the case for dia-
grams (e) and (f) where the interaction is between ω-meson and proton. Consequently in the
latter case we include absorption effects in full analogy to that described in section about photo-
production. The factor gωNN is the omega nucleon coupling constant. Different values have been
used in the literature [46, 298]. In our calculation we assume coupling constant g2ωNN/4π = 10.
Similar value was used in Refs. [294, 296].
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In the above equations u(pi,λi), ū(p f ,λ f ) = u†(p f ,λ f )γ
0 are the Dirac spinors (normal-

ized as ū(p)u(p) = 2mN) of the initial and outgoing protons with the four-momentum p and the
helicities λ. The propagators of nucleons and ω meson can be written as

SN(p
∗2
1 f ,2 f ) =

i(p∗1 f ,2 fν γν +mN)

p∗21 f ,2 f −m2
N

, (4.53)

SN(p
∗2
1i,2i) =

i(p∗1i,2iν γν +mN)

p∗21i,2i −m2
N

, (4.54)

Sµν(t) =
−gµν +

qµqν

m2
ω

t−m2
ω

, (4.55)

where t1,2 = (pa,b − p1,2)
2 = q21,2, p

∗2
1i,2i = (pa,b − p3)2, p∗21 f ,2 f = (p1,2 + p3)2 are the four-momenta

squared of objects in the middle of diagrams and sij = (pi + pj)
2 are squared invariant masses of

the (i, j) system.
Using the known strength parameters for the NN and πN scattering fitted to the corre-

sponding total cross sections (the Donnachie-Landshoff model [113]) we obtain CNN
IP = 21.7 mb

and CωN
IP = CπN

IP = 13.63 mb, see Table 2.1. The pomeron trajectory determined from elastic and
total cross sections is taken in the linear approximation in t, see Eq. (2.11) and Fig. 2.1(a). We take
the slope parameters: BωN

IP = BπN
IP = 5.5 GeV−2 and BNN

IP = 9 GeV−2 (2.10).
The extra factors FωNN and FIPNN (or FIPωω) allow for modification when one of the

nucleons or the ω-meson is off its mass shell. We parametrise all the form factors in the following
exponential form:

FωNN(p
∗2
1 f ,2 f ) = exp

(−(p∗21 f ,2 f −m2
N)

Λ2

)

, FIPNN(p
∗2
1 f ,2 f ) = exp

(−(p∗21 f ,2 f −m2
N)

Λ2
IPNN

)

,

FωNN(p
∗2
1i,2i) = exp

(

p∗21i,2i −m2
N

Λ2

)

, FIPNN(p
∗2
1i,2i) = exp

(

p∗21i,2i −m2
N

Λ2
IPNN

)

,

FωNN(t1,2) = exp
(

t1,2 −m2
ω

Λ2

)

, FIPωω(t1,2) = exp
(

t1,2 −m2
ω

Λ2
IPωω

)

. (4.56)

In general, the cut-off parameters are not known but could be fitted to the (normalized) experi-
mental data. From our general experience in hadronic physics we expect Λ ≈ ΛIPNN ≈ ΛIPωω =
1 GeV. We shall discuss how the uncertainties of the form factors influence our final results.

The amplitudes above, (4.51 and 4.52), are corrected by the Regge-like factors to repro-
duce the high-energy Regge dependence: (s13/sthr)

αω(t1)−1 and (s23/sthr)
αω(t2)−1, where sthr =

(mp +mω)2, respectively. We improve also the parametrisation of the amplitudes (4.49, 4.50) by

the factors
(

si3
sthr

)αN(p
∗2
1i,2i)−1

, where we assume the nucleon trajectory αN(p
∗2
1i,2i) = −0.3+ α′N p∗21i,2i,

with α′N = 0.9 GeV−2.
We have chosen a representation for the polarization vectors of the ω-meson in the

helicity states λ3 = 0,±1. The polarization vectors are defined in the proton-proton center-of-
mass frame, where p = (E3, p3 cos φ sin θ, p3 sin φ sin θ, p3 cos θ), as

ε(p3, 0) =
E3

mω
(
p3
E3

, cos φ sin θ, sin φ sin θ, cos θ) ,

ε(p3,±1) =
1√
2
(0, i sin φ∓ cos θ cosφ,−i cosφ∓ cos θ sin φ,± sin θ) . (4.57)

It is easy to check that they fulfill the relation εν(p,λ)ε∗ν(p,λ) = −1 and pνεν(p,λ) = 0.
The exclusive production of ω-mesons in the fragmentation region of either proton can

also be understood as a diffractive excitation of a two-body ωp-Fock state of the physical proton.
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This is best formalized by a Fock state decomposition of the protons light-cone wave function
in terms of meson-baryon Fock states. A comprehensive treatment of meson-cloud effects with
applications to deep-inelastic scattering and baryon form factors within this framework has been
developed in [318, 319], for a review and references see [50]. For the problem at hand, we can
write schematically

|p〉phys =
√
Z
(

|p〉bare +
∫

dzd2~k⊥ Ψωp(z,~k⊥) |p(1− z,− ~k⊥);ω(z, ~k⊥)〉+ . . .
)

. (4.58)

Here, the “bare” proton state represents, for example, a three-quark core of the physical proton,
Ψωp is the light-cone wave function of the ωp-Fock state. The ω-meson in the two-body Fock
state carries a fraction z of light-cone plus-momentum of the physical proton and transverse
momentum~k⊥; for simplicity helicity labels are suppressed. The invariant mass of the virtual
ωp system is then given as

M2
ωp =

~k2⊥ +m2
ω

z
+
~k2⊥ +m2

N

(1− z)
, (4.59)

and enters the radial part of the wave function in terms of the ωNN-form factor

FωNN(M
2
ωp) = exp

(

−
M2

ωp−m2
N

2Λ2
LC

)

. (4.60)

The parameter ΛLC which controls the momentum distribution of ω-mesons in the Fock state is
taken as ΛLC = 1.1 GeV [318].

In accordance with the classic Good-Walker formalism [127], diffractive excitation of the
ωp-state now occurs because interactions of the “bare” proton and the two-body ωN-state differ.
We can write the ωp scattering state as:

|ωp〉scatt =
(

Ŝωp − Ŝp

)

|ωp〉 , (4.61)

where Ŝωp and Ŝp are the elastic scattering matrices for the ωp and p interactions with the target.
Assuming, that the S-matrix of the two-body state factorizes, Ŝωp = Ŝω Ŝp, one can show that
Eq.(4.61) generates precisely the diagrams (a), (c), and (e) of Fig.4.26. Diagrams (b), (d), and (f)
can be obtained by an obvious symmetrization. In practical evaluation, these diagrams will give
similar expressions in momentum space as the ones obtained in the reggeized field theory model
(the “standard approach” discussed above), modulo the absence of Regge-factors and the careful
replacement of all ωNN-form factors by their light-cone counterparts given in Eq.(4.60).

Notice that this description of diffractive dissociation, which treats the ω-meson as a
nonperturbative parton of the proton has a good physical motivation only in the fragmenta-
tion region of the proton(s). When the ω-meson is produced in the central rapidity domain,
the reggeization of the crossed channel exchanges must be taken into account. For Reggeon ex-
changes however the light-cone wave function formalism described above is ill defined [320].
Therefore, for a description of midrapidity ω production, one would have to add the reggeized
ω exchange. We do not do this here, as the final result would not differ much from the reggeized
field theory diagrams (the “standard approach”). At rapidities close to the proton fragmentation
region the difference between the “standard approach” and the light-cone wave function treat-
ment can serve as an indicator for themodel dependence of our predictions for this particular soft
process. Finally let us note, that at the high energies of interest the deviation from factorization

δŜ = Ŝωp − Ŝω Ŝp , (4.62)

is quantified by the shadowing or absorption correction.
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4.4 Results

First of all, we will discuss the role of the ωNN form factors and the ω meson reggeiza-
tion effect [321] for several differential distributions. In Fig.4.27 we present differential cross
sections dσ/dW13 , dσ/dyω , and dσ/dp⊥,ω for the pp → ppω reaction at

√
s = 14 TeV. We show

results with Mandelstam variable dependent form factors (top panels), which we will call stan-
dard in the following, andwith light-cone form factors (bottom panels). The long dashed, dashed
and dotted lines correspond to contributions from diagrams (a), (c) and (e), respectively. In the
top panelwe show results for the standard spin-1/2 propagators in diagrams (a) and (c) as well as
with meson reggeization, see the black and blue lines, respectively. The thick solid line presents
the coherent sum of all amplitudes. The light-cone form factors lead tomuch steeper dependence
of the cross section onW13 (W23) than the standard form factors. The reggeization leads to an ex-
tra damping of the large W13 (W23) cross section. The distribution in yω is closely related to that
forW13 (W23). As seen the reggeization makes the p⊥,ω distribution steeper.
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Figure 4.27: Differential cross sections dσ/dW13, dσ/dyω, and dσ/dp⊥,ω for the pp → ppω reaction at√
s = 14 TeV for the hadronic bremsstrahlung mechanisms. The top panels are for results with Mandel-

stam variable dependent ωNN form factors andwith reggeization includedwhile the light-cone approach
results are shown in the bottom panels. The thick solid line represents the result for the coherent sum of
all amplitudes shown in Fig.4.26.

Now, we present differential distributions for three different c.m. energies:
√
s = 200

GeV (RHIC),
√
s = 1960 GeV (Tevatron) and

√
s = 14 TeV (LHC). This includes rapidity and

transverse momentum of ω meson distributions as well as azimuthal correlations between out-
going protons. In Fig.4.28 we present rapidity distribution of the ω meson for the two consid-
ered approaches. In the first approach we use the standard ωNN form factors (upper panels)
and in the second approach we use the light-cone form factors (bottom panels) for the omega-
nucleon-nucleon coupling. The distributions for the standard form factors extend more towards
midrapidities. We show the γIP (IPγ), γπ0 (π0γ) as well as diffractive bremsstrahlung mecha-
nisms. At “low” energy (RHIC) the discussed hadronic bremsstrahlung mechanisms dominate
over the γIP and IPγ ones. The cross section for the hadronic bremsstrahlung contribution is
two-orders of magnitude bigger than that for the (γIP, IPγ) contribution. The latter mechanism
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is known to be the dominant one for J/Ψ and Υ mesons production [147, 274]. A recent analy-
sis at the Tevatron seems to confirm this claim [180]. Increasing the center-of-mass energy the
hadronic bremsstrahlung components move to large rapidities. The γπ0 (left peak) and the
π0γ (right peak) components are separated. The separation in rapidity means also lack of in-
terference effects which is very different compared to the γIP (IPγ) mechanism 7. At the LHC
energy at midrapidities the photoproduction mechanisms with IP-exchange dominate over the
hadronic bremsstrahlung ones. We predict a narrow plateau around yω ≈ 0 and a significant
increase when going to large |yω |. Experimental observation of the increase would confirm the
bremsstrahlung mechanisms discussed here. Only at the highest LHC energy the region of very
small rapidities is free of the hadronic bremsstrahlung contributions.
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Figure 4.28: Differential cross sections dσ/dyω for the pp( p̄) → pp( p̄)ω reaction at
√
s = 0.2, 1.96, 14

TeV in the full rapidity range. The upper panels are for results with Mandelstam variable dependent
ωNN form factors and with reggeization included while the light-cone form factors correspond to the
bottom panels. In the latter case the Regge exchanges are evidently not included. The difference between
the results with standard and light-cone form factors illustrates theoretical uncertainties. The blue lines
correspond to the QCD γIP and IPγ mechanism. The green dash-dotted lines represent the contribution of
diagrams for the γπ0 (left peak) and π0γ (right peak) exchanges. The dashed lines in the figures represent
the contributions without absorption, while the thick solid lines include the absorption.

How precise are our estimations of the bremsstrahlung contribution? In Fig.4.29 we
show the uncertainty band related to the choice of the form factor parameter. Similar uncertainty
band can be expected due to the choice of the proton-proton-omega coupling constant. Our
previous conservative estimation was rather a lower limit. While the hadronic bremsstrahlung
contributions are subjected to rather large theoretical uncertainties. The γIP (IPγ) contributions
are fairly precisely estimated. Deviations from the pQCD contribution at midrapidities may be
caused by either the difficult to predict hadronic bremsstrahlung contributions or by the very
interesting pomeron-odderon contributions. The rise of the cross section with increasing |yω |
would be a clear signal of the hadronic bremsstrahlung contributions, while a sizeable deviation

7The interference beetwen the two mechanisms γIP and IPγ is proportional to e1e2(~p1 · ~p2) and introduces a charge
asymmetry as well as an angular correlations between the outgoing protons.
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of the cross section normalization a potential signal of the odderon exchange.

ω
y

-6 -4 -2 0 2 4 6

b)µ
 (

ω
/d

y
σd

-310

-210

-110

1

10

210

310
ω pp →pp 

W = 200 GeV
standard approach

γ IP + IP γ
π γ γ π

hadronic
bremsstrahlung

ω
y

-8 -6 -4 -2 0 2 4 6 8
b)µ

 (
ω

/d
y

σd
-310

-210

-110

1

10

210

310
ω p p→ pp

W = 1960 GeV
standard approach

γ IP + IP γ

π γ γ π

hadronic
bremsstrahlung

ω
y

-10 -5 0 5 10

b)µ
 (

ω
/d

y
σd

-310

-210

-110

1

10

210

310
ω pp →pp 

W = 14 TeV
standard approach

γ IP + IP γπ γ γ π

hadronic
bremsstrahlung

Figure 4.29: Differential cross sections dσ/dyω for the pp( p̄)→ pp( p̄)ω reaction at
√
s = 0.2, 1.96, 14 TeV

in the full rapidity range. The uncertainty band for the hadronic bremsstrahlung contributions related to
the choice of the form factor parameter for Λ = 1 GeV (lower limit) and Λ = 1.2 GeV (upper limit).

In Fig.4.30 (top panels) we show the distribution in the ω meson transverse momentum.
In this case the integration is done over full range of meson rapidities. The dashed lines are
for the Born level calculations while the thick lines include effect of absorption. The hadronic
bremsstrahlung contributions calculated in the light-cone approach are similar to those in the
standard approach. The distribution of the photon-pomeron contribution for the pp̄ scattering
is somewhat different than that for the pp scattering. This is caused by different signs of the
interference terms (different combination of electric charges). The distribution of the γπ0 (π0γ)
contribution (green dash-dotted line) is very similar to that of the γIP (IPγ) contribution (blue
lines).

In Fig.4.30 (bottom panels) we show distribution in relative azimuthal angle between
outgoing protons. For the γπ0 mechanism the maximum occurs at φ12 ≈ π/2 which is dictated
by a specific tensorial coupling γπ0 → ω. The azimuthal distribution for the γπ0 mechanism
is very different than for the hadronic bremsstrahlung contributions which peak at φ12 = π,
especially for the light-cone form factors. In principle, the azimuthal angle correlations could
be used therefore to separate the different mechanisms. One can clearly see that the absorption
effects (dashed lines) lead to extra decorrelation in azimuth compared to the Born-level results
(thick solid lines). In general the azimuthal angle correlations are rapidity dependent. Quite
different distributions for the γIP (IPγ) contribution have been predicted for the Tevatron and
RHIC or LHC. The correlation function for this mechanism is caused totally be the interference
of the γIP and IPγ contributions (see [147]). This interference is different for pp- and pp̄-collisions
because proton and antiproton have opposite charges.

The distributions in the full (pseudo)rapidity range are rather theoretical and may be
difficult tomeasure. Onemay expect that in practice only limited range of ω meson (pseudo)rapidity
around yω = 0will be available experimentally. Therefore, as an example, we havemade an extra
calculation for a limited rapidity range. In Fig.4.31 (top panels) we show the ω meson transverse
momentum distributions for |yω | < 1. Here, as can be seen from Fig.4.28, it is enough to in-
clude only the hadronic bremsstrahlung diagrams (e) and (f). In this case standard form factors
are used only. Please note (see Fig.4.28) that in the case of light-cone form factors the hadronic
bremsstrahlungmechanism does not contribute to the restricted rapidity region. For comparison
we show the contributions of photoproduction mechanisms which are calculated fairly precisely
as discussed before. This is very useful in the context of the searches for odderon. In the bottom
panels we show angular correlations between outgoing protons for |yω| < 1. In the case of light-
cone form factors only the photoproduction mechanism contributes. Testing such distributions
together with rapidity distributions could provide therefore new information on the mysterious
odderon exchange.
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Figure 4.30: Differential cross sections dσ/dpt (top panels) and dσ/dφ12 (bottom panels) for the pp( p̄)→
pp( p̄)ω reaction at

√
s = 0.2, 1.96, 14 TeV in the full rapidity range. Here the reggeized propagators of

omega and nucleons are used. The dashed lines represent the contribution without absorption, while the
thick solid lines include the absorption.
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Figure 4.31: Differential cross sections dσ/dpt (top panels) and dσ/dφ12 (bottom panels) for the pp( p̄)→
pp( p̄)ω reaction at

√
s = 0.2, 1.96, 14 TeV for the limited rapidity range |yω| < 1. Here the reggeized prop-

agators of omega and standard ωNN form factors are used. The dashed lines represent the contribution
without absorption, while the thick solid lines include the absorption.
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4.5 Exclusive photon production

We wish to present a first detailed studies of single photon bremsstrahlung in the ex-
clusive process pp → ppγ at the LHC energy

√
s = 14 TeV. We shall include γ-bremsstrahlung

diagrams as well as some new diagrams characteristic exclusively for proton-proton scattering,
not present e.g. in e+e− scattering. We take into account diagrams which arise in the vector-
dominancemodel as well as photon-pion (pion-photon) and photon-pomeron (pomeron-photon)
exchange processes. We shall try to identify the region of the phase space where one can expect a
dominance of one of the processes through detailed studies of several differential distributions.

4.5.1 γ-bremsstrahlung mechanisms

The photon bremsstrahlung was intensively studied in nucleon-nucleon collisions at
low energies (see e.g. [322–328] and references therein). There the dominant mechanisms are
nucleon current (off-shell nucleon) and/or mesonic current (photon emitted from the middle
of exchanged mesons) contributions driven by meson exchanges. At high energies the exclusive
diffractive γ-bremsstrahlungmechanismwas almost not studied in the literature 8. The exclusive
production mechanism is similar to pp → ppω [5] and pp → ppπ0 [9] processes, where the
dominant hadronic bremsstrahlung-type mechanism is the Drell-Hiida-Deck (DHD) mechanism
[258, 259] for diffractive production of πN final states (for a nice review we refer to [126] and
references therein).

In the presented approach we consider a so-called vector model of the pomeron, called
sometimes Donnachie-Landshoff model. This model is known to have some deficiencies. For
example, in Ref. [331] it was shown that this model when applied to quark-antiquark production
in deep-inelastic scattering violates gauge invariance. The main problems there are for virtual
photons and for the coupling of the pomeron to quark and antiquark. Here we consider real pho-
tons and coupling to protons. Coupling of anything to extended, off-shell objects, like nucleons,
requires a special care. This is especially true when electromagnetic interaction comes into game
(see e.g. [323]). The introduction of form factors for extended objects is one of potential sources
of gauge invariance violation, which can be easily checked for an academic case when the ef-
fective pomeron exchange is replaced by the t-channel photon exchange. There are no general
and systematic methods how to treat this problem. In general, in effective theories contact terms
appear. The simple pomeron model considered here is certainly not the final word in the field.
Furthermore there are good arguments that tensor pomeron could be an alternative [13, 203].
Further studies are necessary to find optimal model for the effective pomeron exchange and how
the form factors for off-shell non-point-like particles should be constructed to preserve gauge
invariance.

The bremsstrahlung mechanisms for exclusive production of photons discussed here
are shown schematically in Fig.4.32. In the case of γ production the diagrams with intermediate
nucleon resonances (see [96]) should be negligible. The pronounced at low energy proton to ∆

isobar transitions are suppressed in high energy regime.

8The pp → ppγ process at high energies was discussed also in Ref. [329, 330] and it was proposed to use the
exclusive photon bremsstrahlung to measure or estimate elastic proton-proton cross section at the LHC. Only approx-
imate formulas for the diffractive bremsstrahlung were given there. The participating particles were treated there as
point-like particles. No differential distributions for the exclusive bremsstrahlung have been discussed.
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Figure 4.32: Diagrams of the γ-bremsstrahlung amplitudes driven by the pomeron exchange.

The Born amplitudes of diagrams shown in Fig. 4.32 can be written as
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M(d) IP−exch.
λaλb→λ1λ2λ3
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where u(p,λ), ū(p′,λ′) = u†(p′,λ′)γ0 are the Dirac spinors (normalized as ū(p′)u(p) = 2mp) of
the initial and outgoing protons with the four-momentum p and helicities λ. The four-momenta
squared of virtual nucleons in the middle of diagrams are defined as t1,2 = q21,2 = (pa,b − p1,2)

2,
p21i,2i = (pa,b − p3)2, p21 f ,2 f = (p1,2 + p3)2 and sij = W2

ij = (pi + pj)
2 are squared invariant masses

of the (i, j) system. The propagators of the intermediate nucleons can be written as (4.5). The
polarization vectors of real photon (ε∗/ (p3,±1) = γνε∗ν(p3,±1)) are defined as (4.57), where θ is
the polar angle and φ is the azimuthal angle of an emitted photon.

We use interaction parameters of Donnachie-Landshoff [113] with CNN
IP = 21.7 mb and

the linear pomeron trajectory (2.11). We take the pomeron slope parameter BNN
IP = 9 GeV−2

which approximately describes a running slope (2.10) for proton-proton elastic scattering. Since
in our calculations we include the pomeron exchange describing approximately the nucleon-
nucleon elastic scattering no explicit absorption corrections have to be included in addition. In
our approach the off-shell effects related to the non-point-like protons in the intermediate state
are included by the form factors (4.7).

We could “improve” the parametrisation of the amplitudes (4.65) and (4.66) to repro-

duce the high-energy Regge dependence by the factors
(

s13/m2
p

)αN(p
2
1i)− 1

2
and

(

s23/m2
p

)αN(p
2
2i)− 1

2
,

respectively, where the nucleon trajectory is αN(p
2
1i,2i) = −0.3+ α′N p21i,2i, with α′N = 0.9 GeV−2,

see Fig. 2.1(b). We leave the problem of consistent nucleon reggeization in the context of high-
energy photon bremsstrahlung for future studies.

The amplitudes of bremsstrahlung driven by the t-channel photon exchange can be
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written as

M(a) γ−exch.
λaλb→λ1λ2λ3

= e3 ū(p1,λ1)ε
∗/ (p3,λ3)SN(p

2
1 f )γ

µu(pa,λa) F1(t2)
2 ū(p2,λ2)γµu(pb,λb) ,

M(b) γ−exch.
λaλb→λ1λ2λ3

= e3 ū(p2,λ2)ε
∗/ (p3,λ3)SN(p

2
2 f )γ

µu(pb,λb) F1(t1)
2 ū(p1,λ1)γµu(pa,λa) ,

M(c) γ−exch.
λaλb→λ1λ2λ3

= e3 ū(p1,λ1)γ
µSN(p

2
1i)ε
∗/ (p3,λ3)u(pa,λa) F1(t2)

2 ū(p2,λ2)γµu(pb,λb) ,

M(d) γ−exch.
λaλb→λ1λ2λ3

= e3 ū(p2,λ2)γ
µSN(p

2
2i)ε
∗/ (p3,λ3)u(pb,λb) F1(t1)

2 ū(p1,λ1)γµu(pa,λa) ,
(4.67)

where the γ∗NN-vertices are parametrised by the protonDirac electromagnetic form factors (B.2)
only, that is, without including the proton off-shell form factors (4.7). We checked that the am-
plitudes (4.67) are gauge invariant, i.e. replacing photon polarization vector by its momentum
vector produces a vanishing result.

4.5.2 Bremsstrahlung of ω mesons; ωIP and IPω exchanges

(e)
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p (pb)
t2

γ (p3)

p (p1)

ω∗ (q1)

p (p2)
IP

(f)

p (pa)

p (pb)

t1

γ (p3)

p (p1)

ω∗ (q2)

p (p2)

IP

Figure 4.33: Diagrams of the bremsstrahlung amplitudes with virtual-ω meson (reggeon) and its trans-
formation to final state photon.

In Section 4.3 we have discussed bremsstrahlung of ω mesons, see also Ref. [5]. There
one includes processes when ω meson emitted by an (anti)proton interacts with the second
(anti)proton. The Born amplitudes for the interaction with emitted virtual-ω meson and its sub-
sequent transformation to a photon, shown in Fig.4.33, are obtained bymultiplied the amplitudes
(4.51) and (4.52) by a transition factor Cω→γ. The transformation of ω meson to photon is ob-
tained within the vector dominance model [332] and Cω→γ =

√
αem/20.5 ≃ 0.02, αem = e2/(4π).

For completeness of this analysis we should include also amplitudes for the interaction with
emitted (virtual) ρ meson. Because of isospin, there is no mixing between the intermediate ω
and ρ mesons. The transition of ρ meson to photon is more probable Cρ→γ =

√
αem/2.54 ≃ 0.05

whereas the coupling constant gρNN is small compared with gωNN – in consequence the ρIP con-
tribution is comparable to the ω IP contribution.

4.5.3 Pion cloud; γπ0 and π0γ exchanges

In our present analysis we include also γπ0 and π0γ exchanges. The underlying mech-
anisms are shown in Fig.4.34. Such diagrams are dictated by the presence of pion cloud in the
nucleon (see e.g. [318]).

The amplitudes for the two new processes can be written as (4.41) and (4.42), but with
the replacements gωπ0γFγπ→ω(t1, t2) by Fγπ→γ(t1, t2). For the central vertices involving off-shell
particles the γπ0 form factors are taken in the factorized form

Fγπ→γ(t1, t2) =
Nc

12π2 fπ

m2
ρ

m2
ρ − t1

exp

(

t2 −m2
π

Λ2
γπ→γ

)

(4.68)

with the pion decay constant fπ = 93 MeV and Nc = 3. The factor describing the virtual photon
coupling is taken as in the vector dominance model. In practical calculations we take Λγπ→γ =
1 GeV. In the calculations the corresponding hadronic form factor is taken in the exponential
form (4.43), where we used ΛπNN = 1 GeV.
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Figure 4.34: Diagrams with the γπ0 and π0γ exchanges in the pp→ ppγ reaction.

4.5.4 Photon rescattering; γIP and IPγ exchanges
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Figure 4.35: Diagrams with the γIP and IPγ exchanges for the pp→ ppγ reaction.

At high energy there is still another type of diagrams (mechanisms) shown in Fig.4.35.
We shall call them in the following diagrams (i) and (j) for simplicity. Here the intermediate
photon couples to one of the protons through electromagnetic form factors and interacts (at high
energies) with the second proton exchanging pomeron (phenomenology) or gluonic ladder in
the QCD language (see e.g. [147]). This is a counterpart of the diagrams (g) and (h) (see Fig.4.34)
relevant at lower γp subenergies.

The amplitude of the three-body process can be written in terms of the amplitude for
elastic γp scattering. For not too large t the γp→ γp amplitude can be simply parametrised as

Mγp→γp(s, t) ∼= isσ
γp
tot (s) exp

(

Bγp

2
t

)

. (4.69)

Such an amplitude gives, however, correct total cross section by construction. In the calculations
presented in the Result section we shall use the simple Donnachie-Landshoff fit to the world
data on photon-proton total cross section [113] in which the pomeron and subleading reggeon
exchanges have been included 9

σ
γp
tot (s) = C

γp
IP sαIP(0)−1 + C

γp
IR sαIR(0)−1 ,

C
γp
IP = 0.0677 mb, C

γp
IR = 0.129 mb, αIP(0) = 1.0808, αIR(0) = 0.5475 . (4.70)

In general, the slope parameter could be found by fitting to elastic γp scattering data
which are, however, unknown and very difficult to measure. Since the incoming photon must
first fluctuate to the qq̄ state which interacts by the pomeron exchange with a proton before form-
ing the outgoing vector meson, it seems reasonable to use a hadronic slope for a first estimation.
In practical calculations we shall use Bγp(s) = Bπp(s) with its energy dependence, see Eq.(2.10).

Having fixed the elementary γp → γp amplitude we can proceed to our three-body
photon rescattering amplitude. Limiting to large energies and small transverse momenta t1 and

9In the reggeon contribution the f2 exchange dominates over the a2 exchange similarly as in the hadronic reactions,
see e.g. [114].
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t2, helicity conserving processes, the matrix element can be written as

Mλaλb→λ1λ2λ3
∼= δλ2λb

Mγp→γp(s23, t2)
eF1(t1)

t1
(pa + p1)

µε∗µ(p3,λ3)δλ1λa

+ δλ1λa
Mγp→γp(s13, t1)

eF1(t2)

t2
(pb + p2)

µε∗µ(p3,λ3)δλ2λb
. (4.71)

Using~q1,2⊥ = −~p1,2⊥ we have then

Mλaλb→λ1λ2λ3
∼= δλ2λb

Mγp→γp(s23, t2)
eF1(t1)

t1

2
z1

V∗(q1⊥,λ3)√
1− z1

δλ1λa

+ δλ1λa
Mγp→γp(s13, t1)

eF1(t2)

t2

2
z2

V∗(q2⊥,λ3)√
1− z2

δλ2λb
, (4.72)

where the longitudinal momentum fractions of outgoing protons z1,2 are

z1 ∼=
s23
s
, z2 ∼=

s13
s
, z1, z2 < 1 (4.73)

andV(q⊥,λ3) can be calculated from x, y-components ofmomenta of participating protons (see [147])

V(q⊥,λ3 = ±1) = e
(λ3)
µ q

µ
⊥ = − 1√

2

(

λ3 qx + iqy
)

. (4.74)

The cross section for γπ0 exchange and γIP exchangemechanisms can be also calculated
in the Equivalent Photon Approximation (EPA) (see Eq. 4.19). The differential distribution of
elastic scattering at high energies can be calculated in the standard way

dσγp→γp

dt
(s, t) =

|Mγp→γp(s, t)|2
16πs2

. (4.75)

First energy and the longitudinal momentum of photon is calculated as a function of photon
rapidity and transverse momentum p⊥ =

√

p2x + p2y

Eγ = p⊥ cosh y, pz = p⊥ sinh y . (4.76)

We get

pz =
√

E2
γ − p2⊥ for y > 0, and pz = −

√

E2
γ − p2⊥ for y < 0 . (4.77)

Then energies in the photon-proton subsystems can be calculated approximately as

s13 ≈ (pa0 + Eγ)
2 − (paz + pz)

2 ,
s23 ≈ (pb0 + Eγ)

2 − (pbz + pz)
2 . (4.78)

The fractional energy losses, z1 and z2, of the protons with four-momenta pa and pb, respectively,
can be obtained from Eq.(4.73).

4.6 Results

We shall show results of the differential distributions for the exclusive γ-bremsstrahlung
mechanisms. The amplitudes for processes discussed in the section above are calculated numer-
ically for each point in the phase space. In calculating cross section of the three-body process we
perform integrations in ξ1 = log10(p1⊥/1GeV) and ξ2 = log10(p2⊥/1GeV) instead in p1⊥ and
p2⊥, in the photon (pseudo)rapidity ηγ and the relative azimuthal angle between the outgoing
protons φ12 = φ1 − φ2.
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The photon energy spectrum drops relatively slowly with photon energy as is shown
in Fig.4.36 (left panel). The ZDC detectors (at ATLAS or CMS) can measure only photons above
some energy threshold (e.g. Eγ > 50 GeV). In the calculation of γ-bremsstrahlung presented
here we assume Eγ > 100 GeV as an example. Corresponding distributions in the photon trans-
verse momentum are shown in Fig.4.36 (right panel). The contribution of γ-bremsstrahlung is
concentrated at very small transversemomenta which is consistent with very small photon emis-
sion angle (large pseudorapidity). The other distributions have rather similar shape and vanish
at p⊥,γ = 0 GeV. The exact shape may depend somewhat on the functional form and values of
cut-off parameters of off-shell form factors taking into account the non-point-like nature of the
vertices involved. Here we have fixed the values of the corresponding form factors at typical
hadronic scales.
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Figure 4.36: Energy spectrum of photons (left panel) and distribution in transverse momentum of pho-
tons (right panel) for all processes considered here at

√
s = 14 TeV and for ηγ > 0. For the diffractive

γ-bremsstrahlung we have imposed Eγ > 100 GeV and used two values of ΛN = 0.8, 1 GeV (the lower
and upper solid line, respectively) in the proton off-shell form factors (4.7).

In Fig.4.37 we show auxiliary distribution in ξ1 = log10(p1⊥/1GeV) (left panel) and
ξ2 = log10(p2⊥/1GeV) (right panel), where p1⊥ and p2⊥ are outgoing proton transverse mo-
menta. For example ξ = −1 means proton transverse momenta 0.1 GeV. The biggest contribu-
tion for the diffractive γ-bremsstrahlung comes from the region ξi ≈ −0.5 (i.e, pi⊥ ≈ 0.3 GeV).
The distributions in ξ1 or ξ2 are different because we have limited to the case of ηγ > 0 only.

In Fig.4.38 we show corresponding two-dimensional distributions in (ξ1, ξ2) in the full
range of photon (pseudo)rapidity. Quite different pattern can be seen for different mechanisms.
For the γ-bremsstrahlung we observe an enhancement along the diagonal. This enhancement is
a reminiscence of the elastic scattering for which ξ1 = ξ2. The photon rescattering on the pion
cloud (panel c) and the photon rescattering with pomeron exchange (panel d) as well as the γ-
bremsstrahlung via γ exchange (panel e) contributions are concentrated at quite small ξ1 or ξ2.

The photon (pseudo)rapidity distribution is particularly interesting. In Fig.4.39 we
show both distribution for photon ηγ (left panel) and corresponding distribution for outgoing
protons ηp (right panel) for all considered processes. In this variable both protons and photons
are localized in a similar region of pseudorapidities (or equivalently polar angles). The diffrac-
tive γ-bremsstrahlung clearly gives the largest contribution. It is also concentrated at very large
ηγ i.e. in the region where ZDC detectors can be used. We observe a large cancellation between
the corresponding terms in the amplitude (4.63) and (4.65) (see left panel) or (4.64) and (4.66).

191



1
ξ

-2 -1.5 -1 -0.5 0

b)µ
 ( 1ξ

/dσd

-410

-310

-210

-110

1

10
γ pp →pp 

 = 14 TeVs
 > 0γη

bremsstrahlung
 > 100 GeV)

γ
(E

 IPω

γ 0π rescatteringγ

-exchangeγ
 > 100 GeV)

γ
(E

2
ξ

-2 -1.5 -1 -0.5 0

b)µ
 ( 2ξ

/dσd

-410

-310

-210

-110

1

10
γ pp →pp 

 = 14 TeVs
 > 0γη

bremsstrahlung
 > 100 GeV)

γ
(E

 IPω

γ 0π

 rescatteringγ
-exchangeγ

 > 100 GeV)
γ

(E

Figure 4.37: Distribution in ξ1 = log10(p1⊥/1GeV) (left panel) and ξ2 = log10(p2⊥/1GeV) (right panel)
at
√
s = 14 TeV and for ηγ > 0. For the diffractive γ-bremsstrahlung Eγ > 100 GeV and we have used

two values of ΛN = 0.8, 1 GeV (see the lower and upper solid line, respectively).

The γ-rescattering process with pomeron exchange clearly dominates in the region of ηγ < 6.
The cross section for this process is rather small. Clearly an experimental measurement there
would be a challenge.

In a first experimental trial one could measure only photons and perform a check for
rapidity gap in the midrapidity region. If protons are measured in addition, one could analyze
also some new observables related to protons. In Fig.4.40 we show distribution in the four-
momentum transfer squared between initial and final protons. One can observe a change of
slope of the t distribution which is caused by the bremsstrahlung of photons. In our simplified
model we have assumed a constant (in t1 and t2) energy-dependent slope.

In Fig.4.41we showdistribution in two-dimensional space (t1, t2). For the γ-bremsstrahlung
(left panel) one can observe a ridge when t1 ≃ t2 which is reminiscence of elastic scattering. The
distributions discussed here could, in principle, be obtained with the TOTEM detector at CMS
main detector to supplement the ZDC detector for the measurement of photons.

In Fig.4.42 we compare distribution in photon-(forward proton) subsystem energy for
all considered processes (left panel). The discussed here pp → ppγ process gives a sizeable
contribution to the low mass (MX > mp) single diffractive cross section. If both protons are
measured one could also study correlations in the relative azimuthal angle between outgoing
protons (right panel). One can observe a large enhancement at back-to-back configurations for
the γ-bremsstrahlung which reminds the elastic scattering case (φ12 = π). The contributions for
other mechanisms are significantly smaller and weakly depend on φ12.
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bremsstrahlung via γ-exchange (e) mechanisms at

√
s = 14 TeV. For the bremsstrahlung mechanisms

we have imposed in addition Eγ > 100 GeV. In the calculations of the diffractive γ-bremsstrahlung we
used ΛN = 1 GeV in the proton off-shell form factors.
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√
s = 14 TeV. For the diffractive γ-bremsstrahlung we have imposed
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Figure 4.42: Distribution in the γp subsystem energyW13 (left panel) and in the relative azimuthal angle
between outgoing protons φ12 for all processes considered here at

√
s = 14 TeV and for ηγ > 0. For the

diffractive γ-bremsstrahlung we have imposed Eγ > 100 GeV and used two values of ΛN = 0.8, 1 GeV
(see the lower and upper solid line, respectively).
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Figure 4.43: Diagrams for the exclusive production of π+π+ in pp collisions at high energies. The stars
attached to π+, n and p denote the fact they are off-mass-shell. ka–ki are four-vectors of the exchanged
pomerons.
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4.7 Exclusive pp → nnπ
+

π
+ reaction

Here we shall study the pp → nnπ+π+ reaction with two forward neutrons in the final
state which could be addressed for the ZDCs measurements at high energies (see [4]):

p(pa,λa)p(pb,λb)→ n(p1,λ1)n(p2,λ2)π
+(p3)π

+(p4) , (4.79)

where pa,b, λa,b and p1,2, λ1,2 denote the four-momenta and helicities of the ingoing protons and
outgoing neutrons, respectively.

The total and elastic cross sections are basic objects of the scattering theory. While the
proton-proton, proton-antiproton or pion-proton can be directly measured (see e.g. [96]) the
pion-pion scattering is not directly accessible. It was suggested recently [333] how to extract
the total π+π+ cross section in the high-energy region. Here it was suggested to use scattering
of virtual π+’s which couple to the nucleons with well known coupling constant and are subse-
quently promoted by the interaction onto their mass shell in the final state. The final pions are
then associated with outgoing neutrons. The energy dependence of the total and possibly elas-
tic cross section of pion-pion scattering would be very useful and supplementary information
for the groups which model the soft hadron-hadron interactions (see e.g. [334]). It was shown
recently that the CMS (Compact Muon Spectrometer) Collaboration ZDC’s provide a unique pos-
sibility to measure the π+π+ total cross section [333]. Can a similar method be used to extract
the elastic π+π+ scattering by analysis of the pp → nnπ+π+ reaction? We wish to address this
issue in this Section. 10

Even at high-energy the major part of the phase space of a few-body reactions is popu-
lated in soft processes which cannot be calculated within perturbative QCD. Only limited corner
of the phase space, where particles are produced at large transverse momenta, can be addressed
in the framework of pQCD. At high energy the Regge approach is the most efficient tool to de-
scribe total cross section, elastic scattering as well as different 2 → 2 reactions [114, 130]. We
shall show how to construct the amplitude for the considered 2 → 4 process in terms of several
2 → 2 soft amplitudes. In the present analysis we will also include absorption effects as was
done recently for three-body processes [147].

4.7.1 Diffractive amplitudes of exclusive pp → nnπ
+

π
+ reaction

The diffractive mechanisms involving pomeron and reggeon exchanges are shown in
Fig.4.43. In principle, in all diagrams shown the intermediate nucleon can be replaced by nucleon
excited states. It is known that diffractive excitation of nucleons to inelastic states is rather large
and constitutes about 1/3 of the elastic scattering. This number is, however, not relevant in our
case, as it is to large extend due to the Deck type mechanism [126] which is included explicitly
in our calculation. A microscopic calculation must unavoidably include not only the structure of
the nucleon but also of the nucleon excited states. The cross section for pp → p+ Nππ of our
interest is, however, only a fraction of mb [336]. That the contribution of excited discrete state
is small can be also seen in the following way. First of all the diffractive transitions to discrete
excited states are known to be much weaker than the elastic one. Secondly the gNN∗π coupling
constants are much smaller than the gNNπ coupling constant, see e.g. Refs. [25, 337]. Finally, the
exact strength of the diffractive transitions are not known phenomenologically. Therefore in the
following we neglect the contributions of diagrams with excited nucleon states.

The amplitude squared, averaged over the initial and summed over the final polariza-
tion states, for the pp → nnπ+π+ reaction can be written as:

|M|2 =
1
4 ∑

λaλbλ1λ2

|M(a)
λaλb→λ1λ2

+ ...+M(i)
λaλb→λ1λ2

|2 . (4.80)

10After first version of our paper [4] had been completed, a paper [335] has appeared which also discusses the
possibility of extraction of elastic π+π+ cross section. In our analysis we take into account many more possible
mechanisms for the pp→ nnπ+π+ reaction.
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The Born amplitudes in terms of pomeron exchange shown in Fig.4.43 read:

M(a)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sπ(t1)u(pa,λa)
√
2gπNNFπNN(t1)

×Fo f f
π (t1) is34Cππ

IP

(

s34
s0

)αIP(k
2
a)−1

exp
(

Bππ
IP

2
k2a

)

F
o f f
π (t2)

×ū(p2,λ2)iγ5Sπ(t2)u(pb,λb)
√
2gπNNFπNN(t2) , (4.81)

M(b)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sπ(t1)u(pa,λa)
√
2gπNNFπNN(t1)

×Fo f f
π (t1) is23CπN

IP

(

s23
s0

)αIP(k
2
b)−1( s24

sthr

)αN(u2)− 1
2

exp
(

BπN
IP

2
k2b

)

F
o f f
n (u2)

×ū(p2,λ2)iγ5Sn(u2)u(pb,λb)
√
2gπNNFπNN(u2) , (4.82)

M(c)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sn(u1)u(pa,λa)
√
2gπNNFπNN(u1)

×Fo f f
n (u1) is14CπN

IP

(

s14
s0

)αIP(k
2
c)−1( s13

sthr

)αN(u1)− 1
2

exp
(

BπN
IP

2
k2c

)

F
o f f
π (t2)

×ū(p2,λ2)iγ5Sπ(t2)u(pb,λb)
√
2gπNNFπNN(t2) , (4.83)

M(d)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sn(u1)u(pa,λa)
√
2gπNNFπNN(u1)

×Fo f f
n (u1) is12CNN

IP

(

s12
s0

)αIP(k
2
d)−1( s13

sthr

)αN(u1)− 1
2
(

s24
sthr

)αN(u2)− 1
2

× exp
(

BNN
IP

2
k2d

)

F
o f f
n (u2)

×ū(p2,λ2)iγ5Sn(u2)u(pb,λb)
√
2gπNNFπNN(u2) , (4.84)

M(e)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sπ(t1)u(pa,λa)
√
2gπNNFπNN(t1)

×Fo f f
π (t1) is234CπN

IP

(

s234
s0

)αIP(k
2
e )−1

exp
(

BπN
IP

2
k2e

)

F
o f f
p (s24)

×ū(p2,λ2)iγ5Sp(s24)u(pb,λb)
√
2gπNNFπNN(s24) , (4.85)

M( f )
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sn(u1)u(pa,λa)
√
2gπNNFπNN(u1)

×Fo f f
n (u1) is124CNN

IP

(

s124
s0

)αIP(k
2
f )−1( s13

sthr

)αN(u1)− 1
2

exp
(

BNN
IP

2
k2f

)

F
o f f
p (s24)

×ū(p2,λ2)iγ5Sp(s24)u(pb,λb)
√
2gπNNFπNN(s24) , (4.86)

M(g)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sp(s13)u(pa,λa)
√
2gπNNFπNN(s13)

×Fo f f
p (s13) is134CπN

IP

(

s134
s0

)αIP(k
2
g)−1

exp
(

BπN
IP

2
k2g

)

F
o f f
π (t2)

×ū(p2,λ2)iγ5Sπ(t2)u(pb,λb)
√
2gπNNFπNN(t2) , (4.87)

M(h)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sp(s13)u(pa,λa)
√
2gπNNFπNN(s13)

×Fo f f
p (s13) is123CNN

IP

(
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)αIP(k
2
h)−1( s24
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)

F
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√
2gπNNFπNN(u2) , (4.88)

M(i)
λaλb→λ1λ2

= ū(p1,λ1)iγ5Sp(s13)u(pa,λa)
√
2gπNNFπNN(s13)

×Fo f f
p (s13) isabCNN

IP

(

sab
s0

)αIP(k
2
i )−1

exp
(

BNN
IP
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k2i

)

F
o f f
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√
2gπNNFπNN(s24) , (4.89)

198



where the energy scale s0 is fixed at s0 = 1 GeV2 and sthr = (mN +mπ)2. In our calculations we
take g2πNN/4π = 13.5. The absorptive corrections are calculated as described e.g. in 2.3.2.

In the above equations u(pi,λi), ū(p f ,λ f ) = u†(p f ,λ f )γ
0 are the Dirac spinors (normal-

ized as ū(p)u(p) = 2mN) of the initial protons and outgoing neutrons with the four-momentum
p and the helicities of the nucleons λ. The propagators of virtual particles can be written as

Sπ(t1,2) =
i

t1,2 −m2
π

, (4.90)

Sn(u1,2) =
i(ũ1,2ν γν +mn)

u1,2 −m2
n

, (4.91)

Sp(sij) =
i(s̃ijν γν +mp)

sij −m2
p

, (4.92)

where t1,2 = (pa,b − p1,2)
2 and u1,2 = (pa,b − p3,4)

2 = ũ21,2 are the four-momenta squared of
transferred pions and neutrons, respectively 11. sij = (pi + pj)

2 = s̃2ij are the squared invariant
masses of the (i, j) system, mπ and mn, mp are the pion and nucleons masses, respectively.

Using the known strength parameters for the NN and πN scattering fitted to the cor-
responding total cross sections (the Donnachie-Landshoff model [113]) we obtain CNN

IP , CπN
IP and

Cππ
IP assuming Regge factorization (1.68). The Regge trajectories determined from elastic and to-

tal cross sections are given in the linear approximation (2.11). Parameters of Regge exchanges
used in the present calculations are listed in Table 2.1. In this calculation we use the t-slope pa-
rameters (2.10) of the elastic differential cross section as BπN

IP = 6.5 GeV−2, BNN
IP = 9 GeV−2 and

Bππ
IP = 4 GeV−2. The value of Bππ

IP is not well known, however, the Regge factorization entails
Bππ
IP ≈ 2BπN

IP − BNN
IP [111]. We have parametrised the k2a, ..., k2i dependences in the exponential

form (see formulas (4.81) – (4.89)).
We improve the parametrisation of the amplitudes for neutron exchange (4.82, 4.83,

4.84, 4.86, 4.88) by the factors
(

sij
sthr

)αN(u1,2)− 1
2
to reproduce the high-energy Regge dependence.

The nucleon trajectory is αN(u1,2) = −0.3+ α′N u1,2, with α′N = 0.9 GeV−2, see Fig. 2.1(b).
The extra correction factors Fo f f

π,N(k
2) (where k2 = t1,2, u1,2, sij) are due to off-shellness of

particles. In the case of our 4-body reaction rather large transferred four-momenta squared k2 are
involved and one has to include non-point-like and off-shellness nature of the particles involved
in corresponding vertices. This is incorporated via FπNN(k

2) vertex form factors. We parametrise
these form factors in the following exponential form:

F(t1,2) = exp
(

t1,2 −m2
π

Λ2

)

, (4.93)

F(u1,2) = exp
(

u1,2 −m2
n

Λ2

)

, (4.94)

F(sij) = exp

(

−(sij −m2
p)

Λ2

)

. (4.95)

While four-momenta squared of transferred pions t1,2 < 0, it is not the case for transferred neu-
trons where u1,2 < m2

n. In our calculation, if not otherwise mentioned, we use the cut-off param-
eters Λ = Λo f f = 1 GeV.

4.7.2 Single and double charge exchanges with subleading reggeons

Wewish to include also specific processes with isovector reggeon exchanges ρ+ and a+2 .
We include processes shown in Fig.4.44. These processes involve ρ+ρ+ → π+π+ and a+2 a

+
2 →

11In the following for brevity we shall use notation t1,2 which means t1 or t2.
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π+π+ subprocesses. Unfortunately these subprocesses (or the reverse ones) could not be studied
experimentally.

The relevant coupling constants in diagrams b) and c) are not known and cannot be
obtained from first principles and one has to refer to other reactions involving the same coupling
constants. Such reactions are e.g. π±p → a±2 p (where both IP ∓ ρ0 exchanges are possible),
π−p→ a02n, π−p→ ω0n (only ρ+-reggeon exchange come into game), π±p→ ρ±p (π0, ω0- and
a02-reggeon exchanges) and π−p→ ρ0n (π+, a+2 -reggeon exchanges).
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Figure 4.44: Diagrams with subleading charged-reggeon exchanges in the pp collisions at high energies.
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Figure 4.45: Diagrams for various exchanges in πp collisions.

The ρ-meson/reggeon and a2-meson/reggeon exchanges are known to have not only
the nucleon spin-conserving part but also the dominant nucleon spin-flip component while the
ω-meson/reggeon exchange to nucleons is mainly spin-conserving. We write the amplitude for
the reggeon exchanges (see Fig.4.45) in the following compact phenomenological form: 12

Mreggeon−exch.
λN→λN′ ,λM

(s, t) =

√

−(t− tmin)

M0

(−(t− tmin)

4m2
N

)|λN′−λN |/2
r
i |λN′−λN |
T

×ηi s C
r
i

(

s

s0

)αi(t)−1
exp

(

BMN

2
(t− tmin)

)

δ|λM|1 , (4.96)

and the pion exchange amplitude as

Mπ−exch.
λN→λN′ ,λρ

(s, t) = gπNN FπNN(t) ū(pN ′ ,λN ′)iγ5u(pN ,λN)

×(kµ
π + qµ)ǫ∗µ(k

′,λρ)
i

t−m2
π

gρππ Fρππ(t)

(

s

s0

)απ(t)

. (4.97)

Above the
√

−(t− tmin)/M0 factor is due to the meson spin-flip (in the π → ω, π → ρ
and π → a2 transitions), M0 is a reference scale factor taken here M0 = 1 GeV (which is used
here to have the same units for the coupling constants). The double spin-flip components do
not interfere with the spin-conserving ones and can be calculated separately. Here we have in-
troduced one more phenomenological (dimensionless) parameter riT which describes coupling
for the spin-flip components. It is known to be r

ρ
T = 7.5, ra2T ≃ 6.14, rω

T ≃ 0.17 [265] and
r

ρ
T ≃ 8, ra2T ≃ 4.7, rω

T ≃ 0.9 [338]. In the present calculations we take r
ρ
T = 7.5, ra2T = 6 and rω

T

= 0. The coupling constant gρππ is taken as g2ρππ/4π = 2.6. The form factors are parametrised as

12For the case of the π−p→ ω0n, π−p→ ρ0n and π−p→ a02n reactions the amplitude should be multiplied by
√
2

which is related to isospin Clebsch-Gordan coefficient.
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F(t) = exp
(

(t−m2
π)/Λ2

)

. We improve the parameterization of the amplitude (4.97) by multi-
plying by the factor (s/s0)απ(t), where απ(t) = α′π(t− m2

π) is the pion Regge trajectory with the
slope of trajectory α′π = 1 GeV−2.

We adjust the Cr
i (where i = IP, ρ,ω, a2) coupling constants to the world experimental

data often obtained from partial wave analysis in the three-pion system. The effective normal-
ization constants for the auxiliary reactions are related to those in the NN scattering and the
giπ→a2,ρ,ω coupling constants we need in our problem as:

Cr
i =

√

CNN
i giπ→j . (4.98)

Since CNN
i are known from phenomenology (Table 2.1), giπ→j can be obtained from our fits: gIPπ→a2

= 1.4 GeV−1, gρ
π→a2 = ga2π→ρ = 22 GeV−1 and gω

π→ρ = g
ρ
π→ω = 4 GeV−1. Having fixed the parameters

we can proceed to our four-body pp→ nnπ+π+ reaction.
In Fig.4.46 we show the total cross section for the π−p→ a−2 p, π−p→ ω0n, π−p→ ρ0n

and π±p → ρ±p reactions as a function of the incident-beam momenta Plab. Our fit is shown by
the solid line. In the panel (a) (π−p → a−2 p reaction) we show individual contributions of ρ and
pomeron exchanges. The pomeron exchange dominates at high energies whereas the ρ exchange
at small energies. This separation of mechanisms allows to extract two independent coupling
constants. We show also spin-conserving and spin-flip amplitudes separately. In panel (b) we
show our fit for the π−p→ ω0n. Here only ρ exchange is possible. In panel (c) (π−p→ ρ0n reac-
tion) we show contributions for charged pion exchange (parameters fixed from phenomenology)
and a2 exchange (parameters found from the analysis of the π−p→ a−2 p, see panel (a)). Finally in
panel d) (π±p → ρ±p reactions) we show contributions for neutral pion exchange, a2 exchange
and ω exchange (relevant coupling constants were found from the analysis of the π−p → ω0n
reaction, see panel (b)).

The diagram (a) in Fig.4.44 is topologically identical to the dominant diagram for the
pp → ppπ+π− reaction [3]. There, however, the pomeron-pomeron, pomeron-reggeon and
reggeon-pomeron exchanges are the dominant processes. In addition to diagram (a) there is
possible also another mechanism with the intermediate pion replaced by a virtual photon. Be-
cause it requires two electromagnetic couplings instead of two strong couplings its contribution
should be small. Because of the extra photon propagator it could be enhanced when k2γ → 0.
However then the vertices should tend to zero. Therefore we can safely omit such a diagram.

We write the amplitudes for the diagrams in Fig.4.44 as:

Mλaλb→λ1λ2 =
√
2
( −t1
4m2

N

)|λ1−λa|/2
r
i |λ1−λa|
T ηIR s13

√
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IR

(

s13
s0

)αIR(t1)−1
exp

(

BMN

2
t1

)

×A(s34, ta)

×
√
2
( −t2
4m2

N

)|λ2−λb|/2
r
i |λ2−λb|
T ηIR s24

√

CNN
IR

(

s24
s0

)αIR(t2)−1
exp

(

BMN

2
t2

)

+ crossed term , (4.99)

whereA(s34, ta) refers to the central part of the diagrams

Aπ−exch.(s34, ta) = F
o f f
π (ta)

√

Cππ
ρ

1
ta −m2

π

√

Cππ
ρ F

o f f
π (ta) , (4.100)

Areggeon−exch.(s34, ta) =

√−ta
M0

ηi s34 (g
i
j→π)

2
(

s34
s0

)αi(ta)−1
exp

(

BMM

2
ta

) √−ta
M0

. (4.101)

In actual calculations we take BMN = BπN and BMM = Bππ. Since, in the diagrams in Fig.4.44
and Fig.4.47 we have reggeon exchanges rather than meson exchanges therefore formulas (4.99,
4.101) give rather upper limit for the cross section.
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Figure 4.46: The integrated cross section for the π−p → a−2 p, π−p → ω0n, π−p → ρ0n, π+p → ρ+p,
and π−p → ρ−p reactions as a function of the incident-beam momenta Plab. Corresponding references to
experimental data may be found in Ref. [4].

The parameterization of the amplitudes with subleading charged-reggeon exchanges
cannot be used in the region of resonances in πN or/and ππ subsystems [3]. Therefore, the am-
plitude used in the calculations must contain restrictions on the four-body phase space. To ex-
clude the regions of resonances we modify the parameterization of the amplitudes (4.99) by mul-
tiplying cross section by a purely phenomenological smooth cut-off correction factor f abcont(Wab)
(2.20) for ab = πN or ππ system.

There is another class of diagrams shown in Fig.4.47. The diagram (a) represents a
generic amplitude with particle sets (A, B, C) collected in Table 4.2. In contrast to the diagrams
shown in Fig.4.44, here both pions and subleading reggeons couple to nucleons. We shall not
present explicit formulae for the corresponding amplitudes here. We shall show separate contri-
butions of those processes in the Result Section.

In our analysis the π+n interactions are not taken into account. They would further de-
crease the cross section. Given other theoretical uncertainties (form factors) it seems not worthy
to take over the effort of performing very time-consuming calculations.
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Figure 4.47: Diagrams with subleading reggeon a+2 exchange in pp collisions at high energies.

Table 4.2: Different realizations of diagram (a) in Fig.4.47.
A a+2 a+2 π+ a+2 π+

B IP IP IP ρ0 ρ0

C a+2 π+ a+2 π+ a+2

4.8 Results

We shall show our predictions for the pp → nnπ+π+ reaction for several differential
distributions in different variables at selected center-of-mass energies

√
s = 500 GeV (RHIC) and√

s = 0.9, 2.36 and 7 TeV (LHC). The cross section slowly rises with incident energy. In general,
the higher energy the higher absorption effects. The results depend on the value of the nonper-
turbative, a priori unknown parameter of the form factor responsible for off-shell effects. In Table
4.3 we have collected integrated cross sections for selected energies and different values of the
model parameters. We show how the uncertainties of the form factor parameters affect our final
results.

In Fig.4.48 we show distributions in pseudorapidity (η = − ln(tan θ
2), where θ is the

angle between the particle momentum and the beam axis) for the pp → nnπ+π+ reaction. The
discussed reaction is very unique because not only neutrons but also pions are produced domi-
nantly in very forward or very background directions forming a large size gap in pseudorapidity
between the produced pions, about 12 units at

√
s = 7 TeV. While neutrons can be measured by

the ZDC’s the measurement of very forward/backward pions requires further studies. A pos-
sible evidence of the reaction discussed here is a signal from both ZDC’s and no signal in the
central detector.

In Fig.4.49 we present rapidity distributions of pions yπ+ and rapidity distributions of
neutrons yn. Please note a very limited range of rapidities shown in the figure. The contributions
for individual diagrams (a) – (i) (see Fig.4.43) are also shown. The diagram (d) (from Fig.4.43)

Table 4.3: Full-phase-space integrated cross section (in mb) for exclusive nnπ+π+ production at
selected

√
s and different values of the form factor parameters. In parentheses we show cross

sections including absorption effects.

√
s = 0.5 TeV

√
s = 0.9 TeV

√
s = 2.36 TeV

√
s = 7 TeV

Λ = 0.8 GeV, Λo f f = 1 GeV 0.34 (0.15) 0.38 (0.16) 0.47 (0.18) 0.59 (0.19)
Λ = Λo f f = 1 GeV 0.84 (0.37) 0.95 (0.39) 1.16 (0.42) 1.47 (0.46)

Λ = 1.2 GeV, Λo f f = 1 GeV 1.45 (0.62) 1.64 (0.66) 2.01 (0.71) 2.55 (0.77)
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Figure 4.48: Differential cross section dσ/dη for neutrons (solid lines) and pions (dotted lines) at the
center-of-mass energies

√
s = 0.5, 0.9, 2.36, 7 TeV. The smaller bumps include absorption effects calculated

in a way described in 2.3.2. In this calculation we have used Λ = Λo f f = 1 GeV. The vertical lines at
η = ±8.5 are the lower limits of the CMS ZDC’s. The details related to RHIC ZDC’s can be found in
Ref. [238, 339].

gives the largest contribution. One can observe specific symmetries between different contri-
butions on the left and right panels. For instance the long-dash-dotted line on the left panel
(corresponding to diagram (b) ) is symmetric to the dashed line on the right panel (correspond-
ing to diagram (c) ). Clearly, a significant interference effect can be seen. There is no region of
either pion or neutron rapidity where the diagram (a) dominates. This makes the possibility of
extracting of π+π+ elastic scattering very difficult.

For completeness, in Fig.4.50 we show the contribution of the diagrams with sublead-
ing charged reggeon exchanges (see Fig.4.44) which could not be seen in the previous plot. We
show results for the RHIC (left panel) and LHC (right panel) energies. In contrast to the other
mechanisms, the corresponding contribution is rather flat over broad range of rapidities. The
cross section corresponding to this mechanism is bigger by 2 orders of magnitude for the RHIC
energy compared to the LHC energy, but rather small compared to the dominant contributions
shown in Fig.4.43. In addition, we show contribution of diagrams of Fig.4.47. They are compa-
rable to those of diagrams shown in Fig.4.44 at midrapidities but much smaller than those from
Fig.4.43 at larger rapidities. We show results of diagrams from Fig.4.43 with different values of
the form factor parameter Λ = 0.8 GeV (bottom dashed line) and Λ = 1.2 GeV (upper dashed
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Figure 4.49: Differential cross sections dσ/dyπ+ and dσ/dyn at
√
s = 7 TeV. The bold solid line represent

the coherent sum of all amplitudes. The long-dashed (black), long-dash-dotted, dashed, long-dashed
(red online), dash-dot-dot-dotted, dotted, dash-dotted, dash-dot-dotted, long-dashed (blue online) lines
correspond to contributions from (a) – (i) diagrams from Fig. 4.43. The red, black and blue lines correspond
to diagrams when neutron, pion and proton are off-mass-shell, respectively. No absorption effects were
included here.

line) in order to demonstrate the cross section uncertainties.
In Fig.4.51 we present rapidity distributions of pions yπ for double charged reggeon ex-

changes at
√
s = 500 GeV (left panel) and

√
s = 7 TeV (right panel). The bold solid line represent

the coherent sum of all amplitudes corresponding to diagrams in Fig.4.44. The contributions for
individual diagrams are also shown separately. The diagram (a) in Fig.4.44 gives the largest con-
tribution (long-dashed line). The a+2 − IP− a+2 exchange corresponds to the long-dashed-dotted
line. One can see that the double reggeon exchange mechanisms shown in Fig.4.44 populate
midrapidities of the pions and therefore can be measured either at the RHIC or LHC. In Table 4.4
we have collected cross section for this components. The total contribution is about half of nb at
the RHIC (500 GeV) and a few pb at the LHC (7 TeV).

Can the much smaller contribution of diagrams with subleading charged reggeon ex-
changes be identified experimentally? In Fig.4.52 we show two-dimensional distribution in
(y3, y4) space. The double-charged reggeon-exchange components from Fig.4.44 are placed along
the diagonal y3 = y4 while the other contributions some distance from the diagonal. There-
fore imposing 2-dim cuts in the (y3, y4) space one could separate the small double charged
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Figure 4.50: Differential cross sections dσ/dyπ+ at
√
s = 500 GeV (left) and

√
s = 7 TeV (right). The

lines represent the coherent sum of all amplitudes from diagrams in Fig.4.43 (I), Fig.4.47 (III) and the
contribution of diagrams in Fig.4.44 (II). No absorption effects were included here.

Table 4.4: Full-phase-space integrated cross section (in nb) for exclusive π+π+ production for
the amplitude with the double charged reggeon exchanges (diagrams in Fig.4.44) at the center-
of-mass energies

√
s = 0.5, 7 TeV. No absorption effects were included here.

exchange
√
s = 0.5 TeV

√
s = 7 TeV

ρ+ − π0 − ρ+ 0.43 3.3×10−3
ρ+ − a02 − ρ+ 0.14 1.0×10−3
a+2 − ρ0 − a+2 0.11 5.4×10−4
ρ+ − ω− ρ+ 1.5×10−4 1.1×10−6

coherent sum of all amplitudes 0.7 5.1×10−3
a+2 − IP− a+2 4.4×10−3 2.5×10−3
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√
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No absorption effects were included here.
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reggeons contribution. A very good one-dimensional observable which can be used for the
separation of the processes under discussion could be the differential cross section dσ/dydi f f ,
where ydi f f = y3− y4 and experimentally charged pions should be taken at random (see Fig.4.53,
yπ, f irst = y3 or y4 and yπ,second = y4 or y3).
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Figure 4.52: Differential cross sections in (y3, y4) space at
√
s = 500 GeV (left) and

√
s = 7 TeV (right). The

coherent sum of all amplitudes from diagrams in Fig.4.43, Fig.4.47, and the contribution placed along the
diagonal from diagrams in Fig.4.44 are presented. No absorption effects were included here.
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Figure 4.53: Differential cross sections dσ/dydi f f at
√
s = 500 GeV (left) and

√
s = 7 TeV (right). The

lines represent the coherent sum of all amplitudes from diagrams in Fig.4.43 (I), Fig.4.47 (III) and the
contribution of diagrams in Fig.4.44 (II) placed at ydi f f ≈ 0. No absorption effects were included here.

In Fig.4.54 (left panel) we show distribution of neutrons and pions in the Feynman vari-
able xF (A.16). No absorption effects were included here. In this observable the neutrons and
pions are well separated. The position of peaks is almost independent of energy. While pions
are produce at relatively small-xF the neutrons carry large fractions of the parent protons. The
situation is qualitatively the same for all energies. The distributions in the transverse momentum
of neutrons and pions are shown in Fig.4.54 (right panel). The figure shows that the typical trans-
verse momenta are rather small but large enough to be measured. The distributions for neutrons
are rather similar to those for charged pions.

The distribution in pion-pion invariant mass is shown in Fig.4.55. Unique for this reac-
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Figure 4.54: Differential cross section dσ/dxF (left panel) and dσ/dpt (right panel) for the pp→ nnπ+π+

reaction at
√
s = 7 TeV are presented. The solid and dotted lines correspond to the distribution in the

transverse momentum of neutrons and pions, respectively. The lower red curves in the right panel corre-
spond to calculations with absorption effects included.

tion, very large two-pion invariant masses are produced (see e.g. Ref. [3]). The larger energy the
larger two-pion invariant masses (left panel). The absorption effects almost uniformly reduce the
cross section. We show also distributions with different values of the form factor parameter in
order to demonstrate the cross section uncertainties (right panel).
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Figure 4.55: Differential cross section dσ/dMππ for the pp → nnπ+π+ reaction at
√
s = 0.9, 2.36, 7 TeV

(left panel). The lower curves correspond to calculations with absorption effects. Right panel shows the
“bare” cross section obtained with different values of the form factor parameter Λ = 0.8 GeV (doted line),
Λ = 1 GeV (solid line) and Λ = 1.2 GeV (dashed line) at

√
s = 7 TeV..

The energy distributions of neutrons are presented in Fig.4.56. In general, the larger
collision energy the larger energy of outgoing neutrons. When combinedwith the previous plot it
becomes clear that the neutrons are produced at very small polar angles (large pseudorapidities)
and can be measured by the ZDC’s (see also Fig.4.48). There is an attempt to install forward
shower counters in the LHC tunnel. Most probably they will not be able to measure energy of
the pions but they can signal some activity there. We expect that “some activity” will mean, with
a high probability, just one π+ on one side and the other π+ on the other side.
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Figure 4.56: Differential cross section dσ/dEn for the pp→ nnπ+π+ reaction at
√
s = 0.9, 2.36, 7 TeV (left

panel). The lower curves correspond to calculations with absorption effects. Right panel shows the “bare”
cross section obtained with different values of the form factor parameter Λ = 0.8 GeV (dotted line), Λ = 1
GeV (solid line) and Λ = 1.2 GeV (dashed line) at

√
s = 7 TeV.

In Fig.4.57 (left panel) we show two-dimensional correlations between energies of both
neutronsmeasured in both ZDC’s. The figure shows that the energies of both neutrons are almost
not correlated i.e. the shape (not the normalization) of dσ/dEn1 (dσ/dEn2 ) is almost independent
of En2 (En1). There should be no problem in measuring energy spectra of neutrons on both sides
as well as two-dimensional correlations in (En1 , En2). In Fig.4.57 (right panel) we present the
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Figure 4.57: Differential cross section dσ/dEn1dEn2 (left panel) for the pp → nnπ+π+ reaction at
√
s = 7

TeV. In the right panel the azimuthal angle correlations between neutrons and beetwen pions are shown.
The lower curves correspond to calculations with absorption effects included.

distributions in azimuthal angle φ between the transverse momenta of the outgoing neutrons
(pions). Clearly a preference of back-to-back emissions can be seen. The measurement of az-
imuthal correlations of neutrons will be not easy with first version of ZDC’s as only horizontal
position can be measured. Still correlations of horizontal hit positions on both sides could be in-
teresting. A new correlation observable, taking into account possibilities of the apparatus, should
be proposed. In contrast, the two π+’s are almost not correlated in azimuthal angle. However,
such a distribution may be not easy to measure.
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Table 4.5: Cross section (no absorption effects) with different experimental cuts on p⊥,π , ηπ and
ηn.

√
s (TeV) p⊥,π > |ηπ | < |ηn|ZDC

> σ (nb)
ALICE 7 0.15 0.9 8.7 6.3×10−5
ALICE 7 0.15 1.2 8.7 1.2×10−4
ATLAS 7 0.5 2.5 8.3 4.9×10−4
CMS 7 0.75 2.4 8.5 4.5×10−4
RHIC 0.5 0.2 1 − 2.0×10−2

We have shown that at present the reaction under consideration can be strictly mea-
sured only in a rather limited part of the phase space (midrapidities of pions) where the cross
section is rather small and where the charged-reggeon exchanges mechanism dominates. In Ta-
ble 4.5 we have collected the cross sections in nb for different experiments at the LHC and RHIC.
At LHC, where the separation of the double-reggeon exchange mechanism is possible, the cross
section is rather small of the order of a fraction of pb. At RHIC the cross section with experimen-
tal cuts should be easily measurable as it is of the order of a fraction of nb.

4.9 Conclusions

We have calculated differential cross sections for the exclusive pp → ppπ0 reaction
at high energies relevant for RHIC and LHC. We have included the π0-bremsstrahlung from
the initial and final state, diffractive π0-rescattering, photon-photon fusion and photon-omega
(omega-photon) fusion processes. The diffractive πN and NN rescattering amplitudes have been
related to the total πN and NN cross sections. The Donnachie-Landshoff parametrisation has
been used for energy dependence of the latter. Absorptive effects have been included in addition.
They lower the cross section by a factor 2 to 3; see Table 4.1.

We have found very large cross sections of the order of mb. The total (integrated over
phase space) cross section is almost energy independent. The dominant contributions are placed
at large rapidities. The larger c.m. energy, the larger rapidities are populated. On the other
hand, the diffractive contribution is absent at midrapidity (yπ0 = 0). The higher the collision
energy, the larger the unpopulated region. This opens a window for other mechanisms with
much smaller cross section. For example at the LHC the two-photon fusion mechanism “wins”
with the diffractive mechanisms at yπ0 ≈ 0, where the diffractive contributions are very small.
However, the transverse momenta of neutral pions in this region are very small and therefore
such pions are very difficult to measure. The γω or ωγ exchanges have been found to be sig-
nificant only in backward or forward rapidities, respectively, and are small at midrapidities due
to ω-reggeization. In principle, also a2-pomeron and pomeron-a2 exchanges or ρ0-odderon and
odderon-ρ0 exchanges could play some role but not at midrapidities. In addition, it is rather
difficult to make for them realistic predictions. A larger cross section than predicted here at
midrapidities would be an interesting surprise.

We have shown several other differential distributions. If one limits to separate regions
of yπ0 < 0 or yπ0 > 0 (one-side excitation), then the distributions in proton transverse momenta
p1t and p2t are quite different – one reflecting the pion/nucleon exchange and the second re-
flecting the pomeron exchange. The same is true for the t1 and t2 (transferred four-momentum
squares) distributions. Analysis of such details would be a useful test of the model. The distribu-
tion in the mass of the excited π0p system peaks at small Mπp and quickly drops when the mass
increases. Such a distribution reminds the spectral shape of the Roper resonance fitted recently
to an old single-diffractive data. We have obtained an interesting correlation between themass of
the excited system and the slope of the t distributions well represented in a two-dimensional plot
dσ

dtdM (t,M). Similar effects were observed in the past for the pp → p(nπ+) and np → (pπ−)p
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reactions at the CERN ISR and Fermi National Accelerator Laboratory (Fermilab).
At the LHC the π0 mesons could be measured with the help of Zero Degree Calorime-

ters. Such measurements are possible only at rather large pseudorapidities |ηπ0 | > 8− 9. On
the other hand, protons could be measured with the ALFA detector of ATLAS or the TOTEM
detector associated with the CMS main detector. Particularly interesting is the distribution in az-
imuthal angle between outgoing protons, not studied so far, including low-energy pp→ p(nπ+)
and np → (pπ−)p reactions measured in the 1970’s at ISR and Fermilab. The distribution has
a maximum at relative angle φ12 = π. The detailed shape of the distribution is, however, very
sensitive to the relative contribution of different ingredients of the model. The sensitive nature of
the cancellation between proton-exchange and direct production amplitudes leads to a situation
where minor changes in the parametrisations of these amplitudes can have large effects on dis-
cussed distributions. Experimental analysis of such a distribution would therefore help in fixing
model parameters such as cut-off parameters of hadronic form factors, not known very precisely.

The pp → ppπ0 reaction is interesting also in a much broader context. First of all, it may
constitute a sizeable fraction of the neutral pion inclusive cross section at very forward/backward
(pseudo)rapidities. A comparison with non-diffractive Monte Carlo code would be therefore
very valuable. Second, it leads to a production of very energetic photons (∼ 0.5− 2 TeV) from
the decay of the forward π0’s. These two issues will be a subject of future investigations. Third,
the DHD mechanism contributes sizeable amount to the single diffractive cross section and as a
consequence to the total inelastic cross section. This contribution is not included in any of exist-
ing Monte Carlo codes. Needless to say, these codes are used when extrapolating the measured
high-mass SD cross section down to the πN threshold, which obviously leads to an underesti-
mation of the extracted (measured and extrapolated) cross section for single diffraction and/or
inelastic processes. Finally, because the cross section for the discussed reaction is large, detailed
studies could help to test model(s) of soft absorption, so important in the context of more funda-
mental searches such as, e.g., exclusive production of the Higgs boson in diffractive processes.

We have calculated only contributions with intermediate protons in the ground state to
the pp → ppπ0 reaction. There are also resonance contributions, due to diffractive excitation of
some nucleon resonances and their subsequent decays into the p + π0 (p̄ + π0) channels. The
dominant contributions are due to N∗ resonant states being members of the nucleon trajectory
(Fig. 2.1(b)). The N∗(1680) 5/2+ state is the best candidate. Although a huge contribution of the
Roper resonance N∗(1440) was suggested recently [275], as discussed above, their contribution
may be to some extent an artifact of a fit which does not include the non-resonant DHD mech-
anism, neither in the pp → ppπ0 nor in the pp → pnπ+ channel. We have considered single
exclusive π0 production. One could think about immediate extension of the present study to
double diffractive, double DHDmechanism producing two exclusive π0’s, not considered so far
in the literature and not included in any Monte Carlo code. Again we expect a rather large cross
section for such an inelastic process.

We have presented first estimates of the photon-odderon and odderon-photon contri-
butions based on the upper limit of the γp → π0p cross section obtained at the HERA as well
as estimates based on a nonperturbative approach of Ewerz and Nachtmann which makes use
of chiral symmetry and PCAC. Based on the HERA upper limit we conclude that the cross sec-
tion for the contribution to the pp → ppπ0 reaction is smaller than 20 nb in the rapidity region
|yπ0 | < 2.5. Any deviation from the γγ → π0 contribution to transverse momentum distri-
bution of neutral pions at midrapidity would be a potential signal of photon-odderon (odderon-
photon) contributions. One can expect potential deviations from the photon-photon contribution
at p⊥,π0 ∼ 0.5 GeV. This requires dedicated studies if the considered process could be measured
by, e.g., the ALICE Collaboration at the LHC 13

We have calculated the cross section for γp → ωp reaction at high-energy within a

13The measurements of the invariant differential cross sections of inclusive π0 meson production in proton-proton
collisions at

√
s = 0.9 TeV and 7 TeV at midrapidity in a wide p⊥,π0 range 0.4− 7 GeV and 0.3− 25 GeV for these two

energies, respectively, with the ALICE detector are reported in Ref. [340].
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QCD-inspired model. In the presented model the Gaussian wave function was used with pa-
rameters adjusted to reproduce the electronic decay width of ω meson. A good description of
the HERA experimental data has been achieved, comparable as for the J/Ψ [147] and φ [196]
mesons. We have predicted the cross sections for the pp → ppω and pp̄ → pp̄ω reactions at
high-energies. In contrast to the exclusive production of J/Ψ and φ mesons, in the case of the
ω meson different hadronic bremsstrahlung processes are possible due to large nonperturbative
coupling of the ω meson to the nucleon.

At low energies the hadronic bremsstrahlung contributions dominate over the photo-
production ones if the standard Mandelstam-dependent form factors are used. With increas-
ing energy the hadronic bremsstrahlung contributions move in rapidity to the fragmentation
regions. At high energies the photoproduction mechanisms dominate at midrapidities. We pre-
dict a short plateau at midrapidities due to the photoproduction mechanism and a significant
increase towards fragmentation regions (large |yω |) due to the ω-bremsstrahlung mechanism.
The identification of the increase would be a confirmation of the hadronic bremsstrahlung ef-
fects discussed here. However, this may be not simple experimentally. The precisely evaluated
photoproduction mechanism constitutes a background for the odderon exchange searches.

We have considered also several mechanisms of exclusive single photon production
for the pp → ppγ reaction and calculated several differential distributions at high energy. The
diffractive γ-bremsstrahlung mechanism turned out to give the biggest cross section concen-
trated at large photon (pseudo)rapidities. The photons are emitted at only slightly smaller pseu-
dorapidities than the scattered protons. We observe a strong cancellation between the initial
and final state radiation. The cross section for the γ-bremsstrahlung is peaked at back-to-back
configurations (similar transverse momenta or polar angles of outgoing protons and relative az-
imuthal angle concentrated close to φ12 = π). This is a clear reminiscence of elastic scattering.
Cut on photon energy (Eγ > 100 GeV) reduces the region of φ12

∼= π significantly and the inte-
grated diffractive bremsstrahlung cross section is only of the order of µb. The cross section for
pion-photon or photon-pion exchanges is much smaller. Here both small (photon exchange) and
large (pion exchange) four-momentum transfers squared are possible. For this process there is
no correlation in azimuthal angle between outgoing protons.

Both the γ-bremsstrahlung and the pion-photon (photon-pion) fusion as well as the
virtual-ω–rescattering mechanisms could be studied with the help of Zero Degree Calorimeters
(photons) and the ALFA or TOTEM detectors (protons). By imposing several cuts one could se-
lect or enhance the contribution of one of themechanisms. The cross section for pomeron-photon
or photon-pomeron exchanges is rather small and concentrated at midrapidities. Furthermore,
the transverse momenta of outgoing photons are small and cannot be easily measured with cen-
tral ATLAS or CMS detectors.

Summarizing, even present LHC equipment allows to study exclusive production of
photons. Since this process was never studied at high energies it is worth to make efforts to
obtain first experimental cross sections. Since the cross sections are reasonably large one could
try to obtain even some differential distributions. This would allow to test our understanding of
the diffractive processes and help in pinning down some hadronic and electromagnetic off-shell
form factors, difficult to test otherwise.

Finally, we have estimated cross sections and calculated several differential observables
for the exclusive pp → nnπ+π+ reaction. Because our parameters are extracted from the analysis
of known two-body reactions we expect that our predictions of the cross section are fairly precise
in spite of the complications of the reaction mechanism. The full amplitude was parametrised
in terms of leading pomeron and subleading reggeon exchanges. The first class gives the largest
contribution but concentrated at forward or backward pion directions. There are also diagrams
with double charged exchanges with subleading reggeons ρ+ and a+2 . Although the cross section
for these contributions is rather small, it is concentrated at midrapidities of pions where the cross
section can be easily measured. The double-exchange reggeons processes can be separated out in
the two-dimensional space of rapidities of both pions or in the distribution of the pion rapidity
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difference.
Large cross sections have been obtained, even bigger than for the pp → ppπ+π− reac-

tion [3]. Several mechanisms contribute to the cross section, which leads to an enhancement of
the cross section due to interference effects. These interference effects cause that the extraction
of the elastic π+π+ cross section, as proposed recently [335], seems in practice rather impossi-
ble. We did not find any corner of the phase space where the relevant diagram dominates. We
have included elastic pp-rescattering effects in a way used recently for the three body processes.
These effects lead to a substantial damping of the cross section. The bigger energy the larger ab-
sorption effect of damping. Other processes (e.g. inelastic intermediate states or final state π+n
interactions) could lead to additional damping. At present there is no full understanding of the
absorption effects. We have made predictions for azimuthal angle correlations of outgoing neu-
trons (back-to-back correlations with a sizeable diffusion). Such distribution should be possible
to measure in a future.

The specificity of the reaction is that both neutrons and pions are emitted in very for-
ward/backward directions, producing a huge rapidity gap at midrapidities. While the neutrons
could be measured by the ZDC’s, the identification of pions may be difficult. We think that the
measurement of both neutrons and observation of large rapidity gap is a very good signature
of the considered reaction. We expect the cross section for the nnπ+π+π0, nnπ+π+π0π0, etc.,
which could destroy rapidity gaps, to be smaller but a relevant estimates need to be done. In
addition, for events with larger number of pions the rapidity gap would be easily destroyed.
Therefore the formally kinematically incomplete measurement of two neutrons only could be
relatively precise. We have found that the neutrons measured in ZDC’s seem to be almost uncor-
related in energies. A future experiment could provide new data to be analysed and could shed
new light on absorption effects which are essential for understanding exclusive processes.
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Chapter 5

Central Exclusive Diboson Production

We consider the central exclusive production (CEP) of the vector boson pairs in the
following processes

h1(pa) + h2(pb)→ h1(p1) +V(p3)V(p4) + h2(p2) , (5.1)

where VV (e.g. γγ,γZ,ZZ,W+W−) is a diffractive system separated from the two very forward
protons (h1, h2) by large rapidity gaps. If momenta of the outgoing protons are measured by
forward proton detectors placed at 220 m and 420 m from the ATLAS/CMS interaction point
[239], the mass of the central system may be reconstructed with very precise resolution [341].
These processes are considered to be very sensitive to New Physics contributions (see Refs. [12,
128] for a review on the topic).

The exclusive reaction pp → pHp has been intensively studied by the Durham group
[99–101, 342, 343] in the last decade. This study was motivated by the clean environment and
largely reduced background due to a suppression of bb̄ production as a consequence of the spin-
parity conservation in the forward limit. In particular, it has been proposed as an alternative way
of searching for neutral Higgs bosons and SUSY particles (see Refs. [128, 239]) due to a reduced
QCD bb̄ background. However, very recent precise calculations of Refs. [211, 344] have shown
that the situation with Higgs CEP background in the bb̄ channel is more complicated and the
signal is to a large extent shadowed by the exclusive non-reducible continuum bb̄ production.
In addition, reducible backgrounds from a misidentification of gluonic jets as b-quark jets can
be very difficult to separate [345]. Since the total cross section for the Higgs CEP is quite small
and rather uncertain, the issue with the Higgs CEP is still far from its final resolution, from both
theoretical and experimental point of view.

For the QCD-initiated CEP processes there is a serious problem of rather large theo-
retical uncertainties of the QCD diffraction mechanism in the framework of the Durham Model
(see e.g. Refs. [99–101, 342, 343]). These uncertainties come from both the hard subprocess treat-
ment (Sudakov form factor [346, 347], next-to-leading order QCD corrections [348]) and soft kt-
dependent parton densities as well as from a model-dependent gap survival probability factor
(see e.g. Refs. [6,104,106,177,210,347,349,350]). This situation forces the search for various possi-
ble ways to probe the underlying CEP QCDmechanism. In order to reduce theoretical uncertain-
ties, new experimental data on various exclusive production channels are certainly required and
expected to come soon from ongoing LHCmeasurements. In particular, a measurement of the ex-
clusive dijets production at the LHC could largely reduce the theoretical uncertainty in the Higgs
boson CEP [347]. Other exclusive measurements, e.g. heavy quarkonia [6, 104, 106, 177, 210, 350],
γγ and W+W− pairs [11, 12], high-p⊥ light mesons [105, 351], associated charged Higgs H+W−

CEP [352], etc., can also be important in this context. Some of these results have been compared to
experimental data from the Tevatron [180,353–355], and a rough quantitative agreement between
them has been achieved.

Besides the QCD-initiated CEP processes like the exclusive Higgs and dijet production,
there are extra QED-initiated contributions coming from γγ→ X subprocesses. Normally, these
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contributions are strongly suppressed by very small fine structure constant and therefore typ-
ically neglected compared to the QCD ones especially for not very large invariant masses of
the X system, except for leading-order exclusive dilepton X ≡ l+l− production. On the other
hand, the exclusive reaction via the γγ fusion have significantly smaller theoretical uncertainties
compared to the QCD-initiated Durham mechanism making it a very appealing option for New
Physics searches for exotic resonances which are coupled to photons or SM gauge bosons only.

The final system X in the midrapidity region is predominantly produced in the Jz = 0
state as dictated by the well-known Jz = 0 selection rule [99–101, 342, 343]. However, corrections
to this rule due to slightly off-forward protons can be important for lower (a few GeV) mass
central systems and may lead to sizeable contributions in the observable signals, in particular,
in the χc mesons [6, 104, 106, 177, 210, 350], bb̄ [211, 344] and gg [345, 346] CEP. The emission of
gluons from the “screening” gluon could also violate the Jz = 0 selection rule as has recently
been emphasized in Ref. [346].

We focus on exclusive production of W+W− pairs in high-energy proton-proton colli-
sions. It was found recently [356–359] that the reaction is an ideal case to probe experimentally
the γW+W− and γγW+W− anomalous couplings 1. Here, we would like to focus on an extra
interesting opportunity of making use of large rapidity gap processes at the LHC for probing
new strongly-coupled dynamics. The γγ → W+W− and γγ → γγ processes are interesting re-
actions to test the Standard Model and any other theory beyond the Standard Model, since that
contribution dominates at high energies. The linear collider (ILC, CLIC) would be a good option
to study the couplings of gauge bosons in the distant future. For instance in Refs. [360–362] the
anomalous coupling in locally SU(2) × U(1) invariant effective Lagrangian was studied. Other
models also lead to anomalous gauge boson coupling.

So far the photon-photon contribution for the purely exclusive production of W+W−

was considered in the literature. The diffractive production and decay of Higgs boson into the
W+W− pair was discussed in Ref. [363], and the corresponding cross section turned out to be
significantly smaller than that for the γγ-contribution. Provided this is the case, theW+W− pair
production signal would be particularly sensitive to New Physics contributions in the γγ →
W+W− subprocess [356–359]. Similar analysis has been considered recently for γγ → ZZ [364].
These previous analyses strongly motivate our present detailed study on a competitive diffrac-
tive contribution. The pp → pW+W−p process going through the diffractive QCD mechanism
with the gg → W+W− subprocess naturally constitutes a background for the exclusive electro-
magnetic pp → p(γγ → W+W−)p process. We consider not only the mechanism with inter-
mediate Higgs boson but also quark box contributions never estimated in exclusive processes.
Both the Higgs and box contribution may interfere together. We discuss here the interference
effects. Corresponding measurements will be possible to perform at the ATLAS detector with
the help of very forward proton detectors [356,357]. In order to quantify to what extent the QCD
mechanism competes with the “signal” from the γγ fusion, we calculate both contributions and
compare them differentially as a function of several relevant kinematical variables. Since the box
contribution of exclusive diffractive pp → ppW+W− process is very similar to the pp̄ → pp̄γγ
process which has been measured recently [355], we discuss the latter one and compare corre-
sponding results with the recent CDF data.

5.1 Exclusive QCD mechanism

In this Section, the exclusive QCD diffractive mechanism for the diboson production
(5.1) via off-shell gluon-gluon fusion is taken into consideration. A schematic diagram for cen-
tral exclusive production of W±W∓ pairs in proton-proton scattering with relevant kinematics
notations is shown in Fig. 5.1. Similar mechanisms have been considered in inclusive production
of W+W− pairs (see e.g. Refs. [365–370]). In what follows, we use the standard theoretical de-

1Some more subtle aspects of the beyond Standard Model anomalous couplings were discussed e.g. in [360].
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scription of CEP processes developed by Khoze, Martin and Ryskin for the exclusive production
of Higgs boson [99–101, 342, 343].

p1

p2 p′2
W∓

W±
p′1

q0

q1

q2

Figure 5.1: Generic diagram for the central exclusive WW pair production in pp collisions. Momenta
of incident particles are shown explicitly; in the formulas below we have p1(pa) + p2(pb) → p′1(p1) +
W+(p3)W

−(p4) + p′2(p2).

The momenta of intermediate gluons are given by Sudakov decompositions into longi-
tudinal and transverse parts in the high energy limit in the c.m.s. frame as follows

q1 = x1pa + q1⊥, q2 = x2pb + q2⊥, 0 < x1,2 < 1,
q0 = x′1pa − x′2pb + q0⊥ ≃ q0⊥, x′1 ∼ x′2 = x′ ≪ x1,2, (5.2)

where pa,b are the incoming proton four-momenta, q1,2⊥, q0⊥, x1,2 and x′1,2 are the transverse
four-momenta and the longitudinal momentum fractions for active (fusing) and color screening
gluons, respectively. Making use of conservation laws

q1 = pa − p1 − q0, q2 = pb − p2 + q0, q1 + q2 = p3 + p4, (5.3)

one can write

s x1x2 = M2
VV + |~k⊥ |2 ≡ M2

VV⊥, M2
VV = (p3 + p4)

2 , (5.4)

where MVV is the invariant mass of the boson pairs.
For simplicity, in actual calculations we work in the forward proton scattering limit and

we have

t1,2 = (pa,b − p1,2)
2 ≃ p21,2⊥ → 0 ,

q⊥ ≡ q0⊥ ≃ −q1⊥ = q2⊥ (5.5)

and, hence, ~p3⊥ ≃ −~p4⊥. The QCD factorisation of the process at the hard scale µF is provided
by

µ2
F ≡ s x1x2 ≃ M2

VV . (5.6)

It is convenient to introduce the Sudakov expansion for V3,4 boson momenta

p3 = x+1 pa + x+2 pb + p3⊥, p4 = x−1 pa + x−2 pb + p4⊥ (5.7)

leading to

x1,2 = x+1,2 + x−1,2, x+1,2 =
m3⊥√

s
e±y3 , x−1,2 =

m4⊥√
s
e±y4 , m3,4⊥ =

√

m2
V3,4

+ |~p3,4⊥|2 , (5.8)

in terms of V3,4 boson rapidities y3,4 and transverse masses m3,4⊥. For simplicity, in actual calcu-
lations we work in the forward limit given by Eq. (5.5).
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Wewrite the amplitude of the exclusive central-diffractive boson pairs production (5.1),
which at high energy is dominated by its imaginary part, as

Mλ3λ4(s, t1, t2) ≃ is
π2

2

∫

d2q0⊥Vλ3λ4(q1, q2, p3, p4)
f offg (q0, q1; t1) f offg (q0, q2; t2)

q20⊥ q21⊥ q22⊥
, (5.9)

where λ3,4 are the polarisation states (helicities) of the produced bosons, f offg (r1, r2; t) is the off-
diagonal unintegrated gluon distribution function (UGDF), which depends on the longitudinal
and transverse components of both gluon momenta.

The off-shell gluon fusion (hard) subprocess g∗g∗ → VV amplitude Vλ3λ4(q1, q2, p3, p4)
is given by the light cone projection

Vλ3λ4 = n+µ n
−
ν Vλ3λ4,µν =

4
s

q
µ
1⊥
x1

qν
2⊥
x2

Vλ3λ4,µν , (5.10)

where n±µ = p
µ
a,b/Ep,cms and the center-of-mass proton energy Ep,cms =

√
s/2. We adopt the

definition of gluon transverse polarisation vectors proportional to the transverse gluonmomenta
q1,2⊥, i.e. ε1,2 ∼ q1,2⊥/x1,2.

The amplitude of fusion of two off-shell gluons g∗g∗ → VV turns out to be explicitly
gauge invariant. Indeed, by direct calculation it becomes clear that the gauge invariance over the
first and second gluon line is satisfied, i.e.

q
µ
1Vλ3λ4,µν = qν

2Vλ3λ4,µν = 0 . (5.11)

The helicity matrix element in Eq.(5.10) reads

V
µν
λ3λ4

(q1, q2, p3, p4) = ε∗,ρ(p3,λ3)ε
∗,σ(p4,λ4)V

µν
ρσ , (5.12)

in terms of the Lorentz and gauge invariant 2 → 2 amplitude V
µν
ρσ and outgoing boson polar-

isation vectors ε∗(p,λ) (4.57), where φ is the azimuthal angle of a produced boson. In the for-
ward limit, provided by Eq. (5.5), the azimuthal angles of the V3 and V4 bosons are related as
φ3 = φ4 + π. It can be checked that (4.57) satisfies the identities εµ(p,λ)ε∗µ(p,λ) = −1 and
εµ(p,λ)pµ = ε∗µ(p,λ)pµ = 0.

The diffractive amplitude given by Eq. (5.9) is averaged over the color indices and over
the two transverse polarizations of the incoming gluons. The relevant color factor which includes
summing over colors of quarks in the loop (triangle or box) and averaging over fusing gluon
colors (according to the definition of unintegrated gluon distribution function) is the same as
in the previously studied Higgs CEP (for more details on derivation of the generic pp → pXp
amplitude, see e.g. Ref. [128]). The matrix element Vλ3,λ4 contains twice the strong coupling
constant g2s = 4παs, where αs is the “strong fine-structure constant”. In our calculation here we
take the running coupling constant αs(µ2

hard = M2
VV) (see Eq. 5.6) which depends on the invariant

mass of VV pair as a hard renormalisation scale of the process. The choice of the scale introduces
roughly a factor of two model uncertainties when varying the hard scale µhard between 2MVV

and MVV/2 values.
The bare amplitude above is subjected to absorption corrections that depend on the

collision energy and typical outgoing proton transverse momenta. As was done in the original
KMR calculations [99–101, 342, 343], the bare production cross section is usually multiplied by
a gap survival factor which we take the same as for the Higgs boson and bb̄ production to be
Sg = 0.03 at the LHC energy (see e.g. Ref. [345]). This issue will be discussed shortly when
presenting results. Absorption effects for exclusive Higgs boson production are discussed e.g. in
Refs. [371, 372].

In actual calculations below, the outgoingW± bosons are assumed to be on-mass-shell,
whereas particular contributions to the observables can then be estimated in the narrow-width
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approximation. For example, in the leptonic channel we have the following observable cross
section

σl+νl−ν ≃ σWW × BR(W+ → l+ν)BR(W− → l−ν) , (5.13)

where BR(W+ → l+ν) = (10.80± 0.09)× 10−2 [96] for a given lepton flavor. Both electrons and
muons can be used in practice [356, 357].

5.1.1 Hard subprocess matrix elements

gg → W+W−

The typical contributions for the gg → W+W−(λ1λ2 → λ3λ4) subprocess are shown in
Fig. 5.2. The total number of topologically different loop diagrams amounts to two triangles, and
six boxes. In the central exclusive W+W− production, triangle diagrams through the intermedi-
ate s-channel γ and Z bosons are suppressed due to the Jz = λ1 − λ2 = 0 and parity selection
rule for the singlet gluon-gluon to (virtual) photon transition strictly valid in the on-shell limit of
fusing gluons and the Landau-Yang theorem for the intermediate Z boson. Then the only non-
zeroth contribution comes from the Higgs boson resonant diagram. However, this can only lead
to a sizeable enhancement of the cross section close to its threshold mh0 ≃ MWW & 2mW [363].
The Standard Model Higgs bosons with such large masses have been recently excluded by the
Tevatron [373] and LHC [374, 375] measurements. For the values of Higgs mass mh0 ≈ 125 GeV,
corresponding contribution to the W+W− channel is far from the Higgs boson resonance and
turned out to be suppressed compared to box contributions at low invariant masses. However,
due to interference effects at rather large invariant masses MWW the resonant (triangles) contri-
bution could become comparable to the non-resonant (boxes) one. Below, for comparison we
have calculated box and triangle (through the s-channel SM Higgs boson exchange) contribu-
tions in different phase space regions 2 which could be interesting for future measurements with
forward detectors at ATLAS or CMS.
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Figure 5.2: Representative diagrams of the hard subprocess gg → W±W∓, which contribute to the
exclusiveWW pair production.

The matrix element for the gg → h0 → W+W− transition with the intermediate s-
channel Higgs boson exchange (see first diagram in Fig. 5.2) can be written in the narrow-width
approximation as

Vgg→h0→W+W−(q1, q2, p3, p4) = δ(4)(q1 + q2 − p3 − p4)×

Vgg→h0(q1, q2, ph0)
i

M2
WW −m2

h0
+ iMWWΓh

tot
Vh0→W+W−(p3, p4,λ3,λ4) , (5.14)

where the Higgs boson momentum is ph0 = q1 + q2, and the δ-function reflects the momentum
conservation in the process. In order to get a correct resonant invariant mass distribution, the
standard Breit-Wigner Higgs propagator with the total Higgs decay width Γh

tot, which can be
found e.g. in Ref. [378], is used.

2Close to the WW-threshold instability ofW bosons [376, 377] should be included.
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In Eq. (5.14), first the gg → h0 amplitude of the Higgs boson production through the
top-quark triangle in the kt-factorisation approach can be written as (see e.g. Refs. [379])

Vgg→h0 ≃
iδab

v

αs(µ2
F)

π
(q1⊥ · q2⊥)

2
3

(

1+
7

120
M2

WW

m2
top

)

, v =
(

GF

√
2
)−1/2

. (5.15)

The second tree-level h0 →W+W− “decay” amplitude reads:

Vh0→W+W− ≃ imW
e

sin θW
ε∗(p3,λ3)ε

∗(p4,λ4) , (5.16)

where the polarisation vectors in the direction of motion of W+ and W− bosons in the proton-
proton center-of-mass frame are used in practical calculations.

Potentially interesting contribution could come from the Higgs resonance if the Higgs
mass was close to the WW production threshold. Similar resonance effects have been consid-
ered recently in inclusive [380] and exclusive associated [352] charged Higgs boson production,
and large contributions beyond the Standard Model were found. However, the SM Higgs mass
∼ 160 GeV has been recently excluded in the inclusive searches by the CDF Collaboration at
Tevatron [373] and by the ATLAS and CMS Collaborations at LHC [374, 375], so yet realistic
SM Higgs boson mass mh0 ≈ 125 GeV leads to a suppressed triangles contribution to exclu-
siveW+W− pair production. In the calculation presented here we take mh0 = 125 GeV. Since the
Higgsmass is certainly much smaller than the threshold value a precise value of the Higgs boson
mass is not very important. A contribution from an extended Higgs sector beyond the Standard
Model [380] could be interesting, but we postpone this issue for a later study.

We are primarily interested in estimation of dominant box contributions as well as in
possible box-triangle interference effects within the Standard Model as potentially important
irreducible background for the γγ→ W+W− signal relevant for a precision study of anomalous
couplings. Thus, our numerical estimates provide minimal limit for the central exclusive WW
production signal.

The box contributions to the gg → W+W− (or gg → ZZ) parton level amplitude
(see diagrams in Fig. 5.2) for on-shell fusing gluons were calculated analytically by using the
Mathematica-based FormCal (FC) [381–383] package. The complete matrix element was gen-
erated automatically by the FC tools in terms of one-loop Passarino-Veltman two-, three- and
four-point functions [384] and other internally-defined functions (e.g. gluon and vector bosons
polarisation vectors) and kinematical variables. In the next step, the Fortran code for the matrix
element was generated, and then used as an external subroutine in our numerical calculations
together with other FC routines setting up the Standard Model parameters, coupling constants
and kinematics. Instead of built-in FC polarisation vectors we have used transverse gluon polar-
isation vectors which enter the projection in Eq. (5.10), and the standardW± polarisation vectors
defined in Eq. (4.57), giving us an access to individual polarisation states of theW bosons. In ac-
cordance with the kt-factorisation technique, the gauge invariance of the resulting amplitudes for
the on-mass-shell initial gluons is ensured by a projection onto the gluon transverse polarisation
vectors proportional to the transverse gluon momenta q1,2⊥ according to Eq. (5.10).

For the evaluation of the scalar master tree- and four-point integrals in the gluon-gluon
fusion subprocess we have used the LoopTools library [381–383]. The result is summed up over
all possible quark flavors in loops and over distinct loop topologies. We have also checked that
the sum of relevant diagrams is explicitly finite and obeys correct asymptotical properties and
energy dependence. It is worth to mention that a large cancelation between separate box contri-
butions in the total sum of diagrams takes place, which is expected from the general Standard
Model symmetry principles.

As soon as the hard subprocess matrix element (5.10) has been defined as a function of
relevant kinematical variables (four-momenta of incoming/outgoing particles), the loop integra-
tion over q0⊥ in Eq. (5.9) was performed to obtain the diffractive amplitude, which then has been
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used to calculate the differential distributions for (un)polarised W bosons in an external phase
space integrator.

Aswewill demonstrate below, in the StandardModel the total box contribution is some-
what larger than the triangle one. We, however, keep both the triangle and box contributions and
investigate a possible interference between them, which, in fact, is quite important, especially at
rather largeW+W−-pair invariant masses, i.e. in the region we are interested in.

gg → γγ

Typical contributions to the leading order gg → γγ subprocess are shown in Fig. 5.3.
The total number of topologically different loop diagrams in the Standard Model amounts to
twelve boxes. So the γγ does not exhibit resonant features, and can potentially serve as a probe
for New Physics resonant contributions like the technipion signal under consideration in Sec-
tion 5.5. The box contributions to the gg → γγ parton level amplitude for on-shell fusing gluons
were calculated analytically by using the Mathematica-based FormCal (FC) [381–383] package.
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Figure 5.3: Representative quark loop diagrams of the hard subprocess gg → γγ, which contribute to
the exclusive γγ pair production.

5.1.2 Gluon kt-dependent densities in the forward limit

In the kt-factorisation approach the density of gluons in the proton is described in terms
of the off-diagonal unintegrated gluon distribution functions (UGDFs)

f offg (q0, q1,2; t1,2) = f offg (x′, x1,2, q20⊥, q
2
1/2⊥, µ

2
F; t1,2) (5.17)

= f offg (x′, x1,2, q20⊥, q
2
1/2⊥, µ

2
F) exp(bt1,2/2) ,

at the factorization scale µF ≫ |q0⊥| and the diffractive slope is taken to be b = 4 GeV−2. In the
forward scattering (see Eq. (5.5)) and asymmetric limit of x′ ≪ x1,2, the off-diagonal UGDF (5.18)
is written as a skewedness factor Rg(x′) multiplied by the diagonal UGDF, which describes the
coupling of gluons with longitudinal momentum fractions x1,2 to the proton (see Refs. [190, 385]
for details).

The skewedness parameter Rg is expected to be roughly constant at the LHC energies
and gives only a small contribution to the overall normalization uncertainty. We take Rg = 1.3
in practical calculations. In the kinematics considered here (x′ << x1,2) the off-diagonal UGDFs
can be written in terms of the conventional (integrated) gluon densities xg(x, q2⊥), see Fig. 5.4,
as [190]

f offg (x′, x1,2, q20⊥, q
2
1/2⊥, µ

2
F) ≃ Rg(x

′) fg(x1,2, q2⊥, µ
2
F) =

Rg(x
′)

∂

∂ ln q2⊥

(

x1,2 g(x1,2, q2⊥)
√

Tg(q2⊥, µ
2
F)
)

, (5.18)

where Tg is the Sudakov form factor. The Sudakov factor Tg(q2⊥, µ
2
F) is the survival probability

that an active gluon with transverse momentum q⊥ does not emit any partons in the evolution
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Figure 5.4: Gluon densities of x f (x,Q2) as a function of Q2 at the longitudinal momentum fraction x =
0.1 and 0.01 (top panels) and as a function of x (bottom panels) for fixed values of the scales Q2 = 0.5, 1, 2
and 4 GeV2 given by the global parametrisations sets: GJR [191, 192], MSTW [386], NNPDF [387], and
CTEQ [388, 389]. Access to the parton distribution code, on-line calculation with graphical display of the
distributions is possible also at the Durham HepData Project [390].

up to the hard scale µF so that the rapidity gaps are not populated by gluons. It is given by [190]

Tg(q
2
⊥, µ

2
F) = exp

(

−
∫ µ2

F

q2
⊥

dk2
⊥

k2⊥

αs(k
2
⊥)

2π

∫ 1−∆

0

[

zPgg(z) +∑
q

Pqg(z)

]

dz

)

, (5.19)

with ∆ in the upper limit is taken to be [391]

∆ =
|k⊥|

|k⊥|+ µF
. (5.20)

Due to the presence of the Sudakov form factor in the KMR prescription only last gluon emission
generates transversemomentum of incoming gluons. In our calculations we take µ2

F = M2
VV . The

choice of the scale introduces uncertainties roughly of about factor two. Since in the present cal-
culations we need values of Tg(q2⊥, µ

2
F) for extremely large scales µ2

F the integration in Eq. (5.19) is
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performed rather in log10(k
2/k20), where k0 = 1 GeVwas introduced for convenience; see Fig. 5.5.
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Figure 5.5: The two-dimensional map of the Sudakov form factor Tg(q2⊥, µ
2
F).

5.1.3 Four-body phase space in the forward limit

The diffractive diboson CEP amplitude (5.9) described above is used now to calculate
the corresponding cross section including realistic limitations on the phase space. The cross
section can be obtained by integration over the four-body phase space given by

σ =
(2π)4

2s

∫

|M|2δ4(pa + pb − p1 − p2 − k3 − k4)
d3p1

(2π)32E1

d3p2
(2π)32E2

d3k3
(2π)32E3

d3k4
(2π)32E4

,(5.21)

where E1,2 and E3,4 are the energies of the final-state protons and bosons, respectively, |M|2 =

∑λ3,λ4
Mλ3λ4M∗

λ3λ4
assuming, as usual, that the helicities of both protons are unchanged in

the considered process. In order to calculate the total cross section one has to take the eight-
dimensional integral numerically, see Eq. (A.35) in Appendix A.2. However, the evaluation of
the corresponding hard subprocess amplitudeVλ3λ4 , its subsequent convolution with the UGDFs
in the diffractive amplitude (5.9) and the full phase space integration (5.21) is extremely time con-
suming. Clearly the calculation of diffractive mechanism must be simplified to be feasible. Such
a simplification seems possible for the diffractive process considered here. We start from the
choice of integration variables as in Ref. [3]. Then

dσ =
1
2s
|M|2 1

24
1

(2π)8
1

E1E2

1
4
dt1dt2dφ1dφ2

pm⊥
4
J −1 dy3dy4dpm⊥dφm , (5.22)

where pm⊥ = |k3⊥ − k4⊥| is the difference between transverse momenta of V3 and V4, k3⊥ and
k4⊥, respectively, and φm is the corresponding azimuthal angle. For the sake of simplicity, assum-
ing an exponential slope of t1,2-dependence of the UGDFs (see Eq. (5.18)), and as a consequence
of the approximately exponential dependence of the cross section on t1 and t2 (proportional to
exp(bt1) and exp(bt2)), the four-body phase space can be calculated as

dσ ≈ 1
2s
|M|2

∣

∣

∣

t1,2=0

1
24

1
(2π)8

1
E1E2

1
4

1
b2

(2π)2
pm⊥
4
J −1 dy3dy4dpm⊥dφm. (5.23)

Since in this approximation we have assumed no correlations between outgoing protons (which
is expected here and is practically true for the production of bb̄ [211,344] or gg [345] dijets) there is
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no dependence of the integrand in Eq. (5.23) on φm, which means that the phase space integration
can be further reduced to three-dimensional one. The Jacobian J in Eq. (5.22) reads:

J =

∣

∣

∣

∣

∣

p1z
√

m2
p + p21z

− p2z
√

m2
p + p22z

∣

∣

∣

∣

∣

. (5.24)

In actual calculations below we shall use the reduced form of the four-body phase space (5.23),
and it is checked to give correct numerical results against the full phase space calculation for
some simple reactions. Different representations of the phase space depending on a particular
kinematical distributions needed can be found in Ref. [3].

5.2 Exclusive QED mechanism

We focus on the exclusive QED mechanism for the diboson production via off-shell
photon-photon fusion. The γγ → W+W− mechanism have already been discussed in the litera-
ture (see Refs. [356–359]). The relevant subprocess lowest-order diagrams are shown in Fig. 5.6.

In theWeizsäcker-Williams approximation the total cross section for the pp→ pp(γγ →
V3V4) can be written as in the parton model

σ =
∫

dx1dx2 f
γ
1 (x1) f

γ
2 (x2) σ̂γγ→VV(ŝ) . (5.25)

We take the Weizsäcker-Williams equivalent photon fluxes of protons from Ref. [273].
To calculate differential distributions the following parton-like formula can be conve-

niently used

dσ

dy3dy4d2p⊥,V
=

1
16π2 ŝ2

x1 f
γ
1 (x1) x2 f

γ
2 (x2) |Mγγ→VV(ŝ, t̂, û)|2 , (5.26)

where the longitudinal momentum fractions of the fusing photons x1,2 are defined as in Eq. (5.8).
In the same way as for QCD diffractive mechanism described above, the loop-induced

helicity matrix elements for γγ → VV subprocesses were calculated by using the LoopTools

libraries [381–383].

γγ → W+W−

Γ

Γ

W

W

Γ

Γ

W

W
W

Γ

Γ

W

WW

Γ Γ ® W W

Figure 5.6: The Born diagrams for the γγ→W±W∓ subprocess.

Several features of γγ → W+W− have already been discussed in the literature. Most
of the existing works concentrated on three-level predictions, in particular on the influence of
anomalous gauge-couplings, e.g. [361, 362, 392]. The triple WWγ and the quartic WWγγ cou-
plings, which contribute to the γγ→ W+W− process in the leading order read

LWWγ = −ie(AµW
−
ν

↔
∂µ W+ν +W−µ W+

ν

↔
∂µ Aν +W+

µ Aν

↔
∂µ W−ν) , (5.27)

LWWγγ = −e2(W−µ W+µAνA
ν −W−µ AµW+

ν Aν) , (5.28)
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where the asymmetric derivative has the form X
↔
∂µ Y = X∂µY− Y∂µX.

Then within the Standard Model, the elementary tree-level cross section for the γγ →
W+W− subprocess can be written in the compact form in terms of the Mandelstam variables (see
e.g. Ref. [370]) 3

dσ̂

dΩ
=

3α2β

2ŝ

(

1− 2ŝ(2ŝ+ 3m2
W)

3(m2
W − t̂)(m2

W − û)
+

2ŝ2(ŝ2 + 3m4
W)

3(m2
W − t̂)2(m2

W − û)2

)

, (5.29)

where β =
√

1− 4m2
W/ŝ is the velocity of the W bosons in their center-of-mass frame and the

electromagnetic fine-structure constant α = e2/(4π) ≃ 1/137.036 for the on-shell photon. The to-
tal elementary cross section can be obtained by integration of the differential cross section above.

In Fig. 5.7 we show distribution in ξ1 = log10(x1) and ξ2 = log10(x2) at
√
s = 14 TeV.

We observe a maximum of the cross section at ξ1, ξ2 ≈ −2 which means that corresponding
longitudinal momentum fractions carried by photons are typically 10−2.
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Figure 5.7: Summary of the γγ → W+W− contribution. Here, ξ1,2 = log10(x1,2), where x1,2 are pho-
ton longitudinal fractions with respect to parent protons. The lines were calculated within Weizsäcker-
Williams approximation (EPA) as described in the text with photon fluxes obtained in Ref. [273].

γγ → γγ

The light-by-light scattering subprocess to the leading order was discussed earlier in
the literature (see e.g. [393–397]). The relevant subprocess diagrams shown in Fig. 5.8 are similar
in topology to those for gg → γγ shown in Fig. 5.3 but contain extra contributions from leptonic
and W bosons loops. The box contributions to the γγ → γγ subprocess for on-shell fusing
photons were calculated analytically by using the Mathematica-based FormCal (FC) [381–383]
package. In Ref. [396] the authors considered both the QCD and QED corrections (the two-loop

3This formula does not include the process with virtual Higgs boson γγ → H → W+W−. For heavy Higgs
boson, this would lead to clear Higgs boson signal modifying the cross section (typical resonance plus background
effect) [370], however, with the present Higgs boson mass [374, 375] only deeply off-shell Higgs boson contribution
could be possible. Also, the diagram with an intermediate Higgs boson is, of course, of a higher order compared
to the contributions considered here. This automatically means rather small effect on the measured cross section,
in particular, on the W+W− invariant mass distribution in our case of the four-body pp → pW+W−p reaction. A
potentially interesting Higgsless scenario of theWW-pair production has previously been discussed e.g. in Refs. [356–
359].
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Figure 5.8: The Born diagrams for the γγ→ γγ subprocess.

Feynman diagrams) to the one-loop fermionic contributions only in the γγ→ γγ scattering. The
corrections are quite small numerically, showing that the leading order computations considered
by us are satisfactory.

5.3 Inclusive QCD mechanism

For a test and for a comparison we also consider a gluon-gluon contribution to the
inclusive cross section. We are not interested in the quark-antiquark component which is well
known and can be easily calculated 4.

In the lowest order of QCD the inclusive total cross section for the gluon-gluon fusion
can be written as

σ
gg
pp→VVX =

∫

dx1dx2 g(x1, µ2
F) g(x2, µ

2
F) σ̂gg→VV (ŝ) . (5.30)

and the differential cross section can be obtained as

dσgg

dy3dy4d2pV⊥
=

1
16π2 ŝ2

x1g(x1, µ2
F)x2g(x2, µ

2
F)|Mgg→VV(λ1,λ2,λ3,λ4)|2 . (5.31)

The corresponding matrix elements have been discussed in the literature in detail [365,366]. The
distributions in rapidity of V3 (y3), rapidity of V4 (y4) and transverse momentum of one of them

4In the case ofW+W− inclusive production we also omit pp→ tt̄X →W+W−bb̄X process very important at high
energies.
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pV⊥ can be calculated in a straightforward way from Eq. (5.31). The distribution in invariant
mass can be then obtained by an appropriate binning. Our inclusive dσ/dMVV distribution
seems consistent with similar distributions presented in the past in the literature.

As discussed before, in the case of exclusive scattering the Jz = λ1−λ2 = 0 contribution
is the dominant one, where Jz is the total angular momentum along the z-axis. In the case of
inclusive process the situation is slightly different. In Fig.5.9 we present the Jz = 0 and |Jz| = 2
components to angular distributions. The Jz = 0 contribution is generally larger than the |Jz| = 2
one. As in the exclusive case, at forward/backward scattering (cos θ = ±1) we observe the
dominance of the Jz = 0 contribution. At

√
ŝ = 500 GeV it happens very close to cos θ ≈ ±1.
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Figure 5.9: Centre-of-mass scattering angle dependence of the hard subprocess gg → W+W−(λ1λ2 →
λ3λ4) cross section averaged over incoming gluon polarizations at

√
ŝ = 200 GeV (left panel) and 500 GeV

(right panel). The solid line represents the coherent sum of all contributions. The Jz = λ1−λ2 = 0 (dashed
line) and the |Jz| = |λ1 − λ2| = 2 (dotted line) contributions are shown separately.

For completeness in Fig.5.10 we show corresponding contributions to the rapidity dis-
tribution of one of W’s in the pp → W+W−X process. Here the Jz = 0 contribution is larger in
the whole range of rapidities.
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Figure 5.10: The Jz = 0 (dashed line) and |Jz| = 2 (dotted line) contributions to the inclusive pp →
W+W−X rapidity distribution.
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5.4 Results

5.4.1 gg → VV and γγ → VV processes

Before we go to the presentation of our results for the pp → ppVV reaction let us con-
centrate for a while at the elementary bosonic processes (presented in Figs. 5.12 and 5.13)

V1(k1,λ1) +V2(k2,λ2)→ V3(k3,λ3) +V4(k4,λ4) , (5.32)

where the helicities of the incoming photons or gluons are λ1,2 = ±1 and for the outgoing bosons
are λ3,4 = ±1 (for photons) or λ3,4 = 0,±1 (for Z andW pairs).

In Fig. 5.11 we present the total cross sections of the photon-photon and gluon-gluon
scattering as well as separate contributions coming from charged fermion loops and W-boson
loops. In the gg → γγ case only quarks propagate in the box diagrams (see Fig. 5.3) and the
amplitude is dominated by the light quarks. For the light-by-light scattering all the charged
fermions (quarks, leptons) and W-bosons participate in the corresponding loop diagrams (see
Fig. 5.8). As expected, below the W-boson threshold the fermion loop contribution is dominat-
ing, while boson loop dominates at the photon-photon collision energies

√
s > 200 GeV. For com-

pleteness, in the bottom panels we consider two cases for different helicities of the incoming pho-
tons and we show results with the restriction of the photon scattering angle |cos(θ)| < cos(30o).

In Fig. 5.12(left panel) we present the total cross section for the gg →W+W− reaction as
well as for box and triangle contributions separately. In this calculation we have assumed mh0 =
125 GeV [398, 399]. We also show a vertical line at the tt̄ threshold. The figure demonstrates a
cancellation pattern between box and triangle contributions. We will discuss similar cancellation
for the pp → ppW+W− reaction. In the right panel we show the cross section for the gg →
W+W−,ZZ,γγ reactions (the black, violet, blue lines, respectively) with cut on boson scattering
angle |cos(θ)| < cos(30o).

Fig. 5.13 shows comparison of the integrated elementary cross section for the considered
reactions. We wish to notice that at high c.m. energies

σ̂gg→W+W− ≪ σ̂γγ→W+W−

√
ŝ→∞−−−−→ ≈ 102 pb .

In principle, effects beyond the StandardModel possibly responsible for anomalous gauge-boson
couplings could be important, see e.g. [361, 362]. This shows a potential role of photon-photon
induced processes in proton-proton collisions at the LHC. The exception is the inclusive produc-
tion ofW+W− pairs in Ref. [400], where many new subleading processes have been considered.

We would like to mention some features of the differential production cross section in
Figs. 5.14, 5.15 5.16, and 5.17. The labels +, − represent right-handed and left-handed bosons,
respectively. In Fig. 5.17 we consider the γγ → W+W− reaction. Its angular dependence can be
understood from the conservation of angular momentum in the γγ c.m. system (see e.g. [361]).
Photons with opposite helicities lead to an initial state with z-component of angular momen-
tum ±2. Therefore one cannot produce W− and W+ bosons emitted along the z axis (in the
forward and backward directions cos θ = ±1) with identical helicities, since this would be a state
with z component of angular momentum zero. However, emission at an angle 0 < θ < π is
possible. Two photons with identical helicities can only produce W bosons with identical helic-
ities. The lowest-order matrix element vanishes for the helicities (λ1,λ2,λ3,λ4) = (±,±,±,∓),
(±,±,∓,±), (±,±, 0,±), (±,±,±, 0), (±,±, 0,∓), and (±,±,∓, 0). Furthermore, if the pho-
tons have identical helicities and theW bosons as well, the production ofW bosons with helicity
different to that of the photons is suppressed with rising energy. Moreover, it is apparent from
Fig. 5.17 that the bulk ofW bosons is transverse and is emitted at a small angle to the beam axis,
i.e. cos θ ≈ ±1. Bose symmetry implies that the amplitude M is invariant under the interchange
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Figure 5.11: The integrated elementary cross section for the gg → γγ (red lines) and γγ → γγ (black
lines) reactions as a function of center-of-mass energy. We present the results without and with extra cut
on photon scattering angle |cos(θ)| < cos(30o). The cross section showing the fermion thresholds. For
light-by-light scattering separate contributions coming from fermion and W-boson loop are shown. In
the bottom panels the two choices of initial photon helicities ++ (left panel) and +− (right panel) are
presented.

(k1, ε1) ←→ (k2, ε2). Besides Bose symmetry also CP is an exact symmetry and would be vio-
lated in the considered processes. The helicity amplitudes for fixed polarization configuration
are related as follows:

Mλ1λ2λ3λ4(s, t, u) = Mλ2λ1λ3λ4(s, u, t) (Bose) ,
Mλ1λ2λ3λ4(s, t, u) = M−λ1−λ2−λ4−λ3(s, u, t) (CP) ,
Mλ1λ2λ3λ4(s, t, u) = M−λ2−λ1−λ4−λ3(s, t, u) (Bose+ CP) . (5.33)

5.4.2 pp → ppγγ

Before we go to the presentation of results for the pp → ppW+W− reaction we wish to
show similar results for the pp̄→ pp̄γγ reaction. The latter reaction was studied experimentally
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in Ref. [355]. The CDF Collaboration has measured photons in the interval |η(γ)| < 1, ET >

2.5 GeV and with the condition of no other particles detected in −7.4 < η < 7.4. They have
obtained σCDF

γγ = 2.48 pb with about quarter of relative uncertainty. We have used different
choices of gluon PDFs at quite small values of gluon transverse momenta q2⊥,min = 0.5 GeV2. We
obtain σγγ = 2.99 pb for the GJR NLO [191, 192], 2.46 pb for the MSTW08 NLO [386] and 2.1 pb
for the CT12 NLO [388, 389]. Our results very well agree with the CDF experimental data 5. In

5The pp̄→ pp̄γγ process was discussed recently in [175]. No differential distributions have been discussed there.
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Figure 5.14: Differential cross section for the process gg→ γγ at gg c.m. energies
√
s = 10 GeV, 200 GeV

and 500 GeV with unpolarised gluons for different helicities (λ3, λ4) of the photons (top panels) and for
different helicities (λ1, λ2, λ3, λ4) of the gluons and photons (bottom panels). For these curves where more
than one helicity combination is indicated the curve corresponds to a single helicity combination, not the
sum.

this calculation we have assumed averaged soft gap survival factor Sg = 0.05 and the scale of the
Sudakov form factor was taken as µ2 = M2

γγ.
In Fig.5.18 (top panels) we show distribution of photon-photon invariant mass (left

panel) and distribution in photon transverse momentum (right panel) with experimental CDF
cuts. We show results for three different gluon distributions [191, 192, 386, 388, 389]. We obtain
very good description of the CDF experimental data [355], both in shape and absolute normaliza-
tion. In the bottom panels we show corresponding distribution in photon pseudorapidity, again
for three different gluon distributions. In addition, we present decomposition into different pp
center-of-mass photon helicity components. One can see the dominance of the ++ = −− con-
tributions over +− = −+ ones. Having shown that the results of the approach used here nicely
describe the CDF experimental data [355] we can confidentially present our predictions for the
pp→ ppW+W− reaction.
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Figure 5.15: Differential cross section for the process gg → W+W− with unpolarised gluons at gg c.m.
energies

√
s = 200 GeV, 500 GeV and 1 TeV for different helicities (λ3, λ4) of the W bosons. In this

case, where more than one helicity combination is indicated, all the curve corresponds to a single helicity
combination, not the sum.

5.4.3 pp → ppW+W−

Let us present now our results for the central exclusive W+W− pair production at the
nominal LHC energy

√
s = 14 TeV. In Fig. 5.19 (left panel) we compare rapidity distribution

of W+ (or W−) for the electromagnetic γγ → W+W− and diffractive gg → W+W− mecha-
nisms. The two-photon induced contribution is almost three orders of magnitude larger than
the diffractive contribution, in which all polarization components for W+ and W− have been
included. For a reference, we show also inclusive cross section (gg → W+W− contribution
only) which is roughly two more orders of magnitude bigger than the exclusive γγ → W+W−

contribution. We see, therefore, that the exclusive diffractive component is five orders of mag-
nitude smaller for its inclusive counterpart. The diffractive contribution was calculated with the
GJR NLO [191, 192] collinear gluon distribution to generate the off-diagonal UGDFs given by
Eq. (5.18). This collinear PDF allows us to use quite small values of gluon transverse momenta
(q2⊥,cut = 0.5 GeV2).

A much smaller diffractive contribution compared to the two-photon one requires a
special comment as it is rather exceptional. For example, it is completely opposite than for pp →
ppH [211, 344], pp → ppM (e.g. light/heavy quarkonia production [6, 104, 106, 177, 210, 350]) or
pp→ ppQQ̄ [211,344,401] CEP processes. The standard relative suppression, present also in the
latter cases, is due to soft gap survival probability factor (Sg ∼ 0.03 for diffractive contribution at
the LHC energies versus Sg ∼ 1 for two-photon contribution), and due to a suppression by the
Sudakov form factor calculated at very large scales, here at µhard = MWW. The main difference
compared to other cases is that in the diffractive case the leading contribution comes from loop
diagrams (Fig. 5.2) while in the two-photon case already from tree-level diagrams (Fig. 5.6).

In Fig. 5.19 (right panel) we present, in addition, individual polarization components
for the diffractive mechanism, along with the unpolarized cross section. The calculation of the
helicity contributions is performed in the pp center-of-mass frame (in which all the experimen-
tal studies of the exclusive production processes are usually performed). As can be seen from
the figure, where λ± are the helicities of W± bosons, the contribution of (λ+,λ−) = (±1,∓1)
is bigger than other contributions and the contribution of (λ+,λ−) = (±1,±1) concentrated
mostly at midrapidities. Since the helicities are calculated in the proton-proton center-of-mass
system there is no simple relation to the often used in a qualitative discussion Jz = 0 dominance
rule. Discussion of the Jz = 0 rule would require complicated transformations between different
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Figure 5.16: Differential cross section for the process γγ → γγ at γγ c.m. energies
√
s = 200 GeV,

500 GeV and 1 TeV with unpolarised ingoing photons for different helicities (λ3, λ4) of the outgoing
photons (top panels) and for different helicities (λ1, λ2, λ3, λ4) of all the photons (bottom panels). In this
case, where more than one helicity combination is indicated, all the curve corresponds to a single helicity
combination, not the sum.

reference frames and goes beyond approximations made here. In particular, we found that the
helicity contributions obey the following relation

dσλ+λ−(y+)

dy+
=

dσλ−λ+
(y−)

dy−
, (5.34)

where y± and λ± are rapidities and helicities ofW± bosons, respectively. The unpolarized cross
section does not show up any peculiarities in y-dependence and is symmetric with respect to
y = 0 for bothW+ andW− bosons.

In Fig. 5.20 (left panel) we show distribution in W+ (W−) transverse momentum. The
distribution for exclusive diffractive production is much steeper than that for the electromag-
netic contribution. A side remark is in order here. The diffractive contribution peaks at p⊥,W ∼
25 GeV. This is somewhat smaller than for the γγ → W+W− mechanism where the maxi-
mum is at p⊥,W ∼ 40 GeV. The exclusive cross section for photon-photon contribution is at
large transverse momenta ∼ 1 TeV smaller only by one order of magnitude than the inclusive
gg → W+W− component. The situation could be even more favorable if New Physics would be
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at the game [356, 357].
Fig. 5.20 (right panel) shows distribution in theW+W− invariant mass which is partic-

ularly important for the New Physics searches at the LHC [356, 357]. The distribution for the
diffractive component drops quickly with the MWW invariant mass. For reference and illustra-
tion, we show also distribution when the Sudakov form factor in Eq. (5.18) is set to one. As
can be seen from the figure, the Sudakov form factor lowers the cross section by a large factor.
The damping is MWW-dependent as can be seen by comparison of the two curves. The larger
MWW the larger the damping. We show the full result with box and triangle (Higgs boson)
contributions. At high invariant masses, the interference of boxes and triangles decreases the
cross section. The distribution for the two-photon initiated component drops very slowly with
W+W− invariant mass and at MWW > 1 TeV the corresponding cross section is even bigger than
the gg →W+W− component to inclusive production ofW+W− pairs.
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Figure 5.17: Differential cross section for the process γγ → W+W− at γγ c.m. energies
√
s = 200 GeV,

500 GeV and 1 TeV with unpolarised incoming photons for different helicities (λ3, λ4) of the W bosons
(top panels) as well as in the bottom panels for different helicities (λ1, λ2, λ3, λ4) of the photons and W
bosons. The upper part shows the cross section for purely transverse final states, whereas in the lower
part one or bothW’s are longitudinal. In this case, where more than one helicity combination is indicated,
all the curve corresponds to a single helicity combination, not the sum.
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Figure 5.18: In the top panels we show distributions in photon-photon invariant mass (left panel) and
distribution in photon transverse momentum (right panel). The experimental data are taken from Ref.
[355]. We show results for three different gluon distributions specified in the figure. In the bottom panels
we show distribution in photon pseudorapidity for three different gluon distributions (left panel) and the
decomposition into different pp center-of-mass photon helicity components (right panel).
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5.5 Search for technipions in exclusive production of diphotons

In this sectionwe focus on exclusive production of neutral technipion π0
T in pp collisions

at the LHC, i.e. in the pp → ppπ0
T reaction. The dependence of the cross section on parameters

of recently proposed vector-like Technicolor model is studied. Characteristic features of the dif-
ferential distributions are discussed. For not too large technipion masses the diphoton decay
channel has the dominant branching fraction. This is also the main reason for an enhanced pro-
duction of neutral technipions in γγ-fusion reaction. We discuss backgrounds of the QCD and
QED origin to the pp → pp(π0

T → γγ) process at large invariant γγ masses. We conclude that
compared to inclusive case the signal-to-background ratio in the considered exclusive reaction is
very favourable which thereby could serve as a good probe for Technicolor dynamics searches at
the LHC.

In general, there is a non-negligible possibility that potential, yet unknown, weaker res-
onances which decay mostly into two photons could be very difficult to identify in the inclusive
measurements, at least, at current level of statistics. In such cases an exclusive measurement
has the advantage that γγ-resonance signals could be “enhanced” relative to the two-photon
background offering important advantages compared to new γγ-resonance searches in inclusive
production reactions.

Noteworthy, the CMS Collaboration has indicated yet an unexplained resonant 2σ-
signature in the γγ invariant mass spectrum around ∼ 137 GeV [402, 403] while ATLAS studies
do not reveal a similar signature. Yet poor statistical significance in both measurements does not
allow to exclude completely the existence of extra weak resonances. So it is worth to consider al-
ternative simple possibilities for an extra narrow neutral resonance decaying predominantly into
the γγ pair. These exotic light physical states, in particular, pseudoscalar pseudo-Goldstone tech-
nipions, are naturally predicted by a high-scale strongly-coupled dynamics commonly referred
to as Technicolor (TC) [404–407] (for a review, see also Refs. [408, 409]).

In original minimal Higgs-less TC models, the EW symmetry is broken by techniquark
condensate 〈QTQ̄T〉 and there are no composite scalars left in the spectrum since pseudo-Goldstone
technipions appearing due to the chiral symmetry breaking at a TeV energy scale are absorbed
by the SM gauge bosons. Recently, however, the SM Higgs boson has been discovered [398, 399]
leaving practically no room for minimal TC scenarios, and the search for consistent alternatives
incorporating new strongly-coupled dynamics, dynamical EW symmetry breaking (EWSB) and
the (elementary or composite) Higgs boson is on the way.

One of such promising low energy effective theories including both a Higgs doublet
H and a new TC sector (e.g. technipions) is usually referred to as bosonic TC scenarios [410–
412]. Most recent realization of the bosonic TC is based upon holographic ideas [413], and al-
lows to explain the existence of recently discovered Higgs-like 125 GeV particle and its possible
non-standard features [414]. In this approach, strongly coupled dynamics is defined using the
AdS/CFT correspondence within the holographic approach allowing to avoid the EW precision
constraints [415–417]. In contrast to conventional (Extended andWalking) TCmodels, in bosonic
TC models the mechanism of the EWSB and generation of SM fermions masses is driven by the
Higgs vacuum expectation value (vev) in the standard way, irrespectively of (elementary or com-
posite) nature of the Higgs field itself. Due to linear source term in the Higgs potential the Higgs
field H develops vev which in turn is induced by the technifermion condensate. This means the
Higgsmechanism is not the primary source of the EWSB, but effectively induced by an unknown
TC dynamics at high scales.

Many existing dynamical EWSB scenarios, including those with walking and topcolor
dynamics, incorporate more than the minimal two flavors of techniquarks. Such scenarios fea-
ture pseudo-scalar technipion states that are remnants of the EWSB in models with more than
one weak techniquark doublet. Discovery of such technipions is often considered as one the
basic observational signatures of TC [418–420]. In extended TC scenarios with colorless (or col-
ored) techniquarks the technipion can be produced via gluon-gluon and quark-antiquark fusion
through a strong technipion coupling to heavy t, b quarks (or techniquark-gluon coupling). As
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was shown in Ref. [421] (and in references therein) in such scenarios the relatively light technip-
ions mπT

< 2mt are excluded by the SM Higgs searches at the LHC. Do we still have a room for
light (mπT

∼ 100− 300 GeV) technipions consistent with EW and LHC precision constraints?
We consider a further development of the bosonic TC and dynamical EWSB ideas – the

so-called vector-like TC scenario recently proposed and discussed in detail in Refs. [422, 423].
This model is a successful alternative to the standard (Extended, Walking) TC implementations
which is essentially the minimal TC extension of the SM with one (elementary or composite)
Higgs doublet and extra strongly-coupled weak doublet of vector-like techniquarks (i.e. with
two “techni-up” U and “techni-down” D flavors only).

The idea of vector-like (chiral-symmetric) ultraviolet completion which is fully consis-
tent with precision EW constraints at the fundamental level has been realized in the framework
of the gauged linear σ-model initially developed for QCD hadron physics [424–428]. In this
phenomenological approach, the spontaneous global chiral symmetry breaking in the techiquark
sector happens by means of technisigma vacuum expectation value (vev) in the chiral-symmetric
(vector-like) way

SU(2)L ⊗ SU(2)R → SU(2)V≡L+R , (5.35)

where the resulting unbroken chiral-symmetric subgroup SU(2)V≡L+R is then gauged and there-
fore describes gauge interactions of the techniquark sector. The minimality of such a scenario
which incorporates the SM Higgs sector is provided by the fact that one gauges only the vector
part of the global chiral symmetry. In Ref. [422] it was argued that the vector-like gauge group
SU(2)V can, in principle, be identified with the weak isospin group SU(2)W of the SM, i.e.

SU(2)V≡L+R ≡ SU(2)W , (5.36)

in the techniquark sector. Such a dynamical realization of the chiral-gauge symmetry leads to
specific properties of the techniquark sector w.r.t. weak interactions, which thereby make it to be
very different from the chiral-nonsymmetric SM fermion sectors. It therefore means that after the
chiral symmetry breaking in the techniquark sector the left and right components of the original
Dirac techniquark fields can interact with the SM weak SU(2)W gauge bosons with vector-like
couplings, in contrast to ordinary SM fermions, which interact under SU(2)W by means of their
left-handed components only.

The resulting weak isospin symmetry SU(2)W is broken by means of the effective SM
Higgs mechanism which thereby gets initiated by the techniquark condensation providing the
dynamical nature of the EWSB [422]. In this scenario, the additional Goldstone bosons arising
from the Higgs weak doublet are absorbed by Z,W± bosons in the standard way while pseudo-
Goldstone technipions from extra TC dynamics remain physical in a full analogy with QCD
hadron physics. As we will see below these technipions can be rather light, in principle, as light
as the W boson since they do not couple to ordinary quarks and gluons and could potentially
be accessible to a standard Higgs boson searches e.g. in γγ and γZ decay channels. Since the
diphoton channel appears to be the most favorable channel for such technipion searches at the
LHC we wish to discuss in this Section also the diphoton backgrounds which turn out to be
suppressed compared to the πT

0 → γγ signal in the exclusive production process.
Therefore, we consider the exclusive production of γγ pairs which is among one of the

“golden channels” for both Higgs boson and light technipion searches at the LHC. The pp →
p(γγ)p process going through the diffractive QCD mechanism with the gg → γγ subprocess
naturally constitutes a background for the resonant technipion production. The photon-photon
contribution for the purely exclusive production of low invariant mass of γγ was discussed very
recently in Ref. [429]. There only lepton and quark loops have been considered. In the case of
technipion production at the LHC we are rather interested in relatively large invariant diphoton
masses Mγγ & 100 GeV relevant for the SM Higgs boson searches as well. We shall calculate
both the QCD and QED contributions and compare them differentially as a function of diphoton
invariant mass suggesting potentially measurable signature of vector-like Technicolor.
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5.5.1 Technipion interactions from vector-like Technicolor

We start from vector-like TC model setup relevant for our purposes here. The local
chiral vector-like subgroup SU(2)V≡L+R = SU(2)W appearing due to the spontaneous global
chiral symmetry breaking (5.35) acts on confined elementary techniquark sector [422], i.e.

QT =

(

U
D

)

, (5.37)

which is thus in the fundamental representation of the SM gauge SU(2)W ⊗ U(1)Y group and
SU(3)c-neutral at the same time. As usual, in addition we have the initial scalar technisigma
S field which is the SM singlet, and the triplet of initial (massless) technipion fields Pa, a =
1, 2, 3 which is the adjoint (vector) representation of SU(2)W (with zeroth U(1)Y hypercharge).
The linear σ-model part of the Lagrangian responsible for the Yukawa-type interactions of the
techniquarks (5.37) reads

LTC
Y = −gTCQ̄T(S+ iγ5τaPa)QT , (5.38)

where τa, a = 1, 2, 3 are the Pauli matrices, and effective Yukawa coupling gTC > 1. After the chi-
ral and EW symmetries breaking, the Yukawa terms (5.38) determine the strength of technipion
interactions with techniquarks as well as (pseudo)scalar self-couplings [422].

Non-local effects in gauge boson couplings to technipions and constituent techniquarks,
in general, can be incorporated via momentum-dependent form factors. In the case of a large
techniconfinement scale ΛTC ∼ 0.1− 1 TeV, these effects are strongly suppressed by large con-
stituent masses of techniquarks MQT

∼ ΛTC and can be neglected to the first approximation.
Thus the vector-like gauge interactions of QT and Pa fields with initial U(1)Y and SU(2)W gauge
fields Bµ, Wa

µ, respectively, can be introduced in the local approximation via usual EW gauge
couplings g1,2 renormalized at the µ = 2MQT

scale, i.e.

LπT ,QT
=

1
2
DµPa D

µPa + iQ̄TD̂QT , (5.39)

where

DµPa = ∂µPa + g2ǫabcW
b
µPc , (5.40)

D̂QT = γµ

(

∂µ −
iYQT

2
g1Bµ −

i

2
g2W

a
µτa

)

QT , (5.41)

besides that QT is also confined under a QCD-like SU(NTC)TC group. Here, we discuss a partic-
ular case with the number of technicolors NTC = 3.

After the EWSB, the physical Lagrangian of vector-like interactions of techniquarks and
gauge bosons V = Z0, W±, γ reads

LQ̄TQTV
= gQT

W ŪγµD ·W+
µ + gQT

W D̄γµU ·W−µ
+ Zµ ∑

QT=U,D
gQT
Z f̄γµ f + ∑

QT=U,D
gQT

γ f̄γµAµ f , (5.42)

where technifermion couplings to vector bosons gQT
V1,2

are

gQT
Z =

g

cW

(

tQT
3 − qQT

s2W
)

, gQT
W =

g√
2
, gQT

γ = e qQT
. (5.43)

Here, sW = sin θW , cW = cos θW , and θW is the Weinberg angle, e = gsW is the electron charge,
tQT
3 is the weak isospin (tU3 = 1/2, tD3 = −1/2), qQT

= YQT
/2+ tQT

3 is the technifermion charge.
Choosing the technifermion hypercharge to be the same as in the SM fermion sector YQT

= 1/3,
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we get qU = 2/3 and qD = −1/3. Also, the Yukawa-type interactions of constituent techniquarks
with technipions are governed by

LQ̄TQTπT
= −i

√
2gTC π+

T Ūγ5D− i
√
2gTC π−T D̄γ5U − igTC π0

T(Ūγ5U − D̄γ5D) . (5.44)

Since we are interested here in neutral technipion couplings in exclusive production processes,
only the last two terms of the Yukawa Lagrangian (5.44) will be used. Finally, Born-level interac-
tions of technipions with gauge bosons are defined as follows

LπTπTV = ig2W
µ+ · (π0

Tπ−T,µ− π−T π0
T,µ) + ig2W

µ− · (π+
T π0

T,µ− π0
Tπ+

T,µ)

+ ig2(cWZµ + sWAµ) · (π−T π+
T,µ − π+

T π−T,µ)

+ g22 W
+
µ Wµ− · (π0

Tπ0
T + π+

T π−T ) + g22 (cWZµ + sWAµ)
2 · π+

T π−T + ... , (5.45)

where πT,µ ≡ ∂µπT notation is used for brevity. Other parts of the Lagrangian of the vector-like
Technicolor model are not needed for present purposes and can be found in Refs. [422, 423].

It is worth to stress here that in distinction to extended TC scenarios, in the vector-like
TCmodel the technipion interacts only with SM gauge bosons Z,γ andW± and with constituent
SU(3)c-singlet techniquarks. In practice, this makes the technipions rather difficult to produce
and observe even in rather light ∼ 100 GeV mass range.

5.5.2 Technipion production and decay: gauge boson channels

As it follows from Eq. (5.45), the pseudoscalar technipions can only be produced in
pairs in gauge boson fusion reactions at Born level while single pion production is possible at
one loop level only. For non-zeroth techniquark hypercharge YQT

6= 0, the effective one-loop
technipion-vector bosons πT V1V2 couplings are given by triangle diagrams shown in Fig. 5.21
(left). The latter is valid for the QCD-like TC scenario with SU(3)TC group of confinement which
is the subject of our analysis here.

Q̃
π̃0,±

γ, Z, W±

Q̃

Q̃

γ, Z, W±
Q̃

π̃0,±

Q̃

Figure 5.21: The loop-induced light technipion couplings to the gauge bosons through constituent tech-
niquark loops. In the case of YQT

6= 0, the technipion is coupled to two gauge bosons to the lowest order
πTV1V2 via techniquark triangle diagrams (left), while for the YQT

= 0 case the technipion is coupled only
to three gauge bosons πTV1V2V3 via a box diagram (right). The latter case is much more involved and will
not be considered here.

The corresponding loop amplitude has the following form

iVπT V1 V2 = FV1V2(M
2
1,M

2
2,m

2
πT
;M2

QT
) · ǫµνρσp

µ
1 p

ν
2ε∗1

ρε∗2
σ , (5.46)

FV1V2 =
NTC

2π2 ∑
QT=U,D

gQT
V1

gQT
V2

gQT
πT

MQT
C0(M

2
1,M

2
2,m

2
πT
;M2

QT
) , (5.47)

where C0(m2
1,m

2
2,m

2
3;m

2) ≡ C0(m2
1,m

2
2,m

2
3;m

2,m2,m2) is the standard finite three-point function
[384], NTC is the number of technicolors in confined SU(NTC) group, p1,2, ε1,2 and M1,2 are the
4-momenta, polarization vectors of the vector bosonsV1,2 and their on-shell masses, respectively,
and neutral technipion couplings to U,D techniquarks are

gU
π0
T
= gTC , gD

π0
T
= −gTC , (5.48)

while gauge couplings of techniquarks gQT
V1,2

are defined in Eq. (5.43). We have assumed MU =

MD = MQT
. We notice here that the π0

T → W+W− decay mode is forbidden by symmetry [422].
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Finally, the explicit expressions of the effective neutral technipion couplings FV1V2 for on-shell
V1V2 = γγ, γZ and ZZ final states are

Fγγ =
4α gTC

π

MQT

m2
πT

arcsin2
( mπT

2MQT

)

,
mπT

2MQT

< 1 , (5.49)

FγZ =
4α gTC

π

MQT

m2
πT

cot 2θW

[

arcsin2
( mπT

2MQT

)

− arcsin2
( MZ

2MQT

)]

, (5.50)

FZZ =
2α gTC

π
MQT

C0(M
2
Z,M

2
Z,m

2
πT
;M2

QT
) , (5.51)

where α = e2/4π is the fine structure constant.
Now the two-body technipion decaywidth in a vector boson channel can be represented

in terms of the effective couplings (5.47) as follows:

Γ(πT → V1V2) = rV
m3

πT

64π
λ̄3(M2

1,M
2
2;m

2
πT
) |FV1V2 |2 , (5.52)

where rV = 1 for identical bosonsV1 andV2 and rV = 2 for different ones, and λ̄ is the normalized
Källen function (triangle function) which is defined by

λ̄(ma,mb; q) =
(

1− 2
m2

a +m2
b

q2
+

(m2
a −m2

b)
2

q4

)1/2
. (5.53)

In Fig. 5.21 (right) we show the leading-order contribution to single technipion-gauge
bosons coupling for YQT

= 0 (relevant in the case of an even SU(NTC)TC group of confinement,
e.g. SU(2)TC [423]). In the latter case, a single technipion can be produced in V1V2 fusion only
in association with an extra gauge boson V3 while produced technipion should further decay
either into three gauge bosons πT → V ′1V

′
2V
′
3 or into a pair of Higgs bosons πT → hh. Such

processes would be rather suppressed and difficult to study experimentally while they give rise
to the only observable signatures of technipions in the case of SU(2)TC group of confinement in
the vector-like Technicolor scenario so will be studied elsewhere.

5.5.3 Exclusive technipion production

Since technipions do not couple directly to SM fermions and gluons, the only way to
produce them is in the vector-boson (γγ, γZ, ZZ) fusion channel. The VBF is typically consid-
ered as one of the key production modes of the Higgs boson at the LHC which allowed recently
for a clear discrimination of the Higgs signal [398, 399]. While VBF Higgs studies were properly
done elsewhere [422], here we focus on the VBF into a neutral technipion only. In the case of
technipion production in partonic 2 → 3 hard subprocesses the gluon-gluon fusion channel is
absent, only the loop-induced VBF is possible. There is a notable difference between the Higgs
boson and technipion in the VBF as well: the Higgs boson VBF is dominated by WW → h and
ZZ → h fusion channels at tree-level whereas the technipion VBF is given mostly by γγ → π0

T

production channel via a techniquark loop diagram.
The loop-induced technipion VBF cross section is suppressed by roughly a factor of

∼ 10−3 or so (depending on TC model parameters) compared to the tree-level Higgs boson VBF
cross section in the same mass range. Having in mind that inclusive sample for the Higgs boson
production contains only 7.3% of VBF at mh = 125 GeV, the net yield of the Higgs bosons domi-
nates over technipion yield by a factor of 104 in the same mass range. On the other hand, having
in mind very different branching ratios, BR(h → γγ) ∼ 10−3 and BR(π0

T → γγ) ∼ 0.5− 1, one
may argue that γγ yield from pseudoscalar technipions may be suppressed compared to that
from the Higgs boson by roughly an order of magnitude in the same mass range, or even larger
for large technipion masses, which introduces certain difficulties in the inclusive technipion ob-
servation, at least, at the current level of statistics.
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In Fig. 5.22 we show characteristic diagrams for the inclusive (left) and central exclu-
sive (right) technipion production processes in dominant γγ fusion and decay channel. Both,
production and decay subprocesses are initiated by triangle loop of U,D techniquarks, where
we assume MU = MD.

γ

γ γ

γπ̃0

γ

γπ̃0

U, D U, D

Figure 5.22: Hadron-level technipion production channels in VBF mechanism and the leading γγ decay
channel: the inclusive π0,±

T production in association with two quark jets (left panel) and the central
exclusive π0

T production in the γγ fusion (right panel).

The leading-order hard (parton level) VBF subprocess both in the inclusive h and π0
T

production in the high energy pp scattering is quark-initiated one

qiq
′
j → qiq

′
j(γ
∗γ∗ → h, π0

T) , (5.54)

where qi and qj can be either a quark or an antiquark of various flavors from each of the col-
liding protons, and the virtual γγ fusion is concerned. So, the both VBF processes, the h and
π0
T production may “compete”. While h → γγ branching ratio is very small ∼ 10−3, the corre-

sponding π0
T → γγ one is fairly large ∼ 1. On the other hand, the Higgs boson has additional

dominating production modes e.g. via gluon-gluon fusion mechanism and the Higgsstrahlung
off gauge bosons and heavy flavor. In contrast to the Higgs boson production, one technipion can
be produced only via heavy techniquark triangle loop in the VBF mechanism. Such observable
signatures similar to those of the Higgs boson open an interesting and straightforward oppor-
tunity for technipion searches in standard Higgs boson studies at the LHC 6. The calculation of
inclusive production cross section in QCD based upon standard collinear factorization technique
so we do not discuss it here. In numerical estimations of the cross section it is naturally assumed
that the incoming quarks of (5.54) subprocess loose only a small fraction of their initial energy
taken away by the intermediate vector bosons. In this kinematics, the final-state quarks are seen
as forward-backward hard jets, and by measuring their momenta one accurately reconstructs the
invariant mass of the produced state.

We consider the central exclusive pp → ppπ0
T process illustrated in Fig. 5.22 (right).

Similarly to the inclusive case discussed above, this process is determined by the colorless VBF
subprocess. The exclusive diffractive technipion production in the dominant γγ fusion and sub-
sequent γγ decay channel 7 has advantages compared to the inclusive technipion production
since this mode is not suppressed compared to the standard central exclusive Higgs boson pro-
duction and the respective γγ backgrounds are suppressed at large γγ invariant masses. These
advantages make the central exclusive technipion production favorable compared to the inclu-
sive technipion production.

6As was advocated in Ref. [422], an overall one-technipion production rate is strongly suppressed compared to
the Higgs boson production rate, which along with extremely narrow technipion resonance makes it rather hard to
study experimentally. So, even light technipions down toW boson mass may be not excluded yet by LEP II and LHC
studies, and the latter point is an interesting subject for further investigations.

7We take into account only dominating γγ → π0
T fusion reaction and omit γZ → π0

T, Zγ → π0
T and ZZ → π0

T
subprocesses which turn out to be numerically very small being suppressed by large masses in propagators. The
gg-fusion is absent if the internal techni-fermions do not carry color, i.e. they are in a “color singlet” state.
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The correspondingmatrix element for the hadron-level 2→ 3 process can be written as:

Mpp→ppπ0
T

λaλb→λ1λ2
= V

µ1
λa→λ1

(−igµ1ν1)

t1
Fγγ(MQT

,mπ0
T
)ǫν1ν2αβq1,αq2,β

(−igν2µ2)

t2
V

µ2
λb→λ2

, (5.55)

where the parton-level triangle amplitude Fγγ(MQT
,mπ0

T
) is given by Eq. (5.49), and the vertex

functions Vµ1,2 can be approximated in the spin conserving case relevant at high energies as fol-
lows

V
µ1
λa→λ1

≃ eF1(t1) ū(λ1)iγ
µ1u(λa) , V

µ2
λb→λ2

≃ eF1(t2) ū(λ2)iγ
µ2u(λb) , (5.56)

where F1(t) is the Dirac electromagnetic proton form factor (B.2). The natural limitation for a
light pseudo-Goldstone technipion

mπ0
T

2MQT

< 1 (5.57)

is implied. In the exclusive case, the integration in proton transverse momenta requires a special
care. Instead of integration over p1⊥ and p2⊥ we integrate over ξ1 = log10(p1⊥/1GeV) and
ξ2 = log10(p2⊥/1GeV). The matrix element specified above is used in a three-body calculation
precisely as for the usual exclusive neutral pion production in the pp → ppπ0 process considered
in Section 4.1.2, see Ref. [9].

5.5.4 Exclusive γγ background: QCD vs QEDmechanisms

In order to estimate the feasibility of exclusive technipion production studieswe need to
analyse carefully the exclusive γγ background. There are two basic non-resonant leading order

p1

p2 p′2

p′1

q0

q1

q2 γ

γ

γ

γ
γ

γ

u, d

Figure 5.23: Irreducible non-resonant background processes for the central exclusive technipion π0
T →

γγ production in pp collisions at the LHC: the QCD diffractive γγ pair production (left) and the QED-
initiated γγ pair production (right). In the latter case, only a part of contributions corresponding to quark
boxes is shown here for illustration while in actual calculations the full set of SM contributions from quark,
lepton andW boson loops is included.

box-induced contributions – the QCD (Durham) diffractive mechanism via gg → γγ shown in
Fig. 5.23 (left) and the QED (light-by-light) scattering mechanism γγ → γγ shown in Fig. 5.23
(right). The details of the kinematics for the central exclusive production processes are discussed
in Sections 5.1, 5.2, and 5.1.3.

In the case of light-by-light scattering in numerical calculations we include box dia-
grams with leptons, quarks as well as with W bosons. At high diphoton invariant masses the
inclusion of diagrams withW bosons is crucial. In principle, effects beyond the Standard Model
possibly responsible for anomalous gauge couplings could be important [393–395, 430–433], so
the exclusive non-resonant γγ background at large invariant masses is very interesting by itself.
In the present analysis we concentrate on the search for technipion so we ignore effects beyond
the Standard Model as far as the background is considered. Two photons can annihilate into a
neutral pion-like resonance via the anomaly coupling, just like γγπ0 in QCD. In some strongly
interacting electroweak symmetry breaking models, e.g., technicolor type models, there often
exist neutral pion-like resonances. There is a strong capability to discover such particles, because
the Standard Model background in photon scattering goes through box diagrams and is there-
fore highly suppressed. Some previous studies of technimeson production at photon collisions
can be found in Refs. [434, 435].
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5.5.5 Results

Before discussing results for exclusive production of neutral technipion, we would like
to summarize the inclusive π0

T production in association with two forward jets. In Fig. 5.24 we
show the total inclusive cross section as a function of technipion (left) and techniquark (right)
masses, mπT

and MQT
, respectively, and integrated over the full phase space. The calculation
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Figure 5.24: Inclusive π0
T production cross section in association with two forward jets as a function of

technipion mass (left panel) and as a function of techniquark mass (right panel) for fixed values of the gTC
coupling constant at the nominal LHC energy

√
s = 14 TeV.

was performed in the collinear QCD factorization with hard (parton-level) 2 → 3 subprocess
(5.54) including t-channel exchanges of γ and Z0 bosons as illustrated in Fig. 5.22 (left) (for more
details we refer to Ref. [422]). This calculation includes all the light quark and antiquark flavors
in the initial state with respective quark PDFs. As can be seen from Fig. 5.24 the photon-photon
γγ fusion mechanism dominates, while Zγ and ZZ fusion contributions are always small (sup-
pressed by a largemass of Z boson in propagators). The cross section for the vector-like TCmodel
parameters and CTEQ5L quark PDFs [436] chosen as indicated in the figure is of the order of 100
fb. The larger the technipion mass or the techniquark mass the smaller the cross section.

Now let us look into the parameter dependence of the exclusive production cross sec-
tion. This calculation is performed in the same way as the calculation for the exclusive produc-
tion of usual neutral pion π0 studied recently in Ref. [9], see Section 4.1.2.

In particular, Fig. 5.25 shows a two-dimensional map of the full phase space integrated
cross section as a function of technipion and techniquark masses. A kinematical limit mπ0

T
<

2MQT
is clearly visible. We obtain the cross section of the order of 1 fb for the same parameters

as used in the calculation of the inclusive cross section. This is about two orders of magnitude
less than in the inclusive case. The signal-to-background ratio, as will be discussed later, is more
advantageous in the exclusive case than in the inclusive one.

In Fig. 5.26 we show one-dimensional dependencies on technipion (left) and techni-
quark (middle) masses. These dependencies can be compared to those in Fig. 5.24. Finally
in Fig. 5.26 (right) we show dependence on technipion mass for fixed ratio of techniquark-to-
technipion mass ratio. The latter dependence looks, however, steeper as an artifact of parameter
correlations.

In order to demonstrate the importance the exclusive technipion signature compared to
the VBF inclusive production mechanism one should compare results for the pp → jj+ π0

T + X
cross section in Fig. 5.24 (∼ 0.1 pb) and technipion CEP cross section in Fig. 5.26 (∼ 1 fb). Even
though the VBF and CEP π0

T cross sections differ by two orders of magnitude, the γγ background
for the technipion VBF is expected to be larger due to tree-level WW → γγ contribution which
is absent in γγ CEP case. The latter point leads to a larger S/B ratio for the technipion CEP than
that for the technipion VBF.

In the exclusive case, the integration in proton transverse momenta requires a special
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Figure 5.26: Integrated exclusive cross section as a function of technipion mass (left) and techniquark
mass (middle) at

√
s = 14 TeV for fixed remaining model parameters as specified in the figure. In the right

panel we show the cross section as a function of technipion mass for a few fixed ratios f = MQT
/mπ0

T
.

care. Instead of integration over p1⊥ and p2⊥ we integrate over: ξ1 = log10(p1⊥/1GeV) and ξ2 =
log10(p2⊥/1GeV). The resulting cross section in the auxiliary quantities is shown in Fig. 5.27.

Now let us consider some important differential distributions. In Fig. 5.28 we show a
distribution in technipion rapidity (left panel) and azimuthal angle between outgoing protons
(right panel). The larger the technipion mass the smaller the cross section. The technipions are
produced dominantly at midrapidities as expected. The fact that the signal dominates at φ12 =
π/2 can be further used to reduce QCD and QED background which is expected to dominate at
φ12 ∼ π.

Up to nowwe have discussed cross sections and differential distributions for technipion
production in exclusive pp scattering. In real experiment, an optimal decay channel must be
chosen due to presumably low production cross sections, on the one hand, and to maximize the
signal-to-background ratio, on the other hand. In Fig. 5.29 we show branching fractions for major
real technipion πT

0 decay channels. In a very broad range of technipion and techniquark masses
the two-photon decay channel seems to be the most optimal one. In addition, this is one of the
golden channels for Higgs boson searches and the LHC detectors are well suited for such studies.

Let us concentrate now on the exclusive diphoton background to the exclusive techni-
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pion production. In Fig. 5.30 we show the corresponding distribution in Mγγ invariant mass of
the two outgoing photons (left panel) and distribution in the pγ⊥ photon transverse momentum
(right panel). We show contributions for the QCD (gg fusion) mechanism, the QED (γγ fusion)
mechanism as well as contribution for the inclusive two-gluon initiated pp → γγX mechanism.
In Fig. 5.31 we show corresponding two-dimensional distributions in (pγ⊥,Mγγ) for the two ex-
clusive nonresonant background mechanisms. At relatively low masses, the QCD mechanism
dominates. However, above Mγγ > 200 GeV the photon-photon mechanism takes over. The
later is therefore the most important potential background for the technipion signal if observed
in the γγ decay channel. For the QCD background we have also shown a result without Su-
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the result without the Sudakov form factors is shown for comparison. The most upper red solid line
corresponds to the inclusive two-gluon initiated pp→ γγX component.

dakov form factors. As can be seen from the figure, the Sudakov form factors strongly damp the
cross section, especially at larger photon-photon invariant masses. Assuming the experimental
resolution in the invariant γγ mass of about 5 GeV or so, the background turns out to be by
two orders of magnitude smaller than the corresponding technipion signal for the whole range
of vector-like TC model parameters considered here. To summarize, the signal-to-background
ratio in exclusive technipion production process is by far better than that in inclusive technipion
production [422]. The latter is clear from comparing the corresponding inclusive γγ background
estimates which were done earlier in the Higgs boson γγ signal studies at the LHC [398,399,402]
and typical inclusive technipion production cross sections shown e.g. in Fig. 5.24.

In Table 5.1 we list the total pp → ppγγ exclusive cross sections at the LHC (
√
s = 14

TeV) for the QCD gg → γγ and QED γγ → γγ mechanisms in separate 50 GeV - windows in
diphoton γγ invariant mass Mγγ placed between 50 and 400 GeV of diphoton invariant mass. A
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√
s = 14 TeV and

|ηγ| < 2.5.

Table 5.1: The cross sections (in fb) for photon-pair central exclusive production at
√
s = 14 TeV

in the photon pseudorapidity |ηγ| < 2.5 and with cuts in p⊥,γ > 50 GeV on both outgoing
photons. Different choices of gluon PDF [191, 192, 386] are used at quite small values of gluon
transverse momenta q2⊥,min = 0.5 GeV2.

σ (fb) at
√
s = 14 TeV and |ηγ| < 2.5

Mγγ γγ→ γγ gg→ γγ, GJR08VFNS NLO gg→ γγ, MSTW08 NLO

no cuts p⊥,γ p⊥,γ > 50 GeV no cuts p⊥,γ p⊥,γ > 50 GeV no cuts p⊥,γ p⊥,γ > 50 GeV
50 – 100 97.01× 10−3 – 3.048 – 2.752 –

100 – 150 11.62× 10−3 4.10× 10−3 62.72× 10−3 22.55× 10−3 67.08× 10−3 23.20× 10−3

150 – 200 2.96× 10−3 2.01× 10−3 5.90× 10−3 4.21× 10−3 6.84× 10−3 4.74× 10−3

200 – 250 1.78× 10−3 1.51× 10−3 0.95× 10−3 0.79× 10−3 1.15× 10−3 0.94× 10−3

250 – 300 1.44× 10−3 1.34× 10−3 0.23× 10−3 0.21× 10−3 0.29× 10−3 0.25× 10−3

300 – 350 1.23× 10−3 1.19× 10−3 0.06× 10−3 0.05× 10−3 0.07× 10−3 0.07× 10−3

350 – 400 1.06× 10−3 1.05× 10−3 0.02× 10−3 0.02× 10−3 0.03× 10−3 0.02× 10−3

realistic cut on both photon pseudorapidities |ηγ| < 2.5 is imposed. For comparison, we show
numerical results with an extra cut on transverse momenta of both outgoing photons p⊥,γ >

50 GeV and without it, as well as for two different choices of the gluon PDFs [191, 192, 386]
entering the calculation of UGDF in the Durham approach (c.f. Eq. (5.9)). As we have already
observed in Fig. 5.30, the QCD component of the exclusive γγ background dominates only for
smaller invariant masses Mγγ . 200 GeV, while for larger ones the QED mechanism becomes
important. Observation of much larger cross section in only one of the windows than those
given in Table 5.1 would be then a probable signal of a new resonance (e.g. technipion). On the
other hand, observation of much larger cross section in many windows simultaneously would
be a signal of new particles appearing in loops.

5.6 Conclusions

We have calculated the QCD diffractive contribution to the exclusive pp → pW+W−p
process with the full one-loop gg →W+W− matrix element. Twomechanisms have been consid-
ered. First mechanism is a virtual (highly off-shell) Higgs boson production and its subsequent
transformation into real W+W− pair. Second mechanism relies on the formation of intermedi-
ate quark boxes, very much similar to ones in the exclusive two photon production mechanism.
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We have calculated corresponding amplitudes using computer program package FormCal. We
have made a first estimate of the cross section using amplitudes in the forward limit “corrected”
off-forward via a simple exponential (slope dependent) extrapolation.

In order to gain confidence to our calculations and the formalism used we have con-
sidered also the pp̄ → pp̄γγ process which was measured recently by the CDF Collaboration.
Here the formalism of calculating quark box diagrams is essentially the same as for the exclusive
production ofW+W− pairs. We have obtained very nice agreement with experimental diphoton
invariant mass distribution.

Having verified the formalism for diphoton production we have performed similar cal-
culation for W+W− production. Differential distributions in the W± transverse momentum, ra-
pidity and W+W− pair invariant mass have been calculated and compared with corresponding
distributions for discussed in the literature γγ→W+W− mechanism. The contribution of trian-
gles with the intermediate Higgs boson turned out to be smaller than the contribution of boxes
taking into account recent very stringent limitations on Higgs boson mass from Tevatron and
LHC data. We have calculated several differential distributions and discussed their characteris-
tic features. We have found that, in contrast to exclusive production of Higgs boson or dijets, the
two-photon fusion dominates over the diffractive mechanism for small four-momentum trans-
fers squared in the proton lines (t1, t2) as well as in a broad range ofW+W−-pair invariant masses,
in particular, for large MWW. Estimated theoretical uncertainties cannot disfavour this statement.
The large MWW region is damped in the diffractive model via scale dependence of the Sudakov
form factor. From the experimental side, one could focus on the diffractive contribution by im-
posing lower cuts on t1 and/or t2 using very forward detectors on both sides of the interaction
point at distances of 220 m and 420 m as planned for future studies at ATLAS and CMS. The
corresponding cross section is, however, expected to be extremely low.

Compared to the previous studies in the effective field theory approach, in this workwe
have included complete one-loop (leading order) gg →W+W− matrix element, and have shown
that extra box diagrams, even though they are larger than the resonant (s-channel Higgs) dia-
grams, constitute a negligibly small background for a precision study of anomalous couplings.

The unique situation of the dominance of the γγ → W+W− contribution over the
diffractive one opens a possibility of independent tests of the Standard Model as far as the triple-
boson γWW and quartic-boson γγWW coupling is considered. It allows also for stringent tests
of some Higgsless models as discussed already in the literature (see e.g. Ref. [356, 357]).

We have made a first analysis of an interesting possibility to search for technipions
mostly decaying into two photons in exclusive pp → ppγγ process at the LHC. We have consid-
ered a particularly interesting case of light technipions which do not directly interact with gluons
and quarks to the leading order, but can interact only with SM gauge bosons. A single technipion
in this case can only be produced via a techniquark triangle loop in a vector boson fusion chan-
nel. The latter specific properties of physical technipions are predicted, in particular, by recently
suggested phenomenologically consistent vector-like Technicolor (TC) model [422]. We have cal-
culated the dependence of the pp → ppπ0

T cross section on the vector-like TC model parameters.
With a natural choice of parameters obtained by a mere QCD rescaling the corresponding cross
sections of the order of one to a few femtobarns could be expected. This means that the exclusive
π0
T production cross section can be of the same order or even exceeds the traditional Higgs boson

CEP cross section [99–101, 211, 342–344] making the considered proposal very important for the
forward physics program at the LHC [128, 239].

The produced Higgs boson predominantly decays into bb̄ pair which competes with
irreducible bb̄ background. As was shown in Refs. [211, 344] the major problem with central
exclusive Higgs production is rather large irreducible bb̄ background, and corresponding kine-
matical cuts maximizing S/B ratio strongly reduce the signal down to a few events per year.
The considered technipion CEP, the largest (of the order of one) branching fraction is in the γγ
decay channel. In order to study the competitiveness of the considered exclusive π0

T production
we considered direct irreducible γγ production via QCD gg → γγ and QED γγ → γγ subpro-

249



cesses. After inclusion of the ATLAS detector resolution, the S/B ratio for the technipion CEP
is significantly better than that of the Higgs boson CEP. The latter is thus considered to be an
attractive channel for New Physics searches in forward physics at the LHC.

We have demonstrated that for not too large technipion masses the photon-photon de-
cay channel has the largest branching fraction. This shows that the exclusive reaction pp → ppγγ
is probably the best suited in searches for technipions at the LHC. The light-by-light rescattering
subprocess contribution to the exclusive diphoton signal at the LHC in the region of large dipho-
ton invariant masses is interesting in its own right as a good probe in searches for effects beyond
the Standard Model (e.g. supersymmetry, Dirac monopoles, etc.). All this makes the pp → ppγγ
reaction particularly interesting for LHC phenomenology.

We have therefore studied expected Standard Model exclusive γγ backgrounds. We
have considered two important sources of the non-resonant background: the Durham QCD
mechanism (via gg → γγ subprocess) and the QED mechanism (via γγ → γγ subprocess).
In the later case we have included full set of box diagrams with lepton, quark and W boson
loops thus focusing on the dominant Standard Model processes only. The photons are produced
dominantly at midrapidities similarly for the exclusive technipion production as expected. The
most interesting is the distribution in diphoton invariant mass. At lower invariant masses, the
Durham QCD mechanism dominates. At larger invariant masses, the light-by-light rescatter-
ing occurs to be more relevant background in searches for technipions. We conclude that the
signal-to-background ratio would be very favorable in the reaction under consideration.

In the present analysis we have considered purely exclusive processes, i.e. we have as-
sumed that the both outgoing protons are detected. This is not yet possible at the LHC, but could
be possible when forward proton detectors are installed by the ATLAS and/or CMS collabora-
tions. We hope that this will be possible in a close future [239]. The particularly interesting ones
are distributions in azimuthal angle between outgoing protons. The outgoing protons are scat-
tered dominantly to perpendicular azimuthal directions. In principle, one could also allow semi-
exclusive (e.g. single diffractive) processes when excited states of proton (proton resonances or
continuum) are produced while the pile-up problem has to be solve in high luminosity runs.
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Chapter 6

Summary and Outlook

The main goal of the studies presented in this thesis was to give a comprehensive de-
scription of several phenomena in the exclusive particle production in hadron-hadron interac-
tions from low to high energies. Particular attention was devoted to the non-perturbative (soft)
processes in the RHIC, Tevatron and LHC energy regime which constitute a valuable “labora-
tory” for studies of specific effects induced by strong and electromagnetic interactions. Starting
from the general assumption about the form of productionmechanism of exclusive processes, the
predictions for the total cross sections of dihadron/diboson continuum together with the reso-
nance/technipion signals have been performed and some observables typically measured in the
experiment have been analysed. These processes may serve a valuable contribution for future
experimental analyses. The aim of this thesis was to encourage experimentalists to perform such
searches. Therefore, the study was done in the context of the different measurements performed
from low (PANDA, COMPASS) to high (RHIC, Tevatron, LHC) energies.

Attempts at a partial synthesis of the presented results weremade in each Chapter sepa-
rately. Below, a set of more general remarks is presented, limited to the subjects which the author
thinks are most interesting for consideration in view of future studies.

1. We have shown that very close to production threshold the pion-pion rescattering mech-
anism gives much smaller contribution than the excitation of the Roper resonance via σ-
exchange and its subsequent decay N∗(1440) → N(ππ)S−wave

I=0 and/or the double-∆ exci-
tation and subsequent decays. At low energies all these mechanisms overlap and it is not
possible to extract the pion-pion rescattering contributions and therefore not possible to
study the π0π0 → π+π− process. Such exclusive production of pion pairs at sufficiently
large energy could be measured e.g. by the PANDA experiment at the Facility for Antipro-
ton and Ion Research in Darmstadt. Particularly interesting is the distribution in two-pion
invariant mass, see Fig. 1.8, where one should observe bumps related to the famous scalar-
isoscalar σ-meson and to tensor-isoscalar f2(1270) meson as well as a dip from the interfer-
ence with f0(980) and σ mesons. We predict the dominance of the pion-pion contribution
close to the threshold. Our calculation shows that the diffractive components (in fact its
upper limit for the QCD mechanism) are by more than order of magnitude smaller than
the pion-pion fusion component in the energy region of future PANDA experiment.

2. We have made detailed numerical predictions for several central exclusive scalar and pseu-
doscalar mesons in proton-proton collisions. A special attention was devoted to analy-
sis within a new tensor model of soft pomeron. We wish to emphasize that the tensorial
pomeron can, at least, equally well describe experimental WA102 data as the less theoreti-
cally justified vectorial pomeron frequently used in the literature. The existing low-energy
experimental data do not allow to clearly distinguish between the two models as the pres-
ence of subleading reggeon exchanges is at low energies very probable for many reactions.
This seems to be the case for the η meson production. In these cases we have included
in our analysis also exchanges of subleading trajectories which significantly improve the
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agreement with experimental data. Production of η′ meson seems to be less affected by
contributions from subleading exchanges. It would clearly be interesting to extend our
study to central exclusive production of other mesons like the f2(1270) and go to higher
energies, where the dominance of the pomeron exchange can be better justified. Future ex-
perimental data on central exclusive production of mesons at higher energies may provide
a better information on the spin structure of the pomeron and its coupling to the nucleon
and mesons. On the other hand the low energy data could help in understanding the role
of subleading trajectories.

3a. Wehave provided a detailed description of a phenomenologicalmodel for the pp → ppπ+π−

(K+K−) reactionswithin the framework of Regge theory. Such amodel compareswell to the
existing ISR data on exclusive π+π− and K+K− production, but the new preliminary CDF
data on pion pairs presented in [159–161], as well as the forthcoming data from RHIC [158],
ATLAS, ALICE [162], CMS, and LHCb will be crucial to perform an extensive tests of this
approach in a broad range of energy. We have demonstrated how different observables
may be used to further test and constrain some its phenomenological ingredients (the off-
shell meson form factor, the reggeization of exchanged meson, etc.). Furthermore, absorp-
tion effects are frequently taken into account by simply multiplying cross sections with a
gap survival factor. We have shown that the distribution in azimuthal angle between the
outgoing protons and the t distributions are highly sensitive to absorption effects. The de-
viation from “bare” distributions is more significant at high energies where the absorptive
corrections are expected to be larger. In this way, measurements of exclusive meson pair
production with tagged protons may be used as a novel probe of the models of hadronic
interactions used to calculate the soft survival factors which are essential for understanding
exclusive diffractive processes. Such measurements are possible at the LHC, with the AT-
LAS+ALFA [7] and CMS+TOTEM during special low luminosity runs, and already started
at RHIC by the STAR Collaboration.

3b. This dimeson continuum production process also represents an irreducible background to
the central exclusive production of resonant states ( f0, f2, χc(0,2)) via two-body decays to
MM̄ mesons. We find that the relative contribution of χc(0) resonant and dipion/dikaon
continuum strongly depend on the cut on pion/kaon transverse momentum. The cuts play
then a role of the ππ or KK resonance filter and may explain some different controversial
observations by different experiments in the past. For the resonances decaying e.g. into
the ππ channel an interference of the resonance signals with the two-pion continuum has
to be included in addition. This requires a consistent model of the resonances and the
non-resonant background. It would be very interesting to see if the exchange of tensorial
pomerons may modify differential distributions for the π+π− continuum compared to the
existing calculations (e.g. [3, 6]). It concerns also the central exclusive production of the ρ0

meson at high energies. Here the dominant mechanism is a photon-pomeron (pomeron-
photon) fusion.

4a. The exclusive production processes with very forward neutral particles radiated off the ini-
tial and final state protons can significantly extend the physics programme at high-energy
hadron colliders. Zero Degree Calorimeters (ZDC’s) could be used for such studies. Such
measurements can be an interesting and useful supplement to the central multipurpose
LHC detectors (ATLAS, CMS) and the forward proton detectors (ALFA, TOTEM). It should
be noted that for the exclusive π0 meson production [9] the diffractive bremsstrahlung con-
tributions dominate at large (forward, backward) rapidities and cross section of the order
of mb is predicted, see Fig. 6.1 (left panel). Furthermore, we suggest a possibility of unique
search for the odderon contribution at midrapidity and p⊥,π0 > 0.2 GeV. Moreover, the
precisely evaluated photoproduction mechanism in the pp → ppω process [5] constitutes
a background for the odderon exchange searches. At small energies the photon-pomeron
contribution described within the kt-factorization approach is negligible compared to the
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bremsstrahlung contributions (due to strong coupling of the ω meson to protons). It could
be, however, identified at the LHC energies at the ω-meson midrapidity.

The integrated diffractive bremsstrahlung cross section for the exclusive pp → ppγ reac-
tion [10] is only of the order of µb (Eγ > 100 GeV). We have considered different mecha-
nisms for the first time in the literature, see Fig. 6.1 (right panel). Since this process was
never studied at high energies it is worth to make efforts to obtain first experimental cross
sections. Such non-diffractive exchanges represent a potential background in the analysis
of diffraction at high energies. A good understanding of electromagnetic processes, as well
as of Regge exchanges, is therefore mandatory. This would allow to test our understanding
of the diffractive process and help in pinning down some hadronic and electromagnetic
off-shell form factors, difficult to test otherwise.
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Figure 6.1: The rapidity distributions for pp→ ppπ0 (left panel) and pp→ ppγ (right panel) at c.m. en-
ergy

√
s = 14 TeV. The π0- and γ-bremsstrahlung mechanisms contribute at large forward and backward

rapidity regions. The contributions from other mechanisms are also shown, e.g. the photon-odderon ex-
change (γO+Oγ) contributes at midrapidity of pion. The odderon-photon contribution is calculated for
the HERA upper limit [270] (top red line) and for the Ewerz-Nachtmann estimate [271] (bottom red line).
The lower limit for the CMS ZDC detectors is shown by the vertical lines.

4b. The pp → ppπ0 process constitutes diffractive non-resonant background that contributes
at small π0p invariant mass and could be therefore misinterpreted as the Roper resonance.
Issues such as the influence of baryon resonance production in view of diffractive pro-
cesses also require further theoretical and experimental investigations. The bremsstrahlung
mechanisms contribute also to the pp → p(nπ+) reaction. Both channels give a sizeable
contribution to the low-mass single diffractive cross section and must be included in ex-
trapolating the measured experimental single diffractive cross section. Furthermore, we
have found very large cross section for the pp → nnπ+π+ reaction [4] due to interference
of a few mechanisms what precludes extraction of the elastic π+π+ scattering cross sec-
tion, but it is very interesting in the present context of low-mass double diffractive cross
section. The hypothesis of low-mass excitations of nucleons in the large pseudorapidites
region in hadron-hadron collisions calls for a detailed study and verification in view of
future studies.

4c. A very interesting is also exclusive production of vector ρ0 meson, ρ0 excited states (e.g.
ρ(1450), ρ(1700)) and their subsequent decay into charged and/or neutral pions in proton-
nucleus or nucleus-nucleus (pA or AA) collisions, which can be measured by the STAR
experiment at the RHIC and in experiments at the LHC, e.g. by the ALICE Collaboration.
The exclusive production of ρ0 → ππ meson (via the γIP and IPγ mechanism) as well as
the ππ continuum in pA or AA collisions are interesting by itself. It concerns also the
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exclusive production of the f2(1270) → ππ via the γγ-fusion 1. The region of resonances
can be measured already by the ALICE and STAR Collaborations with low statistics, while
the measurements for large invariant masses, that is, the exclusive π+π− production in
the perturbative region, requires better statistics. Having the absolutely normalized cross
sections is very important in this context. The pA → pA(X → ππ) process is naively
enhanced only by the Z2 factor 2 compared to the Z4 factor for the AA → AA(γγ →
ππ) process discussed recently in [440]. A real comparison to future data will require
inclusion of both mechanisms. This requires further development of diffractive processes
and thus allow for a better understanding of nuclear effects in high energy photon-nucleus
interactions.

5a. We have calculated the QCD diffractive contribution to the exclusive pp → pW+W−p and
pp → pW+W−p processes with full one-loop gg →W+W− and gg → γγ matrix elements.
We have obtained very nice agreement with experimental diphoton invariant mass distri-
bution obtained by the CDF Collaboration [355] for three different gluon distributions. The
large diboson invariant mass region is damped in the diffractive model via scale depen-
dence of the Sudakov form factor and soft gap survival factor. The unique situation of the
dominance of the γγ→W+W− contribution over the diffractive one opens a possibility of
independent tests of the StandardModel as far as the triple-boson γWW and quartic-boson
γγWW gauge couplings are considered.

5b. We have made a first analysis of an interesting possibility to search for technipions mostly
decaying into two photons in exclusive pp → ppγγ process at the LHC. The current analy-
sis discusses also important aspects of the exclusive two-photon production in general. We
have considered two important sources of the non-resonant background: the QCD mecha-
nism (via gg→ γγ subprocess) and the QEDmechanism (via γγ→ γγ subprocess). In the
later case we have included full set of box diagrams with lepton, quark andW boson loops
focusing on the dominant Standard Model processes only. At large γγ invariant masses
the QED γγ → γγ process dominates over the QCD gg → γγ process. This is interesting
by itself and rather unique. Any deviation from the Standard Model production may be a
signal of New Physics contributions. It would be wise to use the opportunity at the LHC.

We thus suggest to search for both continuum and γγ-resonance signals of New Physics.
In general, there is a non-negligible possibility that potential, yet unknown, weaker reso-
nances which decay mostly into two photons could be very difficult to identify in the in-
clusive measurements, at least, at current level of statistics. In such cases an exclusive mea-
surement has the advantage that γγ-resonance signals could be “enhanced” relative to the
two-photon background offering important advantages compared to new γγ-resonance
searches in inclusive production. Here we considered an important case of light exotic
resonances, the pseudo-Goldstone technipions, commonly predicted by Technicolor ex-
tensions of the Standard Model. The exclusive technipion production in the dominant
γγ → π0

T → γγ mode has advantages compared to the inclusive technipion (VBF) pro-
duction since (1) this mode is not suppressed compared to the standard central exclusive
Higgs boson production 3 and (2) the respective γγ backgrounds are suppressed at large
Mγγ. These advantages make the central exclusive technipion production favorable com-
pared to the inclusive technipion production. The QED process is therefore an attractive

1For a review of recent theoretical studies on exclusive J/Ψ and Υ meson production in nucleus-nucleus collisions
we refer readers to [437] as well as on the exclusive single and double ρ0 meson production [438] and references
therein. From experimental point of view, the single-ρ0 exclusive cross section AA → AAρ0 was measured by the
STAR experiment at RHIC [439].

2The Z factor is the atomic number (also known as the proton number) and represents the number of protons
found in the nucleus of an atom and therefore identical to the charge number of the nucleus.

3We conclude that the S/B ratio for the technipion CEP is significantly better than that of the Higgs boson CEP.
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channel for New Physics searches (e.g. the hypothetical massless graviton with spin-2 or
an electrically-charged supermassive magnetic monopoles) in forward physics at the LHC.
This is also one of arguments for installation of forward tagging facility at ATLAS and CMS.

As a final remark, the author wishes to point at the interplay of different phenomena
acting in the “soft” and “hard” kinematic regimes, where both diffractive and electromagnetic
processes play an important role. For instance, the phenomenological Regge model although
not firmly grounded in QCD, still presents an interesting and rich phenomenology, which at
the beginning to be explored with new analyses from the Tevatron and forthcoming data from
the LHC and RHIC. As the transverse momentum of meson increases, we would not expect
to trust this approach, and so we must instead consider a pQCD formalism. Both approaches
lead to many non-trivial predictions and displays several remarkable theoretical features. The
central exclusive production ofmesons therefore represents a process of much phenomenological
interest, which can shed light on both perturbative and non-perturbative aspects of QCD. We
may hope in the future to experimentally probe the transition between these two regimes, an
issue which is still unclear. Moreover it is of particular experimental relevance, with a range
of forthcoming and existing hadron collider data to be considered. In the author’s personal
opinion, this is exactly what makes exclusive processes so much exciting. The results presented
in this thesis show the excellent potential for future measurements of exclusive processes. It
is only to be hoped that the analysis presented in this thesis may be of some help in future
phenomenological and experimental studies in this field.
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Appendix A

Kinematics

In this section we give some kinematic relations needed for calculating the amplitudes
for the reactions presented in this thesis.

A.1 Kinematic relations

The energy E and three-momentum ~p of particle form a four-vector p = (E,~p ) whose
square p2 ≡ E2 − |~p|2 = m2. The scalar product of two four-momenta is invariant (frame inde-
pendent). The following relations hold, cf. (3.2),

s13 = (pa + q2)
2 = (s− 2m2

p) ξ2 +m2
p + t2 ,

s23 = (pb + q1)
2 = (s− 2m2

p) ξ1 +m2
p + t1 , (A.1)

where ξ1 =
pb · q1
pb · pa

and ξ2 =
pa · q2
pa · pb

. We consider now the three-body reaction (3.1) in the overall

c.m. system with the z axis along ~pa. We have then

pa =









p0a
0
0
|~pa|









, pb =









p0b
0
0
−|~pb|









,

p0a = p0b =

√
s

2
, |~pa| = |~pb| =

1
2

√

s− 4m2
p . (A.2)

With i = 1, 2 we get

pi =





p0i
~pi⊥
piz



 , qi =





q0i
~qi⊥
qiz



 ,

~pi⊥ = |~pi⊥|
(

cos φi

sin φi

)

, ~qi⊥ = −~pi⊥ . (A.3)

The azimuthal angle φpp between the two outgoing protons in (3.1) is given by

φpp = φ12 = φ1 − φ2 . (A.4)

The “glueball variable” [92] dP⊥ = |d~P⊥| is defined by the difference of the transverse momen-
tum vectors

d~P⊥ = ~q1⊥ −~q2⊥ = ~p2⊥ − ~p1⊥ . (A.5)
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Further relations are as follows (no summation over i in (A.7) for ξiti)

m2
M = k2 = 2q1q2 + t1 + t2

=
(s− 2m2

p)
3

s(s− 4m2
p)

ξ1ξ2 + t1 + t2 − 2~q1⊥ ·~q2⊥ +
(s− 2m2

p)

s(s− 4m2
p)

[

t1t2 − 2m2
p(t1ξ2 + t2ξ1)

]

, (A.6)

ti = −~q 2
i⊥ +

1
s(s− 4m2

p)

[

(s− 2m2
p)

2(ξiti − ξ2i m
2
p)− t2im

2
p

]

, (A.7)

p0i =

√
s

2
(1− ξi) +

1
2
√
s
(2m2

pξi − ti) , (A.8)

εµ1µ2ρσ(p1 + pa)
µ1(p2 + pb)

µ2(q1 − q2)
ρ(q1 + q2)

σ = −8
√
s~pa · (~p1⊥ × ~p2⊥)

= 8
√
s |~pa||~p1⊥||~p2⊥ | sin φpp . (A.9)

In Fig.3.10 and 3.20 we have shown distributions in rapidity, yM, and pseudorapidity,
ηM, of the produced meson M in the overall c.m. system. We discuss here their kinematic rela-
tion. We have, with

k =





k0

~k⊥
kz



 (A.10)

the four-momentum of meson M (k2 = m2
M)

yM =
1
2
ln

k0 + kz
k0 − kz

= ln

√

k2z +~k2⊥ +m2
M + kz

√

~k2⊥ +m2
M

, (A.11)

ηM =
1
2
ln
|~k|+ kz

|~k| − kz
= ln

√

k2z +~k2⊥ + kz
√

~k2⊥

. (A.12)

Let us consider now the distributions of meson M in (yM,~k2⊥) and (ηM,~k2⊥). We have

f (yM,~k2⊥)dyMd(~k2⊥) = f̃ (ηM,~k2⊥)dηMd(~k2⊥) , (A.13)

f̃ (ηM,~k2⊥) = f (yM,~k2⊥)
∂yM/∂kz
∂ηM/∂kz

|~k2⊥ fixed , (A.14)

where

∂yM/∂kz
∂ηM/∂kz

|~k2⊥ fixed=

√

k2z +~k2⊥
√

k2z +~k2⊥ +m2
M

≡ w(kz,~k2⊥) . (A.15)

Clearly, for large |yM| and correspondingly large |ηM|we have |kz| ≫ mM and the transformation
factor w(kz,~k2⊥) → 1. On the other hand, for |yM| → 0 corresponding to |ηM| → 0 and kz → 0
we have w(0,~k2⊥) < 1. Thus, we conclude that, for fixed ~k2⊥ 6= 0 a yM distribution which is
roughly constant for |yM| → 0 will give a dip in the ηM distribution for |ηM| → 0. A dip
in the yM distribution for |yM| → 0 will be deepened in the ηM distribution. To get the yM
and ηM distributions of Fig.3.10 and 3.20 we still have to integrate in (A.13) over~k2⊥. We note,
however, that integration over~k2⊥ at fixed yM is, in general, not the same as integration at fixed
ηM. Nevertheless, if the unintegrated distributions of (A.13) in (yM,~k2⊥), respectively (ηM,~k2⊥),
behave “reasonably” we should be able to replace~k2⊥ by some mean value 〈~k2⊥〉. Then the above

257



features will survive. That is, a yM distribution being roughly constant for |yM| → 0 will give
a dip for |ηM| → 0, as observed in Fig.3.10. A dip in the yM distribution for |yM| → 0 will be
deepened in the ηM distribution, as observed in Fig.3.20.

Feynman’s x (xF) variable in the center-of-mass frame is given by

xF =
2pz√
s
=

2m⊥ sinh y√
s

, (A.16)

where m⊥ is the transverse mass given by m2
⊥ = m2 + p2x + p2y.

We consider now the high-energy small-angle limit where we require in reaction (3.1)

|t1|, |t2| ≪ m2
p , m2

M ≪ s , ξ1, ξ2 = O(mM/
√
s) . (A.17)

In this limit ξ1 and ξ2 are the fractional energy losses of the protons with momenta pa and pb,
respectively; and we have the simple relations

ξ1 ∼=
s23
s

, ξ2 ∼=
s13
s

, m2
M
∼= sξ1ξ2 ∼=

s13s23
s

, t1 ∼= −~q 2
1⊥ , t2 ∼= −~q 2

2⊥ ; (A.18)

ū(p1,λ1)γ
µu(pa,λa) ∼= (p1 + pa)

µδλ1λa
,

ū(p2,λ2)γ
µu(pb,λb) ∼= (p2 + pb)

µδλ2λb
; (A.19)

(p1 + pa, p2 + pb) ∼= 2s ; (A.20)
(q1, p2 + pb)(q2, p1 + pa)− (q1, q2)(p1 + pa, p2 + pb) ∼= 2s~p1⊥ ·~p2⊥ = 2s |~p1⊥ ||~p2⊥| cos φpp .

(A.21)

We see from (A.17) and (A.18) that in this limit both subenergies squared become large

s13, s23 = O(mM

√
s) . (A.22)

A.2 Cross section and phase space

The cross section for the three-body reaction pp → ppM is calculated as

σ =
∫ 1

2
√

s(s− 4m2
N)
|M|2d3PS (A.23)

by choosing convenient kinematical variables. The matrix element depends on the process and
mN is the mass of the nucleon. The three-body phase space volume element reads

d3PS =
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3pM

2EM(2π)3
(2π)4δ4(pa + pb − p1 − p2 − pM) . (A.24)

At high energies and small momentum transfers the phase space volume element can be written
by

d3PS ≈ 1
28π4 dt1dt2dξ1dξ2dφ12 δ

(

s(1− ξ1)(1− ξ2)−m2
M

)

, (A.25)

where ξ1, ξ2 are longitudinal momentum fractions carried by outgoing protons with respect to
their parent protons and the relative angle between outgoing protons φ12 ∈ (0, 2π); see [216].
Changing the variables (ξ1, ξ2)→ (xF,M2) one gets

d3PS ≈ 1
28π4 dt1dt2

dxF,M

s
√

x2F,M + 4(m2
M + |pM⊥|2)/s

dφ12 . (A.26)

258



The high-energy formulae (A.25) and (A.26) break close to themeson production threshold. Then
exact phase space formula (A.24) must be taken and another choice of variables is more appro-
priate. We choose transverse momenta of the outgoing nucleons (p1⊥, p2⊥), azimuthal angle
between outgoing nucleons (φ12) and rapidity of the meson (yM) as independent kinematically
complete variables. Then the cross section can be calculated as:

dσ = ∑
k

J −1(p1⊥, p2⊥, φ12, yM)|k
|M(p1⊥, p2⊥, φ12, yM)|2

2
√

s(s− 4m2
N)

2π

(2π)5
1

2E1

1
2E2

1
2
p1⊥p2⊥dp1tdp2tdφ12dyM ,

(A.27)
where k denotes symbolically discrete solutions of the set of equations for p1z and p2z:

{ √
s− EM =

√

m2
1⊥ + p21z +

√

m2
2⊥ + p22z ,

−pMz = p1z + p2z ,
(A.28)

where m1⊥ and m2⊥ are transverse masses of outgoing nucleons. The solutions of Eq.(A.28)
depend on the values of integration variables:

p1z = p1z(p1⊥, p2⊥, φ12, yM) ,
p2z = p2z(p1⊥, p2⊥, φ12, yM) . (A.29)

The extra Jacobian reads:

Jk =

∣

∣

∣

∣

∣

∣

p1z(k)
√

m2
1⊥ + p1z(k)2

− p2z(k)
√

m2
2⊥ + p2z(k)2

∣

∣

∣

∣

∣

∣

. (A.30)

In the limit of high energies and central production, i.e. p1z ≫ 0 (very forward nucleon 1),
−p2z ≫ 0 (very backward nucleon 2) the Jacobian (A.30) becomes a constant J → 1

2 .
The cross section for the 2 → 4 reaction, is obtained by integration over the four-body

phase space

σ =
∫ 1

2s
|M|2(2π)4δ4(pa + pb − p1 − p2 − p3 − p4)

d3p1
(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

d3p4
(2π)32E4

.

(A.31)

To calculate the total cross section one has to calculate the 8-dimensional integral numerically.
This can be written in a useful form of differential cross section:

dσ =
1
2s
|M|2δ4(pa + pb − p1 − p2 − p3 − p4)

1
(2π)8

1
24

×(dy1p1⊥dp1⊥dφ1)(dy2p2⊥dp2⊥dφ2)(dy3d
2p3⊥)(dy4d

2p4⊥) . (A.32)

This can be further simplified:

dσ =
1
2s
|M|2δ(Ea + Eb − E1 − E2 − E3 − E4)δ(p1z + p2z + p3z + p4z)

1
(2π)8

1
24

×(dy1p1⊥dp1⊥dφ1)(dy2p2⊥dp2⊥dφ2)dy3dy4d
2pm⊥ . (A.33)

Above we have introduced an auxiliary quantity:

pm⊥ = p3⊥ − p4⊥ . (A.34)

We choose transverse momenta of the outgoing nucleons (p1⊥, p2⊥), the azimuthal angles of out-
going nucleons (φ1, φ2) and the rapidity of the pions (y3, y4) as independent kinematically com-
plete variables. Then the cross section can be calculated as:

dσ = ∑
k

J −1(p1⊥, φ1, p2⊥, φ2, y3, y4, pm⊥, φm)|k
|M(p1⊥, φ1, p2⊥, φ2, y3, y4, pm⊥, φm)|2

2
√

s(s− 4m2)

1
(2π)8

1
24

×p1⊥dp1⊥dφ1p2⊥dp2⊥dφ2
1
4
dy3dy4d

2pm⊥ , (A.35)
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where the δ functions have been totally eliminated and k denotes symbolically discrete solutions
of the set of equations for energy and momentum conservation:

{ √
s− E3 − E4 =

√

m2
1⊥ + p21z +

√

m2
2⊥ + p22z ,

−p3z − p4z = p1z + p2z .
(A.36)

The solutions of Eq.(A.36) depend on the values of integration variables:

p1z = p1z(p1⊥, p2⊥, p3⊥, p4⊥, φ1, φ2, y3, y4) ,
p2z = p2z(p1⊥, p2⊥, p3⊥, p4⊥, φ1, φ2, y3, y4) . (A.37)

In Eq. (A.35) an extra Jacobian (A.30) of the transformation (y1, y2)→ (p1z, p2z) has appeared.

A.3 Lorentz transformations

The Lorentz transformation of pion three-momenta and energy from the pp center-of-
mass to the X = ππ rest frame can be written (see formulae (4-3) in [441])

~p
r. f .

π = ~pπ +~vXγX

(

γX

γX + 1
~vX~pπ − Eπ

)

, (A.38)

E
r. f .

π = γX (Eπ −~vX~pπ) ,

where the relativistic γX factor is written as γX ≡ 1/
√

1− v2X and the velocity of two-pion system

is ~vX = ~pX/EX. 1 Explicitly, we have

vX = |~vX | = |~p3 + ~p4|/(E3 + E4) =
√

p2x,X + p2y,X + p2z,X/(p30 + p40) , (A.39)

where the x, y, and z components of pi,X are defined as pi,X = p3i + p4i.
Then, we can calculate cos θ

r. f .
π = p

r. f .
z,π/p

r. f .
π which fulfils −1 < cos θ

r. f .
π < 1. For ex-

ample, if we denote the π+ meson as particle 3 then we can write cos θ
r. f .
π+ = p

r. f .
3z /|~p r. f .

3 |. It was

checked in our code that cos θ
r. f .
π+ = − cos θ

r. f .
π− .

In a similar way, we carry out the transformation of 3-momenta and energy of pion from
the X = ππ rest frame to the pp center-of-mass:

~pπ = ~p
r. f .

π +~vXγX

(

γX

γX + 1
~vX~p

r. f .
π + E

r. f .
π

)

, (A.40)

Eπ = γX

(

E
r. f .

π +~vX~p
r. f .

π

)

.

1In the following we shall use units where c = 1, where c is the speed of light. This is convenient in calculations
characteristic for relativistic kinematics, because all expressionsmust then be homogeneous in energies, momenta and
masses, and all have the same dimension. Then the particle velocities β ≡ v/c are dimensionless and do not exceed 1.
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Appendix B

Tensorial pomeron

For the case of the tensorial pomeron the IPpp vertex reads as follows, see [203],

iΓ
(IPpp)
µν (p′, p) = −i3β IPNNF1

(

(p′ − p)2
)

{

1
2
[

γµ(p
′ + p)ν + γν(p

′ + p)µ

]

− 1
4
gµν(p/′ + p/)

}

,

(B.1)

where β IPNN = 1.87 GeV−1 and p/ = γµp
µ. The explicit factor 3 above counts the number of va-

lence quarks in each proton. Following Donnachie and Landshoff [113] we use the proton’s Dirac
electromagnetic form factor F1(t) for describing the proton’s extension. A good representation of
this form factor is given by the dipole formula

F1(t) =
4m2

p − 2.79 t

(4m2
p − t)(1− t/m2

D)
2
, (B.2)

where mp is the proton mass and m2
D = 0.71 GeV2 is the dipole mass squared.

The propagator of the tensor-pomeron exchange (see [203]) is given by

i∆
(IP)
µν,κλ(s, t) =

1
4s

(

gµκgνλ + gµλgνκ −
1
2
gµνgκλ

)

(

−isα′IP
)αIP(t)−1 . (B.3)

Here the pomeron trajectory αIP(t) is assumed to be of standard form (2.11), that is, linear in t
and with intercept slightly above 1, see for instance [114].

The tensor-pomeron propagator fulfils the following relations

∆
(IP)
µν,κλ = ∆

(IP)
νµ,κλ = ∆

(IP)
µν,λκ = ∆

(IP)
κλ,µν ,

gµν∆
(IP)
µν,κλ = 0, gκλ∆

(IP)
µν,κλ = 0 . (B.4)

Nowwe can calculate the pomeron contribution to the amplitude of pp elastic scattering

p(pa,λa) + p(pb,λb)→ p(p1,λ1) + p(p2,λ2) . (B.5)

With tensorial pomeron we get for the T -matrix element

〈p(p1,λ1), p(p2,λ2) | T | p(pa,λa), p(pb,λb)〉 |IP ≡
M2→2

λaλb→λ1λ2
|IP = (−i)ū(p1,λ1)iΓ

(IPpp)
µ1ν1 (p1, pa)u(pa,λa)

×i∆(IP) µ1ν1,µ2ν2(s, t)

×ū(p2,λ2)iΓ
(IPpp)
µ2ν2 (p2, pb)u(pb,λb) , (B.6)

where

s = (pa + pb)
2 = (p1 + p2)

2 ,
t = (p1 − pa)

2 = (p2 − pb)
2 . (B.7)
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Inserting in (B.6) the expressions for the IPpp vertex (B.1) and the IP propagator (B.3) we get at
high energies, s≫ m2

p,

M2→2
λaλb→λ1λ2

|IP ∼= i 2s [3β IPNN F1(t)]
2 (−isα′IP

)αIP(t)−1 δλ1λa
δλ2λb

. (B.8)

This is exactly the same expression (using (2.11)) as obtainedwith the famousDonnachie-Landshoff-
pomeron approach; see [113, 114], and Appendix C below. One advantage of the tensorial-
pomeron ansatz is that it gives automatically, just using the rules of QFT, the same IP contri-
butions to the amplitudes of proton-proton and proton-antiproton scattering; see [203].

We turn now to the IPIPM vertices which we want to construct in a field-theoretic man-
ner, that is, using a meson field operator and two effective pomeron field operators IPµν(x). To
get an overview of the possible couplings of this type we shall first consider a fictitious reaction:
two “real pomeron particles” of spin 2 giving a meson M; see Fig.B.1. From this exercise we can
then easily learn how to classify and write down covariant expressions for the IPIPM vertices.

M
IP (2,m1)

~k −~k
IP (2,m2)

Figure B.1: The fictitious reaction of two “real spin 2 pomerons” of momenta~k and −~k annihilating to a
meson M.

We consider, thus, the annihilation of two “pomeron particles” of spin 2 and z-components
of spin m1 and m2 giving a meson of spin J and z-component Jz in the c.m. system, that is, the
rest system of M:

IP(~k, 2,m1) + IP(−~k, 2,m2)→ M(J, Jz) ,
m1,2 ∈ {−2, . . . , 2} , Jz ∈ {−J, . . . , J} . (B.9)

Note that we use here the Wigner basis for all particles; see [442], and for instance, chapter 16.2
of [443], and Appendix D. Clearly, in (B.9) M must have isospin and G parity IG = 0+ and
charge conjugation C = +1. The question is: what are the possible values of spin J and parity P
for meson M?

Let a†2,m(~k), a
†
2,m(−~k) be the creation operators for the “pomeron particles”. We can first

construct the states of the two “pomerons” with definite orbital angular momentum l, lz and then
those with given l, lz and total spin S, Sz. We get with k̂ =~k/|~k|, Ylz

l (k̂) the spherical harmonics,
and the usual Clebsch-Gordan coefficients

|2,m1; 2,m2; l, lz〉 =
∫

dΩk Y
lz
l (k̂) a

†
2,m1

(~k) a†2,m2
(−~k) |0〉 , (B.10)

|S, Sz; l, lz〉 = ∑
m1,m2

〈2,m1; 2,m2|S, Sz〉 |2,m1; 2,m2; l, lz〉 . (B.11)

Here we have

l = 0, 1, 2, . . . ,
−l 6 lz 6 l ,
S = 0, 1, 2, 3, 4 ,
−S 6 Sz 6 S . (B.12)

From Bose symmetry of our “pomeron particles” we find that

|S, Sz; l, lz〉 = 0 for l − S odd . (B.13)
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Table B.1: The values, for orbital angular momentum l, of total spin S, total angular momentum
J, and parity P, possible in the annihilation reaction (B.9). The continuation of the table for l > 4
is straightforward.

l S J P
0 0 0 +

2 2
4 4

1 1 0, 1, 2 −
3 2, 3, 4

2 0 2 +
2 0,1,2,3,4
4 2,3,4,5,6

3 1 2,3,4 −
3 0,1,2,3,4,5,6

4 0 4 +
2 2,3,4,5,6
4 0,1,2,3,4,5,6,7,8

The parity transformation U(P) gives

U(P) |S, Sz; l, lz〉 = (−1)l |S, Sz; l, lz〉 . (B.14)

It is straightforward to construct the two-pomeron states of definite total angular momentum J,
Jz:

|l, S; J, Jz〉 = ∑
Sz,lz

〈S, Sz; l, lz|J, Jz〉 |S, Sz; l, lz〉 . (B.15)

Clearly, J is then the spin of the producedmeson in (B.9) and P = (−1)l its parity. In Table B.1 we
list the values of J and P of mesons which can be produced in our fictitious reaction (B.9) where
we restrict ourselves to l 6 4.

It is clear that for each value of l, S, J, and P listed in Table B.1 we can construct a
covariant Lagrangian density L′ coupling the field operator for the meson M to the pomeron
fields IPµν. There, l is related to the number of derivatives in L′, thus giving an indication of
the angular momentum barrier in the production of M in (B.9). In Table B.2 we list interesting
candidates for mesons M in central production and the corresponding minimal values of l and S
which can lead to the meson states according to Table B.1.

The strategy is now to construct for a givenmesonM of Table B.2 a coupling Lagrangian
L′IPIPM corresponding to the l and S values listed there. We illustrate this here for the case of a
JPC = 0++ meson M. The case of a pseudoscalar meson M̃ is treated in Section 3.1.2.

The Lagrangian L′IPIPM for a scalar meson (JPC = 0++) corresponding to l = S = 0 reads

L′IPIPM(x) = M0 g
′
IPIPM IPµν(x) IP

µν(x) χ(x) , (B.16)

where χ(x) is the meson field operator, M0 ≡ 1 GeV, and g′IPIPM is the dimensionless coupling
constant. The “bare” vertex obtained from (B.16), see Fig.B.2 (a), reads

iΓ
′(IPIP→M)
µν,κλ |bare= i g′IPIPM M0

(

gµκgνλ + gµλgνκ −
1
2
gµνgκλ

)

. (B.17)

Here we have made the vertex traceless since the IPµν are supposed to have trace zero.
In Appendix D we use (B.17) to calculate the T-matrix element for the fictitious reaction

(B.9) with a scalar meson. We show there that in theWigner basis we get from (B.16) an amplitude
containing values of (l, S) = (0, 0), (2, 2), and (4, 4). But the higher terms are completely fixed by
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Table B.2: Candidates for mesons producible in pomeron-pomeron annihilation. The values of
the minimal orbital angular momentum l and of the corresponding total spin S for the reactions
(B.9) and (C.4) with tensorial (IPT) and vectorial (IPV) “pomeron particles”, respectively, are also
indicated.

IPT IPV
JPC meson M l S l S

0−+ η 1 1 1 1
η′(958)

0++
f0(980) 0 0 0 0
f0(1370)
f0(1500)

1++ f1(1285) 2 2 2 2
f1(1420)

2++ f2(1270) 0 2 0 2
f ′2(1525)

4++ f4(2050) 0 4 2 2

(a)
IPκλ

M(k)
IPµν

JPC = 0++

q1
q2

(b)
IPV ν

M(k)
IPV µ

JPC = 0++

q1
q2

Figure B.2: A sketch of the pomeron-pomeron-scalar meson vertex for the tensorial (a) and vectorial (b)
pomeron fusion.

the lowest term (l, S) = (0, 0). This justifies to call the coupling (B.16), the one corresponding to
(l, S) = (0, 0).

The coupling Lagrangian L′′IPIPM and vertex Γ′′(IPIP→M) corresponding to l = S = 2 read
as follows:

L′′IPIPM(x) =
1

2M0
g′′IPIPM [∂µ IPνρ(x)− ∂ν IPµρ(x)]

[

∂µ IPνρ(x)− ∂ν IPµρ(x)
]

χ(x) , (B.18)

iΓ
′′(IPIP→M)
µν,κλ (q1, q2) |bare=

i g′′IPIPM
2M0

×
[

q1κq2µgνλ + q1κq2νgµλ + q1λq2µgνκ + q1λq2νgµκ − 2(q1q2)(gµκgνλ + gνκgµλ)
]

, (B.19)

where g′′IPIPM is the dimensionless coupling constant. The vertex (B.19) must be added coherently
to the vertex (B.17).

In the production reaction (3.1) we cannot take the “bare” vertices ((B.17) and (B.19))
directly. We have to take into account that hadrons are extended objects, that is, we shall have to
introduce form factors. The actual vertex which is assumed in this paper reads then as follows

iΓ
(IPIP→M)
µν,κλ (q1, q2) =

(

iΓ
′(IPIP→M)
µν,κλ |bare +iΓ

′′(IPIP→M)
µν,κλ (q1, q2) |bare

)

FIPIPM(q21, q
2
2) . (B.20)

Unfortunately, the pomeron-pomeron-meson form factor is not well known as it is due
to nonperturbative effects related to the internal structure of the respective meson. In practical
calculations we take the factorized form with the following two approaches. Either we use

FM
IPIPM(t1, t2) = FM(t1)FM(t2) , (B.21)

with FM(t) the pion electromagnetic form factor in its simplest parametrisation, valid for t < 0,

FM(t) = Fπ(t) =
1

1− t/Λ2
0
, (B.22)
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where Λ2
0 = 0.5 GeV2; see e.g. (3.22) of [114]. Alternatively, we use the exponential form given as

FE
IPIPM(t1, t2) = exp

(

t1 + t2

Λ2
E

)

, (B.23)

where Λ2
E ≈ 1 GeV2. This discussion of form factors applies also to the other pomeron-pomeron-

meson vertices considered in this paper.
In the case of meson-exchange diagrams we use the monopole form factor which is

normalized to unity at the on-shell point t = m2
M

F(t) =
Λ2

M −m2
M

Λ2
M − t

, (B.24)

where ΛM > mM and t < 0. Alternatively, we use the exponential form

F(t) = exp
(

t−m2
M

Λ2
E

)

. (B.25)

The influence of the choice of the form-factor parameters is discussed in the results section.
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Appendix C

Vectorial pomeron

In this section we perform the same analysis for the vectorial pomeron ansatz as is done
for the tensorial pomeron in Appendix B.

In the vectorial approach, see [113, 114, 222–228], the pomeron is treated as a “C = +1
photon”. Its coupling to the proton reads

iΓ
(IPV pp)
µ (p′, p) = −i 3β IPNN F1

(

(p′ − p)2
)

M0 γµ , (C.1)

where β IPNN = 1.87 GeV−1, M0 ≡ 1 GeV; compare to (B.1). The effective IPV propagator is given
by

i∆
(IPV)
µν (s, t) =

1
M2

0
gµν

(

−isα′IP
)αIP(t)−1 , (C.2)

with αIP(t) and α′IP as in (2.11).
From (C.1) and (C.2) we get for proton-proton elastic scattering

〈p(p1,λ1), p(p2,λ2) | T | p(pa,λa), p(pb,λb)〉 |IPV ≡
M2→2

λaλb→λ1λ2
|IPV= (−i)ū(p1,λ1)iΓ

(IPV pp)
µ (p1, pa)u(pa,λa)

×i∆(IPV) µν(s, t)

×ū(p2,λ2)iΓ
(IPV pp)
ν (p2, pb)u(pb,λb)

s≫m2
p−−−→ i 2s [3β IPNN F1(t)]

2 (−isα′IP
)αIP(t)−1 δλ1λa

δλ2λb
. (C.3)

Comparing with (B.8) we see that for s≫ m2
p, both, the tensorial and the vectorial pomeron give

the same amplitude for pp elastic scattering.
In the next step we consider the annihilation of two “vector-pomeron particles” into a

meson M

IPV(~k, 1,m1) + IPV(−~k, 1,m2)→ M(J, Jz) ,
m1,2 ∈ {−1, 0, 1} , Jz ∈ {−J, . . . , J} ; (C.4)

compare to (B.9). Here, again, we use the Wigner basis. The same analysis as done after (B.9)
for the tensorial pomeron can now be performed for the vectorial one. The result is given in
Table C.1 which is the analogue of Table B.1 for the tensorial pomeron.

As in Appendix B we illustrate the use of Table C.1 by discussing the coupling of two
vectorial pomerons to a JPC = 0++ meson M. Let χ be the meson field, IPµ

V the effective vector-
pomeron field. The coupling corresponding to (l, S) = (0, 0) reads

L′ IPV IPVM(x) = M0 g
′
IPV IPVM

IPVµ(x) IP
µ
V(x) χ(x) (C.5)
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Table C.1: The values of l, S, J, and P, of orbital angular momentum, total spin of the two “vector-
pomeron particles”, total angular momentum, and parity of the state, respectively, possible in the
vectorial pomeron annihilation reaction (C.4). We have S ∈ {0, 1, 2}, P = (−1)l, |l − S| 6 J 6
l + S, and Bose symmetry requires l − S to be even. The continuation of the table for l > 4 is
straightforward.

l S J P
0 0 0 +

2 2
1 1 0, 1, 2 −
2 0 2 +

2 0,1,2,3,4
3 1 2,3,4 −
4 0 4 +

2 2,3,4,5,6

with M0 ≡ 1 GeV, and g′IPV IPVM the dimensionless coupling constant. From (C.5) we get the “bare”
vertex, see Fig.B.2 (b),

iΓ
′(IPV IPV→M)
µν |bare= i g′IPV IPVM M0 2gµν . (C.6)

Using this vertex to calculate the amplitude for the fictitious reaction (C.4) we find, in the Wigner
basis, contributions with (l, S) = (0, 0) and (2, 2) with the (2, 2) part completely fixed by the
(0, 0) part; see Appendix D. Thus, we shall refer to the coupling (C.6) as the one corresponding
to (l, S) = (0, 0).

For l = S = 2 the coupling Lagrangian and vertex read as follows:

L′′IPV IPVM(x) =
1

2M0
g′′IPV IPVM

[

∂µ IPν
V(x)− ∂ν IP

µ
V(x)

] [

∂µ IPVν(x)− ∂ν IPVµ(x)
]

χ(x) , (C.7)

iΓ
′′(IPV IPV→M)
µν (q1, q2) |bare=

2i g′′IPV IPVM
M0

[

q2µq1ν − (q1q2)gµν

]

, (C.8)

where g′′IPV IPVM
is the dimensionless coupling constant.

The discussion of form factors for these vertices is identical to the one for the tensorial
pomeron in Appendix B. Thus, for the full vertex for two vectorial pomerons giving a 0++ meson
we add (C.6) and (C.8) and multiply the sum by a form factor

iΓ
(IPV IPV→M)
µν (q1, q2) =

(

iΓ
′(IPV IPV→M)
µν |bare +iΓ

′′(IPV IPV→M)
µν (q1, q2) |bare

)

FIPIPM(q21, q
2
2). (C.9)

The coupling of two vectorial pomerons to a pseudoscalar mesons M̃ is given in Section 3.1.2; cf.
(3.14) and (3.15).
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Appendix D

Covariant IPIPM couplings and the
Wigner basis

In this appendix we discuss the relation of the covariant IPIPM couplings to the classifi-
cation of partial wave amplitudes in the Wigner basis as given in Table B.1 for the tensorial and
in Table C.1 for the vectorial pomeron.

Let us consider as an example of the reaction (C.4) the annihilation of two fictitious
“vectorial pomeron particles” of mass m giving a JPC = 0++ meson M:

IPV(~k,~εW1 ) + IPV(−~k,~εW2 )→ M . (D.1)

Here~εW1,2 are the polarization vectors in the Wigner basis with

|~εW1 | = |~εW2 | = 1 . (D.2)

To transform to the covariant polarization vectors ε i
µ (i = 1, 2) we need the boost transformation

Λ~k
:

(Λ~k

µ
ν) =











k0

m

kj

m

ki

m
δij + k̂i k̂j

( k0

m
− 1
)











,

i, j ∈ {1, 2, 3} , k̂ =~k/|~k| . (D.3)

We have

(ε1
µ) = Λ~k

(

0
~εW1

)

,

(ε2
µ) = Λ−~k

(

0
~εW2

)

. (D.4)

From the vertex (C.6) we get the amplitude for reaction (D.1) as follows
〈

M
∣

∣

∣
T
∣

∣

∣
IPV(~k,~εW1 ), IPV(−~k,~εW2 )

〉

= Γ
′(IPV IPV→M)
µν ε1

µε2
ν = −2M0 g

′
IPV IPVM

×
[(

1+
2
3

~k2

m2

)

~εW1 ·~εW2 +
1
m2

(

kikj − 1
3

δij~k2
)(

εW i
1 ε

W j
2 + εW i

2 ε
W j
1 −

2
3

δij~εW1 ·~εW2
)]

.

(D.5)

From the vertex (C.8) we get
〈

M
∣

∣

∣ T
∣

∣

∣ IPV(~k,~εW1 ), IPV(−~k,~εW2 )
〉

=
2g′′IPV IPVM

M0

[(

k2ε1

)(

k1ε2

)

−
(

k1k2

)(

ε1ε2

)]

=
2g′′IPV IPVM

M0

×
[(4

3
~k2 +m2

)

~εW1 ·~εW2 −
(

kikj − 1
3

δij~k2
)(

εW i
1 ε

W j
2 + εW i

2 ε
W j
1 −

2
3

δij~εW1 ·~εW2
)]

. (D.6)
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Thus, in the Wigner basis we get from both vertices, (C.6) and (C.8), partial wave amplitudes
with (l, S) = (0, 0) and (2, 2). Multiplying the vertices (C.6) and (C.8) with suitable form factors
and forming linear combinations of them it would be possible to construct vertices giving only
(l, S) = (0, 0) or (2, 2) in the Wigner basis. But this would be a very cumbersome procedure.
Therefore, we shall in this paper stick to the simple vertices as given above and label (C.6) with
(l, S) = (0, 0) and (C.8) with (l, S) = (2, 2) since (C.6) has no momenta and (C.8) two momenta.
But we keep in mind that the translation of the power of momenta in the covariant vertices to
the angular momentum l in the Wigner basis is not one to one.

For the tensorial pomeron the situation is similar. We discuss the reaction (B.9) for a
scalar meson M

IP(~k, εW ij
1 ) + IP(−~k, εW hl

2 )→ M ,
i, j, h, l ∈ {1, 2, 3} . (D.7)

Here ε
W ij
1,2 are the polarization tensors of the fictitious “tensor-pomeron particle” of mass m in the

Wigner basis. We have:

ε
W ij
1 = ε

W ji
1 , ε

W ij
2 = ε

W ji
2 ,

ε
W ij
1 δij = ε

W ij
2 δij = 0 ,

(ε
W ij
1 )∗(εW ji

1 ) = 1, (ε
W ij
2 )∗(εW ji

2 ) = 1 . (D.8)

The covariant polarization tensors are

ε1
µν = Λ~k

µ
i Λ~k

ν
j ε

W ij
1 ,

ε2
µν = Λ−~k

µ
i Λ−~k

ν
j ε

W ij
2 . (D.9)

With (D.9) we obtain the amplitude for (D.7) from the vertex (B.17) as follows:
〈

M
∣

∣

∣
T
∣

∣

∣
IP(~k, εW ij

1 ), IP(−~k, εW hl
2 )

〉

= 2M0 g
′
IPIPM ε1

µνε2 µν . (D.10)

Inserting here the explicit expressions from (D.9) we see easily that the amplitude (D.10) has,
in the Wigner basis, partial wave parts with (l, S) = (0, 0), (2, 2), and (4, 4). Similarly, also the
vertex (B.19) gives contributions with (l, S) = (0, 0), (2, 2), and (4, 4). We label the vertex (B.17)
with (l, S) = (0, 0) since it has no momenta, and (B.19) with (l, S) = (2, 2) since it is quadratic in
the momenta.

The discussion of other pomeron-pomeron-meson couplings when going from the co-
variant forms to the partial wave amplitudes in the Wigner basis can be done in a completely
analogous way.
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[7] R. Staszewski, P. Lebiedowicz, M. Trzebiński, J. Chwastowski, and A. Szczurek, Exclusive π+π−

Production at the LHC with Forward Proton Tagging,Acta Phys.Polon. B42 (2011) 1861–1870,
arXiv:1104.3568 [hep-ex].

[8] P. Lebiedowicz and A. Szczurek, pp→ ppK+K− reaction at high energies,
Phys.Rev. D85 (2012) 014026, arXiv:1110.4787 [hep-ph].

[9] P. Lebiedowicz and A. Szczurek, Exclusive pp→ ppπ0 reaction at high energies,
Phys.Rev. D87 (2013) 074037, arXiv:1303.2882 [hep-ph].

[10] P. Lebiedowicz and A. Szczurek, Exclusive diffractive photon bremsstrahlung at the LHC,
Phys.Rev. D87 (2013) 114013, arXiv:1302.4346 [hep-ph].

[11] P. Lebiedowicz, R. Pasechnik, and A. Szczurek,QCD diffractive mechanism of exclusive W+W− pair
production at high energies, LU-TP-12-12, Nucl.Phys. B867 (2013) 61, arXiv:1203.1832 [hep-ph].

[12] P. Lebiedowicz, R. Pasechnik, and A. Szczurek, Search for technipions in exclusive production of
diphotons with large invariant masses at the LHC,Nucl.Phys. B881 (2014) 288–308,
arXiv:1309.7300 [hep-ph].

[13] P. Lebiedowicz, O. Nachtmann, and A. Szczurek, Exclusive central diffractive production of scalar and
pseudoscalar mesons tensorial vs. vectorial pomeron, Annals Phys. 344 (2014) 301–339,
arXiv:1309.3913 [hep-ph].

[14] P. Lebiedowicz and A. Szczurek, Exclusive scalar f0(1500) meson production, PoS EPS-HEP2009
(2009) 457, arXiv:1206.2065 [hep-ph].

[15] P. Lebiedowicz and A. Szczurek, Exclusive production of π+π− pairs in proton-proton and
proton-antiproton collisions, Int.J.Mod.Phys. A26 (2011) 748–750, arXiv:1008.4469 [hep-ph].

[16] P. Lebiedowicz, R. Pasechnik, and A. Szczurek, Exclusive production of χc(0+) meson and its
measurement in the π+π− channel,Nucl.Phys.Proc.Suppl. 219-220 (2011) 284–287,
arXiv:1108.2522 [hep-ph].

[17] P. Lebiedowicz, R. Pasechnik, and A. Szczurek,Diffractive pQCD mechanism of exclusive production of
W+W− pairs in proton-proton collisions, PoS QNP2012 (2012) 143, arXiv:1206.2754 [hep-ph].

[18] P. Lebiedowicz, Exclusive Open Strangeness Production in the pp→ ppK+K− Reaction at High Energies
and a Measurement of Scalar χc0 Meson, Acta Phys.Polon.Supp. 5 (2012) 393–400,
arXiv:1112.1022 [hep-ph].

[19] P. Lebiedowicz and A. Szczurek, Exclusive meson pair production in proton-proton collisions,
EPJ Web Conf. 37 (2012) 06001, arXiv:1208.4288 [hep-ph].

[20] P. Lebiedowicz and A. Szczurek, Exclusive production of meson pairs and resonances in proton-proton
collisions, AIP Conf.Proc. 1523 (2012) 132–136, arXiv:1212.0166 [hep-ph].

[21] P. Lebiedowicz and A. Szczurek,Diffractive mechanisms in pp→ ppπ0 reaction at high energies, PoS

270

http://dx.doi.org/10.1016/j.nuclphysa.2009.05.072
http://arxiv.org/abs/0906.0286
http://dx.doi.org/10.1016/j.physletb.2009.09.021
http://arxiv.org/abs/0904.3872
http://dx.doi.org/10.1103/PhysRevD.81.036003
http://arxiv.org/abs/0912.0190
http://dx.doi.org/10.1103/PhysRevD.83.076002
http://arxiv.org/abs/1005.2309
http://dx.doi.org/10.1103/PhysRevD.83.114004
http://arxiv.org/abs/1101.4874
http://dx.doi.org/10.1016/j.physletb.2011.06.017
http://arxiv.org/abs/1103.5642
http://dx.doi.org/10.5506/APhysPolB.42.1861
http://arxiv.org/abs/1104.3568
http://dx.doi.org/10.1103/PhysRevD.85.014026
http://arxiv.org/abs/1110.4787
http://dx.doi.org/10.1103/PhysRevD.87.074037
http://arxiv.org/abs/1303.2882
http://dx.doi.org/10.1103/PhysRevD.87.114013
http://arxiv.org/abs/1302.4346
http://arxiv.org/abs/1203.1832
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.008
http://arxiv.org/abs/1309.7300
http://dx.doi.org/10.1016/j.aop.2014.02.021
http://arxiv.org/abs/1309.3913
http://arxiv.org/abs/1206.2065
http://dx.doi.org/10.1142/S0217751X11052724
http://arxiv.org/abs/1008.4469
http://dx.doi.org/10.1016/j.nuclphysbps.2011.10.112
http://arxiv.org/abs/1108.2522
http://arxiv.org/abs/1206.2754
http://dx.doi.org/10.5506/APhysPolBSupp.5.393
http://arxiv.org/abs/1112.1022
http://dx.doi.org/10.1051/epjconf/20123706001
http://arxiv.org/abs/1208.4288
http://dx.doi.org/10.1063/1.4802134
http://arxiv.org/abs/1212.0166


DIS2013 (2013) 305, arXiv:1306.6823 [hep-ph].
[22] P. Lebiedowicz and A. Szczurek, Exclusive diffractive photon bremsstrahlung at high energies, PoS

DIS2013 (2013) 086, arXiv:1306.6819 [hep-ph].
[23] L. Alvarez Ruso, E. Oset, and E. Hernandez, Theoretical study of the NN → NNππ reaction,

Nucl.Phys. A633 (1998) 519–546, arXiv:nucl-th/9706046 [nucl-th].
[24] L. Alvarez Ruso, Ph.D. thesis, Excitation of baryonic resonances induced by nucleons and leptons,

University of Valencia, 1999. http://ifi.uv.es/nuth/thesis_alvarezruso.ps.
[25] X. Cao, B.-S. Zou, and H.-S. Xu, Phenomenological analysis of the double pion production in

nucleon-nucleon collisions up to 2.2 GeV, Phys.Rev. C81 (2010) 065201, arXiv:1004.0140 [nucl-th].
[26] X. Cao, B.-S. Zou, and H.-S. Xu, Phenomenological study on the p̄N → N̄Nππ reactions,

Nucl.Phys. A861 (2011) 23–36, arXiv:1009.1060 [nucl-th].
[27] The PANDA Experiment Website. http://www-panda.gsi.de/.
[28] B. Ananthanarayan, G. Colangelo, J. Gasser, and H. Leutwyler, Roy equation analysis of ππ

scattering, IISC-CTS-12-99, ZU-TH-10-00, BUTP-99-33, Phys.Rept. 353 (2001) 207–279,
arXiv:hep-ph/0005297 [hep-ph].

[29] G. Colangelo, J. Gasser, and H. Leutwyler, ππ scattering, ZU-TH-3-01, BUTP-01-1,
Nucl.Phys. B603 (2001) 125–179, arXiv:hep-ph/0103088 [hep-ph].

[30] S. Descotes-Genon, N. Fuchs, L. Girlanda, and J. Stern, Analysis and interpretation of new low-energy
ππ scattering data, SHEP-01-32, DFPD-01-TH-33, IPNO-DR-01-024, Eur.Phys.J. C24 (2002) 469–483,
arXiv:hep-ph/0112088 [hep-ph].

[31] I. Caprini, G. Colangelo, and H. Leutwyler, Mass and width of the lowest resonance in QCD,
Phys.Rev.Lett. 96 (2006) 132001, arXiv:hep-ph/0512364 [hep-ph].

[32] J. Pelaez and F. Yndurain, The Pion-pion scattering amplitude, FTUAM-04-14,
Phys.Rev. D71 (2005) 074016, arXiv:hep-ph/0411334 [hep-ph].
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[34] R. Kamiński, R. Garcia-Martin, P. Grynkiewicz, and J. Pelaez, Sigma pole position and errors of a once
and twice subtracted dispersive analysis of π − π scattering data,
Nucl.Phys.Proc.Suppl. 186 (2009) 318–321, arXiv:0811.4510 [hep-ph].
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