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Polskiej Akademii Nauk

Kraków, Polska

2014





Abstract

The main goal of the dissertation is theoretical determination of the total and differential cross

sections for the production of pairs of mesons, leptons and quarks in ultraperipheral ultrarelativistic

heavy ion collisions. The Equivalent Photon Approximation (EPA) in the impact parameter space

has been used as a theoretical tool for calculation of the reaction mechanism in the electromagnetic

processes. We have presented the predictions in a reference to STAR, PHENIX and ALICE experi-

mental data. We have focused on the calculations with inclusion of the realistic charge distribution

in nucleus and we have shown the difference between results for the realistic nucleus charge form

factor and that for the monopole form factor often used in the literature. We have studied several

elementary cross sections for γγ fusion and we have compared our parametrizations of γγ → X1X2

processes to existing word experimental data. Furthermore, we have calculated the cross section for

photoproduction of single and double ρ0 mesons, the latter due to a double-scattering mechanism.

Additionally, we have studied the ρ0 → π+π− and ρ0ρ0 → π+π−π+π− decays. Finally, we have

discussed in detail electromagnetic excitation of gold and lead nuclei by soft photons and as well

as the emission of neutrons from decays of the excited nuclear system.

Streszczenie

G lównym celem niniejszej rozprawy jest teoretyczne wyznaczenie ca lkowitych i różniczkowych

przekrojów czynnych na produkcjȩ par mezonów, leptonów i kwarków w ultraperyferycznych ultra-

relatywistycznych zderzeniach ciȩżkich jonów. Przybliżenie Równoważnych Fotonów w przestrzeni

parametru zderzenia zosta lo użyte jako teoretyczne narzȩdzie do obliczeń przekrojów czynnych

w tych procesach elektromagnetycznych. Zaprezentowalísmy przewidywania odnosza̧c siȩ do

danych eksperymentalnych grup badawczych STAR, PHENIX i ALICE. Skupilísmy siȩ na obliczeni-

ach z uwzglȩdnieniem realistycznych formfaktorów ja̧der, które sa̧ otrzymane w oparciu o reali-

styczny rozk lad  ladunku w ja̧drze i pokazalísmy różnicȩ pomiȩdzy wynikami dla realistycznego

i monopolowego czynnika kszta ltu czȩsto używanego w literaturze. Przeanalizowalísmy elementarne

przekroje czynne dla fuzji γγ → X1X2 i porównalísmy nasze wyniki z istnieja̧cymi światowymi

danymi eksperymentalnymi. Ponadto wykonalísmy obliczenia przekrojów czynnych na fotopro-

dukcjȩ pojedynczych mezonów ρ0 i na produkcjȩ dwóch mezonów ρ0, ten drugi w procesie dwukrot-

nego rozpraszania. Dodatkowo rozpatrzylísmy rozpady ρ0 → π+π− i ρ0ρ0 → π+π−π+π−. Na

końcu szczegó lowo przedyskutowalísmy elektromagnetyczne wzbudzenie ja̧dra z lota i o lowiu oraz

emisjȩ neutronów z rozpadów wzbudzonego systemu ja̧drowego.
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Preface

Ultrarelativistic heavy ion collisions provide a nice opportunity to study γγ collisions

which are not available otherwise. One can expect an enhancement of the rate of

the reactions of this type compared to proton-proton or e+e− collisions which is

due to large charges of the colliding ions. In this type of reactions almost real

photons couple to the nucleus (nuclei) as a whole. Naively the enhancement of the

cross section is proportional to Z2
1Z

2
2 which is a huge factor. We discuss that the

inclusion of realistic nucleus charge form factor, which is equivalent to the inclusion

of realistic charge distributions in nuclei, makes the cross section smaller than the

cross section for the case when using the monopole form factor often used in the

literature. We study many processes that lead to exclusive production of particle

pairs.

The main goal of the dissertation is theoretical determination of the total and

differential cross sections for the production of particle pairs that are created in

ultraperipheral heavy ion collisions. These ions move with ultrarelativistic velocity.

Measurements of ultrarelativistic nuclei and particles are performed with the help

of detection system of the RHIC and LHC accelerators. The Relativistic Heavy-Ion

Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN produce

Au+Au and Pb+Pb collisions at energies 200 GeV/nucleon and 2.76 or 5.5 TeV/nu-

cleon, respectively.

The outline of this Thesis:

Chapter 1 focuses on the discussion of the main theoretical tool of our anal-

ysis: the Equivalent Photon Approximation (EPA). The pioneer of this method

was Enrico Fermi (1924). Some corrections and extensions were proposed later

1



by C. von Weizsäcker and E. J. Williams (1934). EPA is a standard semi-classical

alternative to the Feynman rules for calculation of the electromagnetic interaction

cross sections. This Chapter contains derivation of the EPA and a notation which is

used in this dissertation and in our calculations. Next we discuss the size and shape

of the heavy nuclei. This is connected with correct description of the charge density

distribution using two-parameter Fermi model.

In order to derive a formula for the nucleus charge form factor, which is equiva-

lent to introducing realistic charge distribution in the nucleus, it is useful to know

the Rutherford and Mott cross section and corresponding matrix element for the

process. We show results for both realistic and monopole form factors.

Chapter 2 describes one of the most important ingredient of the EPA, elemen-

tary cross sections for γγ fusion. Each section in this chapter is devoted to other

subprocess:

• dimuon production,

• ρ0 mesons production,

• quark-antiquark production,

• two-pion production.

A second category of the underlying reaction mechanisms for the exclusive pro-

duction of simple final state is presented in Chapter 3. This is a vector meson

photoproduction. We show the difference between results when taking into account

a fixed (sharp) and smeared mass of the ρ0 meson. One of main goals of this chapter

is the presentation of the differential cross section for the production of four charged

pions in ultraperipheral ultrarelativistic heavy ion collisions.

Chapter 4 includes theoretical predictions for the production of pairs of mesons,

leptons and quarks in ultraperipheral ultrarelativistic heavy ion collisions. The nu-

clear cross section is calculated with the help of EPA in the impact parameter space.

We present our predictions in a reference to STAR, PHENIX and ALICE experi-

mental data. The possibility of exclusive measurements of µ+µ−, ρ0ρ0, cc̄, bb̄, π+π−
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and π0π0 pairs is discussed. We focus on the calculation with inclusion of the real-

istic charge distribution and we show the difference between results for the realistic

nucleus charge form factor and that for the monopole form factor.

In Chapter 5 we study a new approach for calculating the electromagnetic exci-

tation of nuclei as well as differential and total cross section for emission of neutrons

from decays of excited nuclear systems for ultraperipheral ultrarelativistic Au-Au

and Pb-Pb collisions. Both single-photon, double-photon and mutual excitation

processes are included and discussed. We compare our results with results of other

theoretical approaches and with recent experimental data of PHENIX, PHOBOS,

BRAHMS and ALICE Collaborations.

Chapter 6 closes the dissertation. It also discusses possibilities to study the

exclusive production of meson, lepton and quark pairs in ultraperipheral ultrarela-

tivistic heavy ion collisions. The importance of the realistic charge distribution in

the nucleus is presented and discussed. Outlook of future phenomenological and

experimental studies is presented.

Appendices include some useful formulae concerning details of the calculations

presented in different sections.

Scientific achievements of the PhD student

Publications:

[1] M. K lusek, W. Schäfer and A. Szczurek,
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Chapter 1

Equivalent photon approximation

This chapter is devoted to the introduction of the Weizsäcker-Williams method

which is a useful tool for calculating cross sections for the reactions considered in

this thesis. Here some history of the equivalent photon approximation, its deriva-

tion, and the notation which is used in the current dissertation will be presented.

In general, the equivalent photon approximation is a standard semi-classical alter-

native to the Feynman rules for calculation of the electromagnetic interaction cross

sections. In this approach the strong electromagnetic field is a source of photons

that can induce electromagnetic reactions in ion-ion collisions.

Next I will discuss how the size and shape of a heavy nucleus can be (and

was) studied in other processes. This information can be used then to extract the

basic ingredient of the approach - the electromagnetic form factor of a nucleus.

The parametrization of the charge density and the nuclear form factor used in this

dissertation is obtained from electron scattering experiments.

1.1 A short history

In 1924 Enrico Fermi wrote a paper with the title ”On the Theory of the impact be-

tween atoms and electrically charged particles”. He introduced the correspondence

between the electric field of light and that of a charged particle. E. J. Williams [19]

found some corrections and extension of the theory proposed by E. Fermi [20].

9



The generalization of Fermi’s method to the relativistic case was independently de-

termined by C. von Weizsäcker [21] and E. J. Williams [22] in 1934. The method

rests on the similarity of the fields of a fast moving charged particle and the fields

of a radiation pulse. The electromagnetic field surrounding the heavy ions is very

strong. This is due to the coherent action of all the protons in the nucleus. The

action of the field takes place in a very short time. The basic idea was described by

Fermi [20]: ”this time-dependent electromagnetic field can be replaced by the field

of radiation with a corresponding frequency distribution”. Following up this sug-

gestion, Weizsäcker and Williams demonstrated how to replace the electromagnetic

field of the fast moving nucleus by a spectrum of photons. These photons can be

considered as real or quasi-real.

b

R1

R2

Figure 1.1: Schematic diagram illustrating EPA / Weizsäcker-Williams method

which is used for description of electromagnetic processes in heavy-ion collisions.

A schematic view of two highly relativistic colliding ions is depicted in Fig. 1.1.

The figure shows two fast moving nuclei with the charge Ze. These nuclei are

contracted by relativistic Lorentz-FitzGerald contraction. Assuming that the nu-

clear radius R0 is equal about 7 fm, and using the formula: R = R0/γ (where
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γ = 1/
√

1− β2 is the Lorentz factor and β = p/E - the velocity of the parti-

cle with the energy E and momentum p) one can calculate that for RHIC energy

(
√
sNN = 200 GeV, γ ≈ 107) the nuclear radius observed by an observer in the

laboratory frame is equal about 0.13 fm.

Returning to Fig. 1.1, the strong electromagnetic field is viewed as a cloud of

photons which can be called ”equivalent”. During collision of two ions, these photons

can collide with each other or with the other nucleus.

The above physical picture introduces the so-called Equivalent Photon Approx-

imation (EPA). Very often in the literature it is known as Weizsäcker-Williams

method. Sometimes the procedure is referred to as a Method of Virtual Quanta.

At present, one can find a lot of review works as well as shorter publications on the

subject, e.g. [23–26].

The impact parameter space is the best suited for application to the nuclear

collisions. The impact parameter is the distance between centers of nuclei (a letter b

in Fig. 1.1) in the plane transverse to the collision axis. The aim of this dissertation

is the description of ultraperipheral collisions (UPC) of heavy ions using explicitly

this variable. For the processes of interest in this thesis it is necessary, that the

transverse distance between the two nuclei is bigger than the sum of their radii

(b > Rmin = R1 + R2). This condition must be imposed in order to exclude the

breakup of colliding nuclei.

1.2 A derivation of the Weizsäcker - Williams

method

The Weizsäcker-Williams method is based on both classical and quantum concepts.

The main idea relies on determination of equivalent photon number n(ω). The

equivalent photon number integrated over impact parameter is expressed through

n(ω) =

∞∫
Rmin

2πbdbN(ω, b) . (1.2.1)



where N(ω, b) denotes an equivalent photon flux differential in both photon energy

ω and impact parameter b. The quantum part involves the description of the in-

teraction between emitted photon and a target particle (or photon emitted from

the second nucleus). The total cross section for an electromagnetic photon-induced

subprocess is factorized into an equivalent photon spectrum and the photon-ion

interaction cross section:

σ =

∫
dω n(ω)σAγ(ω) , (1.2.2)

where the integral runs over photon energies.

For the case of two-photon collisions in the reaction A1A2 → A1A2X one would

like to achieve an analogous factorization into the probability that first (or second)

nucleus emits a photon at energy ω1 (ω2), and the probability that two photons

collide with each other to produce some final state called here X for brevity. For

this case, the total cross section would take the form:

σA1A2→A1A2X =

∫
dω1 dω2 n(ω1)n(ω2)σγγ→X(ω1, ω2) . (1.2.3)

X

A1

A2

A1

A2

σγγ→X

n(ω1)

n(ω2)

Figure 1.2: Schematic illustration of Eq. (1.2.3) - production of some final state (X)

by two-photon-induced subprocess in heavy ion collision.

For the case of heavy nuclei, the constraint b > R1 +R2 strictly speaking breaks

such a factorization (see the formulas in Appendix B). A schematic illustration of

Eq. (1.2.3) is shown in Fig. 1.2. Let’s start from a derivation of the equivalent photon

fluxes N(ω, b) (see Eq. (1.2.1)). This formula depends on the impact parameter and

energy of the photon. Firstly, one has to determine the frequency spectrum I(ω, b)

(energy per unit area per unit frequency interval). A pedagogical discussion can be
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found in the textbook of J.D. Jackson (Ref. [27]) for a fast moving point-like particle

with the charge q. In what follows we take guidance from Jackson’s discussion.

q

y y′

x x′

z z′

b

vt

v
r̂

r
P

K K′

Figure 1.3: Particle with the point-like charge q moves with a constant velocity

v ≈ c. This particle passes an observation point P at impact parameter b.

In Fig. 1.3 one can see a particle of charge q, which when viewed from the frame

K moves with a high velocity v ∼ c along the z-axis, and passes an observation

point P in frame K with velocity v = ẑv. In the frame K ′, the particle is at rest in

the origin.

Here the target point P can be considered as an interaction point or another

particle. Relative to the origin of K, point P is located at coordinates (b, 0, 0) and

the spatial coordinates of q as a function of time in K are (0, 0, vt). The K and K ′

frames coincide at the time t = t′ = 0. The impact parameter b is the distance of

closest approach between q and P .

The electric E and magnetic B field strengths can then be obtained from the

electromagnetic potentials as: E = −∇Φ− 1
c
∂A
∂t
,

B = ∇×A .
(1.2.4)

The form of (1.2.4) is the same for massive and massless fields but the explicit

expression is different because Φ and A differ for the two cases. In the rest frame of

the charge, its electromagnetic field is given by the electromagnetic potentials (we

use primed quantities to denote that they belong to the frame K ′):

Φ′ (r′, t′) =
1

4π

q

r′
e−mr

′
, A′ = 0 . (1.2.5)



Here, to avoid possible subtleties due to the infinite range of the field, we introduced

a ”photon mass” m, which will be set to zero in the final results.

Clearly in its rest-frame K ′ the electromagnetic field of the charge is purely

electric. It reads, in Heaviside-Lorentz units [28],

E′ (r′, t′) = −∇′Φ′ − ∂A′

∂t′

=
r′

r′
1

4π

q

r′2
(1 +mr′) e−mr

′
. (1.2.6)

In the rest frame K ′ of the charge the electric field at point P (see Fig. 1.3) has

the Cartesian components [29]:
E ′x (r′, t′) = 1

4π
qb
r′3

(1 +mr′) e−mr
′
,

E ′y (r′, t′) = 0 ,

E ′z (r′, t′) = 1
4π
−qvt′
r′3

(1 +mr′) e−mr
′
.

(1.2.7)

Here r′ = r′(t′) =
√
b2 + (vt′)2. Because the frames K and K ′ differ only by a boost

along the z-axis, the impact parameter b is the same in the frame K and K ′. By

the Lorentz boost, the time coordinates t and t′ are related by:

t′ = γ(t− vz) = γt , (1.2.8)

where in the last step z has been set to 0 because the evaluation point P has

coordinates (b, 0, 0) in the K frame.

The Lorentz transformation of electromagnetic fields is most easily derived by

starting from the transformation properties of the field-strength tensor Fµν

Fµν =
∂Aµ
∂xν
− ∂Aν
∂xµ

. (1.2.9)

Using the explicit transformation given in Ref. [27] one can obtain the fields trans-

formed from frame K ′ to K
Ex = γ(E ′x + βB′y) , Bx = γ(B′x − βE ′y) ,
Ey = γ(E ′y − βB′x) , By = γ(B′y + βE ′x) ,

Ez = E ′z , Bz = B′z .

(1.2.10)
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Using the equation system (1.2.7) to (1.2.10), one can find the non-zero transformed

fields at P in the K system [30]
Ex (r, t) = 1

4π
qγb
r3

(1 +mr) e−mr ,

Ez (r, t) = 1
4π

qγvt
r3

(1 +mr) e−mr ,

By (r, t) = βEx .

(1.2.11)

Here r = r(t) =
√
b2 + (γvt)2 is expressed entirely in terms of coordinates of frame

K.

Now, we see, that the boosted electromagnetic field contains besides the electric

field component also a magnetic component. It is useful to check that the Lorentz-

invariants I1 = E · B and I2 = E2 − B2 are indeed the same in both reference

frames.

Our aim is to replace the electromagnetic field of Eq. (1.2.11) by an effective

plane wave pulse of electromagnetic radiation. Such a pulse would have to fulfill

I1 = I2 = 0, which by the Lorentz-invariance is not true for the field (1.2.11).

However, we can see, that for β → 1 the magnitude of the magnetic field and

the x-component of the electric field become equal: |By| → |Ex|. Indeed, the fields

E1 = Exx̂, B = Byŷ are orthogonal, E1 ·B = 0 and E2
1 −B2 → 0 for β → 1. Let us

have a look at the Poynting vector, which is the energy flux density (the energy which

flows through a surface perpendicular to S per unit area and unit time) associated

with the electromagnetic field,

S = E×B . (1.2.12)

The Poynting’s theorem says that an energy lost by electromagnetic fields equals

an energy gained by particles plus an energy flow out of the volume. Inserting the

electric and magnetic fields in the rest frame K of the observer/target, we obtain

for the Poynting vector

S = ExByẑ + EzByx̂ =

=
q2

16π2

βγ2b2

[b2 + (γvt)2]3

(
1 +m

√
b2 + (γvt)2

)2

e−2m
√
b2+(γvt)2 ẑ +

+
q2

16π2

βγ2vtb

[b2 + (γvt)2]3

(
1 +m

√
b2 + (γvt)2

)2

e−2m
√
b2+(γvt)2x̂ . (1.2.13)



We see that the component of the Poynting-vector along the z-axis (the direction of

motion of the ultrarelativistic charge) corresponds to a sharp pulse of electromag-

netic radiation at the observation point, which extends over a time ∆t ∼ b/(γv).

Parametrically ∆t ∝ 1/γ vanishes in the ultrarelativistic limit. The component

of the Poynting vector parallel to the x-axis (i.e. parallel to the impact parame-

ter) is linear in the field component Ez and would vanish when averaged over the

time-interval
(−∆t

2
, ∆t

2

)
. In the method of equivalent photons it is neglected, and

we keep only the pulse

S1 = ExByẑ = E1 ×B . (1.2.14)

Jackson (Ref. [27]) goes still further, and shows how to include effects quadratic in

Ez, which would not vanish after averaging over the interval ∆t. To this end he

introduces an artificial magnetic field component

Bart. = −x̂× E = −Ezŷ , (1.2.15)

which gives rise to a second pulse

S2 = Ezẑ×Bart. = (Ez)
2 x̂ . (1.2.16)

The validity of this method to account for the electric field component Ez rests

on some additional assumptions. Jackson asserts that it is safe to introduce the

artificial magnetic field Bart. so long as the system situated at point P is composed,

in its rest frame, of nonrelativistic particles whose response to a magnetic field

can be neglected. As we will see below, in the ultrarelativistic limit γ � 1 the

effect of the second pulse is strongly suppressed. We do therefore not analyse the

approximations any further, we wish to remark, however, that in a field-theoretic

calculation of Feynman-diagrams, the second pulse naturally arises.

The derivation of n(ω) consists of an analysis of the E and B fields of an rela-

tivistic charged particle Ze. The equivalent photon number is a function of photon

energy in the fields surrounding charge per unit photon energy.

To summarize, the core of the Weizsäcker-Williams method is to approximate

the B and E fields of an relativistic charge as appropriate plane wave pulses of
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electromagnetic radiation. These pulses are called as equivalent pulses. The chief

assumption of the EPA is that the effects of the various frequency components of

equivalent radiation add incoherently.

Using equations that define the relation between the Poynting vectors and each

of the pulse frequency spectrum

∞∫
−∞

dt

∫
d2b · S (t, b) =

∞∫
0

dω

∫
d2b I (ω, b) (1.2.17)

one can get the two frequency spectra

I1 (ω, b) = 2 |Ex (ω, b)|2 , (1.2.18)

I2 (ω, b) = 2 |Ez (ω, b)|2 . (1.2.19)

The details of the transformation E(t)→ E(ω) are given in Appendix A. Finally,

the explicit form of the electric force as a function of photon energy ((A.0.17) and

(A.0.24)) (in the Heaviside-Lorentz units) with the electromagnetic limit (m → 0)

and with the ultrarelativistic condition (v = cβ) takes the form

E⊥(ω) ≡ Ex(ω) =
1

4π

Ze

bβ

√
2

π

bω

γβ
K1

(
bω

γβ

)
, (1.2.20)

E‖(ω) ≡ Ez(ω) = − i

4π

Ze

bγβ

√
2

π

bω

γβ
K0

(
bω

γβ

)
. (1.2.21)

One can mark the x component of electric field as ⊥, because it is perpendicular to

the particle motion. Similarly E‖ = Ez.

The equivalent pulse P1 has a frequency spectrum given by

I1(ω, b) =
1

4π

(
Ze

πβ

)2
1

b2

(
bω

γβ

)2

K2
1

(
bω

γβ

)
. (1.2.22)

Similarly the pulse P2 has a frequency spectrum in the form

I2(ω, b) =
1

4π

1

γ2

(
Ze

πβ

)2
1

b2

(
bω

γβ

)2

K2
0

(
bω

γβ

)
. (1.2.23)

The intensity of the pulse P1 and P2 is expressed by the modified Bessel functions

(K0 and K1).

In Fig. 1.4 the intensity for first (left panel) and second (right panel) pulse as the

function of the impact parameter (b) end photon energy (ω) is shown. The intensity
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Figure 1.4: The frequency spectra for the equivalent pulse P1 (left panel) and pulse

P2 (right panel) as a function of impact parameter and photon energy.

for both cases is shown in the same scale. Thus, one can observe that the result

obtained from the equivalent pulse P1 is more important than for the pulse P2. The

frequency spectra for the equivalent pulse P1 has a maximum at the corner of very

small values of the impact parameter and photon energy. The small intensity of the

second pulse comes from the fact, that in comparison to the first pulse, the second

one is divided by a square of γ factor (see Eq. (1.2.22) and (1.2.23)). Thus, the

huge difference between I1(ω, b) and I2(ω, b) becomes important for ultrarelativistic

particles. The above figures were calculated for γ = 107 (
√
sNN = 200 GeV, RHIC

energy).

In the next step one has to determine the equivalent photon number for a nucleus

with the charge Ze. The dependence between calculated frequency spectra and the

impact parameter-dependent equivalent photon spectra N(ω, b) is the following [27]

N (ω, b) =
1

ω
[I1 (ω, b) + I2 (ω, b)] . (1.2.24)

Usually one uses a fine-structure constant αem ' 1/137 instead of an electron

charge. Using the Heaviside-Lorentz units, we can write the well-known text-book

relation e2 = 4παem. In addition defining

u =
ωb

γβ
(1.2.25)
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one can write the final form of the flux of virtual photons (for point-like charge)

N (ω, b) =
Z2αem
π2β2

1

ω

1

b2
u2

[
K2

1 (u) +
1

γ2
K2

0 (u)

]
. (1.2.26)

The unit of the equivalent photon fluxes is GeV−1 fm−2 or equivalently GeV.

The argument of the Bessel function is expressed through the impact parameter

b, relativistic parameters γ, β and the energy of the photon ω. For ultrarelativistic

case, using the uncertainty principle:

∆t∆E ' 1→ b

γv
ω ' 1

v'c→β'1−−−−−−→ ωmax '
γβ

b
, (1.2.27)

where ∆t is the collision time, one can evaluate maximal value of the photon energy.

This condition is called an adiabatic cutoff energy condition. This means that, for

example, at RHIC energies (γ = 107,
√
sNN = 200 GeV) in an electromagnetic

collision of two gold (197Au) nuclei the excitation of states with photon energies up

to about 3 GeV can be reached.

b [fm]
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,b
)

ω
 /
 N
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Figure 1.5: The ratio of longitudinal to transverse impact-parameter-dependent

equivalent photon distributions (see Eq. (1.2.28) and (1.2.29)) for two different

photon energies.

Fig. 1.5 presents the suppression of the longitudinal contribution in the equivalent

photon contribution for a point-like charge. One can see the ratio of the longitudinal



N (ω, b) (in analogy to Eq. (1.2.21))

N‖ (ω, b) =
Z2αem
π2β2

1

ω

1

b2
u2 1

γ2
K2

0 (u) (1.2.28)

to the perpendicular one (in analogy to Eq. (1.2.20))

N⊥ (ω, b) =
Z2αem
π2β2

1

ω

1

b2
u2K2

1 (u) (1.2.29)

for two values of photon energy (red line for ω = 1 GeV, blue line for ω = 10 GeV;

the Lorentz factor γ = 107 (
√
sNN = 200 GeV)). With larger value of the impact

parameter this difference becomes smaller, however the longitudinal contribution is

about four orders of magnitude smaller than the perpendicular one.

Since the nucleus is an extended object, it is more realistic to consider the charge

distribution. Impact parameter-dependent equivalent photon spectra N(ω, b) for

extended charge distribution were given e.g. by G. Baur and L. Ferreira (Ref. [31]),

F. Krauss, M. Greiner and G. Soff (Ref. [32]). Following those suggestions, firstly

one can write the 4-potential which is composed of functions describing the radiation

fields Φ and A

Aν = (Φ,A) . (1.2.30)

In addition the 4-current is composed of the charge density ρ and current density J

Jν = (ρ,J) . (1.2.31)

We consider here the case of massless photon. Thus, one can write one of the

Maxwell equations in the gauge ∂νA
ν = 0

�Aν(r) = Jν(r) . (1.2.32)

This is the inhomogeneous wave equation for the electromagnetic vector-potential in

the Lorentz gauge in the frame K. In the reference system K ′ of the moving (with

ultrarelativistic velocity) charge the current-density is expressed through

J ′ν (r′) = ρ (|r′|)u′ν (1.2.33)

with the four-velocity of the spherical symmetric charge distribution u′ν = (1, 0, 0, 0).

However, in the observer system uν = γ(1, 0, 0, β). Another 4-vector defining the
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photon momentum in a respective frame of reference has the form: k′ν = (ω′,k′)

and kν = (ω,k). Using the Fourier transform of the current-density from x variable

to k one can get

J ′ν (k′) =

∞∫
−∞

d4x′eik
′r′J ′ν (r′) (1.2.34)

= 2πδ (ω′) ρ (|k′|)u′ν

= 2πδ (k′ · u′) ρ
(√
−k2

)
u′ν .

Similarly using the Fourier transform of Eq. (1.2.32) and the solution of Eq. (1.2.34)

one can obtain

Aν (k) = − 1

k2
Jν (k)

= −2πδ (k · u)
ρ
(√
−k2

)
k2

uν

= −2πδ (k · u)Ze
F (−k2)

k2
uν . (1.2.35)

In this place the electromagnetic nuclear form factor of the nucleus with the nuclear

charge number Z was introduced.

As was demonstrated for point-like charge (Fig. 1.5) also the second pulse can

be neglected (Refs. [24, 27]). Thus, only the x component of the electric field is

important for photon spectrum taking into account the realistic charge distribution.

The final form of the equivalent photon flux for realistic charge distribution is

derived in Appendix A.1 (Eq. (A.1.42))

N (ω, b) =
Z2αem
π2β2

1

ω

1

b2

∣∣∣∣∣∣
∫

dχχ2
F
(
χ2+u2

b2

)
χ2 + u2

J1 (χ)

∣∣∣∣∣∣
2

, (1.2.36)

where J1 is the Bessel function. In the above equation the scaling variable u = ωb
γβ

was used which was defined in Eq. (1.2.25). In addition, a dimensionless auxiliary

variable χ = k⊥b was introduced.

It seems interesting in this context to calculate the form of the equivalent photon

number for a point-like charge. This will be a check of the correctness of Eq. (1.2.36).

In this case the value of the form factor is a constant F (q2) = 1. Then

N (ω, b) =
Z2αem
π2β2

1

ω

1

b2
u2K2

1 (u) . (1.2.37)



In this place the result of the integral from the Abramowitz’s & Stegun’s handbook

(Ref. [33]):
∞∫
0

da a2J1(a)/(a2 + b2) = bK1(b) was used. Eq. (1.2.37) is the same as

that given by Eq. (1.2.29).
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Figure 1.6: Equivalent photon fluxes as a function of the impact parameter for gold

(left panel) and lead (right panel) nucleus for two different values of photon energy.

In Fig. 1.6 the equivalent photon fluxes as a function of the impact parameter

is shown. The left panel is for gold nucleus and the right panel for lead nucleus. In

practice for gold and lead different values of γ must be used adequate for appropriate

experiments:

• 197Au-197Au collisions at
√
sNN = 200 GeV (RHIC energy) → γ = 107,

• 208Pb-208Pb collisions at
√
sNN = 2.76 TeV (LHC energy) → γ = 1471.

In addition here three different forms of the form factor are taken into account:

solid lines - realistic form factor, dashed lines - monopole form factor, dotted lines -

point-like form factor (the types of the form factors are presented in Chapter 1.4).

One can see from the figure that the biggest differences for these three form factors

occur for b < 10 fm. For larger value of the impact parameter, this difference

becomes smaller. This is natural, as from very large distances b� RA, the nucleus

should ”look like” a point-like charge. From the comparison of the result for two

different values of γ, one can observe, that for more ultrarelativistic energies these

distributions have larger tail in the impact parameter.
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1.3 Nuclear cross section

In section 1.2 a general formula for the total cross section (see Eq. (1.2.3)) for the

production of pairs of particle in heavy ion collision was written. In this section

we will introduce this equation but in the exact form which will be used in the

calculation of the nuclear distributions for the production of pairs of mesons, leptons

or quarks in ultraperipheral ultrarelativistic heavy ion collisions. The main part of

the following derivation can be found for example in Ref. [32].

φ

b

b1 b2

X

Figure 1.7: Diagram illustrates quantities in the impact parameter space. This is

a view perpendicular to the direction of motion of two ions which have the same

radius (R).

In the following the equivalent photon approximation will be considered in the

impact parameter space. This choice gives the possibility to the exclude central

collisions or the situation when the two ions overlap in the impact parameter space

(b < 2R). In this dissertation, we will consider only ultraperipheral collisions.

This means that the distance between two nuclei is larger than the sum of radii

of these nuclei. The definition of the quantities in the impact parameter space

is presented in Fig. 1.7. The value of the impact parameter can be written as

b = |b| =
√
|b1|2 + |b2|2 − 2|b1||b2| cosφ.

As was mentioned in the previous section, kinematic variables can be separated

into components perpendicular and parallel to the direction of motion of the two

colliding ions. Going by this line of thought, one can take into account a polarization-

dependent cross section for γγ fusion. Additionally, connecting the relation (1.2.1)



with (1.2.3), one can write

σA1A2→A1A2X

(√
sA1A2

)
=

∫
d2b dω1 dω2

[
σ⊥γγ→X1X2

(ω1, ω2)N⊥ (ω1, ω2,b)

+ σ
‖
γγ→X1X2

(ω1, ω2)N‖ (ω1, ω2,b)
]
. (1.3.38)

The details of this derivation can be found in Ref. [34]. The total two-photon fusion

cross section is expressed through the polarized two-photon fusion cross section

σγγ→X =
(
σ⊥γγ→X + σ

‖
γγ→X

)
/2. For these cross sections the polarisation vectors

of the two photons are parallel and perpendicular to each other, respectively. The

definition of fluxes for photons with parallel and perpendicular linear polarizations

are presented in [1].

After introducing a few transformations (see Appendix B), the final form of

the cross section in the equivalent photon approximation is expressed through the

five-fold integral

σA1A2→A1A2X

(√
sA1A2

)
=

∫
σγγ→X1X2

(√
sA1A2

)
N (ω1,b1)N (ω2,b2)S2

abs (b)

× 2πbdb dbx dby
Wγγ

2
dWγγ dYX1X2 , (1.3.39)

where

YX1X2 =
1

2
(yX1 + yX2) (1.3.40)

is a rapidity of the outgoing X1X2 system. The invariant mass of the γγ system is

defined as

Wγγ =
√

4ω1ω2 . (1.3.41)

The quantities bx, by are the components of the b1 and b2 vectors (see Fig. 1.7):

b1 =

[
bx +

b

2
, by

]
,

b2 =

[
bx −

b

2
, by

]
. (1.3.42)

Eq. (1.3.39) allows to calculate the value of the total cross section, distributions

in the impact parameter (b), invariant mass (Wγγ = MX1X2) of the considered

particles in the final state or rapidity of the pair (YX1X2) of these particles. The full

derivation of this equation is given in Appendix B.
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We wish to emphasize that very often experimental constraints cannot be easily

imposed. If one wants to put some cuts on produced particles which come from

experimental requirement or have the distribution in some helpful and interesting

kinematical variables of an individual particle, more complicated calculations are

required. A good idea is to use the elementary cross section not as one-dimensional

quantity but differential in some variables. Then one has to replace σγγ→X1X2 (Wγγ)

by two-dimensional quantity
dσγγ→X1X2

dz
(Wγγ, z), where z = cos θ. Then the calcula-

tion starts to be more complicated and labour-intensive, because Eq. (1.3.39) has

one additional dimension.

Four-momenta (energy, transverse and longitudinal momentum) of one particle

(Xi, i = 1, 2) in the X1X2 center of mass frame can be written as

EXi =

√
ŝ

2
, (1.3.43)

pXi =
√
E2
Xi
−m2

Xi
, (1.3.44)

pt,X1 =
√

1− z2pX1 , (1.3.45)

pl,X1 = zpX1 . (1.3.46)

In the equation above, ŝ = W 2
γγ is defined through the energy in the X1X2 center of

mass frame (similarly like z).

The rapidity of each of the particles in the final state,

y1 = YX1X2 + yi/X1X2 (Wγγ, z) , (1.3.47)

where yi/X1X2 (Wγγ, z) expresses the rapidity of one of the particles (X1 or X2) in

the recoil X1X2 system of reference. Other kinematical variables are calculated by

adding relativistically velocities (Ref. [35])

vi =
PX1X2

EX1X2

⊕ vi/X1X2 , (1.3.48)

where the first element in the above equation expresses the velocity vector (vX1X2)

of the X1X2 system in the nucleus-nucleus center of mass (PX1X2 and EX1X2 is

momentum and energy of the X1X2 system, respectively) and vi/X1X2 is the velocity

of one of the particles in the X1X2 system. Additionally, one can write the relations



which come from the energy-momentum conservation

EX1X2 = ω1 + ω2 , (1.3.49)

P z
X1X2

= ω1 − ω2 . (1.3.50)

Above a generic reaction A1A2 →A1A2X1X2, where X1 and X2 can be mesons,

leptons or quarks was considered. The most important physical quantity in

Eq. (1.3.39) is the elementary cross section for the γγ → X1X2 process and the

charge form factor of nucleus which is hidden in the equivalent photon spectra

(Eq. (1.2.36)).

1.4 Nuclear form factor and charge density

In this section we will focus on our knowledge of the nuclear form factor which is

the main ingredient of the photon fluxes discussed in the previous section.

To start let us introduce the cross section for scattering of a point-like and spinless

projectile with the charge e (e.g. an electron) off a heavy, spinless, scattering centre

with no inner structure and electric charge Ze.

θ

E,p

Mc, 0

E′,p′

E′
N ,P′

q

Figure 1.8: Kinematics of elastic electron-nucleus scattering.

Fig. 1.8 depicts the kinematics of the elastic electron-nucleus scattering. The

electron moves with ultrarelativistic velocity, so its energy fulfills the dependences

E � mec
2 , (1.4.51)

E ≈ |p| c . (1.4.52)

Fixing that primes denote quantities after scattering, one can write four-momentum

of the electron and nucleus in the laboratory frame
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p =

(
E

c
,p

)
, p′ =

(
E ′

c
,p′
)
, (1.4.53)

P = (Mc, 0) , P ′ =

(
E ′N
c
,P′
)
. (1.4.54)

The Rutherford scattering formula can be calculated within both the non-

relativistic [36] and relativistic approach [37]. The final form of the Rutherford

cross section reads: (
dσ

dΩ

)
Rutherford

=
4Z2α2 (}c)2E ′2

|qc|4
, (1.4.55)

where the fine-structure constant equals α = e2/ (4πε0}c) ≈ 1/137 and q = p−p′ is

the momentum transfer (see Fig. 1.8). Eq. (1.4.55) can be interpreted in terms of the

exchange of a virtual photon (factor 1/ |q|2) coupling to the charged particles with

the strength proportional to their charges. In fact, the three-momentum transfer q

is the momentum transferred by the exchanged photon.

One can assume that the electron energy and the magnitude of its momentum

do not change in the interaction when recoil of the scattering center is neglected in

the Rutherford scattering

E = E ′, |p| = |p′| . (1.4.56)

The momentum transfer is given by

|q| = 2 |p| sin
θ

2
, (1.4.57)

where θ is a scattering angle (see Fig. 1.8). If we recall that Eq. (1.4.52) is a

good approximation, replacing E ′ by Eq. (1.4.52) one can obtain the Rutherford

differential cross section(
dσ

dΩ

)
Rutherford

=
Z2α2 (}c)2

4E2 sin4 θ
2

. (1.4.58)

In fact the Rutherford cross section should be modified by spin effects. Including

the spin 1
2

of the electron and neglecting nuclear recoil, one can write the formula

for differential cross section which was obtained by Mott (Refs. [38,39])(
dσ

dΩ

)
Mott

=

(
dσ

dΩ

)
Rutherford

(
1− β2 sin2 θ

2

)
(1.4.59)



with β = v/c. In the limiting case of β → 1, the above equation takes a simpler

form (
dσ

dΩ

)
Mott

=

(
dσ

dΩ

)
Rutherford

· cos2 θ

2
. (1.4.60)

The expression shows that the Mott cross section drops faster at large scattering

angle than the Rutherford cross section. The same situation can be seen in Fig. 1.9.
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Figure 1.9: Comparison of the Rutherford and Mott cross section for scattering off

a spinless target.

For larger values of a scattering angle (θ > 40◦) the difference becomes larger.

Maximal deviation from the Rutherford formula appears at 180◦. For a particle

moving with relativistic velocity (the calculations presented in the figure are done

for the case when β = 1), the projection of its spin s on the direction of its motion

p/ |p| is a conserved quantity. This is called conservation of a helicity (in the β → 1

limit) defined as

h =
s · p
|s| |p| . (1.4.61)

The relativistic particles have either spin parallel to their momentum (h = 1) or

spin pointing in the opposite direction of their motion (h = −1).

For a spinless target, at θ = π, conservation of angular momentum would require

that the helicity changes sign, in contradiction with its conservation. The orbital

angular momentum l is perpendicular to the direction of motion. It therefore can not
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cause any change in the direction of motion component of the angular momentum.

Hence scattering at θ = 180◦ has to be completely lapsed.

If the target has spin, backscattering (θ = π) of electrons is possible (non-zero

cross section), because conservation of total angular momentum can be compensated

by a change in the spin direction of the target. In this case, the above argumentation

is not valid, and θ = π is possible.

Experimentally, the determination of a nuclear form factor involves some com-

parison of the experimental cross section with the Mott cross section for a nucleus

without spin (
dσ

dΩ

)
exp.

=

(
dσ

dΩ

)
Mott

·
∣∣F (q2

)∣∣2 . (1.4.62)

In practice, one therefore measures the cross section for fixed beam energy at various

angles.

In order to derive the exact form of the form factor, one has to write the ex-

pression for the matrix element for e+A→ e+A scattering. The incident and the

outgoing electron (see Fig. 1.8) can be described by plane waves:

ψi =
1√
V

exp

(
ip · r
}

)
, (1.4.63)

ψf =
1√
V

exp

(
ip′ · r′

}

)
. (1.4.64)

V is the normalization volume. The Hamiltonian of the Coulomb interaction for a

charge e in an electric potential φ (r) generated by the nucleus is given by

Hint = eφ (r) . (1.4.65)

. Then the matrix element takes the form:

〈ψi |Hint|ψf〉 = − e}2

V |q|2
∫

exp

(
iq · r
}

)
∆φ (r) d3r . (1.4.66)

Assuming that the charge density ρ (r) is static, the electrostatic potential can be

replaced by

∆φ (r) = −ρ (r)

ε0
. (1.4.67)

The charge density is normalized as∫
ρ (r) d3r = Ze . (1.4.68)



Defining a normalized charge distribution function which fulfills the relations

f (r) =
ρ (r)

Ze
,

∫
f (r) d3r = 1 (1.4.69)

one can finally rewrite

〈ψi |Hint|ψf〉 =
Ze2}2

ε0V |q|

∫
f (r) exp

(
iq · r
}

)
d3r . (1.4.70)

The integral

F (q) =

∫
f (r) exp

(
iq · r
}

)
d3r (1.4.71)

is the Fourier transform of the normalized charge distribution function f (r). It is

called the form factor of the charge distribution. This factor contains all information

about the spatial distribution of electric charge in the studied object. The form

factor fulfills the relations:

0 6 |F (q)| 6 1 , (1.4.72)

for |q| → 0: F (q) → 1 , (1.4.73)

for |q| → ∞: F (q) → 0 . (1.4.74)

One should explain here, that for a spherically symmetric scattering object, the

form factor depends on the modulus of the momentum transfer and therefore is

often written as F (|q|) or F (q2). In the following we shall use the second notation.

Integration over the total solid angle (in polar coordinates) can be written

F
(
q2
)

= 4π

∫
f (r)

sin
(
|q|r
}

)
|q|r
}

r2dr , (1.4.75)

with the normalization condition

1 =

∫
f (r) d3r =

∞∫
0

1∫
−1

2π∫
0

f (r) r2dφ d cosϑ dr = 4π

∞∫
0

f (r) r2dr (1.4.76)

so that F (0) = 1. In principle, according to Eq. (1.4.71), the radial charge distribu-

tion is determined from the inverse Fourier transform of the measured distribution

F (q2)

f (r) =
1

(2π)3

∫
F
(
q2
)

exp

(
−iq · r

}

)
d3q . (1.4.77)
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The electron energy is finite and the cross section falls very quickly for larger

momentum transfer, therefore in a given experiment, a very limited range of q is

measurable. Information about radius of the nucleus can be obtained from the form

factor behaviour for q2 → 0. If the wavelength λ = h/ |q| is considerably larger

than the nuclear radius R then in the limit

|q|R� } (1.4.78)

we can make a Taylor-expansion and keep only the lowest two terms (Refs. [40,41])

F
(
q2
)

=

∫
f (r)

∞∑
n=0

1

n!

(
i |q| |r| cosϑ

}

)n
d3r, ϑ = l (r,q)

=

∞∫
0

1∫
−1

2π∫
0

f (r)

[
1− 1

2

( |q| r
}

)2

cos2 ϑ+ ...

]
dφ d cosϑ r2dr

= 4π

∞∫
0

f (r) r2dr − 1

2! · 3
q2

}2
4π

∞∫
0

f (r) r4dr + ...

= 1− 1

6

q2 〈r2〉
}2

+ ... . (1.4.79)

In the above equation the normalization condition (Eq. (1.4.76)) was used and the

mean square radius was defined as

〈
r2
〉

= 4π

∞∫
0

r2f (r) r2dr . (1.4.80)

Table 1.1: Relation between charge distributions and form factors for a few spheri-

cally symmetric charge distributions. This table is partially copied from Ref. [36].

Charge distribution f(r) = ρ(r)
Ze

Form factor F (q2)

point δ(r)
4π

constant 1

exponential a3

8π
exp (−ar) dipole

(
1 + q2

a2}2

)−2

Gaussian
(
a2

2π

) 3
2

exp
(
−a2r2

2

)
Gaussian exp

(
− q2

2a2}2

)
hom. sphere r 6 R⇒ 3R3

4π
, oscillating 3}3

(|q|R)3

(
sin |q|R} −

|q|R
} cos |q|R}

)
r > R⇒ 0

Yukawa 1
4πr

Λ2 exp (−Λr) monopole Λ2

Λ2+|q|2



Table 1.1 shows the relation between the normalized charge distribution

ρ(r)/ (Ze) and the corresponding form factor in the Born approximation. ρ(r) and

|F (q2)| are shown in Ref. [36] (see Fig. 5.6). If the object is larger then the form

factor falls off faster. The analysis of electron scattering provides more informa-

tion about charge distributions than any other technique. F (q2) can be extracted

from electron-nucleus scattering. Often one choose a reasonable parametrization of

f(r) which approximately describes experimental F (q2). In principle F (q2) can be

used to reconstruct charge density in the nucleus. For heavy nuclei, these charge

distributions [40] can be approximately described by the two-parameter Fermi dis-

tribution [42], called equivalently Woods-Saxon distribution

ρ (r) =
ρ0

1 + exp
(
r−c
a

) , (1.4.81)

where the normalization constant ρ0 is chosen so that the condition (1.4.68) is ful-

filled. The parameters a and c determine the shape of the ρ(r) distribution. The

parameter c is the constant radius at which ρ(r) has decreased by one half. The

parameter a is usually related to the thickness of the edge of a nucleus t, defined as

a distance in which the charge density drops from 0.9 to 0.1 of the density at the

zero radius. When a� c it can be written (Ref. [43])

t = r(ρ/ρ0=0.1) − r(ρ/ρ0=0.9) ≈ 4.4a . (1.4.82)

In practice, this value is almost the same for all heavy nuclei.

Table 1.2 and Table 1.3 contain a list of charge density distribution parameters

which were used in Ref. [42]. It is very difficult to find in the literature the parameters

of the two-parameter Fermi model for the charge distribution of the 208Pb isotope.

In Table 1.3, the parameters for the 207Pb isotope are given. The arguments that it

is reasonable to use the same parameters of c and a for the 207Pb and 208Pb isotopes

are presented in Appendix C.

In Fig. 1.10 one can see the charge density distribution for gold and lead nucleus.

The red line is related to the gold nucleus and the blue line is for the lead nucleus.

The presented distribution for 208Pb in Fig. 1.10 has similar values like those shown

in Ref. [40]. The normalization of charge distribution to Ze leads to
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Table 1.2: Charge density distribution parameters for 197Au√
〈r2〉 [fm] c [fm] a [fm] Ref.

5.33 6.38 0.535 [44]

5.27 [45]

Table 1.3: Charge density distribution parameters for 207Pb and 208Pb.

207Pb 208Pb√
〈r2〉 [fm] c [fm] a [fm] Ref.

√
〈r2〉 [fm] Ref.

5.513 6.62 0.546 [46] 5.499 [47]

5.497 [48] 5.503 [48]
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Figure 1.10: Charge densities as a function of nucleus radius for 197Au and 208Pb

nucleus obtained using the two-parameter Fermi model.

• ρ0 = Z
A

0.1604 fm−3 for 197Au,

• ρ0 = Z
A

0.1572 fm−3 for 208Pb.

Knowing ”the best” parameters for the description of the charge density for

a given nucleus, one can use formula (1.4.75) to calculate the corresponding form



factor. This form factor will be used then in further calculation. In relativistic

collisions, it is more comfortable to use the natural units (the velocity of light c and

Plancks constant ~ = 1). In this case Eq. (1.4.75) can be rewritten as

F
(
q2
)

=
4π

|q|

∫
ρ (r) sin (|q| r) rdr . (1.4.83)

In the literature often (see e.g. [49]) a monopole form factor is used

Fmon
(
q2
)

=
Λ2

Λ2 + |q|2
(1.4.84)

which corresponds to the Yukawa charge distribution

ρ (r) =
1

4πr
Λ2 exp (−Λr) . (1.4.85)

The value of the Λ parameter is determined so that the root mean square of the

electric radius equals to the experimental values

√
〈r2〉 =

√
6

Λ2
= 1 fm A1/3 (1.4.86)

giving Λ ' 83 MeV (Ref. [49]). This form of the form factor has some practical

advantage over the form factor with the realistic charge distribution because it can

be easily used in analytical calculations. In the literature very often the same value

of Λ for Au and Pb nuclei is used [49]. This is not quite correct, because the value of

Λ depends on the mass number A or on the root mean square radius of the nucleus.

The calculations presented in this dissertation are done for different values of Λ for

197Au and 208Pb. In the further calculations the following values of Λ will be used:

• for 197Au:
√
〈r2〉 = 5.3 fm ⇒ Λ = 0.091 GeV,

• for 208Pb:
√
〈r2〉 = 5.5 fm ⇒ Λ = 0.088 GeV.

The value of Λ is adjusted to reproduce the root mean square radius of a nucleus

with the help of experimental data [42]. Actually, the above values of
√
〈r2〉 are the

arithmetic means of the numbers from the literature, presented in Table 1.2 and 1.3.

Fig. 1.11 presents the modulus of the form factor as a function of the momen-

tum transfer. The results for gold and lead are shown by the red and blue lines,

respectively. The solid line shows the shape of the form factor for realistic charge
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Figure 1.11: A comparison of the realistic and monopole form factor for gold and

lead nuclei.

distribution. One can observe many oscillations that are characteristic for the rela-

tively sharp edge of the nucleus. The distributions for 197Au and 208Pb are shifted

relative to each other for larger values of q where the symbol q denotes the scalar

quantity q = |q|. The upper lines correspond to the monopole form factor. One can

note that with larger value of q the difference between realistic and monopole form

factors becomes larger. In general, the form factor reduces the scattering intensity

for large momentum transfers.



Chapter 2

Elementary cross sections for

different γγ fusion processes

Using the designation ”elementary cross section” in the present dissertation we have

in mind subprocess which ”participates” in the production of particle pairs during

UPC of heavy ions. Initially two-photon production in heavy-ion collisions was stud-

ied in fixed target experiments at the Bevalac, the BNL AGS and the CERN SPS.

The feasibility of these photon-induced processes were demonstrated by experiments

at Relativistic Heavy Ion Collider (RHIC). In general, the obtained cross sections

agree with theoretical expectations but the statistics is rather poor. At the Large

Hadron Collider (LHC) the situation seems to be better. Since the cross sections at

the LHC are larger, this gives higher statistics for many interesting UPCs.

The correct form of the distribution in two-photon collision energy Wγγ is very

important ingredient in the equivalent photon approximation. Below a generic pro-

cess for the γγ → X1X2 reaction will be discussed. Different kinds of the particle

pairs X1X2 will be studied in separate sections. First the energy dependence of the

elementary cross section for the production of muon pairs will be presented. This is

calculated within quantum electrodynamics. Next our fit to γγ → ρ0ρ0 experimen-

tal data will be shown and discussed. At larger energies vector-dominance-model

and Regge (VDM-Regge) approach can be used. Then four different mechanisms for

heavy quarks production will be discussed in detail and compared. Finally the neu-

tral and charged pion pair production in very broad range of energy will be discussed.

36
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We are the first and the only group which describes the experimental data both for

the total cross section and for angular distributions for γγ → π+π− and γγ → π0π0

reactions simultaneously at all experimentally available energies.

2.1 Dimuon production

The cross section for the elementary γγ → e+e− or µ+µ− processes are basic ingre-

dients for the nuclear collisions. The elementary process γγ → l+l− with on-shell

photons could not yet be studied experimentally. Such internal Feynman diagrams

appear, however, naturally in ep or e+e− collisions. For example in ep collisions the

following reactions were studied [50]:

• Electroweak muon pair production: ep→ epγ∗γ∗, (γ∗γ∗ → µ+µ−),

. ep→ epγ∗Z0∗, (γ∗Z0∗ → µ+µ−),

. ep→ epZ0∗Z0∗, (Z0∗Z0∗ → µ+µ−),

• Bremsstrahlung: ep→ epγ∗ → epµ+µ−,

• Z0-production: ep→ epZ0 → epµ+µ−.

Both ep and e+e− production can be well described in terms of quantum electro-

dynamics in leading order. Therefore we can safely assume that in nuclear collisions

γγ → µ+µ− can be calculated within quantum electrodynamics. The total cross

section is known and the corresponding formula can be found e.g. in [23]:

σγγ→µ+µ− (Wγγ) =
4πα2

em

W 2
γγ

{
2 ln

[
Wγγ

2mµ

(
1 +

√
1− 4m2

µ

W 2
γγ

)](
1 +

4m2
µW

2
γγ − 8m4

µ

W 4
γγ

)

−
√

1− 4m2
µ

W 2
γγ

(
1 +

4m2
µ

W 2
γγ

)}
. (2.1.1)

The relevant calculation based on Feynman diagram technique can be found in

many textbooks (see e.g. [23,51–56]). Fig. 2.1 presents the elementary cross section

for γγ → µ+µ− process as a function of the γγ energy.
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Figure 2.1: The elementary cross section for the γγ → µ+µ− reaction.

2.2 ρ0ρ0 meson production

Experimental data for the γγ → ρ0ρ0 reaction were measured by several groups at

e+e− colliders. Since its first observation in 1980 by the TASSO Collaboration [57],

the reaction γγ → ρ0ρ0 has been extensively investigated. A next data set comes

from the determination of the cross section for γγ → π+π−π+π− in a way free of

assumptions about the relative contributions from ρ0ρ0, ρ02π and 4π. The CELLO

group found a rather high cross section of about 200 nb around Wγγ = 1.5 GeV

which consists of about 40% of the ρ0ρ0 production [58]. This experiment was

performed using the CELLO detector at DESY-PETRA at the average beam energy

of 17 GeV. Further results are presented for the exclusive production of four-prong

final states in photon-photon collisions from the TPC/Two-Gamma detector at the

SLAC e+e− storage ring PEP [59]. The ρ0ρ0 contribution dominates the four-pion

cross section at low masses (Mρ0ρ0 < 2 GeV), but falls to nearly zero above 2 GeV.

Next, the DESY-PETRA-PLUTO experiment presented the cross sections for four

charged pions in photon-photon collisions [60]. The process is dominated by 2ρ0

production with rapid rise of cross section around Wγγ = 1.2 GeV. Spin parity

analysis of 2ρ0 system shows JP = 2+ to dominate, though 0+ is also possible for
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Wγγ < 1.4 GeV. Negative parity states are excluded. Thereafter the DESY-DORIS-

ARGUS experiment observed a partial waves JP = 2+ with helicity 2 dominance in

the reaction γγ → ρ0(770)ρ0(770) near threshold [61]. ARGUS experiment found

a dominance of the ρ0ρ0 production in the region below Wγγ = 1.8 GeV. At last the

CERN-LEP-L3 experiment measured the cross sections for exclusive ρ0ρ0 production

in the two-photon collisions involving a single highly virtual photon [62]. The data

were collected at LEP in the centre-of-mass energy range 89 to 209 GeV. The cross

section was determined as a function of Q2 and Wγγ for 1.2 < Q2 < 30 GeV2 and

1.1 < Wγγ < 3 GeV. The data taken into account in this consideration are for the

range of photon virtuality Q2 = (1.2− 8.5) GeV2. The above experimental data are

catalogued in Ref. [63].
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Figure 2.2: The elementary cross section for the γγ → ρ0ρ0 reaction.

Fig. 2.2 presents the collection of the e+e− experimental data (points) and our

fit (solid lines). The experimental errors are calculated with the help of the relation

∆x =
√

∆x2
stat + ∆x2

sys . (2.2.2)

Experimentally one observes a huge enhancement close to the threshold. The origin

of this enhancement was never understood. One can find some speculation on the

issue in the literature. For example, in Refs. [64, 65] the authors proposed a view

that this effect is due to a superposition of resonances with isospin zero. In the same



papers one can find explanation, that the presence of the threshold enhancement in

γγ → ρ0ρ0 in the state of total angular momentum J = 2 and helicity Jz = ±2 can

be obtained in resonance models by suitable choices of coupling constants. Another

idea [66] is that each photon produces a ρ0 and these vector mesons then interact

through the repeated exchange of an I = 0 σ meson leading to an effective potential

between the vector mesons. Another mechanism [67] which could account for the

threshold enhancement with Jz = ±2 is the effect of Bose statistics in the final

state. In Ref. [68] the huge cross section (at ≈ 1.5 GeV) was interpreted as a

tensor resonance decaying into ρ0ρ0 channel. We leave the difficult problem of the

microscopic origin of this threshold bump and take a pragmatic attitude of using

directly experimental data instead of any model calculation results.

Fig. 2.2 presents the collection of experimental data and our fit

σ
low-energy
γγ→ρ0ρ0 (Wγγ) = 106 exp

(
−4 ln 2 ·

(
Wγγ − 1.5

0.574

)2
)
. (2.2.3)

Above Wγγ is given in GeV and the cross section in nb. This formula describes

the cross section in the range of energy Wγγ = (1 − 2) GeV (red line in Fig. 2.2).

The low-energy component is a purely mathematical fit. The issue is a bit subtle as

the peak appears close to the threshold. If this was a simple Breit-Wigner resonant

shape the tails would be broader. The low-energy enhancement could be also some

close-to-threshold mechanism. Our purely mathematical representation of the un-

known effect may be therefore oversimplified. One can observe some disagreement

of the data measured by different groups (Refs. [57–62]). All data sets (except those

measured by the ARGUS experiment) are internally consistent thus we think that

Eq. (2.2.3) gives sufficiently good representation of the world data. We do not have

explanation why the ARGUS data are somewhat below the data obtained by other

collaborations. Formula (2.2.3) effectively includes smearing of the masses of both

ρ0 mesons, and thus gives a strength below Wγγ < 2mρ0 .

Very little is known for higher (Wγγ > 3 GeV) energies. Several groups discussed

about possible BFKL (Balitsky-Fadin-Kuraev-Lipatov) effects in the γγ → ρ0ρ0

reaction at high energies. First of all it is not clear how big the energies should be

to observe such effects. Secondly it is not clear how realistic BFKL calculations are,
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especially those in leading-logarithm approximation. On the other hand for many

reactions with small-virtuality photons a description within vector-dominance-model

(VDM) and Regge approach was confronted with the data and gave a reasonably

good description. A good example is γp → ρ0p reaction (also discussed in this

dissertation in Appendix E) which was described e.g. in Refs. [69–71].

The γγ → ρ0ρ0 reaction was discussed long ago in Refs. [72, 73] where a simple

Born amplitude for two-gluon exchange was considered. In recent decades BFKL ef-

fects for these reaction were studied (see [74,75] and references therein). The BFKL

approach applies when photon virtualities Q2
1 and Q2

2 are large [74] or momentum

transfer is large [75]. The first case cannot be studied in ultrarelativistic heavy ion

collisions where the photons are quasi real. The second case requires solution of

so-called nonforward BFKL equation. In Ref. [75] it was done in leading-logarithm

(LL) approximation. The LL approximation is known to lead to too fast (unre-

alistic) grow of the cross section with energy. The cross section with a lower cut

on four-momentum transfer squared |t| > 1 GeV2 is of the order of a few pb for

Wγγ < 10 GeV (Ref. [75]). This is much smaller than the cross sections for the soft

nonperturbative region (Q2
1, Q

2
2, t ∼ 0) as will be discussed below. At RHIC and

in the run 1 at the LHC the luminosity was too small to study the large-t region.

It seems therefore that at present we can study only the soft processes and in the

following we shall concentrate exclusively on the soft processes.

In our analysis, the high-energy part (Wγγ > 2 GeV) is modelled in the VDM-

Regge approach with rather standard parameters which are used to describe other

hadronic processes. The total cross section is integrated over Mandelstam variable t̂

σ
high-energy
γγ→ρ0ρ0 =

t̂max(ŝ)∫
t̂min(ŝ)

dσ
high-energy
γγ→ρ0ρ0

dt̂
dt̂ , (2.2.4)

where tmin and tmax are ŝ-dependent kinematical limitations of t̂. The differential

cross section is given by the well-known relation

dσ
high-energy
γγ→ρ0ρ0

dt̂
=

1

16πŝ2

∣∣Mγγ→ρ0ρ0
(
ŝ, t̂; q1, q2

)∣∣2 . (2.2.5)

The kinematics of this process is defined in Fig. 2.3.
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Figure 2.3: Feynman diagram for γγ → ρ0∗ρ0∗ → ρ0ρ0 process.

In the VDM-Regge approach the amplitude for the γγ → ρ0ρ0 can be written as

Mγγ→ρ0ρ0
(
ŝ, t̂; q1, q2

)
= Cγ→ρ0Cγ→ρ0Mρ0∗ρ0∗→ρ0ρ0

(
ŝ, t̂; q1, q2

)
. (2.2.6)

Above Cγ→ρ0 = e/fρ0 =
√
αem/2.54 factor describes transformation of photons to

(virtual) vector mesons. A more detailed explanation of the vector meson coupling

fV is given in Appendix D.2. The amplitude for the ρ0∗ρ0∗ → ρ0ρ0 processes ap-

pearing in (2.2.6) is written in the Regge form

Mρ0∗ρ0∗→ρ0ρ0
(
ŝ, t̂; q1, q2

)
=

(
ηIP
(
ŝ, t̂
)
CIP

(
ŝ

s0

)αIP(t̂)−1

+ ηIR
(
ŝ, t̂
)
CIR

(
ŝ

s0

)αIR(t̂)−1
)

× ŝ F
(
t̂; q2

1 ≈ 0
)
F
(
t̂; q2

2 ≈ 0
)
. (2.2.7)

Here we neglect helicity flip and assume helicity conservation in the whole pro-

cess. F
(
t̂; q2

1

)
is a vertex form factor which, in general, is a function of exchanged

Pomeron/Reggeon four-momentum squared and photon/ρ0 meson virtualities. We

parametrize them in the following factorized form

F
(
t̂; q2

1/2

)
= exp

(
Bt̂

4

)
exp

(
q2

1/2 −m2
ρ

2Λ2

)
. (2.2.8)

The first component is for the case when ρ0 meson is on-shell (green vertices in

Fig. 2.3), and the second term takes into account the fact that ρ0 meson can be

off mass shell (red vertices in Fig. 2.3). This second term is normalized to unity

when vector meson is on-mass-shell. We expect the slope parameter of the order

B ∼ 4 GeV−2 (typical for meson-meson interactions) and the parameter responsible
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for off-shellness of the ρ0 mesons Λ ∼ 1 GeV. The difference between results for

on/off-shellness form factor is presented in Appendix D.1.

The strength parameters of interaction are taken from the Donnachie-Landshoff

fit [76] to the total NN and πN cross sections. Using the following parameters

CNN
IP = 21.7 mb , CNN

IR = 75.4875 mb , (2.2.9)

CπN
IP = 13.63 mb , CπN

IR = 31.79 mb (2.2.10)

and assuming Regge factorization and assuming σρ0ρ0→ρ0ρ0 = σπ0π0→π0π0 one can

calculate the value of CIP and CIR = Cf2 [77]:

Cππ
IP = 8.56 mb , Cππ

IR = 13.39 mb . (2.2.11)

The Pomeron and Reggeon (linear) trajectories determined from elastic and total

cross section given in the form αi(t) = αi(0) + α′it are (Ref. [76]):

αIP (t) = 1.008 + (0.25 GeV−2) t , αIR (t) = 0.5475 + (0.93 GeV−2) t . (2.2.12)

The signature factors ηi are complex functions. They are consistent with our choice

of normalization,

ηIP
(
ŝ, t̂ = 0

)
≈ i , ηIP

(
ŝ, t̂ = 0

)
≈ i− 1 . (2.2.13)

Standard signature functions [78] are normalized somewhat different. Ref. [79] in-

cludes very good treatment of Pomeron and Reggeon exchanges.

Fig. 2.2 shows that the cross section exceeds the VDM-Regge expectation (blue

line) by more than one order of magnitude near the ρ0ρ0 threshold. The vanish-

ing of the cross section below Wγγ = 2mρ is due to energy conservation and the

assumption of sharp (delta-like) ρ0 mesons. It is obvious that this model cannot

explain the huge close-to-threshold enhancement. However, the VDM-Regge ap-

proach nicely describes the experimental data for Wγγ > 2.5 GeV. The cross section

above Wγγ = 3.1 GeV was never measured but we expect that our Regge form well

extrapolate to large subprocess energies. Using the VDM-Regge approach we do

not use the smearing of ρ0 meson masses (large decay width Γ ≈ 0.15 GeV), be-

cause this mechanism gives only a small contributions at Wγγ = 2mρ (see Fig. 2.2).



At higher energies (Wγγ > 3 GeV) the effect of the smearing is very small when

looking at distributions related to ρ0 mesons. It may be important only when look-

ing at two-pion distributions. We shall return to the issue when discussing nuclear

cross section.

The differential distributions in transverse momentum of meson pt can be ob-

tained by replacing total elementary cross section

σγγ→ρ0ρ0 =

∫
dσγγ→ρ0ρ0

dpt
dpt (2.2.14)

where
dσ

dpt
=

dσ

dp2
t

dp2
t

dpt
=

dσ

dp2
t

2pt =
dσ

dt

∣∣∣∣ ∂t̂∂p2
t

∣∣∣∣ 2pt . (2.2.15)

This transformation is useful for preparation of a grid which will be used in calcula-

tions of nuclear cross sections. This will allow to impose some cuts appropriate for

experimental limitations.

2.3 Quark-antiquark production

Heavy quarks can be produced not only in gluon-gluon fusion processes in proton-

proton scattering but also in γγ collisions at e+e− colliders. One can find many

papers (Refs. [80–83]) about inclusive and exclusive quark production including

direct, QCD radiative corrections for the leading subprocesses and one/two-resolved

photon mechanisms.

In the current analysis, we use the following notation: Q/Q̄ - heavy-quark/-

antiquark (in our case: c or b), q/q̄ - light-quark/-antiquark (u, d or s (anti)quarks).

In contrast to dimuon production, the QQ̄ state cannot be directly observed because

of the quark confinement. In practice, some experiments measure rather electrons or

heavy mesons. Then, the hadronization process complicates the situation. Therefore

taking into account the γγ → QQ̄ process is not enough and one has to include

another partonic states such as QQ̄g and QQ̄qq̄. The contribution from a photon

single-resolved components will be calculated too.

We take into account the mechanisms depicted in Fig. 2.4, 2.5, 2.6 and 2.7.

The blue wavy lines represent the photons, the green curly lines denote the gluons,
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Figure 2.4: Feynman diagrams for the Born 2→ 2 amplitude.
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Figure 2.5: Feynman diagrams for the LO QCD corrections.
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Figure 2.6: Feynman diagrams for the QQ̄qq̄ production.
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Figure 2.7: Feynman diagrams for the single-resolved mechanism.

and the black solid lines correspond to the heavy-quarks. The first of the figures

represents the direct mechanism in the Born approximation. This is very similar



to the production of muon pairs in leading order. But in comparison to dilepton

production, one has to include QCD corrections. Representative diagrams for a next-

to-leading-order (NLO) approximation (leading-order corrections) are shown in Fig.

2.5. Fig. 2.6 depicts the production of heavy-quarks in association with light-quark-

light-antiquark pair. The ovals in the figures mean a complicated interaction which

is described in the present work in the saturation model framework. The diagrams

presented in Fig. 2.7 represent single-resolved photon mechanism when only a small

part of first photon interacts with the other one. All these processes were studied

in details in Refs. [84–86].

Starting from the Born direct contribution (Fig. 2.4), it should be noted that the

LO elementary cross section for γγ → QQ̄ at two-photon energy Wγγ takes a very

similar form like the cross section for dimuon production (Eq. (2.1.1))

σBorn
γγ→QQ̄ (Wγγ) = Nce

4
Q

4πα2
em

W 2
γγ

×
{

2 ln

[
Wγγ

2mQ

(
1 +

√
1−

4m2
Q

W 2
γγ

)](
1 +

4m2
QW

2
γγ − 8m4

Q

W 4
γγ

)

−
√

1−
4m2

Q

W 2
γγ

(
1 +

4m2
Q

W 2
γγ

)}
. (2.3.16)

One should only replace the quantities characteristic for muons by their counterparts

for quarks: the number of quark color Nc = 3, the fractional charge eQ of the c and b

quark/antiquark. In the current analysis we take the following heavy-quark masses:

mc = 1.5 GeV, mb = 4.75 GeV. The derivation of Eq. (2.3.16) was presented for

the first time in Ref. [87]. It is obvious that the final QQ̄ state cannot be observed

experimentally. Presence of additional few light mesons is rather natural. Thus one

needs to include also more complicated final states.

In contrast to QED production of leptons in γγ collisions, in the case of quark-

antiquark production one should include higher-order QCD processes which are

known to be rather significant. Fig. 2.5 presents LO corrections only for the dom-

inant, in heavy-ion collisions, direct contribution. The details of the higher-order

corrections to heavy-quark-heavy-antiquark pairs production in γγ collisions can be

found in Refs. [88–90]. In αs order, Fig. 2.5 presents t-channel one-loop diagrams

contributing to the photon fusion amplitude. In the current analysis, we follow
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the approach presented in Ref. [89]. The LO QCD corrections can be written as

σ
QCD-corr.
γγ→QQ̄ (Wγγ) = Nce

4
Q

2πα2
em

W 2
γγ

CF
αs
π
f (1) . (2.3.17)

The function f (1) is calculated with the help of a code provided by the authors of

Ref. [89] which uses the program package HPL [91]. In this analysis, the scale of αs

is fixed at µ2 = 4m2
Q.

The γγ → QQ̄qq̄ process is depicted in Fig. 2.6. The cross section for this

mechanism can be calculated easily in the color dipole framework [84–86]. In general,

the color dipole model makes use of virtual components of the photon in the plane

transverse to the collision axis and their distribution is obtained in the perturbative

framework.

In the present analysis, the dipole-dipole scattering approach [85] is used. Then

the total cross section for the γγ → QQ̄ production can be expressed as

σ
4q
γγ→QQ̄ =

[∑
f2 6=Q

∫ ∣∣∣ΦQQ̄ (ρ1, z1)
∣∣∣2 ∣∣∣Φf2f̄2 (ρ2, z2)

∣∣∣2 σdd (ρ1, ρ2, xQf )

+
∑
f1 6=Q

∫ ∣∣∣Φf1f̄1 (ρ1, z1)
∣∣∣2 ∣∣∣ΦQQ̄ (ρ2, z2)

∣∣∣2 σdd (ρ1, ρ2, xfQ)

]
× d2ρ1 dz1 d2ρ2 dz2 , (2.3.18)

where ΦQQ̄/ff̄ (ρ, z) are the heavy/light quark-antiquark wave functions of the photon

in the mixed representation. The parameters ρ1/2 express the transverse separation

of the quark and antiquark in a pair. This is often call the dipole size. The longi-

tudinal momentum fraction of quark pair is denoted by z. Eq. (2.3.18) is correct

at rather high energy Wγγ � 2mQ. At lower energies (Wγγ 6 4mQ), the proximity

of the kinematical threshold must be taken into account. In Ref. [84] a phenomeno-

logical saturation model inspired by the Golec-Biernat and Wüsthoff (GBW model)

choice [92] for the dipole-dipole cross section was proposed

σdd (ρ1, ρ2, xab) = σab0

[
1− exp

(
−

r2
eff

4R2
0 (xab)

)]
, (2.3.19)

where σab0 = 2
3
σ0. Different prescription of an effective radius have been considered

in Ref. [84], but the best phenomenological choice is given by the prescription

r2
eff =

(ρ1ρ2)2

ρ2
1 + ρ2

2

. (2.3.20)



In Eq. (2.3.19) we use the same parametrization of the saturation radius as in [92]

R0 (xab) =
1

Q0

(
xab
x0

)−λ
2

, (2.3.21)

where Q0 = 1 GeV. The parameter xab controls the energy dependence

xab =
4m2

a + 4m2
b

W 2
γγ

. (2.3.22)

The three parameters of the GBW model were fitted to all existing Deep Inelastic

Scattering (DIS) data for x < 0.01: σ0 = 29.12 mb, x0 = 0.41 · 10−4, λ = 0.277.

Some other parametrization of the dipole-dipole cross section were discussed for

example in [93]. The cross section for the γγ → QQ̄qq̄ is much bigger than the one

corresponding to tree-level Feynman diagrams [82, 94], because it resumes higher-

order QCD contributions.

In the standard collinear approach one usually includes so-called resolved contri-

butions, when heavy quark-antiquark pairs are created either in the photon-gluon

or gluon-photon fusion (see Fig. 2.7; the shaded oval means either t and u diagram

shown in Fig. 2.4). This is known as the single-resolved process. Then only a small

fraction of the first or the second photon longitudinal momentum fractions (x1/x2)

enters into the production of heavy-quark or antiquark. As was discussed in Ref. [85]

the QQ̄qq̄ component has a very small overlap with the single-resolved component

because of a quite different final state. Thus adding them together does not lead in

practice to double counting. The cross section for the single-resolved contribution

(Fig. 2.7) takes the form

σ1-res
γγ→QQ̄ =

∫
dx1 g1

(
x1, µ

2
)
σ̂gγ (ŝ = x1s) +

∫
dx2 g2

(
x2, µ

2
)
σ̂γg (ŝ = x2s) ,

(2.3.23)

where g1 and g2 are gluon distributions in photon 1 or photon 2. σ̂γg and σ̂gγ

denote the corresponding elementary cross sections. In the current analysis the

gluon distributions is taken from Ref. [95].

Fig. 2.8 presents the elementary cross section for the production of cc̄ (left

panel) and bb̄ (right panel) quark pairs separately. This is depicted as a function

of the γγ c.m. energy. The lines refer to four mechanisms which are described

above. The Born direct contribution is denoted by the green solid lines, LO QCD
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Figure 2.8: The elementary cross section for the γγ → QQ̄X reaction.

corrections - blue dashed lines, QQ̄qq̄ production - black dotted lines and single-

resolved mechanism - red dashed-dotted lines. A huge contributions come from the

production of charm and bottom quarks in association with light qq̄ pairs. The

LO γγ → cc̄ elementary cross section dominates at low energies near the threshold

(Wγγ < 10 GeV).

We are the first group which tries to include all mechanisms for the production

of heavy quarks in γγ → QQ̄ and then in nuclear UPCs. The corresponding results

will be discussed in section 4.3.

2.4 Two-pion production

The elementary cross section for γγ → π+π− and γγ → π0π0 reactions are

interesting by themselves, because understanding of these mechanisms at low

(Wγγ < 1 GeV) and intermediate (Wγγ = (1− 2.5) GeV) energies is very important

for applications of chiral perturbation theory and pion-pion interaction [96–101].

At higher energies (Wγγ > 2.5 GeV) the Brodsky-Lepage [102–105] and hand-

bag [106,107] mechanisms have been discussed in the literature.

The elementary cross section for γγ → π+π− and γγ → π0π0 process will be

discussed starting from the energy of two-pion threshold up to about Wγγ = 6 GeV.



To obtain correct description of these reactions, one needs to include several mech-

anisms. Every of them will be studied in individual subsection. Then our results

will be compared with experimental data for both total cross section and angular

distributions.

2.4.1 γγ → π+π− continuum

π+(pπ+)

π−(pπ−)

π+(pπ+)

π−(pπ−) π−

π+

+ +

γ(q1, λ1)

γ(q2, λ2)

γ(q1, λ1)

γ(q2, λ2) γ(q2, λ2)

γ(q1, λ1)

Figure 2.9: One-pion exchange Feynman diagrams for the t, u and contact ampli-

tudes.

In the γγ → π+π− a soft pion-exchange process is possible. The Feynman

diagrams for the Born term matrix elements for charged pion pair production are

depicted in Fig. 2.9. The helicity-dependent amplitude for point-like mesons

M (λ1, λ2) =Mt (λ1, λ2) +Mu (λ1, λ2) +Mc (λ1, λ2) (2.4.24)

is a sum of the three terms [87]:

- t-channel pion-exchange amplitude (left diagram in Fig. 2.9)

Mt (λ1, λ2; q1, q2, pπ+ , pπ−) = e2
∑(

2pµπ+ − qµ1
)
εµ (q1, λ1) (2.4.25)

× (2pνπ− − qν2 ) εν (q2, λ2)
1

t−m2
π

,

- u-channel pion-exchange amplitude (middle diagram)

Mu (λ1, λ2; q1, q2, pπ+ , pπ−) = e2
∑(

2pµπ− − q
µ
1

)
εµ (q1, λ1) (2.4.26)

× (2pνπ+ − qν2 ) εν (q2, λ2)
1

u−m2
π

,

- contact amplitude (last diagram in Fig. 2.9)

Mc (λ1, λ2; q1, q2, pπ+ , pπ−) = e2
∑

2gµνεµ (λ1) εν (λ2) , (2.4.27)
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where t = (pπ+ − q1)2 = (pπ− − q2), u = (pπ+ − q2)2 = (pπ− − q1) and εµ/ν are

polarization vectors of the photons. The full helicity-dependent amplitude for the

γγ → π+π− continuum (2.4.24) can be written as

Mc (λ1, λ2) = εµ (q1, λ1) εν (q2, λ2)Mµν . (2.4.28)

It is easy to show that the total amplitude fulfills the gauge invariance conditions:

q1µMµν = 0 , (2.4.29)

q2νMµν = 0 . (2.4.30)

The QED Born amplitude for the production of charged (point-like) pions in the

γγ fusion was known for a long time. In many calculations in the literature pions

are treated as point-like particles. An interesting problem is to construct the QED

amplitude for real, finite-size mesons. In 1986 Poppe proposed the form factor [108]

which allows to include finite-size correction. In our calculations we use the idea

proposed in Ref. [104]:

Ω (s, t, u) =
F 2 (t) + F 2 (u)

1 + F 2 (−s) , (2.4.31)

where F (x) = exp
(
Bγπ

4
x
)

is the standard vertex function. One needs to multiply

the full pion-exchange amplitude (2.4.24) by s-, t-, u-dependent form factor (2.4.31).

The details of Eq. (2.4.31) and comparison with the Poppe form factor are presented

in Appendix D.3.

2.4.2 s-channel γγ → resonances

Exclusive resonance production in γγ reactions plays an important role in the study-

ing substructure of resonances. The measurement of the decay widths into γγ allows

to test for example the quark composition of the resonances and in this way provides

a better understanding of the meson spectrum. Fig. 2.10 shows a list of all γγ → ππ

resonances which are taken into account in the present studies:

- scalar resonances: f0(600) = σ(600), f0(980), f0(1500), f0(1710),

- tensor resonances: f2(1270), f ′2(1525), f2(1565), f2(1950),
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Figure 2.10: Feynman diagram for γγ →resonances→ π+/0π−/0 process.

- spin-4 resonance: f4(2050).

Only σ(600) and f2(1270) resonances were discussed in this context in the literature.

Table 2.1: Parameters of resonances used in calculations.

No. Resonance mR (MeV) ΓR (MeV) Γππ (MeV) Γγγ (keV) ΓγγΓππ
ΓR

(keV)

1 f0(600) [109] 600 400 400 0.5

2 f0(980) [109] 980 50 51.3 [110] 0.29

3 f2(1270) [109] 1 275 185 156.9 3.035

4 f0(1500) [109] 1 505 109 38 - 0.033 [111]

5 f ′2(1525) [109] 1 525 73 0.6 0.081

6 f2(1565) [112] 1 570 160 25 0.7

7 f0(1710) [109] 1 720 135 - - 0.82

8 f2(1950) [109] 1 944 472 - - 1.62

9 f4(2050) [109] 2 018 237 40.3 0.7

Table 2.1 includes important characteristics of the resonances. Almost all pa-

rameters are known from Particle Data Group book [109]. While the ππ decay

widths are usually well-known, the γγ decay widths are known only for some of the

resonances. Therefore, studying the γγ → ππ data may help in extracting the latter

quantities.

In most cases, PDG gives values of the resonance parameters: mass of mesons

(resonance) mR, width of resonance ΓR, Γππ and Γγγ decay widths. In our study

somewhat smaller values of decay widths for f0(600) resonance are used than given

in the PDG book. In the PDG book [109] a broad range of parameters is given:
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Γf0(600) = (600− 1000) MeV, Γγγ = (1.2− 10) keV, but from our fit to experimental

total cross sections and angular distributions, we found:

Γf0(600) = 400 MeV, Γf0(600)→γγ = 0.5 keV . (2.4.32)

Additionally it is assumed here that the branching ratio: Br(f0(600)→ ππ)= 100%.

For f0(1500) scalar resonance which is a glueball candidate, PDG gives a number:

ΓγγΓππ
Γf0(1500)

= 0.033 keV which was obtained by the BELLE Collaboration [111]. Using

this value, one can calculate: Γγγ = 0.1 keV.

For f4(2050) the situation is even more complicated. Different values of the ratio

ΓγγΓππ
Γf4(2050)

were given in the literature:

- Ref. [113]: 0.0231 keV,

- Ref. [114]: less than 1.1 keV.

Our fit to the BELLE experimental data (to be shown in the section 2.4.5) gives

ΓγγΓππ
Γf4(2050)

= 0.12 keV, Γf4(2050)→γγ = 0.7 keV . (2.4.33)

The angular distribution for the s-channel resonances can be written in the stan-

dard (typical for Feynman diagrams) form:

dσ (γγ → ππ)

dz
=
∑
λ1,λ2

√
W 2
γγ

4
−m2

π

Wγγ

2

|M (λ1, λ2)|2 4π

4× 64π2W 2
γγ

, (2.4.34)

where the factor 4 in the denominator comes from averaging over initial photon he-

licities. The helicity-dependent resonant amplitudes in Eq. (2.4.34) must be mod-

elled, as we do not have a priori microscopic models of the coupling of two photons to

high-spin resonances. We parametrize the f0, f2 and f4 resonances by the relativistic



Breit-Wigner resonance amplitude for a spin-J resonance R of mass mR:

M (λ1, λ2) =

√
64π2W 2

γγ × 8π (2J + 1)
(
mR
Wγγ

)2

ΓRΓR (Wγγ)

W 2
γγ −m2

R + imRΓR (Wγγ)

×
√
Br (R→ γγ)Br (R→ π+/0π−/0) eiϕR

×
√

2δλ1,λ2
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Y 0
2 (θ, φ); for f2(1565)

Y 0
4 (θ, φ); for f4(2050)


× exp

(
− (Wγγ −mR)2

Λ2
R

)
. (2.4.35)

The last form factor was introduced to correct the resonance form far from the actual

resonance position where the simple resonance form is incorrect. One can expect ΛR

to be much larger than the resonance width ΓR. In practice we will treat it as an

extra free parameter to be adjusted to experimental world data. This is important

only for broad resonances with Γ > 0.1 GeV.

The energy-dependent resonance width

ΓR(Wγγ) = ΓR

√
W 2
γγ

4
−m2

π√
m2
R

4
−m2

π

F J (Wγγ, R) (2.4.36)

is expressed through the spin-dependent Blatt-Weisskopf form factor [115]

F J=0 (Wγγ, R) = 1,

F J=2 (Wγγ, R) =
(RpR)4 + 3 (RpR)2 + 9

(Rp)4 + 3 (Rp)2 + 9
, (2.4.37)

F J=4 (W,R) =
(RpR)8 + 10 (RpR)6 + 135 (RpR)4 + 1575 (RpR)2 + 11025

(Rp)8 + 10 (Rp)6 + 135 (Rp)4 + 1575 (Rp)2 + 11025
.

In the equation above we have defined resonance momentum pR =

√
m2
R

4
−m2

π and

γγ → ππ system momentum p =

√
W 2
γγ

4
−m2

π. The value of the barrier radius is

taken to be R = 1 fm.

We consider two simple models of the amplitude for the tensor meson production:

MJ=2
λ1λ2

∝ Y2,λ1−λ2(θ, φ) · (δλ1−λ2,−2 + δλ1−λ2,2) (type A),

MJ=2
λ1λ2

∝ Y2,λ1−λ2(θ, φ) · δλ1−λ2,0 (type B). (2.4.38)
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We shall call them model A and B, respectively. For f2(1270) production the ampli-

tude is dominantly of the type A [108]. The same situation appears for the f ′2(1525)

and f2(1950) mesons since they are the same nonet partners of f2(1270).

For the first time the decay of f2(1565) into dipions was studied in Ref. [116],

while its decay into two photons was analysed in Ref. [112]. The f2(1565) resonance

is not well understood so far. The BELLE Collaboration found in this region both

components (A, B) in their partial wave analysis [110,111,113]. We tried both models

in order to describe the experimental data, taking the Γππ decay width from [112]

and fitting Γγγ. A better description of the data was obtained using the relation:

Mf2(1565)
λ1λ2

∝ Y2,λ1−λ2(θ, φ) · δλ1−λ2,0 . (2.4.39)

This amplitude takes a different form than its counterpart for the f2(1270) meson.

This is equivalent to the fact that the structure (qq̄ state) of f2(1565) resonance may

be completely different than that for f2(1270), f ′2(1525) or f2(1950).

The f4(2050) resonance was not studied so far in the γγ → ππ reactions. For

the spin-4 resonance again two simple possibilities come into the game:

MJ=4
λ1λ2

∝ Y4,λ1−λ2(θ, φ) · (δλ1−λ2,−2 + δλ1−λ2,2) (type A),

MJ=4
λ1λ2

∝ Y4,λ1−λ2(θ, φ) · δλ1−λ2,0 (type B). (2.4.40)

While the BELLE partial wave analysis [110,111,113] suggests the dominance of the

type A form, in our analysis we find that type B form fits better to the experimental

data.

Fig. 2.11 shows a combination of all s-channel resonances which were discussed

above. The biggest contribution comes from the f2(1270) meson production. Simul-

taneously this is one of the broadest resonances. At lower energies (Wγγ < 0.7 GeV),

the scalar σ(600) meson dominates. Although the line shape of f2(1270) meson itself

is crucial, the interference of the right wing of that resonance and other resonances

which have peaks (resonance positions) at Wγγ > 1.5 GeV play very important role.
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Figure 2.11: Contributions of the different s-channel γγ resonances for the π+π−

production as obtained based on PDG book [109] and our fit to be presented in the

following.

2.4.3 γγ → π0π0 in a simple coupled-channel model with ρ±

exchange

Due to vanishing charge of neutral pions the γγ → π0π0 amplitude vanishes at

the Born-level. In this case a loop mechanism with ρ± exchange is possible (see

Fig. 2.12). The amplitude for this mechanism is a combination of t-, u- amplitudes.

An example of a process which leads to channel coupling is shown in Fig. 2.12.

The left panel corresponds to contact amplitude and the right panel depicts the ρ±

meson exchange in the t channel.

ρ±(κ)

π0(p1)

π0(p2)

π+(k1)

π−(k2)

γ(q1, λ1)

γ(q2, λ2)

ρ±(κ)

π0(p1)

π0(p2)

π+(k1)

π−(k2)

π±(κ2)

γ(q1, λ1)

γ(q2, λ2)

Figure 2.12: Feynman diagrams for γγ → π0π0 process with charged ρ meson ex-

change.
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The contact amplitude can be written as:

Mc(λ1, λ2) =

∫
2e2gµνεµ(λ1)εν(λ2)

1

k2
1 −m2

π + iε
gππ→ρ (kα1 + pα1 )

×

(
−gαβ +

κακβ
m2
ρ

)
κ2 −m2

ρ + iΓρmρ

gππ→ρ

(
kβ2 + pβ2

) 1

k2
2 −m2

π + iε

× F (ŝ, t̂, û)F 2
ρ±(κ)F 2

π+(k1)F 2
π−(k2)

d4κ

(2π)4 (2.4.41)

and the corresponding t-channel amplitude as:

Mt(λ1, λ2) =

∫
e2

κ2
2 −m2

π + iε

1

k2
1 −m2

π + iε
gππ→ρ (kα1 + pα1 )

×

(
−gαβ +

κακβ
m2
ρ

)
κ2 −m2

ρ + iΓρmρ

gππ→ρ

(
kβ2 + pβ2

) 1

k2
2 −m2

π + iε

× εµ (λ1) (κµ2 + kµ1 ) εν (λ2) (κν2 − kν2)

× F (ŝ, t̂, û)F 2
ρ±(κ)F 2

π+(k1)F 2
π−(k2)

d4κ

(2π)4 . (2.4.42)

The amplitude for u-channel is obtained by a interchanging particle π+ with particle

π− in Fig. 2.12. The coupling constant equals gππ→ρ =
√

4π · 2.6.

The form factors that appear in the above formulae are parametrized here as:

- F (ŝ, t̂, û) = F 2(t̂)+F 2(û)
1+F 2(ŝ)

where F (ŝ) = exp

(
−(ŝ−4m2

π)
2

Λ4
BOX

)
and F (x) = exp

(
−(x2−m2

π)
2

Λ4
π

)
for x = t̂, û,

- Fρ±(κ) = exp

(
−(κ2−m2

ρ)
2

Λ4
ρ

)
,

- Fπ+/−(x) = exp

(
−(x2−m2

π)
2

Λ4
π

)
for x = k1, k2,

where ΛBOX , Λρ and Λπ are, in principle, free parameters. The resulting amplitude

strongly depends on the value of the Λ parameters.

This coupled-channel model with charged ρ meson exchange is important for

the γγ → π0π0 channel since the cross section for the γγ → π+π− reaction is much

bigger than that for the γγ → π0π0 reaction. Similar mechanism for the γγ → π+π−

can be, however, neglected.



2.4.4 pQCD mechanisms

At high dipion invariant masses (Wγγ > 2.5 GeV ) the mechanism of the reac-

tion is not fully understood. Brodsky and Lepage made a first prediction of the

leading-order perturbative quantum chromodynamics (pQCD) [102] which was fur-

ther studied e.g. in [103, 117]. In general, the predictions of the pQCD calculation

lay below the experimental data measured at The Large Electron-Positron Collider

(LEP) in ALEPH detector [118] and recently by the BELLE Collaboration [119].

The next-to-leading-order calculations were presented only in Ref. [120] and these

results are not able to describe the present experimental data.

Some time ago Diehl, Kroll and Vogt (DKV) suggested that a soft handbag

mechanism may be the dominant mechanism [106] for the wide-angle scattering at

intermediate energies. In this approach the normalization as well as energy de-

pendence of the corresponding cross section are adjusted to the world data on the

γγ → π+π− production [106,107].

π+/0

π−/0

Figure 2.13: A generic Feynman diagram for dipion production in pQCD mecha-

nisms.

Fig. 2.13 presents the general diagram for the pions production in LO pQCD.

The oval in the figure means complicated interactions which are described in the

Brodsky-Lepage (BL) or/and handbag mechanisms.

Brodsky-Lepage mechanism

The basic diagrams of the Brodsky and Lepage formalism are shown in Fig. 2.14

(Ref. [121]). In fact, the total number of LO diagrams contributing to the γγ →
(qq̄) + (qq̄) amplitude is 20 (Ref. [120]). The invariant amplitude for the initial

helicities of two photons is expressed through a parton distribution amplitudes φπ
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π

π

π

π

π

π

π

π

π

π

Figure 2.14: Some examples of Feynman diagrams for the Brodsky-Lepage pertur-

bative mechanism for γγ → ππ.

for each hadron and quark/antiquark carries some fractional x/y momentum of

parent hadron and through a hard-scattering amplitude T λ1λ2H for scattering the

clusters of collinear valence partons from each hadron:

M (λ1, λ2) =

1∫
0

dx

1∫
0

dy φπ
(
x, µ2

x

)
T λ1λ2H

(
x, y, µ2

)
φπ
(
y, µ2

y

)
× F pQCD (s) , (2.4.43)

where µx/y = min
(
x/y, 1− x/y

)√
s(1− z2); z = cos θ [102]. The details of the

helicity-dependent hard scattering amplitudes are discussed in Appendix D.4.2.

The extra form factor in Eq. 2.4.43 aims to separate the perturbative from non-

perturbative processes. We use the following function which smoothly switches off

the non-perturbative pQCD region at low energies (Wγγ < 2 GeV):

F pQCD(s) = 1− exp

(
− (s− 4m2

π)
4

Λ8
pQCD

)
. (2.4.44)

The parameter ΛpQCD is fitted to experimental data (in our calculation we find

ΛpQCD = 2.5 GeV). The other form of the form factor was proposed in Ref. [104].

A discussion about different forms of the form factor is given in Appendix D.4.1.

The distribution amplitudes are subjected to the (Efremov-Radyushkin-Brodsky-

Lepage) ERBL pQCD evolution [122, 123]. The scale-dependent valence-quark dis-

tribution amplitude of the pion [124,125] is expanded in terms of Gegenbauer poly-

nomials C
3/2
n [126]

φπ
(
x, µ2

)
=

fπ

2
√

3
6x (1− x)

∞′∑
n=0

C3/2
n (2x− 1) an

(
µ2
)
, (2.4.45)



where the expansion coefficient

an
(
µ2
)

=
2

3

2n+ 3

(n+ 1) (n+ 2)

(
αs (µ2)

αs (µ2
0)

)−CF
β0

[
3+ 2

(n+1)(n+2)
−4

n+1∑
k=1

1
k

]

×
1∫

0

dxC3/2
n (2x− 1)φπ

(
x, µ2

0

)
, (2.4.46)

depends on the form of the distribution amplitude φπ (x, µ2
0). Above CF = 4

3
, β0

and αs are explained in Appendix D.4.2.

x

0 0.2 0.4 0.6 0.8 1

π
φ

0

0.5

1

1.5

2

2.5

Wu-Huang (B=0.6)

Chernyak-Zhitnitsky

asymptotic

Figure 2.15: Quark distribution amplitudes of the pion.

Finally, the pQCD amplitude for the γγ → ππ reaction depends on the pion

distribution amplitude. The letter has been, for long time, a subject of intensive

discussion [102, 105, 125, 127]. The reference point is the asymptotic shape [128]

(green line in Fig. 2.15)

φπasymp. (x) = 6x(1− x) . (2.4.47)

This functional form turned out to be inconsistent with recent experimental data

presented by the BaBar Collaboration for the pion transition form factor Fγ∗γπ for

large photon virtualities [129]. Wu and Huang [130] proposed recently a new form
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of the distribution amplitude (red line in Fig. 2.15)

φπWH

(
x, µ2

0

)
=

√
3Amqβ

2
√

2π3/2fπ

√
x (1− x)

(
1 +B × C3/2

2 (2x− 1)
)

×

Erf

√ m2
q + µ2

0

8β2x (1− x)

− Erf

[√
m2
q

8β2x (1− x)

] , (2.4.48)

where the error function is defined as Erf(x) = 2√
π

x∫
0

exp(−t2)dt.

The authors take into account both the leading valence quark and the non-

valence quark contribution. This pion distribution amplitude at the initial scale

(µ2
0 = 1 GeV2) is controlled by the parameter B, which defines the broadness of the

pion distribution amplitude. This simple Wu-Huang (WH) model better describes

(see Fig. 6 in Ref. [130]) recent BaBar data [129]. This pion distribution amplitude

is rather close to the well-know Chernyak-Zhitnitsky [131] distribution amplitude

(see the blue line in Fig. 2.15)

φπ CZ (x) = 30x(1− x)(2x− 1)2 . (2.4.49)

In the following we use quark distribution amplitude proposed by Wu & Huang

(Eq. 2.4.48) and with parameters B = 0.6 and mq = 0.3 GeV. Then a normalization

constant A = 16.62 GeV−1 and a harmonic scale β = 0.745 GeV. fπ = 93 MeV

above is the pion decay constant.
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Figure 2.16: Comparison of the theoretical predictions of the Brodsky-Lepage pQCD

angular distributions with the BELLE data.



Fig. 2.16 shows the comparison of the results for the BL approach with exper-

imental data [113, 119] for five different values of energy. As can be seen from the

figures the BL pQCD approach is not enough to describe the ”high energy” data,

especially for the γγ → π0π0 reaction. Thus one needs to take into account an-

other mechanism which correctly describes the experimental data at higher-energies

(Wγγ > 2.5 GeV).

Handbag model

γ

γ

q

q̄

π

π

Figure 2.17: Feynman diagram for handbag mechanism.

The handbag approach was proposed in Ref. [106, 107]. Fig. 2.17 depicts the

Feynman diagram for the handbag mechanism. There two photons interact with the

same quark exchange and the intermediate state ”active” qq̄-quarks have almost the

same momenta as meson, while the ”passive” pair of other q′q̄′-quarks is picked out

from the vacuum by soft non-perturbative interactions. In this approach the only

non-zero helicity-dependent amplitudes are

A+− = A−+ = −4παem
s2

tu
R2π (s) . (2.4.50)

Handbag model predicts that the angular dependence of amplitude is ∝ 1/ sin2 θ,

where θ is the c.m. scattering angle. The blob in Fig. 2.17 represents the two-pion

distribution amplitude. The form factors R2π(s) are of non-perturbative nature

and are in principle unknown. In practice they were fitted to the experimental

total (integrated over experimentally measured region) cross section for γγ → π+π−

[106, 107], assuming that the mechanism exhausts the measured cross section at

high energy (Wγγ > 2.5 GeV). This is not a necessary condition. In our analysis
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we relax this rather restrictive assumption and focus on the angular distributions.

Following [106,107] annihilation form factor is parametrized as follows:

Rπ+π− = Rπ0π0 = R2π =
5

9
Ru

2π +
1

9
Rs

2π

=
5

9s
au

(s0

s

)nu
+

1

9s
as

(s0

s

)ns
. (2.4.51)

Above equation is divided into two parts: a valence (u index) and a non-valence

(s index) form factor. The values of au, nu, as and ns are taken from Ref. [106,

107]. We have averaged the values for different energies (see Table 1 in Ref. [107]):

au = 1.375 GeV2, nu = 0.4175, as = 0.5025 GeV2 and ns = 1.195. The parameter

s0 = 9 GeV2 is fitted to the experimental data for three channels: K+K−, K0K̄0

and ηπ0.

The cross section integrated over cos θ from − cos θ0 to cos θ0 for pion pairs takes

the form

σ (γγ → ππ) = C
4πα2

em

s

(
cos θ0

sin2 θ0

+
1

2
ln

1 + cos θ0

1− cos θ0

)
|Rππ (s)|2 , (2.4.52)

where C = +1 for charged pions and C = −1 for neutral mesons. The ratio of the

cross section for the π0π0 process to the π+π− process does not depend on θ and

equals 1
2
. Usually the experimental data are presented with some limitation on cos θ,

thus one can write the additional information coming from handbag approach:

σ
(
γγ → π+π−; cos θ0 = 0.6

)
= 425 nb GeV2 |Rππ (s)|2 1

s
, (2.4.53)

σ
(
γγ → π+π−; cos θ0 = 0.8

)
= 866 nb GeV2 |Rππ (s)|2 1

s
. (2.4.54)

A characteristic feature of the handbag mechanism is the fact that the differential

cross section for charged and neutral pion pairs is the same, in striking contrast with

what is found in the hard scattering approach.

Angular distributions calculated in the handbag approach together with the

BELLE experimental data [113, 119] are shown in Fig. 2.18. Here one can see

similar situation as in Fig. 2.16. Only at the highest energies (Wγγ > 3.5 GeV)

the handbag parametrization looks reasonable. It is very interesting whether the

combination of the two QCD mechanisms can describe the experimental data. This

will be shown in detail in the next subsection.
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Figure 2.18: Comparison of the handbag model predictions with the BELLE angular

data.

2.4.5 Results of the fit to experimental data

In chapters 2.4.1- 2.4.4 I have described all (potential) ingredients which, in our

opinion, are necessary to describe experimental data for the γγ → ππ processes

(total cross sections and angular distributions). The technical question is how to

include all these ingredients together and how to fix free parameters of the combined

model.

In our approach we shall make an educated (using our experience in hadronic

physics) adjustment of the parameters essentially ”by hand” in an iterative (several

times repeated) procedure. We gave up from automatic fitting to the data in spite

it leads to good χ2 solution(s) as such automatic fit may lead to rather unphysical

parameters.

In our adjustment to experimental data we shall include:

• Born soft pion exchange amplitude (see Fig. 2.9) for the γγ → π+π− reaction

with one free parameter (cut-off parameter of the form factor).

• soft loop ρ± exchange amplitude (see Fig. 2.12), where the form factor pa-

rameter is adjusted to describe the data for the γγ → π0π0 reaction.

• ππ resonances (see Fig. 2.10) with most of the parameters taken from particle

data book, except of the parameters of rather poorly understood σ resonance.
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In some cases we allow for modification of Γf0(600), Γf0(600)→γγ, Γf4(2050)→γγ.

Since we add the resonances with other processes coherently we have to allow

for a free phase factor in front of the resonance amplitudes.

• Brodsky-Lepage mechanism (see Fig. 2.14), calculated within pQCD. We

start the ERBL evolution for µ2
0 = 1 GeV2. The distributions at large an-

gles (| cos θ| ≈ 1), where the pQCD calculations does not apply, are corrected

by the extra form factor (2.4.44) and the form factor parameter is treated as

a free parameter to be adjusted to experimental data.

• Handbag mechanism (see Fig. 2.17) where we allow the magnitude of the

process to be fitted (adjusted) to simultaneously describe the γγ → π+π−

and γγ → π0π0 data. As for the Brodsky-Lepage mechanism we allow for

modifications of the cross section at large angles (one form factor parameter).

In the following we shall show one example of the most preferred by the data solution.

As will be shown below, the agreement with the data is satisfactory and therefore

the ”educated fit” can be used for the predictions of the cross sections for nuclear

collisions, which is our main aim.
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Figure 2.19: Contributions of the pQCD continua to the γγ → π+π− and γγ → π0π0

reactions.

Fig. 2.19 presents the dipion continuum contributions as the function of incident

photon-photon energy. One can see the results both for the γγ → π+π− reaction



(left panel) and for production of neutral pions (right panel). Here we have depicted

the prediction for pion exchange contribution (black lines) with two different values

of the slope parameter Bγπ, pQCD BL mechanism (pink lines), handbag model

(blue lines) and ρ meson exchange (black line for γγ → π0π0). One can observe

that for larger values of energy, the QCD mechanisms reasonably well describe the

data. Simultaneously, the low-energy continuum is not sufficient to describe the

experimental data points. Thus the inclusion of the s-channel resonances is very

important (see Fig. 2.10).
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Figure 2.20: Theoretical fit of the γγ → π+π− and γγ → π0π0 experimental data.

In the next figure one can see our full fit to the world experimental data as

the function of the subprocess energy. Our predictions correspond to limited an-

gular ranges of different experiments. The data for the γγ → π+π− reaction are

for the limit | cos θ| < 0.6 and they come from the ALEPH [118], BELLE [119],

CELLO [132], CLEO [133], TPC/Two Gamma [134], Mark II [135] and VENUS [136]

Collaborations. For the γγ → π0π0 reaction the data come from the BELLE [113]

and Crystal Ball [137] groups and here the angular range is limited to | cos θ| < 0.8.

Our approach rather nicely describes the experimental data simultaneously for the

γγ → π+π− (left panel) and for γγ → π0π0 (right panel) reactions. For the charged

pions, one can see the two sums corresponding to two different values of Bγπ: 4 or

6 GeV−2. Similarly, on the right panel of Fig. 2.20 one can observe the difference

between the results with and without contribution with the ρ± meson exchange.
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Figure 2.21: Angular distributions for the γγ → π+π− reaction.

Fig. 2.21 and 2.22 show the comparison of our predictions with the angular ex-

perimental data measured by the BELLE Collaboration ( [110,113,119]). The calcu-

lations are done for nine different energies ranging from 0.8025 GeV for γγ → π+π−

or 0.61 GeV for γγ → π0π0 to 4.05 GeV. The first four panels for the γγ → π+π−

reaction present the sum of contributions of many mechanisms for two different

values of the slope parameter in the hadronic form factor. We obtain a better

description of the experimental data points when we use the exponential form fac-

tor with Bγπ = 6 GeV−2. The description for Wγγ = 1.4975 GeV shows that one

should include also D wave, but we have no theoretical guidance on how to do

it. The contributions for the QCD mechanism start to dominate for larger values



of energy. The Brodsky-Lepage mechanism is the leading one in the high energy

(Wγγ > 2.5 GeV) domain. For the γγ → π0π0 reaction (Fig. 2.22), the first two

figures present the cross section corresponding to the sum of processes with and

without contribution from the charged ρ meson exchange. One can observe that the

inclusion of this contribution is important only for Wγγ < 0.6 GeV (see the right

panel of Fig. 2.20).
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Figure 2.22: Angular distributions for the γγ → π0π0 reaction.
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Figure 2.23: The ratio of the γγ → π0π0 and γγ → π+π− cross sections as a function

of Wγγ together with BELLE experimental data.

Very interesting seems to be the ratio of the neutral and charged pion pair pro-

duction cross sections. This is shown in Fig. 2.23. Our result (red line) is confronted

with BELLE experimental data [113, 119]. We have some problem with correct de-

scription of the data in the (2.4−2.7) GeV range of the collision energy. This can be

caused by not very good description of the angular data for the γγ → π0π0 reaction

in this range of energy as discussed above. However, our results prove that the cor-

rect description of the high-energy cross section requires to take into account both

the Brodsky-Lepage and handbag mechanisms simultaneously. The black solid line

represents only the handbag model result, which is independent of θ and is constant

(= 1
2
).

Finally we get good agreement of the total elementary cross section with all

available experimental data for the first time in such a broad range of energies. Si-

multaneously we have obtained a reasonable description of the angular distributions.

Presented above approach for γγ → ππ is well suited for the predictions of the cross

sections for nucleus-nucleus collisions. It is worth to note that the corresponding

nuclear cross section for both charged and neutral pion production is calculated for

the same parameters of resonances and QCD mechanisms.



Chapter 3

Nuclear results for single

and double vector meson

photoproduction

In this chapter we will discuss first nuclear photoproduction of a single ρ0 meson.

We will show that a sequence of two single ρ0 photoproductions in nuclear processes

(explained below) leads to exclusive production of two ρ0 mesons in nucleus-nucleus

UPC. This process may compete with the γγ → ρ0ρ0 mechanism (in nucleus-nucleus)

collisions discussed in the next chapter.

Nuclear photoproduction of a single ρ0 can be understood as a photon fluctuation

into hadronic or quark-antiquark component and its subsequent propagation through

the second nucleus and transformation (fragmentation) into the ρ0 meson.

3.1 Smearing of ρ0 meson masses

The ρ0 resonance is fairly broad, Γρ0 ≈ 0.150 GeV [109]. In further calculation of ρ0

photoproduction two-different approximations will be considered: first one in which

mass of ρ0 meson is fixed (Dirac delta function) and second one in which mass is

smeared as dictated by the decay width. Smearing of ρ0 meson mass is included

by using an amplitude which is a sum of the relativistic Breit-Wigner amplitude

70
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and the amplitude Bππ for the direct π+π− continuum production

A(m) = ABW
√
mmρ0Γρ0(m)

m2 −m2
ρ0 + imρ0Γρ0(m)

+ Bππ (3.1.1)

with

Γρ0(m) = Γρ0
mρ0

m

(
m2 − 4m2

π

m2
ρ0 − 4m2

π

)3/2

, (3.1.2)

where mρ0 and Γρ0 are the width and mass of the ρ0 meson, mπ is the mass of the

pion. The mass-dependent width (Ref. [138]) assures vanishing of the spectral shape

below the two-pion threshold. The first amplitude in Eq. (3.1.1) has purely resonant

character and the second one is added to describe a big asymmetry (enhancement of

the left-hand side and damping of the right-hand side of the ρ0 resonance). A physi-

cal interpretation of the constant term for proton-proton collisions can be found e.g.

in Ref. [139]. It was explained there as due to the Deck (or Drell-Söding) two-pion

continuum [140].

Table 3.1: Parameters for relativistic Breit-Wigner and continuum amplitudes for ρ0.

Parameter ZEUS [141] STAR [138] ALICE [142,143]

mρ0 [GeV] 0.77± 0.002 0.775± 0.003 0.761± 0.0023

Γρ0 [GeV] 0.146± 0.003 0.162± 0.007 0.1502± 5.5∣∣∣ BππABW

∣∣∣ [GeV−1/2] 0.669 0.89± 0.08 0.5± 0.04

m [GeV] (0.55− 1.2) (0.5− 1.1) (0.28− 1.512)

Table 3.1 collects parameters needed to calculate amplitude given by (3.1.1).

The errors given in the table are of statistical origin. The systematic errors can be

found in references given in the table. The last line in the table shows the range of

invariant ρ0 mass for which the parametrization was determined.

Fig. 3.1 presents the square of the amplitude (3.1.1) with (solid line) and with-

out (dashed line) continuum component Bππ. One can see results obtained with

parametrizations of the ZEUS [141] (black lines), STAR [138] (blue lines) and AL-

ICE [142,143] (red lines) Collaborations. The results obtained by each of the groups

are very similar. The ALICE parametrization has a huge advantage: the ρ0 mass

smearing is done for larger range of center of mass energy (mmax = 1.512 GeV) than
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Figure 3.1: The invariant mass distribution for the ”ρ0” meson.

in other cases. This fact is very important in nuclear calculations if one wants to

make predictions in a broad range of two-pion invariant mass. For comparison see

the dotted lines in Fig. 3.1. At large m the shape of the distributions does not seem

physical. This strange behaviour of the distributions for the large dipion masses

happens beyond upper application limit (see the last row in Table. 3.1). This may

be traced to a crude approximation of invariant dipion mass independence of the

Deck mechanism.

Y -axis in Fig. 3.1 designates the magnitude of the resonance contribution which

fulfills the condition ∫
Norm |A(m)|2 dm = 1 . (3.1.3)

As was mentioned above, the amplitude for the direct π+π− production raises the

left-hand side (m < mρ0) of the resonance and simultaneously reduces the right-hand

side (m > mρ0) of the resonance. In further calculation, we will smear the mass of ρ0

meson with the extra ππ continuum amplitude, because this way correctly describes

the experimental data points for the invariant mass distribution.

The dominant decay channel of the ρ meson is a pair of pions with a branching

rate of 99.9%. In the calculations performed in this dissertation the ρ0 → π+π−

decays are done in a separate Monte Carlo code. The distributions in the ρ0 center
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of mass are generated either isotropically or randomly with the decay function in

the ρ0 center of mass given by the distribution:

f(θ∗) =
3

2
sin2(θ∗) . (3.1.4)

This distribution corresponds to the decay of transversely polarized ρ0.

To calculate nuclear cross section for ρ0 photoproduction we perform the follow-

ing steps: first a map of the cross section for a dense grid in rapidity of meson(s)

(y) or (y1, y2) is prepared in the case of single/double scattering with fixed ρ0 meson

masses (the corresponding ρ0 mesons have negligibly small transverse momenta).

One should include the smearing of the ρ0 mass too. The cross section for single

scattering (more details in section 3.2) can be written then as:

dσAA→AAρ0
dm dy

= f(m)
dσAA→AAρ0 (y,m)

dy
. (3.1.5)

Analogously for double scattering mechanism (see section 3.3):

dσAA→AAρ0ρ0
dm1 dm2 dy1 dy2

= f(m1)f(m2)
dσAA→AAρ0ρ0 (y1y2;m1,m2)

dy1dy2

. (3.1.6)

The smearing distribution f(m) is called sometimes as spectral shape. It can be

expressed formally through the relation

f(m) =
|A (m)|2Norm∫
|A (m)|2Normdm

. (3.1.7)

Please note that the numerator of Eq. (3.1.7) is displayed in Fig. 3.1.

Next a Lorentz transformation to the overall ion-ion center of mass (laboratory

system for both RHIC and LHC) is performed. Different kinematical variables

related to charged pions are calculated and corresponding distributions are obtained

by an appropriate binning. This way we have the full kinematics of the event thus

any cut on kinematical variables can be easily imposed.

3.2 Single ρ0 meson production

Fig. 3.2 illustrates a single vector meson production mechanism in ultraperipheral

ultrarelativistic heavy-ion collisions. The cross section for this mechanism can be
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Figure 3.2: Feynman diagrams for the single vector meson production by photopro-

duction (photon-Pomeron or Pomeron-photon fusion).

written as a differential in the impact parameter b and in the vector meson rapidity y

dσA1A2→A1A2V

d2bdy
=

dPγIP (b, y)

dy
+

dPIPγ (b, y)

dy
. (3.2.8)

PγIP(y, b) or PIPγ(y, b) is the probability density for producing a vector meson V

at rapidity y for fixed impact parameter b of the heavy-ion collision. Only such

cases when b > 2RA are included in the integration. Probability density expresses

two-different possibilities of the production vector meson shown in Fig. 3.2. Each

probability is the convolution of a energy of photon from first or second nucleus

(ω1/2 = mV /2 exp(±y)) and a flux of equivalent photons:

P1/2 (y, b) = ω1/2Ñ
(
ω1/2, b

)
σγA2/1→V A2/1

(WγA2/1
) , (3.2.9)

where Ñ
(
ω1/2, b

)
is in principle a function of heavy ion - heavy ion impact parameter

b and not of photon-nucleus impact parameter. The effective impact factor can be

formally expressed through the photon flux in one of the nuclei and effective strength

for interaction of the photon with the second nucleus

Ñ (ω1, b) =

∫
N (ω1, b1)

S2(b2)

πR2
A

d2b1 ≈ N (ω1, b) , (3.2.10)

where b1 = b + b2. The extra S2(b2) ≈ θ(RA − b2) factor ensures collision when

the photon hits the nucleus. For the photon flux in the second nucleus one needs to

replace 1→2 (and 2→1). Here we use the photon flux in the form which was given

in Eq. (1.2.29).

The γA → ρ0A photonuclear cross section is discussed in some details in Ap-

pendix E. The cross section is calculated with the help of the Glauber model for ρ0
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meson photoproduction. Finally Eq. (E.0.10) expresses the total cross section for

γA→ ρ0A reaction and can be written as

σγA→ρ0A =
dσγA→ρ0A (t = 0)

dt

tmax∫
−∞

dt |FA (t)|2 . (3.2.11)

This cross section is actually a function of energy in the γA system, so in this case

one can write: W = WγA. The factor |FA (t)| appears here due to coherent qq̄ dipole

rescattering off a nucleus. A good approximation is to use the realistic nuclear charge

form factor which is defined in Eq. (1.4.83). The squared four-momentum transfer:

t = −q2 = −(m2
ρ0/ (2ωlab))

2.

The cross section for the γA→ V A reaction could be also calculated e.g. in the

QCD dipole picture in a so-called mixed representation (see e.g. [144,145]). Slightly

more complicated momentum space formulation of the vector meson production was

discussed in [146].

At high energy above resonances the imaginary part of the amplitude for the

γA→ V A process can be written as in Refs. [147–150]:

= (AγA→V A(W )) =
∑
λλ̄

∫
dz d2ρ ΨV

λλ̄(z, ρ) σdip−A(W, ρ) Ψγ

λλ̄
(z, ρ) . (3.2.12)

In the equation above, λ and λ̄ are quark and antiquark helicities. Helicity conser-

vation at high energy rescattering of the dipole in the nucleus is explicitly assumed.

The variable ρ is the transverse size of the quark-antiquark dipole, and z denotes the

longitudinal momentum fraction carried by a quark. The longitudinal momentum

fraction carried by antiquark is then (1− z). Using explicit formulae for photon and

vector meson wave functions, the generic formula (3.2.12) can be written in a con-

venient way (for calculation see [144]). The dipole-nucleus cross section can then be

expressed in the Glauber-Gribov picture in terms of the nuclear thickness TA(bγ), as

seen be the qq̄ dipole in its way through the nucleus, and the dipole-proton σdip−p(ρ)

cross section as given for instance in Ref. [151]:

σdip−A(ρ,W ) = 2

∫
d2bγ

{
1− exp

(
−1

2
TA(bγ)σdip−p(ρ,W )

)}
. (3.2.13)

This simple formula allows for an easy and convenient way to include rather

complex multiple scattering of the quark-antiquark dipole in the nucleus. Sev-

eral parametrizations of the dipole-nucleon cross section have been proposed



in the literature. Most of them were obtained through fitting HERA deep-inelastic

scattering data which, in principle, does not allow for unique extraction of its func-

tional form. The saturation inspired parametrizations are the most popular and

topical at present.

Returning to Eq. (3.2.11), the integral strongly depends on the running ρ0 meson

mass and not on the resonance position. In section 3.1 the idea of the smearing of

ρ0 mass was discussed. As was already mentioned in our calculations we use the

ALICE parametrization [142,143] which is the most appropriate for the LHC data.

Firstly, the ALICE Collaboration showed data for the largest range of invariant

mass. Secondly, their data for single ρ0 production are for the same energy for

which we wish to make predictions for the ρ0ρ0 double scattering production.
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Figure 3.3: Rapidity distribution of ρ0 meson with fixed mass (left panel) and with

smeared mass of ρ0 meson (right panel) for gold-gold collision at RHIC energy

(
√
sNN = 200 GeV) together with the STAR Collaboration data.

Figs. 3.3 show the comparison of cross section for coherent ρ0 production

measured by the STAR Collaboration [138] for different theoretical models. The

left panel depicts the situation when our results are calculated for fixed ρ0 mass

(Ref. [109]) and the right panel includes the smearing of ρ0 mass (convolution of

Eq. (3.1.5) with (3.2.8)). One can observe that the calculation with fixed mass

better describes the experimental points but we think it has no deep meaning. Fur-

thermore I take into account two forms of Bρ0 : the red solid line is calculated
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for the case when the slope parameter appearing in the differential cross section for

the γp → ρ0p reaction (see Eq. (E.0.1)) is constant (like in Ref. [152]). The red

dotted line corresponds to the slope parameters described by Eq. (E.0.13) which

depend on the energy Wγp (see Eq. (E.0.2)). Other of the theoretical models were

proposed by

• V.P. Gonçalves and M.V.T. Machado (Ref. [153]). GM model uses the de-

scription of the QCD color dipole picture with particular emphasis on the

saturation model.

• L. Frankfurt, M. Strikman and M. Zhalov (Ref. [154, 155]). FSZ model is

based on generalized vector dominance model and the Gribov (Ref. [156]) &

Glauber (Ref. [157]) approach. The authors emphasize that the space-time

evolution of high energy processes is different in quantum mechanical models

and in quantum field theory.

• S. Klein and J. Nystrand (KN, Ref. [152]). In the KN approach the nuclear

cross section is a convolution of the γp cross section with the photon spec-

trum in a classical model of multiple scattering to find the exclusive rates.

The Klein and Nystrand calculations [152] are based on the STARLIGHT

code [158] which is a C++ object-oriented Monte Carlo event generator for

ultraperipheral collisions.

Fig. 3.4 shows our predictions in comparison to the ALICE experimental point

[143]. In this case lead-lead collisions were studied at the center of mass energy

equal to
√
sNN = 2.76 TeV. The left panel represents the case when meson mass is

fixed and the right panel corresponds to the situation when smearing of the ρ0 mass

described by the parametrization proposed by the ALICE Collaboration is included.

In both situations our results are smaller than the experimental data point. Again

one can see the distribution for different approaches to the slope parameter for the

γp → ρ0p reaction (solid line - Bρ0 = const (see Eq. (E.0.1)), dotted line is for the

case when BIP
ρ0 (Wγp)⊕BIR

ρ0 (Wγp) (like in Eq. (E.0.13))). It is worth to note that the

dσ/dyρ0 data point comes from the same analysis as the parametrization for the line

shape of the ρ0 meson mass.
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Figure 3.4: Rapidity distribution of ρ0 meson photoproduction with fixed sharp ρ0

mass (left panel) and with the smearing the mass of the ρ0 meson (right panel) for

lead-lead collision at the LHC energy (
√
sNN = 2.76 TeV). The theoretical results

are compared with the ALICE data point.

Table 3.2 presents the total nuclear cross section for ρ0 photoproduction in UPCs

at RHIC (
√
sNN = 130 and 200 GeV) and LHC (

√
sNN = 2.76 TeV) energies.

Now I wish to accomplish a comparison of theoretical integrated cross section with

experimental data. The numbers in the table were obtained with the same models

as in Fig. 3.3. One can see the total coherent cross section for the full range

of rapidity and with the cuts on yρ0 . This limitation is caused by experimental

acceptance. The difference between results when the slope parameter Bρ0 is constant

or it depends on Pomeron and Reggeon characteristics (this was discussed in the

context of Fig. 3.3) is only about 3%. The table contains a comparison of our results

without (mρ0 = const) and with (mρ0 6= const) smearing of the ρ0 meson mass.

The differences between these numbers are not negligible. At higher center of mass

energy (
√
sNN = 200 GeV) results obtained with both model exceeds the STAR cross

section. The KN result and our number are much larger than the value extrapolated

by experimentalists. For
√
sNN = 200 GeV we obtain results similar as in Ref. [152].

But this is no surprising because our model is almost the same as the model proposed

by Klein & Nystrand. The comparison of our numbers with the ALICE experimental
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data shows that the relative difference (= theory−experiment
experiment

·100%) equals about −23%

(for full range of ρ0 rapidity) or −12% (for |yρ0| < 0.5).

Table 3.2: Total (integrated over phase space) cross section in mb for the coherent

photoproduction of ρ0 meson in ultrarelativistic heavy ion collisions at RHIC and

LHC energy.

GM FSZ KN Our result Experimental

[153] [154] [152] Bρ0 = const BIP
ρ0 (Wγp)⊕BIR

ρ0 (Wγp) data

mρ0 = const mρ0 6= const mρ0 = const mρ0 6= const

√
sNN = 130 GeV; full |yρ0| STAR [138]

490 359 407 346 392 370± 170± 80
√
sNN = 130 GeV; |yρ0 | < 1 STAR [138]

140 130 143 126 139 106± 5± 14
√
sNN = 200 GeV; full |yρ0| STAR [138]

876 934 590 590 646 570 623 391± 18± 55
√
sNN = 2.76 TeV; full |yρ0| ALICE [143]

3309 3405 3229 4300± 100+600
−500

√
sNN = 2.76 TeV; |yρ0| < 0.5 ALICE [143]

371 380 365 373 420± 10+39
−55

Finally, our result relatively well describes the STAR and ALICE experimental

data. This fact is necessary for further calculations, i.e. for double-scattering mech-

anism which is discussed in the next section. We need a correct model for single

ρ0 meson production, because we will use this to calculate the cross sections for

double-scattering mechanism. So far nobody, except of us, has presented a model

or/and theoretical predictions for the AA→AAπ+π−π+π− reaction.

3.3 Double-scattering mechanism

Large cross sections for single ρ0 production were found in Ref. [152, 153, 155, 159].

This fact suggests that the cross section for double scattering process could be

also rather large. The best example of a similar type of reaction is the production



of cc̄cc̄ final state in proton-proton collisions which was measured recently by the

LHCb Collaboration [160] and which was predicted and explained as a double-parton

scattering effect in Ref. [161]. The calculations show that the cross section for the

cc̄cc̄ final state has the same order of magnitude as the cross section for single cc̄ pair

production. The situation for exclusive ρ0 production is somewhat similar but the

details will be discuss below. Due to easier control of absorption effect, the impact

parameter formulation seems the best approach.

This section focuses on double ρ0 production in ultraperipheral ultrarelativistic

heavy ion collisions. In order to impose experimental cuts of existing experiments

one should take into account explicitly the ρ0 → π+π− decay. This is necessary step

because so far the STAR and ALICE groups have got some distributions of kine-

matic variables for the AA→AAπ+π−π+π− reaction, and not for the AA→AAρ0ρ0

reaction.
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Figure 3.5: Schematic diagrams for the double-scattering mechanism of two vector

meson production.

Fig. 3.5 shows the Feynman diagrams for the double-scattering mechanisms of

two-vector-meson production in ultraperipheral ultrarelativistic heavy ion collisions.

This mechanism is described with the help of single ρ0 meson production mecha-

nism. For example a two-dimensional distribution in rapidities of both ρ0 mesons
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is expressed through the equation

dσA1A2→A1A2ρ0ρ0

dy1dy2

=
1

2

∫(
dPγIP (b, y1)

dy1

+
dPIPγ (b, y1)

dy1

)
.×
(

dPγIP (b, y2)

dy2

+
dPIPγ (b, y2)

dy2

)
d2b . (3.3.14)

The factor 1
2

appears due to identity of mesons in the outgoing channel. Additionally,

the smearing of ρ0 meson mass is included as given by Eq. (3.1.6). In the following we

consider a smearing of masses of both ρ0 mesons as we intend to make distributions

related to pions (in rapidity, transverse momentum and four-pion invariant mass).

Having fixed the details of single vector meson production one can now proceed to

the production of two vector mesons.

In the case of double ρ0 production there are two mechanisms possible that we

want to consider. The first one is the γγ fusion (section 2.2) where the elementary

cross section is divided into two parts: low-energy component (Wγγ = (1− 2) GeV)

(Eq. (2.2.3)) and the VDM-Regge parametrization (Wγγ > 2 GeV) (Eq. (2.2.4)).

The second one is the double-scattering mechanism.
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Figure 3.6: Rapidity distribution of one of the ρ0 mesons produced in the double-

scattering mechanism and in the γγ fusion.

The main results are shown in Fig. 3.6. The double-scattering contribution is

shown by the red solid line, the blue dotted lines and the blue dashed lines represent

distributions of forward and backward ρ0 corresponding to the low-energy bump



and for high-energy VDM-Regge γγ fusion, respectively. One can observe a clear

dominance of the double scattering component over the photon-photon component.

This calculations are done for RHIC (left panel) and LHC energy (right panel). The

distribution for center of mass energy
√
sNN = 5.5 TeV is much broader than that

for
√
sNN = 200 GeV. At the LHC energy the higher values of two-meson invari-

ant mass becomes more important which corresponds to larger values of particle

rapidity. Thus the high-energy component of the elementary cross section starts to

dominate at the LHC energy. Somewhat surprisingly at this energy, the VDM-Regge

component is about three orders of magnitude larger than the low-energy (bump)

component which is opposite to the case of RHIC energy. The left panel shows sep-

arate contributions for the forward and backward ρ0 mesons. Both at the RHIC and

LHC energy, the contributions coming from the γγ fusion is one order of magnitude

smaller than that from the double-scattering mechanism.

Fig. 3.7 shows the contributions of individual diagrams from Fig. 3.5 to the

(yρ01 , yρ02) two-dimensional distribution. The distributions for different combinations

are identical in shape but located in different corners in the (yρ01 , yρ02) space. Obvi-

ously the total cross section for every case (diagram) is the same.

The left panel of Fig. 3.8 presents a full (including four diagrams of Fig. 3.5)

two-dimensional distribution in rapidity of each of the mesons. This is approxi-

mately a sum of the individual contributions (Fig. 3.7). The distribution is rather

flat in the entire (yρ01 , yρ02) space. This is in contrast to the two-photon processes

(right panel), where the cross section is concentrated almost along the yρ01 = yρ02

diagonal. In principle, this clear difference can be used to distinguish the double

photoproduction from the γγ fusion contributions. The asymmetry with respect to

yρ01 = yρ02 line for the photon-photon mechanism is due to our convention where yρ01

denotes rapidity of the first meson which is emitted in forward direction and yρ02 is

rapidity of the second vector meson which is emitted in backward direction. This

can be done only in model calculation.

In real experiment, charged pions are measured rather than ρ0 mesons. There-

fore, presentation of some observables related to charged pions might be useful.
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Figure 3.7: Contributions of individual diagrams of Fig. 3.5 to two-dimensional

distribution in rapidities of both ρ0 mesons for double scattering production at
√
sNN = 200 GeV.

Fig. 3.9 depicts kinematic distributions for pions which comes from ρ0 meson de-

cay at the RHIC energy. The left panel shows the differential cross section as a

function of pion transverse momenta (left panel). Of course transverse momentum

distributions of each of the pions are the same. Again the red solid line denotes the

double-scattering photoproduction mechanism, blue dotted line - the low-energy

component for the γγ fusion and the blue dashed line corresponds to the VDM-

Regge component. The peak (the maximum of the cross section) for all mechanisms

appears at ∼ mρ0/2. Here we have taken into account the smearing of ρ0 meson

masses. The sharp upper limit is an artifact of our maximal value of ρ0 meson mass
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Figure 3.8: Two-dimensional distribution (yρ01 , yρ02) in the ρ0 meson rapidities for

double scattering (left panel) and VDM-Regge photon-photon (right panel) produc-

tion at
√
sNN = 200 GeV.
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Figure 3.9: Transverse momentum distribution (left panel) and four-pion invari-

ant mass distribution for the limited acceptance of the experiment (right panel) at
√
sNN = 200 GeV.

mmax
ρ = 1.5 GeV taken in our calculations. However, we have imposed this upper

limit because the spectral shape of “ρ0 meson” above mρ > 1.5 GeV is not under

good theoretical control. In principle, at larger p⊥π, the contribution coming from

the decay of a ρ0 meson produced in the γγ fusion can be larger than that of double

scattering mechanism, as the transverse momentum of ρ0 mesons are not strictly
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limited to small values. However, the cross section for such cases is expected to be

rather small. The right panel of Fig. 3.9 shows four-pion invariant mass distribu-

tion for double-scattering, low-energy bump and high-energy VDM-Regge γγ fusion

mechanism for the limited acceptance of the STAR experiment (|ηπ| < 1) [162]. The

double-scattering contribution accounts only for 20% of the cross section measured

by the STAR Collaboration. The dash-dotted line represents a fit of the STAR Col-

laboration. The STAR experimental data [162] have been corrected by experimental

acceptance function [162, 163]. Probably the production of the ρ0(1700) resonance

and its subsequent decay into the four-pion final state (see e.g. [109]) is the domi-

nant effect for the limited STAR acceptance. Both, the production mechanism of

ρ0(1700) and its decay into four charged pions are not yet understood. In addition,

there is another broad ρ0(1450) resonance [164], which also decays into four charged

pions. A model production of the resonances and their decay is has to be work out

in the future.
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Figure 3.10: Impact parameter dependence of the cross section (left panel) and pion

pseudorapidity distribution for limited range of pion pseudorapidity (right panel) at
√
sNN = 2.76 TeV.

Fig. 3.10 shows the distribution in impact parameter b (left panel) for PbPb→
PbPbρ0ρ0 process. One can observe a peak at b = 14 fm which corresponds to

minimum value of impact parameter corresponding to ultraperipheral heavy ion

collision. The probability of the exclusive production of ρ0 pairs very fast decreases



with increasing b. The right panel of Fig. 3.10 presents the differential cross section

in mb as a function of charged pion pseudorapidity for three different limits on ηπ

(full range of |ηπ| - pink dotted line, |ηπ| < 2.5 - blue dashed line and |ηπ| < 1.2 - red

solid line). We wish to emphasize that the STAR Collaboration at RHIC observes

only a small fraction of pions (both for double-scattering and γγ fusion mechanisms)

due to the rather limited angular (pseudorapidity) coverage ηπ ∼ 0. The ALICE

Collaboration at the LHC can measure somewhat larger range of |ηπ| < 1.2 [165].
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Figure 3.11: Pion transverse momentum distribution (left panel) and four-pion in-

variant mass distribution (right panel) for limited range of pion pseudorapidity at
√
sNN = 2.76 TeV.

The last figures in this sections show the pion transverse momentum distribution

(left panel) and four-pion invariant mass distribution (right panel) for limited range

of pion pseudorapidity at the LHC energy. This is calculated with the smearing of ρ0

masses using parametrization of the ALICE Collaboration [142,143]. The distribu-

tion in p⊥π falls almost symmetrically around p⊥π ∼ mρ/2 independent of the limit

on pseudorapidity. Both the STAR and ALICE experiments have a fairly good cov-

erage in pion transverse momenta and could measure such distributions. Very useful

seems to be the differential cross section as a function of four-pion invariant mass.

The ALICE group collected the data for four-charged-pion production with the lim-

itation |ηπ| < 1.2. One can see that with larger cut on pseudorapidity, the tails
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in dσ/dM4π fall quicker with growing Mππ. We cannot compare this distribution

with the ALICE data [166], because those data are not absolutely normalized.



Chapter 4

Nuclear cross section for the

exclusive production of particle

pairs

Exclusive production of the Standard Model elementary particles or mesons in ul-

trarelativistic heavy ion collisions is an interesting field of theoretical investigation

and a very good opportunity to study γγ processes (Refs. [23–26,167]). On the ex-

perimental side the situation is slightly different. One can find only a small number

of publications with results.

In this chapter I will present some predictions dedicated to the STAR exper-

iment at Relativistic Heavy Ion Collider (197Au+197Au collisions at
√
sNN = 130

or 200 GeV) and to the ALICE experiment at Large Hadron Collider (208Pb+208Pb

collisions at
√
sNN = 2.76, 3.5, 5.5 TeV).

In order to calculate the nuclear cross sections for different reactions we use the

elementary cross sections which have been presented and described in Chapter 2.

4.1 Dimuon production

First I will focus on the nuclear cross section for muon-pair production. Fig. 4.1

shows the differential distribution as a function of the impact parameter. One can see

88
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Figure 4.1: Impact parameter dependence of the cross section for

AuAu→AuAuµ+µ− reaction at RHIC energy (left panel) and the ratio of

nuclear cross section for the realistic charge distribution to that for the monopole

form factor (right panel).

the result for the exclusive muon-pair production for typical RHIC energy. The dis-

tribution with realistic charge density falls off somewhat quicker than that for the

monopole form factor. This is better visualized in the right panel where the ra-

tio of corresponding cross sections is shown: dσ
(
AuAu→ AuAuµ+µ−;Frealistic

)
/

dσ
(

AuAu→ AuAuµ+µ−;Fmonopole

)
. The both results agree within 88% at small

b and with larger values of b the difference becomes larger.

In Fig. 4.2 I present the differential cross section for gold-gold scattering

as a function of the γγ center of mass energy Wγγ = Mµ+µ− (left panel) and as a func-

tion of dimuon pair rapidity (right panel). The calculations are performed for the

RHIC energy. Again one can see significant difference between cross sections for

”realistic” and monopole form factor. The distribution in invariant mass of the

µ+µ− pair falls steeply off. We show the x-axis only up to 10 GeV to allow a com-

parison of the left panel of Fig. 4.2 with the γγ → µ+µ− cross section shown in

Fig. 2.1. The elementary cross section changes by about two orders of magnitude

in the range of Wγγ (= Mµ+µ−) between 0 and 10 GeV. The nuclear cross section

falls off about eight orders of magnitude in the same range of energy. This is caused

by ω1 or/and ω2 dependence of the equivalent photon fluxes in formula (1.2.36).
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Figure 4.2: Invariant mass (left panel) and rapidity of µ+µ− pair (right panel)

distribution in AuAu→AuAuµ+µ− process for
√
sNN = 200 GeV.

We remind that ω1/2 = Wγγe
±Y . The right panel of Fig. 4.2 shows the distribution

in Yµ+µ− = 1
2
(yµ+ + yµ−). One can observe a huge difference between results for

realistic and monopole form factors for large dilepton rapidities.

The distribution presented in Fig. 4.1 is purely theoretical as it cannot be easily

measured. The distributions which could, at least in principle, be measured are

presented in Fig. 4.2. However, every experiment is limited by some acceptance of

its experimental apparatus. We have to include the experimental cuts on rapidity

of outgoing particles or transferred momentum. This can be done relatively easy

within the exact momentum space Quantum Electrodynamics framework. Some

details of this approach are presented in Appendix F. By exact method we mean

the correct inclusion of the 2→ 4 process with exact treatment of the phase-space.

It is, however, rather difficult to include absorption effects in this approach.

Continuing the consideration of differential distributions for dimuon production

in ultrarelativistic heavy-ion collisions, we will show predictions for some experi-

ments. We will include also experimental limitations of the experiments. An inter-

esting example are the predictions for the PHENIX experiment (
√
sNN = 200 GeV).

The PHENIX detector records many different particles emerging from the RHIC

collisions, including photons, electrons, muons, and some charged hadrons. The

PHENIX Collaboration can measure both forward (ηµ > 0) and backward (ηµ < 0)
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muons with pseudorapidity coverage 1.2 < |ηµ| < 2.4 [168] and uses a relatively low

cut on muon transverse momentum p⊥µ > 2 GeV. Due to the rather limited range of

pseudorapidity coverage, we have given names to the four possible regions (squares)

in Fig. 4.3.
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Figure 4.3: The µ+ and µ− rapidity regions available with the PHENIX detector.
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Figure 4.4: Differential cross section as a function of pseudorapidity of the first (left

panel) and second (right panel) muon for square 1.

In spite of these limitations, interesting measurements can be done. As an ex-

ample, in Fig. 4.4 and 4.5 one can see the results for the first and second square.

Here the distributions such as the muon pseudorapidity function are shown. The

left panels are for µ+ and the right panels are for µ−. The predictions for two other
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Figure 4.5: Differential cross section as a function of pseudorapidity of the first (left

panel) and second (right panel) muon for square 2.

squares are the mirror images of the presented results (1→ 3 and 2→ 4). The com-

parison of the red lines (form factor with realistic charge distribution) with the blue

lines (monopole form factor) shows that the inclusion of ”realistic” form factor is

here very important. The difference between the results is larger than one order of

magnitude. This can be caused by a cut on transverse momentum of each muon

(p⊥µ > 2 GeV).
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Now I will present results for the STAR experiment at RHIC. There muons can

be measured in the midrapidity region |η| < 1 and with limitation on p⊥µ > 1 GeV

[169]. The two-dimensional distributions in muon pseudorapidity and muon trans-

verse momentum are shown in Fig. 4.6 for realistic (left panel) and monopole (right

panel) form factors. Their ratio is presented in Fig. 4.7. Big differences with respect

to the monopole case can be seen for large p⊥µ. We can conclude that with larger

cut on transverse momenta, we obtain a bigger difference between results with ”re-

alistic” and ”monopole” form factors. So if we want to do more precise predictions

for concrete experimental situation, we should include the more realistic approach

which takes into account the realistic charge distribution in nucleus.

In our paper on exclusive muon-pair production (Ref. [3]), many more distribu-

tions are discussed and shown. There we present e.g. predictions for the ALICE and

CMS detectors at the LHC. For every case one can observe that the cross sections

obtained with realistic form factors are significantly smaller than those obtained with

the monopole form factors. The effect is bigger for large muon (pseudo)rapidities

and/or large muon transverse momenta.
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Figure 4.8: Total nuclear cross section for the AuAu→AuAuµ+µ− reaction at
√
sNN = 200 GeV as a function of the lower limit on impact parameter.

To close our presentation of results for µ+µ− prediction we wish to compare

results obtained in different approaches. The calculations in the literature usually

concentrate on the total cross section and not on differential distributions. In Fig.

4.8 one can see the dependence of the total cross section on the lower limit of the

impact parameter for different approaches. We present impact parameter space EPA

results (solid curves) for realistic (red lines) and monopole (blue lines) form factors.

The cross section without the cutoff on impact parameter is by about 15% larger

than that for b = 14 fm. This result is smaller than the corresponding cross sections

obtained within momentum space approach (dashed lines). The upper limit of the

integration in b depends on the mass of produced particles. The muon mass is very

small (mµ = 106 MeV) so the distributions in b should probably be calculated in

larger range. But this implies the necessity of extension of the calculation time.

Concurrently the numbers given by Jentschura and Serbo (Ref. [56]) up to b ' RA

are between our results for the b space EPA. However, they have used monopole

form factor. Similarly, Baltz et al. [170] calculated the total cross section in the EPA

framework, but this number is much smaller than the other results. However, they

have imposed extra cuts on b1 and b2 (see Fig. 1.7) instead on b as is usually done.
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Comparing the numbers: σBaltz et al.
tot = 0.142 b and σour result

tot = 0.137 b (red

point in Fig. 4.8), one can see that these results are very similar. The percentage

difference equals to about 3.5%. It is very difficult to decide which approach is

better.

The calculations for exclusive muon-pair production were restricted to lowest-

order QED calculations with special attention to realistic form factors and absorp-

tion effects. Here higher-order correction were completely ignored. The importance

of the QED higher-order correction was demonstrated in Refs. [56, 171]. While

Jentschura and Serbo [56] suggest that the higher-order corrections are rather small,

Baltz [171] obtains a huge reduction of the total nuclear cross section of the order of

20%. Predictions given in Ref. [56] are in agreement with the ALICE experimental

data [172].

It would be also very interesting to calculate the higher-order corrections for

differential distributions which will be measured by the LHC experiments. These

calculations seems to us rather difficult technically.

4.2 ρ0ρ0 meson production

Now I will present results for the production of ρ0ρ0 pairs. No experiment showed

such data. So far only the single ρ0 meson exclusive cross section AA→AAρ0 was

measured at RHIC (Ref. [138]) and recently at the LHC [143]. In this case the ρ0

meson is produced accordingly in photoproduction (photon-Pomeron or Pomeron-

photon fusion). For double-ρ0 prediction one can find only some theoretical predic-

tions in the literature. Usually the integrated cross section is estimated only.

In Fig. 4.9 we show distributions as a function of the impact parameter b cal-

culated in the EPA. The left panel corresponds to the gold-gold collisions at the

RHIC energy
√
sNN = 200 GeV and the right panel presents the results for the

lead-lead collisions at the LHC energy
√
sNN = 5.5 TeV. The dash-dotted lines

are for low-energy γγ fusion component (Wγγ = (1 − 2) GeV) and the dashed

lines show the results for high-energy VDM-Regge component (Wγγ > 2 GeV).

By comparing the contribution of the low- and high-energy components one can
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Figure 4.9: Impact parameter dependence of the cross section for AuAu→AuAuρ0ρ0

reaction at RHIC energy (left panel) and for PbPb→PbPbρ0ρ0 reaction at LHC

energy (right panel).

observe that the low-energy bump dominates at smaller center of mass energy and

the VDM-Regge component becomes important at larger values of
√
sNN . The same

conclusion can be drawn from the distribution in meson rapidity. This was presented

in the previous section (3.3) when discussing results obtained in the γγ fusion and

photoproduction. Next, in Fig. 4.9 I present the results calculated with realistic

charge density (red lines) and monopole form factors (blue lines). One can clearly

see different results for different approaches for calculating the flux factors of equiv-

alent photons. The difference between these two approaches occurs in the whole

range of impact parameter but is larger at larger values of b. Here the results with

absorption effect (b > 2RA) are presented. For larger values of the center of mass

energy one should take a broader range of impact parameter as the corresponding

distribution decreases rather slowly. For example at the LHC energy, the probabil-

ity of the meson pairs production in ultraperipheral heavy-ion collisions is still huge

even at b = 140 fm ≈ 10× the nucleus diameter.

The comparison of the left panels of Figs. 4.9 and 4.1 seems very useful. The

cross section for particle-pairs production at the same range of b is smaller for ρ0ρ0

production than for µ+µ− production. This is caused mainly by the mass of particles.

The muon is about seven times lighter than the ρ0(770) meson.
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4.3 Quark-antiquark production

In Ref. [56] the authors developed a code which calculates the corresponding cross

sections in the EPA in the momentum space. Thus it is possible to compare the

results obtained with the help of the EPA in the impact parameter space with cal-

culations done in the momentum space EPA including realistic charge distribution

in the nucleus [4]. A comparison of the methods has sense only provided the inte-

gration over full range of b is performed in the b-space EPA. Interesting seems to

be also a comparison of the EPA with the exact Quantum Electrodynamics method

(Appendix F). This will be presented as an example for double-photon exclusive

processes with heavy-quark-heavy-antiquark pair production.

Table 4.1: Total nuclear cross section for the direct component of the QQ̄ production

at LHC energy (
√
sNN = 5.5 TeV) for different cuts on the impact parameter.

Process b-space EPA p-space p-space

b > 0 fm b > 14 fm bmax EPA

PbPb→PbPbcc 1.18 mb 1.05 mb 4000 fm 1.23 mb 1.36 mb

1.13 mb 1.00 mb 1000 fm

PbPb→PbPbbb 2.53 µb 2.05 µb 1000 fm 2.54 µb 2.54 µb

In Table 4.1 I summarize the results for the total cross sections for the QQ̄ direct

component calculated within the various models: EPA in the impact parameter

space (second and third column), EPA in the momentum space (the next to last

column) and exact momentum space (last column). The main assumptions of the

momentum space EPA are described in Ref. [56]. To illustrate the absorption effect

(breakup of nuclei), we show both the total cross section calculated from 0 to bmax

and the integral cross section calculated from R1 + R2 ' 14 fm to bmax. The last

row shows the total cross section for the PbPb→PbPbbb̄ reaction. Two approaches

(b-space and momentum space) give results which almost coincide. Additionally,

the cross section for the momentum space approach has exactly the same value as

the cross section for the others approaches. b quark has rather large mass (mb =

4.75 GeV), therefore, the distribution in the impact parameter falls off very quickly



and a limit of bmax = 1000 fm seems sufficient. These numbers demonstrate that

the EPA in impact parameter space (b > 0 fm), EPA in momentum space and

the standard momentum space approach give the same results. Each of the models

allows to consider the process in different kinematic variables. However, only b-space

EPA has a possibility to control the peripheral character of the process. c quark

is more then three times lighter than that for b quark. Thus the integration in the

impact parameter b is also rather slowly convergent. Therefore we also show the

upper limit dependence of the cross section for bmax = 1000 fm and for bmax =

4000 fm. The cross section grows very slowly with the upper limit of the impact

parameter. The results obtained with the help of the momentum space EPA are

very similar to those obtained with the help of the Feynman graph approach.

In contrast to dimuons, the QQ̄ state cannot be directly observed. This was

briefly discussed when presenting elementary cross sections for the γγ → QQ̄ reac-

tion (section 2.1). Finally, in practice one measures rather complicated final states.

Thus one should include quite different processes: Born direct mechanism, LO QCD

corrections, partonic states such QQ̄qq̄ (4-quarks) and QQ̄g (single-resolved).

Table 4.2: Total nuclear cross section for four different mechanisms ofQQ̄ production

at the LHC energy
√
sNN = 5.5 TeV.

Component b-space EPA b-space EPA

b > 0 fm b > 14 fm b > 0 fm b > 14 fm

PbPb→PbPbcc PbPb→PbPbbb

Born 1.18 mb 1.05 mb 2.53 µb 2.05 µb

QCD corrections 0.41 mb 0.36 mb 1.00 µb 0.83 µb

4-quarks 0.82 mb 0.67 mb 9.40 µb 6.98 µb

Single-resolved 0.52 mb 0.39 mb 1.51 µb 0.97 µb

Total 2.93 mb 2.47 mb 14.44 µb 10.83 µb

Table 4.2 presents cross sections for the PbPb→PbPbQQ̄ reaction at the LHC

energy
√
sNN = 5.5 TeV. Each row is assigned to another component. The last row

shows the total cross section for the production of cc̄ or bb̄ quarks. Here we show

the results for the b-space EPA without and with absorption effect. The difference
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between the values of total cross section for bmin = 0 and bmin = 14 fm varies

from 15% (for cc̄ production) to 25% (for bb̄ in the final channel). More interesting

is percentage contribution of every component to the total cross section. Relative

contribution of the Born mechanism to cc̄ production equals about 43%. This large

number is due to the dominance of this component near threshold as shown in Fig.

2.8. The production of bb̄ pair is dominated by the bb̄qq̄ component (65%). The

cross sections presented in the above table are larger than the estimations for the

exclusive heavy-quark production in the double-Pomeron exchange (DPE) process.

In Ref. [173] one can find: σDPEPbPb→PbPbcc̄ = 4.2 µb and σDPE
PbPb→PbPbbb̄ = 0.2 µb. Since

the QED process can be reliably calculated, it can be used as a background for much

more involved diffractive processes.
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Figure 4.10: Differential nuclear cross section as a function of γγ subsystem energy

for cc̄ (left panel) and bb̄ (right panel) production.

Fig. 4.10 depicts nuclear cross section as a function of Wγγ in the EPA (here

bmin = 0 fm). For the Born direct production case it is identical as a distribution in

quark-antiquark invariant mass (MQQ̄). In the other cases the γγ subsystem energy

is clearly different than the QQ̄ invariant mass. Therefore, this distribution is rather

theoretical and would be difficult to measure experimentally. The presented distri-

butions reflect the energy dependence of the elementary cross sections (see Fig. 2.8).

Please note a sizeable contribution of the LO corrections close to the threshold and

at large energies for the cc̄ case. Since in this case Wγγ > MQQ̄, it becomes clear



that the QQ̄qq̄ contributions must have much steeper dependence on the QQ̄ in-

variant mass than the direct one which means that large QQ̄ invariant masses are

produced mostly in the direct process. In contrast, small invariant masses (close

to the threshold) are populated dominantly by the four-quark contribution. There-

fore, measuring the invariant mass distribution one can disentangle the different

mechanisms. As far as this is clear for the cc̄ it is less transparent and more compli-

cated for the bb̄ production. In the last case, the experimental decomposition may

be in practice not possible.

In the present theoretical studies we have presented theoretical cross sections

for quark/antiquark production. In experiments with heavy flavour production one

measures rather charmed or bottom mesons or baryons. The formalism of the quark-

to-meson conversion is rather well known and we could relatively easily calculate

the cross section for a given type of mesons (Refs. [174, 175]). The corresponding

integrated cross sections can be estimated easily by multiplying the present cross

sections for quarks/antiquarks by a corresponding transition probabilities which are

know for a given type of mesons [109,176].

4.4 Two-pion production

Now I will concentrate on the dipion production in ultrarelativistic lead-lead UPCs.

As in the whole dissertation the calculations for π+π− and π0π0 pair production

in γγ scattering are done for realistic charge distribution (form factor) in the col-

liding nuclei. The γγ-induced dipion production in nuclear collision, interesting by

itself, constitutes a background to another type of nucleus-nucleus reactions induced

by photon-Pomeron (Pomeron-photon) exchanges 1, leading to a coherent produc-

tion of ρ0 meson [155,177,178] and its radial excitations. The interplay of the both

processes was not discussed so far in the literature.

1We use the name photon-Pomeron or Pomeron-photon as an abbreviation of multiple scattering

of hadron-like states in the nucleus. This can be better understood in the section about classical-

mechanics Glauber model (Appendix E).
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Figure 4.11: Differential nuclear cross section as a function of π+π− (left panel) and

π0π0 (right panel) invariant mass at
√
sNN = 3.5 TeV and p⊥π > 0.2 GeV.

Fig. 4.11 shows theoretical distributions for the full phase space (blue dashed

lines) and for the angular range corresponding to the experimental limitations usu-

ally used for the ππ production in e+e− collisions (| cos θ| < 0.8 - red dash-dot

lines) or for | cos θ| < 0.9 (black dotted lines). The results are presented for the

PbPb→PbPbπ+π− (left panel) and for the PbPb→PbPbπ0π0 (right panel) reac-

tions. For both cases, the low-energy contribution (Wγγ < 1.5 GeV) does not depend

on the angular cuts. Large differences occurs in the region where the elementary

cross section is described by the pQCD mechanisms (see Fig. 2.19).

Table 4.3: Total nuclear cross section for the dipion production at the LHC energy
√
sNN = 3.5 TeV for different lower cuts on pion transverse momentum.

p⊥π,min PbPb→PbPbπ+π− PbPb→PbPbπ0π0

0.2 46.68 8.67

0.5 12.07 5.09

1.0 0.08 0.05

Usually every experimental set-up requires some minimal value of transverse

momentum. The total cross section strongly depends on the cut in p⊥. Table

4.3 shows the dependence between the value of nuclear cross section and different
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Figure 4.12: Differential nuclear cross section as a function of the transverse pion

momentum at
√
sNN = 3.5 TeV.

lower cuts on the pion transverse momentum at the LHC energy
√
sNN = 3.5 TeV.

The total cross sections are collected for both π+π− and π0π0 channels. One can

see that with larger cut on p⊥π the difference between cross section for charged

and neutral pions starts to be much smaller. This can be better seen in Fig. 4.12.

Here we show distribution in p⊥π for charged (black dashed line) and neutral (red

dotted line) pions for PbPb→PbPbππ reaction. The respective calculation was

performed for the full phase space (| cos θ| < 1) and for the full range of particle

(pseudo)rapidity.

The considered here mechanism of charged pion production constitutes a back-

ground for exclusive production of the ρ0 mesons. In the next section I will present

a more comprehensive analysis of the single and double production of the ρ mesons

in nuclear collisions.

4.5 Single and double ρ meson production

Having fixed the details for single-vector-meson production (see Table 3.2), one can

go to the discussion of double-vector-meson production. Table 4.4 collects total cross

section for single- and double-ρ0 scattering in ultrarelativistic heavy ion collisions.
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A first part of Table 4.4 represents some extension of Table 3.2. Here we concentrate

on the results with a fixed value of the parameter Bρ0 and using the parametrization

for the ρ0 meson smearing which was proposed by the ALICE Collaboration [143].

The cross section for the smeared ρ0 masses is somewhat larger than that for sharp

resonance masses. The difference between the results without and with mass smear-

ing is about 10% for the RHIC energy and 2% for three different LHC energies.

For double-scattering mechanism this difference starts to disappear and equals only

about 3% at the RHIC energy. The double scattering cross section for the ρ0ρ0 pair

Table 4.4: Total nuclear cross section for single ρ0 meson photoproduction and for

γγ fusion as well as for double-scattering production of ρ0ρ0 pairs in ultrarelativistic

heavy ion UPCs.

Energy mρ0 = 0.77549 GeV Mass smearing

single ρ0 production

RHIC (
√
sNN = 130 GeV) 359 407

RHIC (
√
sNN = 200 GeV) 590 646

LHC (
√
sNN = 2.76 TeV) 3309 3405

LHC (
√
sNN = 3.5 TeV) 4000 4089

LHC (
√
sNN = 5.5 TeV) 4815 4944

double scattering

RHIC (
√
sNN = 200 GeV) 1.50 1.55

LHC (
√
sNN = 3.5 TeV) 15.25

double scattering, |ηπ| < 1

RHIC (
√
sNN = 200 GeV) 0.15

LHC (
√
sNN = 3.5 TeV) 0.30

γγ fusion

RHIC (
√
sNN = 200 GeV), VDM-Regge 7.5 10−3

RHIC (
√
sNN = 200 GeV), low-energy bump 95.0 10−3

γγ fusion, |ηπ| < 1

RHIC (
√
sNN = 200 GeV), VDM-Regge 0.5 10−3

RHIC (
√
sNN = 200 GeV), low-energy bump 14.6 10−3



production at the RHIC energy is about 1.5 mb. This is a rather large cross section

(compared to the cross section for exclusive production of ρ0ρ0 via γγ fusion which

is of the order of 0.1 mb at the RHIC energy
√
sNN = 200 GeV). The cross section

for the VDM-Regge component is rather small. Its relative contribution becomes

larger at LHC energies where the γγ luminosities are much bigger.

Table 4.5: Total cross section for nuclear single and double ρ0(770) meson and two

and four pion production in ultrarelativistic UPCs.

Energy mechanism σtot [mb]

RHIC (
√
sNN = 200 GeV) ρ0ρ0 in double-scattering 1.6

−||− ρ0ρ0 in γγ fusion 0.1

−||− π+π−π+π− in γγ fusion 0.1

LHC (
√
sNN = 3.5 TeV) ρ0 in photoproduction 4089.3

−||− π+π− in γγ fusion 46.7

Table 4.5 collects predictions for double ρ0 production in the double- γ-Pomeron

exchanges and γγ fusion as well as results including the ρ0 meson decays into four pi-

ons at RHIC energy. The last part of Table 4.5 shows results for single ρ0 production

and the cross section for pions in the final channel. The photon-photon production

of π+π− composes an irreducible background to the AA→AAρ0 reaction. At LHC

energy, this background constitutes, however, only about 1% of the AA→AAρ0 cross

section.

Theoretical calculations of the photonuclear ρ0 production in the Pb-Pb collision

for LHC energies give very large cross section of the order of a few barns. Table 4.6

contains total cross section predicted by several theoretical groups. The KN, FSZ ans

GM models were discussed in section 3.2. Ivanov et al. [179] have presented results

of calculations which were performed with two parametrizations of the dipole cross

section, KST [180] and GBW [92] fitted their parameters to low and high Q2 data

from HERA experiments.

Fig. 4.13 shows the contribution of the ρ0(770) and ρ′ ≡ ρ0(1450) meson inte-

grated over the whole phase space (without any extra cuts). While the predictions

for the ρ′ meson production are rather uncertain, our prediction for the γγ process
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Table 4.6: Total cross section in barns for the coherent ρ0(770) and ρ0(1450) meson

production at the LHC energies.

Model σtot(PbPb→PbPbρ0(770)) σtot(PbPb→PbPbρ0(1450))

√
sNN ≈ 5.5 TeV

KN [152] 5.200

FSZ [154] 9.538 2.216

RSZ [181] 9.706

IKS [179] /KST-R 4.900

−||− /KST 4.360

−||− /GBW 3.990

−||− /VDM 10.030

GM [144] 10.069

our results 4.944 0.267
√
sNN = 3.5 TeV

our results 4.089 0.221
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Figure 4.13: Invariant mass distributions of π+π− from the decay of ρ0(770) and

ρ0(1450) meson photoproduction and from the γγ fusion in Pb-Pb collisions at
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(blue solid line) should be fairly precise. Here we have taken into account a minimal

experimental cut on transverse momentum p⊥π > 0.2 GeV. The contribution from

the ρ0(770) meson photoproduction dominates over the other contributions up to

about Mππ ' 1 GeV. For larger values of the invariant dipion masses, the ρ′ state

is expected to appear. Because the continuum contribution (called Drell-Söding

mechanism in γp→ π+π−p reactions) of single-photon photoproduction π+π− back-

ground in this region was not studied, we have no information about its interference

with the ρ′ resonance. Therefore, at present it is possible to show only the reso-

nance contribution and we leave the question of the background for future analyses,

including perhaps the ALICE experimental data. The parametrization of the ρ′ line

shape used in our estimate is similar as that for ρ0(770) (see Eq. (3.1.1)). Below we

have introduced an extra form factor which was already discussed (see Eq. (2.4.35)):

dσPbPb→PbPbρ′

dMππ

=

∣∣∣∣∣Aρ′
√
Mππmρ′Γρ′(Mππ)

M2
ππ −m2

ρ′ + imρ′Γρ′(Mππ)
× exp

(
− (W −mρ′)

2

Λ2

)∣∣∣∣∣
2

(4.5.1)

and width:

Γρ′(Mππ) = Γρ′
mρ′

Mππ

(
M2

ππ − 4m2
π

m2
ρ′ − 4m2

π

)3/2

. (4.5.2)

Here we use parameters from [109]: mρ′ = 1.465 GeV and Γρ′ = 0.4 GeV. The

width of the resonance is very large (Γρ′ � 0.1 GeV) and thus one should include

extra (exponential) form factor to suppress the line strength far from the resonance

position (this was already discussed in section 2.4.2).

The cross section for the photoproduction of ρ′ ≡ ρ0(1450) was calculated only in

Ref. [154]. This calculation finds that the ratio of total nuclear cross section for the

production of ρ0(770) to the ρ0(1450) photoproduction is about 5. Here the signal

in π+π− channel is discussed and thus a corresponding branching fraction has to be

included. Unfortunately, this value is not well known. The CRYSTAL BARREL

Collaboration has measured only the ratio of the cross section for two- and four-pion

channels [182]. They found

Br (ρ0(1450)→ 2π)

Br (ρ0(1450)→ 4π)
= 0.37± 0.10 . (4.5.3)
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In this situation we can only calculate an upper limit for the two-pion branching

fraction:

Br
(
ρ0(1450)→ π+π−

)
=

Br (2π)

Br (2π) + Br (4π) + Br (other)

<
Br (2π)

Br (2π) + Br (4π)
=

Br (2π) /Br (4π)

Br (2π) /Br (4π) + 1

' 0.27 . (4.5.4)

We think that reasonable approximation at the moment is to multiply the resonance

contribution for the ρ0(1450) by 0.27/5, as suggested by the calculation (Ref. [154])

and the above upper limit for the branching fraction into charged pions (Eq. (4.5.4)).

It is clear that this will be only an upper estimate for the ρ0(1450) contribution

in the π+π− channel. The relative two-pion contribution from the ρ0(1450) pho-

toproduction is still somewhat larger than observed, for example in the exclusive

electroproduction of two pions with the ZEUS detector at HERA (Ref. [183]). Our

prediction will of course change when we take into account experimental cuts for

a concrete experiment.

In Fig. 4.13, the ρ0 spectra are concentrated in pion-pion invariant mass around

the ρ-resonance position. The ρ0 photoproduction contribution cross sections there

are much above our γγ → π+π− contribution. It is not clear in the moment how the

kinematic cuts may change the proportions of these two mechanisms. This should

be studied in the future, because a comparison of these distributions with real data

could be very interesting and should shed new light on the reaction mechanism.

In contrast, the PbPb→PbPbπ0π0 reaction is free of the photoproduction mech-

anisms. However, it is not clear for us if, in this case, any measurement is possible.



Chapter 5

Electromagnetic excitation of

nuclei

Production of particle pairs in heavy ion UPC at ultrarelativistic energies is as-

sociated with simultaneous production of huge fluxes of photons. The photon(s)

may excite the nucleus (e.g. to a Giant Dipole resonance) and the de-excitation

leads to breakup of the system and the emission of one or a few neutrons in the

direction of the beam. Such neutrons can be registered by the so-called zero-degree-

calorimeters (ZDC’s), i.e., the Solenoidal Tracker (STAR) at RHIC [184] and A Large

Ion Collider Experiment (ALICE) at LHC [185]. In this chapter a description of the

photoexcitation of nuclei and the decay of excited nuclei in the framework of the

Hauser-Feshbach theory will be presented. In addition, the results of our calcula-

tions for γAu→Au∗kn and γPb→Pb∗kn reactions will be confronted with existing

experimental data. Then topological cross sections with a given number of neutrons

in ion-ion collisions will be compared to RHIC and LHC data.

108
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5.1 Photon-induced excitation of nuclei and neu-

tron evaporation

5.1.1 Photoabsorption cross section

In the first step of the calculation of the electromagnetic excitation of nuclei one

has to correctly describe photoabsorption cross section for gold and lead nucleus

(Fig. 5.1).
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Figure 5.1: Photoabsorption cross section for the γ197Au (left panel) and for the

γ208Pb reaction (right panel).

To evaluate the photoabsorption probabilities, in nucleus-nucleus collisions we

need to parametrize the total photoabsorption cross section over a broad range

of energies. Here we are not interested in a microscopic modelling of the different

mechanisms which play an important role at different energies, but rather in a useful

fit of empirical data.

At the lowest energies (Eγ < 40 MeV) of relevance, photoabsorption is dominated

by giant resonances. The energy dependence of the cross section for the giant dipole

resonance (GDR) component (σGDR) is parametrized following Refs. [186,187] as:

σGDR =
2

π
σTRK

E2Γr

(E2 − E2
r )

2 + (EΓr)
2Sr . (5.1.1)

The parameters for the GDR component are presenten in Table 5.1. They are

taken from Ref. [188] for gold and from Ref. [189] for lead nucleus. The value of



σTRK depends on the number of protons (Z), the number of neutrons (N) and the

mass number (A) of the nucleus: σTRK = 60NZ
A

mb MeV.

Table 5.1: Parameters for the giant dipole resonance.

Parameter 197Au 208Pb

Er 13.712 MeV 13.373 MeV

Γr 4.517 MeV 3.938 MeV

Sr 1.35416 1.33716

At somewhat larger energies a so-called quasi-deuteron contribution plays im-

portant role and this component is parametrized as in Ref. [190]:

σQD = 6.5
NZ

A
σdf(E) , (5.1.2)

where

σd = 61.2
(E − 2.224)3/2

E3
mb , (5.1.3)

and

f(E < 20MeV ) = exp

(−73.3

E

)
,

f(20 < E < 140MeV ) = 8.3714× 10−2

− 9.8343× 10−3E + 4.1222× 10−4E2

− 3.4762× 10−6E3 + 9.3537× 10−9E4 ,

f(E > 140MeV ) = exp

(−24.2

E

)
. (5.1.4)

Above photon energy Eγ > 100 MeV the nucleon resonances must be taken into

account. The ∆ resonance being the dominant feature of the excitation spectrum.

We parametrize this region of the photoabsorption cross section as a sum of three

(i = 1, 2, 3) Gaussian functions:

σnucleon res. =
3∑
i=1

Ci
G

σiG
√

2π
exp

(
− (E − µiG)

2

2 (σiG)
2

)
, (5.1.5)

where the parameters for gold nucleus found from our fit (see Fig. 5.1) are given in

Table 5.2. For gold nucleus, the Gaussian function is scaled by 197/208.
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Table 5.2: Parameters for the Gaussian (nucleon resonances, see Eq. (5.1.5)) and

exponential components (low-energy continuum, see Eq. (5.1.6)) in parametrization

of the total photoabsorption cross section for gold nucleus. The units of these

parameters are the following: [σG/exp] = MeV, [µG/exp] = MeV, [CG] = b MeV,

[Cexp] = mb/MeV.

Parameter i=1 i=2 i=3

CG 17 19 4

σG 90 200 90

µG 315 700 1

Cexp 32 · 10−3

σexp 1050

µexp 100

Above Eγ > 0.5 GeV the resonant contributions disappear and the continuum

related to breakup of nucleons starts to be important. The corresponding total cross

section (forward amplitude of photon elastic scattering) is usually parametrized by

exchange of Pomeron at very large energies and subleading Reggeons at interme-

diate energies. In our simple parametrization the Pomeron exchange contribution

is parametrized as a constant and slightly phenomenological function is used to

represent the Reggeon exchange contribution.

For energies between 1 GeV and 8 GeV we describe the data by using an expo-

nential function:

σlow−energy
nucleon continuum = Cexp (E − µexp) exp

(− (E − µexp)

σexp

)
, (5.1.6)

where the parameters are given in Table 5.2.

For the high energy part (Eγ > 8 GeV) we use a simple functional form given in

Ref. [191]:

σhigh−energy
nucleon continuum =

(
15.2 + 0.06 ln2

(
E

ω0

))
mb, (5.1.7)

For gold nucleus, this is scaled by 197/208 and ω0 = 80 GeV (Ref. [191])

Summarizing the nuclear photoproduction cross section can be written as

σγA = σGDR + σQD + σnucleon res. + σnucleon cont. (5.1.8)



This multicomponent parametrization is compared to the experimental data [192]

for photoabsorption on gold and lead nuclei in Fig. 5.1. As can be seen from the

figure the quality of the description of the data is fully sufficient for our purpose.

5.1.2 Decays of excited nuclear system

The calculation of probability of evaporating a given number of neutrons as a func-

tion of 197Au and 208Pb excitation energy was performed with the help of a Monte

Carlo code GEMINI++ [193]. In this code the evaporation process is described

by the Hauser-Feshbach formalism [194], in which the decay width for evaporation

of a particle i from the compound nucleus with excitation energy E∗ and spin SCN is:

Γi =
1

2πρ(E∗, SCN)

∫
dε

∞∑
Sd=0

SCN+Sd∑
J=|SCN−Sd|

J+Si∑
`=|J−Si|

T`(ε)ρ(E∗ −Bi − ε, Sd), (5.1.9)

where Sd is the spin of the daughter nucleus, Si, J and ` are spin, total and angular

momentum of the evaporated particle, ε, Bi are kinetic and separation energies,

T` is its transmission coefficient, ρ and ρCN are level densities of the daughter and

compound nucleus, which can be calculated from the formula:

ρ(E∗, S) ∝ (2S + 1) exp
(

2
√
a(U, S)U

)
, (5.1.10)

where U = E∗ − Erot(S) − δP is thermal excitation energy calculated by taking

into account pairing corrections to the empirical mass formula (δP ) and rotational

energy Erot(S). In the calculations the separation energies Bi, nuclear masses, shell

and pairing corrections were used according to Ref. [195]. Level density parameter

a(U, S) was calculated as:

a(U, S) = ã(U)

(
1− h(U/η + S/Sη)

δW

U

)
, (5.1.11)

where δW is the shell correction to the liquid-drop mass and ã is smoothed level-

density parameter, the function specifying the rate of fadeout is h(x) = tanhx, the

fadeout parameter η was set to 18.52 MeV and the parameter Sη was set to 50 ~.

The smoothed level density parametrization depends on the excitation energy of

nucleus as:

ã(U) =
A

k∞ − (k∞ − k0) exp
(
− κ
k∞−k0

U
A

) , (5.1.12)
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where k0 = 7.3, k∞ = 12 and κ = 0.00517 exp(0.0345A) [193].

We assume that in photoproduction excited nucleus is formed with angular mo-

mentum equal to 0 (which we believe is a good approximation for photoproduction)

and full energy is used for excitation of the nucleus. The calculation of the decays

is done with energy step of 1 MeV. For each excitation energy 105 events (decays)

were generated. Finally, neutron emissions probabilities were obtained from the MC

sample for each excitation energy (see histograms in Fig. 5.2). The sum of all prob-

abilities obtained from GEMINI++ code (orange solid line = sum of all coloured

lines) coincides with the sum off all probabilities from our fit (green dotted line =

sum of all black solid lines).
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Figure 5.2: Probability of neutron multiplicity as a function of excitation energy of

197Au nuclei (left panel) and of 208Pb nuclei (right panel).

The fractions of events with a k-neutron final state (k is the neutron multiplicity)

at excitation energy E∗ can be well fitted by a sum of the following purely empirical

functions:

f(E∗, k) = fexp(E∗, k) + fGauss(E
∗, k) , (5.1.13)

where

fexp(E∗, k) = Cexp (E∗ − µe)2 exp

(− (E∗ − µe)
σe

)
, (5.1.14)

fGauss(E
∗, k) =

CG

σG
√

2π
exp

(
− (E∗ − µG)2

2σ2
G

)
. (5.1.15)



5.1.3 Excitation functions for the γAu→Au∗ →kn and for

the γPb→Pb∗ →kn reactions

Using photoabsorption cross sections which are shown in Fig. 5.1 and probabilities

to emit a fixed number of neutrons (k) which are shown in Fig. 5.2, one can calculate

photon-induced excitation function with a given number of associated neutrons. The

results are presented in Figs. 5.3, 5.4, 5.5.
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Figure 5.3: Excitation function for the γ197Au → 1n196Au reaction (left panel; ex-

perimental data are from Refs. [188, 189, 196–203]) and for the γ208Pb → 1n207Pb

reaction (right panel; experimental data are from Refs. [188,203–209]).

Experimental data are denoted by the coloured points and the description in

the legend means the year when the paper was published where one can find the

experimental data. References to these data are set in the figure caption. A relatively

good agreement with the world data is obtained. This is rather surprising given

that our calculation implicitly assumes equilibration of the nuclear system (Hauser-

Feshbach formalism) formed after absorption of the photon. One can observe a small

disagreement of experimental data sets obtained by different groups for production

of two neutrons (Fig. 5.4). If we assumed that part of the energy of the photon would

escape before equilibration of the nuclear system (due to pre-equilibrium processes)

the agreement with the data would be much worse. Having proven usefulness of our
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approach we can proceed to the excitation of nuclei in UPCs and related production

of neutrons from the excited nuclear systems.
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Figure 5.4: Excitation function for the γ197Au → 2n195Au reaction (left panel; ex-

perimental data are from Refs. [188, 200–202, 210]) and for the γ208Pb → 2n206Pb

reaction (right panel; experimental data are from Refs. [188,202,209]).
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5.2 Electromagnetic excitation in heavy ion

UPCs

In this section we will use the classical probability methods [211–213] needed to

describe the electromagnetic excitation of ions in UPCs due to multiple photon

exchanges.
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Figure 5.6: Feynman diagrams for single (left panel) and double (right panel) exci-

tation in heavy ion UPCs.

One can identify single and double excitation in heavy ion UPCs (see Fig. 5.6).

Because the coupling constant Zαem is large (≈ 0.6 for gold and lead nuclei), single-

photon and two-photon reactions may be accompanied by additional photonuclear

reactions. These photonuclear reactions can lead to collective nuclear excitations

(e.g. GDR).

The excitation cross section for the mechanism presented in the left panel of Fig.

5.6 can be expressed through the following equation

σ (A1A2 → A1A
∗
2) =

∫
d2bPsurv (b)P exc

A2
(b) . (5.2.16)

Psurv (b) here is the probability for the nuclei to survive the collision without ad-

ditional strong interactions. This factor takes the form similar to the absorption

factor (Eq. (B.0.2))

Psurv (b) ≈ θ (|b| − (R1 −R2)) , (5.2.17)

where R1/2 denotes a radius of the first and second nucleus and b is impact parameter

vector. Now we should introduce the mean number of photons absorbed by a nucleus

A2 in the collision with nucleus A1:

nA2 (b) =

∞∫
Emin

dENA1 (E,b)σtot (γA2;E) . (5.2.18)
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Here σtot (γA2;E) is the photoabsorption cross section which was discussed in section

5.1.1. Here the nucleus photon flux is expressed through Eq. (1.2.37) (but one should

replace the parameter ω → E and now argument u (Eq. (1.2.25)) explicitly depends

on the γlab = 2γ2
cm−1 and not γcm =

√
sNN/(2mN)). Above E is the photon energy

in the rest frame of nucleus A2. The lower limit of integration in Eq. (5.2.18)

is the threshold for photoexcitation. For statistically independent absorption, we

can write the probability of absorption of n photons at impact parameter b in the

Poissonian form

wn (b) =
(nA (b))n

n!
exp [−nA (b)] . (5.2.19)

In the next step, one should define the probability density for a single photon (left

panel of Fig. 5.6) to excite nucleus A2 in a collision at the impact parameter vector

b of the A1-A2 collision:

p
(1)
A2

(E,b) =
NA1 (E,b)σtot (γA2;E)

nA2 (b)
. (5.2.20)

Still under the assumption of statistical independence, n photons will excite the

nucleus with the probability density

p
(n)
A2

(E,b) =

∫
dE1 dE2...dEnδ

(
E −

n∑
j=1

Ej

)
× p

(1)
A2

(E1,b) p
(1)
A2

(E2,b) ...p
(1)
A2

(En,b) . (5.2.21)

All the n-photon probability densities at each b are normalized as follows

∞∫
Emin

dE p
(n)
A2

(E,b) = 1 . (5.2.22)

We shall show the results for n = 1 and n = 2, i.e., we will consider processes up to

two photon exchanges (second diagram in Fig. 5.6). Generally, the probability for

the excitation of nucleus A2 in the n-photon process is given by

wn (b) p
(n)
A2

(E,b) . (5.2.23)

Summing over all numbers of photons

dP exc
A2

(b)

dE
=
∑
n

wn (b) p
(n)
A2

(E,b) (5.2.24)



and expecting the single-photon absorption to dominate one can rewrite

dP exc
A2

(b)

dE
≈ exp [−nA2 (b)]NA1 (E,b)σtot (γA2;E) . (5.2.25)

It is worth to note that this may, in practice, depend on the impact parameter.

Then the total probability for the nucleus to be excited is

P exc
A2

(b) =

∫
dE

dP exc
A2

(b)

dE

= 1− exp [−nA2 (b)]

= exp [−nA2 (b)] (exp [nA2 (b)]− 1)

≈ nA2 (b) exp [−nA2 (b)] . (5.2.26)

Inserting the excitation probability to Eq. (5.2.16) one can calculate the single

excitation cross section. Sometimes we are interested in the excitation cross section

containing only excitations up to Emax 6 100 MeV, then we can calculate the cross

section from:

σtot (A1A2 → A1A
∗
2;Emax) ≈

∫
d2bPsurv (b) exp [−nA2 (b)]

×
Emax∫
Emin

dENA1 (E,b)σtot (γA2;E) . (5.2.27)

As is apparent,

w0 (b) = exp [−nA2 (b)] (5.2.28)

is the contribution to the survival probability from the electromagnetic dissociation

channels.

The cross section for mutual electromagnetic dissociation can be written

σtot (A1A2 → A∗1A
∗
2) =

∫
d2bPsurv (b)P exc

A2
(b)P exc

A1
(b) . (5.2.29)

A1

A2

A∗
1(E

∗
1 = E1)

A∗
2(E

∗
2 = E2)
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Figure 5.7: Feynman diagram for mutual excitation in heavy ion UPCs.
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Fig. 5.7 shows the case when each of the nuclei emits a photon that then excites

the collision partner. We shall call this case mutual excitations. the diagram shows

the minimal mechanism needed to excite both nuclei simultaneously. Higher-order

diagrams are possible as well.

In the next part of this section I will present our results for electromagnetic

excitation of nuclei in UPCs.

Table 5.3 presents the dissociation cross section at the RHIC energy
√
sNN = 200 GeV. We compare the results obtained by us to the results given

in Ref. [214]. Our results extremely well agree with those obtained by Baltz et al.

This is a very good check of our model.

Table 5.3: Cross section in barns for single-nucleus, single-photon excitation for

different ranges of excitation energy for 197Au+197Au collisions at
√
sNN = 200 GeV.

ωmax [MeV] Our results Baltz et al.

25 65.0 65

103 71.4 70

440 82.7 82

2000 89.9 90

17840 94.0 94

Table 5.4 shows the cross section in barns for one-nucleus single-photon excitation

for different ranges of excitation energy and different collision energies represented

by different γc.m. adequate for RHIC and the LHC. The calculation was done for

lead nuclei even at lower (RHIC) energy in order to compare with results published

in Ref. [191]. Our results are compared with an earlier calculation by Vidović et

al. [191]. Again very good agreement is observed. One can see that the largest

difference between presented numbers is for the middle (second row) range of energy

(≈ 2%).

Now I will present results in the form of distributions. In Fig. 5.8 we have

collected the cross section for neutron emission from only one Au nucleus relevant

for Au-Au collisions at the RHIC energy
√
sNN = 130 GeV (left panel of Fig.

5.8) and similar results but for Pb-Pb collisions at
√
sNN = 2.76 TeV (right panel)



as a function of neutron multiplicities (k = 0, 1, 2, 3, 4, 5, 6). Our results for the LHC

energy are confronted with the experimental data of the ALICE Collaboration [215].

One can observe some disagreement especially for three neutron final state. However,

for the ratio 2n/1n we obtain within 21.6% which is in good agreement with the

ALICE result of (22.5± 0.5 stat ±0.9 syst) %.

Table 5.4: Cross section in barns for single-nucleus, single-photon excitation for

different ranges of excitation energy for 208Pb+208Pb collisions.

ω Our results Vidović et al.

γc.m. = 100

(6− 40) 77.7 77.6

(40− 2000) 26.1 25.7

(2000− 80000) 5.6 5.6

γc.m. = 3100

(6− 40) 133.4 133.6

(40− 2000) 55.1 53.7

(2000− 80000) 18.8 18.7
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Figure 5.8: Cross section for a given multiplicity of neutrons in single-nucleus, single-

photon excitation in 197Au+197Au collisions at
√
sNN = 130 GeV (left panel) and in

208Pb+208Pb collisions at
√
sNN = 2.76 TeV (right panel).
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Table 5.5: Cross section (in barns) for mutual excitations with a given number of

neutrons emitted from both nuclei in 197Au+197Au collisions at the RHIC energy
√
sNN = 130 GeV.

1n 2n 3n 4n 5n 6n

1n 0.5082 0.1002 0.0195 0.0137 0.0096 0.0091

2n 0.1002 0.0198 0.0038 0.0027 0.0019 0.0018

3n 0.0195 0.0038 0.0007 0.0005 0.0004 0.0003

4n 0.0137 0.0027 0.0005 0.0004 0.0003 0.0002

5n 0.0096 0.0019 0.0004 0.0003 0.0002 0.0002

6n 0.0091 0.0018 0.0003 0.0002 0.0002 0.0002∑
0.6603 0.1302 0.0252 0.0178 0.0126 0.0118∑

0.8579

Table 5.6: Cross section (in barns) for mutual excitations with a given number of

neutrons emitted from both nuclei in 208Pb+208Pb collisions at the LHC energy
√
sNN = 2.76 TeV.

1n 2n 3n 4n 5n 6n

1n 0.7043 0.1543 0.0248 0.0168 0.0121 0.0116

2n 0.1543 0.0339 0.0052 0.0037 0.0026 0.0025

3n 0.0248 0.0052 0.0009 0.0006 0.0004 0.0004

4n 0.0168 0.0037 0.0006 0.0004 0.0003 0.0003

5n 0.0121 0.0026 0.0004 0.0003 0.0002 0.0002

6n 0.0116 0.0025 0.0004 0.0003 0.0002 0.0002∑
0.9239 0.2022 0.0323 0.0221 0.0158 0.0152∑

1.2115

Two-photon exchanges may also lead to simultaneous excitation of both nuclei

(see Fig. 5.7). In Table 5.5 and 5.6 we have collected topological cross sections with

a given number of neutrons emitted from first (k1 neutrons) and second (k2 neutrons)

nucleus. We can compare our results with numbers given by Pshenichnov [213]. Our

cross sections for neutron multiplicities k1 = 1 and k2 = 1 are smaller by about 17%



for RHIC and 5% for LHC energies than those in [213]. The differences quantify the

uncertainties of theoretical calculations.
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Figure 5.9: Cross section for one-neutron and two-neutron emissions in 197Au+197Au

collisions at
√
sNN = 130 GeV (left panel) and mutual cross section for RHIC and

LHC energy (right panel).

The left panel of Fig. 5.9 depicts the summary of the cross section for one-neutron

and two-neutron emissions at the RHIC energy. We refer to the data published in

[216] from the PHENIX, PHOBOS and BRAHMS Collaborations, where the ratios:

σ(1, X)/σtot, σ(1, 1)/σtot, σ(2, X)/σ(1, X) were collected. In our figure we have

presented also corresponding values obtained by Baltz et al. [217] and Pshenichnov

et al. [218]. In order to obtain our cross sections in barns we have multiplied the

ratios given in Ref. [216] by the σtot = 10.8 b taken from the same reference. We

have fairly good agreement with the experimental data for one neutron emissions

and rather bad agreement for two neutron emission. In Ref. [15] we have shown

contributions to mutual excitations from different regions of excitation energy of

the first and second nucleus for RHIC and LHC. Quite large ranges of excitation

energies (E∗1 , E
∗
2 > 10 GeV) contribute to the mutual excitation. The right panel of

Fig. 5.9 presents the sum of the cross sections corresponding to the different regions.

The sum adequately describes experimentally measured cross section at RHIC and

LHC. We have confronted our numbers with the results obtained at RHIC [216] and

by the ALICE Collaboration at the LHC [215]. We have obtained good agreement
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with the experimental data. A percentage difference equals to 7.2% for RHIC and

only 2.5% for LHC energy. This seems to be a rather satisfactory agreement.
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Figure 5.10: Single EMD cross sections as a function of
√
sNN for Au+Au (left

panel) and Pb+Pb (right panel) collisions.

Excitation functions are particularly interesting. In Fig. 5.10 we show the total

cross section (black solid lines) for electromagnetic excitation as a function of
√
sNN

as well as the partial cross sections for one-neutron (green dashed lines) and two-

neutron (blue dotted lines) final states. Our results are collected together with

existing experimental data. The data for σEMD(AuAu→AuAu∗) reaction are taken

from SPS [219] where Au-Pb collision were measured. These data were rescaled

to Au-Au case. The results for Pb-Pb collisions are taken from SPS [220] and

from the LHC (ALICE) [215]. We get very good agreement with experimental

data for both SPS and the LHC. It should be noted that we concentrate only on

the neutrons evaporated from the electromagnetically excited nuclei. We do not

account for neutrons from other hadronic processes, like the intranuclear cascading

(see for example [213, 218]). We also neglect the mutual excitation of nuclei by

strong interactions.

Fig. 5.11 presents purely theoretical results. Here we show our result

for Au+Au→AuAu∗ reaction at the RHIC energy
√
sNN = 130 GeV and for
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Figure 5.11: Differential cross section for a single and double excitation in UPCs

of 197Au+197Au at
√
sNN = 130 GeV (left panel) and 208Pb+208Pb at

√
sNN =

2.76 TeV (right panel) as a function of nucleus excitation energy.

PbPb→PbPb∗ reaction at the LHC energy
√
sNN = 2.76 TeV. The dashed line repre-

sents contribution of single-photon excitation (left diagram in Fig. 5.6) and the dot-

ted line double-photon excitation (right diagram in Fig. 5.6). Both leading-order

and next-to-leading order contributions reflect maxima present in the energy de-

pendence of photoexcitation of Au or Pb nuclei. The double-photon contribution is

rather small. Even at the very high nucleus-nucleus collision energy the low-energy

(E∗ < 40 MeV) nuclear excitations are still essential. The double-photon excitation

contribution is much smaller than the single-photon one. In addition, the highest

peak appears at the excitation energy twice larger than for single-photon excitation,

which corresponds to excitation of giant dipole resonance excited on top of an al-

ready excited one. Such processes were already discussed in the literature (see [213]

and the references therein).

So far we have applied the formalism to the calculation of the electromagnetic

excitations of one or both nuclei. However, the formalism presented in this chapter

may be easily applied to other exclusive ultraperipheral ultrarelativistic heavy ion

processes such as: AA → AAJ/Ψ, AA → AAρ0, AA → AAe+e−, AA → AAµ+µ−.

AA→ AAπ+π−, AA→ AAπ+π−π+π−.



Chapter 6

Summary

The main goal of the dissertation was a theoretical determination of the total and dif-

ferential cross sections for the production of different particle pairs that are created

in ultraperipheral ultrarelativistic heavy ion collisions. The Relativistic Heavy-Ion

Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN produce

Au+Au and Pb+Pb collisions at energies 200 GeV/nucleon and 2.76 or 5.5 TeV/nu-

cleon, respectively. In this dissertation theoretical predictions for different ultrape-

ripheral processes that could be studied experimentally at these energies have been

presented.

In Chapter 1 we have discussed the Equivalent Photon Approximation which

is a theoretical tool for calculation of the reaction mechanism in ultrarelativistic

electromagnetic heavy ion collisions. In the literature this analysis is commonly re-

ferred to as the Weizsäcker-Williams method. The core of the Weizsäcker-Williams

approach is to approximate the electric and magnetic fields of an ultrarelativistic

charge as appropriate plane wave pulses of electromagnetic radiation. The first pulse

is a transverse electromagnetic wave which moves along the fast moving particle di-

rection and the second one is perpendicular to the first one. From the presentation

of a frequency spectrum of these pulses, one can conclude that a significant contri-

bution to further calculations comes from the perpendicular contribution of N(ω, b).

For ultrarelativistic collisions of heavy ions, the second pulse can be neglected. We

have derived the exact form of the equivalent photon fluxes for realistic charge dis-

tribution and for a point-like charge and we have compared the equivalent photon
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fluxes as a function of the impact parameter for gold and lead nucleus for realis-

tic (Fourier transform of the realistic charge distribution), monopole and point-like

form factor. The biggest differences for these three cases appears for b < 10 fm.

A typical analysis of the EPA leads to the total cross section which is factorized into

an equivalent photon spectrum and the photon-ion interaction cross section. We

consider ultraperipheral heavy ions UPCs, thus impact parameter plays a key role

in this approach. The final form of the cross section in the b-space EPA is expressed

through the five-fold integral over:

1. b - impact parameter,

2. bx - x component of b1+b2

2
,

3. by - y component of b1+b2

2
,

4. Wγγ - energy in the γγ system,

5. YX1X2 - rapidity of the outgoing X1X2 system.

In our approach we have an opportunity to present differential cross sections

as a function of the impact parameter and in other kinematic variables. The most

important physical quantity for the production of particle pairs is the charge form

factor of the nucleus which is hidden in the equivalent photon spectra.

In Chapter 1.4 we have presented the calculation which leads to our better un-

derstanding of the role of the nuclear form factor. First, we have reminded the

differential cross section (Mott cross section) for elastic electron-nucleus scattering

which is a modification of the relativistic Rutherford (for point-like and spinless par-

ticles) differential cross section. The change relies on the inclusion of the electron

spin effects. In practice, the experimental cross section differs from the Rutherford

cross section by a factor which depends on the momentum transfer. This quantity

is so-called nucleus form factor. In the literature one can find several different forms

of the form factor. We have focused on a comparison of results for the realistic and

monopole form factor both for Au-Au and Pb-Pb collisions. The realistic charge

distribution in a nucleus, which is used to calculate the Fourier transform, can be

parametrized with the help of the two-parameter Fermi formula. The monopole
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form factor depends on the root mean square radius of the nucleus. It was shown

that the monopole and realistic form factors coincide at very limited range of mo-

mentum transfer. With larger value of q the difference becomes larger. In general,

the form factor reduces the scattering cross section for large momentum transfer.

In Chapter 2 we have focussed on the discussion of the elementary cross sections

for the γγ fusion. Each section in this chapter is devoted to another subprocess:

• dimuon production,

• ρ0 mesons production,

• quark-antiquark production,

• two-pion production.

First we have presented the elementary cross section for dimuon production

as a function of the γγ energy. The formula describing the γγ → µ+µ− process

is a text-book formula and is often called the Breit-Wheeler formula.

In the next section of Chapter 2 we have discussed the low- (Wγγ = (1− 2) GeV) and

high-energy (Wγγ > 2 GeV) components of the γγ → ρ0ρ0 cross section. The low-

energy part of the elementary process has been parametrized and the parameters

have been fitted to the e+e− data while the high-energy part has been modelled in

the vector-dominance Regge type model with parameters which were used to de-

scribe other hadronic processes. The model turned out to be consistent with the

highest-energy data point (Wγγ > 2.5 GeV) obtained from e+e− collisions. The cross

section above Wγγ = 3.1 GeV was never measured.

In the next section we have studied the elementary cross section for the γγ → QQ̄X

reaction. We have started with the Born direct contribution. The leading-order ele-

mentary cross section for the γγ → QQ̄ reaction as a function of Wγγ takes a simple

form which differs from that for the γγ → l+l− reaction by color factors and frac-

tional charges of quarks. However, in contrast to the QED production of lepton

pairs in γγ collisions, the situation for γγ → QQ̄ is much more complicated and we

have included other partonic final states such as QQ̄g and QQ̄qq̄. The contribution

from photon single-resolved components has been calculated too. The contributions



of each reaction to the elementary cross section have been compared to other mech-

anisms for the production of cc̄ and bb̄ quark pairs.

In the last section of this chapter we have discussed the γγ → ππ reactions, starting

from the two-pion threshold up to about Wγγ = 6 GeV. Several reaction mechanisms

have been identified. We have included:

• the dipion continuum due to pion exchange (for the γγ → π+π− reaction),

• ρ± exchange (for the γγ → π0π0 reaction),

• several dipion s-channel resonances:

1. f0(600),

2. f0(980),

3. f2(1270),

4. f0(1500),

5. f ′2(1525),

6. f2(1565),

7. f2(1950),

8. f4(2050).

• QCD mechanisms:

– Brodsky-Lepage mechanism,

– handbag model mechanism.

This multicomponent model was then used to describe the world data for the

γγ → ππ reactions. We have described the world data for γγ → ππ for the first time

both for the total cross section and for angular distributions both for γγ → π+π−

and γγ → π0π0 reactions simultaneously for all experimentally available energies.

We have adjusted some free parameters to get a reasonable description of the experi-

mental data. We have obtained that the decay width of f0(600) is much smaller that

that found in other partial wave analysis. Inclusion of the f4(2050) spin-4 resonance
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improves angular distributions close the position of resonance peak. By fitting to

the BELLE Collaboration data we have found Γf4(2050)→γγ = 0.7 keV. At higher

energies (Wγγ > 2.5 GeV) the angular distributions for the γγ → π0π0 reaction

show an enhancement at large | cos θ|. Such an enhancement was predicted before

both by the Brodsky-Lepage and by the handbag model approaches separately. We

have shown that a proper mixture of both processes provides a better description of

the experimental data than each of them separately.

In Chapter 3 we have presented calculations for differential distributions for

double-ρ0-meson production as well as four-pion production in exclusive ultrape-

ripheral ultrarelativistic heavy ion collisions via a double-scattering mechanisms of

single ρ0 photoproduction. The calculations have been done in the impact parame-

ter space. We have included the smearing of ρ0 meson masses and we have used the

latest ALICE data to parametrize the Breit-Wigner amplitude and the Drell-Söding

type continuum term to calculate distributions of the final state pions. The ex-

istence of these data allows to consider ρ0ρ0 or corresponding π+π−π+π− double

photoproduction in broad range of center of mass energy of the four pion system.

Our results for single-ρ0 production well agree with the STAR and ALICE exper-

imental data. The produced ρ0 mesons decay, with almost 100% probability, into

charged pions, giving large contribution to exclusive production of the π+π−π+π−

final state. We have made a comparison of four-pion production via ρ0ρ0 production

(nuclear photoproduction and γγ fusion) with experimental data measured by the

STAR Collaboration for the AuAu→AuAuπ+π−π+π− reaction. The theoretical pre-

dictions have similar shape in four-pion invariant mass as the distribution measured

by the STAR Collaboration, but exhaust only about 20% of the measured cross sec-

tion. The missing contribution can come from excited states of ρ0(770) (e.g. ρ0(1450)

and ρ0(1700) resonances) and their decay into four charged pions. A separation of

the double-scattering, γγ, ρ0(1450) and ρ0(1700) mechanisms seems very important

in a future. In general, transverse momentum of each of the produced ρ0’s in the

double-scattering mechanism is smaller than in the other mechanisms. As a conse-

quence, the pions from the decay of ρ0’s from the double-scattering mechanism are



produced dominantly back to back in azimuthal angle. This could be used to en-

hance the purity of the experimental sample as far as double-scattering mechanism

is considered. Clearly further studies are needed. At large (pseudo)rapidity sepa-

rations between two ρ0’s and/or large π+π−π+π− (pseudo)rapidity separations, the

double-scattering contribution should dominate over other contributions. The iden-

tification of the dominance region seems difficult, if not impossible, at RHIC. We

plan a separate careful analysis devoted to the ALICE experimental conditions.

It would be interesting if different mechanisms discussed in this dissertation could

be separated and identified experimentally in the future. This requires, however,

rather complicated correlation studies for four charged pions.

Chapter 4 includes collection of our theoretical results. The nuclear cross sections

have been calculated with the help of EPA in impact parameter space. A part of

results have been obtained with the help of EPA in momentum space and even using

Feynman diagrammatic approach in the momentum space. This Chapter is divided

into five sections and each section includes nuclear calculations corresponding one-

to-one to the sections in Chapter 2 (elementary cross sections) plus additional section

which sums up the results for single and double ρ0(770) meson and two and four pion

production. We have presented predictions of a total and differential cross sections

for the production of particle pairs which come from ultraperipheral ultrarelativistic

heavy ion collisions. Calculations have been devoted to experiments at the RHIC

and LHC accelerators. We have presented one and two-dimensional distributions

in impact parameter (b), invariant mass (MX1X2), rapidity of particle pairs (YX1X2),

pseudorapidity of a particle in the final state (ηX1/2
) and transverse momentum of

the produced particle (p⊥X1/2
). In this dissertation we have presented a study of the

role of charge density in nuclei or nuclear form factor for the exclusive production of

particle pairs in heavy ion UPCs. Most of calculations in the literature use so-called

monopole charge form factor, which allows to write several formulae analytically.

While it may be reasonable for the total rate of the particle production it is certainly

too crude for differential distributions and for the cross sections with extra cuts

imposed on transverse momenta of the particles X1 and X2. Our calculations have

shown that the results obtained with the realistic and the approximate form factors
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may differ considerably. The effects related to the charge distribution in nuclei

are particularly important at large invariant mass and rapidity of particle pairs

or at large pseudorapidity and transverse momenta of particle. We have presented

predictions for the PHENIX detector at RHIC. We have found significant deviations

from the reference calculation obtained with the monopole form factor. It would

be interesting to pin down the effects discussed here and verify the predictions in

future studies at the LHC. In practice such studies may not be simple as an efficient

trigger for the ultraperipheral collisions is required. The multi-photon exchanges

leading to additional excitation of nuclei and subsequent emission of neutrons could

be useful in this context. The neutrons could be then measured by the Zero Degree

Calorimeters. First measurements of this type for e+e− pair emission have been

already performed by the STAR and PHENIX Collaborations.

We have also discussed the role of absorption effects which can be easily estimated

in the impact parameter space. We have done this e.g. following the example

the exclusive production of charm-anticharm and bottom-antibottom pairs, for the

QQ̄g and QQ̄qq̄ final state, as well as for the single-resolved components in lead-

lead collisions for the LHC energy (
√
sNN = 5.5 TeV). Large cross sections have

been found in the case of charm quarks (antiquarks) production. In contrast to

the exclusive dilepton production in the case of the heavy-quark-heavy-antiquark

production, large QCD corrections appears. Their fractional contribution strongly

depends on the γγ subsystem energy. The absorption effects turned about to be

larger for bottom quarks (20%) than for charm quarks (10%). The calculations

obtained with the help of EPA in the parameter space, EPA in the momentum

space and exact momentum space are very similar. Since these methods lead to

similar effects, one can use the momentum space approach to calculate, or at least

to estimate, different observables which are not straightforward in the b-space EPA

approach. We have found that the contributions of two- and four-quark and single-

resolved final states are of similar size. We have found also that the large invariant

masses of the QQ̄ system are populated predominantly by the direct γγ → QQ̄

subprocesses, while smaller invariant masses are dominated by the γγ → QQ̄g, γγ →
QQ̄qq̄, or photon single-resolved components. This could be potentially helpful



in experimental identification of the all components. There are known experimental

methods for distinguishing large transverse momentum b (b̄) jets; therefore, exclusive

measurement of such jets should be possible in future LHC experiments.

Next we have calculated the cross section for the exclusive production of charged

and neutral pions in heavy ion UPCs. The calculation of distributions for individual

pions is slightly more complicated in the b-space EPA. The distributions in dipion

invariant mass have been compared with the contribution of exclusive ρ0 → π+π−

production in γIP (IPγ) mechanism. Close to the ρ0 resonance the γγ → π+π−

mechanism yields only a small contribution. The γγ contribution could be, perhaps,

measured outside of the ρ0 resonance window. A detailed comparison with the

absolutely normalized ALICE experimental data should allow a quantitative test

of our predictions. Imposing several experimental cuts may enhance the γγ → ππ

contribution. We have analysed exclusive production of two and four pions. So far

nobody, except of our group, has presented a model or/and predictions for four-

pion production in nuclear reactions. In this dissertation we have concentrated on

processes with final nuclei in the ground state. It is very difficult, if not impossible,

to measure such very forward/backward nuclei. The multiple Coulomb excitations

associated with ρ0ρ0 production may cause additional excitation of one or even both

nuclei to the giant resonance region. We plan a detailed study of these processes in

the future.

In Chapter 5 we have presented a new approach for calculating the excitation

of Au and Pb nuclei in photoabsorption reactions as well as in ultraperipheral ul-

trarelativistic heavy ion collisions. The photoabsorption cross section on Au and

Pb nuclei have been fitted using physics-motivated multicomponent parametriza-

tion. The giant resonances, quasi-deuteron, excitation of nucleon resonances, and

breakup of the nucleon mechanisms have been included in the fit to the world data.

The neutron emission from the excited nuclear system has been calculated within the

Hauser-Feshbach formalism. Within our approach we have obtained a very good de-

scription of the excitation functions for γ+197Au and γ+208Pb reactions with a fixed

number of neutrons. The excitation function has been used next to calculate several

cross sections in UPCs. Both single-photon and double-photon excitation processes
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have been included and discussed. We have calculated the corresponding excitation

functions for single nucleus excitations. We have obtained a good agreement of the

calculated total cross section for electromagnetic excitation as well as the cross sec-

tion for one-neutron and two-neutron emissions with the recent experimental data

of the PHENIX, PHOBOS, BRAHMS, and ALICE Collaborations. After small

modifications the prepared package of programs can be used in future to exclusive

production of particle pairs studied in this dissertation.



Appendix A

Frequency spectra of equivalent

pulses

We start from rewriting equations defining electric field (1.2.11) in Gaussian units

Ex(r, t) = Ze
bγ

r3
(1 +mr) e−mr , (A.0.1)

Ez(r, t) = −Zeγvt
r3

(1 +mr) e−mr . (A.0.2)

Denoting a general field in the time domain as Ψ(t), the corresponding Fourier

transform Ψ(ω) is given as

Ψ(ω) =
1√
2π

∞∫
−∞

dtΨ(t) exp (iωt) (A.0.3)

for an even function of t, Ψ(−t) = Ψ(t), the Fourier transform reduces to

Ψ(ω) =
2√
2π

∞∫
0

dtΨ(t) cos (ωt) , (A.0.4)

while for an odd function Ψ(−t) = −Ψ(t), it can be calculated from

Ψ(ω) = i
2√
2π

∞∫
0

dtΨ(t) sin(ωt) . (A.0.5)

The derivation for the equivalent pulse 1:

Ex(ω) = Ze
2√
2π
bγ

∞∫
0

dt
1

r3
(1 +mr) e−mr cos (ωt) (A.0.6)

= Ze

√
2

π
bγ

 ∞∫
0

dt
1

r3
e−mr cos (ωt) +

∞∫
0

dt
m

r2
e−mr cos (ωt)

 ,
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X1 =

∞∫
0

dt
1

r3
e−mr cos (ωt)

⇒ ∂X1

∂m
= −

∞∫
0

dt
1

r2
e−mr cos (ωt) , (A.0.7)

X2 =

∞∫
0

dt
m

r2
e−mr cos (ωt)

⇒ ∂X2

∂m
=

∞∫
0

dt
1

r2
e−mr cos (ωt)−

∞∫
0

dt
m

r
e−mr cos (ωt) , (A.0.8)

∂Ex (ω)

∂m
= Ze

√
2

π
bγ

[
∂X1

∂m
+
∂X2

∂m

]
(A.0.9)

= −Zem
√

2

π
bγ

∞∫
0

dt
1√

b2 + (γvt)2
e−m
√
b2+(γvt)2 cos(ωt) .

Using a mathematical handbook, such as Gradshteyn and Ryzhik’s Tables of Inte-

grals [126]:
∞∫

0

1√
ζ2 + u2

e−β
√
ζ2+u2 cos(αu)du = K0(ζ

√
α2 + β2) , (A.0.10)

where K0(z) is the modified Bessel function of the second kind with order zero. The

integral in Eq. (A.0.9) one can solve as follows:
∞∫

0

dt
1√

b2 + (γvt)2
e−m
√
b2+(γvt)2 cos(ωt)

=

∞∫
0

dt
1

γv
√

b2

γ2v2
+ t2

e
−γmv

√
b2

γ2v2
+t2

cos(ωt)

=
1

γv
K0

(
b

γv

√
(γmv)2 + ω2

)

=
1

γv
K0

b
√
m2 +

(
ω

γv

)2
 . (A.0.11)

Finally, Eq. (A.0.9) takes the form

∂Ex (ω)

∂m
= −Zem

√
2

π

b

v
K0

b
√
m2 +

(
ω

γv

)2


= −Zem
√

2

π

b

v
K0 (ξ) . (A.0.12)



Here a new helpful quantity is defined as:

ξ = b

√
m2 +

(
ω

γv

)2

. (A.0.13)

Using the Bessel function property:

d

dx
[xnKn (x)] = −xnKn−1 (x) (A.0.14)

and
∂ξ

∂m
=
b2m

ξ
(A.0.15)

one can calculate

∂Ex(ω)

∂ξ
=
∂Ex(ω)

∂m

∂m

∂ξ
= −Ze

√
2

π

ξ

bv
K0(ξ)

= Ze

√
2

π

1

bv

∂ [ξK1(ξ)]

∂ξ
. (A.0.16)

Finally, the solution of Eq. (A.0.6) has the form

Ex(ω) = const. + Ze

√
2

π

1

bv
ξK1(ξ) . (A.0.17)

In order to calculate the electric field in the z direction one has to use the

following Fourier transform

Ψ(ω) = i
2√
2π

∞∫
0

dtΨ(t) sin(ωt) . (A.0.18)

Transformation of Eq. (A.0.2)

Ez(ω) = i

√
2

π

∞∫
0

dt

[
−Zeγvt

r3
(1 +mr) e−mr

]
sin(ωt)

= −iZe
√

2

π
γv

∞∫
0

dt

(
1

r3
+
m

r2

)
e−mrt sin(ωt) . (A.0.19)

Using the relation

t sin(ωt) =
d

dω
(− cos (ωt)) (A.0.20)

one can continue and write

Ez(ω) = iZe

√
2

π
γv

∂

∂ω

 ∞∫
0

dt

(
1

r3
+
m

r2

)
e−mr cos(ωt)

 . (A.0.21)
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The same form of the integral was calculated for Ex(ω) case, so automatically one

can write

Ez(ω) = iZe

√
2

π
γv

∂

∂ω

[
1

b2γv
ξK1(ξ)

]
= iZe

√
2

π

1

b2

∂ [ξK1(ξ)]

∂ξ

∂ξ

∂ω
. (A.0.22)

Using the Bessel function property (A.0.14) and the relation

∂ξ

∂ω
=

b2ω

(γv)2 ξ
(A.0.23)

one can continue. Finally, the solution of Eq. (A.0.19) has the form

Ez(ω) = −iZe
√

2

π

ω

(γv)2 [K0(ξ)] . (A.0.24)

A.1 Realistic form factor

Let us start from a derivation of the realistic form factor argument in Eq. (1.2.35).

The delta function δ(k · u) in Eq. (1.2.35) enforces the dependence

γω = γβkz . (A.1.25)

Argument of the form factor fulfills the dependences [32]:

k2 = −
(
ω

γβ

)2

− k2
⊥ , (A.1.26)

k2 = ω2 − k2
x − k2

y − k2
z , (A.1.27)

where k = (ω,k). The transverse component is expressed through x and y compo-

nents:

k2
⊥ = k2

x + k2
y . (A.1.28)

Eq. (A.1.27) can be rewritten

k2 = ω2 − k2
z − k2

⊥ . (A.1.29)

In addition, using Eq. (A.1.25)

kz =
ω

β
(A.1.30)



and the ultrarelativistic dependence

γ =
1√

1− β2
⇒ β2 − 1 = − 1

γ2
(A.1.31)

one can continue to derive the argument of the elastic nuclear charge form factor

k2 = ω2 −
(
ω

β

)2

− k2
⊥

=
ω2 (β2 − 1)

β2
− k2

⊥

= −
(
ω

γβ

)2

− k2
⊥ . (A.1.32)

Now one can write:

Ex = E⊥ (k) = −iA0(k)k⊥

= 2πiγδ (k · u)Ze
F (−k2)

k2
k⊥ . (A.1.33)

A partial Fourier transform of E(k⊥, ω) in the z direction:

E⊥ (z,k⊥, ω) =

∞∫
−∞

dkz
2π

E⊥ (k, ω) eikzz

= iZeγk⊥

∞∫
−∞

dkze
ikzz

F (−k2)

k2

= −iZeγk⊥
1

v

∞∫
−∞

dωei
ω
v
z

F

((
ω
γβ

)2

+ k2
⊥

)
(
ω
γβ

)2

+ k2
⊥

. (A.1.34)

When Fourier transform of radially-symmetric functions are to be calculated, the

one-dimensional Hankel transformation of order zero (the radial Fourier transform) is

a useful alternative to the two-dimensional Fourier transform. The Fourier transform

of the two-dimensional function f(r) reads

f (k) =
1

2π

∫
d2rf (r) exp (−ik · r) (A.1.35)

which, if f is radially symmetric, becomes

f (k) =
1

2π

∞∫
0

drrf (r)

2π∫
0

dΦ exp (−ikr cos Φ) , (A.1.36)
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where Φ is the angle between k and r. A useful integral representation of the J0

Bessel function is

J0 (z) =
1

π

π∫
0

dθ cos (z cos θ) (A.1.37)

Below we will also need the Bessel function J1(z):

J1(z) = −dJ0(z)

dz
(A.1.38)

so that Eq. (A.1.36) can be rewritten in the radial Fourier transform form

f (k) =

∞∫
0

drrJ0 (kr) f (r) . (A.1.39)

For the Fourier transform of the magnetic field we need to evaluate a Fourier integral

of the type (where k⊥ ≡ |k⊥|):

I(x⊥) =

∫
d2k⊥
(2π)2

k⊥f(k⊥) exp (ik⊥x⊥)

= −i∇⊥
∫

d2k⊥
(2π)2

f(k⊥) exp (ik⊥x⊥)

= −i∇⊥
∫ ∞

0

k⊥dk⊥
2π

f(k⊥) J0(x⊥k⊥) = −ix⊥
x⊥

∫ ∞
0

k⊥dk⊥
2π

f(k⊥)
∂

∂x⊥
J0(x⊥k⊥)

= i
x⊥
x2
⊥

∫ ∞
0

k⊥dk⊥
2π

f(k⊥)(x⊥k⊥)J1(x⊥k⊥) . (A.1.40)

Using these steps, we obtain the expression for the electric field

E (ω,x⊥) =

∫
d2k⊥

(2π)2 E⊥ (ω,k⊥) eix⊥k⊥

= −x⊥
x2
⊥

Ze

β

∫
k⊥dk⊥

2π
(k⊥x⊥)J1 (x⊥k⊥)

F

((
ω
βγ

)2

+ k2
⊥

)
((

ω
βγ

)2

+ k2
⊥

) .(A.1.41)

Finally, the equivalent photon flux for realistic charge distribution takes the form

N (ω, b) =
1

πω
|E (ω,x⊥)|2

=
Z2αem
π2β2ω

∣∣∣∣∣∣∣∣
∫

dk⊥ k
2
⊥

F

((
ω
βγ

)2

+ k2
⊥

)
((

ω
βγ

)2

+ k2
⊥

) J1 (x⊥k⊥)

∣∣∣∣∣∣∣∣
2

=
Z2αem
π2β2ω

1

b2

∣∣∣∣∣∣
∫

dχχ2
F
(
χ2+u2

b2

)
χ2 + u2

J1 (χ)

∣∣∣∣∣∣
2

, (A.1.42)



where J1 is the appropriate Bessel function and χ is a dimensionless auxiliary vari-

able χ = k⊥b. In Eq. (A.1.42) we have used the scaling variable u = ωb
γβ

which was

defined in Eq. (1.2.25).



Appendix B

The cross section in EPA - the

form used in the calculation

The basic equation for the calculation of the cross section for the exclusive produc-

tion of pairs of particles in ultrarelativistic heavy ion collisions in the equivalent

photon approach is Eq. (1.2.3). Starting from this notation and using the relation

(1.2.1), one can write

σA1A2→A1A2X

(√
sA1A2

)
=

∫
σγγ→X1X2 (ω1, ω2)N (ω1,b1)N (ω2,b2)S2

abs (b)

× d2b1 d2b2 dω1 dω2 . (B.0.1)

The above equation is the convolution of the γγ → X1X2 subprocess cross section

and the equivalent photon spectra N (ω, b). The factor related to the absorption is

approximated in most of the calculations presented in this dissertation as (Refs. [221,

222])

S2
abs (b) = θ (b− 2RA) = θ (|b1 − b2| − 2RA) . (B.0.2)

The main goal of the absorption factor is to exclude the situations when nuclei

breakup. This is equivalent with taking into account only ultraperipheral collisions.

This is possible when the colliding nuclei overlap. This factor can be calculated

in different models. For example a model introduced in section E is a reasonable

approach. On the other hand, the Glauber model is correct at not too high energies

but Eq. (B.0.2) nicely describes the situation at higher energies too.
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Performing the following change of integration variables: the energies of photons

(i = 1, 2) are expressed in terms of Wγγ and rapidity of the pair YX1X2 as:

ωi =
Wγγ

2
exp (±YX1X2) . (B.0.3)

Using some further transformation

dω1 dω2 =
Wγγ

2
dWγγ dYX1X2 (B.0.4)

the cross section can be written equivalently

σA1A2→A1A2X

(√
sA1A2

)
=

∫
σγγ→X1X2

(√
sA1A2

)
N (ω1,b1)N (ω2,b2)S2

abs (b)

× 2πbdb dbx dby
Wγγ

2
dWγγ dYX1X2 . (B.0.5)

Here the equivalent photon approximation is formulated in the impact parameter

space. Thus it is the most comfortable to use the form of the cross section which

explicitly depends on impact parameter. Then nuclear cross section for the γγ

mechanism can be rewritten

dσA1A2→A1A2X

(√
sA1A2

)
d2b

=

∞∫
bmin

σγγ→X1X2 (ω1, ω2)N (ω1, b1)N (ω2, b2)

× d2b1 d2b2 dω1 dω2 (B.0.6)

Above equation can be derived using a new kinematic variable x = ω/EA, where

EA = γAmproton = γMA is the energy of the nucleus. This approach is described in

Ref. [3].



Appendix C

Form factors - details

In Table 1.2 and Table 1.3 the root mean square radii of the charge distributions

are presented, so using Eq. (1.4.83) and (1.4.79), one can compare the shape of the

form factors, which will be calculated with the help of the two equations.

q [GeV]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

|F
(q

)|

210

110

1

10
Au

197

Pb
207

Pb
208

Fermi model

twoparameter

>2dependence on <r

Pb
208

Pb/
207

Figure C.1: A comparison of a shape of the form factor described by approximate

(Eq. (1.4.79)) and exact (Eq. (1.4.83)) formula.

In Fig. C.1 we show the approximate and exact form factors for gold and lead

nuclei. The solid lines correspond to two-parameter Fermi model (1.4.83) and the

dashed lines represent form factor described with the help of the approximate for-

mula which depends on the root mean square radius of the charge distribution
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(1.4.79). The different nuclei are marked by red (197Au), green (207Pb) and blue

(208Pb) colors. The parameters for the charge density distribution are taken from

Table 1.2 and 1.3, though Eq. (1.4.79). One can conclude that the expansion given

by Eq. (1.4.79) is correct only in very limited range of momentum transfer. The

consistency between the two methods appears only up to q ≈ 0.05 GeV. One cannot

believe in the result obtained by means of Eq. (1.4.79) for q > 0.12 GeV, because

there the form factor is not physical (F (q) > 1). Secondly, the results described by

Eq. (1.4.79) for two isotopes of lead are almost the same, which is shown by the dot-

ted line. This line represents the ratio: |F (q;207 Pb)/F (q;208 Pb)|. This comparison

shows that it is correct to use the same charge density distribution parameters for

the 207Pb and 208Pb isotopes for the two-parameter Fermi model.



Appendix D

Some details for γγ → X1X2

subprocesses

D.1 High-energy γγ → ρ0ρ0 cross section

The elementary cross section for high-energy part (Wγγ > 2 GeV) of the γγ → ρ0ρ0

reaction is calculated with the help of the VDM-Regge approach. This model is

described in section 2.2. This appendix focusses on the importance of the off-shell

form factor which depends on virtuality of the meson involved. The second term of

Eq. (2.2.8):

F
(
t̂; q2

1/2

)
= exp

(
Bt̂

4

)
exp

(
q2

1/2 −m2
ρ

2Λ2

)
is normalized at ρ meson mass shell.

Fig. D.1 shows the blow-up of Fig. 2.3 focussing on higher energies. The

blue solid line is the correct description of the experimental data point from e+e−

collisions. Fig. D.1 presents the elementary cross section i.e. for the case when

we take into account only on-mass-shell vector meson (dashed green line). One can

see the respective contribution from Reggeon (dashed-dotted lines) and Pomeron

(dotted lines) exchanges. The green lines depict the cross section only for on mass

shell form factor and the blue lines correspond to calculations which include form

factors responsible for off-shell effects. We conclude that application of the correction

for ρ0 meson virtuality is necessary.
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Figure D.1: The high-energy part of the γγ → ρ0ρ0 cross section obtained with the

help of the VDM-Regge approach.

D.2 Vector meson coupling

The basic V −γ coupling constants fV can be measured in the annihilation processes.

For example considering e+e− decay to hadronic final state F , the total cross section

in the narrow-width approximation [223] takes the form

σe+e−→V→F = 4παem
∑
V

(
e

fV

)2

δ
(
s−m2

V

)
BV
F , (D.2.1)

where BV
F is the branching ratio to the final state F . Summing over F and using

experimental BV
F , one can get the expression for the radiative decay width [224]

ΓV→e+e− =
(mV αem

3

)( e

fV

)2

=
α2
em

3

4π

f 2
V

mV . (D.2.2)

Knowing the value of the leptonic decay partial width, one can calculate the exact

value of the vector meson-photon coupling. We can say that in almost every paper

a slightly different value of fV is used. Different values of
f2ρ
4π

for the ρ0− γ coupling

from the literature are collected in Table D.1.

In order to calculate the high-energy amplitude for the γγ → ρ0ρ0 reaction, we

use the upper limit of the value calculated in Ref. [225]. The vector meson coupling

is a dimensionless parameter.
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Table D.1: Examples of the ρ0 − γ coupling constant from the literature.
f2ρ
4π

Ref.

2.25± 0.26 [225]

2.11± 0.29 [223]

2.06 [224]

2.02 [226]

1.96 [109]

D.3 Form factor for two-pion continuum
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Figure D.2: A comparison of the form factors for the two-pion continuum.

Fig. D.2 shows a comparison of a few examples of form factors which include

the finite-size pion corrections. Poppe proposed the following form of the form

factor [108]

Ω =
1

2

 1− βz
1 + s(1+βz)

2m2
ρ

+
1 + βz

1 + s(1−βz)
2m2

ρ

 , (D.3.3)

where β =
√

1− 4m2
π/s is the velocity of the pion in the center-of-mass frame. The

result obtained with the help of this formula is denoted by the blue solid line and it



is smaller than 1 in the whole range of the γγ energy. The dashed and dotted lines

correspond to exponential form factor (Eq. (2.4.31))

Ω (s, t, u) =
F 2 (t) + F 2 (u)

1 + F 2 (−s)

This form with Bγπ = 4 GeV−1 and Bγπ = 6 GeV−1 is used in our further calcula-

tions.

In Eq. (2.4.31) the standard vertex function F (x) is smaller than 1 and it provides

the standard normalization F (0) = 1. Additionally F (t) → 0 when t → −∞.

Eq. (2.4.31) has the feature that in the limit of large s

Ω (s, t, u)
t→0−−→ F 2 (t) ,

Ω (s, t, u)
u→0−−→ F 2 (u) . (D.3.4)

Then in the large s limit (z = cos θ ≈ 0) one can write Ω(s, t, u) ≈ 2F 2
(−s

2

)
, i.e.

dσ

dz
(z = 0, s) ∝ F 4

(−s
2

)
. (D.3.5)

D.4 Some details for the γγ → ππ pQCD mecha-

nisms

D.4.1 Form factors

Same extra form factor for the amplitude in the BL mechanism (2.4.43) was proposed

in Ref. [104]

F pQCD
reg (t, u) =

[
1− exp

(
t− tm
Λ2
reg

)][
1− exp

(
u− um

Λ2
reg

)]
, (D.4.1)

where tm = um are the maximal kinematically allowed values of t and u. Λreg is

a cutoff parameter, which value is of course not completely well known. This form

factor cuts the regions of the phase space where the Brodsky-Lepage formalism does

not apply.

Fig. D.3 illustrates the role of the extra form factors described by Eq. (D.4.1) and

Eq. (2.4.44): F pQCD(s) = 1− exp

(
−(s−4m2

π)
4

Λ8
pQCD

)
. The main aim of the form factors
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Figure D.3: Comparison of the cross section for γγ → π+π− for different forms of

the extra form factor in Brodsky-Lepage pQCD mechanism.

is the exclusion of the region of small Mandelstam t and u variables, i.e. the re-

gion which is clearly non-perturbative. The three lines presented in the figure are

described in the figure caption. It is clear from the figure, that one cannot use

the pQCD BL prediction without any form factor, because at low energy limit, this

tends to infinity. The red line shows the BL pQCD cross section which we use in our

further calculation. The green line corresponds to the form factor used in Ref. [8]

(Λreg = 1 GeV).

D.4.2 Leading-order hard-scattering amplitude T λ1λ2H

The leading-log expression for analytic effective coupling in the QCD case takes the

form

αs
(
Q2
)

=
4π

β0

1

ln Q2

Λ2
α

, (D.4.2)

where

β0 =
11

3
CA −

2

3
Nf (D.4.3)

with CA = 3 and the number of active quarks flavours Nf = 3. In our calculations

the running coupling constant proposed in Ref. [227] is used. This includes a spectral



function in the one-loop approximation

αs
(
Q2
)

=
4π

β0

(
1

ln Q2

Λ2
α

+
Λ2
α

Λ2
α −Q2

)
. (D.4.4)

The Λα is the QCD scale parameter. In our numerical applications this equals to

200 MeV.

Ji and Amiri [103] presented the exact form of the LO hard-scattering ampli-

tude including the running of αs. The helicity-dependent amplitudes for the π+π−

production read:

T++
H or T−−H =

16π

3s

32παem
x (1− x) y (1− y)

a

1− z2

×
[
e2
cαs (X1)− eceb (αs (X2) + αs (X3)) + e2

bαs (X4)
]
, (D.4.5)

T+−
H or T−+

H =
16π

3s

32παem
x (1− x) y (1− y)

×
[

1− a
1− z2

{
e2
cαs (X1)− eceb (αs (X2) + αs (X3)) + e2

bαs (X4)
}

+ eceb
x (1− x) + y (1− y)

2

{
αs (X2)

a− bz +
αs (X3)

a+ bz

}
+

{
e2
cαs (X1)− e2

bαs (X4)
} x− y

2

]
, (D.4.6)

where arguments of αs are denoted by

X1 = |y (1− x) s| ,

X2 =
∣∣∣(−a+ bz)

s

2

∣∣∣ ,
X3 =

∣∣∣(−a− bz)
s

2

∣∣∣ , (D.4.7)

X4 = |x (1− y) s| .

The auxiliary quantities:

a = (1− x)(1− y) + xy ,

b = (1− x)(1− y)− xy . (D.4.8)
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The helicity-dependent amplitudes for the π0π0 production take the forms:

T++
H or T−−H =

16π

3s

32παem
x (1− x) y (1− y)

a

1− z2

1√
2

×
{
e2
cαs (X1) + e2

cαs (X4)− e2
c [αs (X2) + αs (X3)]

− e2
bαs (X1)− e2

bαs (X4) + e2
b [αs (X2) + αs (X3)]

}
, (D.4.9)

T+−
H or T−+

H =
16π

3s

32παem
x (1− x) y (1− y)

1√
2

×
[

1− a
1− z2

{
e2
cαs (X1)− e2

c [αs (X2) + αs (X3)] + e2
cαs (X4)

}
+ e2

c

x (1− x) + y (1− y)

2

[
αs (X2)

a− bz +
αs (X3)

a+ bz

]
+

(
e2
cαs (X1)− e2

cαs (X4)
) x− y

2

− 1− a
1− z2

{
e2
bαs
(
|X1)− e2

b [αs (X2|) + αs (X3)
]

+ e2
bαs (X4)

}
− e2

b

x (1− x) + y (1− y)

2

[
αs (X2)

a− bz +
αs (X3)

a+ bz

]
−

(
e2
bαs (X1)− e2

bαs (X4)
) x− y

2

]
where arguments of αs are given in Eq. (D.4.8).

Neglecting the difference in the αs argument, one can obtain simpler results

presented by Brodsky and Lepage [102] and Nižić [117].



Appendix E

A semi-classical model for

γA→ ρ0A reaction

A certain version of the classical mechanics (in our opinion wrongly called Glauber)

model with application to γA→ ρ0A is described e.g. in Refs. [152,228–230]. There

the authors present a short history, the essence of the model and a comparison of

the model results with experimental results. Below I present a set of equations

for description of the γA → ρ0A reaction. In the multiple scattering model the

γA → ρ0A cross section needs the γp → ρ0p cross section as input. The γp → ρ0p

data from HERA [231] can be described by the Regge inspired parametrization

dσγp→ρ0p (t = 0)

dt
= Bρ0

(
XW ε + YW−η) , (E.0.1)

where W is respective center of mass energy, Bρ0 = 11 GeV−2, X = 5 µb, ε = 0.22,

Y = 26 µb, η = 1.23. These parameters are taken from Ref. [152] where the

parameters for four kinds of mesons (ρ0, ω, Φ, J/Ψ) are given. The first term of Eq.

(E.0.1) describes the Pomeron exchange and the second term corresponds to the

Reggeon exchange. In the Regge theory the slope parameter is energy-dependent

and is parametrized as:

Bi
ρ0 = Bi

0 + 2α′i ln

(
W 2
γp

s0

)
, (E.0.2)

where BIP
0 = 5.5 GeV−2, α′IP = 0.25, BIR

0 = 4.0 GeV−2, α′IR = 0.93, s0 = 1 GeV2.

The values of the Pomeron IP and Reggeon IR slope parameters are taken from

152
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Ref. [232]. Having the differential distribution of the γp→ ρ0p cross section (E.0.1)

one can calculate the differential cross section for the ρ0p→ ρ0p reaction

dσρ0p→ρ0p (t = 0)

dt
=

f 2
ρ0

4παem

dσγp→ρ0p (t = 0)

dt
(E.0.3)

using standard VDM relation. The total cross section can be calculated as

σ2
tot

(
ρ0p
)

= 16π
dσρ0p→ρ0p (t = 0)

dt
. (E.0.4)

Having the nuclear thickness function

TA (r) =

∫
dzρA

(√
|r|2 + z2

)
, (E.0.5)

where ρA is the charge distribution in nucleus A defined in Eq. (1.4.81) and writing

the overlap function at a given impact parameter

TAA (|b|) =

∫
d2rTA (r)TA (r− b) (E.0.6)

one writes the probability of having no hadronic interactions in the nuclear collision:

P (|b|) = exp (−TAA (|b|)σNN) . (E.0.7)

Above r and b are vectors perpendicular to the direction of motion of ρ0. The

TAA (|b|) is so-called overlap function. The cross section for the γA → ρ0A (see

e.g. [152]) takes the form

σtot
(
ρ0A

)
=

∫
d2r

(
1− exp

(
−σtot

(
ρ0p
)
TA (r)

))
. (E.0.8)

The differential cross section can be written as

dσγA→ρ0A (t = 0)

dt
=
αemσ

2
tot (ρ0A)

4f 2
ρ0

(E.0.9)

and now the total cross section for the γA→ ρ0A reaction takes the form

σγA→ρ0A =
dσγA→ρ0A (t = 0)

dt

tmax∫
−∞

dt |FA (t)|2 , (E.0.10)

where FA(t) is nucleus QCD-matter form factor. This form factor is approximated

by charge form factor of the nucleus.
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Figure E.1: The differential cross section for coherent ρ0 photoproduction.

Fig. E.1 presents dσ/dt|t=0 for coherent ρ0 photoproduction on Au (left panel)

and Pb (right panel) nucleus. The results are obtained with the help of the model

discussed above. There are four lines in the figure. The first one (black line) cor-

responds to the slope parameter Bρ0 = 11 GeV−2 which is taken from Ref. [152].

The other lines are calculated using Eq. (E.0.2) and parameters given below this

equation. One can see separate contributions from Pomeron (green lines)

dσγp→ρ0p (t = 0)

dt
= BIP

ρ0XW
ε , (E.0.11)

f2 Reggeon (blue lines)

dσγp→ρ0p (t = 0)

dt
= BIR

ρ0 YW
−η , (E.0.12)

and the sum of these two contributions (red lines)

dσγp→ρ0p (t = 0)

dt
= BIP

ρ0XW
ε +BIR

ρ0 YW
−η . (E.0.13)

The shape of the distribution in WγA for the approach with the Pomeron and

Reggeon two-component-model (see Eq. (E.0.13)) is very similar as for the one with

the slope parameter independent of Wγp (see Eq. (E.0.1)). At higher energy the

largest contribution to Eq. (E.0.13) comes, of course, from the Pomeron exchange.

In our analysis we use the classical mechanics quasi-Glauber formula for cal-

culating σtot(ρ
0A). As discussed in detail in Ref. [155] Eq. (E.0.8) implies that
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in the black disk limit the total cross section becomes equal πR2
A, which is a predic-

tion of the classical mechanics. In contrast, a quantum mechanical approach implies

that in that limit σtot(ρ
0A) = 2πR2

A. The quantum mechanics expression is given

by the Glauber model [155,233,234]:

σqmtot
(
ρ0A

)
= 2

∫
d2r

(
1− exp

(
−1

2
σtot

(
ρ0p
)
TA (r)

))
. (E.0.14)
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Figure E.2: Rapidity distribution of coherent ρ0 production using the quasi-Glauber

approach (black) and the quantum mechanical Glauber approach (red).

Now we proceed to the AA→AAρ0 reaction. The authors of Refs. [154, 155]

suggest that the classical mechanics formula leads to substantially smaller value of

the total cross section than the quantum mechanical Glauber expression (a factor

of two smaller for heavy nuclei). One can observe in Fig. E.2 that the difference

between rapidity distribution of ρ0 meson calculated in the classical (blue lines) and

quantum Glauber approach (red lines) is really huge (a factor ≈ 2.5). The left panel

corresponds to the results at RHIC energy
√
sNN = 200 GeV and the right panel is

dedicated for LHC energy
√
sNN = 2.76 TeV. Both panels depict the situation when

our results are calculated for sharp ρ0 mass (solid lines) and including the smearing

of ρ0 mass (dashed lines). As is shown in Fig. E.2, the classical Glauber model

surprisingly well describes the STAR data for AA → AAρ0 whereas the quantal

Glauber model substantially overestimates the experimental data of the STAR and

ALICE Collaboration. The overestimation of the experimental data by the Glauber



model is not clear to us in the moment. The difference between the theoretical

classical mechanics model and experimental results for the ALICE data is only

about 10− 15%. Therefore in this dissertation we shall use the classical mechanics

model to estimate the double scattering effects (see section 3.3).



Appendix F

Momentum-space approach

The most of the results for nuclear production of fermion-antifermion pairs which

are presented in this dissertation is calculated in the Equivalent Photon Approxi-

mation. Here I wish to concentrate on details of the calculations in the momentum

space. However, this method has some shortcomings. Here we cannot easily exclude

situations when the two ions collide with small impact parameter.

pa

pb

p1

p2

q1

q2

p3

p4

p3

p4

q1

q2

β

µ

ν

α

t u

Figure F.1: t-channel (left panel) and u-channel (right panel) amplitudes of the

AA→ AAl+l− process in the momentum space.

In Fig. F.1 one can see Feynman diagrams for a genuine 2 → 4 reaction with

four-momenta pa + pb → p1 + p2 + p3 + p4. In the momentum space approach the

cross section for the production of a pair of particles can be written as:

σ =

∫
1

2s
|M|2 (2π)4 δ4 (pa + pb − p1 − p2 − p3 − p4)

× d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

. (F.0.1)
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Using a transformation

d3pi
Ei

= dyi d
2pi⊥ = dyipi⊥dpi⊥dφi (F.0.2)

Eq. (F.0.1) can be rewritten as:

σ =

∫
1

2s
|M|2δ4 (pa + pb − p1 − p2 − p3 − p4)

1

(2π)8

1

24

× (dy1p1⊥dp1⊥dφ1) (dy2p2⊥dp2⊥dφ2)
(
dy3d

2p3⊥
) (
dy4d

2p4⊥
)
. (F.0.3)

In the above formula pi⊥ are transverse momenta of outgoing nuclei and considered

charged particles in the final state, φ1, φ2 are azimuthal angles of the outgoing nuclei.

Additionally, we introduce a new auxiliary quantity

pm = p3⊥ − p4⊥ (F.0.4)

and benefiting from 4-dimensional Dirac delta function properties, Eq. (F.0.3) can

be written as:

σ =

∫
1

2s
|M|2δ (Ea + Eb − E1 − E2 − E3 − E4) δ3 (p1z + p2z + p3z + p4z)

1

(2π)8

1

24

× (dy1p1⊥dp1⊥dφ1) (dy2p2⊥dp2⊥dφ2) dy3dy4d
2pm . (F.0.5)

The energy-momentum conservation gives the following system of equations that

has to be solved for discrete solutions
√
s− E3 − E4 =

√
m2

1⊥ + p2
1z +

√
m2

2⊥ + p2
2z ,

−p3z − p4z = p1z + p2z ,
(F.0.6)

where m1⊥, m2⊥ are the so-called transverse masses of outgoing nuclei which are

defined as:

m2
i⊥ = p2

i⊥ +m2
i . (F.0.7)

We wish to make the transformation from (y1, y2) to (p1z, p2z). The transforma-

tion Jacobian takes the form:

Jk =

∣∣∣∣∣ p1z (k)√
m2

1⊥ + p2
1z (k)

− p2z (k)√
m2

2⊥ + p2
2z (k)

∣∣∣∣∣ , (F.0.8)

where k numerates discrete solutions of Eq. (F.0.6). Thus the cross section for the

2→ 4 reaction reads:

σ =

∫ ∑
k

J −1
k (p1t, φ1, p2t, φ2, y3, y4, pm, φm)

1

2
√
s (s− 4m2)

|M|2 1

(2π)8

1

24

× (p1⊥dp1⊥dφ1) (p2⊥dp2⊥dφ2)
1

4
dy3dy4d

2pm . (F.0.9)
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For photon-exchanges, considered here, it is convenient to change the variables

p1⊥ → ξ1 = log10 (p1⊥), p2⊥ → ξ2 = log10 (p2⊥). The lepton helicity-dependent

amplitudes of the process shown in Fig. F.1 can be written as:

Mλ3,λ4 (t-channel) = e Fch (q1) (pa + p1)α
−i gαµ
q2

1 + iε
ū (p3, λ3) i γµ

i [(6 p3− 6 q1) +mµ]

(q1 − p3)2 −m2
µ

× i γν v (p4, λ4)
−i gνβ
q2

2 + iε
(pb + p2)β e Fch (q2) (F.0.10)

and

Mλ3,λ4 (u-channel) = e Fch (q1) (pa + p1)α
−i gαµ
q2

1 + iε
ū (p3, λ3) i γν

i [(6 p3− 6 q2) +mµ]

(q2 − p3)2 −m2
µ

× i γµ v (p4, λ4)
−i gνβ
q2

2 + iε
(pb + p2)β e Fch (q2) . (F.0.11)

These amplitudes are calculated numerically. Finally, to calculate the total cross

section one has to calculate 8-dimensional integral inserting

Mλ3,λ4 =Mλ3,λ4 (t-channel) +Mλ3,λ4 (u-channel) (F.0.12)

into Eq. (F.0.9).
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[2] M. K lusek, A. Szczurek, and W. Schäfer, “Realistic cross sections for exclusive

ρ0ρ0 production in ultrarelativistic heavy-ion collisions,” PoS EPS-HEP2009

(2009) 458.

[3] M. K lusek-Gawenda and A. Szczurek, “Exclusive muon-pair productions in

ultrarelativistic heavy-ion collisions – realistic nucleus charge form factor and

differential distributions,” Phys.Rev. C82 (2010) 014904, arXiv:1004.5521

[nucl-th].

[4] M. K lusek-Gawenda, A. Szczurek, M. Machado, and V. Serbo, “Double – photon

exclusive processes with heavy quark – heavy antiquark pairs in high-energy Pb-Pb

collisions at LHC,” Phys.Rev. C83 (2011) 024903, arXiv:1011.1191 [nucl-th].

[5] M. K lusek-Gawenda and A. Szczurek, “Exclusive production of pion pairs with

large invariant mass in nucleus-nucleus collisions,” arXiv:1110.6378 [nucl-th].

[6] A. Szczurek and M. K lusek-Gawenda, “Photon-photon production of lepton, quark

and meson pairs in peripheral heavy ion collisions,” arXiv:1110.4741 [nucl-th].

[7] M. K lusek-Gawenda and A. Szczurek, “Exclusive production of ρ0ρ0 pairs in

ultrarelativistic heavy ion collisions,” Int.J.Mod.Phys. A26 (2011) 741–743,

arXiv:1008.3802 [nucl-th].

[8] M. K lusek-Gawenda and A. Szczurek, “Exclusive production of large invariant

mass pion pairs in ultraperipheral ultrarelativistic heavy ion collisions,” Phys.Lett.

B700 (2011) 322–330, arXiv:1104.0571 [nucl-th].

167



[9] M. K lusek-Gawenda and A. Szczurek, “Exclusive production of π+π− and π0π0

pairs in photon-photon and in ultrarelativistic heavy ion collisions,” EPJ Web

Conf. 37 (2012) 06006, arXiv:1208.4623 [hep-ph].

[10] S. Baranov, A. Cisek, M. K lusek-Gawenda, W. Schäfer, and A. Szczurek, “The
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[117] B. Nižić, “Beyond leading order perturbative QCD coorections to γγ →M+M−

(M = π,K),” Phys.Rev. D35 (1987) 80–101.

[118] ALEPH Collaboration, A. Heister et al., “Exclusive production of pion and kaon

meson pairs in two photon collisions at LEP,” Phys.Lett. B569 (2003) 140–150.

[119] BELLE Collaboration, H. Nakazawa et al., “Measurement of the γγ → π+π− and

γγ → K+K− processes at energies of 2.4 Gev to 4.1 GeV,” Phys.Lett. B615

(2005) 39–49, arXiv:hep-ex/0412058 [hep-ex].
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