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“Two things fill the mind with ever new and increasing admiration and awe,
the oftener and the more steadily we reflect on them:

the starry heavens above and the moral law within.”
– Immanuel Kant
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Abstract

The thesis describes the world-first, time-dependent measurement of charge-parity (CP )
violation in B0

s → D∓s K
± decays. The study is performed at the LHCb experiment

using data sample corresponding to an integrated luminosity of 1.0 fb−1 of proton-proton
collisions at a center-of-mass energy of

√
s = 7 TeV, recorded in 2011. The CP violating

observables are found to be: C = 0.52 ± 0.25 ± 0.04, Df = 0.29 ± 0.42 ± 0.17, Df̄ =
0.14± 0.41± 0.18, Sf = −0.90± 0.31± 0.06, Sf̄ = −0.36± 0.34± 0.06, where the first
(second) uncertainty is statistical (systematic). These observables are used to perform the
first measurement of the Cabibbo-Kobayashi-Maskawa angle γ in B0

s→ D∓s K
± decays,

finding γ = (113+30
−44)◦ modulo 180◦ at 68% CL, where the error contains both statistical

and systematic uncertainties.

Streszczenie

Praca doktorska opisuje pierwszy na świecie, zależny od czasu pomiar łamania symetrii
przestrzenno-ładunkowej (CP ) w rozpadzie B0

s→ D∓s K
±. Badania zostały przeprowadzone

w eksperymencie LHCb używając próbki danych odpowiadającej 1.0 fb−1 zderzeń proton-
proton w układzie środka masy

√
s = 7 TeV, zarejestrowanych w 2011 roku. Parametry

łamania CP zostały wyznaczone: C = 0.52 ± 0.25 ± 0.04, Df = 0.29 ± 0.42 ± 0.17,
Df̄ = 0.14 ± 0.41 ± 0.18, Sf = −0.90 ± 0.31 ± 0.06, Sf̄ = −0.36 ± 0.34 ± 0.06, gdzie
pierwsza (druga) niepewność oznacza przyczynek statystyczny (systematyczny). Parametry
te zostały wykorzystane do wykonania pierwszego pomiaru kąta γ macierzy Cabibbo-
Kobayashi-Maskawa, wyznaczając γ = (113+30

−44)◦ modulo 180◦ w przedziale 68% CL, gdzie
błąd zawiera niepewność statystyczną jak i systematyczną.
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Chapter 1

Introduction

The Standard Model of particle physics describes the fundamental particles and their
interactions. For the past half century this theory has been remarkably successful at
predicting the behaviour of elementary particles. However there are several experimental
observations that cannot be explained in the Standard Model. In particular, the theory
does not explain the amount of visible asymmetry between matter and antimatter in
the universe. One of the three Sakharov conditions [1] required for this asymmetry is
charge-parity (CP ) violation, which can be efficiently studied in the decays of beauty
mesons.

This dissertation presents a measurement of CP violation in the process B0
s→ D∓s K

±

using the LHCb detector at the Large Hadron Collider (LHC) at CERN, Geneva. The
B0
s mesons1 oscillate into each other during their propagation through space-time by the

exchange of virtual particles. These are W± bosons in the Standard Model, but can be
different in theories beyond the Standard Model. Because both decays are accessible for
B0
s and B

0

s mesons, a measurement of CP violation is possible in the interference of mixing
and decay. This CP violation is in turn sensitive to the angle γ of the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix. The analysis presented in this dissertation is
performed for the first time in the world.

This thesis is organised in the following way: Chapter 2 presents the theoretical
formalism which contains an introduction to the Standard Model and CP violation, a
phenomenological model of beauty mesons decays and the experimental summary of the
determination of the CKM angle γ using beauty mesons. Chapter 3 provides information
about the LHCb experiment, in particular the parts of detector and software which are
crucial in the measurement. This is followed by Chapter 4 where a general overview
of the analysis is given. Chapter 5 discusses the selection necessary to obtain a pure
B0
s→ D∓s h

± sample. Chapter 6 shows the signal and background discrimination achieved
by the multidimensional fit performed to the m(D∓s h

±) invariant mass, the m(h−h+h±)
invariant mass, and the identification variable PIDK for the bachelor. This type of fit
is used for the first time in the LHCb experiment. Next, ingredients crucial to perform
the time-dependent measurement are presented: the reconstruction of initial flavour in
Chapter 7 as well as decay-time resolution and acceptance in Chapter 8. The decay-time fit
to B0

s→ D∓s h
± is discussed in Chapter 9, which is followed by a description of systematics

effects in Chapter 10. Finally, the determination of the CKM angle γ is shown in Chapter
11 and the conclusion is given in Chapter 12.

1Unless otherwise stated, charge conjugate states are also considered.
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The author of the presented dissertation also served as a contact author of the analysis
in question inside the LHCb collaboration. Therefore, the author not only contributed to
almost every step of the presented measurement but also checked and coordinated the work
of other analysts. However, it is worth noting the author’s personal contributions. The first
of them is the Boosted Decision Trees selection trained specifically for this measurement
and used by other analyses with similar decay chains Ref [2–6]. The next tasks were the
optimisation of the offline selection and obtaining the data and simulation samples after all
requirements. The author of this thesis was responsible for two major steps of the analysis:
the multidimensional fit and the sFit. All work related to the multidimensional fit is also
her direct personal contribution. In case of the flavour tagging a dedicated working group
trains neural networks, which have to be calibrated for each measurement. Although, the
calibration as well as the determination of the CKM angle γ were the tasks of another
analysts, the author provided the sFit which was used in these studies. Furthermore, the
signal and background PDFs created for the combined mistag and time uncertainty are a
personal contribution of the author. In addition, the author adapted the spline technique
for describing the decay-time acceptance and performed all the fits on simulated samples.
The author wrote the sFit code for both the B0

s→ D−s π
+ and B0

s→ D∓s K
± decay modes.

In addition, the author is the main person who contributed to the standalone generator
of pseudo experiments, and performed both the multidimensional fit and sFit validation
studies. Finally, the author performed all pseudo experiment studies which were used in
obtaining the systematics. More information about the author’s activities can be found in
the recommendation letters attached to this thesis.
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Chapter 2

Theoretical formalism

This chapter provides a theoretical introduction to the topics studied in the disserta-
tion. First a brief summary of the Standard Model is given. Next, the different types of
symmetries in physics are discussed. An introduction to CP violation is followed by a phe-
nomenological model of beauty mesons decays. In addition, different types of CP violation
in this system are presented. Finally, the experimental summary of the determination
of the CKM angle γ using beauty mesons is described together with the measurement
strategy for B0

s→ D∓s K
±. The following brief descriptions are based on [7–9].

2.1 The Standard Model

The Standard Model (SM) of particle physics is a renormalisable quantum field theory that
describes the propagation and interactions of elementary particles. This theory combines
the theory of strong interactions known as Quantum ChromoDynamics (QCD) [10,11], with
the theory of electroweak interactions commonly labelled as the Glashow-Salam-Weinberg
(GSW) model [12–14].

In the framework of the Standard Model matter is built from 12 particles called
fermions which possess half-integer spin. Each fermion has a partner with opposite quantum
numbers, referred to as its antiparticle. Fermions are split in two categories according to
their interactions. The first group encompasses quarks, which carry colour charge and
therefore interact via the strong interaction. Quarks come in six flavours: up u, charm
c, top t (down d, strange s, beauty b) with electric charge of 2

3
e (−1

3
e)2. Besides the t

quark3, other quarks are bound inside hadrons. Hadrons comprise two groups: mesons
which contain a quark-antiquark (qq) pair and baryons made of three quarks (qqq). The
second group of fermions contains leptons: three charged particles: electron e, muon µ, tau
τ , and their neutral neutrino partners νe, νµ, ντ . The basic properties of the elementary
fermions are shown in Tab. 2.1.

The general properties of the Standard Model originate from the symmetries of the
direct product of the SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge groups. Interactions between
fermions are mediated by bosons which carry integer spin. The Standard Model depicts
three of the four fundamental forces of nature, the electromagnetic, weak and strong
interactions, but does not include gravity.

2The elementary charge e is the electric charge carried by a single electron.
3The lifetime of the top quark is so small that it decays before combining with other quarks to form

hadrons.
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Table 2.1: Basic properties of elementary fermions in the Standard Model.

Name Spin [~]
Generation Electric

Colour Charge
1st 2nd 3rd Charge

Quarks
±1

2
u c t 2

3
e {red,blue,green}

±1
2

d s b −1
3
e {red,blue,green}

Leptons
±1

2
e µ τ −e -

±1
2

νe νµ ντ 0 -

Strong interactions are described in terms of the SU(3)C gauge symmetry group where
the index C refers to the colour charge which takes three values labelled as red, blue
and green, together with the respective anti-colours attributed to antiquarks. The gluons,
massless particles which carry colour charge, are mediators of the strong interaction. Due
to the fact that gluons themselves have colour charge they self-interact, which leads to the
confinement phenomenon: the lack of observation of colourful states at distances exceeding
the size of a nucleon.

The unification of weak and electromagnetic forces is described by the direct product
of the SU(2)L ⊗ U(1)Y gauge groups. The electroweak bosons are massless W+

1 , W−
2 , W 0

3

[SU(2)L] and B0 [U(1)Y ] states. The SU(2)L ⊗ U(1)Y symmetry is spontaneously broken
(SSB) to the U(1)Q group associated with electric charge via the so-called Higgs mechanism.
The latter requires the presence of a doublet, scalar, complex Higgs field carrying four
degrees of freedom. Three of them are absorbed by the electroweak bosons which become
massive in this way. The remaining fourth field, the Higgs one, permeates all space. As
particles pass through the Higgs field they acquire mass. The field is associated with an
elementary particle called the Higgs boson which was observed in 2012 by the ATLAS [15]
and CMS [16] collaborations.

In the presence of spontaneous symmetry breaking the electromagnetic force is mediated
by the photon, γ, which is a linear combination of the third SU(2)L boson W 0

3 and the
U(1)Y boson B0. Due to the fact that the photon remains a massless particle after SSB,
the range of the electromagnetic interaction is infinite.

The weak interaction is mediated by three observable bosons: two charged states W±

and one neutral Z0. The first two are linear combinations of SU(2)L vector bosons W+
1

and W−
2 , whereas the last is, as the photon, a linear combination of W 0

3 and B0. All
three mediators are massive, therefore the range of the weak interaction is short. Weak
interactions provide the only mechanism in the SM by which quarks can change their
flavour.

The fundamental bosons of the Standard Model are listed in Tab. 2.2.

Table 2.2: Basic properties of elementary bosons in the Standard Model.
Name Spin [~] Mass [GeV/c2] Force mediated

Photon γ 1 0 electromagnetic
Gluon g 1 0 strong
W+, W− 1 80.4 weak (charged current)

Z0 1 91.2 weak (neutral current)
H0 0 125.9 ± 0.4 -
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2.2 Symmetries in physics

A physics system exhibits a definite symmetry if it remains the same after a certain
transformation: e.g. translation, rotation etc. Each individual symmetry coincides with
a well defined conserved quantity which is called a constant of motion. According to
Noether’s theorem [17] this parameter stays the same before and after the translation
in question. In classical mechanics the indication of a symmetry is the invariance of the
Lagrangian (Hamiltonian) describing the system with respect to the given transformation.
For symmetries in quantum mechanics the Hamiltonian must commute with the respective
operator which parametrises the symmetry operation. Group theory provides a mathemat-
ical description of symmetries in physics, in particular in the SM. Transformations of the
system and the associated symmetries may be divided into continuous and discrete.

The most prominent examples of continuous symmetries are the conservation of
energy, which follows from the invariance of physical laws under translations in time; the
conservation of momentum, which appears because of invariance under translations in
space, and angular momentum conservation due to invariance under spatial rotations.

The most relevant discrete symmetries are: parity P , charge conjugation C, and time
reversal T . Each of them leads to the conservation of a multiplicative quantum number.

The first discrete symmetry, parity, changes the sign of the space coordinates ~r = (x, y, z)
and, as a result, the handedness of the system of axes. The eigenfunction of the parity P
operator satisfies the condition:

PΨ(−→r ) = Ψ(−−→r ) = pΨ(−→r ), (2.1)

where p is an eigenvalue and Ψ denotes an eigenstate. A second application of this operator
leads to the initial state, and so p = ±1. By convention the value p = 1 is assigned
to elementary fermions and p = −1 to their antiparticles. The wave function Ψ can be
separated into radial and angular parts:

Ψ(−→r ) = R(r)Y m
l (θ, φ). (2.2)

The parity operator does not change the spatial distribution R, but transforms a spherical
harmonic into:

Y m
l (π − θ, π + φ) = (−1)LY m

l (θ, φ). (2.3)

where L denotes the angular momentum, l = 0, 1, 2, ... and m = −l,−l + 1, ..., l − 1, l.
Parity is a multiplicative quantum number, so for mesons which are quark-antiquark bound
states with an angular momentum L can be expressed as:

p = pqpq(−1)L = (−1)L+1, (2.4)

where pq(pq) is the quark (antiquark) parity, and pq = −pq.
The next symmetry is charge conjugation which changes the sign of all quantum

charges. The eigenfunction of the charge conjugation C operator is:

C|particle >= |antiparticle >= c|particle >, (2.5)

where c is again the respective eigenvalue with possible values ±1. Thus only particles
which are their own antiparticles can be eigenstates of C. Charge conjugation exchanges
quarks with antiquarks. In consequence it inverts the relative position vector, which has
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the same effect as the parity operation. In addition the spin wave function is also flipped.
For a fermion-antifermion system this leads to the expression:

c = (−1)L+S, (2.6)

where L is the angular momentum and S is the spin of such a system.
Finally, the operator T reverses the direction of motion by reflection in the time axis.

This anti-unitary operator has the form:

TΨ(−→r , t) = UKΨ(−→r , t) = Ψ†(−→r ,−t) (2.7)

where U is a unitary operator and K denotes a complex conjugation.
The strong and electromagnetic interactions are invariant with respect to each of the C,

P and T transformations. The weak interaction is not invariant under charge conjugation.
The C and T operators change the left-handed neutrino into a left-handed antineutrino,
which is not observed in nature, thus leading to the corollary that C symmetry is maximally
violated in this interaction. P violation in the weak interaction was first observed as the
spatial asymmetry of the decay products of 60Co→60 Ni∗+ e + νe [18], where the electrons
favoured a direction of decay opposite to spin of the nuclei. Moreover in 1964 it was
found that the CP symmetry (with respect to the product of C and P ) is broken by
weak interactions in the decays of neutral kaons [19]. In view of the CPT theorem which
states that the product of C, P and T transformations should be an exact symmetry of an
interaction that is described by a Lorentz invariant quantum field theory with a hermitian
Hamiltonian, the violation of CP symmetry points unequivocally to the non-conservation
of time reversal in weak interactions.

2.3 CP violation in the Standard Model

2.3.1 The Cabibbo-Kobayashi-Maskawa matrix

In the Standard Model CP violation is embedded in a single place, in processes mediated
by W± exchange and described in the Lagrangian of the so-called weak charged currents.
The quarks can be split into two groups according to their electric charges:

U =



u

c

t


 , D =



d

s

b


 . (2.8)

The charged current is given by:

g√
2

(UγµVCKMDLW
−
µ +DLγ

µV †CKMULW
+
µ ), (2.9)

where g is a coupling constant of weak interactions, Wµ corresponds to the field of the
intermediate boson W±, γµ are Dirac’s matrices (µ = 0, 1, 2, 3) and VCKM is the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix [20, 21]. The CKM mixing matrix reflects
the fact that the flavour eigenstates (d′, s′, b′) do not coincide with the mass eigenstates
(d, s, b): 


d′

s′

b′


 = VCKM



d

s

b


 =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






d

s

b


 . (2.10)
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Here each matrix element Vij corresponds to the flavour-changing weak coupling between
the respective quarks qi and qj. The overall 3x3 matrix of complex elements is dependent
on 18 real parameters. The fact that the CKM matrix is unitary reduces the number of its
parameters by half. Moreover, five of these parameters are relative phases between the
quark fields, which can be factored out. Therefore, in the case of three generations, the
CKM matrix is parametrised by three real angles and one irreducible imaginary phase that
is called the weak phase. The latter is the unique source of CP violation in the framework
of the SM.

A commonly-used parametrisation for the CKM matrix elements is:

VCKM =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12c23 − s12c23s13e

iδ c23c13


 , (2.11)

where cij = cos(θij), sij = sin(θij), θij parametrises the size of mixing between quark
generations i and j and δ refers to a weak phase.

The hierarchy of the moduli |Vij| which is observed experimentally can be presented
in terms of powers of a small parameter λ = s12 = sin(θ12) = 0.22, which describes the
mixing between the first and second generation of quarks (also known as the Cabibbo
angle [20]):

|VCKM | ∼




1 λ λ3

λ 1 λ2

λ3 λ2 1


 . (2.12)

This leads directly to the so-called Wolfenstein parametrisation [22], which is shown
here up to the third order in the λ parameter:

VCKM =




1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 , (2.13)

where the parameters A, ρ, λ and η are related to Eq. 2.11 by the following expressions:
λ = s12, Aλ2 = s23 and Aλ3(ρ + iη) = s13e

iδ. The imaginary parameter η quantifies the
size of CP violating effects in the Standard Model.

2.3.2 The Unitarity Triangles

The unitarity of the CKM matrix (V †CKMVCKM = 1) implies six orthogonality conditions
and requires that the products of different rows and columns of the VCKM should sum up
to zero. These orthogonality conditions can be represented as triangles in the complex
plane, known as Unitarity Triangles (UT). The six relations together with the order of
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magnitude of the length of each side of the triangle read:

V ∗udVus + V ∗cdVcs + V ∗tdVts = 0, (λ , λ , λ5), (2.14)
V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0, (λ3, λ3, λ3), (2.15)
V ∗usVub + V ∗csVcb + V ∗tsVtb = 0, (λ4, λ2, λ2), (2.16)
V ∗udVtd + V ∗usVts + V ∗ubVtb = 0, (λ3, λ3, λ3), (2.17)
V ∗tdVcd + V ∗tsVcs + V ∗tbVcb = 0, (λ4, λ2, λ2), (2.18)
V ∗udVcd + V ∗dsVcs + V ∗ubVcb = 0, (λ , λ , λ5). (2.19)

Only the UTs given by Eq. 2.15 and Eq. 2.17 have all sides of the same order of magnitude.
They both describe the triangle which satisfies the equation:

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0. (2.20)

The UT described by Eq. 2.17 is experimentally less accessible due to transitions involving
the top quark. Therefore, the first of them (Eq. 2.15, shown in Fig. 2.1) is commonly used
and labelled as the Unitarity Triangle. Taking into account also terms proportional to λ5,
the sides of the UT are:

V ∗ubVud = Aλ3(ρ+ iη)(1− λ2

2
), (2.21)

V ∗cbVcd = −Aλ3, (2.22)
V ∗tbVtd = Aλ3((1− ρ− iη) + λ2(ρ+ iη)). (2.23)

It is common to normalise the above equations by dividing them by the factor Aλ3. This
leads to a useful geometrical interpretation of the UT in the complex plane in terms of
the variables (ρ, η), where ρ = ρ(1− λ2

2
) and η = η(1− λ2

2
), with the angles of the triangle

defined as:

α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
= arg




(
1− λ2

2

)
(iη − ρ)

1− ρ− iη


 , (2.24)

β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
= arg

(
1

1− ρ− iη

)
, (2.25)

γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
= arg

((
1− λ2

2

)
(ρ− iη)

)
. (2.26)

Figure 2.1: The Unitary Triangle as given by Eq. 2.15.
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2.3.3 Current constraints on the CKM matrix

The values of the parameters of the CKM matrix are not predicted in the Standard
Model, however, they are accessible experimentally. The precise determination of a set of
observables which depend on VCKM parameters would over-constrain the UT, thus providing
one of the most important tests of the SM. In particular, any potential discrepancies in
relation 2.15 would indicate contributions from physics beyond the SM. Figure 2.2 shows
the results of the most recent measurements of the angles and sides of the UT. At the
current level of precision there is no significant discrepancy, although the measurements of
the CKM angle β and the matrix element Vub are in some tension with each other. This
can be seen from Fig. 2.3 where the two dimensional constraint between the measurements
of sin(2β) and the branching fraction of the decay B → τν, proportional to Vub, is shown.
Nevertheless, there is still no significant evidence for a departure from the Standard Model
picture of CP violation in the UT measurements. The averages of the experimental results
for the CKM angles from the CKMFitter group [23] are collected in Tab. 2.3. As it can be
seen, the CKM angle γ angle, whose determination will be presented in this dissertation,
is the least precisely measured of the CKM angles.

The CKM angle γ can be measured in many different decays of beauty hadrons as
will be described in Sec. 2.4.4. In recent years measurements of this quantity have been
performed by three experiments: Belle [24] at KEK [25](Japan), BaBar [26] at SLAC [27]
(USA) and LHCb [28] at CERN [29] (Switzerland). Each of them has also provided its
individual collaboration-wide average of the CKM angle γ measurement, whose results are
listed in Tab. 2.4. It is worthwhile to underline that the average presented by the LHCb
experiment [30] included the result of studies presented in this thesis.

Figure 2.2: Status of measurements of sides and angles of the Unitary Triangle given by
Eq. 2.15. Ref. [23].

Table 2.3: Estimates of the CKM angles α, β and γ as given by the CKMFitter group [23].
The CKM angle Estimate from direct measurements [◦]

α 87.7+3.5
−3.3

β 21.50+0.75
−0.74

γ 73.2+6.3
−7.0
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Figure 2.3: The experimental estimates of sin(2β) vs B(B → τν) (data points) and the
respective SM predictions (the area with colours corresponding to the p-values as given by
the legend on the right side of the plot) Ref. [23].

Table 2.4: Recent combinations of the CKM angles γ made by the LHCb, Belle and BaBar
collaborations Ref. [23].

Experiment Combination of the CKM angle γ [◦]

the LHCb Collaboration 74.6+8.4
−9.2

the Belle Collaboration 73+13
−15

the BaBar Collaboration 70± 18

2.4 Heavy flavour physics

Heavy flavour physics studies processes containing heavy elementary fermions such as the
b, c quarks or the τ lepton.

2.4.1 Mixing of neutral mesons

In a system composed of a pair of neutral mesons, that differ only by a quantum number
which is conserved in weak interactions, mixing arises as a result of a mismatch between
their mass and flavour eigenstates. The following description focuses on the beauty meson
mixing for which the flavour eigenstates are defined as:

B0
q = |bq〉, B

0

q = |bq〉, (2.27)

where q = {d, s}. The convention B0
d ≡ B0 is used. The mass eigenstates for the lighter

(L) and heavier (H) components are a linear combination of the flavour eigenstates:

|BL〉 = p|B0
q 〉+ q|B0

q〉, |BH〉 = p|B0
q 〉 − q|B

0

q〉, (2.28)

with |p|2 + |q|2 = 1. Their inversions are given by:

|B0
q 〉 =

1

2p
(|BL〉+ |BH〉) , |B0

q〉 =
1

2q
(|BL〉 − |BH〉) . (2.29)
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Figure 2.4: Feynman diagrams responsible for beauty meson mixing.

In the SM the beauty meson mixing process arises from so-called box-diagram transitions
whose corresponding Feynman diagrams are shown in Fig. 2.4. The mesons B0

q , B
0

q

transform under CP symmetry as:

CP |B0
q 〉 = −|B0

q〉, CP |B0

q〉 = −|B0
q 〉. (2.30)

The Schrödinger equation for the time evolution is given by:

i
d

dt

(
|B0

q 〉
|B0

q〉

)
= H

(
|B0

q 〉
|B0

q〉

)
=

(
M− i

2
Γ

)(|B0
q 〉

|B0

q〉

)
, (2.31)

where H denotes the Hamiltonian, while M and Γ are two-dimensional hermitian matrices
describing the masses and widths of the system:

M =

(
m11 m12

m21 m22

)
, Γ =

(
Γ11 Γ12

Γ21 Γ22

)
, (2.32)

satisfying the relations m21 = m∗12 and Γ21 = Γ∗12. Furthermore, CPT invariance implies
that:

〈B0
q |H|B0

q 〉 = 〈B0

q|H|B
0

q〉, (2.33)

which leads to the following additional constraints: m = m11 = m12 and Γ11 = Γ22 = Γ.
As a result Eq. 2.31 reads:

i
d

dt

(
|B0

q 〉
|B0

q〉

)
=

(
m− i

2
Γ m12 − i

2
Γ12

m∗12 − i
2
Γ∗12 m− i

2
Γ

)(
|B0

q 〉
|B0

q〉

)
. (2.34)

The eigenvalues of H in the mass eigenstate basis can be expressed as:

ωL,H = mL,H −
i

2
ΓL,H , (2.35)

where mL,H are the masses of lighter, heavier component, respectively and ΓL,H are their
decay widths. In terms of the elements of matrices M and Γ, the eigenvalues are given by:

ωL,H = m− i

2
Γ∓

√(
m12 −

i

2
Γ12

)(
m∗12 −

i

2
Γ∗12

)
, (2.36)

which can be rewritten as:

ωL,H =

(
m∓ ∆m

2

)
− i

2

(
Γ± ∆Γ

2

)
(2.37)
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with the following relations:

m =
mH +mL

2
, Γ =

ΓH + ΓL
2

,

∆m = mH −mL, ∆Γ = ΓL − ΓH . (2.38)

Finally, the matrix from Eq. 2.34 can be expressed in terms of ωL,H as:
(

m− i
2
Γ m12 − i

2
Γ12

m∗12 − i
2
Γ∗12 m− i

2
Γ

)
=

(
1

2|q|2 0

0 1
2|p|2

)(
q∗ q∗

p∗ −p∗

)(
ωL 0

0 ωH

)(
q p

q −p

)

=

(
ω − p

2q
∆ω

− p
2q

∆ω ω

)
, (2.39)

where ω = 1
2
(ωH + ωL) and ∆ω = ωH − ωL. Moreover, since the off-diagonal elements of

the matrix from Eq. 2.39 coincide with the parameters p and q (Eq. 2.28) it gives the
relation:

p

q
=

√
m12 − i

2
Γ12

m∗12 − i
2
Γ∗12

. (2.40)

2.4.2 Time evolution of neutral meson states

The time evolution of mass eigenstates is given by the relations:

|BL(t)〉 = e−(imL+ 1
2

ΓL)t|BL〉, |BH(t)〉 = e−(imH+ 1
2

ΓH)t|BH〉. (2.41)

Using Eq. 2.28 and Eq. 2.41, the latter can be transformed to:

|B0
q (t)〉 = g+(t)|B0

q (0)〉+
q

p
g−(t)|B0

q (0)〉,

|B0

q(t)〉 =
p

q
g−(t)|B0

q (0)〉+ g+(t)|B0
q (0)〉, (2.42)

where the functions g±(t) read:

g±(t) =
1

2

(
e−imLte−

1
2

ΓLt ± e−imH te− 1
2

ΓH t
)
. (2.43)

Due to mixing, both B0
q and B

0

q mesons can decay to the same final state which will be
denoted as f . In the following, its charge conjugation will be marked as f . There are four
possible decays B0

q → f , B0
q → f , B

0

q → f and B
0

q → f and their decay amplitudes are
given by:

Af = 〈f |H|B0
q 〉, Af = 〈f |H|B0

q 〉, Af = 〈f |H|B0

q〉, Af = 〈f |H|B0

q〉, (2.44)

respectively. In the presence of CPT invariance the following conditions are satisfied:

|Af | = |Af |, |Af | = |Af |. (2.45)

The decay rate of a |B0
q 〉 meson produced at time t = 0 to a final state f at time t is

given by the formula:
dΓB0

q→f (t)

dt
= |〈f |T|B0

q (t)〉|2, (2.46)
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where T corresponds to the respective transition matrix. Similar expressions can be defined
for the other three decay amplitudes described in Eq. 2.44. Using Eq. 2.42, the decay rate
of the B0

q → f decay is expressed by the formula:

dΓB0
q→f (t)

dt
= |〈f |T|B0

q (t)〉|2 =|g+(t)Af +
q

p
g−Af |2

=|Af |2
(
|g+(t)|2 + |λf |2|g−(t)|2 + λ∗fg+(t)g∗−(t) + λfg

∗
+(t)g−(t)

)

=
1

2
|Af |2e−Γt

[ (
1 + |λf |2

)
cosh

(
∆Γ

2
t

)
+
(
1− |λf |2

)
cos (∆mt)

− 2< (λf ) sinh

(
∆Γ

2
t

)
− 2=(λf ) sin (∆mt)

]
. (2.47)

The respective term for the B
0

q → f decay is:

dΓ
B

0
q→f

(t)

dt
= |〈f |T|B0

q(t)〉|2

=
1

2

∣∣∣∣
p

q

∣∣∣∣
2

|Af |2e−Γt

[ (
1 + |λf |2

)
cosh

(
∆Γ

2
t

)
−
(
1− |λf |2

)
cos (∆mt)

− 2< (λf ) sinh

(
∆Γ

2
t

)
+ 2=(λf ) sin (∆mt)

]
. (2.48)

In the above the parameter λf is defined by:

λf =
1

λf
=
q

p

Af
Af

. (2.49)

The rates of the decays to the charge conjugate final state f are given by the same
equations but after substituting the index f by f and with the parameter λf given by:

λf =
1

λf
=
q

p

Af
Af

. (2.50)

Based on the above discussion, the following CP asymmetry observables Cf , Sf , Df (Cf̄ ,
Sf̄ , Df̄ ) for f (f) final states are defined:

Cf =
1− |λf |2
1− |λf |2

, Sf =
2=(λf )

1− |λf |2
, Df =

−2<(λf )

1− |λf |2
,

Cf̄ =
1− |λf |2
1− |λf |2

, Sf̄ =
2=(λf )

1− |λf |2
, Df̄ =

−2<(λf )

1− |λf |2
. (2.51)

Here CPT invariance yields C = Cf = −Cf̄ . The relevant SM parameters such as the
weak phase γ − 2βq and the strong phases δ, can be extracted using the relations:

γ − 2βq =
1

2
[arg(λf )− arg(λf )], δ =

1

2
[arg(λf ) + arg(λf )], (2.52)
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where βq denotes the phase associated with mixing. Finally, the CP parameters defined in
Eq. 2.51 exhibit the following dependence on the SM parameters:

C =
1− r2

1− r2
,

Sf =
2r sin(δ − (γ − 2βs))

1− r2
, Df =

−2r cos(δ − (γ − 2βs))

1− r2
,

Sf̄ =
−2r sin(δ + (γ − 2βs))

1− r2
, Df̄ =

−2r cos(δ + (γ − 2βs))

1− r2
, (2.53)

where r is the ratio of the magnitudes of the decay amplitudes of the contributing
diagrams. As can be seen in the above relations, a small value of r limits the sensitivity
of the measurement, whereas maximal CP violation sensitivity is expected when the
contributing diagrams have the same order of magnitude.

2.4.3 Types of CP violation

CP violation phenomena can be categorised into three types:

� in decay,

� in mixing,

� in the interference between decay and mixing.

CP violation in decay occurs for charged and neutral mesons. This type of CP violation
happens when the decay probability of B0

q → f is not equal to that of B
0

q → f . It implies

that
∣∣∣AfAf
∣∣∣ 6= 1. The ratio

∣∣∣AfAf
∣∣∣ can be measured through the following asymmetry:

ACP =
Γ(B0

q → f)− Γ(B
0

q → f)

Γ(B0
q → f) + Γ(B

0

q → f)
=
|A(B0

q → f)|2 − |A(B
0

q → f)|2

|A(B0
q → f)|2 + |A(B

0

q → f)|2
=

1− |Af/Af |2
1 + |Af/Af |2

6= 0.

(2.54)
Direct CP violation is expected and has been observed, for example, in the decays:
B0

(s) → K+π−, B
0

(s) → K−π+ [31], but also B± → D0K± [32].
The second type of CP violation (in mixing) occurs when the oscillation probabilities

B0
q → B

0

q and B
0

q → B0
q differ, which implies that |q/p| 6= 1 and |λf | 6= 1. The ratio |q/p|

can be measured from semileptonic decays of neutral beauty mesons using the asymmetry
defined by:

ACP =
Γ(B0

q → l−νX)− Γ(B
0

q → l+νX)

Γ(B0
q → l−νX) + Γ(B

0

q → l+νX)
=

1− |q/p|4
1 + |q/p|4 . (2.55)

For B0
q mesons CP violation in mixing is expected to be small, at the level O(10−4) [33],

and has not been observed yet.
Finally, CP violation in the interference between mixing and decay is possible when

=(λf) 6= 0. That type of CP violation may happen when the final states f and f are
accessible for both B0

q and B
0

q mesons. As shown in Fig. 2.5, the B0
q meson can decay

directly to a final state f , or alternatively, firstly mix to B
0

q and then decay to f . A similar

process is also possible for B
0

q → f . This kind of CP violation is relevant for the decay
B0
s→ D∓s K

± which is studied in this thesis.
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Figure 2.5: Illustration of CP violation in interference between mixing and decay.

2.4.4 Measurement of the CKM angle γ using beauty meson
decays.

Taking into account the decays of the b quark which are relevant for this thesis, the
Standard Model permits two generic types of decays: tree-level and loop-level, as shown in
Fig. 2.6. Tree-level decays occur due to the exchange of W± bosons and thus they are not
sensitive to new phenomena originating from physics beyond the SM. In the loop-level
processes the W± boson is a part of a loop, from which a gluon, photon or Z boson is
emitted. The latter then creates a quark-antiquark pair. In such loops massive, virtual
and so far undetected particles can be exchanged. Thus this kind of diagram provides
potential sensitivity to physics beyond the SM. The CKM angle γ can be determined using
both types of decays as shown in Fig. 2.7. In view of the above discussion, a comparison
between results obtained from both methods is a valuable test of the SM.

Figure 2.6: Tree-level (left) and loop-level (right) processes for the decays relevant for the
CKM angle γ determination Ref. [34]

Loop-level measurements are accessible from decays to charmless final states and
they further split into time-integrated and time-dependent methods. Time-integrated
measurements use three-body decays [35, 36]. The determination of the CKM angle γ
is also possible using the Dalitz plot technique [37], which separates CP = +1 and
CP = −1 final states. On the other hand, time-dependent methods are based on two-body
decays [38, 39]. Measurement of the CKM angle γ from such decays requires knowledge of
hadronic factors, which are not theoretically accessible, but can be extracted from U -spin
symmetry.

Tree-level measurements are also categorised into time-integrated and time-dependent
ones. For the former, the CKM angle γ can be obtained by exploiting the interference
between b → u and b → c transitions in the decays of beauty mesons with a charm
meson in the final state, such as B− → D(∗)0K(∗)−. In B− → D(∗)0K(∗)− decays the
colour-favoured B− → D(∗)0K(∗)− and the colour-suppressed B− → D̄(∗)0K(∗)− transitions
interfere when the D(∗)0 and D̄(∗)0 decay to a common final state. The relationship between
γ and the physical observables depends on the D(∗)0 final state. Based on that, three
separate methods of extracting the CKM angle γ can be considered:
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� the Gronau-London-Wyler (GLW) method [40] [41] for CP eigenstates (D0 → K+K−

and D0 → π+π−),

� the Atwood-Dunietz-Soni (ADS) method [42] for flavour-specific eigenstates (D0 →
K+π− and D0 → K+π−π+π−)

� the Giri-Grossman-Soffer-Zupan (GGSZ) method [43] for self-conjugate three-body
final states (D0 → K0

Sπ
+π− and D0 → K0

SK
+K−).

The time dependent method with tree-level transitions will be discussed in details in the
next section.

Figure 2.7: Compilation of methods of the CKM angle γ measurement. The approach
which is the topic of this thesis is highlighted as yellow boxes.

2.5 Measurement of the CKM angle γ from B0
s →

D∓s K
± decays

Time-dependent measurements of the CKM angle γ with tree-level processes exploit, just
as time-integrated methods, the interference between b→ u and b→ c transitions [44–46].

Time-dependent measurements using B0 → D(∗)∓π± decays were performed by both
the BaBar [47, 48] and the Belle [49, 50] collaborations. For these decays, however the
amplitude ratios:

rD(∗)π =
A(B0 → D(∗)−π+)

A(B0 → D(∗)+π−)
, (2.56)
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4.3 Equations for B0
s ! D⌥

s K±

As kaons contain an s quark, two tree diagrams for instantaneous decay
exist for the B0

s ! D⌥
s K± channels (see Fig. 2). Both B0

s and B̄0
s mesons

can decay directly (without oscillations) to either D�
s K+ or D+

s K�, therefore
this decay channel is not flavour specific and interference occurs between the
two contributing amplitudes.

Due to the di↵erent coupling constants the two tree diagrams T1 and T2

have di↵erent magnitudes. The process B0
s ! D+

s K� (tree diagram T2) is
suppressed due to flavour change from the third to first quark generation
described by Vub, the numerical value of the suppression factor is |(⇢� i⌘)| ⇠
0.36 (where ⇢ and ⌘ are the parameters from the Wolfenstein parametrisation
of the CKM matrix). As can be seen, the suppression is relatively mild, since
both amplitudes are of order A�3

CKM in the Wolfenstein parameters A and
�CKM (with �CKM ⇠ 0.23 and A ⇠ 0.81). Thus, one expects a relatively large
contribution from the interference between the two amplitudes (compared to
decays which are suppressed by one or more powers of �CKM).

Because of the conservation of CPT , we have |Af | = |Āf̄ | and |Af̄ | = |Āf |.
Using the assumption |q/p| = 1 gives |�f | = |�̄f̄ |, see Eq. 21. This also implies
that Cf = Cf̄ .

The terms �f and �̄f̄ are then given by

b̄

s
B0

s
s

c̄

D�
s

W+

s̄
K+

u

V ⇤
cb

Vus

b

s̄
B̄0

s
s̄

u

K+

W�
s
D�

s

c̄

Vub

V ⇤
cs

Figure 2: Feynman tree diagrams for B0
s ! D�

s K+ (diagram T1, left) and
B̄0

s ! D�
s K+ (diagram T2, right). The sub-process T1 has a larger magni-

tude than T2 due to the di↵erent coupling constants.
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both amplitudes are of order A�3

CKM in the Wolfenstein parameters A and
�CKM (with �CKM ⇠ 0.23 and A ⇠ 0.81). Thus, one expects a relatively large
contribution from the interference between the two amplitudes (compared to
decays which are suppressed by one or more powers of �CKM).

Because of the conservation of CPT , we have |Af | = |Āf̄ | and |Af̄ | = |Āf |.
Using the assumption |q/p| = 1 gives |�f | = |�̄f̄ |, see Eq. 21. This also implies
that Cf = Cf̄ .

The terms �f and �̄f̄ are then given by
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Figure 2: Feynman tree diagrams for B0
s ! D�

s K+ (diagram T1, left) and
B̄0

s ! D�
s K+ (diagram T2, right). The sub-process T1 has a larger magni-

tude than T2 due to the di↵erent coupling constants.

Figure 2.8: Tree diagrams for the decay B0
s→ D∓s K

±.

between the interfering decay modes are expected to be small, rD(∗)π ≈ 0.02 [51], which
limits the sensitivity.

In case of the decay B0
s→ D∓s K

±, there exist two tree diagrams shown in Fig. 2.8. Here,
both B0

s and B
0

s mesons can decay directly to either D−s K
+ or D+

s K
−, which leads to the

possibility of CP violation in the interference between mixing and decay. The diagrams
describing B0

s → D−s K
+ and B

0

s → D−s K
+ decays (Fig. 2.8) are of the order Aλ3 in the

Wolfenstein parametrisation. However, the process B
0

s → D−s K
+ is suppressed by a factor

|(ρ− iη)| ≈ 0.36 due to the value of the CKM element Vub. The suppression is relatively
small, so a large interference between the two amplitudes is expected.

The measurement of time-dependent CP violation in the decay mode B0
s→ D∓s K

±

allows for an efficient and unambiguous measurement of the CKM angle γ. The importance
of this measurement lies in the fact that B0

s→ D∓s K
± is a pure tree-level decay. Because

of this, the theoretical uncertainty on the interpretation of the CP observables in terms of
the CKM angle γ is tiny, δγ

γ
= 10−7 [52].

Two of the four decay rates for B0
s→ D∓s K

± are given by Eq. 2.47 and Eq. 2.48. The
next two, for the charge conjugate final state f , can be obtained by substituting f by f and
λf by λf as discussed in Sec. 2.4.2. The CP violation parameters are defined by Eq. 2.51
and their dependence on the CKM angle γ by Eq. 2.53. The resulting CP asymmetries for
f (f) final states are:

A
f(f)
CP (t) =

dΓ
B

0
s→f(f)

(t)/dt− dΓB0
s→f(f)(t)/dt

dΓ
B

0
s→f(f)

(t)/dt+ dΓB0
s→f(f)(t)/dt

=
−Cf(f) cos(∆mst) + Sf(f) sin(∆mst)

cosh(∆Γs
2
t) +Df(f) sinh(∆Γs

2
t)

.

(2.57)

All measurements of the CKM angle γ are characterised by at least twofold, but often
four or eight fold, ambiguities because of the mathematical relationship between the decay
rates and the CKM angle γ. Figure 2.9 shows a simulation for the B0

s → D∓s K
± CP

observables: Sf , Df , Sf̄ , Df̄ in the (γ,δ) plane. The combined likelihood together with the
projection onto the CKM angle γ are presented in Fig. 2.10. It can be seen that thanks to
the extra hyperbolic terms, Df and Df̄ , this ambiguity is reduced to only two solutions.
The B0

s→ D∓s K
± decay is one of the few ways of measuring γ with this property.
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Figure 2.9: Likelihood for CP parameters, from top left to bottom right: Sf , Df , Sf̄ , Df̄ .
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Chapter 3

The LHCb experiment

In this chapter the experimental apparatus relevant for the studies presented in this thesis
is outlined. First the main features of the Large Hadron Collider are briefly presented.
Next the LHCb spectrometer is discussed with special attention paid to the subdetectors
which are crucial for this dissertation.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [53] is a proton-proton accelerator built by the European
Laboratory for Particle Physics (CERN) at the French-Swiss border near Geneva. The
LHC is located 100 m underground in a 27 km long tunnel.

A schematic view of the LHC is shown in Fig. 3.1. Protons from the source are
accelerated in several stages. Firstly, they go through the linear collider (LINAC2 [54])
where they reach an energy of 50 MeV. The next step is an acceleration up to an energy
of 1.4 GeV in the Booster [55]. Finally protons pass through the Proton Synchrotron
(PS) [56] and the Super Proton Synchrotron (SPS) [57] where they reach an energy of 25
GeV and 450 GeV, respectively. The LHC was designed to accelerate proton beams up
to an energy of 7 TeV, leading to a center-of-mass energy of

√
s = 14 TeV with a peak

luminosity4 of L = 1× 1034 cm−2s−1. However, in the first years after commissioning, due
to issues with the superconducting dipole magnets, the LHC operated at reduced energies
of
√
s = 7 TeV in 2010 and 2011 and

√
s = 8 TeV during 2012.

Four major experiments are situated in the LHC ring: ALICE (A Lead Ion Collision
Experiment, [58]), ATLAS (A Toroidal LHC ApparatuS, [15]), CMS (Compact Muon
Spectrometer, [16]) and LHCb (Large Hadron Collider beauty, see Sec. 3.2). ATLAS and
CMS are general purpose detectors. The ALICE experiment is dedicated to the study of
ultra relativistic heavy ions, which can also be collided in the LHC. The LHCb experiment
will be described in detail in the next section.

3.2 The LHCb experiment

The LHCb experiment is dedicated to the study of beauty and charm hadron decays
with special attention paid to CP violating phenomena as well as searches for physics
beyond the SM through rare decays. The beauty production cross-section (the left part of

4 L = dR
dt

1
σR

, where dR
dt is the number of candidates for a given process R detected in time t and σR is

the interaction cross section for the process in question.
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Figure 3.1: A schematic view of the LHC accelerator [59].

Fig. 3.2) is dominated by gluon fusion, and thus it predominantly occurs in the forward
region. Therefore, in contrast to other detectors, the LHCb detector is a single-arm forward
spectrometer with a pseudorapidity5 η spanning the range 1.8 < η < 4.9.

The LHCb detector was designed to operate at lower instantaneous luminosities than
those used by ATLAS and CMS. At the LHCb crossing point one beam is moved relative
to the other, so that the beams do not collide head-on and the interaction area is bigger.
This procedure is known as luminosity levelling. The integrated luminosity collected by the
LHCb experiment in 2010-2012 is shown on the right part of Fig. 3.2. Due to luminosity
levelling the LHCb experiment collected around 1 fb−1 in 2011, compared to 5 fb−1 for
ATLAS and CMS.

Thanks to the excellent performance of the LHCb detector, the LHCb experiment is
uniquely able to study CP violation in B0

s→ D∓s K
± decays. Even though the B0

s→ D∓s K
±

decay was seen earlier by the Belle [24] and CDF [60] experiments, neither of them (which
are no longer taking data) collected as many candidates as LHCb has collected so far. In
addition, Belle does not have sufficient decay time resolution to perform time dependent
CP violation measurements in B0

s decays, while CDF has much worse signal purity than
LHCb because of their inferior identification of charged hadrons.

The reconstruction of beauty and charm mesons requires effective tracking and particle
identification systems specialised in collecting specific information about particles produced
in proton-proton collisions. The LHCb spectrometer, shown in Fig. 3.3, is composed of
several sub-detectors. The LHCb co-ordinate system is a right handed Cartesian system
with the origin at the interaction point. The x-axis is oriented horizontally towards the
outside of the LHC ring, the y-axis is pointing upwards with respect to the beamline and
the z-axis is aligned with the beam direction.

The following subsections consist of brief descriptions of these sub-systems, focusing on
those which are the most relevant for the analysis presented in this thesis. More detailed
information can be found in Ref. [28].

5η = − ln[tan
(
θ
2

)
] where θ is the angle between the beam axis (for the LHCb experiment z axis) and

the particle’s momentum.
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Figure 3.2: Left: the relative cross section for bb production as a function of polar angles
at
√
s = 7 TeV Ref. [61]. Right: the integrated luminosity collected by the LHCb detector

in 2010-2012 Ref. [62].

Figure 3.3: A schematic view of the LHCb detector Ref. [28]. The labels RICH1 and
RICH2 denote the Ring Imaging Cherenkov detectors, TT and T1-T3 are the tracking
stations, M1-M5 show the muon detectors, SPD(PS) is the scintillator pad(preshower)
detector. Finally ECAL and HCAL mark the electromagnetic and hadronic calorimeters,
respectively.

3.2.1 The tracking system

The main goal of the tracking system is to find and measure the signatures of charged
particles passing through the LHCb detector. These signatures are labelled by tracks and
they constitute a necessary input to the reconstruction algorithms.
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The VErtex LOcator

The Vertex Locator (VELO) subdetector is responsible for a precise determination of
charged track positions close to the interaction point. As a result it is crucial in the
reconstruction of vertices. These can be divided in two categories: primary, which correspond
to the position of a pp collision, and secondary, formed by the decay of long-lived particles.
The relative position between primary and secondary vertices, together with momentum
information from other subdetectors, allows the decay-time of b hadrons to be reconstructed.
This is a necessary observable in many analyses, in particular time-dependent CP violation
measurements.

The VErtex LOcator (VELO) is composed of 21 semicircular stations and two additional
VETO stations, which can be used to reject candidates with too many pp collisions per
bunch crossing (so-called pile-up). Each station has left and right parts, which can be
moved apart during the beam injection period and moved back together once the beams
are stable. In nominal working conditions the active parts of the VELO are about 8 mm
away from the beam. Figure 3.4 shows the layout of the VELO sensor stations in the x-z
plane.

Each half of the VELO is made of a silicon wafer covered by aluminium strips. Its
thickness (diameter) amounts to 300 µm (84mm). To provide two-dimensional information
about particle positions the VELO sensors are split into two categories: R-type and φ-type.
R-type sensors have semicircular strips and measure the radial coordinate, whereas φ-type
sensors provide information about the azimuthal direction (φ angle) and their strips are
placed along the radius. Figure 3.5 shows an overview of a single sensor, which is composed
of one R-type and one φ-type sensor. Each VELO half-module has 2000 strips, which gives
180 000 read-out channels for the entire detector.

Figure 3.4: Layout of the Vertex Locator Ref. [28].

The Tracker Turicensis

The Tracker Turicensis (TT) is located between RICH1 and the LHCb magnet as shown
in Fig. 3.3. Its main purpose is to improve the track momentum resolution as well as the
reconstruction of long-lived particles that decay outside the VELO. The TT is composed of
two stations (TTa and TTb), each of them made of two layers of silicon micro-strip sensors.
The layers are divided into sections depending on the beam occupancy. Determination of
the transverse component of the momentum is possible due to the presence of two type
of layers. The TTa (TTb) stations consist of the so-called X-U (X-V) layers, respectively.
The X layers have vertical readout strips, while U and V stereo layers are rotated along
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Figure 3.5: Layout of the R-type and φ-type sensors of the Vertex Locator Ref. [28].
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Figure 3.6: Schematic views of a single layer of the Tracker Turicensis. The left (right) plots
show X (U) view, respectively. Yellow/brown colours denote different readout sections,
while a navy blue corresponds to readout electronics. Ref. [28].

the y-axis by +5◦ or −5◦, respectively. The design of the two different layers is shown in
Fig. 3.6. In total the TT stations contain around 140 000 readout strips covering an active
area of 8.4 m2. The hit resolution of the TT is about 50 µm.

The Inner Tracker

The Inner Tracker (IT) covers the central part of the T1-T3 tracking stations, located
behind the LHCb magnet as shown in Fig. 3.3. The detector covers the 1.3% of the LHCb
acceptance closest to the beamline. In this area the particle flux is much greater compared
to the remaining regions of the T1-T3 acceptance. For this reason, the IT is composed of
radiation-hard silicon detectors. It is built from four sections placed above, below, and
on each side of the beamline as presented on the right part of Fig. 3.7. Each IT station
comprises four layers arranged in the same manner (X-U-V-X) as the layers in the TT
stations. The IT has a hit resolution of about 50 µm and contains around 129 000 readout
channels.

The outer tracker

The outermost layers (w.r.t the beam pipe) of the T1-T3 stations are filled with the
Outer Tracker (OT) as shown in Fig. 3.7. Each OT station covers a large area of 340 m2.
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Figure 3.7: Overall layout of the tracking stations T1-T3 (left) and of the single (X) layer
of the IT (right) Ref. [28].

Figure 3.8: A view of the LHCb magnet Ref. [28].

The OT is a gaseous straw-tube detector filled with an Ar/CO2/O2 (70%/28.5%/1.5%)
gas mixture. Each of the three stations has four layers in a (X-U-V-X) configuration. In
addition, each layer is divided into 20 modules with two layers of straws. The straws have
an inner diameter of 4.9 mm. For optimal spatial resolution, the straw layers are shifted
by half a straw diameter inside one module. The OT is composed of around 54 000 straw
tubes and provides a hit resolution of about 200 µm.

The LHCb magnet

The dipole magnet curves the trajectories of charged particles enabling the measurement
of their momenta. It is situated between the TT and T1-T3 stations as presented in
Fig. 3.3. The magnet consists of a steel cover surrounding two identical aluminium non-
superconductive coils placed with mirror symmetry to the beam axis as shown in Fig. 3.8.
The integrated magnetic field for tracks with length of 10 m is 4 Tm. To reduce detection
asymmetries the polarity of the magnet is switched repeatedly during data taking.
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3.2.2 Particle Identification

In a single proton-proton collision a lot of different charged particles are produced, primarily
pions, kaons, electrons, protons or muons. Their correct identification is crucial for the
reconstruction of beauty meson decays. To perform this task, the difference in logarithmic
likelihood is defined as:

DLL(A− B) = lnLA − lnLB (3.1)

where LA and LB denote the likelihood that a particle is identified under the A and B
hypotheses, respectively. For example, in case of DLL(A− B) < 0 the particle is more
likely B, whereas for DLL(A− B) > 0 it is more likely A.

The final state particles of the B0
s→ D∓s K

± decay are pions and kaons. Moreover, the
most important peaking background is due to the B0

s→ D−s π
+ decay, with a 15 times larger

branching fraction than B0
s→ D∓s K

± [63]. For this background a pion is misidentified as
a kaon. Hence the distinction between kaons and pions is crucial for the analysis, and
therefore the important observable is PIDK = DLL(K− π). Other PID variables used in
the presented analysis are PIDµ = DLL(µ− π) and PIDp = DLL(p− π), which provides
discrimination against muons and protons, respectively.

Several subdetectors provide the necessary input to the identification procedure, based
on which the combined likelihood for a specific particle hypothesis is obtained. These
subdetectors are: the Ring Imaging Cherenkov detectors, the calorimeters and the muon
chambers. Their brief description is given in the following subsections.

The Ring Imaging Cherenkov detectors

The Ring Imaging CHerenkov (RICH) detectors exploit the so-called Cherenkov effect [64]
to measure the velocity of charged particles. This effect occurs when a charged particle
travels faster than the speed of light in a medium, which is given by:

c′ =
c

n
, (3.2)

where n is the refractive index of the medium and c denotes the speed of light in vacuum.
The LHC produces highly relativistic particles, whose velocity can be greater than c′

for some materials. In this case the particle emits photons in a cone w.r.t. the direction
of propagation, characterised by the so-called Cherenkov angle θC , which satisfies the
formula:

cos(θC) =
c′

v
=

1

βn
, (3.3)

where β is the velocity of the particle. Thus, the determination of the Cherenkov an-
gle provides information about particle’s velocity which, together with the momentum
measurement from the tracking system, allows the particle’s mass to be determined and
therefore gives particle identification.

Cherenkov angles for different particles as a function of track momentum are shown on
the left part of Fig. 3.9. As can be seen, in order to assure an efficient particle identification
over a broad range of momenta (1-100 GeV/c in case of the LHCb experiment) it is
necessary to use several radiators. The aerogel radiator is well suited for the identification
of low-momentum particles while the CF4 and C4F10 media provide good discriminating
power at high-momenta (above 20 GeV/c).

The RICH1 detector is located in front of the LHCb magnet as presented in Fig. 3.3.
To provide an efficient identification in the momentum range from 2 GeV/c to 60 GeV/c,
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Figure 3.9: Left: Cherenkov angle θC versus track momentum for different particles
and radiators Ref. [28]. Right: the kaon identification efficiency (red points) and a pion
misidentification rate (black points) versus momentum for data collected in 2011 by the
LHCb experiment Ref. [65]. The closed (open) points correspond to PIDK > 5 (> 0).

it uses two radiators: aerogel with refractive index n = 1.03 and C4F10 with n = 1.0014.
RICH1 covers an acceptance of 25 mrad to 250 (300) mrad in the vertical (horizontal)
direction. RICH2 is placed behind the LHCb magnet and the T1-T3 tracking stations (see
Fig. 3.3). It uses a CF4 gas radiator with a refractive index n = 1.0005, which allows for an
efficient identification of particles with momenta between 15 GeV/c and 100 GeV/c. The
acceptance of RICH2 is limited to 15-120 mrad (15-100 mrad) in x (y) directions. Since
track momentum is strongly correlated with polar angle in the LHCb detector, the reduced
RICH2 acceptance covers the region where the majority of high momentum particles are
produced. The design of both detectors is shown in Fig. 3.10. Particles which go through
the detector emit Cherenkov light which is collected by flat and spherical mirrors and then
reflected onto the Hybrid Photo Detectors (HPDs) and photomultiplier tubes. The HPDs
are sensitive in the 200-600 nm wavelength range.

In the case of the B0
s → D∓s K

± decay, the distinction between kaons and pions is
crucial. The kaon identification efficiency and pion misidentification rate are shown as
a function of momentum, for two different values of the PIDK requirement: PIDK > 0
(open shapes) and PIDK > 5 (solid shapes) using data collected in 2011 on the right part
of Fig. 3.9.

The calorimeter system

The calorimeter measures the energy of charged and neutral particles using the following
principle: a particle travels through it and interacts with an absorber material. This
interaction creates a secondary electromagnetic and/or hadronic shower, which is measured
in an active material of the calorimeter (e.g. scintillators or silicon detectors). Thus, the
traversing particles deposit almost all their energy in the calorimeter.

Electron and photon identification is possible thanks to the combined information
from the Scintillator Pad (SPD), the Preshower Detector (PS), and the Electromagnetic
Calorimeter (ECAL). They are located behind the first muon station as shown in Fig. 3.3.
The SPD and PS use scintillating pads, whose granularity depends on the distance from
the beam direction as presented in Fig. 3.11. Neutral photons do not introduce a signal
in the pads before triggering an electromagnetic shower, allowing the SPD to distinguish
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Figure 3.10: Layout of the LHCb Ring Imaging Cherenkov detectors: RICH1 (left) and
RICH2 (right) Ref. [28].

between electrons and photons. The SPD and PS are separated by a 15 mm thick lead
plate, which initiates a shower of photons and electrons. The PS is used to distinguish
between electrons and charged particles which do not introduce a shower, for example
pions. The particles then pass through the ECAL, where they deposit their energy and
where photons and electrons are absorbed. The ECAL is made of 2 mm lead plates followed
by 4 mm scintillator pads. Its granularity depends on the distance from the beam direction
in the same way as for the SPD and PS. The energy resolution of the ECAL is:

σE
E

=
10%√
E/GeV

⊕ 1%, (3.4)

where ⊕ denotes that the two terms are added in quadrature. In total, the ECAL has
about 6000 readout channels.

The last part of the LHCb calorimeter system is the Hadron Calorimeter (HCAL),
where the energy deposit left by charged and neutral hadrons which penetrated through
the ECAL can be measured. The HCAL is made of iron blocks and scintillating tiles, and
its layers have a parallel orientation to the beam direction. The granularity of this detector
is presented on the right part of Fig. 3.11. The energy resolution of the HCAL is:

σE
E

=
69%√
E/GeV

⊕ 9%. (3.5)

It has about 1500 readout channels.

The muon chambers

Muon detection is performed in the five stations of muon chambers placed in the outermost
layers of the LHCb spectrometer. The first station (M1) is located before the calorimeter
system, while the remaining four stations (M2-M5) are placed behind the system, as
shown in Fig. 3.12. The muon chambers are gaseous detectors. Due to greater occupancy
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Figure 3.11: Granularity for the different detector regions of the SPD, PS, and ECAL (left)
and of the HCAL (right) Ref. [28].

Figure 3.12: The LHCb muon chambers Ref. [28].

M1 uses gas electron multipliers (GEM), while the remaining stations (M2-M5) are built
from multiwire proportional chambers (MWPC). To absorb hadrons from the calorimeter
system, 80 cm thick iron walls are placed between the stations. The presence of these iron
walls means that muons with momenta below 6 GeV/c cannot reach the M5 station. The
granularity pattern of muon stations follows the one of the overall calorimeter system, as
shown in Fig. 3.12.

3.3 The LHCb trigger

In the nominal conditions of the LHC operation, the proton beams would intersect (so-
called bunch crossing) with a rate of 40 Hz. However, in 2010-2012 the LHC operated at
a reduced energy with a lower bunch crossing rate of 15 MHz. This value is still several
orders of magnitude above the current abilities of data recording and storage. Moreover,
candidates which are potentially interesting for further studies comprise only a very small
fraction of the overall rate of proton-proton collisions. Therefore, a trigger system is
required to reduce this rate to an acceptable value which for LHCb was set at about 5
kHz. Figure 3.13 shows a schematic view of the LHCb trigger. It is composed of three
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Figure 3.13: The layout of the LHCb trigger Ref. [66].

stages: one hardware known as Level0 (L0) and two software called High-Level-Trigger
(HLT1 and HLT2). The conditions which describe each trigger decision are collected in
so-called trigger lines.

3.3.1 Hardware trigger

The main purpose of the L0 trigger stage is to quickly find general signatures of interesting
decays and reduce the rate of accepted candidates to about 1 MHz, at which the full
detector can be read out. Different L0 decisions are assigned to the candidate if the
following conditions are satisfied [67]:

� L0-Muon: occurrence of one stub in the muon chambers with transverse momentum
above 1.48 GeV/c,

� L0-DiMuon: presence of a pair of stubs in the muon chambers with a product of the
transverse momentum above 1.296 (GeV/c)2,

� L0-Hadron: occurrence of one cluster in the HCAL with transverse energy above
3.5 GeV/c,

� L0-Photon: presence of one cluster in the ECAL with transverse energy above
2.5 GeV/c, hits in the PS, and no hits in the SPD,

� L0-Electron: occurrence of one cluster in the ECAL with transverse energy above
2.5 GeV/c, hits in the PS, and at least one hit in the SPD.

Moreover, the estimation of the number of tracks in the event is done based on the number
of hits in the SPD. The threshold is set to be fewer than 900 hits for L0-DiMuon and fewer
than 600 hits for other trigger decisions. It allows the L0 trigger to reject candidates with
too many particles.
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3.3.2 Software trigger

All candidates accepted by the L0 trigger are processed by the software trigger, which is
composed of two stages: HLT1 and HLT2. It uses a large computing cluster with about
29,000 logical CPUs known as the Event Filter Farm (EFF). For 2011 data taking, the
first stage reduced the rate of candidates to about 50 kHz, while the corresponding value
for the second one amounted to 3 kHz (5 kHz in 2012).

The HLT1 trigger performs a partial reconstruction of the candidates. In this stage all
requirements are inclusive, which means that the selection is applied only to subset of the
final state particles. Information from VELO and T1-T3 stations is used to search for tracks
with high transverse momentum and large displacement from the primary vertex. Specific
requirements are imposed depending on the decision from the L0 trigger. Candidates which
successfully pass these selections receive a positive 1Track decision [68].

The HLT2 trigger contains both inclusive and exclusive algorithms which are more
time-consuming but provide a more precise reconstruction. Exclusive algorithms are used
to select a specific decay at the trigger stage. A large part of HLT2 is dedicated to
inclusive topological trigger lines, which, based on multivariate algorithms (see Sec. 5.3),
reconstruct all b-hadron decays with charged particles in the final state. These topological
trigger lines select a displaced two-, three- or four-body vertex and are labeled as 2-,
3- or 4-body TopoBBDT ones [69, 70], respectively. The other trigger lines are inclusive
or exclusive selections of c-hadron decays (exploiting information about reconstructed
secondary vertices) and single or di-muon trigger lines. One of the inclusive trigger
lines is the IncPhi decision which selects φ0(1020) → K+K− candidates. The word
”inclusive” means here that the φ0(1020) meson can come from any decay for example
D0
s → φ0(1020)π0, B0

s → Jψφ0(1020), B0
s → φ0(1020)γ etc.

The candidates accepted by the trigger are split into three categories:

� Triggered On Signal (TOS): a candidate for which a positive trigger decision is
generated due to sufficient presence of the signal i.e. the trigger tracks have overlap
with the signal.

� Triggered Independently of Signal (TIS): a candidate for which a positive trigger
decision is generated independently of the signal presence.

� Triggered On Both (TOB): a candidate which is neither TIS nor TOS.

Details on the 1Track, topological triggers and TISTOS categories are given in dedicated
public note [68].

3.4 Reconstruction algorithms

Reconstruction algorithms provide information about tracks and primary vertices.
The tracking reconstruction consists of three main parts. Firstly, the signatures produced

in the detector by charged particles are found and the tracks are formed from hits. Then,
all found tracks are fitted using a Kalman fit [71] which obtains the best possible estimate
of the true trajectory. This procedure includes corrections due to energy loss and multiple
scattering. Finally, any duplicated tracks are removed and a container with the best unique
tracks is created.

For each track a state vector ~s = (x, y, tx, ty, q/p)
T is set, where x and y are coordinates,

tx (ty) are slopes in x-z and y-z projections and q/p denotes charge divided by track

48



Figure 3.14: Different type of tracks in the LHCb experiment Ref. [72].

momentum. The track trajectory and its uncertainty are represented by a state vector
and its covariance martix.

In the LHCb experiment, as presented in Fig. 3.14, tracks are grouped in five categories:

� VELO track,
has a signature only in the VELO detector and is used in finding primary vertices.
Due to the lack of magnetic field, VELO tracks are always reconstructed as straight
lines.

� Upstream track,
is reconstructed from VELO tracks and TT hits. Usually it is a low momentum track
which is bent out of the LHCb acceptance by the magnet.

� T track,
with hits in the main tracking stations T1-T3.

� Downstream track,
has a signature in both the TT and T1-T3 tracking stations, but doesn’t in the
VELO detector. This type of track is important in the reconstruction of long-lived
particles such as K0

s or Λ, which often decay after passing the VELO detector.

� Long track,
has signatures in all subdetectors, from the VELO detector to the T1-T3 tracking
stations. Since these tracks pass through the magnetic field, they have the most
accurate measured momentum and thus are the most useful for analysis.

The properties of selected tracks vary depending on their transverse momentum. In
2011 data taking the low momentum tracks had momentum resolution ∆p/p = 0.4%, while
for high momentum the value ∆p/p = 0.6% was found [73].

In addition to track reconstruction, the primary vertex finding plays a crucial role
in CP measurements. The position of the pp collision is determined using a set of input
tracks. The first step of the primary vertex algorithm is the so-called seeding. A search is
performed in a loop over tracks and for each of them a number of close tracks is determined.
A track is defined as close when the distance of the closest approach to the reference track
is less then 1 mm. A selected group of tracks is called a seed and it creates a candidate for
a primary vertex. For each pair of tracks in the seed, the distance of the closest approach
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is calculated and their weighted average determines the final coordinates of candidate. In
the second step the position of the primary vertex is found by minimising the the primary
vertex χ2 defined as:

Vertexχ2 =
nTracks∑

i=1

IPχ2
i · wi, (3.6)

where nTracks denotes the number of tracks associated to the vertex, IPχ2
i is a single track

IP χ2 and wi is its weight, which parametrises the significance of the given track in the
vertex fit. The weights wi are obtained for each track i based on the adaptive weighted
least square method with Tukey biweights [74] and are given by:

w =

{
(1− χ2

IP/C
2
T )2, if χIP < CT ,

0, if χIP ≥ CT ,
(3.7)

where CT is Tukey’s constant [74].
The author of this thesis has been working on developments and the optimization

of primary vertex reconstruction for data taking which starts in 2015. More detailed
information about these studies can be found in App. A.

3.5 The LHCb software

The LHCb experiment provides several software packages which allow to either generate
simulation or analyse collected data. The structure of LHCb software is shown in Fig. 3.15.
The packages are based on ROOT [75] and Gaudi [76] frameworks. The main of them are:

� GAUSS [77],
allows to generate the simulated candidates. Other software packages are used inside
Gauss. In particular, the simulation of the proton-proton interaction is done by
PYTHIA [78], while the decays of hadronic particles are realised by EvtGen [79].
Moreover, final state radiation is simulated by PHOTOS [80]. Finally the recent
detector description is based on informations from GEANT4 [81,82].

� BOOLE [83],
the output of GAUSS is digitised by BOOLE and the detector response in the
individual subdetectors is added.

� MOORE [84],
provides information about trigger decisions for both simulation and data.

� BRUNEL [85],
is used by both simulation and data. The main purpose of the package is to perform
the full event reconstruction from raw candidates.

� DaVinci [86],
allows particles to be combined into a decay chain and the signal decays to be
reconstructed for analyses. DaVinci uses the decay tree fitter (DTF) [87], which
refits simultaneously all vertices specified in the chain. Also at this stage a very loose
preselection is applied. DaVinci framework can be used on both simulation and real
data.
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� URANIA [88],
is a group of packages dedicated to different physics analyses. The analysis presented
in this thesis was done using a part of Urania, namely the B2DXFitters package [89].
The author of this thesis is one of the main authors of that package. More information
about this package can be found in App. B.

Figure 3.15: A flowchart of the LHCb software.
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Chapter 4

Analysis strategy

This chapter outlines the major steps of the analysis which will be discussed in detail in
the next sections. Also, it provides the information about the data sample as well as the
signal and control decay channels.

4.1 Data sample

This analysis uses an integrated luminosity
∫
Ldt = 1.03 fb−1 of data recorded in proton-

proton collisions with the LHCb detector at a center-of-mass energy of
√
s = 7 TeV in

2011 [62]. All detector components were fully operational and in stable conditions during
data taking.

The dataset comprises two distinct sub-samples recorded with opposite directions of
the magnetic field: 0.44 fb−1 with the magnet up and 0.59 fb−1 with the magnet down
polarities.

4.2 Signal and normalisation decay channels

In addition to the signal channel B0
s→ D∓s K

±, the decays B0
s→ D−s π

+ and B0→ D−π+

are used as control modes. The latter are characterised by a similar content of final state
particles and overall topology, to compare with the signal mode, and their branching
fractions are measured with reasonable precision.

The first control channel, B0
s→ D−s π

+, is a flavour specific mode, thus only the decays
B0
s→ D−s π

+ and B
0

s → D+
s π
− are allowed. In addition, the B0

s→ D−s π
+ mode is a purely

tree-level process as shown in Fig. 4.1. The decay rates given by Eq. 2.47 and Eq. 2.48 are
simplified to:

dΓ
B0
s→D−

s π+(B
0
s→D−

s π+)
(t)

dt
=

1

2
|Af |2e−Γt

[
cosh

(
∆Γs

2
t

)
± cos (∆mst)

]
, (4.1)

from which a measurement of ∆ms is possible. Moreover, the B0
s → D−s π

+ decay is
topologically and geometrically identical to the B0

s→ D∓s K
± decay. This allows the use

of information obtained from the B0
s→ D−s π

+ mode in many stages of the B0
s→ D∓s K

±

analysis. For this reason, a full analysis of B0
s→ D−s π

+ decays is performed along with the
signal mode.
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4.2 Equations for B0
s ! D�

s ⇡
+ 9

The experimental e↵ect of tagging the flavour of the initial B meson –
when the tagging decision is di↵erent from zero – is described by the tagging
e�ciency ✏tag (the fraction of candidates to which a tag can be assigned) and
the (predicted) mistag rate !tag. The e↵ective statistical power of a tagged
sample (often referred to as tagging power) is given by

Qtag = ✏tag · (1 � 2!tag)
2 . (28)

This factor gives the reduction in e↵ective size of the data sample when
compared to perfectly tagged events (✏tag = 1, !tag = 0), i.e. a sample of
N events with a specific Qtag has the same statistical power of a sample of
N Qtag events with perfect tagging.

In the sections below it will be handy to express the relative yields of
untagged and tagged samples in a combined formula. The e↵ective tagging
e�ciency is

✏e↵tag(q) =

(
✏tag for tagged events (q = ±1)

(1 � ✏tag) for untagged events (q = 0)

= |q|✏tag + (1 � |q|)(1 � ✏tag) 8 q . (29)

4.2 Equations for B0
s ! D�

s ⇡
+

For the B0
s ! D�

s ⇡
+ channel only one tree diagram (see Fig. 1) exists, such

that a B0
s can only decay instantaneously into the D�

s ⇡
+ final state, while

the decay into D+
s ⇡

� can only occur after mixing. The decay B0
s ! D�

s ⇡
+

is therefore flavour specific, leading to Af̄ = Āf = 0, thus �f = �̄f̄ = 0. To
good approximation, we assume |q/p| = 1, i.e. there is no CP violation in
mixing in the B0

s system. This in turn leads to the parameters Df = Sf =
Df̄ = Sf̄ = 0 and Cf = Cf̄ = 1.

b̄

s
B0

s
s

c̄

D�
s

W+

d̄
⇡+

u

V ⇤
cb

Vud

Figure 1: Feynman diagram for B0
s ! D�

s ⇡
+.Figure 4.1: Feynman tree diagram for the B0

s→ D−s π
+ decay.

The second control mode is B0→ D−π+, D−→ K+π−π− decay. Its yield is used to
compute the number of misidentified D-like backgrounds that lie under the B0

s→ D∓s h
±

signal peaks, as well as to reduce the difference between simulation and data.
The signal and normalisation B0

s decays are distinguished based on the mass hypothesis
of the bachelor particle accompanying the D−s mesons. The latter is reconstructed in
the following three final states D−s → K−K+π−, D−s → K−π+π−, and D−s → π−π+π−.
In case of the decay D−s → K−K+π−, two resonant states are selected: D−s → φπ− and
D−s → K∗0K−. The remaining D−s → K−K+π− candidates are called non-resonant and
labelled as D−s → (KKπ)nonres.

In all cases the D−(s) meson is reconstructed from three particles with the appropriate
mass hypotheses; a “bachelor” h+ = {K+, π+} is then added to form the B0

(s) candidates.
Table 4.1 collects the most relevant properties of the studied particles. The production
rates of b hadrons are determined by the fragmentation functions fu, fd, fs, fΛ, which
describe the probability that a b quark will fragment into a B0

q meson (where q = {u, d, s})
or Λ0

b baryon, respectively. An overview of the relevant branching fractions as well as the
fragmentation fraction fs/fd are collected in Tab. 4.2.

Table 4.1: Major properties of the particles relevant for the analysis, taken from [63].
Particle Quark composition Mass [MeV/c2] Lifetime [ps] JP

B0
s/B

0

s sb/sb 5366.77± 0.24 1.512± 0.007 0−

D+
s /D−s cs/cs 1968.30± 0.11 0.500± 0.007 0−

K+/K− us/us 493.677± 0.016 12380± 21 0−

π+/π− ud/ds 139.57018± 0.00035 26033± 5 0−

4.3 Major steps of the analysis

To measure the CP violating observables defined in Sec. 2.4.2, it is necessary to perform a
fit to the decay-time distribution of the selected B0

s→ D∓s K
± candidates. This fit has to be

preceded by several preparatory stages. The general strategy of the analysis is presented in
Fig. 4.2. All fits in this thesis are based on the unbinned maximum likelihood technique6.

6 A set of unknown parameters −→α = {α1, α2, ...} is estimated from a set of measured observables−→
X = {X1, X2, ...}. The unbinned fit takes information about every single i candidate from the data set,
for which the probability density function (PDF) f(−→α ;

−→
X ) is normalized over the range of measured

observables: PDF (−→α ;
−→
X i) = f(−→α ;

−→
X i)∫

f(−→α ;
−→
X′i)d

−→
X′i

The likelihood function L is the product of the PDFs over the
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Table 4.2: Branching fractions of B0
s decays as given by Ref. [90]; those of D−s decays

are taken from the PDG [63], while the ratio fs/fd is the LHCb combination from
hadronic/semi-leptonic decays [91].

Decay Branching fraction

B0
s→ D∓s K

± (1.90± 0.12(stat)± 0.13(syst)± 0.14(fs/fd))× 10−4

B0
s→ D−s π

+ (2.95± 0.05(stat)± 0.17(syst)± 0.22(fs/fd))× 10−3

B0→ D−π+ (2.68± 0.13)× 10−3

D−s → K−K+π− (5.49± 0.27)× 10−2

D−s → K−π+π− (6.9± 0.5)× 10−3

D−s → π−π+π− (1.10± 0.06)× 10−2

D−→ K+π−π− (9.54± 0.26)× 10−3

fs/fd 0.259± 0.015((stat)&(syst))

The first step is improving the signal purity. Candidates have to pass several stages of
selection, where each of them is tighter than the previous one. Both B0

s decay modes are
selected using the same criteria, except for the requirement on the PIDK of the bachelor
track. The optimisation of the last step, the offline selection, is performed using the control
mode B0

s→ D−s π
+. A detailed description of the selection will be discussed in Chapter 5.

Then, it is necessary to distinguish the signal and background candidates in the selected
sample. This analysis uses three variables to maximise sensitivity when discriminating
between signal and background: the m(D∓s h

±) invariant mass; the m(h−h+h±) mass; and
the log-likelihood difference PIDK between the pion and kaon hypotheses for the bachelor
particle. Here the h−h+h± denotes possible combinations of the final state particles
from the D±s decay: h−h+h± = {K+K−π±, π−π+K±, π−π+π±}. Chapter 6 describes
how a simultaneous extended maximum likelihood fit (in the following referred to as
multidimensional fit) to these three variables is used to determine the yields of signal and
background components in the samples of B0

s→ D−s π
+ and B0

s→ D∓s K
± candidates.

When the signal and background components are distinguished, the remaining inputs
to the decay-time fits are information about the flavour of the B0

s meson production, the
decay-time acceptance and resolution. Chapter 7 describes how to reconstruct the flavour
at production of the B0

s → D∓s K
± candidates using a combination of flavour-tagging

algorithms, whose performance is calibrated with data using flavour-specific control modes.
The decay-time resolution and acceptance are determined using a mixture of data control
modes and simulated signal candidates, described in Chapter 8.

Finally, Chapter 9 presents the fit to the decay-time distribution of the B0
s→ D∓s K

±

candidates which extracts the CP violating observables. The decay-time fit, henceforth
referred to as the sFit 9, uses the results of the multidimensional fit to obtain the so-called
sWeights [92] which allow the background components to be statistically subtracted [93].
The sWeights are defined by:

sWeightsn(ye) =

∑Ns
j=1 Vnjfj(ye)∑Ns
k=1Nkfk(ye)

, (4.2)

where Vnj means the covariance matrix resulting from the likelihood maximisation, Nk is

entire data sample: L(−→α ;
−→
X ) =

∏N
i PDF (−→α ;

−→
X i) The fit algorithm maximises the likelihood by varying

the parameters −→α . The solution is found for a set −→αmax, for which the probability is maximal.
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the number of candidates expected on average for the kth component, fi(ye) is the value of
the PDFs of the discriminating variables y for the ith component and for candidate e, and
Ns denotes the number of components. The sPlot technique [92] is implemented using the
RooFit package [75]. The decay-time distribution is then subjected to the sFit procedure
using only the PDF of the signal component.

The second decay-time fit, henceforth referred to as the cFit, performs a fit with full
signal and background components description. However, the cFit is not a topic of this
dissertation and is used only as a cross-check of the sFit.

Finally, the determination of the CKM angle γ is performed based on the result from
the decay-time fit.

Figure 4.2: Strategy of the measurement the CKM angle γ from the B0
s→ D∓s K

± decay.
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Chapter 5

Selection

This chapter first describes the parameters relevant for the selection of signal candidates.
This is followed by a short discussion of background contributions. Finally the subsequent
steps of the selection are briefly described.

5.1 Definitions of kinematic variables

Due to the vast amount of background falling in the signal mass window, the selection of
pure hadronic decays such as B0

s→ D∓s K
± is challenging. An efficient procedure requires

using a lot of variables which help distinguish the signal from the background. Figure 5.1
shows the topology of B0

s→ D∓s K
± decay with a definition of the relevant concepts and

parameters:

� primary vertex (PV) as defined in Sec. 3.2.1: the position of the pp collision,

� secondary vertex (SV) as defined in Sec. 3.2.1: formed by the decay of long-lived
particles,

� mother particle vertex (MV): for the secondary particle it denotes the vertex where
the particle comes from, for example the B0

s vertex comprises MV for D−s meson.

� Impact parameter (IP): the minimum perpendicular distance between the recon-
structed track and the primary vertex. In the LHCb experiment the χ2 impact
parameter is commonly used, given by IPχ2 ∼ IP2

σ2
IP

, where σIP is uncertainty on the
impact parameter.

� Track χ2/ndf : the fit χ2 for a track divided by the number of degrees of freedom
(ndf), where ndf depends on the number of hits in the detector.

� Vertex χ2: as defined in Eq. 3.6. In the LHCb studies it is common to use the Vertex
χ2/ndf , where ndf depends on number of tracks associated with the vertex.

� Flight distance (FD): the distance between the primary vertex (or the mother
vertex) and secondary vertex defined as FD = |−→r P (M)V −−→r SV |, where −→r P (M)V =
(xP (M)V , yP (M)V , zP (M)V ) are the coordinates of the primary (mother) vertex and
−→r SV = (xSV , ySV , zSV ) corresponds to the secondary vertex coordinates. In addition
two more variables connected to the flight distance are used:
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– flight distance χ2 (FDχ2) given by FDχ2 ∼ FD2

σ2
FD

, where FD is the three dimen-
sional flight distance and σFD denotes its uncertainty,

– radial flight distance (RFD) which is a projection into the xy plane equal to
RFD =

√
(xP (M)V − xSV )2 + (yP (M)V − ySV )2.

� Direction of angle (DIRA): the cosine of the angle between the flight direction,
defined as the distance between the primary vertex (or mother particle vertex) and
secondary vertex of the particle, and the particle’s reconstructed momentum:

DIRA =
−→p · (−→r P (M)V −−→r SV )

|−→p ||−→r P (M)V −−→r SV |
, (5.1)

where −→p is the particle’s momentum.

� DOCA: the distance of closest approach between two tracks (see Fig. 5.2).

� transverse momentum: momentum projection onto the z axis (see Fig. 5.2).

� cos(θ): where the angle θ is the angle between the momentum and z axis (see Fig. 5.2).

� track ghost probability (TGP): probability that the track is a ghost i.e. it does not
have connection to any particle in the detector.

Figure 5.1: Diagram showing the topology of the B0
s→ D∓s K

± decay together with the
graphical representation of concepts and parameters relevant for the selection: PV - primary
vertex, SV - secondary vertex, IP - impact parameter, FD - flight distance, DIRA - direction
angle, B0

sp - momentum of B0
s meson.

5.2 Background components

The following major sources of background have been considered in the analysis:

� combinatorial background:
is composed of candidates where three pions or kaons which do not originate from
a real D−s decay, but are reconstructed as a D−s candidate, are combined together
with an additional kaon or pion and identified as a B0

s candidate. Alternatively, a
true D−s is combined with a random track and reconstructed as a B0

s candidate,

58



Figure 5.2: Left: definition of DOCA parameter (the distance of closest approach) between
two tracks. Right: a particle’s momentum projected into z axis with definition of the angle
θ and transverse momentum.

� fully reconstructed background:
corresponds to the cases where some of the final state particles are misidentified
(misID) and/or where they originate from the decay of other particle i.e. not B0

s/D
−
s ,

� partially reconstructed background:
consists of candidates for which one or more final state particles are missed, and
others might be misidentified. It typically peaks in the lower mass range, but also
may extend into the signal region.

Both fully and partially reconstructed backgrounds are composed of contributions due to
several specific decays. Suppression of each of the above background categories in the data
sample requires using different approaches, which are discussed later in this chapter.

5.3 Multivariate Analysis: Boosted Decision Trees
Method

Multivariate Analysis (MVA) [94] is a family of methods based on statistical techniques that
allow the use of information from more than one variable at time and take their correlations
into account. Neural Networks (NN), Genetic Algorithms (GA) or Boosted Decision Trees
(BDT) are examples of MVA techniques. The set of input variables (V1,V2,...,VN) defines
an N -dimensional space. Every candidate from the data set corresponds to a point in that
space and can be classified as signal or background. The input information is combined
into a single output variable (MVA Response), as shown in Fig. 5.3, which can be used
in later steps of an overall selection. To find the best separation in N -dimensional space,
MVA methods require a learning process in which pure signal and background samples are
used as patterns. The data sample is split into “training” and “test“ subsamples, where
the first one is used in the learning process, while the latter to obtain the optimal cut
point.

A BDT is used in each step of the selection, since this approach gives the best
performance compared to other MVA methods. This method works as a binary tree
classifier as shown in Fig. 5.4. The classifier finds the variable with the best separation
power. Then, the data is split according to a cut on that the variable. The procedure is
repeated among all available observables. The optimal cut value is found by the training
algorithm and optimised the best significance. Depending on the majority of training
candidates that end up in the final leaf node, the candidates are classified as signal-like
or background-like. Boosting refers to use many active decision trees at the same time.

59



Figure 5.3: A flowchart of the overall multivariate analysis.

Figure 5.4: An example of a Boosted Decision Tree. The red (blue) arrows denote signal-like
(background-like) decision.

This protects the decision tree against statistical fluctuations in the input samples and the
situation when a candidate is wrongly assigned to a leaf. To stabilise the above procedure,
the final response is a continuous number computed by combining the responses of the
individual trees. In addition, the method has to be protected against overtraining, which
occurs when the BDT is trained to recognised statistical fluctuations of the training sample.
For this purpose the performance in both the training and test samples is compared, since
any difference between results can indicate the overtraining. More information about BDTs
can be found in Ref. [95,96].

Several types of BDT approach exist. In the trigger selection the Bonsai BDT (BBDT)
is applied, which allows the use of discrete input variables, while for the offline selection
the best separation power was found for the Gradient BDT (BDTG).

The BDT approaches used in the trigger selection and preselection steps are common
tools applied in Moore and DaVinci software, respectively. On the other hand, the offline
selection BDTG is dedicated to provide the best signal/background separation for the
B0

(s) → D∓(s)h
± decays. Here the classifier was trained specifically for this measurement

and used by other analyses with similar decay chains Ref [2–6]. It is described in detail in
Sec. 5.6.1.

5.4 Trigger selection

No explicit requirement is made on L0 triggers and all candidates with a positive L0
decision are kept. In addition, all candidates are required to be TOS or TIS on:

� the 1TrackAllL0 decision in the HLT1 trigger,
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� the 2-, 3-, or 4-body TopoBBDT decisions or the inclusive IncPhi (φ0 → K+K−)
decision in the HLT2 trigger.

Detailed information about the requirements applied in each stage of the trigger selection
can be found in App. C. It was checked that the response of the trigger decisions was
stable during 2011 data taking.

Since the trigger selection can affect the decay-time acceptance, its correct description
is crucial for the analysis. The decay-time acceptance is obtained based on a mixture of
B0
s→ D−s π

+ data and simulated signal candidates, where all relevant effects are taken into
account.

5.5 Preselection

The candidates which passed the trigger selection are processed in the preselection based on
kinematic requirements. In that stage final state particles are combined and reconstructed
into intermediate resonances (D−(s), φ

0(1020), etc) as well as the B0
(s) meson. In addition,

the decay-time and B0
s mass resolutions are improved by performing a kinematic fit [87]

in which the B0
s candidate is constrained to originate from its associated proton-proton

interaction, i.e. the one with the smallest IPχ2 with respect to the B0
s candidate, and

the B0
s mass is computed with a constraint on the nominal D−s mass as given by the

PDG [63]. The preselection requirements are collected in Tab. C.4 in App. C. Figure 5.5
shows the m(D∓s h

±) invariant mass and decay-time distributions after the preselection for
the B0

s→ D∓s h
± sample, where about 38 million candidates are reconstructed. In this stage

the B0
s→ D∓s h

± sample is mostly composed of B0
s→ D−s π

+ candidates. The preselection
efficiency was determined on signal B0

s→ D−s π
+ and B0

s→ D∓s K
± simulation samples and

found to be of 5.6% and 5.5%, respectively.
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Figure 5.5: Distributions of two key quantities: m(D∓s h
±) invariant mass (left) and decay-

time (right), obtained after the preselection for B0
s→ D∓s h

± data sample.

5.6 Offline selection

The offline selection comprises kinematic and geometric selection criteria. The core of the
offline selection relies on a BDTG designed to suppress combinatorial background. An
important role is played by the PID requirements, in particular the crucial cut on the
particle identification of the bachelor particle (PIDK) which defines the B0

s→ D−s π
+ and

B0
s→ D∓s K

± samples. The selection consists of following stages:
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1. BDTG training in a data-driven way,

2. mass and lifetime requirements,

3. definition of specific background vetoes,

4. definition of PID cuts on the D−s daughters,

5. optimisation of both the cut on the BDTG response and the PID cut on the bachelor
track.

5.6.1 Boosted Decision Trees offline selection

In order to suppress combinatorial background, a set of kinematic variables is combined in
a BDTG, implemented in the Tmva software package [94].

To train the BDTG, a data-driven approach is employed, using the 1.0 fb−1 B0
s→ D−s π

+,
D−s → K−K+π− sample with an applied preselection and an additional loose selection
described in detail in Tab.5.1. The data sample is split into training and test samples,
both of which consist of equal parts of magnet up and magnet down data. The m(D−s π

+)
invariant mass after selection for both the training and test samples are shown in Fig. 5.6.
Since all channels in this analysis are kinematically similar it is expected that the resulting
BDT performs well also on the other samples.

Table 5.1: Additional preselection requirements applied to B0
s→ D−s π

+, D−s → K−K+π−

used in BDTG optimisation.
Description Requirement

Bachelor PIDK < 0

Both kaons PIDK > 0

m(h−h+h±) mass [1940, 1990] MeV/c2

D− veto:
PIDK of same charge K, or > 10, or
m(h−h+h±) under m(K±π−π+) hypothesis below 1850 MeV/c2

Λ
−
c veto:
p veto, same charge K, or PIDK−PIDp > 5, or
m(h−h+h±) under m(pK+π±) hypothesis not in [2250, 2320] MeV/c2

A training sample representative of the combinatorial background is selected from
the upper B0

s mass data sideband defined as m(D−s π
+) > 5445 MeV/c2. For the signal

training sample an sWeighted data sample is used. The sWeights are extracted by fitting
the m(D−s π

+) invariant mass distributions shown in Fig. 5.6, using the full visible range
of [5100, 5800] MeV/c2. The fit model is a very much simplified version of the final model,
that will be described in Ch. 6, and consists of only two components, a Gaussian signal
and an exponential background. Finally candidates are selected from a signal window in
the m(D−s π

+) invariant mass of [5310, 5430] MeV/c2, their sWeights rescaled to the range
[0, 1], and used in Tmva. The list of input BDTG variables is given in Tab. 5.2. Figure
5.7 shows the resulting distribution of the BDTG Response in the full [-1,1] range for
both training and test samples, where the signal-like and background-like components
are compared based on sWeighted data. The BDTG was checked for overtraining, for
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Figure 5.6: The m(D−s π
+) invariant mass distribution after the selection for the B0

s→ D−s π
+

data samples used in the BDTG optimisation. The orange area corresponds to the training
sample, while black points denote the test sample.

Table 5.2: Input variables to the BDTG method applied to suppress the combinatorial
background.

B0
s D−s Bachelor D−s children

DIRA wrt. PV DIRA wrt. PV min IPχ2 min pT

IPχ2 DIRA wrt. B0
s vertex pT min IPχ2

RFD wrt. PV min IPχ2 cos(θ)

Vertex χ2/ndf RDF wrt. PV
Vertex χ2/ndf (D−s constrained) Vertex χ2/ndf max TGP

which the performance of the BDTG on both the training and test samples was compared.
The performance was similar for both samples. In addition, the BDTG was compared
to other BDT methods implemented in the Tmva package, and found to have the best
performance.

5.6.2 Invariant masses and decay-time requirements

The B0
s and D−s candidates are required to be within m(D∓s h

±) ∈ [5300, 5800] MeV/c2

and m(h−h+h±) ∈ [1930, 2015] MeV/c2, respectively. In addition, the D−s decay-time with
respect to the B0

s has to be greater than 0 ps, while for B0
s the decay-time should exceed

0.4 ps.
The D−s → K−K+π− mode is split into three submodes. Candidates in which the

K+K− pair falls within 20 MeV/c2 of the φ0(1020) mass are identified as belonging to
D−s → φπ− decay. Candidates within a 50 MeV/c2 window around the K∗0(892) mass are
identified as a D−s → K∗0K− decay. It is kinematically impossible for a candidate to satisfy
both K∗0(892) and the φ0(1020) requirements. The remaining candidates are referred to
as non resonant decays.

The summary of the above requirements is given in Tab. 5.3.

5.6.3 Background vetoes

Specific background vetoes are necessary to reject the abundant D− backgrounds coming
from B0→ D−π+, where the D−→ K+π−π− decay is reconstructed as a D−s by misiden-
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Figure 5.7: The BDTG Response distributions for the training and test samples. The
orange area (red points) corresponds to signal weighted by the signal sWeights, while
the blue dashed one (violet points) shows background weighted by the combinatorial
background sWeights for training (test) sample.

Table 5.3: Summary of invariant mass and decay-time requirements for B0
s and D−s

candidates.
Applied to Description Requirement

All modes m(D∓s h
±) mass [5300, 5800] MeV/c2

m(h−h+h±) mass [1930, 2015] MeV/c2

B0
s decay-time > 0.4 ps

D−s decay-time (wrt. B0
s vertex) > 0 ps

D−s → K−K+π−

D−s → φπ− m(K+K−) in [1000, 1040] MeV/c2

D−s → K∗0K− m(K+K−) not in [1000, 1040] MeV/c2

m(π−K+) in [842, 942] MeV/c2

D−s → (KKπ)nonres m(K+K−) not in [1000, 1040] MeV/c2

m(π−K+) not in [842, 942] MeV/c2

tifying a pion as a kaon. These vetoes also reject backgrounds from Λ
0

b→ Λ
−
c h

+ decays,
where the proton from Λ

−
c → pK+π− is misidentified as a kaon. In addition, D0 decays

such as D0 → K+K− are vetoed in order to remove e.g. B0 → D0K(∗)0, D0 → K+K−

modes.
Furthermore, charmless backgrounds are particularly dangerous as they can peak

directly under the region of the m(D∓s h
±) invariant mass. A requirement on the D−s

separation χ2 from the B0
s vertex is applied in order to suppress them. In the case of

D−s → π−π+π− and D−s → K−π+π−, a tighter requirement is used (> 9) compared to
D−s → K−K+π− (> 2) because the charmless decay B0

s → KKKπ is suppressed through
CKM factors relative to B0

s → KKππ. Moreover, in the case of the Kπππ final state
not only the B0

s decay but also the B0 decay has to be considered. It can leak into the
B0
s signal region once the D−s mass constraint is applied to the πππ system. In order to

study the possible size of any remaining charmless backgrounds the m(h−h+h±) sidebands
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Figure 5.8: The invariant mass m(D∓s h
±) from the D−s sideband defined as m(h−h+h±) =

[1915, 1930] ∪ [2030, 2050] MeV/c2 obtained without a D−s mass constraint. Left: B0
s →

D∓s K
±, right: B0

s→ D−s π
+ sample.

(m(h−h+h±) = (1915, 1930) ∪ (2030, 2050) MeV/c2) are checked. The mass distributions
produced without the D-mass constraint are shown in Fig. 5.8, where the lower m(D∓s h

±)
invariant mass region has been widened to 5100 MeV/c2 for clarity. For the B0

s→ D∓s K
±

sample no peaking charmless background is observed. No significant peaking backgrounds
are seen in the B0

s→ D−s π
+ mass distributions either. At this level of statistical precision,

there is no need to take charmless backgrounds into account in the measurement of
B0
s→ D−s π

+ and B0
s→ D∓s K

± decays.
The specific background vetoes are collected in Tab. 5.4.

5.6.4 Particle identification

The candidates selected using the BDTG are filtered further using PID criteria on the
final state tracks. The PID performance depends on the track momenta, so that a PID cut
will change the momentum distribution of the track in question. As a consequence, the
invariant mass distributions of the misidentified backgrounds may change. In is therefore
important to determine the performance of the PID criteria as a function of particle’s
momentum.

The PID performance is determined from data using a sample of D∗ decays [65]. For
each PID cut applied in the analysis, its efficiency and misidentification probability on
this D∗ sample are obtained. This is evaluated in bins of the particle’s momentum of and
event occupancy as it mentioned in Sec. 3.2.2 and showed in Fig. 3.9.

The PID requirements were optimised for purity by looking in the m(h−h+h±) sideband
regions and tightening requirements until no significant peaking structures could be seen.
In order to show that the cuts are reasonable, the candidates selected by the preselection
which pass/fail the PID selection are shown in Fig. 5.9 split into D−s → K−K+π−,
D−s → K−π+π−, and D−s → π−π+π− candidates. This part of the selection is necessarily
different for each D−s decay mode, as described below.

� For the D−s → π−π+π− decay, none of the possible misidentified backgrounds fall
inside the m(h−h+h±) invariant mass range. Loose PID requirements are nevertheless
used to identify the D−s decay products as pions in order to suppress combinatorial
background.

� For the D−s → K−π+π− mode, the relevant peaking backgrounds are Λ
−
c → pπ+π−

in which the antiproton is misidentified, and D− → K+π−π− in which both the
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Table 5.4: Specific background vetoes applied in the selection.
Applied to Description Requirement

All D−s FD (wrt. B0
s vertex) > 0

D−s → K−K+π− D−s FDχ2 (wrt. B0
s vertex) > 2

D0 veto:
m(K+K−) < 1840 MeV/c2

D− veto:
PIDK of same charge K, or > 10, or
m(h−h+h±) invariant mass

under m(K±π−π+) hypothesis not in [1840, 1900] MeV/c2

Λ
−
c veto:
p veto, same charge K, or PIDK− PIDp > 5, or
m(h−h+h±) invariant mass

under m(pK+π±) hypothesis not in [2255, 2315] MeV/c2

D−s → K−π+π− D−s FDχ2 (wrt. B0
s vertex) > 9

D0 veto:
m(K+π−) < 1750 MeV/c2

D− veto:
PIDK of opposite charge π, or < −10, or
PIDK of opposite charge K, or > 20, or
m(h−h+h±) invariant mass

under m(K±π−π+) hypothesis not in [1839, 1899] MeV/c2

Λ
−
c veto:
p veto, same charge K, or PIDK− PIDp > 5, or
m(h−h+h±) invariant mass

under m(pK+π±) hypothesis not in [2255, 2315] MeV/c2

D−s → π−π+π− D−s FDχ2 (wrt. B0
s vertex) > 9

D0 veto:
Both m(π+π−) < 1700 MeV/c2

kaon and a pion are misidentified. As this process is characterised by the smallest
branching fraction to compare with the other D−s decay modes studied here, and
hence it is the one which is the most affected by background, all D−s decay products
are required to pass tight PID requirements.

� For the D−s → φπ− decay, since the invariant mass requirement suppresses most of
the specific and combinatorial background, only loose PID requirements are needed.

� For the D−s → K∗0K− mode, there is non-negligible background from misidentified
D− → K+π−π− and Λ

−
c → pK+π− decays which are suppressed through tight PID

requirements on the D−s kaon with the same charge as the D−s pion.

� For the D−s → (KKπ)nonres decay, tight PID requirements are needed to suppress
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background contributions.

The details of the PID selection are given in Tab. 5.5.
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Figure 5.9: Candidates failing and passing the PID selection on applied on the D−(s) decay
products for D−s → K−K+π−, D−s → K−π+π−, and D−s → π−π+π− (top left to bottom).

Table 5.5: The PID requirements.
Applied to Description Requirement

Bachelor track B0
s→ D−s π

+ PIDK < 0

B0
s→ D∓s K

± PIDK > 5

D−s → K−K+π−

D−s → φπ− Both kaons PIDK > −2

D−s → K∗0K− Same charge kaon PIDK > 5

Opposite charge kaon PIDK > −2

D−s → (KKπ)nonres Both kaons PIDK > 5

D−s → K−π+π− Kaon PIDK > 10

Both pions PIDK < 5

Both pions PIDp < 10

D−s → π−π+π− All pions PIDK < 10

All pions PIDp < 10
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Figure 5.10: The optimisation curve (in the range [0, 1]) of the BDTG Response variable
shown for all D−s final states.

5.6.5 Selection optimisation

The most important requirements for the study in question are optimised for maximum
significance. These cuts are the BDTG Response, which suppresses combinatorial back-
ground; and the bachelor PID, which mostly controls the specific backgrounds, but also
suppresses combinatorial background. The signal yield purity is defined as:

PSig =
NSig

NSig +NBkg

, (5.2)

where NSig and NBkg are the B0
s→ D∓s K

± signal and the sum of all background yields in
the m(D∓s K

±) invariant mass region [5320,5420] MeV/c2, respectively. The optimisation
curve is given by:

OSig = PSig × εSig, (5.3)

where εSig is the signal efficiency in order to take into account efficiency effects. Figure
5.10 shows the optimisation curve and its components in a range of the BDTG Response
∈ [0, 1] and taking into account all D−s final states. The best performance is found for
PIDK > 5. In addition, since the optimisation curve has a plateau, BDTG Response > 0.3
and PIDK > 5 are set as nominal cut values.

5.6.6 Key distributions after offline selection

In Fig. 5.11 and Fig. 5.12 the distributions of m(D∓s h
±) invariant mass and decay-time are

shown after the full offline selection for B0
s→ D−s π

+ and B0
s→ D∓s K

± decays, respectively.
The 6113 (B0

s → D∓s K
±) and 40260 (B0

s → D−s π
+) candidates are reconstructed. The

signal efficiency of the offline selection measured on the signal simulation sample and with
respect to preselection is 58% (54%) for B0

s→ D−s π
+ (B0

s→ D∓s K
±) decay mode.
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Figure 5.11: Distributions of two key quantities: m(D−s π
+) invariant mass (left) and

decay-time (right), obtained after the offline selection for the B0
s→ D−s π

+ data sample.
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Figure 5.12: Distributions of two key quantities: m(D∓s K
±) invariant mass (left) and

decay-time (right), obtained after the preselection selection for the B0
s → D∓s K
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Chapter 6

Multidimensional fit

The Multidimensional fit (MD fit) is performed to the m(D∓s h
±) and m(h−h+h±) invariant

masses and bachelor PIDK. The following list summaries the key points of the MD fit
strategy:

� All fits are unbinned extended maximum likelihood fits implemented in the B2DXFitters
package [89].

� The distinction between the signal and backgrounds with different charm particles
such as D−s , D− or Λ

−
c hadrons is increased by fitting to the m(h−h+h±) invariant

mass.

� The discrimination between modes with different bachelor particles such as kaon,
pion or proton is significantly enhanced by using the PIDK variable as an observable.

� The multidimensional fit is performed to both of the B0
s→ D∓s h

± samples.

� The subsamples defined by the D−s final states are fitted simultaneously.

� As shown in Fig. 6.1 the correlation between variables are negligible, therefore the
full PDF for each component can be factorised:

PDF(a, b, c;m(D∓s h
±),m(h−h+h±),PIDK) = (6.1)

PDF(a;m(D∓s h
±))× PDF(b;m(h−h+h±))× PDF(c; PIDK).

where a, b and c are parameters, whereas m(D∓s h
±), m(h−h+h±) and PIDK denote

observables.

� The considered fit ranges are m(D∓s h
±) ∈ [5300, 5800] MeV/c2, m(h−h+h±) ∈

[1930, 2015] MeV/c2. Since the PID selection is different between D−s π
+ and D∓s K

±

the following range are used: D−s π
+: −PIDK ∈ [0, 150], D∓s K

±: ln(PIDK) ∈
[ln(5), ln(150)].

� The different PID performance in both magnet polarities is taken into account as
well as different background contributions to the D−s modes.

� The PDFs of the signal mass distributions are determined by the detector resolution
and the radiative character of the B0

(s) and D−(s) meson decays. For these reasons, the
signal invariant mass distributions contain a tail extending towards lower masses.
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The description requires using Crystal Ball [97] functions. A single Crystal Ball
function is defined as:

PDFCB(α, n, µ, σ;x) =

{
e−

(x−µ)2

2σ2 for (x−µ)2

2σ2 > −α,
A× (B − x−µ

σ
)−n for (x−µ)2

2σ2 ≤ −α,
(6.2)

where A and B are given by:

A =

(
n

|α|

)
× e− 1

2
|α|2 , B =

n

|α| − |α|. (6.3)

and (α, n, µ, σ) is set of free parameters. A signal PDF is parametrised by a double
Crystal Ball function with: common mean µ, oppositely oriented tails (α1 > 0,
α2 < 0) and depends in total on eight free parameters:

PDFdCB(α1, n1, σ1, α2, n2, σ2, µ, f ;x) = f × PDFCB(α1, n1, σ1, µ;x)

+ (1− f)× PDFCB(α2, n2, σ2, µ;x), (6.4)

where f denotes fraction between components.

� The functional form of the combinatorial PDF is taken from the m(D∓s h
±) invariant

mass sideband.

� The specific background PDFs make heavy use of so-called templates, which are
predefined shapes that have no free parameter other than the normalisation and
mostly obtained using kernel method [98] implemented in the RooKeysPdf class in
the RooFit framework [75].

� When computing all PDFs the magnet polarities are summed and weighted according
to the collected integrated luminosity.

� The differences between data and simulation are reduced using the procedure de-
scribed in Sec. 6.1.1.

� Based on the MD fit results, for each candidate the sWeight given by Eq. 4.2 is
obtained.

6.1 B0→ D−π+ control samples

The B0→ D−π+, D−→ K+π−π− control mode is used in several aspects of the analysis.
For this purpose, two B0→ D−π+ samples are obtained, called “control sample A” and
“control sample B”, which differ only in an extra cut of PIDK < 0 for the bachelor pion in
the case of control “sample B”. The remaining selection criteria are common and listed in
Tab. D.1 (App. D).

Control sample A is used to reduce data/simulation discrepancies. The PID requirement
on the bachelor particle is not applied since it would affect its kinematics. This is described
in Sec. 6.1.1. Control sample B is used to (i) define the widths of the nominal B0

s and D−s
signal PDFs, and (ii) to determine the expected number of B0→ D−π+ and B0→ D−K+

background yields in the nominal B0
s→ D−s π

+ and B0
s→ D∓s K

± samples.
Both control samples use a two dimensional fit to the m(D−π+) and m(K+π−π−) invari-

ant mass distributions in the ranges m(D−π+) ∈ [5000, 6000] MeV/c2 and m(K+π−π−) ∈

72



1.0
0

0.0
4

0.0
0

-0
.00 -0

.01 0.0
1

-0
.01

0.0
4

1.0
0

-0
.00 0.0

0
0.0

1
-0

.01 0.0
0

0.0
0

-0
.00 1.0

0
0.0

1
-0

.02
-0

.06 0.0
3

-0
.00 0.0

0
0.0

1
1.0

0
0.1

8
-0

.02 0.0
3

-0
.01 0.0

1
-0

.02 0.1
8

1.0
0

-0
.07 0.0

9

0.0
1

-0
.01

-0
.06

-0
.02

-0
.07 1.0

0
0.0

1

-0
.01 0.0

0
0.0

3
0.0

3
0.0

9
0.0

1
1.0

0

]2
) [MeV/c

±K

±

s

m(D

]2
) [MeV/c

+π-π±, K
±π-π+, K

±π-K+
m(K Bachelor -ln(PIDK)

) [ps]
± K

±

s
 D→ 0s

(Bτ

) [ps]
± K

±

s
 D→ 0s

(Bσ
 OSη

Predicted  SSK
η

Predicted 

]2) [MeV/c±K

±

s
m(D

]2) [MeV/c+π-π±, K±π-π+, K±π-K+m(K

Bachelor -ln(PIDK)

) [ps]± K

±

s D→ 0
s(Bτ

) [ps]± K

±

s D→ 0
s(Bσ

 OSηPredicted 

 SSKηPredicted 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1LHCb
 simulation± K

±

s D→ 0
sCorrelations for B

Figure 6.1: Correlations between the variables used in the analysis, as obtained on the
signal B0

s→ D∓s K
± simulation sample.

[1830, 1910] MeV/c2. Because of the additional PID requirement, the two control samples
require separate signal and background PDFs, however much of the strategy is common.

The signal PDFs are taken to be double Crystal Ball functions:

� the m(D−π+) invariant mass:

PDF(pB0 ;m(D−π+))B0→D−π+ = (6.5)
PDFdCB(α1

B0 , n1
B0 , σ1

B0 , α2
B0 , n2

B0 , σ2
B0 , fB0 , µB0 ;m(D−π+)),

� the m(K+π−π−) invariant mass:

PDF(pD− ;m(K+π−π−))B0→D−π+ = (6.6)
PDFdCB(α1

D− , n1
D− , σ1

D− , α2
D− , n2

D− , σ2
D− , fD− , µD− ;m(K+π−π−)).

whose parameters are obtained from a fit to simulated signal B0→ D−π+ candidates. In
the nominal fit the mean µB0(D−) and two widths σ1

B0(D−) and σ2
B0(D−) are left free. As

an example the parametrisations of the signal PDFs for control sample A are shown in
Fig. 6.2. The numerical results for both control samples are collected in Tab. D.2 for the
m(D−π+) invariant mass and in Tab. D.3 for the m(K+π−π−) invariant mass (App. D).

In the model three fully and two partially reconstructed backgrounds are considered.
The first group is composed of B0→ D−K+, B0

s → D−s π
+ and Λ

0

b→ Λ
−
c π

+ decays. In
case of the B0→ D−K+ mode, a bachelor kaon K+ is misidentified as a pion π+, for
B0
s→ D−s π

+, D−s → K−K+π− decays, a kaon K− from the D−s meson is misidentified as a
π−. Finally, for Λ

0

b→ Λ
−
c π

+, Λ
−
c → pK+π− mode, a double misidentification is considered:

p→ K− and K+ → π+. The partially reconstructed backgrounds are due to B0→ D−ρ+

and B0→ D∗−π+ decays. In both cases the neutral particle is missed from ρ+ → π+π0

and D∗− → D−(π0, γ) decays, respectively. The specific background PDFs are generally
obtained using the kernel method from dedicated simulation samples. For the backgrounds
which decay to D− or D∗− (B0→ D−K+, B0→ D−ρ+ and B0→ D∗−π+) the signal
description in the m(K+π−π−) invariant mass is used. The resulting PDFs for control
sample A are shown in Fig. D.2 (App. D).
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Figure 6.2: Distributions of the m(D−π+) (left) and m(K±π−π+) (right) invariant masses
as obtained on simulation samples with combined magnet polarities (data points). The
solid, blue curve corresponds to the fit described in the text.

The combinatorial background is parametrised by a double exponential in the m(D−π+)
invariant mass dimension:

PDF(s1
B0 , s2

B0 , fCB0 ;m(D−π+))Comb = (6.7)

fCB0 × e−s1B0×m(D−π+) + (1− fCB0)× e−s2B0×m(D−π+),

where s1
B0 (s2

B0) is the slope of the first (second) exponential and fCB0 is fraction between
them. To describe the combinatorial component that contains a true D−, the m(K+π−π−)
invariant mass PDF is given by a single exponential plus the signal double Crystal Ball
function:

PDF(pD− ,sD− , fCD− ;m(K+π−π−))Comb = (6.8)

fCD− × e−sD−×m(h−h+h±) + (1− fCD−)× PDFdCB(pD− ;m(K+π−π−)),

where fCD− denotes fraction between components, sD− is slope of the exponential and pD−

are shared parameters with the signal description. The result of fitting the combinatorial
shapes to the B0 sideband is given in Fig. D.1 (App. D) as an example for control sample
A. This result is used to define a fit model and reasonable starting parameters for the
combinatorial background, but the actual parameters float in the fits.

6.1.1 Control sample A: Data/Simulation corrections

The description of many of the components in the MD fit relies on simulated samples,
which must be reweighted in order to improve their agreement with the data. Control
“sample A” is used to measure data/simulation weights in bins of two sensitive kinematic
variables: ln(nTracks) in the candidates, where nTracks denotes track multiplicity, and
logarithm of the bachelor transverse momentum ln(pT ). The resulting weight matrix is
applied to all other simulation samples used in this analysis.

The overall result is shown in 6.3. The obtained numerical results are collected in
Tab. D.4 (App. D).

To obtain the pure B0 → D−π+ sample the fitted candidates are weighted by re-
sulting sWeights. Then two-dimensional histograms of ln(pT ) vs. ln(nTracks) with 20
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Figure 6.3: Distributions of the m(D−π+) (left) and m(K±π−π+) (right) invariant masses
with combined magnet polarities (data points). The solid, blue curve corresponds to the
fit described in the text. Different contributions to the fit are shown as coloured areas (for
backgrounds) or dashed line (for signal) as described in the legend above the plots.
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Figure 6.4: One-dimensional projections illustrating the two-dimensional data/simulation
weighting, left for ln(pT ) and right for ln(nTracks) variables.

bins in each direction are compared between data and simulation. Their ratios form the
desired correction matrix. The procedure is repeated separately for each magnet polarity.
One-dimensional projections, together with the distributions of weighted simulation are
presented in Fig. 6.4. Some of the bins receive large corrections when reweighting the
simulation, which demonstrates that this procedure is indeed needed.

6.1.2 Control sample B: inputs to B0
s→ D∓s h

± sample fits

The fit to the B0→ D−π+ control “sample B” is used to determine the ratios of widths
of the nominal B0

s and D−s signal PDFs, and a number of background yields that need
to be fixed in the nominal B0

s→ D∓s h
± fits. For this purpose all signal and background

templates were redone taking into account the influence of the PIDK < 0 requirement.
In the “control B0→ D−π+ sample B”, the number of B0→ D−K+ candidates needs to
be fixed. It is estimated from a prediction based on the efficiencies of the involved PID
cuts and branching fractions, and fixed to be NB0→D−K+ = 1825. The overall results of the
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Figure 6.5: Distributions of the m(D−π+) (left) and m(K±π−π+) (right) invariant masses
with combined magnet polarities (data points). The solid, blue curve corresponds to the
fit described in the text. Different contributions to the fit are shown as coloured areas (for
backgrounds) or dashed line (for signal) as described in the legend above the plots.

Table 6.1: Widths of the double Crystal Ball function in B0→ D−π+ data and in the
respective simulation together with the resulting scale factors.

Parameter
Fitted value Fitted value

Scale factors
in simulation [MeV/c2] in data [MeV/c2]

σ1
B0 8.60 ± 0.75 11.02 ± 0.25 1.28 ± 0.11
σ2
B0 14.54 ± 0.11 17.69 ± 0.08 1.22 ± 0.01

σ1
D− 9.98 ± 1.49 11.58 ± 0.07 1.16 ± 0.17
σ2
D− 5.63 ± 0.33 6.68 ± 0.28 1.19 ± 0.07

control B0→ D−π+ sample B are shown in Fig. 6.5 and collected in Tab. D.5 (App. D).
The signal B0→ D−π+ yield is reconstructed to be NB0→D−π+ = 109420. The resulting
signal widths are summarised in Tab. 6.1, together with the desired data/simulation scale
factors.

6.2 Signal and background description

The signal and background description is crucial for performing an unbiased fit. Their
parametrisations are taken either from data or simulated candidates. A special description
based on data is provided for the B0→ D−π+ mode as a background to the B0

s→ D−s π
+

decay and the B0
s→ D−s π

+ mode as a background to the B0
s→ D∓s K

± decay. In addition,
sideband data are used for the combinatorial background. Other parametrisation are
obtained on simulated candidates. The discrepancy between the simulated candidates and
data samples is a common issue in the correct modelling of PDFs. The most affected
variables are kinematic quantities such as momentum, track multiplicity etc. In order
to improve the data-simulation agreement, the correction described in Sec. 6.1.1 is used.
In addition, the full trigger, preselection and offline kinematic selection chain is applied.
Simulation samples are also corrected using misidentification and/or efficiency of the
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Figure 6.6: One-dimensional projections of the two-dimensional weighting of the PID
calibration samples to match the B0 → D−π+ decay kinematics. Left: ln(pT ). Right:
ln(nTracks).

applied PIDK requirements.
The descriptions of the m(D∓s h

±) and m(h−h+h±) invariant masses are taken directly
from the above sample, while the parametrisation of PIDK distribution needs its own
special treatment. The respective PIDK PDFs are taken from the high statistics PID
calibration samples of control modes such as D∗± → D0(K∓π±)π± (for pure kaon and pion
samples) and Λ

−
c → pK+π− (for the proton sample) [65]. Their backgrounds are subtracted

using sWeights. In addition, the PIDK requirement from the offline selection is applied to
them: PIDK < 0 for the B0

s→ D−s π
+ sample and PIDK > 5 for the B0

s→ D∓s K
± sample.

Then, the PID calibration samples have to be weighted to match the signal kinematics.
For this purpose two variables are used: ln(pT ) and ln(nTracks). The weighting is done
separately for each signal and background component, as well as for both magnet polarities.
The result of the weighting is illustrated, taking as an example the B0→ D−π+ background
component, in Fig. 6.6.

Next, the PDFs are combined for both magnet polarities according to the integrated
luminosity in both samples. From the resulting samples the template PDFs for the PIDK
distribution are constructed without any free parameter other than the normalisation.

In the following subsections, signal and background descriptions are discussed for
both considered modes: B0

s→ D−s π
+ and B0

s→ D∓s K
±. However, the resulting PDFs are

shown only for B0
s→ D∓s K

±, while corresponding results for B0
s→ D−s π

+ are presented in
App. E.

6.2.1 Signal

As mentioned at the beginning of the chapter, the signal mass distributions are determined
by the detector resolution and the radiative character of the B0

s and D−s meson decays.
Due to low energy photons which are not reconstructed, the invariant mass distributions
contain a tail extending towards lower masses, which can be described by a double Crystal
Ball function for:

� the m(D∓s h
±) invariant mass:

PDF(pB0
s
;m(D∓s h

±))B0
s→D∓

s h±
= (6.9)

PDFdCB(α1
B0
s
, n1

B0
s
, σ1

B0
s
, α2

B0
s
, n2

B0
s
, σ2

B0
s
, fB0

s
, µB0

s
;m(D∓s h

±)),

77



Table 6.2: Parameters for the sum of the double Crystal Ball function describing the
signal m(D∓s h

±) invariant mass of B0
s→ D∓s K

± sample, obtained from signal simulation,
separately for each D−s final state.

Parameter D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

µB0
s

[ MeV/c2 ] 5366.3 ± 0.02 5366.5 ± 0.03 5366.4 ± 0.03 5366.0 ± 0.08 5366.2 ± 0.05
σ1
B0

s
[ MeV/c2 ] 10.72 ± 0.12 11.23 ± 0.08 10.77 ± 0.09 11.27 ± 0.30 11.39 ± 0.10

σ2
B0

s
[ MeV/c2 ] 16.01 ± 0.11 17.02 ± 0.10 15.34 ± 0.08 19.41 ± 0.93 17.65 ± 0.10

α1
B0

s
2.21 2.21 2.05 2.40 2.09

α2
B0

s
-2.42 -2.19 -2.03 -3.42 -2.33

n1B0
s

1.00 ± 0.02 1.12 ± 0.02 1.21 ± 0.02 0.98 ± 0.05 1.27 ± 0.02

n2B0
s

3.15 ± 0.22 3.61 ± 0.19 6.57 ± 0.46 0.52 ± 0.29 4.02 ± 0.36

fB0
s

0.62 ± 0.02 0.70 ± 0.02 0.58 ± 0.13 0.78 ± 0.05 0.70 ± 0.01

Table 6.3: Parameters for the sum of the double Crystal Ball function describing the
signal m(h−h+h±) invariant mass of B0

s→ D∓s K
± sample, obtained from signal simulation,

separately for each D−s final state.
Parameter D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

µD−s [ MeV/c2 ] 1968.8 ± 0.03 1968.8 ± 0.01 1968.9 ± 0.04 1968.9 ± 0.05 1968.8 ± 0.06
σ1
D−s

[ MeV/c2 ] 5.35 ± 0.13 8.24 ± 0.11 6.08 ± 0.93 8.85 ± 0.23 8.09 ± 0.15

σ2
D−s

[ MeV/c2 ] 5.18 ± 0.13 4.49 ± 0.04 5.13 ± 0.26 5.21 ± 0.20 7.38 ± 0.18

α1
D−s

1.23 ± 0.09 1.98 ± 0.05 1.13 ± 0.14 1.71 ± 0.11 0.91 ± 0.21

α2
D−s

-1.12 ± 0.04 -3.05 ± 0.14 -1.38 ± 0.27 -2.53 ± 0.42 -1.11 ± 0.05

n1
D−s

4.66 ± 0.08 1.49 ± 0.20 13.3 ± 1.10 2.02 ± 0.47 11.5 ± 1.63

n2
D−s

69.9 ± 10.1 0.61 ± 0.18 11.0 ± 1.18 1.09 ± 0.77 40.0 ± 5.32

fD−s 0.48 ± 0.05 0.40 ± 0.01 0.40 ± 0.06 0.55 ± 0.05 0.49 ± 0.08

� the m(h−h+h±) invariant mass:

PDF(pD−
s

;m(h−h+h±))B0
s→D∓

s h±
= (6.10)

PDFdCB(α1
D−
s
, n1

D−
s
, σ1

D−
s
, α2

D−
s
, n2

D−
s
, σ2

D−
s
, fD−

s
, µD−

s
;m(h−h+h±)).

In order to find the best parametrisation, pure signal simulation samples are fitted for
both magnet polarities but each D−s final state is considered separately.

Since the α1(2)

B0
s

parameters cause some instability if left free a two stage procedure
is used for m(D∓s h

±) invariant mass description. The shape is first obtained with all
parameters floating, then a second fit is performed, where the α1(2)

B0
s

parameters are fixed
to the best fit value from previous step. The central values from both determinations are
equal, but the second has a correct covariance matrix. The results are given in Tab. 6.2.
In case of the m(h−h+h±) invariant mass all parameters are left free and the results are
given in Tab. 6.3. For both B0

s and D−s descriptions in the fit to the data, only the means
µB0

s
and µD−

s
are floating, while all other shape parameters are fixed to the values in the

tables, where the widths are scaled by the data/simulation ratio of Tab. 6.1.
The PDFs of the PIDK variable are obtained by weighting pure kaon PID calibra-

tion sample taken from D∗± decays. The resulting parametrisation for m(D∓s h
±) and

m(h−h+h±) invariant masses and PIDK variable are shown in Fig. 6.7.
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Figure 6.7: Signal PDFs of B0
s → D∓s K

± sample as evaluated from simulation on the joint
magnet up and down samples, separately for each D−s final states. Different D−s final states are
shown as blue lines as described in the legend placed in the bottom right. Top left: the m(D∓s K

±)
invariant mass together with the pull distributions, top right: the ln(PIDK) variable, bottom:
the m(h−h+h±) invariant mass together with the pull distributions.

6.2.2 Combinatorial background

The functional form of the combinatorial background is taken from the m(D∓s h
±) side-

band m(D∓s h
±) > 5800 MeV/c2, but with the full range for m(h−h+h±) invariant mass:

m(h−h+h±) = (1930, 2015) MeV/c2. Each D−s mode is considered independently; however
magnet up and down polarities are combined. In order not to distort the m(D∓s h

±) in-
variant mass shape of the combinatorial background, the mass constraint on the D−s is
removed for this study.

The combinatorial background in the m(D∓s h
±) invariant mass is described as follows:

� for B0
s→ D−s π

+ (D−s → (KKπ)nonres,D−s → φπ−,D−s → K∗0K−) by a single exponen-
tial plus flat distribution:

PDF(sB0
s
, fCB0

s
;m(D∓s h

±))Comb = fCB0
s
× e−sB0

s
×m(D∓

s h
±)

+ (1− fCB0
s
)× 1,

where sB0
s

is the slope of the exponential and fCB0
s

denotes fraction between compo-
nents.

� for B0
s→ D−s π

+ (D−s → K−π+π−,D−s → π−π+π−) and B0
s→ D∓s K

± (all D−s modes)
by a single exponential:

PDF(sB0
s
;m(D∓s h

±))Comb = e
−s

B0
s
×m(D∓

s h
±)
,

where sB0
s

is the slope of the exponential.
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The results for B0
s→ D∓s K

± are shown in the top left part of Fig. 6.8. The functional form
of the applied parametrisation is sufficiently complex to be able to describe the data. In
order to cover any difference between shapes in the sideband m(D∓s h

±) > 5800 MeV/c2 and
in the nominal fit region: m(D∓s h

±) ∈ (5300, 5800) MeV/c2, the slopes of the exponential
are left free.

The combinatorial background in the m(h−h+h±) invariant mass dimension absorbs
every component which does not peak in the m(D∓s h

±) invariant mass. This means
true combinatorial, in which all tracks are random tracks, and, in some D−s channels,
backgrounds that contain a true D−s , but a random bachelor track. The combinatorial
background in the range m(h−h+h±) = (1930, 2015) MeV/c2 can be described by:

� an exponential plus signal D−s mass shape for the D−s → (KKπ)nonres, D−s → φπ−,
D−s → K∗0K− D−s final states:

PDF(pD−
s
, sD−

s
, fCD−

s
;m(h−h+h±))Comb = fCD−

s
× e−sD−

s
×m(h−h+h±)

+ (1− fCD−
s

)× PDF(pD−
s

;mD−
s

)B0
s→D∓

s K± ,

where sD−
s

is the slope of the exponential, fCD−
s

corresponds to fraction between
components and pD−

s
are shared with signal description parameters of double Crystal

Ball.

� a single exponential for D−s → K−π+π− and D−s → π−π+π−:

PDF(sD−
s

;m(h−h+h±)) = e
−s

D−
s
×m(h−h+h±)

,

where sD−
s

is the slope of the exponential.

The results for B0
s → D∓s K

± are shown in the bottom of Fig. 6.8. To cover differences
between the sideband and nominal m(D∓s h

±) mass regions, the slope parameters and also,
for those channels that have it, the fraction between peaking and exponential components
are left free. Since the shape of the peaking component coincides with the signal shape, its
mean is floating, too, as described in the previous Section 6.2.1.

The combinatorial background contains contributions from many particle species,
namely kaons, pions, and protons. Each of these components has their own, distinctive
PIDK shape. In the nominal fit each of these parametrisation is considered separately.
However they share with the same m(D∓s h

±) and m(h−h+h±) invariant masses models.
The PDFs of the PIDK variable are obtained based on the D∗± and Λ

−
c calibration

samples, which are weighted to match the ln(pT ) and ln(nTracks) spectra of the combi-
natorial background in the fit range (m(D∓s h

±) = [5300, 5800] MeV/c2). Since the pure
combinatorial background sample can only be obtained from the sideband of m(D∓s h

±),
its kinematics must be extrapolated into the fit region. The upper m(D∓s h

±) invariant
mass sideband, m(D∓s h

±) = [5600, 6800] MeV/c2, is partitioned into 10 bins. In each of
these bins the transverse momentum pT and track multiplicity nTracks spectra are fitted
by a Landau function [99]. The output of the fit is used to predict the evolution of the
Landau’s mean and width in bins inside the fit region. Finally summing all bins in the fit
region with appropriate weights gives the wanted ln(pT ) and ln(nTracks) spectra in the fit
region.

The combinatorial PDF for the B0
s → D−s π

+ decay contain only pion and kaon
contributions:

PDF(fCPIDK; PIDK)Comb = fCPIDK × PDF(PIDK)π + (1− fCPIDK)× PDF(PIDK)K,
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Figure 6.8: Combinatorial background PDFs of B0
s → D∓s K

± sample as evaluated from the
m(D∓s h

±) sideband on the joint magnet up and down samples, separately for each D−s final
state. For the m(D∓s h

±) and m(h−h+h±) invariant masses, different D−s final states are shown
as blue lines as described in the legend placed on the plots. For the PIDK variable pion, kaon
and proton components are described in the legend placed in the figure. Top left: the m(D∓s K

±)
invariant mass together with the resulting pull distributions, top right: the ln(PIDK) variable,
bottom: the m(h−h+h±) invariant mass together with the resulting pull distributions.

where fCPIDK is the fraction between components, whereas PDF(PIDK)π and PDF(PIDK)K

denote the pion and kaon components, respectively. For the B0
s→ D∓s K

± in addition to
the two above contributions, the proton component has to be considered:

PDF(fCPIDK1, fCPIDK2;PIDK)Comb = fCPIDK × PDF(PIDK)π + (1− fCPIDK1)×
[fCPIDK2 × PDF(PIDK)K + (1− fCPIDK2)× PDF(PIDK)p],

where fCPIDK1, fCPIDK2 are fractions, and PDF(PIDK)π, PDF(PIDK)K and PDF(PIDK)p

denotes the pion, kaon and proton components, respectively. The resulting PDFs for the
B0
s→ D∓s K

± combinatorial background are shown in Fig. 6.8. The normalisation (fCPIDK

in B0
s→ D−s π

+ sample and fCPIDK1, fCPIDK2 in B0
s→ D∓s K

± sample) is left floating in
the fit.

6.2.3 Fully Reconstructed Backgrounds

The fully reconstructed backgrounds are the dominant source of specific background
components in the B0

s→ D∓s h
± samples.

The contributions to the B0
s→ D−s π

+ sample are due to: B0→ D−s π
+, B0

s→ D∓s K
±,

B0 → D−π+ and Λ
0

b→ Λ
−
c π

+ decays. Fully reconstructed backgrounds considered in the
B0
s→ D∓s K

± sample are due to: B0 → D−s K
+, B0

s → D−s π
+, Λ0

b → D−s p, B
0 → D−K+,

B0 → D−π+, Λ
0

b → Λ
−
c K

+ and Λ
0

b → Λ
−
c π

+ decays. The detailed informations about
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Table 6.4: Fully reconstructed backgrounds considered in the B0
s→ D−s π

+ sample.

Decay chain Background to
How it contributes

to the signal

B0 → D−s π
+ B0

s → D−s π
+ Same final state

B0
s → D−s K

+ B0
s → D−s π

+ K+ → π+ (bachelor)

B0 → D−π+ → (K+π−π−)π+ B0
s → D−s π

+ → (K+K−π−)π+ π− → K− (D−)

B0 → D−π+ → (K+π−π−)π+ B0
s → D−s π

+ → (π+K−π−)π+ K+ → π+ and

π− → K− (D−)

Λ0
b → Λ

−
c π

+ → (pK+π−)π+ B0
s → D−s π

+ → (K+K−π−)π+ p→ K− (D−)

Λ0
b → Λ

−
c π

+ → (pK+π−)π+ B0
s → D−s π

+ → (π+K−π−)π+ p→ K− (Λ
−
c ) and

K+ → π+ (Λ
−
c )

Table 6.5: Fully reconstructed backgrounds considered in the B0
s→ D∓s K

± sample.

Decay chain Background to
How it contributes

to the signal

B0 → D−s K
+ B0

s → D−s K
+ Same final state

B0
s → D−s π

+ B0
s → D−s K

+ π+ → K+ (bachelor)

Λ0
b → D−s p B0

s → D−s K
+ p→ K+ (bachelor)

B0 → D−K+ → (K+π−π−)K+ B0
s → D−s K

+ → (K+K−π−)K+ π− → K− (D−)

B0 → D−π+ → (K+π−π−)π+ B0
s → D−s K

+ → (K+K−π−)K+ π− → K− (D−) and

π+ → K+ (bachelor)

Λ0
b → Λ

−
c K

+ → (pK+π−)K+ B0
s → D−s K

+ → (K+K−π−)K+ p→ K− (Λ
−
c )

Λ0
b → Λ

−
c π

+ → (pK+π−)π+ B0
s → D−s K

+ → (K+K−π−)K+ p→ K− (Λ
−
c ) and

π+ → K+ (bachelor)

misidentification types are collected in Tab. 6.4 for the B0
s→ D−s π

+ decay and Tab. 6.5
for the B0

s→ D∓s K
± mode.

The most important of these backgrounds are B0→ D−π+ (as background to B0
s→

D−s π
+) and B0

s→ D−s π
+ (as background to B0

s→ D∓s K
±). Their shapes are determined

in a data driven way, as illustrated in the following for the B0
s→ D−s π

+:

1. A pure sample of B0
s→ D−s π

+ is reconstructed under the correct mass hypothesis
for the misidentified particle (i.e. π hypothesis), applying the full selection chain
with a signal mass window m(D−s π

+) = (5320, 5420) MeV/c2 plus a PID requirement
to explicitly select this decay: PIDK < 0 on the bachelor pion. Since the mis-ID and
efficiency of the PIDK cuts depend on momentum, these PIDK requirements will
distort the momentum distribution of the misidentified particle.

2. The efficiency and mis-ID probability of the PIDK cuts applied in the first step, as a
function of momentum, are obtained from the PID calibration sample of D∗± decays.
To recover the pre-PID cut momentum distribution the pure sample is weighted
using calibration functions.

3. The pure B0
s→ D−s π

+ sample is reconstructed as B0
s→ D∓s K

±, which means under
the wrong mass hypothesis for the misidentified particle, i.e. the bachelor π+ now
has the K+ mass. This changes the mass distribution.
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Figure 6.9: The PDFs taken from data for B0
s→ D−s π

+ samples, separately for each D−s
final state, but with combined magnet polarities. Different D−s final states are shown as
blue lines as described in the legend in the plots. Left: m(D∓s h

±) invariant mass, Right:
ln(PIDK) variable.

4. The PIDK cuts in the nominal B0
s→ D∓s K

± selection also modify the momentum
distribution. To consider their effect, the resulting sample is again weighted by
using the calibration functions, corresponding to the B0

s → D∓s K
± PID selection

(PIDK > 5).

The PDFs of m(D∓s h
±) invariant mass are taken directly from this sample, while for the

m(h−h+h±) invariant mass the signal B0
s→ D∓s K

± PDFs (see Fig. 6.7) are used. Finally,
the PIDK distribution is obtained based on weighting the pion PID calibration sample to
match the kinematics of each B0

s→ D−s π
+ sample. The resulting PDFs for the m(D∓s h

±)
invariant mass and the PIDK are shown in Fig. 6.9.

This procedure is also applied to the B0→ D−π+, D−→ K+π−π− sample, and the
resulting shape is used to parametrise the B0→ D−π+ background in the B0

s→ D−s π
+

fit in both final states D−s → K−K+π− and D−s → K−π+π−. The PDFs for m(D∓s h
±)

and m(h−h+h±) invariant masses are created directly based on above samples. The PIDK
distributions are obtained from the pion PID calibration sample to match B0→ D−π+

kinematics, as shown in Fig.6.6.
The m(D∓s h

±) invariant mass PDFs for the backgrounds with the same final state
as the signal, B0→ D−s K

+ and B0→ D−s π
+, are assumed to be described by double

Crystal Ball functions. Their tail parameters are taken from simulated candidates and
fixed in the fit, whereas the mean is taken from B0

s→ D∓s h
± signal description, and shifted

downward by the nominal difference between the B0
s and B0 masses, ∆ = 86.6 MeV/c2 [63].

In addition, the widths are obtained from the B0
s→ D∓s h

± signal shapes and scaled by
the width ratio B0

s→ D∓s h
±/B0→ D∓s h

± as measured in simulated candidates. Since the
final state D∓s h

± is the same as signal, the signal B0
s → D∓s h

± PDFs are used for the
m(h−h+h±) invariant mass and PIDK distributions.

The m(D∓s h
±) invariant mass PDFs of the remaining fully reconstructed backgrounds

are taken from simulation. The fully reconstructed backgrounds which contain a correctly
reconstructed D−s meson behave just like the signal in the m(h−h+h±) invariant mass
distribution, so the signal PDFs (see Fig. 6.7) are used. The remaining distributions
(Λ

0

b → Λ
−
c π

+ in the B0
s → D−s π

+ fit, and Λ
0

b → Λ
−
c h

+ and B0 → D−h− in the B0
s →

D∓s K
± fit) are obtained from selected and corrected simulation samples. The PIDK

PDFs for the fully reconstructed backgrounds are obtained using the procedure discussed
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Figure 6.10: The PDFs taken from simulation for the remaining fully reconstructed
backgrounds in the B0

s→ D∓s K
± sample. Different background contributions are shown as

coloured lines as described in the legend above the plots. Left: m(D∓s h
±) invariant mass,

middle: m(h−h+h±) invariant mass, right: ln(PIDK) variable.

in the beginning of this section (Sec. 6.2). They are taken from the PID calibration
samples, which got weighted to match the kinematics found in the relevant simulation
samples. The contributing backgrounds are described using the pion, kaon or proton PID
calibration sample depending on the bachelor particle. The resulting PDFs of remaining
fully reconstructed backgrounds are shown in Fig. 6.10.

6.2.4 Partially Reconstructed Backgrounds

The partially reconstructed backgrounds typically peak in the lower mass range, but do
extend into the signal region. The backgrounds included in the nominal fit are listed in
Tab. 6.6. The B0

s → D∗−s π+ background contributes to both B0
s→ D−s π

+ and B0
s→ D∓s K

±

samples due to the missing photon from the D∗−s → D−s γ decay. In addition, two more
decays have to be taken into account as backgrounds to B0

s→ D∓s K
±. The first one is

B0
s→ D−s ρ

+, when the π0 is missed from the ρ+ → π+π0 decay and pion misidentification
occurs (π+ → K+). The second component is Λ0

b→ D∗−s p when the photon from D∗−s →
D−s γ is missed and in addition the proton is misidentified as the kaon (p→ K+).

The m(D∓s h
±) invariant mass PDFs of the partially reconstructed backgrounds are

taken from simulation. For the m(h−h+h±) invariant mass distributions the B0
s→ D−s π

+

or B0
s→ D∓s K

± signal PDFs are used. Finally, the PIDK PDFs are obtained based on
the PID calibration samples and depending on nature of bachelor particle: either from
the pion or proton PID calibration sample. The resulting PDFs of partially reconstructed
backgrounds are shown in Fig. 6.11.

Table 6.6: Partially reconstructed backgrounds considered in the B0
s→ D∓s h

± samples.
Decay chain Background to How it contributes to the signal

B0
s → D∗−s π+ B0

s → D−s π
+ missed photon from D∗−s → D−s γ

B0
s→ D−s ρ

+ B0
s → D−s K

+ missed π0 from ρ+ → π+π0 and π+ → K+ (bachelor)

B0
s → D∗−s π+ B0

s → D−s K
+ missed photon from D∗−s → D−s γ and π+ → K+ (bachelor)

Λ0
b→ D∗−s p B0

s → D−s K
+ missed photon from D∗−s → D−s γ and p→ K+ (bachelor)
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Figure 6.11: The PDFs taken from simulation for the partially reconstructed backgrounds
in the B0

s→ D∓s K
± sample. Different background contributions are shown as coloured lines

as described in the legend in the plots. Left: m(D∓s h
±) invariant mass, Right: ln(PIDK)

variable.

6.3 Expected background yields

The backgrounds whose yields are below 2% of the signal yield are fixed from known
branching fractions and relative efficiencies measured using simulated candidates.

6.3.1 Background due to B0→ D−π+ and B0→ D−K+ decays

The number of B0→ D−π+ background candidates remaining in the B0
s→ D−s π

+ samples
can be estimated from data, using the sample described in Sec. 6.1.2. To obtain the
expected yield of B0→ D−π+ without applying a PID requirement, the fitted B0→ D−π+

yield (NB0→D−π+ = 109420) is corrected due to the different selections applied to the
B0→ D−π+ and B0

s→ D−s π
+ samples. The correction is computed separately for each

D−s final state: D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K− and D−s → K−π+π−. It
contains the following contributions: efficiencies due to the choice of the signal mass
window, the vetoes applied in the D−/D−s child phase space, the different PID efficiencies
of the D−/D−s children (partly depending on the phase space position due to different PID
requirements in the veto regions) as well as efficiencies of the cut on FDχ2. In addition,
the misidentification rate is needed, which is calculated by weighting the momentum
spectrum of the B0→ D−π+ simulated samples by the misidentification of relevant PIDK
requirements. Then, using the above information the expected B0→ D−π+ yield in the
B0
s→ D−s π

+ are calculated and listed in the first row of Tab. 6.8.
These yields are also exploited to fix the B0→ D−π+ and B0→ D−K+ contributions

in the B0
s→ D∓s K

± fit, using a factor 1/15 to account for the relative branching fractions
of the B0→ D−K+ and B0→ D−π+ modes and correcting for the PID efficiencies of the
PIDK < 0 and PIDK > 5 requirements on the bachelor track. The resulting contributions
from B0→ D−π+ and B0→ D−K+ expected in the B0

s→ D∓s K
± fit is given in Tab. 6.11.

6.3.2 Background due to Λ
0
b→ Λ

−
c π

+ and Λ
0
b→ Λ

−
c K

+ decays

For the evaluation of the number of expected Λ
0

b→ Λ
−
c π

+ candidates in the B0
s→ D−s π

+

sample, the latter is reconstructed under the Λ
0

b → Λ
−
c π

+ hypothesis and fitted. The
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selection for the reconstruction follows nominal B0
s→ D−s π

+ selection, however the Λ
−
c

veto is removed and the D−s combination is required to be within 30 MeV/c2 of the m(Λ
−
c π

+)
invariant mass. In addition, the kaon track from the D−s combination satisfies the proton
PID selection criteria PIDp − PIDK > 5 and PIDp > 0. The relative misidentifications
between these and the nominal selections are obtained.

In the fits to the m(Λ
−
c π

+) invariant mass only two contributions are considered: the
Λ

0

b → Λ
−
c π

+ component, parametrised by the B0
s → D−s π

+ signal double Crystal Ball
functions and combinatorial background, described by a single exponential. To compute
the number of expected Λ

0

b→ Λ
−
c π

+ candidates in the B0
s→ D−s π

+ sample the fitted yield,
shown in Fig. 6.12 is multiplied by the relative misidentifications. The resulting yields are
listed in second row of Tab. 6.8.

These yields are also exploited to fix the Λ
0

b→ Λ
−
c π

+ and Λ
0

b→ Λ
−
c K

+ contributions
in the B0

s → D∓s K
± fit, using again the factor 1/15 of the relative branching fractions

of the B0→ D−K+ and B0→ D−π+ modes, assuming that the ratio of Λ
0

b → Λ
−
c K

+

to Λ
0

b → Λ
−
c π

+ is the same, and correcting for the PID efficiencies of the PIDK < 0
and PIDK > 5 requirements on the bachelor track. The obtained results are collected in
Tab. 6.11.
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Figure 6.12: Result of the fit to the B0
s→ D−s π

+ sample, reconstructed under the Λ
0

b→
Λ
−
c π

+ hypothesis. Distributions of m(Λ
−
c π

+) invariant mass for D−s final states with
combined magnet polarities, from top left to bottom right: D−s → (KKπ)nonres, D−s → φπ−,
D−s → K∗0K−, D−s → K−π+π−. The combinatorial background component is shown as an
orange area, while the signal is presented as a dashed red line.
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6.3.3 Background due to B0
s→ D∓s K

± decays

To obtain the expected B0
s→ D∓s K

± yield in the B0
s→ D−s π

+ fit without applying any PID
requirement on the bachelor, the B0→ D−π+ yields are corrected by relative branching
and fragmentation fractions. The relative PID efficiency of the PIDK < 0 and PIDK > 5
cuts on the bachelor track as well as the misidentification of the PIDK > 5 cut are
taken into account. The expected number of B0

s→ D∓s K
± background candidates in the

B0
s→ D−s π

+ sample are given in Tab. 6.8.

6.4 Multidimensional fit to the B0
s→ D−s π

+ sample

The B0
s→ D−s π

+ MD fit uses the m(D∓s h
±) invariant mass, m(h−h+h±) invariant mass,

and the PIDK variable in a three-dimensional unbinned extended likelihood fit. It builds
on the PDF shapes described in the previous sections and fits five subsamples, defined as
D−s final states, simultaneously. The backgrounds are arranged into five groups collected
in Tab. 6.7.

Table 6.7: Definition of background groups in the B0
s→ D−s π

+ MD fit.
Group Decay channels

1 B0
s→ D∗−s π+, B0→ D−s π

+

2 B0→ D−π+

3 Λ
0

b→ Λ
−
c π

+

4 B0
s→ D∓s K

±

5 Combinatorial background

Table 6.8: Fixed yields in the B0
s→ D−s π

+ MD fit.
Background D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

B0→ D−π+ 374.0 6.0 93.0 30.0 0.0

Λ
0

b→ Λ
−
c π

+ 290.0 36.0 69.0 1.0 0.0
B0
s→ D∓s K

± 40.0 47.0 40.0 8.0 21.0

Group 1 contains partially reconstructed backgrounds. From these backgrounds only
B0
s→ D∗−s π+ falls into the nominal B0

s mass window m(D∓s h
±) = [5300, 5800] MeV/c2. In

addition, the small, fully reconstructed B0→ D−s π
+ background is considered. For this

group the contributions are implemented with fractions:

PDF(f1;m(D∓s h
±),m(h−h+h±),PIDK)Group1 =

f1 × PDF(m(D∓s h
±),m(h−h+h±),PIDK)B0

s→D∗−
s π+

+ (1− f1)× PDF(m(D∓s h
±),m(h−h+h±),PIDK)B0→D−

s π+ , (6.11)

which means that f1 of the group 1 background yield is due to B0
s→ D∗−s π+, and the rest

due to B0→ D−s π
+. This fraction floats in the fit, shared among the five data samples.

Group 2, 3 and 4 refers to the fully reconstructed, but misidentified backgrounds due
to: B0→ D−π+, Λ

0

b → Λ
−
c π

+ and B0
s → D∓s K

± decays, respectively, whose yields are
fixed from the predictions presented in Tab. 6.8. Group 5 comprises the combinatorial
background discussed in detail in Sec. 6.2.2
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For each D−s final state, the total PDF is composed of:

PDFTot(a;m(D∓s h
±),m(h−h+h±),PIDK) = (6.12)

∑

j

Nj × PDF(aj;m(D∓s h
±),m(h−h+h±),PIDK)j,

where j = {1, .., 6} denotes the signal and five groups of backgrounds, Nj are yields and
aj are additional floating parameters: a(B0

s→D−
s π+) = (µB0

s
, µD−

s
) for the signal, a(Comb) =

(sB0
s
, sD−

s
, fCB0

s
, fCD−

s
, fCPIDK) for the combinatorial background and a(Group1) = f1 for

Group 1 background. In total 15 yields and 20 other parameters are left free in the fit.
The fit results to the B0

s→ D−s π
+ mass distribution, separately for each considered

sample are shown in App. F. The combined result for all subsamples are presented Fig. 6.13.
Finally, the fitted parameters are listed in Tab. 6.9.

Table 6.9: Fitted values of the parameters for the MD fit to B0
s → D−s π

+ sample. The Ni

are the yields of the signal and background contributions. The means µB0
s

and µD−
s

are the
parameters of the double Crystal Ball used to describe the signal in the m(D∓s h

±) and m(h−h+h±)
invariant masses, respectively. The parameter f1 is the fraction between the modes in the group 1:
B0
s→ D∗−s π+, B0→ D−s π

+. The sB0
s (D−

s ) parameters are the slopes of combinatorial background
in 10−3 units. The fractions fCB0

s
are the fractions between the exponential and flat distributions

in the m(D∓s h
±) invariant mass, whereas fCD−

s
are the fractions between the exponential and

signal shapes in the m(h−h+h±) invariant mass. The fCPIDK is the fraction between the pion
and kaon components in the PIDK combinatorial shape, shared among all subsamples.

Parameter D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

NB0
s→D

−
s π+ 4667 ± 76 10284 ± 108 7304 ± 91 1671 ± 44 4338 ± 73

NGroup1 88 ± 19 112 ± 22 89 ± 18 31 ± 11 54 ± 16
NComb 2587 ± 67 1153 ± 57 1173 ± 51 1096 ± 38 3021 ± 65

NB0
s→D

−
s π+ total yield: 28264 ± 182

sB0
s

-6.20 ± 0.66 -8.75 ± 1.19 -8.41 ± 0.91 -1.98 ± 0.25 -2.19 ± 0.16
sD−s -4.53 ± 0.93 -2.75 ± 1.77 -4.81 ± 1.50 -4.24 ± 1.29 -2.58 ± 0.78
fCB0

s
0.78 ± 0.06 0.66 ± 0.05 0.77 ± 0.05 not fitted not fitted

fCD−s 0.97 ± 0.02 0.62 ± 0.03 0.84 ± 0.03 not fitted not fitted

µB0
s

[ MeV/c2 ] 5369.9 ± 0.1
µD−s [ MeV/c2 ] 1969.8 ± 0.1
f1 0.807 ± 0.787
fCPIDK 0.913 ± 0.009

6.5 Multidimensional fit to the B0
s→ D∓s K

± sample

The fit to the B0
s→ D∓s K

± distribution is constructed analogously to the B0
s→ D−s π

+

one, with five D−s final states fitted simultaneously. The backgrounds are arranged into
five groups, defined in Tab. 6.10.

Group 1 encompasses the decays to the same final state: B0→ D−s K
+. Group 2

comprises B0
s decays with a bachelor pion: B0

s→ D−s π
+, B0

s→ D∗−s π+ and B0
s→ D−s ρ

+.
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Figure 6.13: The simultaneous fit to the B0
s→ D−s π

+ candidates for both magnet polarities
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±) invariant mass,
m(h−h+h±) invariant mass, −PIDK variable. Different contributions to the fit are shown
as coloured areas (for backgrounds) or dashed line (for signal) as described in the legend
placed in the bottom right.

For this group the various contributions are implemented with recursive fractions:

PDF(f21;m(D∓s h
±),m(h−h+h±),PIDK)Group2 =

f21 × PDF(m(D∓s h
±),m(h−h+h±),PIDK)B0

s→D−
s π+

+ (1− f21)× [f22 × PDF(m(D∓s h
±),m(h−h+h±),PIDK)B0

s→D∗−
s π+

+ (1− f22)× PDF(m(D∓s h
±),m(h−h+h±),PIDK)B0

s→D−
s ρ+

]. (6.13)

The fraction f21 is floated and shared among the subsamples, however due to the similar
behaviour of B0

s→ D∗−s π+ and B0
s→ D−s ρ

+ decays the fraction f22 is set to be 0.5.
Group 3 is composed of Λ

0

b decays with a proton misidentified as kaon (p→ K+) and
with the PDF defined as:

PDF(m(D∓s h
±),m(h−h+h±),PIDK)Group3 =

f31 × PDF(m(D∓s h
±),m(h−h+h±),PIDK)Λ0

b→D−
s p

+ (1− f31)× PDF(m(D∓s h
±),m(h−h+h±),PIDK)Λ0

b→D∗−
s p, (6.14)
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Table 6.10: Definition of the background groups in the B0
s→ D∓s K

± MD fit.
Group Type Decay channels

1 Bachelor K B0→ D−s K
+

2 Bachelor π B0
s→ D−s π

+, B0
s→ D∗−s π+, B0

s→ D−s ρ
+

3 Λ0
b decays Λ0

b→ D−s p, Λ
0
b→ D∗−s p

4 – B0→ D−K+, B0→ D−π+

5 – Λ
0

b→ Λ
−
c K

+, Λ
0

b→ Λ
−
c π

+

6 Combinatorial –

Table 6.11: Fixed yields in the B0
s→ D∓s K

± MD fit.
Background D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

B0→ D−K+ 17.0 0.0 5.0 0.0 0.0
B0→ D−π+ 14.0 0.0 3.0 3.0 0.0

Λ
0

b→ Λ
−
c K

+ 15.0 2.0 4.0 0.0 0.0

Λ
0

b→ Λ
−
c π

+ 11.0 1.0 3.0 0.0 0.0

where f31 is fixed from prediction to be 0.75 and it is shared among all subsamples.
For groups 2 and 3 the global, shared, fraction f51 is introduced which helps to control
Λ0
b → D

(∗)−
s p yield in the fitter. The global PDF of Group 23 is constructed as follows:

PDF(f51;m(D∓s h
±),m(h−h+h±),PIDK)Group23 =

f51 × PDF(m(D∓s h
±),m(h−h+h±),PIDK)Group2

+ (1− f51)× PDF(m(D∓s h
±),m(h−h+h±),PIDK)Group3, (6.15)

with floating fraction f51. Groups 4 and 5 refers to the fully reconstructed, but misidenti-
fied backgrounds due to: B0→ D−h− and Λ

0

b→ Λ
−
c h

+ decays. Since their predicted yields
are below 2% of the signal, they are fixed to the values from Tab. 6.11. Finally Group 6
contains the combinatorial background as discussed in Sec. 6.2.2.

For each D−s final state, the total PDF is obtained using Eq. 6.12. Since groups
2 and 3 are merged in one extended PDF, the sum in Eq. 6.12 has six components:
j = {0, 1, 23, 4, 5, 6}, where j = 0 denotes the signal and j = {1, 23, 4, 5, 6} are groups
of backgrounds. The floating parameters are a(B0

s→D∓
s K±) = (µB0

s
, µD−

s
) for the B0

s →
D∓s K

± signal, and for the combinatorial background: a(Comb) = (sB0
s
, sD−

s
, fCD−

s
, fCPIDK1,

fCPIDK2). In addition, a(Group2) = f21 for Group 2 and a(Group23) = f51 for the merged
Group 23. In total 20 yields and 19 other parameters are left free in the fit.

The fit results to the B0
s→ D∓s K

± sample, separately for each considered D−s final
state, and combined, are shown in Figs. 6.14, 6.15, 6.16, and 6.17. The fitted parameters
are listed in Tab. 6.12.
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Table 6.12: Fitted values of the parameters for the MD fit to B0
s → D∓s K

± sample. The Ni

are the yields of the signal and background contributions. The means µB0
s

and µD−
s

are the
parameters of the double Crystal Ball used to describe the signal in m(D∓s h

±) and m(h−h+h±)
invariant masses, respectively. The parameter f21 is the fraction between the modes in group 2:
B0
s→ D−s π

+ and B0
s→ D∗−s π+/B0

s→ D−s ρ
+. The parameter f51 is the fraction between groups

2 and 3. The sB0
s (D−

s ) parameters are the slopes of combinatorial background in 10−3 units. The
fractions fCD−

s
are the fractions between the exponential and signal shapes in the m(h−h+h±)

invariant mass. The fCPIDK(1,2) are the fractions between the pion, kaon and proton components
in the PIDK combinatorial shape, shared among all subsamples.

Par. D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

NB0
s→D

∓
s K±

309 ± 21 576 ± 27 475 ± 24 107 ± 13 301 ± 22

NGroup1 18 ± 7 34 ± 8 39 ± 9 9 ± 5 27 ± 8
NGroup23 225 ± 21 498 ± 30 327 ± 24 89 ± 16 258 ± 25
NComb 487 ± 27 311 ± 26 258 ± 22 428 ± 24 946 ± 37

NB0
s→D

∓
s K±

total yield: 1768 ± 49

sB0
s

-3.17 ± 0.41 -1.82 ± 0.63 -2.91 ± 0.61 -1.09 ± 0.38 -1.55 ± 0.27
sD−s -4.29 ± 2.05 -2.92 ± 3.54 -3.39 ± 3.10 -0.00 ± 1.02 -1.97 ± 1.36
fCD−s 0.95 ± 0.05 0.54 ± 0.07 0.80 ± 0.08 not fitted not fitted

µB0
s

[ MeV/c2 ] 5370.4 ± 0.5
µD−s [ MeV/c2 ] 1969.8 ± 0.1
f21 0.648 ± 0.034
f51 0.986 ± 0.049
fCPIDK1 0.504 ± 0.032
fCPIDK2 0.346 ± 0.079
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Figure 6.14: Result of the simultaneous fit to the B0
s→ D∓s K

± candidates. Distributions
of m(D∓s h

±) invariant mass for D−s final states with combined magnet polarities, from
top left to bottom: D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K−, D−s → K−π+π−

and D−s → π−π+π−. Different contributions to the fit are shown as coloured areas (for
backgrounds) or dashed line (for signal) as described in the legend placed in the bottom
right.
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Figure 6.15: Result of the simultaneous fit to the B0
s→ D∓s K

± candidates. Distributions
of m(h−h+h±) invariant mass for D−s final states with combined magnet polarities, from
top left to bottom: D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K−, D−s → K−π+π−

and D−s → π−π+π−. Different contributions to the fit are shown as coloured areas (for
backgrounds) or dashed line (for signal) as described in the legend placed in the bottom
right.
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Figure 6.16: Result of the simultaneous fit to the B0
s→ D∓s K

± candidates. Distributions
of ln(PIDK) for D−s final states with combined magnet polarities, from top left to bottom:
D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K−, D−s → K−π+π− and D−s → π−π+π−.
Different contributions to the fit are shown as coloured areas (for backgrounds) or dashed
line (for signal) as described in the legend placed in the bottom right.
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Figure 6.17: The simultaneous fit to the B0
s→ D∓s K

± candidates for both magnet polarities
and all D−s final states combined, from top left to bottom: m(D∓s h

±) invariant mass,
m(h−h+h±) invariant mass, ln(PIDK) variable. Different contributions to the fit are shown
as coloured areas (for backgrounds) or dashed line (for signal) as described in the legend
placed in the bottom right.
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6.6 Multidimensional fit validation

Large ensembles of pseudo experiments are used to both validate the fit procedure and
to evaluate systematic uncertainties. These pseudo experiments are generated with a
stand-alone code which produces samples in the same format as the data, and these
samples are subsequently put through the full data fit procedure: the invariant masses and
PIDK distributions are fitted in order to extract yields and sWeights, and these results
are subsequently fed to the decay-time fitter.

The pseudo experiments are generated to be as data-like as possible, both in terms of
the signal yields and in the sense of including all known backgrounds. For both B0

s→ D−s π
+

and B0
s→ D∓s K

± samples, all the backgrounds are generated in roughly (to within about
10% percent) the proportions found in the data fit. The overall sample sizes are also
roughly (again, to within about 10% percent) the same as in the data samples. Poisson
fluctuations [100] in the yields of all modes between the individual pseudo experiments are
allowed. The signal and background shapes are generated using the results of the data
MD fit.

The verification of the fitter is based on 1000 pseudo experiments from which the
pseudo pull distribution pα is obtained:

pα =
αgen − αfit
σα;fit

(6.16)

where α denotes the observable, αgen is the generated value, while αfit and σα;fit are the
returned by the fitter value and its uncertainty. A Gaussian distribution [101] is fitted
to the pseudo pull whose mean µp corresponds to the bias between fitted and generated
values and a width σp is used to uncertainty verification. The µp ∼ 0 and σp ∼ 1 are
signatures of an unbiased fitter.

6.6.1 Multidimensional fit validation for B0
s→ D−s π

+

The main focus of the B0
s→ D−s π

+ fit validation is the verification that the number of
signal candidates can be correctly extracted from the fit. As seen in Fig. 6.18 and Tab. 6.13
the pseudo pull distributions for all floating components are reasonably unbiased.

6.6.2 Multidimensional fit validation for B0
s→ D∓s K

±

Additional studies for B0
s→ D∓s K

± are shown in Fig. 6.19 for the floating yields and the
fractions. The results are collected in Tab. 6.14. The relevant pseudo pull for yields are
unbiased. A small bias is visible for f51, however it can be explained due to the generated
value 0.938, which is close to the limit at 1.0.

Table 6.13: Results of pseudo experiments corresponding to MD fit to the B0
s→ D−s π

+

sample.
Parameter µp of pseudo pull σp of pseudo pull average uncertainty

NB0
s→D−

s π+ 0.011 ± 0.036 1.055 ± 0.028 188.7 ± 0.1
NGroup1 -0.097 ± 0.031 0.928 ± 0.024 41.27 ± 0.03
NComb -0.020 ± 0.033 0.974 ± 0.026 147.4 ± 0.1
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Figure 6.18: Pseudo pulls from pseudo experiments corresponding to MD fit to the
B0
s→ D−s π

+ sample. From left to right: signal, combinatorial background and Group 1
background.
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Figure 6.19: Pseudo pulls from pseudo experiments corresponding to MD fit to the
B0
s→ D∓s K

± sample. From top left: signal, group 1, group 23, combinatorial background,
fraction f21, f51.

Table 6.14: Results of pseudo experiments corresponding to MD fit to the B0
s→ D∓s K

±

sample.
Parameter µp of pseudo pull σp of pseudo pull average uncertainty

NB0
s→D∓

s K± -0.026 ± 0.033 0.991 ± 0.026 52.49 ± 0.02
NGroup1 -0.015 ± 0.035 1.034 ± 0.028 18.53 ± 0.03
NGroup23 -0.060 ± 0.036 1.078 ± 0.029 61.07 ± 0.04
NComb 0.099 ± 0.033 0.994 ± 0.028 82.86 ± 0.06
f21 -0.032 ± 0.033 0.998 ± 0.027 0.0362 ± 0.0001
f51 0.059 ± 0.020 0.891 ± 0.094 0.0421 ± 0.0038
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Chapter 7

Flavour Tagging

The decay rates given by Eq. 2.47 and Eq. 2.48 depend on the initially produced flavour
eigenstates |B0

s (t = 0)〉 and |B0

s(t = 0)〉, thus the time-dependent CP measurement requires
tagging of the initial flavour. That information is provided by the tagging algorithms
which determine whether beauty mesons contained a b or b quark at production time. The
theoretical and experimental aspects of the flavour tagging are described in the following
sections.

7.1 Principles of the flavour tagging

The tagging decision is defined as qt = {−1, 0,+1}, where qt = −1 (qt = 1) denotes B
0

s

(B0
s ) in the initial state. For the candidates where the algorithm does not provide tagging

information, the value qt = 0 is assigned. The tagging efficiency is given by

εtag =
Ntag

Nall

, (7.1)

where Ntag is the number of candidates with tagging decision qt = ±1, and Nall denotes
all candidates in the sample. The tagging efficiency can be written as a function of the
tagging decision:

εtag(qt) =

{
εtag, for tagged candidates qt = ±1,
(1− εtag), for untagged candidates qt = 0,

(7.2)

In addition, each tagging algorithm has an intrinsic mistag rate ω defined as:

ω =
Nwrong

Ntag

, (7.3)

where Nwrong is the number of incorrectly tagged candidates.
The CP violating coefficients that are accessible in B0

s→ D∓s K
± decays directly depend

on the dilution D due to the mistag probability ω,

D = 1− 2ω . (7.4)

The statistical uncertainty on C, Sf and Sf̄ scales with 1/
√
εeff defined as:

εeff = εtag(1− 2ω)2. (7.5)

The tagging algorithms are optimised for highest εeff on data using the self-tagging
decays such as B+ → J/ψK+ or B0

s→ D−s π
+.
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7.2 Effect of the flavour tagging to the B0
s → D∓s K

±

decay rates

The decay rates given by the Eq. 2.47 and Eq. 2.48 can be written as a combination of
the CP -even and CP -odd parts. The CP -even part does not change sign when the CP
transformation is applied to either the initial state or the final state, while the CP -odd
part does. Using this convention the decay rates are given by:

dΓqt,qf (t)

dte−Γst
∼
[
Eqf (t) + qtqfOqf (t)]

]
, (7.6)

where:

Eqf (t) = cosh

(
∆Γst

2

)
+Dqf sinh

(
∆Γst

2

)
, (7.7)

Oqf (t) = Cqf cos (∆mst)− Sqf sin (∆mst) . (7.8)

Here qt is the tagging decision, qf denotes the bachelor final state: for the positive (negative)
charge the qf = +1(−1) is assigned. Finally the coefficients Cqf , Sqf and Dqf correspond
to Cf , Sf and Df for qf = +1 as well as Cf , Sf̄ and Df̄ for qf = −1.

The full discriminating power between the four interfering decays is achieved by using
tagging information and bachelor charge as observables. The four decay rates can be
combined to:

dΓB0
s→D∓

s K±(t, qt, qf )

dte−Γst
= (2− |qt|)× εtag(qt)× cosh

(
∆Γs

2

)

+ (2− |qt|)× εtag(qt)×D(qf )× sinh

(
∆Γs

2

)

+ qtqf × (1− 2ω)× εtag(qt)× C × cos (∆mst)

− qtqf × (1− 2ω)× εtag(qt)× S(qf )× sin (∆mst) , (7.9)

where:

D(qf ) =

{
Df , for qf = 1,
Df̄ , for qf = −1,

S(qf ) =

{
Sf , for qf = 1,
Sf̄ , for qf = −1.

(7.10)

Figure 7.1 shows a simulation of the B0
s → D∓s K

± decay rates given by Eq. 7.9 in
decay-time range τ ∈ [0.2, 3.0] ps with perfect and imperfect tagging performance. The
perfect tagging performance corresponds to ω = 0% and εtag = 100%, while as an example
of imperfect performance the values ω = 35% and εtag = 60% were chosen. The effects
from decay-time acceptance and resolution are not taken into account. In the simulation
the CP parameters defined by Eq. 2.53 correspond to the CKM angle γ = 70◦, the strong
phase δ = 30◦ and rDsK = 0.37.

7.3 Flavour tagging issues specific to LHCb experi-
ment

At the LHCb experiment, two types of flavour-tagging algorithms (opposite side and signal
side ones) are used [102] as shown in Fig. 7.2. The opposite side (OS) tagging algorithms
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Figure 7.1: Simulation of the B0
s→ D∓s K

± decay rates in the decay-time range τ ∈ [0.2, 3.0]
ps with perfect (left plot) and imperfect (right plot) tagging performance. Different
contributions are shown as coloured solid/dashed lines as described in the legend placed
in the top.

rely on the pair production of b and b̄ quarks and infer the flavour of a given signal
beauty meson from the identification of the flavour of the other non-signal b-hadron. In
the presented analysis, four OS algorithms are considered:

� Opposite side kaon tagger (OSK),
which reconstructs candidates from the b→ c→ s decay chain. Therefore K−(K+)
mesons are signatures of b̄(b)-hadrons.

� Two opposite side lepton taggers for muon (OSµ) and electron (OSe),
which infer the presence of a b quark using the charge of the lepton l, either a muon
or an electron, from semileptonic b→ cl−νl decays. The negative (positive) charge of
the lepton corresponds to b̄(b)-hadrons. Lepton taggers are limited by the branching
fraction of the decays in question, but have a high purity.

� Vertex charge tagger (Qvtx),
in which two tracks with high IPχ2 and transverse momentum pT are reconstructed as
the vertex candidates. Based on geometric and kinematic properties, the probability
to originate from a b-hadron decay is obtained for each two tracks combination.
Afterwards other tracks, which originate from the vertex in question, are added
to the vertex candidate. The overall vertex charge is calculated by summing the
weighted charges of the tracks by their transverse momentum. Depending on the
value of the overall vertex charge the tagging decision is assigned.

The OS taggers are combined in a single OS response.
Another type of tagger is the same (signal) side kaon tagger (SSK), which determines

the signal B0
s flavour by exploiting its fragmentation. In the hadronisation of a b quark to

a B0
s meson, an ss quark pair is produced from the vacuum. In about 50% of the cases an

additional s quark forms a charged kaon. The positive and negative charges of the kaon
correspond to B0

s and B
0

s meson identification, respectively.
There exist several physical sources of mistag in the above algorithms. In case of the

opposite side taggers the crucial one is due to b hadronisation: in about 50% of the cases
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Figure 7.2: The diagram of the flavour algorithms used in the LHCb experiment Ref. [103].

the non-signal b quark hadronises to neutral beauty mesons. As discussed in Sec. 2.4.1
neutral mesons oscillate, thus 19% of B0 and 50% B0

s mesons change their flavour before
decaying. Therefore the information about the original b quark is lost. In addition, kaon or
lepton taggers can select a track with random charge from the underlying event, which in
50% of cases lead to wrong tagging decision. Moreover, beauty mesons can decay through
the chain b → c → sl+ instead of the direct semileptonic transition. In this case, the
resulting lepton carries a wrong charge and thus the wrong tagging decision for OSµ and
OSe. Finally, for the vertex charge tagger, the track can be wrongly assigned to the vertex.
The main source of a wrong tagging decision for the SSK is when the associated s quark
does not form a charged kaon.

7.4 Tagging calibration

The mistag probability, η, is predicted for each B0
s candidate using a neural network

trained on simulated candidates. The inputs to the neural network are the kinematic,
geometric and PID properties of tagging particles. In the LHCb experiment a dedicated
group provides trained neural networks to time-dependent measurements. Due to variations
in the properties of tagging tracks for different channels, the predicted mistag probability
η has to be calibrated specifically for each analysis, using flavour specific, self-tagging,
decays.

The estimated mistag probability η is considered as a per-candidate variable, thus
adding an observable to the decay-time fit described in Sec.9. It is used by the fit to assign
a larger weight to the candidates that have a lower probability of being tagged wrongly.
The calibration of the mistag rate is considered by using the following linear function:

ω = p0 + p1 × (η − 〈η〉) , (7.11)

where the values of parameters p0 and p1 are taken form the measurements done on self-
tagging decays. This parametric relation minimises the correlation between the coefficients
p0 and p1.
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Figure 7.3: The measured mistag rate against the average predicted mistag rate for OS
(left) and SSK (right) taggers in B0

s→ D−s π
+ decays. The error bars represent only the

statistical uncertainties. The solid curve is the linear fit to the data points, the shaded
area defines the 68% confidence level region of the calibration function (statistical only).

7.4.1 Opposite Side tagging calibration

The calibration procedure for the OS tagging is done using several control modes: B+ →
J/ψK+, B+ → D0π+, B0 → D∗−µ+νµ, B0 → J/ψK∗0 and B0

s → D−s π
+. Among these

the calibration obtained using the B0
s → D−s π

+ decays is particularly important for
the B0

s→ D∓s K
± analysis because of the similarities in terms of trigger, reconstruction

and kinematics. In this case the tagging calibration is determined using the fit method
described in Sec. 9, where the fit to the decay-time is performed with ∆ms fixed to the
LHCb measured value of 17.768 ps−1 [4]. The linear dependence of the mistag on the
predicted mistag probability, η, is assumed as given by Eq. 7.11. On the left part of
Fig. 7.3 the measured mistag ω is plotted against the predicted mistag η. For the OS
tagger the weighted average of the fitted p0−〈η〉 and p1 values in the five control channels
is used, since the measurements are compatible. The final average values are quoted in
Tab. 7.1 with a statistical uncertainty including the systematics related to each control
channel and a systematic uncertainty which accounts for phase space differences among
different channels. The correlation between p0 and p1, ρ(p0, p1) is of 0.13. The resulting
calibration parameters for the B0

s→ D∓s K
± fit are: p0 = 0.3834 ± 0.0014 ± 0.0040 and

p1 = 0.972± 0.012± 0.035, where the p0 for each control channel needs to be translated to
the 〈η〉 of B0

s→ D−s π
+ decay i.e. the channel which is most similar to the signal channel

B0
s→ D∓s K

±. This is achieved by the transformation p0 → p0 + p1(〈η〉 − 0.3813) in each
control channel.

7.4.2 Same Side Kaon tagging calibration

The SSK tagger can be calibrated only in the B0
s → D−s π

+ channel, since other fully
reconstructed B0

s self-tagging channels have too low statistics, while semileptonic B0
s

decays have large yields, but are not used for tagging calibration purposes due to the poor
time resolution.

The SSK algorithm uses a neural network to select fragmentation particles, giving
improved flavour tagging power [103] with respect to earlier cut-based [104] algorithms. It is
calibrated on the B0

s→ D−s π
+ mode using a similar procedure as for the OS tagger, resulting

in 〈η〉 = 0.4097, p0 = 0.4244± 0.0086± 0.0071 and p1 = 1.255± 0.140± 0.104, where the
first uncertainty is statistical and second systematic. The systematic uncertainties include
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Table 7.1: Calibration parameters (described in the text) of the combined OS tagger
extracted from different control channels. In each entry the first uncertainty is statistical
and the second systematic.

Control channel 〈η〉 p0 − 〈η〉 p1

B+ → J/ψK+ 0.3919 0.0008 ± 0.0014 ± 0.0015 0.982 ± 0.017 ± 0.005
B+ → D0π+ 0.3836 0.0018 ± 0.0016 ± 0.0015 0.972 ± 0.017 ± 0.005
B0 → J/ψK∗0 0.390 0.0090 ± 0.0030 ± 0.0060 0.882 ± 0.043 ± 0.039
B0 → D∗−µ+νµ 0.3872 0.0081 ± 0.0019 ± 0.0069 0.946 ± 0.019 ± 0.061
B0
s→ D−s π

+ 0.3813 0.0159 ± 0.0097 ± 0.0071 1.000 ± 0.116 ± 0.047

Average 0.3813 0.0021 ± 0.0014 ± 0.0040 0.972 ± 0.012 ± 0.035

Table 7.2: Initial flavour asymmetry for OS tagging extracted from B+ → J/ψK+ decays
and for SSK tagging extracted from prompt D±s reweighting the pT distribution to
B0
s→ D−s π

+.
tagger ∆p0 ∆p1 ∆εtag [%]

OS 0.0124 ± 0.0021 0.095 ± 0.024 -0.197 ± 0.126
SSK -0.020 ± 0.004 -0.01 ± 0.03 0.022 ± 0.004

the error on the decay-time resolution, the B0
s→ D−s π

+ fit model, and the backgrounds in
the B0

s→ D−s π
+ fit. The correlation between p0 and p1 is small, less than 0.03. The right

part of Fig. 7.3 shows the measured mistag rate ω as a function of the predicted mistag
rate η in B0

s→ D−s π
+ decays for SSK tagger. The data points show a linear correlation

corresponding to the functional form in Eq. 7.11.

7.4.3 Tagging asymmetries

In addition to the calibrations discussed in the previous sections, each tagger was calibrated
on subsamples split by initial charge, to address a possible tagging asymmetry. The following
relations allow for different calibrations on subsamples:

ω = p0 +
∆p0

2
+ (p1 +

∆p1

2
)× (η − 〈η〉), (7.12)

ω̄ = p0 −
∆p0

2
+ (p1 −

∆p1

2
)× (η − 〈η〉) . (7.13)

Here, p0 and p1 are the calibration constants from the previous sections, and ∆p0 and
∆p1 parametrise the differences. For the OS tagger the initial flavour asymmetry is easily
evaluated through the charge of the b meson in the decay B+ → J/ψK+. For the SSK
tagger, it is not possible to evaluate p0 and p1 separately for B0

s and B0
s due to oscillations.

Since the initial flavour asymmetry describes the effect on the tagging parameters of the
different interactions between matter and anti-matter, is evaluated separately for K+ and
K− tagging particles. In Tab. 7.2 the initial flavour asymmetry for p0, p1 and εtag are
reported.
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Table 7.3: The Flavour Tagging performances for only OS tagged, only SSK tagged and
both OS and SSK tagged candidates for B0

s→ D−s π
+.

B0
s→ D−s π

+ εtag [%] εeff [%]

OS only 19.80 ± 0.23 1.61 ± 0.03 ± 0.08
SSK only 28.85 ± 0.27 1.31 ± 0.22 ± 0.17

both OS-SSK 18.88 ± 0.23 2.15 ± 0.05 ± 0.09

total 67.53 5.07

7.5 The Opposite Side and Same Side Kaon taggers
combination

The correlation between the OS and SSK taggers, as shown in Fig. 6.1, is negligible so
the taggers and their asymmetries can be combined. It is crucial to note that any such
combination only makes sense using calibrated taggers.

The data sample is split in three different subsamples depending on the tagging decision:
only OS tagged, only SSK tagged and both OS and SSK tagged candidates. In the third
sample the mistag probability ω from the OS and the SSK taggers are combined together to
give the tagging decision and a combined ω for each candidate. The tagging performances in
the three subsamples are reported in Tab. 7.3 for B0

s→ D−s π
+. The total tagging efficiency

is 67.53%, while the tagging power is equal to 5.07%. In addition, the uncertainties on the
calibration of the OS and SSK tagger are propagated to the combination of both taggers.

Taggers are combined in the following manner. For each tagger i ∈ {OS, SSK} the
difference of logarithms DLL is computed:

DLLi = ln(P (B|qti, ωi(ηi)))− ln(P (B|qti, ωi(ηi))) = ln
P (B|qti, ωi(ηi))
P (B|qti, ωi(ηi))

, (7.14)

where qti denotes the decision of a single tagger, ωi(ηi) is the calibrated mistag and:

P (B|qti, ωi(ηi)) =
∏

i

(
1− qti

2
− qti (1− ωi(ηi))

)
, (7.15)

P (B|qti, ωi(ηi)) =
∏

i

(
1 + qti

2
− qti (1− ωi(ηi))

)
. (7.16)

If ωi(ηi) is larger or equal to 0.5, DLLi is set to zero, which corresponds to an untagged
candidate. Then, the difference of logarithms for single taggers are summed:

DLL =
∑

i

DLLi. (7.17)

Finally, the combined mistag ωc is defined as:

ωc =
1

1 + e|DLL|
. (7.18)

The combined mistag ωc PDFs, obtained from sWeighted B0
s→ D−s π

+ data, are shown
in Fig. 7.4. The combined tagging decisions qc are collected in Tab. 7.4. The decay rates
given by Eq. 7.9 are updated to this convention.
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Table 7.4: The combined tagging decision qc.
only OS only SSK both OS and SSK untagged

B0
s 1 2 3 -

B
0

s -1 -2 -3 -
untagged - - - 0

cω
0 0.1 0.2 0.3 0.4 0.5

0

0.05
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0.15
LHCb

both the OS and SSK taggers
only the SSK tagger
only the OS tagger

Figure 7.4: The combined mistag ωc PDFs obtained from sWeighted B0
s→ D−s π

+ data.

7.6 Comparison of tagging performance in B0
s→ D−s π

+

and B0
s→ D∓s K

± decays

In order to use the mode B0
s→ D−s π

+ as a tagging calibration channel for B0
s→ D∓s K

±, it
is mandatory to confirm that the taggers perform identically on the two decays. Figure 7.5
shows the comparison between η distributions for B0

s→ D−s π
+ and B0

s→ D∓s K
± samples,

as obtained on simulated candidates. A good agreement between the distributions is found.
In addition, the mistag distribution ω as a function of η (given by Eq. 7.11) for

simulated B0
s→ D−s π

+ and B0
s→ D∓s K

± candidates is shown in Fig. 7.6 separately for OS
and SSK taggers. As expected the dependence of ω on η appears to be linear. The results
of calibrations are collected in Tab. 7.5. The fitted values are in good agreement. These
fits demonstrate that the calibration parameters from the B0

s→ D−s π
+ decay are portable

to B0
s→ D∓s K

±. Finally, the comparison between data samples weighted by sWeights is
shown in Fig. 7.7.
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Table 7.5: Results of the calibration obtained on signal B0
s→ D−s π

+ and B0
s→ D∓s K

±

simulation. The parameters p0 and p1 are described in the text.
Opposite side Same side

p0 p1 p0 p1

B0
s→ D−s π

+ 0.364 ± 0.002 0.848 ± 0.016 0.403 ± 0.001 1.332 ± 0.012
B0
s→ D∓s K

± 0.359 ± 0.003 0.824 ± 0.040 0.404 ± 0.003 1.323 ± 0.003
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Figure 7.5: Predicted η distributions for the OS combination (left) and the SSK tagger
(right) in simulation. The blue (orange) points correspond to the B0

s → D−s π
+ (B0

s →
D∓s K

±) decay.
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Figure 7.6: Dependence of the observed mistag ω on calibrated mistag η, for selected
B0
s→ D−s π

+ and B0
s→ D∓s K

± candidates in simulation. Left is OS tagging, right is SSK.
The blue (orange) points correspond to the B0

s→ D−s π
+ (B0

s→ D∓s K
±) decay.
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±) decay.
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Chapter 8

Decay-time resolution and
acceptance

The fast B0
s–B

0
s oscillations require the finite decay-time resolution of the detector to be

taken into account. In addition, the signal selection described in Ch. 5 results in a decay-
time acceptance, which distorts the measured decay-time distribution. Any mismodelling
of either effect can potentially bias the time-dependent CP violation observables. Figure 7.1
from the previous chapter shows the simulation of the B0

s→ D∓s K
± decay rates in which

the decay-time resolution and acceptance are neglected. These effects are taken into account
in Fig. 8.1 where the B0

s→ D∓s K
± decay rates are presented with a realistic decay-time

acceptance (left figure) or a realistic decay-time resolution (right figure), for clarity with
perfect tagging performance. Finally, both effects are applied in Fig. 8.2, where the left
(right) plot corresponds to perfect (realistic) tagging performance. Sections 8.1 and 8.2
describe in detail the decay-time resolution and the decay-time acceptance used in the
presented measurement.
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Figure 8.1: Simulation of the B0
s→ D∓s K

± decay rates in the decay-time range τ ∈ [0.2, 3.0]
ps with perfect tagging performance and realistic decay-time acceptance (left plot) or
realistic decay-time resolution (right plot). Different contributions are shown as coloured
solid/dashed lines as described in the legend placed in the top.
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Figure 8.2: Simulation of the B0
s → D∓s K

± decay rates in the decay-time range τ ∈
[0.2, 3.0] ps with realistic decay-time acceptance and decay-time resolution. Left (right)
plot corresponds to perfect (realistic) tagging performance. Different contributions are
shown as coloured solid/dashed lines as described in the legend placed in the top.
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Figure 8.3: The estimated decay-time uncertainty from the sWeighted data for B0
s →

D∓s K
± (left) and B0

s→ D−s π
+ (right) candidates.

8.1 Decay-time resolution

The finite decay time resolution of the detector leads to a dilution of the observable
oscillation. The decay-time t of B0

s mesons is defined as the time between their production
and decay in the rest frame of the B0

s :

t =
(~d · ~p)m
|~p|2 , (8.1)

where m is the invariant mass, ~d denotes the vector between the production and decay,
while ~p corresponds to the particle’s momentum. For each candidate i a global kinematic
fit determines an estimate of the uncertainty σit of the reconstructed decay-time. The
uncertainty depends on the B0

s production, the momentum and secondary vertex position.
The estimated decay-time uncertainties for signal B0

s→ D∓s K
± and B0

s→ D−s π
+ candidates

obtained on sWeighted data are shown in Fig. 8.3.
To obtain the experimental decay rates dΓ(t)exp

dt
, the theoretical decay rates, including the
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flavour tagging (given Eq. 7.9), have to be convoluted with the decay-time resolution [105]:

dΓ(t)exp

dt
=
dΓ(t)

dt
⊗R(t) ≡

∫ +∞

−∞

dΓ(t′)

dt′
R(t− t′)Θ(t′)dt′, (8.2)

where R(t) denotes the time resolution and Θ(t) is the Heaviside step function7. Considering
the simplified case when dΓ(t)

dt
∝ cos(∆mst) and the decay-time resolution is parametrised

by a single Gaussian R(t) = G(0, σt; t) with mean µ = 0 and width σ = σt, the experimental
model is given by:

dΓ(t)

dt
⊗G(0, σt; t) ∝ e−

1
2

∆m2
s·σ2

t · cos(∆mst) = Dres · cos(∆mst), (8.3)

where the Dres is the decay-time dilution factor.
There are two main ways to describe the decay-time resolution in the decay-time

fit. The first approach assumes a fixed resolution function, typically a double or triple
Gaussian. The second method corresponds to a resolution function that has a different width
for each candidate, making use of the per-candidate decay-time uncertainty, estimated
during reconstruction (Fig. 8.3). This method is in general more precise, but also more
computationally expensive. In the nominal decay-time sFit described in Sec. 9, the per-
candidate decay-time resolution is used. However, as a cross-check, a triple Gaussian
decay-time resolution is also obtained. Detailed information about that approach can be
found in App. G. The average decay-time resolution is found to be 47 fs.

Since the estimated uncertainty from the reconstruction does not correspond to the
true uncertainty, it has to be properly calibrated. The calibration is taken from the ∆ms

measurement [4] and it assumes a scale factor sσt between the estimated per-candidate
uncertainty σit and the real resolution σt given by:

σt = sσt · σit. (8.4)

The calibration is performed using prompt D−s mesons combined with a random track
and kinematically weighted to give a sample of so-called fake B0

s candidates, whose the
secondary vertex is identical to the primary vertex. By construction the true decay-time
of the fake B0

s candidates is equal to zero. The comparison between the true and fake B0
s

candidates is shown in Fig. 8.4.
Finally, the distribution of the reconstructed decay-time divided by the per-candidate

estimated uncertainty is fitted as a Gaussian. The width of the Gaussian corresponds
to the scale factor. A value greater than one indicates that the estimated uncertainty
underestimates the true uncertainty. The scale factor is found to be sσt = 1.37±0.10, where
the uncertainty is dominated by the systematic uncertainty on the similarity between the
kinematically weighted fake B0

s candidates and the signal.

8.2 Decay-time acceptance

In addition to the decay-time resolution, the decay-time of the B0
s mesons is distorted by

several requirements which are applied in the signal selection described in Ch. 5. Such
examples are: FDχ2, IPχ2, DIRA or vertex χ2, where the efficiency of the selection criteria

7 Θ(t) =

{
0, t < 0,

1, t ≥ 0,
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Figure 8.4: The left plot shows a true B0
s decay where the beauty meson flight before

decaying. The right plot shows a fake B0
s , with true decay-time equal to zero. The D∓s

and h± mesons are created directly in the PV vertex.

depends on the decay-time. These effects are modelled by the decay-time acceptance a(t).
The decay rate equations given by Eq. 8.2 are additionally corrected to:

dΓ(t)acc
exp

dt
=
dΓ(t)exp

dt
× a(t). (8.5)

The decay-time acceptance of both B0
s→ D−s π

+ and B0
s→ D∓s K

± candidates has to
be correctly described for the fits to return unbiased results. In the case of B0

s→ D−s π
+,

this can be accomplished by fixing Γs to the latest LHCb measurement and floating the
acceptance parameters. In the case of B0

s→ D∓s K
±, however, the acceptance parameters

cannot be floated, because they are heavily correlated with the CP observables, and in
particular any upper decay-time acceptance would be fully correlated with the Df and Df̄

parameters. For this reason, the acceptance in the B0
s→ D∓s K

± fit is fixed to that found
in the B0

s→ D−s π
+ data fit, corrected by the difference between the two channels observed

in signal simulation. To obtain these differences, an acceptance function is fitted to both
B0
s → D∓s K

± and B0
s → D−s π

+ signal simulation samples, where the candidates pass
through the signal kinematic selection and are reweighted for data/simulation kinematic
differences as well as for the effect of the PID requirement.

In all cases, the decay-time acceptance is described using splines, which can be imple-
mented in an analytic way in the decay-time fit following the method presented in [105].
Splines are cubic polynomials, parametrised by so-called knots which determine their
boundaries; n knots corresponds to n+2 base splines vi(t). Figure 8.5 shows an example
of splines.

The decay-time acceptance is defined by 8 basic splines vi, where i = [1, ..., 8]. The
spline boundaries were chosen in an ad-hoc manner to produce a smooth acceptance shape,
and placed at t = {0.5, 1.0, 1.5, 2.0, 3.0, 12.0} ps for the nominal fit configuration. The value
of 0.5 ps corresponds to two splines v1 and v2, whereas the value 12.0 ps denotes the knot
position for v7 and v8. There are more knots at smaller decay-times where the function
varies more rapidly, and fewer at high decay-times where flat behaviour is expected with a
possible slow drop due to an upper acceptance effect from the VELO reconstruction. Due
to normalisation one of the basic splines has to be fixed and v7 = 1 is chosen. In addition,
due to stabilise the last spline v8 is also fixed using following formula:

vN = vN−1 +
vN−2 − vN−1

tN−2 − tN−1

× (tN − tN−1), (8.6)

where tN−2 is the value of the knot position corresponding to the basic function vN−2 and,
in this particular case, N = 8.
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Figure 8.5: A graphical example of how a distribution can be decomposed into splines.
Ref. [105].

Since the simulated candidates were produced without CP violation, their decay-time
distribution is described by:

dΓ(t)acc
simulation

dt
= a(t)×

(
1

2
[e(−t/τH) + e(−t/τL)]⊗R(t)

)
, (8.7)

where τH = 1.536875 (τL = 1.407125) ps are generated values, which denotes the decay-
time of the heavier (lighter) component. The fits to the simulated events are shown in
Fig. 8.6 and Tab. 8.1. Candidates corresponding to different D−s decay modes enter into
the B0

s→ D−s π
+ and B0

s→ D∓s K
± acceptance fits with weights corresponding to the yields

observed in the relevant data fits.
The ratio of these two splines is given by the ratio of their coefficients, which is also

given in Tab. 8.1. The correlation matrices are given in Tabs. H.2 (B0
s → D−s π

+), H.3
(B0

s→ D∓s K
±), and H.4 (ratios) in App. H. The B0

s→ D−s π
+ and B0

s→ D∓s K
± acceptances

are significantly different, although all ratios are within 2σ of unity. A systematic is assigned
due to imperfect knowledge of the decay-time acceptance.

Table 8.1: The fit parameters for the acceptance fit to the B0
s→ D−s π

+ and B0
s→ D∓s K

±

simulation samples, and their ratio.
Parameters Fit to B0

s→ D−s π
+ Fit to B0

s→ D∓s K
± B0

s→ D∓s K
±/B0

s→ D−s π
+

v1 0.512 ± 0.008 0.498 ± 0.008 0.973 ± 0.022
v2 0.745 ± 0.012 0.742 ± 0.013 0.996 ± 0.024
v3 0.996 ± 0.015 0.981 ± 0.017 0.985 ± 0.023
v4 1.131 ± 0.018 1.163 ± 0.020 1.028 ± 0.024
v5 1.231 ± 0.017 1.242 ± 0.019 1.009 ± 0.021
v6 1.227 ± 0.027 1.285 ± 0.030 1.047 ± 0.034
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Figure 8.6: Decay-time acceptances for B0
s → D−s π

+ (left) and B0
s → D∓s K

± (right)
simulation samples. At the bottom the fits are presented in logarithm scale. The acceptance
function is shown in red, while the total fit curve given by Eq. 8.7 is blue.
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Chapter 9

Decay-time fit using sFit approach

In order to measure the CP parameters given by Eq. 2.53, the decay-time fit, so-called
sFit, is performed to both B0

s→ D∓s h
± modes. The sFit relies on the inputs described in

all previous sections. In this chapter a general strategy of the fit is given, which is followed
by a presentation of the obtained results as well as a description of how the fit is validated.

9.1 Production and detection asymmetries

In addition to detector effects such as finite tagging performance, decay-time resolution
and acceptance, performing an unbiased time-dependent measurement requires detection
and production asymmetries to be correctly modelled.

The pp interactions which occur at LHC are not charge symmetric, therefore a pro-
duction asymmetry has to be considered as a source of systematic effect. The production
asymmetry aprod can be defined as:

aprod =
NP

NP

− 1, (9.1)

where NP (NP ) is the number of produced P (P ) particles, for example P = B
0

s and
P = B0

s . In case of beauty mesons, the production asymmetry is expected to be small
with statistical error of 1% or less [106]. Thus, the signal asymmetry aprod is fixed to zero
and is validated in systematic studies discussed further in Sec. 10.1.

Since all final state particles in the B0
s→ D∓s h

± decay are kaon and pions their detection
asymmetry has to be studied. This effect is defined as the asymmetry in the reconstruction
efficiency of charge-conjugated states

adetector =
εf
εf
− 1, (9.2)

where εf (εf ) is reconstruction efficiency of antiparticles f (particles f). The main sources
of asymmetry occur due to: misalignment or inefficiencies in some subdetector modules,
software biases or different interactions with the detector for charge-conjugate final states.
The detection asymmetry in LHCb experiment have been studied in Ref. [107] and found
to be (+1.17± 0.12)% for the track reconstruction, (−0.34± 0.07)% for L0 Hadron TOS,
and (+0.10± 0.02)% for non-TOS candidates. Since the signal sample is roughly half-half
TOS and non-TOS, the numbers are added up to obtain a final detection asymmetry
of adetector = (+1 ± 0.5)%. The uncertainty of the asymmetry is inflated to account for
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different kinematics between the modes. In the data fits the detection asymmetry is then
constrained to this value and uncertainty and studied further as a systematic effect in
Sec. 10.1.

9.2 General strategy

The signal time PDF is described using a RooBDecay PDF for both the B0
s→ D−s π

+ and
B0
s→ D∓s K

± channels. The fit is an unbinned maximum likelihood one. Theoretical decay
rates given by Eq. 2.47 and Eq. 2.48 (and similarly for charge conjugate final states) have to
be extended to take into account all detector effects such as: finite tagging performance and
its asymmetry, decay-time resolution and acceptance as well as production and detection
asymmetries. The set of parameters is given by:

p = {C,Df , Df̄ , Sf , Sf̄ ,Γs,∆Γs,∆ms, vi, p
k,c
0 , pk,c1 , εtagc , atagc , adetector, aprod} (9.3)

with the five CP parameters C, Df , Df̄ , Sf , Sf̄ , the decay width Γs, the decay width
difference ∆Γs, the oscillation frequency ∆ms and the six decay-time acceptance parameters
vi, i = 1, ..., 6, the six tagging parameters pk,c0 and the six pk,c1 separate for initial state k =

{B0
s , B

0

s} and each tagging category c = {OS, SSK,OS + SSK}, the tagging efficiencies
εtagc and their asymmetries atagc for each tagging category c = {OS, SSK,OS + SSK},
the detector asymmetry adetector and production asymmetry aprod. The observables in the
fit are: the candidate decay-time t, the combined tagging decision qc, the charge of the
bachelor particle qf , the per-candidate time uncertainty σt, and the predicted combined
mistag value ωc. The sWeights are given as per-candidate weights to the fit. Since the
predicted mistag is independent of the mass of the signal candidate (see Fig. 6.1), the
predicted mistag is used as a per-candidate weight and “Punzi terms” [108] are ignored.

The decay-time fit uses both the OS cut based and the SSK neural net taggers. The
tagging calibration parameters and uncertainties of the combination can be found in
Sec.7.5. They are constrained in the fit to their central values and uncertainties using
Gaussian constraints. The sFit uses per-candidate decay-time uncertainties with the signal
sWeighted template shown in Fig 8.3. The scale factor is fixed in the fit and varied as
part of the systematic studies. Parameters which are fixed in the fit are

Γs = (0.661± 0.007) ps−1 , (9.4)
∆Γs = (0.106± 0.013) ps−1 , (9.5)

ρ(Γs,∆Γs) = −0.39. (9.6)

They are taken from current LHCb measurements [109].
In this fit, the backgrounds are subtracted using the per-candidate sWeights previously

extracted from the multidimensional fit described in Ch. 6. The sWeights are computed
based on ten data samples (two magnet polarities and five D−s final states). The signal
sWeights are shown in Fig. 9.1 for both the B0

s → D−s π
+ and B0

s → D∓s K
± decays.

High values correspond to signal-like candidates, while low values denote background-like
candidates.
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Figure 9.2: Decay-time sFit to the B0
s → D−s π

+ data sample with logarithm (left) and
linear (right) scale on the vertical axis. Different contributions to the fit are shown as
coloured lines as described in the legend placed in the top.

9.3 Decay-time fit to B0
s→ D−s π

+ data

In addition to measuring the acceptance parameters, the correct measurement of ∆ms

from B0
s→ D−s π

+ serves as a valuable control for the B0
s→ D∓s K

± decay.

The combined signal sample for the B0
s → D−s π

+ time fit contains both magnet
polarities and all D−s final state samples. The signal B0

s → D−s π
+ decay-time PDF is

fitted to this sample, where Γs and ∆Γs are fixed to values from Eq. 9.4 and Eq. 9.5,
respectively. In addition, all tagging parameters and asymmetries are fixed to their central
values. Since B0

s→ D−s π
+ is flavour specific the CP parameters are fixed to C = 1, Df

=Df̄ =Sf =Sf̄ =0. Thus the free parameters in the fit are ∆ms and the six parameters
vi, i = 1, ..., 6 describing the time acceptance function. The data distribution and the fit
result are presented in Fig. 9.2. The fitted values are listed in Tab. 9.1, and the correlation
matrix given in Tab. H.1 (App. H) for the acceptance fit. The fitted ∆ms agrees well with
the existing LHCb measurement ∆ms = 17.768 ps−1 [4].
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Table 9.1: Result of the sFit performed to the B0
s→ D−s π

+ data sample.
Parameter Fitted value

∆ms 17.772± 0.0215 ps−1

acceptance function

v1 0.459± 0.032

v2 0.690± 0.052

v3 0.885± 0.065

v4 1.130± 0.081

v5 1.223± 0.076

v6 1.228± 0.121

9.4 Decay-time fit to B0
s→ D∓s K

± data

The signal B0
s→ D∓s K

± PDF is fitted to the combined data sample. In addition to the
description from Sec. 9.2, the decay-time fit is executed with ∆ms fixed to the LHCb
measurement value ∆ms = (17.768± 0.024) ps−1 [4] and the acceptance parameters fixed
to the values found in the B0

s→ D−s π
+ fit multiplied by the correction given in Tab. 8.1.

The free parameters in the fit are the CP observables, which are limited to the fit range
[−4, 4], corresponding to about ±10σ based on the expected uncertainties seen in the
pseudo experiment studies. The fitted values are listed in Tab. 9.2, and the correlations
between CP parameters are collected in Tab. 9.3. Finally the resulting PDF is shown in
Fig. 9.3.

Table 9.2: Result of the sFit performed to the B0
s→ D∓s K

± data sample. All parameters
other than the CP observables are constrained in the fit.

Parameter Fitted value

C 0.52± 0.25

Df 0.29± 0.42

Df̄ 0.14± 0.41

Sf −0.90± 0.31

Sf̄ −0.36± 0.34

adetector 0.010± 0.005

OS SSK OS+SSK
atagc −0.0028± 0.0016 0.0019± 0.0010 −0.0024± 0.0016

εtagc 0.203± 0.002 0.291± 0.002 0.184± 0.002

p
B0
s ,c

0 0.366± 0.004 0.425± 0.007 0.339± 0.005

p
B

0
s,c

0 0.377± 0.004 0.405± 0.011 0.339± 0.005

p
B0
s ,c

1 0.951± 0.040 0.999± 0.140 0.970± 0.036

p
B

0
s,c

1 1.051± 0.040 0.992± 0.141 1.027± 0.037
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Table 9.3: The correlation matrix of the B0
s→ D∓s K

± CP parameters for the sFit. Only
the correlations between the CP parameters are shown, as the tagging efficiencies all have
negligible correlations with the CP parameters anyway. As can be seen the only large
correlation is the 50% between Df and Df̄ , which is understandable because they are both
sensitive to the slowly varying hyperbolic terms induced by ∆Γs.

Parameter C Df Df̄ Sf Sf̄

C 1.000 −0.071 −0.097 0.117 0.042

Df −0.071 1.000 0.500 0.044 −0.003

Df̄ −0.097 0.500 1.000 0.013 −0.005

Sf 0.117 0.044 0.013 1.000 −0.007

Sf̄ 0.042 −0.003 −0.005 −0.007 1.000
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Figure 9.3: Decay-time sFit to the B0
s→ D∓s K

± data sample.

9.4.1 Folded asymmetries

Folded asymmetries refer to the procedure of plotting the difference between B0
s → D+

s K
−

candidates which have been tagged as B0
s and B0

s → D+
s K

− candidates which have been
tagged as B0

s as a function of decauy-time, where the decay-time axis is “folded” by
taking the modulo of the observed decay-time of every candidate with the oscillation
frequency 2π/∆ms. The same plot is made for B0

s → D−s K
+ candidates. The plotted

asymmetry function is drawn in Fig. 9.4 using the central values of the CP observables,
and is normalised using the expected dilution due to mistag and decay-time resolution.

9.5 Fit validation

Large ensembles of pseudo experiments are used to both validate the fit procedure and
to evaluate systematic uncertainties, as introduced in Sec. 6.6. A standalone simulation
generator creates pseudo experiment data sets, which are then fit. Unless specified otherwise,
rDsK = 0.37, the CKM angle γ = 70◦ and a strong phase of δ = 30◦ are used. Pseudo
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Figure 9.4: Folded asymmetry plots for the B0
s→ D∓s K

± sample.

experiments are generated with realistic CP -violation and oscillations for both signal and
backgrounds, as well as with realistic production and detection asymmetries.

9.5.1 Nominal pseudo experiments studies

The sFit results on the nominal pseudo experiments are unbiased and indicate slightly
overestimated statistical uncertainties, in particular for Sf̄ which appears to be significantly
overestimated. This may be related to the way in which RooFit [75] corrects uncertainties
for the sWeights. The results are collected in Tab. 9.4 and shown in Fig. 9.5.
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Figure 9.5: Pseudo pulls from pseudo experiments corresponding to sFit to the B0
s→ D∓s K

±

sample. Clockwise from top left to right bottom: C, Df , Df̄ , Sf , Sf̄ parameters.

9.5.2 Decay-time sFit cross-checks

To validate the obtained results several cross-checks are performed. Firstly, the data
sample is split into subsamples according to following conditions: magnet polarities, trigger
decision and BDTG response. In addition, the fits are performed to a sample with a tighter
value of BDTG equal to 0.6. Next, the simulation samples are fitted. This is followed by
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Table 9.4: Results of pseudo experiments corresponding to sFit to the B0
s→ D∓s K

± sample.
Parameter µ of pseudo pull σ of pseudo pull average uncertainty

C 0.052 ± 0.034 0.925 ± 0.028 0.249 ± 0.001
Df -0.010 ± 0.040 1.056 ± 0.030 0.407 ± 0.001
Df̄ 0.001 ± 0.039 1.054 ± 0.032 0.415 ± 0.001
Sf -0.095 ± 0.032 0.860 ± 0.026 0.345 ± 0.001
Sf̄ 0.052 ± 0.037 0.976 ± 0.027 0.350 ± 0.001

the decay-time fit using different acceptance variations, without/with the kinematic fit
described in Sec. 5.5, and with different type of resolution models. Finally, the results are
verified using an alternative method of obtaining PIDK PDFs.

Splits

For each split subsample, all PDFs are redone under the appropriate conditions. The
multidimensional part of the fit converged well in all cases. The B0

s→ D−s π
+ sample is split

40%(60%) for magnet up(down) and 42%(58%) for TOS(!TOS), while for B0
s→ D∓s K

±

the percentages are 40%(60%) and 47%(53%), respectively. This is understandable because
B0
s→ D∓s K

± contains more background, which is more likely to be !TOS.
Two samples: BDTG ∈ (0.3, 0.9) (BDTG > 0.9) are selected, with a size 66% (34%)

for B0
s→ D−s π

+ and 79%(21%) for B0
s→ D∓s K

±, respectively. Again, the different signal-
to-background ratios help to explain the smaller fraction of B0

s → D∓s K
± in the more

signal-like BDTG response bin.
The fitted ∆ms values for B0

s→ D−s π
+ splits are collected in Tab. 9.5. For the B0

s→
D∓s K

± decay-time fitter the difference between the results obtained from magnet up (MU)
and down (MD) samples, between TOS and !TOS as well as between BDTG ∈ (0.3, 0.9)
and BDTG > 0.9 are presented. Moreover the nominal result is compared with the
obtained for BDTG > 0.6. All results are shown in Tab. 9.6. In addition for each split
weighted comparisons with nominal result are performed, which are collected in Tab. 9.7.

The maximal difference for splits is 2.2σ in the BDTG split for C. However, the
difference in Sf̄ between the nominal result and BDTG > 0.6 fits is 0.345± 0.134. This
cut removes about 10% of signal and specific backgrounds, and 60% of combinatorial
background, from the data fit. To better understand the size of this deviation, pseudo
experiment studies are used by removing an appropriate number of candidates from the
nominal pseudo experiments and measuring by how much the pseudo experiments (which
are essentially unbiased before and after the removal of these candidates) shifted. An
equivalent or larger shift is found in approximately 2% of samples. This effect was studied
further by tightening the decay-time cut on the B0

s from 0.4 ps to 0.5 ps, and it reduces to
around a 2σ effect, with a difference of 0.236± 0.115 for Sf̄ , and smaller shifts for other
parameters. In addition, the migration of per-candidate sWeights between the nominal
result and > 0.6 fits is checked. In total about 40 candidates in the BDTG > 0.6 sample
change from being signal to being background-like, and about 20 migrate in the other
direction. Almost all these candidates have sWeights very close to zero. The influence of
varying either fixed parameters or the acceptance was checked. In both cases none is found.
Finally it is concluded that observed effect is a fluctuation, for which a relevant systematic
is assigned.
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Table 9.5: Fitted values of ∆ms for cross-check samples.
Cross check ∆ms [ ps−1 ]

Nominal result 17.772± 0.0215

Magnet down 17.783± 0.0276

Magnet up 17.757± 0.0335

TOS 17.751± 0.0273

!TOS 17.810± 0.0345

BDTG > 0.6 17.771± 0.0218

BDTG ∈ (0.3.0.9) 17.813± 0.0442

BDTG > 0.9 17.759± 0.0247

Table 9.6: Difference of the fitted CP parameters for cross-check samples for the sFit. Note
that the statistical uncertainty for Df/Df̄ splits needs to be inflated by roughly 10% in
order to take into account the uncorrelated uncertainties on the decay-time acceptance
obtained from the relevant B0

s→ D−s π
+ fits.

Parameter MD −MU !TOS − TOS BDTG ∈ (0.3.0.9) Nominal

−BDTG > 0.9 −BDTG > 0.6

C 0.145± 0.575 0.582± 0.529 1.210± 0.544 −0.004± 0.078

Df 0.311± 0.858 0.845± 0.838 −1.295± 0.989 −0.173± 0.192

Df̄ 1.233± 0.872 1.640± 0.833 −1.278± 0.950 −0.280± 0.198

Sf −0.234± 0.623 0.757± 0.638 −0.039± 0.610 −0.160± 0.100

Sf̄ −0.072± 0.714 −0.642± 0.677 −0.039± 0.712 0.345± 0.134

Fitting full simulation sample

The impact of neglecting correlations between variables is checked by fitting to the official
LHCb simulation samples. A cocktail of signal simulation B0

s→ D∓s K
± and B0

s→ D−s π
+

under the B0
s → D∓s K

± hypothesis is created. Both modes have an applied PIDK cut
on the bachelor particle. The size of the signal B0

s → D∓s K
± sample is 5 or 20 times

bigger than for the nominal fit, while B0
s→ D−s π

+ is mixed in with a statistic 7.5 times
larger than for the nominal result to compensate for a lack of other specific backgrounds.
Additionally, combinatorial background is generated using the nominal generator (due
to a lack of sufficient statistics for the combinatorial in the official simulation samples)
with a statistic 5 times bigger than the nominal one. For B0

s→ D∓s K
±, the simulation

samples were generated without CP violation, thus C = 1, Df = Df̄ = Sf = Sf̄ = 0. Note
that the sensitivities of the full simulation sample should not be used to draw conclusions
about the sensitivity of the data sample, as the full simulation sample is generated with a
very different value of ∆Γs and in addition has a different tagging power due to known
data-simulation differences.

The cross-check sample are:

� signal B0
s→ D∓s K

± simulation 1: with statistic 5 times bigger than nominal,

� signal B0
s→ D∓s K

± simulation 2: with statistic 20 times bigger than nominal,

� signal B0
s→ D∓s K

± with B0
s→ D−s π

+,
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Table 9.7: Difference of the fitted CP parameters between the average of cross check
samples and nominal fit for the sFit. Note that the statistical uncertainty for Df/Df̄

splits needs to be inflated by roughly 10% in order to take into account the uncorrelated
uncertainties on the decay-time acceptance obtained from the relevant B0

s→ D−s π
+ fits.

Parameter
MD +MU !TOS + TOS BDTG ∈ (0.3.0.9) +BDTG > 0.9

−Nominal −Nominal −Nominal
C 0.014± 0.059 0.057± 0.021 −0.031± 0.013

Df 0.072± 0.059 0.163± 0.099 0.153± 0.241

Df̄ 0.119± 0.083 0.254± 0.087 0.190± 0.224

Sf −0.001± 0.074 0.027± 0.052 −0.043± 0.132

Sf̄ −0.010± 0.021 −0.015± 0.087 0.006± 0.076

� signal B0
s→ D∓s K

± with Combinatorial,

� signal B0
s→ D∓s K

± with Combinatorial and B0
s→ D−s π

+.

The results of the performed fits are collected in Tab. 9.8 and 9.9.
In addition the influence of the BDTG cut on the signal simulation sample is checked.

For this purpose the signal B0
s→ D∓s K

± sample is fitted with different BDTG cuts:

� BDTG ∈ (0.3, 0.6),

� BDTG > 0.6,

� BDTG ∈ (0.3, 0.9) ,

� BDTG > 0.9.

The size of the sample does not depend on the BDTG cut and is five times bigger than
the nominal one. The lack of any observed bias supports the conclusion about seeing a
fluctuation in the data set.

Table 9.8: sFit results to the full simulation samples, with five times more signal than in
the data. The simulation samples were generated with C = 1, Df = Df̄ = Sf = Sf̄ = 0.

Parameter
Signal 1 Signal with Signal with

All contributions
(5× size) B0

s→ D−s π
+ Combinatorial

C 1.020± 0.060 1.049± 0.065 1.017± 0.064 1.045± 0.067

Df −0.003± 0.268 0.058± 0.285 −0.065± 0.290 0.038± 0.301

Df̄ 0.058± 0.268 0.135± 0.286 −0.062± 0.293 0.055± 0.303

Sf −0.052± 0.093 0.043± 0.101 −0.048± 0.102 0.025± 0.107

Sf̄ 0.172± 0.091 0.182± 0.095 0.102± 0.100 0.141± 0.102

Acceptance variations

As described in Sec. 8.2 the position of knots is chosen in an ad-hoc manner. To verify this
choice the difference between data results obtaining using different acceptance functions
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Table 9.9: sFit results to the full simulation sample (twenty times the data sample)
generated with C = 1, Df = Df̄ = Sf = Sf̄ = 0.

Parameter
Signal 2

(20× size)
C 1.021± 0.031

Df 0.003± 0.137

Df̄ −0.076± 0.138

Sf 0.081± 0.046

Sf̄ 0.030± 0.046

Table 9.10: sFit results to the signal simulation samples with a different cut on the BDTG
response. The simulation samples were generated with C = 1, Df = Df̄ = Sf = Sf̄ = 0.

Parameter BDTG ∈ (0.3, 0.6) BDTG > 0.6 BDTG ∈ (0.3, 0.9) BDTG > 0.9

C 0.976± 0.071 0.988± 0.063 1.023± 0.066 0.992± 0.061

Df 0.224± 0.472 −0.111± 0.278 −0.048± 0.360 −0.069± 0.257

Df̄ 0.166± 0.491 −0.039± 0.271 0.015± 0.355 −0.004± 0.254

Sf 0.043± 0.104 −0.006± 0.092 0.203± 0.095 −0.122± 0.089

Sf̄ 0.095± 0.100 0.112± 0.096 0.072± 0.102 −0.158± 0.091

are studied. Firstly, the fit with knots which were placed at 0.25, 0.375, 0.5, 0.75, 1.0,
1.5, 2.0, 2.5, 3.0, 7.5, 12 ps is performed. The difference with respect to nominal result is
shown in Tab. 9.11 for sFit. In addition, the influence of the position the first two knots in
the acceptance function is verfified. For that purpose the decay-time fit is performed with
several variations of knot positions:

� acceptance 1: 0.25, 0.6, 1.0, 2.0, 3.0, 12.0 ps,

� acceptance 2: 0.4, 0.6, 1.0, 2.0, 3.0, 12.0 ps,

� acceptance 3: 0.45, 0.75, 1.0, 2.0, 3.0,12.0 ps,

� acceptance 4: 0.5, 0.75, 1.0, 2.0, 3.0, 12.0 ps,

� acceptance 5: 0.5, 1.0, 1.5, 2.0, 3.0, 12.0 ps.

The differences of fitted CP parameters with respect to nominal results are shown in
Tab. 9.12.

Verification of using kinematic fit

As mentioned in Sec. 5.5 and 8.1 the kinematic fit is used for computing the B0
s decay-time.

The difference of fitted CP parameters for fitting with and without using kinematic fit is
shown in Tab. 9.13.

Verification of decay-time resolution.

To validate whether the size of the shifts in data is similar to what is observed in pseudo
experiments the decay-time fit is performed with a scale factor S = 1.25 and S = 1.45. In
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Table 9.11: Difference of the fitted CP parameters for the nominal acceptance and the
acceptance with double knots.

Parameter Difference

C −0.001± 0.015

Df −0.014± 0.034

Df̄ −0.014± 0.035

Sf 0.000± 0.011

Sf̄ 0.000± 0.019

Table 9.12: Difference of the fitted CP parameters with respect to the nominal result for
several variations of acceptances.
Par. Acceptance 1 Acceptance 2 Acceptance 3 Acceptance 4 Acceptance 5

C 0.000± 0.008 0.000± 0.010 0.000± 0.011 0.000± 0.012 0.001± 0.016

Df 0.008± 0.026 −0.005± 0.022 −0.005± 0.021 −0.005± 0.021 0.018± 0.040

Df̄ 0.007± 0.026 −0.005± 0.022 −0.005± 0.022 −0.005± 0.021 0.018± 0.041

Sf 0.000± 0.014 0.000± 0.016 0.000± 0.020 0.000± 0.022 0.000± 0.012

Sf̄ 0.000± 0.012 0.000± 0.014 0.000± 0.015 0.000± 0.015 −0.001± 0.022

addition, the influence of fitting with an average decay-time resolution modelled by a triple
Gaussian (see App. G) is validated. Differences between nominal and fitted results are
collected in Tab. 9.14. All shifts are compatible with expectations from pseudo experiments
studies.

Verification of reweighting PIDK PDFs.

As described in Sec. 6.2 the PIDK PDFs are obtained by weighting the PID calibration
samples to match the kinematics of signal or backgrounds. In the nominal fits two variables
ln(pT ) and ln(nTracks) were used. As a cross-check fits are performed when ln(pT ) is
replaced by ln(p). Difference of fitted CP parameters between nominal results and cross
check fits are collected in Tab. 9.15.
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Table 9.13: Difference of the fitted CP parameters for fitting with and without using the
kinematic fit.

Parameter Difference

C −0.021± 0.033

Df −0.062± 0.058

Df̄ −0.025± 0.048

Sf 0.013± 0.032

Sf̄ 0.004± 0.042

Table 9.14: Difference of the fitted CP parameters between the nominal results and the
different settings of decay-time resolution.

Parameter Triple Gaussian scale factor S = 1.25 scale factor S = 1.45

C 0.035± 0.054 0.027± 0.075 −0.020± 0.066

Df 0.009± 0.016 0.000± 0.011 −0.002± 0.014

Df̄ 0.021± 0.025 0.007± 0.019 0.003± 0.017

Sf −0.045± 0.068 0.029± 0.087 −0.012± 0.081

Sf̄ −0.048± 0.027 −0.019± 0.100 0.016± 0.088

Table 9.15: Difference of the fitted CP parameters between the nominal results and different
reweighting PIDK PDFs.

Parameter Difference

C 0.024± 0.056

Df 0.023± 0.092

Df̄ 0.042± 0.094

Sf 0.006± 0.035

Sf̄ 0.014± 0.077
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Chapter 10

Studies of systematic uncertainties

Potential systematic uncertainties on the CP parameters estimated in the previous chapter
are accounted for either by means of Gaussian constraints in the fit, or by means of test
fits to nominal pseudo experiments. Several sources of systematics effects have to be taken
into account, which are discussed in the next subsections. The results of these studies are
summarised in Tab. 10.2.

10.1 Production and detection asymmetries

To validate the correct description of the production asymmetries, the pseudo experiments
are generated with asymmetries and fitted back with different values. Specifically the
production asymmetries of 1% for B0

s and B0 mesons, and 3% for Λ0
b baryons are generated.

Pseudo experiments are then fitted back with signal production asymmetries shifted by
±3%. No change in the results is observed and hence the signal production asymmetry is
set to zero in the nominal fit. No systematic uncertainty is assigned.

The constrained value of detector asymmetry adetector = 1% ± 0.5% is validated by
generating pseudo experiments in which the backgrounds are given realistic detection
asymmetries (from 1% to 5% depending on the mode). No bias is observed in the obtained
results.

10.2 Uncertainties due to fixed background yields

Potential systematic errors due to fixed background yields are evaluated by generating
pseudo experiments with one value for these yields, and then fitting back with the yields
fixed to double what was in the generator. No significant bias in the results is observed,
thus no systematic uncertainty is assigned.

10.3 Tagging systematics

A prominent source of systematics is the limited knowledge of the tagging calibration
parameters p0 and p1, introduced in Ch.7. Their uncertainty is incorporated into the
nominal fits by means of Gaussian constraints, so that the corresponding systematics
is already contained in the statistical errors reported by the fits. However, the effect of
the constraints is negligible: the fits without the constraints return essentially the same
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result. Since the calibration parameters of OS and SSK are independent, the resulting
total systematic is reduced.

10.4 Uncorrelated systematics estimated from pseudo
experiments

The uncorrelated systematic effects are due to the fixed value of ∆ms and the decay-time
resolution scale factor. For these studies test fits are performed to the nominal pseudo
experiment samples, in which the parameter in question (called µ) is varied up and down
by its uncertainties. The systematic error is then given by:

σsyst =
√
〈µ〉2 + σ2

shifts , (10.1)

where 〈µ〉 is the average shift observed in the test fits computed as µ = (∆up −∆down)/2,
and σshifts is the width of the distribution. The resulting errors are given in Tab. 10.2 in
the systematics summary section.

The systematic correlations of the CP parameters are computed based on the covariances
of the dataset of the test fit results,

Vij =
1

N − 1

N∑

k=1

(µik − 〈µi〉)(µjk − 〈µj〉) , (10.2)

where (i, j) run over the CP parameters (C, Sf , Sf̄ , Df , Df̄), and k runs over the pseudo
experiments. However, since a contribution to the error from a non-zero shift (the 〈µ〉
term in Eq. (10.1)) is considered, the covariance has to be corrected accordingly,

V ′ij =
Vij√
ViiVjj

σsyst,iσsyst,j . (10.3)

To compute the total systematic correlations given in the summary section 10.7, all
the covariances (from Eq. (10.3)) due to the different systematic sources are summed.

10.5 Correlated systematics: decay-time acceptance,
Γs and ∆Γs

The decay-time acceptance is determined from a fit to B0
s→ D−s π

+ data, and is therefore
correlated to Γs, which is in turn correlated to ∆Γs (see Eq. 9.6). For this reason these
sources of systematic uncertainties are considered simultaneously. In addition, the time
acceptance is corrected by the B0

s→ D∓s K
±/B0

s→ D−s π
+ ratio as obtained from simulation,

which is another source of correlated systematics and is considered in a similar way, as
described at the end of this section.

The decay-time acceptance is described by a spline which has 6 parameters, vi, i =
1, ..., 6, that are correlated, and fixed in the nominal fits. The associated systematic is
assessed in the following way. The CP parameters are a function of the fixed parameters,
whose exact form is unknown to us:

~fCP ≡ ~fCP (~v) , (10.4)
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where ~fCP = (C, Sf , Sf̄ , Df , Df̄ ) and ~v = (v1, . . . , v6,Γs,∆Γs). Then the systematic covari-
ance of the CP parameters is given by linear error propagation,

V [~fCP ] = BT V [~v]B , (10.5)

where B is the Jacobian matrix of first derivatives,

[B]ij =
∂fi
∂vj

. (10.6)

To estimate the form of B test fits are used, in which each of the parameters vi gets
varied up and down by its error, as taken from Tab. 8.1 (to propagate errors from the
B0
s → D∓s K

±/B0
s → D−s π

+ ratio on simulation), from Tab. 9.1 (errors from the fit to
B0
s→ D−s π

+ data), and from Eq. 9.6 (errors on Γs, ∆Γs). Then the partial derivatives are
estimated as

∂fi
∂vj
≈ fi(vj + σvj)− fi(vj − σvj)

2σvj
, (10.7)

where the fi(vj ± σvj) are the shifts observed in the test fits. Eq. 10.5 is evaluted for each
pseudo experiment, and the resulting covariance matrices averaged.

The acceptance parameters are determined from the fit to B0
s→ D−s π

+ data, where Γs
controls the expected exponential slope. The acceptance will parametrise any difference
between the observed and the expected slope, thus the acceptance systematic is strongly
anti-correlated with the systematic uncertainty due to the fixed value of Γs. A subtlety
are the exact values of the correlations of Γs and ∆Γs to the acceptance parameters.
They are chosen in the following way. The correlations of Γs to the vi are taken to be
uniform ρ = −0.7. This is the smallest value which can be chosen requiring the correlation
matrix C[~v] to be positive-semidefinite, when ∆Γs is taken to be uncorrelated to the other
parameters. Then, the correlation between Γs and ∆Γs is set to its nominal value (Eq. 9.6).
The correlations of ∆Γs to the acceptance parameters is chosen to be uniform and as
positive as possible without spoiling the positive-semidefiniteness of C[~v]. The resulting
value is ρ(∆Γs, vi) = 0.4, so that the correlation matrix is:

C[~v] =



C[v1, . . . , v6] −0.7 0.4

−0.7 1 −0.39

0.4 −0.39 1


 . (10.8)

The second source of decay-time acceptance systematic uncertainties is due to the
B0
s→ D∓s K

±/B0
s→ D−s π

+ ratios obtained from simulation. The above method is repeated
for those (but without Γs and ∆Γs as they don’t affect the simulation ratios), taking
the central values of the ratios from Tab. 8.1 and their correlations from Tab. H.4. The
resulting contributions are shown in Tabs. 10.1.

The effect of doubling the number of spline knots was checked, but negligible impact is
found.

10.6 Sample splits

The sample splits introduced as cross checks in Sec. 9.5.2, e.g. for magnet polarity, showed
only one discrepancy which is difficult to explain: that in the split by the BDTG response,
into BDTG ∈ (0.3, 0.9) and BDTG > 0.9 (Tab. 9.6). Both independent subsamples are in
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Table 10.1: Decay-time acceptance systematic uncertainties in sFit, relative to the expected
statistical errors from the toy study.
Parameter C Sf Sf̄ Df Df̄

due to B0
s→ D−s π

+ data fit (inc. Γs and ∆Γs) 0.037 0.034 0.033 0.384 0.396
due to B0

s→ D∓s K
±/B0

s→ D−s π
+ simulation ratios 0.021 0.019 0.019 0.186 0.186

total acceptance systematic uncertainty 0.043 0.039 0.038 0.427 0.437

Table 10.2: Total sFit systematic errors, relative to the statistical error. †The daggered
contributions (Γs,∆Γs) are given separately only for comparison (see text).

Parameter C Sf Sf̄ Df Df̄

∆ms 0.062 0.104 0.100 0.013 0.013
scale factor 0.104 0.092 0.096 0.004 0.004
Γ†s 0.007 0.007 0.007 0.261 0.286
∆Γ†s 0.043 0.039 0.038 0.384 0.385
acceptance, Γs, ∆Γs 0.043 0.039 0.038 0.427 0.437
sample splits 0.124 0.072 0.071 0.000 0.000

total 0.179 0.161 0.160 0.427 0.437

acceptable agreement, but doubts are not completely ruled out. Therefore a systematic
error is assigned based on the difference of the weighted average of the two subsamples,
and the nominal result, see Tab. 9.7. A systematic relative to the expected statistical
uncertainty of 12.4% for C, and 7.2% for Sf and Sf̄ is assigned. These are relative to the
expected statistical uncertainty. This represents a sizable systematic for C, Sf , and Sf̄ . A
systematic for Df and Df̄ is not assigned, as there the agreement with the nominal result
is good. This systematic is included under the assumption that it is uncorrelated with any
other considered source. The resulting numbers are given in Tabs. 10.2.

10.7 Systematics Summary

Total covariance matrix, taking into account the above mentioned systematic uncertainties
is obtained by adding the covariance matrices from all sources. The resulting systematic
errors are expressed relative to the expected statistical errors found in the pseudo ex-
periment studies, see Tab. 9.4. Table 10.2 gives the errors. In these tables the separate
contributions from Γs and ∆Γs are included to convey a feel of their relative importance.
For this they are treated as uncorrelated systematics, as described in Sect. 10.4. There
is benefit from accounting for their correlations, as their squared sum is larger than the
combined contribution for the acceptance, Γs, and ∆Γs. Table 10.3 shows the resulting
systematic correlations.
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Table 10.3: Total sFit systematic uncertainties correlations.
Parameter C Sf Sf̄ Df Df̄

C 1.00 -0.04 0.04 -0.18 -0.18
Sf -0.04 1.00 -0.05 0.17 0.17
Sf̄ 0.04 -0.05 1.00 -0.16 -0.16
Df -0.18 0.17 -0.16 1.00 0.95
Df̄ -0.18 0.17 -0.16 0.95 1.00
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Chapter 11

Determination of the CKM angle γ

The CP parameters obtained in Sec. 9.4 are used to determine the CKM angle γ from
Eq. 2.53. In this chapter sensitivity studies on pseudo experiments are presented, which
are followed by the CKM angle γ extraction. As shown in Fig. 4.2 the determination of
the CKM angle γ can be performed using two different decay-time fits. In this chapter,
the nominal sFit results are compared with an alternative approach called cFit.

11.1 Sensitivity on the CKM angle γ

From the results for the time-dependent CP -violation observables of the fits to the nominal
pseudo experiments (see Sec. 9.5.1), the expected sensitivity on γ can be extracted. In
these studies the GammaCombo package is used, which is LHCb software used to perform
the CKM angle γ combination mentioned in Sec. 2.3.3. The strategy is to maximise the
following likelihood

L(~α) = exp

(
−1

2

(
~A(~α)− ~Aobs

)T
V −1

(
~A(~α)− ~Aobs

))
, (11.1)

where ~α = (γ, φs, rDsK , δ)
T is the vector of the physics parameters, ~A is the vector of

observables expressed through Eq. 2.53, ~Aobs is the vector of the measured CP -violation
observables and V is the experimental (statistical and systematic) covariance matrix. Con-
fidence intervals are computed by evaluating the test statistics ∆χ2 = χ2(~α′min)− χ2(~αmin),
where χ2(~α) = −2 lnL(~α), in a frequentest way following Ref. [110]. Here, ~αmin denotes the
global maximum of Eq. 11.1, and ~αmin is the conditional maximum when the parameter of
interest is fixed.

In order to get reasonable results, the fit results where the initial fit (cFit, sFit or the
multidimensional fit) doesn’t converge are excluded. In addition, to prevent the CKM
angle γ extraction from failing, the following requirements are applied: the relative errors
of the CP observables must be greater than 1%, the absolute errors of the observables must
be less than 10, the resulting one-sided errors of γ must be smaller than 300◦, and they
are not allowed to be too asymmetric: (σ+

γ − σ−γ )/(σ+
γ + σ−γ ) < 0.8. Furthermore, if the

confidence level calculation returns an interval limit which is one of the scan boundaries
(γ = 0◦ or γ = 360◦), a second scan around the best minimum in a range of ±85◦ is
performed. If both scans return interval limits which are scan boundaries, then this specific
result of the pseudo experiment is neglected.

The results of the performed pseudo experiment studies is shown in Fig. 11.1. The
Gaussian fits to the pull distributions yield µ = (−0.13± 0.04)× 10−2, σ = 1.17± 0.03 for
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Figure 11.1: Left: the expected positive and negative uncertainties on the CKM angle γ.
Right: the pseudo pulls evaluated for the CKM angle γ using the CP parameters obtained
from the nominal pseudo experiments with γ generated at 70◦.

the mean and width. The bias is within the sub-percent level of the γ value and error. The
widths of the pulls is explicable, because the method is expected to undercover uncertainty.
Overall, a sensitivity on the CKM angle γ of about σγ ≈ 24◦ (statistical uncertainty only)
is expected, which is calculated as the mean of the two expectation values from the positive
and negative uncertainty distributions.

11.2 Interpretation

The measurement of the CP -sensitive parameters is interpreted in terms of γ − 2βs and
subsequently γ. The value βs is constrained to the measurement from B0

s → J/ψhh decays,
φs = (0.01 ± 0.07(stat) ± 0.01(syst)) rad [109]. Assuming no penguin pollution and no
beyond SM contribution in these decays, φs = −2βs. The resulting confidence intervals
are given in Tab. 11.1. Figures 11.2 and 11.3 show the p-value curves [111] for γ, δ, and
rDsK , and Fig. 11.4 shows two-dimensional contours of the profile likelihood L(~α′min).

Table 11.1: The confidence intervals for the CKM angle γ, strong phase δ and amplitudes
ratio rDsK at 68% C.L. All errors (stat. and syst.) are included. The intervals for the
angles are expressed modulo 180◦.

Parameter sFit cFit

γ (113+30
−44)◦ (115+28

−43)◦

δ (1+21
−21)◦ (3+19

−20)◦

rDsK 0.48+0.18
−0.16 0.53+0.17

−0.16
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Figure 11.2: The 1− CL contours for the CKM angle γ, in linear (left) and logarithmic
scale (right). Green: cFit, blue: sFit. All errors, statistical and systematic, are included.
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Figure 11.4: The profile likelihood contours of the CKM angle γ vs. rDsK parameter, and
the CKM angle γ vs. δ parameter. The contours are the nσ profile likelihood contours,
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sFit. All errors, statistical and systematic, are included.
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Chapter 12

Conclusion

The excellent performance of the LHCb detector has made it possible to perform the
world-first measurement of the CKM angle γ using B0

s→ D∓s K
± decays, one of the key

benchmark measurement in the roadmap of the LHCb experiment in 2009 [112].
The study has been performed based on a dataset corresponding to 1.0 fb−1 recorded

in pp collisions at
√
s = 7 TeV in 2011. The CP -violation observables are found to be:

C = 0.52± 0.25± 0.04 ,

Df = 0.29± 0.42± 0.17 ,

Df̄ = 0.14± 0.41± 0.18 ,

Sf = −0.90± 0.31± 0.06 ,

Sf̄ = −0.36± 0.34± 0.06 ,

where the first (second) uncertainties are statistical (systematic).
Preliminary results of CP parameters were already published and the author of thesis

is one of the contact authors of the conference contribution given in [113]. Unfortunately
the statistical uncertainties were too pronounced to allow for a relevant measurement
of the CKM angle γ. Since then, the development of the multidimensional fit improved
the statistical uncertainty by about 25-35 % depending on the observable. This kind of
approach has been used for the first time in the LHCb experiment. In addition, it is also
the first time in the LHCb experiment that the sP lot technique has been successfully
applied in an environment with so much background resulting in a perfect agreement with
standard cFit method.

The CP observables are used to perform the first measurement of the CKM angle γ,
the strong phase δ and amplitudes ratio rDsK in the B0

s→ D∓s K
± decays. The resulting

confidence intervals are, at 68% CL,

γ = (113+30
−44)◦ ,

δ = (1+21
−21)◦ ,

rDsK = 0.48+0.18
−0.16 ,

where the error contains both statistical and systematic uncertainties.
Time-dependent measurements using B0 → D(∗)∓π± decays were performed by both

the BaBar [47, 48] and the Belle [49, 50] collaborations. The study shown in this thesis, is
the first measurement of the CKM angle γ in a time dependent analysis of tree decays, that
excludes the CP -conservation hypothesis at more than ∼ 2.5σ. In addition, as predicted,
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the amplitudes ratio for these decay rDsK is an order of magnitude larger than that for
B0 → D(∗)∓π± rD(∗)π ≈ 0.02 [51], which makes a measurement using the B0

s → D∓s K
±

decay more sensitive to CP violation.
The value of strong phase δ is found to be close to 0, in agreement with theoretical

predictions based on factorisation [46].
The CKM angle γ result agrees within one standard deviation with the world-average:

γ = (73.2+6.3
−7.0)

◦ [23]. In addition, the results have been included in the nominal LHCb
combination of parameter in question resulting in γ = (74.6+8.4

−9.2)◦ [30].
Since the presented measurement is one of the most challenging analysis performed by

the LHCb collaboration, it was not possible to study the full data collected in 2010-2012.
The additional 2.0 fb−1 recorded in pp collisions at

√
s = 8 TeV in 2012 are currently being

analysed and is not expected that measurement will be systematically limited in the near
future. Assuming 5 and 50 fb−1 recorded data for the LHCb experiment in 2015-2018 and
Upgrade runs, the predicted statistical sensitivity for measurements are 11◦ and 2.0◦ [114],
respectively.

A possible extension of this analysis is a time-dependent analysis using the B0
s →

D∗∓s K± decay, whose branching fraction has been published [115] by the LHCb collabora-
tion. The author of this thesis contributed in an essential way to the mentioned analysis.
The obtained yield is promising and further developments such as using the multidimen-
sional fit can make it possible to perform a standalone measurement of the CKM angle γ
in the near future.

The results of thesis have been published in the Journal of High Energy Physics [116].
In addition, they have been presented by author of thesis at 37th International Conference
on High Energy Physics [117,118], where they have been highlighted as one of the most
valuable new results in flavour physics.
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Appendices

A Primary vertex reconstruction for 2015 data

The primary vertex (PV) algorithm begins with a set of input tracks. In 2010-2012 data
taking two algorithms were in use: online and offline. Since the time budget in HLT1 was
limited, the online reconstruction was based on VELO unfitted tracks, which didn’t have
an accurate covariance matrix. The most precise results were obtained by the second,
offline, reconstruction based on Kalman fitted [71] tracks. The online (offline) algorithm
was executed in Moore (Brunel) (see Fig. 3.15).

The algorithms have to be adapted for the new running conditions which begin in 2015.
Thanks to developments in the trigger, the time budget is increased and it is possible to
perform a Kalman fit in HLT1. Therefore the aim of these developments is to make the
online algorithm as similar as possible to the offline approach. For this purpose the new
2015 online algorithm uses Kalman fitted VELO tracks.

The agreement between algorithms can be quantified by the decorrelation variable
given by:

AOFF − AON
σOFF

, (1)

where A = {x, y, z} denotes coordinates, AOFF (AON) is position of PVs found by the
offline (online) algorithm and σOFF is the position uncertainty for the offline approach.
The obtained distribution is parametrized by a triple Gaussian:

PDFtG(µ, σ1, σ2, σ3, f1, f2;X) = f1G(µ, σ1;X) + f2G(µ, σ2;X) + (1− f1− f2)G(µ, σ3;X),
(2)

where G(µ, σi;X) denotes a single Gaussian distribution with common mean µ and width
σ = σi and X is an observable. The average width σ̄ is defined as:

σtG =
√
f1σ2

1 + (1− f1)f2σ2
2 + (1− f1)(1− f2)σ2

3. (3)

Finally, the difference d between approaches is described by:

d =
√
σtG + σN − 1, (4)

where σN denotes the nominal value equals to 1. The initial difference between algorithms
is 64[%] (58[%]) for the x(z) coordinate. Since the performance for y axis is similar to x,
it is not quoted. The agreement is improved by using Kalman fitted Velo tracks for the
so-called online 2015 algorithm, where the results are 21[%] and 16[%] for the x and z
coordinates, respectively. This difference can be reduced even more by including Long
tracks with a transverse momentum above 500 MeV/c. However, the final choice about
including Long tracks can be made only after taking first 13 TeV data. As a baseline the
new, improved algorithm uses only Kalman fitted Velo tracks and it is considered in further
studies as the nominal online approach for 2015 data. The summary of decorrelation
variables is collected in Tab. A.1.

A.1 Performance

The quality of the primary vertex algorithm can be studied in terms of its resolution and
pseudo pulls. Again, the results for the y coordinate are not quoted. All studies are based
on a bb̄-inclusive simulation sample in nominal 2015 conditions.

137



Table A.1: The differences between the offline and online primary vertex algorithms.

Parameter
online 2010-2012 online 2015 online 2015

unfitted Kalman fitted Kalman fitted
Velo tracks Velo tracks Velo + Long pT > 500 MeV/c

σtGx 1.294 0.679 0.414
µx 0.007 -0.002 -0.001
d [%] 64 21 8.4

σtGz 1.123 0.599 0.478
µz -0.002 0.004 0.0003
d [%] 58 16 10

Global resolution

The global resolution is determined from the distribution of the difference between the fitted
and generated position of the primary vertex, ∆A, where A denotes a given coordinate. The
resolution is obtained by fitting a triple Gaussian given by Eq. 2 and taking its averaged
width as the parameter in question. The results are collected in Tab. A.2 and an example
fit for the online 2015 algorithm is presented in Fig. A.1. The resolution for the z axis is
compatible within uncertainty for all considered approaches. At the same time, the results
obtained for the x axis is worse by (2-3)% with respect to offline algorithm. However,
taking into account size of the global resolution for the z coordinate, it is concluded that
results are in good agreement.

Table A.2: The global resolution for the online 2015 and offline primary vertex reconstruc-
tions.

Parameter [mm] online 2015 offline

∆x 0.0205 ± 0.0001 0.0198 ± 0.0001
∆z 0.1432 ± 0.0006 0.1433 ± 0.0006
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Figure A.1: The resolution obtained in the bb̄-inclusive sample for the online 2015 algorithm.
Left: x coordinate, right: z coordinate. The solid line corresponds to a triple Gaussian fit,
while the dashed lines denote its respective components.

It has to be noted that for all VELO tracks used in the online 2015 algorithm, the
transverse momentum is set to an average value of 400 MeV/c. This approximated
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magnitude is used to perform the Kalman fit and obtain the correction for multiple
scattering, thus its influence in the global resolution is studied. Figure A.2 shows the global
resolution as a function of average pT and the minimum is found to be at 300 MeV/c.
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Figure A.2: Global resolution as a function of an average track’s transverse momentum
obtained based on the bb̄-inclusive simulation sample for the online 2015 algorithm. Left:
x coordinate, right: z coordinate.

Pseudo pulls

The pseudo pulls for the primary vertex are given by the global resolution divided by
reconstructed position uncertainty. This distribution is parametrised by a double Gaussian:

PDFdG(µ, σ1, σ2, f1;P ) = f1G(µ, σ1;P ) + (f1 − 1)G(µ, σ2;P ), (5)

where G(µ, σi; t) denotes a single Gaussian distribution with common mean µ and width
σ = σi. The P denotes a pseudo pull observable. The average width σdG is defined as:

σdG =
√
f1σ2

1 + (1− f1)σ2
2. (6)

An average width σdG = 1 and µ = 0 are signatures of unbiased results. The obtained
results are collected in Tab. A.3, while the fits are shown for the online 2015 algorithm
in Fig. A.3. The mean µx for both online 2015 and offline approaches is consistent with
zero within uncertainty. A small bias is observed for z coordinate, where the results for
the online 2015 algorithm are less shifted. In addition, the average widths for the online
2015 describe uncertainties accurately, while the offline uncertainties are underestimated.

Table A.3: The pseudo pulls for the online 2015 and offline primary vertex algorithms.
Parameter online 2015 offline

µx 0.001 ± 0.002 -0.001 ± 0.002
σdGx 1.04± 0.02 1.17 ± 0.04

µz 0.030± 0.002 0.038 ± 0.002
σdGz 1.06± 0.02 1.13 ± 0.02
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Figure A.3: The pseudo pull obtained in the bb̄-inclusive sample for the online 2015
algorithm. Left: x coordinate, right: z coordinate. The solid line corresponds to a double
Gaussian fit, while the dashed lines denote its respective components.

Track’s impact parameter

Another quantity which has to be considered is the track’s impact parameter which, as
described in Sec. 5.1, is defined as the minimum perpendicular distance between the
reconstructed track and the primary vertex. The magnitude of the impact parameter is
calculated for all tracks from the best container. Figure A.4 shows the obtained results
which are split according to the transverse momentum of the particle associated to the
track: below and above 1 GeV/c. This represents 85% and 15% of tracks in the container,
respectively. In the first case, below 1 GeV/c, the distributions are in good agreement for
various algorithms. A discrepancy is seen for tracks above 1 GeV/c, where the impact
parameter calculated with respect to online 2015 primary vertices is shifted upwards. Most
likely, it can be explained by the influence of setting an average pT to all VELO tracks
described in Sec. A.1, where the set value is much less than 1 GeV/c and thus the position
of the reconstructed primary vertex is slightly shifted. It is worth noting that this observed
discrepancy is removed by adding Long tracks with pT > 500 MeV/c. To study this effect
the Landau distribution [99] is fitted with mean µL and width σL, the results are listed in
Tab. A.4. As can be seen the Landau’s widths are in good agreement, whereas the mean is
shifted by 9% upwards. Since the mean can be interpreted as the expected resolution, this
implies 9% worse resolution for 15% of tracks.

offline online 2015 Velo tracks >500 [MeV/c]
T
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Figure A.4: The impact parameter calculated with respect to the primary vertex. Left:
tracks with pT < 1 GeV/c, right: pT > 1 GeV/c.
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Table A.4: Result of fitting a Landau distribution to the impact parameter calculated with
respect to the online 2015 and offline primary vertices for track with pT > 1 GeV/c.

Parameter online 2015 offline

σL 0.0097 ± 0.0004 0.0096 ± 0.0004
µL 0.0228 ± 0.0006 0.0208 ± 0.0006

Influence for the decay-time resolution

A possible influence on the decay-time resolution is studied based on the signal B0
s → φ0φ0

simulation sample, generated with the nominal 2015 conditions. The time resolution is
defined by:

∆t = trec − ttrue, (7)

where trec is the reconstructed decay-time and ttrue corresponds to the true decay-time
generated in the simulation sample. The resulting distribution is parametrised by a triple
Gaussian given by Eq. 2. The results are collected in Tab. A.5 and presented in Fig. A.5.
The average of the decay-time resolution is in good agreement. No influence of changing
the primary vertex reconstruction is found.
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Figure A.5: Triple Gaussian time resolution fitted to the B0
s → φ0φ0 simulation sample.

The solid curve corresponds to the full fit, while the dashed curves are components. Left:
online 2015 reconstruction, Right: offline reconstruction.

Table A.5: The fit parameters for the decay-time resolution.
Parameters online 2015 offline

µ [ps] 0.00031 ± 0.00035 0.00033 ± 0.00035
f1 0.23 ± 0.18 0.31 ± 0.10
f2 0.64 ± 0.09 0.82 ± 0.13
σ1 [ps] 0.028 ± 0.005 0.028 ± 0.003
σ2 [ps] 0.044 ± 0.008 0.052 ± 0.006
σ3 [ps] 0.077 ± 0.007 0.095 ± 0.025

σ̄tG [ps] 0.0528 ± 0.007 0.0536 ± 0.009

141



A.2 Optimisation

The reconstruction algorithm is optimised in order to maximise the efficiency and minimise
the fake rate. As a cross-check studies have been performed for the cc̄-inclusive simulation
sample. The obtained results are in good agreement, thus only studies using the bb̄-inclusive
sample are presented. The primary vertex algorithm used in these studies corresponds
to the online 2015 approach i.e. the reconstruction using VELO tracks fitted by Kalman
fitter.

The reconstruction efficiency is defined as the ratio of the number of reconstructed
PVs to the number of reconstructible generated PVs. The latter is a pp interaction vertex
which contains at least a minimal number of reconstructed VELO tracks. In the presented
studies the minimal number of reconstructed tracks (minTracks) varies between 3-5 and is
used in the optimisation procedure.

Reconstructed PVs can be split into two categories: vertices which are matched by
any generated PV (so-called true PV) and the remaining, not matched vertices (so-called
false PV). The PV is matched when the distance to any reconstructible PV is |∆z| < 5σz,
where σz denotes the estimated position uncertainty along z axis. The fake rate is defined
as the ratio of the number of false PVs and all reconstructible generated PVs.

The optimisation is considered in a two dimensional space:

� minimum number of tracks in vertex: minTracks ∈ [3, 4, 5],

� maximum χ2 to accept track: maxχ2 ∈ [0.1, 40.0].

In the past (2010-2012 data taking) the nominal setting were: minTracks = 5 and maxχ2 =
9.0. The efficiency and fake rate as a function of the above variables are shown in Fig. A.6.
For minTracks = 4 the efficiency increases by about 3% with respect to the nominal
conditions, which can be considered as the new optimal value. At the same time, the fake
rate rises twice. To prevent the growing fake rate, a radial distance cut is used as described
later. An additional 1.5% in efficiency can be gained for minTracks = 3, however in this
condition the fake rate increases three times with respect to the nominal conditions, thus
minTracks = 3 is excluded from further studies. More detailed optimisation is considered in
the narrower maxχ2 range [6.0, 12.0] and for minTracks ∈ [4, 5].
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Figure A.6: Efficiency (left) and fake rate (right) as a function of minimal track multiplicty
and maximal χ2 to accept the tack. The default value: maxχ2 = 9.0 is denoted as a
black dashed line. The red, blue and orange curves correspond to minTracks ∈ [3, 4, 5],
respectively. The violet vertical lines correspond to the most interesting range which is
considered in the further studies.
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Radial distance optimisation

In order to reduce the fake rate several requirements were considered:

� radial distance of PV: r =
√
x2 + y2, where (x,y) is PV’s position,

� minimal radial distance of track: minRDTrack = min(
√
x2 + y2) where (x,y) is the

track position the closest to the beamline for tracks coming from the PV,

� maximal radial distance of track: maxRDTrack = max(
√
x2 + y2) where (x,y) is the

track position the closest to the beamline for tracks coming from the PV.

Figure A.7 shows the efficiency versus fake rate rejection, so-called ROC curve, for radial
variables. As can be seen, the radial distance of the PV is the most powerful variable to
reduce the fake rate, thus its optimisation is performed.

The radial distance distribution for false and true PVs is shown in Fig. A.8. The
distributions for primary vertices reconstructed using minTracks = 4 and maxχ2 ∈ [6, 9, 12]
are in good agreement. In addition, the radial distance for most of the true PVs is below
0.2 mm, while for false PVs it is extended until 8 mm.

The optimisation of radial distance maximises the purity multiplied by the true
PVs efficiency, where the purity is defined as a ratio of the number of true PVs to all
reconstructed PVs found in the event. The function of merit is maximised for minTracks = 4
and maxχ2 ∈ [6, 9, 12]. The optimal working point is found independently on the maximal χ2

to accept the track, with the optimal value r < 0.2 mm. Figure A.9 shows the optimisation
function with all components, as an example, for minTracks = 4 and maxχ2 = 9.
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Figure A.7: Efficiency versus fake rate rejection (ROC curve) for radial variables.

Final optimisation

Figure A.10 shows the influence of applying the radial distance cut r < 0.2 to the
reconstruction efficiency and fake rate for the following algorithm settings: minTracks = [4, 5]
and maxχ2 ∈ [6, 12]. The radial cut is 99.5% efficient, while the fake rate is reduced by
85%.

In addition, the reconstruction using maxχ2 = 12 allows more tracks to form a primary
vertex and thus provides better resolution for PVs with low track multiplicity. Table A.6
presents the resolution and for two reconstructions: maxχ2 = 9 and maxχ2 = 12. The
additional tracks don’t bias the vertex position. Therefore the optimal working point is set
to be maxχ2 = 12.
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Figure A.8: Radial distance distributions for true PVs (left) and fake PVs (right) for the
reconstruction with minTracks = 4.
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Figure A.9: Optimization of the radial distance cut for minTracks = 4 and maxχ2 = 9. Left:
full range, right: zoomed range above efficiency equal to 0.96. Different contributions are
shown as coloured lines as described in the legend placed in the top.

Comparison

The true Primary Vertices can be split into several subgroups depending on their properties
such as:

� distance to the closest reconstructible primary vertices:

– Isolated - with distance to closest reconstructible PV |∆z| > 10 mm,

– Non-Isolated - with distance to closest reconstructible PV |∆z| < 10 mm,

� multiplicity of tracks:

– 1st - with the greatest track multiplicity,

– 2nd - with 2nd greatest track multiplicity,

– 3rd - with 3rd greatest track multiplicity,

� depending on daughter particles:

– beauty - with beauty particle coming from it,
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Figure A.10: Efficiency and fake rate as a function of minimal track multiplicty and
maximal χ2 to accept the tack before and after applying the radial distance cut r < 0.2.

Table A.6: Global resolution for primary vertex reconstructed with minTracks = 4 and
maxχ2 = [9, 12].

Parameter [mm] maxχ2 = 9 maxχ2 = 12

µx 2.88 ×10−5 0.05 ×10−5

∆x 0.0199 0.0195

µz 0.0016 0.0018
∆z 0.0140 0.0136

– charm - with charm particle coming from it,

– other.

In the same way, false primary vertices can be categorised depending on the misidentification
into:

� charm - when the reconstructed primary vertex is a charm decay vertex,

� beauty - when the reconstructed primary vertex is a beauty decay vertex,

� other.

Table A.7 presents the efficiency comparison for all primary vertex categories between
nominal (minTracks = 5, maxχ2 = 9.0) and optimal (minTracks = 4, maxχ2 = 12.0,r < 0.2)
conditions for the online 2015 algorithm. Similar results for the fake rate are collected
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Table A.7: Comparison of reconstruction efficiency for nominal (minTracks = 5, maxχ2 = 9.0)
and optimal (minTracks = 4, maxχ2 = 12.0,r < 0.2) conditions for the online 2015 algorithm
split by true PVs categories.

Nominal Optimal
true PV category Efficiency [%]

All 93.3 96.6

Isolated 93.3 98.0
Non-Isolated 79.8 87.0

1st 99.6 99.9
2nd 92.3 96.4
3rd 83.1 91.1

charm 98.1 99.4
beauty 98.6 99.1
other 86.5 93.1

Table A.8: Comparison of fake rate for nominal (minTracks = 5, maxχ2 = 9.0) and optimal
(minTracks = 4, maxχ2 = 12.0,r < 0.2) conditions for the online 2015 algorithm split by
false PV categories.

Nominal Optimal
false PV category Fake rate [%]

All 3.5 1.0

charm 0.1 0.1
beauty 2.5 0.8
other 0.9 0.1

in Tab. A.8. A substantial gain is visible for each category of true PVs, in particular for
Non-Isolated (8%), 3rd (8%) and other (7%). The global efficiency increased by 3.3%.
At the same time the fake rate reduces from 3.5% to 1.0%, with the most substantial
reduction for beauty primary vertex misidentification, from 2.8% to 0.8%.

The reconstruction efficiency depends on the track multiplicity associated to the vertex,
which varies with the data samples used. Moreover, a non-negligible effect occurs due to
different numbers of pp interactions. In the case of multiple pp interactions the efficiency
of close vertices is degraded; the lower multiplicity PV are affected due to track migration
from the low multiplicity primary vertices to high multiplicity one. The efficiency of all
true PVs as a function of track multiplicity is shown in Fig. A.11 for both the optimal
and nominal conditions of the online 2015 algorithm. The PV reconstruction efficiency is
high for large track multiplicity in the vertex. A substantial gain with respect to nominal
conditions is observed for low track multiplicity.

A.3 Conclusion

Detailed studies of the primary vertex reconstruction have been performed. Thanks to
using Kalman fitted VELO tracks as input the performance of the new algorithm is more
similar to offline approach. In addition, in order to maximise the reconstruction efficiency
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Figure A.11: Reconstruction efficiency as a function of track multiplicity for nominal
(minTracks = 5, maxχ2 = 9.0) and optimal (minTracks = 4, maxχ2 = 12.0, r < 0.2 conditions
and all reconstructed PVs.

and minimise the fake rate online 2015 algorithm has been optimised. The new working
point is found to be minTracks = 4, maxχ2 = 12.0, r < 0.2 with a 3% gain for efficiency
and ∼70% fake rate reduction.
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B B2DXFitters package

The B2DXFitters is a public package, which is a part of the Urania software project (see
Fig. 3.15). It is based on the RooFit [75] framework and contains a core written in C++
followed by python scripts. The package provides all necessary scripts for performing the
time-dependent measurement of beauty meson decays and is successfully used by other
time-dependent analyses which consider similar decay chains.

As presented in Fig. B.1 the main fitting procedure is split in three stages. In addition
to the classes included in the RooFit framework it uses:

Figure B.1: A flowchart of the main fitting procedure in B2DXFitter package.

� preparing PDFs,
which selects candidates under conditions set in MDFitterSetting and saves ob-
tained data in the external file together with all necessary PDFs. The main classes
are: GeneralUtils provides input/output tools, MassFitUtils is responsible for se-
lecting candidates from data and simulation, WeightingUtils provides PIDK PDFs,
HistPID1D weights PDFs by misidentification/efficiency of the PIDK requirements,
HistPID2D applies two dimensional weighting for simulation samples to look like
data and RooBinned1D-QuinticBase creates PDFs without freedom paramaters.

� performing multidimensional fit,
which executes the multidimensional fit described in Chapter 6 and obtain sWeights.
The main classes are: Bs2Dsh2011TDAnaModels contains all signal and background
description and creates total PDFs, GeneralUtils provides input/output tools,
FitMeTool is responsible for fit settings and obtaining sWeights, MDFitterSetting
set data and PDFs configurations.

� performing decay-time fit,
carries out the sFit. The main classes are: SFitUtils provides the sWeighted
and combined data set as well as creates all necessary mistag rate and decay-
time uncertainties PDFs, DecRateCoeff obtains the coefficients which are in front
of the CP parameters in decay rates given by Eq. 7.9, all detector effects such
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as detector/production asymmetries are taken into account, GeneralUtils pro-
vides input/output tools, RooCubicSplineFun creates the decay-time acceptance
using splines described in Sec. 8.2, RooGaussEfficiencyModel obtains per-candidate
decay-time resolution presented in Sec. 8.1, MistagCalibration provides calibrated
mistag rate. The decay-time PDFs is taken as standard RooFit class: RooBDecay.

In addition to the main fitting procedure the package provides all the necessary
scripts for visualisation of the obtained results. Moreover, a standalone pseudo experiment
generator is a part of the package, which together with the fitting scripts allow to perform
full studies. A standalone code produces samples in the same format as the data. It is
a unique approach, which helps to find any incorrectly modelled effects in the main fit
procedure. Furthermore, the B2DXFitter package supports: obtaining correlations between
observables (see Fig. 6.1), determination of the expected background yields together with
fitting B0

s→ D−s π
+ under Λ

0

b→ Λ
−
c π

+ mass hypothesis (described in Sec. 6.3), performing
fits to signal simulation samples and combinatorial background samples taken from the
sideband, the calibration mistag rate using B0

s → D−s π
+sFit, performing fits to decay-

time acceptance in simulation samples (see Fig. 8.6) and obtaining the triple Gaussian
decay-time resolution model (see App. G).
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C Additional information about selection.

Detailed information about the requirements applied in all stages of the trigger selection is
listed in Tab. C.1 for the 1TrackAllL0 line, Tab. C.2 for the 2-, 3-, or 4-body TopoBBDT
lines and Tab. C.3 for the inclusive φ0 → K+K− trigger line. The requirements used in
the preselection are shown in Tab. C.4.

Table C.1: Selection criteria applied to candidates in 1TrackAllL0 at the HLT1 trigger
stage. Ref. [67]

Applied to Description Requirement

Velo tracks IP > 100 µm

Number of hits > 9

Number of missed hits < 3

Other tracks IPχ2 > 16

Number of hits > 16

pT > 1700 MeV/c

p > 10 GeV/c

track χ2/ndf < 2.5

Table C.2: Selection applied to candidates in the 2-, 3-, or 4-body TopoBBDT at the HLT2
trigger stage. Indication > 3, 4, 4 GeV/c means that requirements > 3, > 4 and > 4 are
applied to 2-body, 3-body and 4-body combination, respectively. Ref. [119]

Applied to Description Requirement

Input track IP χ2 > 4

track χ2 < 3

p > 5 GeV/c

2-,3-, or 4-body
∑ |pT | > 3, 4, 4 GeV/c

combination DOCA < 0.2 mm
FDχ2 wrt. PV > 100

pT > 500 MeV/c

BDT > 0.4, 0.4, 0.3

invariant mass < 7 GeV/c2
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Table C.3: Selection applied to candidates in the inclusive φ0 → K+K− trigger line at the
HLT2 trigger stage. Ref. [119]

Applied to Description Requirement

K± IP χ2 > 6

track χ2 < 5

pT > 800 MeV/c

PIDK > 0

φ0(1020) m(K+K−) in [1000, 1040] MeV/c2

pT > 1800 MeV/c

Vertex χ2 < 20

DOCA < 0.2 mm

Table C.4: The preselection requirements.
Applied to Description Requirement

All tracks track χ2/ndf < 4

IPχ2 > 4

p > 1 GeV/c

pT > 0.1 GeV/c

D0
s

∑
pT > 1.8 GeV/c

DOCA < 0.5 mm
Vertex χ2/ndf < 10

FDχ2 wrt. PV > 36

DIRA wrt. PV > 0

At least one child with:
track χ2/ndf < 10

p > 5 GeV/c

pT > 0.5 GeV/c

bachelor track χ2/ndf < 10

p > 5 GeV/c

pT > 0.5 GeV/c

B0
s

∑
pT > 5 GeV/c

Vertex χ2/ndf < 10

FDχ2 wrt. PV > 36

IPχ2 < 25

decay-time > 0.2 ps
DIRA wrt. PV > 0.999

BDT > 0.5
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D Fit to the B0→ D−π+ data sample

This appendix contains additional information about fits to the control mode: B0→ D−π+,
D−→ K+π−π−. The selection of the B0→ D−π+ sample is listed in Tab. D.1. The fits
to the combinatorial background from m(D−π+) invariant mass sideband: m(D−π+) ∈
[5450, 7000] MeV/c2, but with full m(K+π−π−) range: m(K+π−π−) ∈ [1830, 1920] MeV/c2

are shown in Fig. D.1. The PDFs for the backgrounds used in control sample A (without
PIDK cut on the bachelor) are presented in Fig. D.2. Tables D.2 and D.3 contain the
results of fitting a double Crystal Ball function to m(D−π+) and m(K+π−π−) invariant
mass, respectively, based on simulation B0→ D−π+ samples. Finally, the numerical results
of fits to control sample A and B are listed in Tab. D.4 and Tab. D.5, respectively.

Table D.1: Offline selection for B0 → D−π+ candidates. The only difference between
control sample B and control sample A is due to the PIDK cut to the bachelor pion.

Description Requirement

BDTG response > 0.3

m(D−π+) mass [5000, 6000] MeV/c2

m(K+π−π−) mass [1830, 1910] MeV/c2

D− decay-time (wrt. B0) > 0 ps

D− FDχ2 (wrt. B0) > 9

PIDK < 0 (sample B) or none (sample A)

m(π−K+) > 840 MeV/c2

B0 → D0K+π−, D0 → K+π− veto
m(D−π+) with π misID as K not in [1850, 1890] MeV/c2

semileptonic backgrounds veto
PIDµ < 2

B0 → D∗−(D0π−)π+, D0 → K+π−π0 veto
(m(K+π−π−)−m(π−K+)) > 200

Λ+
c veto:
p veto for pions, or PIDp < 0, or
m(K+π−π−) under m(pK−π−) hypothesis not in [2255, 2315] MeV/c2

D−s veto:
kaon veto for pions, or PIDK < 0, or
m(K+π−π−) under m(K+K−π−) hypothesis not in [1950, 2300] MeV/c2
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Figure D.1: The results of the fit to the combinatorial background in the B0→ D−π+

sample. The solid, blue curve corresponds to the result of the fit. Left: m(D−π+) invariant
mass. Right: m(K+π−π−) invariant mass.

Table D.2: Parameters for the sum of the double Crystal Ball function describing the
signal m(D−π+) invariant mass for the B0→ D−π+ decay, obtained from signal simulation
samples.

Parameter
Fitted value

Control sample A Control sample B

µB0 [ MeV/c2 ] 5279.3 ± 0.1 5280.2 ± 0.1
σ1
B0 [ MeV/c2 ] 27.5 ± 0.7 8.6 ± 0.7
σ2
B0 [ MeV/c2 ] 13.1 ± 0.13 14.5 ± 0.1
α1
B0 1.0 ± 0.1 0.9 ± 0.1
α2
B0 -4.8 ± 1.2 -2.1 ± 0.1
n1B0 2.3 ± 0.3 1.8 ± 0.1
n2B0 18.0 ± 14.3 5.4 ± 1.1
fB0 0.17 ± 0.01 0.25 ± 0.02

Table D.3: Parameters for the sum of the double Crystal Ball function describing the signal
m(K+π−π−) invariant mass for the B0→ D−π+ decay, obtained from signal simulation
samples.

Parameter
Fitted value

Control sample A Control sample B

µD− [ MeV/c2 ] 1869.8 ± 0.04 1869.8 ± 0.04
σ1
D− [ MeV/c2 ] 9.8 ± 0.3 10.0 ± 1.5
σ2
D− [ MeV/c2 ] 5.6 ± 0.1 5.6 ± 0.3
α1
D− 1.8 ± 0.06 1.7 ± 0.1
α2
D− -2.8 ± 0.2 -3.0 ± 1.7
n1D− 1.6 ± 0.1 1.5 ± 0.1
n2D− 0.9 ± 0.3 0.6 ± 2.2
fD− 0.22 ± 0.02 0.41 ± 0.12
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Figure D.2: The background PDFs for the control sample A used in the fit to the
B0→ D−π+ sample, combined for both magnet polarities. Left: m(D−π+) invariant mass.
Right: m(K+π−π−) invariant mass. Different background contributions are shown as
coloured lines as described in the legend above the plots.

Table D.4: Results for the control sample A fit to the B0→ D−π+ sample. The Ni are the
yields of the signal and background contributions. Means µB0 and µD− are the parameters of
the double Crystal Ball used to describe the signal in m(D−π+) and m(K+π−π−) invariant
masses, respectively. The sB0(D−) are the slopes of combinatorial background. The fraction fCB0

s

is the fraction between exponentials in m(D−π+) invariant mass, whereas fD− are the fractions
between the exponential and signal PDF in m(K+π−π−) invariant mass.

Parameter
Fitted value

Parameter Fitted value
Magnet Down Magnet Up

NB0→D−π+ 77571 ± 334 53880 ± 274 σ1
B0 [ MeV/c2 ] 25.9 ± 0.38

NB0→D−ρ+ 37813 ± 553 26802 ± 456 σ2
B0 [ MeV/c2 ] 15.9 ± 0.07

NB0→D∗−π+ 17242 ± 489 11632 ± 409 σ1
D− [ MeV/c2 ] 11.5 ± 0.06

NB0
s→D

−
s π+ 1021 ± 123 955 ± 106 σ2

D− [ MeV/c2 ] 6.7 ± 0.03

N
Λ

0
b→Λ

−
c π

+ 308 ± 106 236 ± 87 s2B0 -0.0042 ± 0.00011

NComb 20481 ± 302 14221 ± 239 sD− -0.0014 ± 0.00032
µB0 [ MeV/c2 ] 5283.2 ± 0.10 5282.6 ± 0.08 fCB0 0.78 ± 0.01
µD− [ MeV/c2 ] 1871.2 ± 0.03 1871.0 ± 0.03 fCD− 0.83 ± 0.01

Table D.5: Results for the control sample B fit to the B0→ D−π+ sample. The Ni are the
yields of the signal and background contributions. Means µB0 and µD− are the parameters of
the double Crystal Ball used to describe the signal in m(D−π+) and m(K+π−π−) invariant
masses, respectively. The sB0(D−) are the slopes of combinatorial background. The fraction fCB0

s

is the fraction between exponentials in B0 mass, whereas fCD− are the fractions between the
exponential and signal PDF in m(K+π−π−) invariant mass.

Parameter Fitted value Parameter Fitted value Parameter Fitted value

NB0→D−π+ 109420 ± 360 µB0 [ MeV/c2 ] 5283.8 ± 0.06 s1B0 0.0 ± 0.0
NB0→D−ρ+ 54240 ± 632 µD− [ MeV/c2 ] 1871.1 ± 0.02 s2B0 -0.00418 ± 0.00016
NB0→D∗−π+ 24395 ± 554 σ1

B0 [ MeV/c2 ] 10.94 ± 0.25 sD− -0.00096 ± 0.00038
NB0

s→D
−
s π+ 1294 ± 119 σ2

B0 [ MeV/c2 ] 17.66 ± 0.08 fCB0 0.186 ± 0.017

N
Λ

0
b→Λ

−
c π

+ 213 ± 298 σ1
D− [ MeV/c2 ] 11.54 ± 0.07 fCD− 0.872 ± 0.009

NComb 23413 ± 401 σ2
D− [ MeV/c2 ] 6.68 ± 0.03
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E Signal and background PDFs used in the fit to the
B0
s→ D−s π

+ sample

E.1 Signal

The signal PDFs for B0
s→ D−s π

+ are shown in Fig. E.1. The results of the double Crystal
Ball parametrisation are listed in Tab. E.1 separately for each D−s final state, for the
m(D∓s h

±) invariant mass, while the results for the m(h−h+h±) invariant mass are collected
in Tab. E.2.
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Figure E.1: Signal PDFs of B0
s → D−s π

+ sample as evaluated from simulation on the joint
magnet up and down samples, separately for each D−s final states. Different D−s final states
are shown as blue lines as described in the legend placed in the bottom right. Top left: the
m(D−s π

+) invariant mass together with the resulting pull distributions, top right: the -PIDK
variable, bottom: the m(h−h+h±) invariant mass together with the resulting pull distributions.

Table E.1: Parameters for the sum of the double Crystal Ball function describing the
signal m(D∓s h

±) invariant mass of B0
s→ D−s π

+ sample, obtained from signal simulation,
separately for each D−s final state.

Parameter D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

µB0
s

[ MeV/c2 ] 5366.3 ± 0.04 5366.3 ± 0.02 5366.3 ± 0.02 5366.2 ± 0.04 5366.2 ± 0.05
σ1
B0

s
[ MeV/c2 ] 11.54 ± 0.13 16.60 ± 0.17 11.65 ± 0.14 11.43 ± 0.13 11.39 ± 0.10

σ2
B0

s
[ MeV/c2 ] 16.18 ± 0.09 11.49 ± 0.08 15.00 ± 0.09 16.87 ± 0.12 17.65 ± 0.10

α1
B0

s
1.91 -2.09 1.70 1.91 2.09

α2
B0

s
-2.04 1.89 -1.84 -2.26 -2.33

n1B0
s

1.13 ± 0.02 5.27 ± 0.26 1.27 ± 0.02 1.16 ± 0.02 1.27 ± 0.02

n2B0
s

6.14 ± 0.51 1.15 ± 0.02 9.66 ± 0.09 4.12 ± 0.33 4.02 ± 0.36

fB0
s

0.54 ± 0.04 0.44 ± 0.02 0.54 ± 0.03 0.54 ± 0.04 0.70 ± 0.02
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Table E.2: Parameters for the sum of the double Crystal Ball function describing the
signal m(h−h+h±) invariant mass of B0

s→ D−s π
+ sample, obtained from signal simulation,

separately for each D−s final state.
Parameter D−s → (KKπ)nonres D−s → φπ− D−s → K∗0K− D−s → K−π+π− D−s → π−π+π−

µD−s [ MeV/c2 ] 1969.0 ± 0.02 1968.9 ± 0.01 1968.9 ± 0.01 1969.0 ± 0.04 1968.8 ± 0.05
σ1
D−s

[ MeV/c2 ] 4.39 ± 0.08 8.72 ± 0.08 7.88 ± 0.08 6.77 ± 0.19 8.42 ± 0.12

σ2
D−s

[ MeV/c2 ] 7.15 ± 0.15 4.62 ± 0.03 4.59 ± 0.05 6.49 ± 0.16 7.26 ± 0.18

α1
D−s

2.20 ± 0.12 1.80 ± 0.04 1.97 ± 0.05 0.92 ± 0.11 0.95 ± 0.11

α2
D−s

-2.02 ± 0.09 -3.21 ± 0.12 -2.77 ± 0.11 -1.28 ± 0.04 -1.04 ± 0.06

n1
D−s

0.79 ± 0.15 2.67 ± 0.31 2.08 ± 0.24 9.28 ± 5.59 12.9 ± 11.1

n2
D−s

5.56 ± 1.13 0.45 ± 0.14 1.08 ± 0.20 46.5 ± 9.30 70.0 ± 8.15

fD−s 0.49 ± 0.03 0.35 ± 0.09 0.46 ± 0.02 0.36 ± 0.04 0.50 ± 0.06

E.2 Combinatorial background

The parameterizations of the combinatorial background in the B0
s→ D−s π

+ sample using
the sideband region m(D∓s h

±) > 5800 MeV/c2 region with the full D−s range: m(h−h+h±) =
(1930, 2015) MeV/c2 are shown in Fig. E.2.
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Figure E.2: Combinatorial background PDFs of B0
s→ D−s π

+ sample as evaluated from m(D∓s h
±)

invariant mass sideband on the joint magnet up and down samples, separately for each D−s final
states. For the m(D∓s h

±) and m(h−h+h±) invariant masses, different D−s final states are shown
as blue lines as described in the legend in the legend placed in the bottom right. For the PIDK
variable pion and kaon components are described in the legend placed on the plots. Top left: the
m(D−s π

+) invariant mass together with the resulting pull distributions, top right: the -PIDK
variable, bottom: the m(h−h+h±) invariant mass together with the resulting pull distributions.
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E.3 Other fully and partially reconstructed backgrounds

The PDFs for fully reconstructed backgrounds: B0→ D−π+, Λ
0

b→ Λ
−
c π

+ and B0
s→ D∓s K

±

as well as the partially reconstructed: B0
s→ D∗−s π+ are shown in Fig. E.3
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Figure E.3: The resulting PDFs taken from simulation for the remaining fully reconstructed
backgrounds in the B0

s→ D−s π
+ sample. Different background contributions are shown as

coloured lines as described in the legend above the plots. Left: m(D∓s h
±) invariant mass,

Middle: m(h−h+h±) invariant mass, Right: -PIDK variable.
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Figure F.1: Result of the simultaneous fit to the B0
s → D−s π

+ candidates. Distributions of
m(D∓s h

±) invariant mass for D−s final states with combined magnet polarities, from top left to
bottom: D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K−, D−s → K−π+π− and D−s → π−π+π−.
Different contributions to the fit are shown as coloured areas (for backgrounds) or dashed line
(for signal) as described in the legend placed in the bottom right.
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Figure F.2: Result of the simultaneous fit to the B0
s→ D−s π

+ candidates. Distributions
of m(h−h+h±) invariant mass for D−s final states with combined magnet polarities, from
top left to bottom: D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K−, D−s → K−π+π−

and D−s → π−π+π−. Different contributions to the fit are shown as coloured areas (for
backgrounds) or dashed line (for signal) as described in the legend placed in the bottom
right.
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Figure F.3: Result of the simultaneous fit to the B0
s→ D∓s K

± candidates. Distributions
of -PIDK for D−s final states with combined magnet polarities, from top left to bottom:
D−s → (KKπ)nonres, D−s → φπ−, D−s → K∗0K−, D−s → K−π+π− and D−s → π−π+π−.
Different contributions to the fit are shown as coloured areas (for backgrounds) or dashed
line (for signal) as described in the legend placed in the bottom right.
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G Decay-time resolution modelled by a triple Gaus-
sian

The decay-time resolution is determined in the following way:

� the PDF of the estimated decay-time uncertainties PDF (σt) are taken from sWeighted
B0
s→ D−s π

+ and B0
s→ D∓s K

± data, as shown in Fig. 8.3,

� the decay-time observable t is distributed as a Gaussian with mean µ = 0 and width
σ = σt: PDF (τ |σt) = G(µ, σt; t),

� the conditional decay-time PDF is defined as: PDF (t) = PDF (t|σt) · PDF (σt),

� the decay-time resolution is parametrised by a triple Gaussian:

R(σ1, σ2, σ3, f1, f2; t) = f1G(0, σ1; t) + f2G(0, σ2; t) + (1− f1 − f2)G(0, σ3; t), (8)

where G(0, σi; t) denotes single Gaussian distribution with mean µ = 0 and width
σ = σi,

� the decay-time resolution is fitted to the conditional time distribution PDF (t).

The obtained results are shown in Fig. G.1 and collected in Tab. G.1. The fitted parameters
are in good agreement between the two modes. In the decay-time sFit to data, the widths
of the resolution have to multiplied by the scale factor: sσt = 1.37± 0.10.
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Figure G.1: The resolution model parametrises by the triple Gaussian for the B0
s→ D∓s K

±

(left) and B0
s→ D−s π

+ (right) decays.

Table G.1: Result of fitting decay-time resolution modelled by the triple Gaussian to the
B0
s→ D−s π

+ and B0
s→ D∓s K

± samples.
Parameters Fit to B0

s→ D−s π
+ Fit to B0

s→ D∓s K
±

f1 33.7 ± 3.4 36.7 ± 3.5
f2 58.6 ± 2.5 55.4 ± 2.6
σ1 [ps] 2.10 ± 0.06 2.19 ± 0.06
σ2 [ps] 3.61 ± 0.09 3.73 ± 0.09
σ3 [ps] 6.14 ± 0.17 6.30 ± 0.17
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H Acceptance parameter correlations

Here are the correlation matrices of the six spline parameters of the decay-time acceptance
parameterisation, discussed in the decay-time acceptance section (Sec. 8.2), and needed to
evaluate the systematics in Sec. 10.5.

Table H.1: Correlation matrix of the B0
s→ D−s π

+ acceptance sFit on data, corresponding
to the results given in Tab. 9.1.

Params. v1 v2 v3 v4 v5 v6

v1 1.000 0.868 0.779 0.892 0.894 0.840
v2 0.868 1.000 0.615 0.870 0.822 0.797
v3 0.779 0.615 1.000 0.695 0.857 0.725
v4 0.892 0.870 0.695 1.000 0.840 0.878
v5 0.894 0.822 0.857 0.840 1.000 0.748
v6 0.840 0.797 0.725 0.878 0.748 1.000

Table H.2: Correlation matrix for parameters listed in Tab. 8.1 (the B0
s→ D−s π

+ simula-
tion).

Params. v1 v2 v3 v4 v5 v6

v1 1.000 0.893 0.842 0.917 0.922 0.874
v2 0.893 1.000 0.702 0.898 0.859 0.836
v3 0.842 0.702 1.000 0.765 0.895 0.787
v4 0.917 0.898 0.765 1.000 0.873 0.899
v5 0.922 0.859 0.895 0.873 1.000 0.801
v6 0.874 0.836 0.787 0.899 0.801 1.000

Table H.3: Correlation matrix for parameters listed in Tab. 8.1 (the B0
s→ D∓s K

± simula-
tion).

Params. v1 v2 v3 v4 v5 v6

v1 1.000 0.893 0.835 0.916 0.919 0.873
v2 0.893 1.000 0.695 0.898 0.857 0.836
v3 0.835 0.695 1.000 0.760 0.891 0.782
v4 0.916 0.898 0.760 1.000 0.873 0.900
v5 0.919 0.857 0.891 0.873 1.000 0.800
v6 0.873 0.836 0.782 0.900 0.800 1.000
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Table H.4: Correlation matrix for parameters listed in Table 8.1 (ratios of acceptance
parameters B0

s→ D∓s K
±/B0

s→ D−s π
+). These correlations are computed by propagating

the covariances of Tabs. H.2 and H.3 through the calculation of the ratio.
Params. v1 v2 v3 v4 v5 v6

v1 1. 0.72 0.71 0.8 0.79 0.76
v2 0.72 1. 0.55 0.79 0.73 0.72
v3 0.71 0.55 1. 0.77 0.9 0.78
v4 0.8 0.79 0.77 1. 0.87 0.91
v5 0.79 0.73 0.9 0.87 1. 0.8
v6 0.76 0.72 0.78 0.91 0.8 1.
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