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Abstract

Natural language has a number of features that allow it to be treated as a com-
plex system. It has a complicated, hierarchical organization, and the properties and
interactions appearing in its structures might not be directly deducible from the
properties of the elements of which these structures are built. The subject of this
thesis is the study of several aspects of natural language organization, namely the
ones that can be characterized with the use of the formalism commonly applied in
research on complex systems. The study focuses on written language, in the form
of literary texts in several European languages (English, German, French, Italian,
Spanish, Polish and Russian). The first part of the analysis discusses power-law
distributions describing word frequencies in texts and investigates how the shapes
of these distributions are changed when the frequencies of punctuation marks are
taken into consideration. The next part focuses on representing texts in the form of
time series constructed on the basis of text’s partition into sentences or into pieces
between consecutive punctuation marks. It turns out that these series have features
often found in signals generated by complex systems - the presence of long-range
correlations along with fractal or multifractal structures. Moreover, the analysis
of the partition of texts into pieces determined by punctuation allows to observe
that the distances between consecutive punctuation marks can be described using
the discrete Weibull distribution; this can be considered a statistical regularity that
applies to texts in all the languages studied in the thesis. The last part of the dis-
sertation is devoted to linguistic networks (networks representing selected aspects of
language organization) and focuses on word-adjacency networks - whose structure
reflects the co-occurrence of words in texts. The results of word-adjacency network
analysis indicate that the quantities characterizing such networks can be used for the
classification of texts, for example in authorship attribution. In addition, methods
routinely used in research on complex networks have been applied to linguistic net-
works of a different type, namely the so-called word-association networks, which are
constructed on the basis of data collected in certain psycholinguistic experiments.
This has allowed to reveal complex structures, significantly different from those ob-
served in random networks. In all of the presented analyzes pertaining to written
language, punctuation and its impact on the measurable traits of language is the
key issue. In the analysis of word frequency distributions, punctuation marks are
treated as words - this leads to a better agreement between the observed distribu-
tions and power-law distributions proposed by Zipf’s law. Introducing punctuation
into word-adjacency networks provides valuable information which can be used to
significantly improve the effectiveness of identifying features distinguishing one text
from another. The results of time series analysis show that the organization that
punctuation introduces into language has both largely universal properties (common
to many different texts) and certain features characteristic of particular texts - for
example, texts in a specific language.



Streszczenie

Jezyk naturalny posiada szereg specyficznych cech, ktére pozwalaja traktowaé go
jak uklad zlozony. Ma on skomplikowana, hierarchiczng organizacje, a wlasciwosci
i oddzialywania charakterystyczne dla poszczegélnych jego struktur niekoniecznie
wynikaja wprost z wiadciwosci elementow sktadajacych sie na te struktury. Tema-
tem pracy jest badanie tych aspektéw organizacji jezyka naturalnego, ktére w uzy-
teczny sposéb mozna opisywaé za pomocg formalizmu stosowanego do opisu ukta-
déw ztozonych. Przedmiotem analizy jest jezyk w formie pisanej - ktorego prébke
stanowia teksty literackie w kilku jezykach europejskich (angielskim, niemieckim,
francuskim, wloskim, hiszparniskim, polskim i rosyjskim). Pierwsza badana kwestia
sg rozklady potegowe opisujace czesto$é wystepowania stéw w tekstach oraz wplyw,
jaki na ksztalt tych rozkladéw ma uwzglednienie czestosci wystepowania znakdéw
interpunkcyjnych. Kolejnym zagadnieniem jest reprezentacja tekstow w postaci sze-
regdw czasowych, skonstruowanych w oparciu o podzial na zdania lub na fragmenty
pomiedzy kolejnymi znakami interpunkcyjnymi. Okazuje si¢, ze szeregi te posiadaja
cechy czesto spotykane w sygnalach generowanych przez uklady zlozone - obecnosé
korelacji dtugozasiegowych i zwiazanych z nimi odpowiednich struktur fraktalnych
lub multifraktalnych. Co wiecej, analiza podzialu tekstow na fragmenty wyzna-
czone przez interpunkcje pozwala zaobserwowaé, ze odlegtosci pomiedzy kolejnymi
znakami interpunkcyjnymi mozna opisaé¢ za pomoca dyskretnego rozktadu Weibulla;
stanowi to pewng, statystyczng prawidtowo$é, ktérej podlegaja teksty we wszystkich
przebadanych w pracy jezykach. Ostatnia czesé rozprawy poswiecona jest sieciom
lingwistycznym (sieciom zlozonym reprezentujacym wybrane aspekty organizacji je-
zyka) i koncentruje sie na sieciach sasiedztwa stéw - ktérych struktura odzwiercie-
dla wspotwystepowanie stéw w tekstach. Rezultaty badania sieci sasiedztwa stéw
wskazuja, ze wielkoSci charakteryzujace takie sieci moga by¢ wykorzystywane do
klasyfikacji tekstéw, na przyklad w rozpoznawaniu autorstwa. Dodatkowo, metody
analizy sieci zostaly zastosowane do sieci lingwistycznych innego typu, konkretnie do
tak zwanych sieci skojarzen pomiedzy stowami, skonstruowanych w oparciu o dane
pochodzace z odpowiednich eksperymentow psycholingwistycznych. W sieciach tych
zostaly zidentyfikowane zlozone struktury, istotnie rézne od tych, ktére mozna za-
obserwowa¢ w sieciach przypadkowych. We wszystkich przeprowadzonych anali-
zach dotyczacych jezyka pisanego kluczowym zagadnieniem jest interpunkcja i jej
wplyw na mierzalne cechy jezyka. W analizie czestoéci wystepowania stow znaki
interpunkcyjne sg traktowane jak stowa, co prowadzi do zwigkszenia zgodnosci roz-
ktadu czestosci z rozktadem potegowym, okreslonym prawem Zipfa. Wziecie pod
uwage interpunkcji w sieciach sasiedztwa stow dostarcza uzytecznej informacji, kté-
rej uwzglednienie istotnie poprawia efektywnos¢ identyfikacji cech rozrézniajacych
teksty. 7 rezultatow analizy szeregdw czasowych wynika, ze organizacja, jaka do
jezyka wprowadza interpunkcja, ma zaréwno wlasciwosci w znacznym stopniu uni-
wersalne (wspélne dla réznych tekstéw), jak i pewne cechy charakterystyczne dla
poszczegdlnych tekstéw - na przyktad dla tekstéw w konkretnym jezyku.
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Introduction

One of the reasons for which humans can be considered extraordinary among all
species present on Earth is the ability to think in abstract categories and to efficiently
communicate the results of such a thinking process. Although research indicates that
some animals are capable of solving tasks appearing to require abstract reasoning
and are able to communicate with each other, the complexity and sophistication
of human cognitive and communication abilities are enormously superior to those
possessed by any other known organisms. The ability to use language is a key
factor that allowed for the development of civilization and culture, things that are
considered unique for humans.

Language is such an important and multifaceted phenomenon that it draws the
attention of a great variety of academic disciplines. To grasp the diverse properties
of language and to be able to describe it possibly comprehensively, an interdisci-
plinary approach is required. Language is a set of symbols and rules, an organism’s
ability to generate sounds, a communication tool, a logical system of notions guiding
the thinking process, as well as a social and cultural phenomenon. Therefore the
fields actively studying subjects related to language range from humanities through
social sciences to natural and formal sciences, each of them focusing on a differ-
ent perspective.

Mathematics and physics offer tools that can be successfully applied to language
study. A number of concepts originating in these sciences have found their use in
the quantitative description of natural language. In physics, an approach that seems
to be particularly fruitful is the one based on the notion of the so-called complex
systems - a class of systems, typically consisting of a large number of constituents,
whose general properties usually cannot be deduced only from the properties of those
constituents. Complex systems can often be characterized by the phrase "the whole
is something beside the parts”. This seems to be well suited for the natural language,
whose complicated multilevel structure cannot be simply reduced to a set of rules
or laws. A number of traits that are commonly shared among complex systems can
be found in natural language, for example hierarchical structure, fractality, or the
presence of power laws.

In physics, the description of systems consisting of a great number of elements
is naturally done with the use of statistical mechanics; this also applies to complex
systems. Due to their generality, statistical physics’ tools can be used to study a
broad class of systems, ranging from "purely physical”, through biological, to so-
cial and economic ones. Common statistical properties of these systems can often
be grasped by models using stochastic processes characterized by heavy-tailed dis-
tributions, hierarchical structure and long-range correlations might be detected by
fractal and multifractal analysis, and mutual relations among system’s elements are
usually conveniently represented by a complex network. These tools, among others,
have been successfully applied to the challenging field of quantitative research on
natural language. Studying language from physics’ point of view gives insight into
its complex structure, allows to investigate its usage and evolution, and can also
have practical applications in designing tools and methods of automatic language



processing, which are probably going to have a growing impact on everyday life
in the future.

The goal of this dissertation is to quantitatively describe several properties of
natural language (primarily in its written form, as the data used in the analysis
consists of corpora constructed from literary texts in a few different languages). The
investigated subjects include: power-law distributions describing word frequencies in
linguistic corpora, long-range correlations leading to fractal or multifractal structure
of time series representing samples of written language, and the organization of
networks illustrating relationships between words in texts. A key issue is how the
properties of language seen from the mentioned perspectives are influenced by the
presence and the specific usage of punctuation marks. The main theses of this
dissertation can be summarized in the form of the following statements.

o Zipf-Mandelbrot law - stating that word frequency distributions in texts have
the form of a power law with the exception of a few most frequent words, for
which a deviation from a power law can be observed - can be modified to take
punctuation marks into account (by treating them in the same way as words).
Such a modification reduces the deviation from the power-law form of the rank-
frequency relationship. In other words, including punctuation marks into word
frequency analysis brings word frequency distribution closer to a power law.

e The structure of texts constituted by the partition into sentences is characterized
by the presence of long-range correlations (in time series constructed from the
lengths of consecutive sentences) and statistical self-similarity; certain types of
texts even exhibit multifractality. Another possible partition of a text is given by
all punctuation marks. Interestingly, the mentioned characteristics (long-range
correlations, fractality, and multifractality) can also be identified in time series
representing the distances (measured in the number of words) between consecutive
punctuation marks. The two discussed types of partition lead to two types of
time series which are distinct, but related - as sentences are marked by a subset
of the set of all punctuation marks. The variability range of Hurst exponents
and the degree of multifractality observed in time series representing distances
between punctuation marks is systematically smaller than in series representing
sentence lengths. This suggests that partitioning a text into pieces separated
by punctuation marks is less diversified and leaves less freedom to the writer
than partitioning into sentences. From such a point of view, sequences of words
between consecutive punctuation marks can be considered text’s "building blocks”
of nature more fundamental than sentences.

o The distribution of distances between consecutive punctuation marks (measured
in the number of words between them) can be approximated with the so-called
discrete Weibull distribution. This seems to apply universally to large variety of
texts (texts in various languages utilizing diverse styles of writing) and allows to
use a simple model to characterize the process which determines where punctua-
tion marks are placed in a text. The parameters of the distributions are to some
degree specific to individual languages and therefore a quantitative comparison
between statistical properties of punctuation in different languages is possible. In-
terestingly, in terms of probability distributions, sentence lengths do not behave
as regularly as distances between consecutive punctuation marks. This suggests -
in accordance with the idea mentioned above - that when compared to partition
into sentences, the partition of a text determined by all punctuation marks yields
pieces which seem to be more restricted by rules governing text composition and
which behave in a more consistent way.



o Word-adjacency networks (networks representing the co-occurrence of words in
texts), apart from exhibiting a number of traits which can be considered quite
general and universal for language, are capable of identifying properties specific
to particular texts. This allows to use the information carried by such networks
in stylometric analysis - authorship attribution, for instance. Characteristics of
the structure of a word-adjacency network, especially in their local variant (that
is, describing the structure in the vicinity of a selected node) provide information
that is complementary to the information contained in basic quantities routinely
used in text classification (word frequencies, for example).

o If punctuation marks participate in the process of word-adjacency networks’ con-
struction, their characteristics in the resulting networks resemble the character-
istics of words belonging to the same frequency range (high frequencies). This
supports the idea of treating punctuation marks in the same way as words in
certain types of statistical analysis of written language.

o Statistical characteristics of punctuation are an important factor in identifying the
properties that distinguish one text from another. This is evidenced by the fact
that the studied text classification procedures experience a significant decrease in
accuracy when punctuation marks are removed from the analysis.

e The generality of network representation allows methods and concepts used to
quantify the properties of word-adjacency networks to be applied also to other
kinds of linguistic networks, like word-association networks (networks designed to
represent how words are associated in human mind).

The thesis is organized as follows. In Chapter 1, a few perspectives on research
on natural language are mentioned and the variety of scientific disciplines in which
language is studied is presented. Some concepts and ideas which can be considered
the foundations of computational approach to the description of language structure
are given. The chapter briefly describes the notion of a complex system and discusses
several ways of how quantifying complexity is approached. The final part of the
chapter lists a few reasons for considering natural language a complex system.

Each of the Chapters 2, 3, 4 is devoted to one aspect of the analysis of language
related to complexity - Chapter 2 focuses on power-law distributions describing
word frequencies in texts, Chapter 3 discusses insights from time series analysis
and fractal geometry applied to time series constructed from linguistic data, and
Chapter 4 presents results of investigating the properties of language with the use
of complex networks. Each of the chapters contains an introductory part, consisting
of basic notions, definitions, and methods used in the analysis.

The key conclusions are collected in Summary. Appendix A contains a short
description of one of the machine learning algorithms used in Chapter 4. The
books used as the input data throughout this dissertation are listed in Appendix B.



Chapter 1

Natural language and complex
systems

1.1 Studying natural language from various perspec-
tives

Depending on the context and aspect of interest, language can be defined in multiple
ways. One of obvious and natural ways of understanding the notion of language is
to state that language is a structured system of communication. Human language,
which spontaneously evolved with the development of human communities, is often
referred to as natural language, as opposed to formal language, which is a mathe-
matical object (a set of sequences derived from a finite set of symbols). Another
opposing term is constructed language (sometimes called conlang). Like natural lan-
guage, a constructed language is a language whose purpose is communication, but
its structure is a result of a planned activity - it is a language with artificially de-
signed vocabulary, grammar or phonology. Examples are Esperanto, Interlingua, or
languages created by fantasy writer J. R. R. Tolkien.

The ability to communicate is not an extraordinary phenomenon among animals.
Among well-known examples one may list birds singing to attract mates and to repel
rivals [1], bees dancing to inform their nestmates about the distance and direction
to food sources [2}3], or dolphins whistling to recognize each other [4-6]. There are
plenty of forms of communication between animals, with various types of signals:
visual, auditory, olfactory, tactile, etc. |7-14].

However, human language is unique compared to communication systems of
other animals. In 1960s, Charles Hockett defined a collection of essential charac-
teristics of language |15], the so-called design features, potentially useful in setting
language apart from animal communication. The original list evolved over time and
has been modified. Although its practical use is in some cases limited [16], the
idea of studying the proposed features of language strongly influenced linguistics.
Among those features, it is worth to mention displacement, productivity, cultural
transmission, duality of patterning, learnability and reflexiveness. Displacement is
the possibility of referring to events remote in space and time, to objects that are
not present in the immediate environment, or even do not exist. Productivity is
the ability of language users to create and understand new expressions that can
convey any message; productivity provides that the number of possible utterances
in any human language is infinite. Cultural transmission is constituted by the fact
that language is learned by interactions with individuals already capable of using it.
Although some predisposition to be able to use language may be innate, the key
factor in language acquisition is the social setting (it determines, for example, which



particular language is acquired as the first). Duality of patterning refers to the orga-
nization of language simultaneously on two levels: meaningless constituents (sounds,
letters) are combined into units that have particular meaning (words); these units
can be further combined into a complete message. Learnability means that a speaker
of some language can learn other languages. Reflexiveness is the ability of language
to describe itself. Humans can use language to define what language is, to discuss
its structure, or to talk about its usage. Human language is the only known system
in nature which exhibits all of the aforementioned features - animal communica-
tion systems either possess only some of them in a limited form, or do not have
them at all [17,|18].

The uniqueness of human language poses a question about its origin. However,
the development of the study on when and how human language came into exis-
tence has been severely limited by the lack of empirical evidence that could prove or
disprove numerous hypotheses [19,20]. The direct evidence of the existence of lan-
guage can be obtained by discovering the earliest traces of writing (which are dated
to about 3000 years BC), but speech is much older than written language [18,21].
Contemporary research on this subject relies on indirect information supplied by
paleontology, archaeology, biology, linguistics and cognitive science. Studying fos-
sil record may reveal human ancestors’ anatomical traits of potential relevance to
language, for example brain size. However, this line of reasoning faces certain lim-
itations, like the lack of possibility of reconstructing brain’s internal structure, or
the absence of data regarding the evolution of vocal tract [19]. A related approach
concentrates on the artefacts left by early humans - depending on the level of sophis-
tication, advanced tools or art might indicate the capability of abstract and symbolic
thinking [22]. This can confirm certain cognitive skills at a given stage of human
development, but is rather unhelpful in determining how and when exactly language
started, as language could precede fossilizable art and advanced tools [23]. A differ-
ent line of enquiry employs genetics and genomics to study the origin and migration
of human populations, as well as to identify the points in time when the lineage of
modern humans diverged from other species [19,24,25]; this allows, for example, to
put constraints on the time period when the language was born. Studying human
genome is also aimed at determining which genes are relevant for language capacity.
However, due to language complexity, a precise and consistent view on how genes are
related to the emergence of language has not yet been reached [20,[26,27]. Another
area of investigation is related to the research on animal cognition and communi-
cation. Its major direction is the study of language-related traits in non-human
primates |19}28], in particular chimpanzees, which are the closest living relatives
to humans (the last common ancestor of the two species is estimated to have lived
between 4 and 8 million years ago [24,29-33]). Assuming that a trait that is present
in all the species sharing a certain common ancestor was probably also present in
that ancestor, one may attempt to determine which species preceding humans exhib-
ited particular traits necessary for the development of language. Research on other,
more distantly related species may also be informative; an important concept here is
convergent evolution - a process of the independent development of a similar feature
in a few different species whose last common ancestor did not have that feature (an
example is the streamlined body shape shared by penguins, fish, and some aquatic
mammals [34]). Convergent evolution is a result of adaptation to similar environ-
ment in similar ways. Therefore, studying selected animals’ traits at least partially
related to language (like vocal learning, which occurs in whales, dolphins, bats and
some birds [35]) might be helpful in explaining the mechanisms that have driven the
emergence of language [28]. The problem with language-related research concerning
animals is that since human language has no similarly complex counterpart among
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animals, it is hard to find and choose animals’ features that can be unequivocally
linked to language. Also, a number of results in this field (regarding, for example,
the question whether the great apes’ gestural communication possesses some char-
acteristics of human language) are disputable and difficult to interpret [19,36-39].

With all the methods of investigating the early history of natural language having
their problems and limitations, the question about the details of language origin
remains unanswered [1§]. It is not known whether human traits relevant for language
developed as an adaptation for early forms of communication, or whether they are
a result or a byproduct of adaptation to other tasks, like tool-making or numerical
reasoning [40]. It is not known when the emergence of language started and how long
it took as well as whether language’s spoken form was the first to appear, or whether
it was preceded by gestural communication [22]. The answers of contemporary
science to these questions are still to a large extent speculative; it has been stated
that within this area of research ”"the richness of ideas is accompanied by a poverty
of evidence” [20]. The constant development of research methods gives hope for
the knowledge on language origin to become more and more detailed and precise in
the future.

Language is not a static entity. Languages continually undergo gradual changes
of lexical, phonological, syntactic and semantic nature. These changes are driven by
a number of factors, like migration and language contact, the development of tech-
nology, or people’s willingness to use the language that they associate with a certain
degree of social prestige [18|41]. Studying how language changes over time allows to
get an insight into certain cultural and social processes [42-44]. Languages influence
each other, some of languages die out, and new languages can be born. Therefore
the number of living, actively used languages also changes over time. Currently, the
number of living languages is estimated to around 7000 [45,/46] (the exact number
depends, for example, on whether some varieties are classified as separate languages
or other entities, like dialects). Research on language history aims to find laws that
govern the process of language change, and to answer the question how particular
languages are related. It often employs the method of comparing phonological, mor-
phological, or syntactic features of different languages, as well as their lexicons. A
noteworthy example of a tool used for such comparisons is the so-called Swadesh
list [47]. The Swadesh list is a list consisting of 100 or 200 words (depending on
the version; other numbers are also in use) [48], which are assumed to represent
basic vocabulary (10 examples of the words in the English Swadesh list are: water,
hand, tree, tooth, rain, moon, long, cold, give, sleep). Such list can be constructed for
virtually any language, by identifying words corresponding to the given meanings in
that language. Creating Swadesh lists for two different languages and determining
how many words are cognates (words of common etymological origin) allows to anal-
yse the lexical relationships between those languages. Quantitative description of
such relationships (Figure may be useful in answering the question whether two
languages derive from a common parent language, and, if so, when their divergence
from each other took place [49.50].

One may ask not only about how language started and evolved for the whole hu-
manity, but also about the mechanisms driving the development of language in every
individual human. Two major schools of thought regarding language acquisition may
be distinguished - one of them states that language is an ability that is learned in
the way similar to other cognitive skills [52,53], the other one (established primarily
by Noam Chomsky) says that some features of language are innate [54}/55]. The
proponents of the latter argue that the amount and the diversity of the information
that children are exposed to is too small to properly acquire language skills from
the basics. This argument, called the poverty of the stimulus, was the key reason
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Figure 1.1. The network representing lexical relationships between 63 selected languages from
the Indo-European family, based on the subset of data used by Dyen, Kruskal and Black [51]. The
data is a multilingual Swadesh list with N = 200 entries. Each entry on the list corresponds to
one meaning and consists of the words representing that meaning in the studied languages. Those
words are associated into groups reflecting their possible common origin. As a result, each pair of
words under a given entry is judged as ”cognate”; "doubtfully cognate”, or "not cognate”. One can
define the proximity n.(l1,l2) between two languages l1, I as the total number of word pairs judged
as "cognate” among all entries; consequently, the distance between [; and l2 can be expressed as
d(l1,12) = N —nc(l1,12). The network presented above is a directed tree representing hierarchical
clustering of the studied languages, using the so-defined distances. Each leaf (a node with no
ingoing edges) corresponds to one language, and each internal node (a node with ingoing edges) is
a cluster of languages. Consecutive groupings into bigger and bigger clusters are represented by
arrows (directed edges). Each cluster is labeled with its internal minimum proximity - if k is the
number labeling the cluster, then the proximity n. (the number of shared cognates) between any
two languages belonging to that cluster is not smaller than k. More advanced methods of analyzing
the distances between languages’ lexicons may be useful in attempts to reconstruct evolutionary
trees of languages, like in [49].

for introducing the concepts of language acquisition device - an innate, theoretical
component of human mind responsible for certain linguistic skills - and universal
grammar - the set of highly abstract rules and characteristics shared among all the
world’s languages, which are encoded in each human’s brain. According to the theo-
ries utilizing these concepts, children acquire language relatively quickly (regarding
the amount of the available "linguistic data”), because the core cognitive features
required are known in advance; they only have to adjust the parameters that can
vary among languages. However, the assumptions behind this point of view have
been questioned and debated [56-59]; current research emphasizes the role of learn-
ing in the process of language acquisition, and, using the results from neuroscience,
aims to discover the mechanisms driving this process [60].

One of important perspectives of studying natural language is focused on the
relationship between the language and the functioning of the brain. It aims to reveal
brain’s internal mechanisms responsible for learning and processing language, and
investigates which parts of the brain take part in language-related activities. This
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field of study benefits greatly from the development of neuroimaging techniques |61}
62], which allow to conduct experiments and measurements able to verify hypotheses
about how language is processed and represented in the brain. For a long time the
prevalent view on that matter has been that language comprehension and production
is to a large extent contained within two regions of cerebral cortex: Broca’s area
and Wernicke’s area. These regions were identified as crucial for the ability to use
language by 19th-century physicians, who worked with patients suffering impairment
of language abilities caused by brain damage and who were able to link the symptoms
with the damage to specific parts of the brain [63]. However, modern research found
that treating language-related processes as dependent on only two brain regions is an
oversimplification [64]. It turns out that the system of language comprehension and
production in the brain constitutes a distributed network involving multiple brain
regions. Moreover, that network cannot be easily divided into separate modules
responsible for different tasks - a single task meant to interfere with one particular
linguistic ability can activate multiple parts of the whole system [62,/65-68]. This
shows that the system has a complicated structure and exhibits complex patterns of
activity. Studying the way in which language is processed in the brain can potentially
lead both to better understanding of human language and to practical contributions
to other disciplines - for example, it can be helpful in treating people suffering from
language disorders [69].

Another interesting area of investigation is the relationship between language
and thinking. There are a number of theories contending that language affects at
least some of the other aspects of cognition. There exists an idea that the process
of thinking has the structure similar to the structure of language - it combines
simple concepts into complex thoughts in the way analogous to the way that syntax
combines words into sentences. This hypothetical structure has been named the
language of thought, sometimes also called "mentalese” [55.|70,/71]. The hypothesis
has been a subject of a debate. There has been, for example, a contrary line of
argument, stating that thinking occurs in natural language - each human thinks in
the language which he or she speaks [72-75]. Another influential concept, the so-
called linguistic relativity (also known under the name of ”Sapir-Whorf hypothesis”)
states that the particular language used by an individual influences their perception
and way of thinking [76,77]. Whorf’s idea was based on the study of Hopi language,
in which the conceptualization of time is different to the one usually appearing
in world’s languages. Whorf pointed out that the Hopi language lacks the word
referring to time and that its verbs do not distinguish between present, past, and
future - therefore the view on the surrounding reality possessed by a Hopi language
native speaker may be different from the view typical for the user of languages like
English [78,[79]. Although later studies showed that Whorf’s conclusions about the
inability to refer to time in the Hopi language could have been exaggerated [80], his
work initiated a line of research on how particular languages may influence the way of
thinking. A language also investigated in this context is the Piraha language, which
has no words for numerals and lacks the notion of counting; its native users seem to
have extreme difficulties with acquiring even the most basic numeracy skills [81}[82].
Another example of research in this field are the experiments suggesting that the
presence of grammatical gender in a language affects the way that its native speakers
describe particular objects and also influences their ability to memorize names given
to those objects [83]. Research on the relationships between language and cognitive
skills like color perception, spatial orientation and numerical reasoning show that
language, understood as a mental ability universal for humans, serves as a powerful
tool in cognitive processes, and is particularly useful in transforming various pieces
of information into a convenient representation [84].
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Since the process of thinking often employs combining simpler concepts into
more sophisticated ones, it benefits greatly from the system capable of representing
virtually any concept in a standardized, usable manner. Language is such a system,
and therefore it can be considered a human mind’s resource of great importance,
indispensable in complex intellectual activities.

1.2 Computational and quantitative approach to lan-
guage

The origins of the usage of quantitative and computational methods to study lan-
guage can be dated back to 1940s and 1950s. The development of this area of
research was related to the desire to create systems capable of automatic processing
of natural language; one of the first natural language processing tasks that gained
much attention was machine translation [85]. After a period of optimism and enthu-
siasm, it became clear that not only that particular task was difficult, but modeling
language in general was much more challenging than it initially appeared. Language
has a multilevel, complex structure, and its processing typically requires multiple
steps utilizing various tools. A language user needs to be able to extract and recog-
nize a sequence of words from an audio signal and to transform a sequence of words
into an audio signal; these actions require knowledge of phonology and phonetics
- which describe what sounds are needed to pronounce each word and how these
sounds are physically realized. Words may have various forms; using these forms
correctly requires knowledge about morphology - which specifies how words can be
divided into components and what information is carried by these components (the
distinction between the singular and the plural form of a noun, for instance). Main-
taining relationships between individual words (their order, for example) utilizes the
knowledge of rules given by syntax. The knowledge of the meaning of words and
their combinations - semantics - is needed both to understand an utterance and to
generate one, as appropriate words have to be found to express a thought. In a
conversation, one needs to be aware of the context and the situation in which the
conversation takes place - in other words, one has to keep track of the discourse. This
requires knowledge about linguistic units larger than a single utterance. Of course,
language users do not necessarily have to be able to verbalize what kind of knowledge
they are using; nevertheless, comprehending and generating utterances in natural
language is inseparably connected to activities mentioned above.

Each of these activities can be considered a separate task. Such tasks need to
be performed by a human or a machine using or processing language. Describing
objectives of such tasks using mathematical formalism and developing and studying
algorithms of carrying them out is the subject of the disciplines of computational
linguistics and natural language processing. Currently, due to recent rapid increase
in computing power availability and development of appropriate methods, natural
language processing usually employs machine learning, especially deep learning [86),
87]. Before the time of machine learning prevalence, language processing systems
were usually “rule-based” - they operated on a predefined set of rules designed to
capture the structure and relationships in the modeled aspect of language. Since
such rules are explicit, they are interpretable, in the sense that one can track how
a system using them produces given result. This is unlike many machine learning
methods, whose intermediate stages of operation are often unreadable to a human.
However, systems of rules can be very complicated - in which case they might not be
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easily comprehensible. Nevertheless, constructing rules describing even only a part
of language structure can be useful from a theoretical point of view, as it can help
in grasping the mechanisms driving various linguistic phenomena.

An important and influential concept in research on language is the idea of char-
acterizing language structures with the use of formal languages, developed by Noam
Chomsky in 1950s and 1960s [54,88]. It treats the ability to use natural language
as a certain sort of computational system, which uses a set of rules - defined by an
appropriate grammar - to organize individual components into complete utterances.
Formal language is a mathematical concept - it is a set whose elements are in a
sense constructed from elements of some other set. Let 3 be a finite set. From the
elements of 3 one can construct strings - sequences of arbitrary (but finite) length
consisting of elements of . Let X* be the set of all such sequences. A formal lan-
guage is a subset of ¥*. In other words, it is a subset of the set of all finite strings
that can be generated from the elements of X.

Specifying which strings in %* belong to a formal language can be done in a
few ways. A way that is particularly useful from the viewpoint of study on natural
language is using a formal grammar. Formal grammars are mathematical objects
providing sets of rules able to generate strings from other strings. Defining a formal
grammar can be done in the following way. Let X again be a finite set, whose
elements are now called terminal symbols. Let N be a finite set, whose elements are
called nonterminal symbols, and which is disjoint with . The distinction between
terminal and nonterminal symbols is due to their role in strings - terminal symbols
are the symbols that are present in the "final form” of a string, while nonterminal
symbols are the ones that occur at intermediate stages of string construction. Let
S be a distinguished symbol, belonging to N and called the start symbol. Finally,
let P be a finite set of production rules; each element of P is a rule of the form:
a — [, where o and (8 are strings consisting of terminal and nonterminal symbols;
B is an arbitrary string (it can also be an empty string ¢), while @ must contain at
least one nonterminal symbol. A formal grammar G can be defined as a 4-tuple:

G =(Z,N,8,P). (1.1)

A formal grammar can be interpreted as a string rewriting system, transforming
strings into other strings. Starting from a string consisting solely of the start symbol,
one can rewrite strings in such a way that each rewriting introduces modifications
given by a selected production rule (the notation v — [ represents replacing the
substring o with the substring 3). The set of all strings which contain only terminal
symbols and can be constructed from the start symbol by applying some finite
sequence of production rules is a formal language; such language is called a language
generated by a given grammar.

As an example, let the following grammar be considered: G=(X, N, S, P), where

Y ={a,b},
N ={A, B}, (12)
S— A '

P={A— abBaa, B — bBaa, B —a}.

Generating strings by this grammar is performed as follows. At the beginning, the
string consists of one symbol, the start symbol A. The only rule that can be applied
at this stage is the rule A — abBaa, which rewrites A into abBaa; therefore, the
string becomes abBaa. Now, any of the rules B — bBaa and B — a can be applied.
If the first one is chosen, then B is replaced with bBaa and the string becomes
abbBaaaa. This new string also allows to apply both of the rules B — bBaa and
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B — a. Using the first one again (one or more times) expands the string and
allows for further expansion. Using the rule B — a at any stage removes B from
the string and inserts a; when this happens, no more operations on the string are
possible. At this stage the string consists only of terminal symbols, and it can
be considered a string belonging to a language generated by the grammar G. All
strings in this language have a single a as their first symbol, then b is repeated n
times (n = 1,2,3,...), and then a is repeated 2n+1 times; therefore, all such strings
are of the form ab”a®**!, where n =1,2,3, ....

Many important properties of formal grammars depend on the constraints im-
posed on their production rules. Such constraints have an impact on grammar
generality. Formal grammars can be divided into types pertaining to that general-
ity. A widely known classification of grammars is the Chomsky hierarchy [89,/90],
which distinguishes 4 types of grammars, labeled by numbers 0, 1, 2, and 3. Let «,
B be arbitrary strings (possibly empty) of terminal and nonterminal symbols and
let v be a nonempty string of terminal and nonterminal symbols. Let A and B be
nonterminal symbols, and let a denote a terminal symbol. The most general form
of a production rule is:

v — B. (1.3)

A grammar which does not have any additional constraints imposed on its produc-
tion rules, is a type-0 grammar (also called an unrestricted grammar). All lan-
guages that can be generated by such a grammar are called recursively enumerable
languages. A grammar whose all production rules are of the form:

aAfB — avp (1.4)

is a type-1 grammar, also known under the name of a context-sensitive grammar. To
make it possible for a context-sensitive grammar to generate empty strings, one ad-
ditional rule is allowed: S — ¢, where S is the start symbol, and € denotes an empty
string. Fach production rule of a context-sensitive grammar can be interpreted as a
procedure transforming a single nonterminal symbol A into a nonempty string, with
a condition that such transformation may be dependent on the "neighborhood” of
A (the context). Languages generated by a context-sensitive grammar are called
context-sensitive languages.
A grammar which only has rules of the form:

A—a (1.5)

is called a type-2 grammar, or a context-free grammar. Languages generated by this
type of grammar are context-free languages. Left-hand side of any production rule
of a context-free grammar is a single nonterminal symbol. The name ”context-free”
reflects the fact that grammar’s rules can be applied regardless of the context of a
nonterminal symbol. Context-free grammars are a class of grammars particularly
important in modeling and studying language. Their complexity is restricted enough
to allow the construction of efficient parsing algorithms - algorithms determining
whether a given string of symbols belongs to the language generated by a given
grammar, and, if so, finding the sequence of rules leading to the generation of this
string. Yet they are general enough to be useful in studying natural language; an
important example of their use is syntax analysis. Context-free grammars are also
often the backbone of programming languages.

Type-3 grammars, known as regular grammars, can be divided into two groups:
left-regular grammars and right-regular grammars. A left-regular grammar is a
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grammar having only the rules of one of the following types:

A—a
A — Ba (1.6)
A— e

where £ denotes the empty string. A right-regular grammar has only the rules of
one of the following forms:
A—a

A —aB (1.7)
A—e.

Regular grammars generate regular languages. They are related to regular expres-
sions - special strings that represent certain patterns. A regular expression specifies
a set of strings that match the given pattern. Each language that can be generated
by a regular grammar can also be specified by a regular expression and vice versa.
Regular expressions are a concise way of describing a set of strings sharing some
properties; they have found application in various text processing tools. Contem-
porary implementations of regular expressions (present, for example, in many pro-
gramming languages) often extend their basic functionality and make them capable
of specifying also the languages other than the ones generated by regular grammars.

Chomsky hierarchy puts the types of grammars into order related to their gen-
erality - consecutive types are more restricted than the previous ones. If L; denotes
the set of languages that can be generated by type-i grammars, then:

Ls C Lo C Ly C Ly. (1.8)

In other words, the set of context-sensitive languages is contained in the set of
recursively enumerable languages, the set of context-free languages is contained in
the set of context-sensitive languages, and the set of regular languages is contained
in the set of context-free languages. All these inclusions are strict inclusions - each
L; contains languages that are not present in L; 1.

There is a close relationship between formal languages and automata theory.
For a given formal language, one can define an automaton (an abstract machine)
capable of determining whether a given string belongs to that language. To do that,
such an automaton (called an acceptor or a recognizer) starts from a starting state,
reads the input string - symbol after symbol - in consecutive steps, and changes its
internal state in each step. The combination of automaton’s current state and the
symbol being read determines the transition to the next state (if the automaton is
deterministic) or the set of possible transitions (if the automaton is nondeterminis-
tic). If the input string is a sequence of symbols for which there exists a sequence
of state transitions leading the automaton from the starting state to a predefined
final state, then the automaton accepts the string. Otherwise, the string is rejected.
The complexity of an acceptor depends on the type of language it is designed to
recognize. Regular languages can be recognized by finite-state automata (an exam-
ple of a finite-state automaton is presented in Fig. . Context-free languages can
be recognized by nondeterministic pushdown automata (which can be thought of
as nondeterministic finite-state automata with a stack capable of storing read sym-
bols). Context-sensitive languages are recognized by linear bounded automata. The
automaton needed to recognize a recursively enumerable language in a general case
is a Turing machine. The more general the grammar, the more powerful automaton
is required to recognize languages generated by that grammar.

Formal grammars, automata, and related concepts are widely applied in both
theoretical and practical scientific approach to natural language. An important
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Figure 1.2. An example of a state diagram of a (deterministic) finite-state automaton. The
automaton reads strings consisting of zeros and ones and recognizes (accepts) a string if and only if
the string is a binary representation of a natural number divisible by 4 (without any padding with
leading zeros). States of the automaton are represented by circles (accepting states are marked by
a double circle) and arrows correspond to transitions between states. The automaton switches its
state to the one pointed by an arrow when the symbol read from the input matches the symbol
labeling the arrow. The automaton utilizes the fact that numbers divisible by 4 have at least two
zeros at the end of their binary representation. The accepting states are: g1, which deals with the
case when the whole input string is just one zero, and qu, in which the automaton stays if it reads
two or more zeros in a row. The string is recognized if its reading is finished and the automaton is
in an accepting state. Any other situation (including, for example, the inability to move to another
state from the state go when reading from the input is not finished) leads to the rejection of the
string. The regular expression corresponding to the strings recognized by the presented automaton
is ”0|14-[01]*00”.

example is syntactic analysis with the use of the so-called constituency grammars.
Constituency grammars are grammars designed to express the syntactic structure
by relations between constituents. A constituent is a word or a group of words that
can be treated as a single unit in a larger grammatical construction. Constituents
of the same type appear in similar syntactic environments, and can be treated as
interchangeable - to some extent - form purely syntactic point of view. For example,
in the sentence "The glass that was on the table fell on the floor”, all of the phrases:
the glass, the table, the floor, as well as the glass that was on the table can be
treated as noun phrases - constituents which perform the grammatical function of
a noun. Swapping these phrases between one another could lead to a sentence
which is semantically nonsensical, but syntactically correct. Constituency structure
is hierarchical - constituents might consist of other constituents, all the way down to
individual words. Assigning a constituency structure to a given sentence is done by
constructing a parse tree (also named a derivation tree) - a graph whose structure
corresponds to the relationships between constituents. An illustration of the concept
of a parse tree is presented in Figure

Constituency grammars are used to describe the phrase structure of sentences,
therefore they are also called phrase structure grammars. Another relrated name is
generative grammar. Generative grammar is a broad term, which serves as a com-
mon name to multiple theories; what these theories have in common is the usage
of formal grammars to model the grammar of natural language [91]. It is worth
noting that phrase structure grammars are only one of possible methods of the anal-
ysis of syntax. A line of inquiry often presented as opposing to constituency-based
approach is concentrated on the so-called dependency grammars, which instead of
relying on constituency relations, employ dependency relations - binary relations
between individual words, not groups of words. Each kind of approach has its ad-
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Figure 1.3. Examples of parse trees. The tree in (a) is the parse tree of the string abbbaaaaaaa,
using the grammar defined in Eq. The tree in (b) is the parse tree of the sentence "The girl
counted all the books on the shelf.”, using a context-free grammar modeling the syntax of English.
The rules used to construct the tree are listed below the tree; the whole grammar has many more
rules. Abbreviations of syntactic categories are as follows: S - start symbol, NP - noun phrase, VP
- verb phrase, DT - determiner, NN - noun, VBD - verb in past tense, PP - prepositional phrase,
PDT - pre-determiner, NNS - noun in plural form, IN -preposition or subordinating conjunction.

vantages and disadvantages in particular situations, and both are important tools
of syntactic analysis.

Formal languages are quite general and abstract mathematical objects; therefore
a number of concepts derived from formal language theory have found applications
outside mathematics and linguistics. An interesting example are the so-called Lin-
denmayer systems (L-systems in short) - string rewriting systems, originally invented
to model the development and growth of some organisms - one of the first organisms
studied in that context were algae [92,/93]. The theory was then applied more gen-
erally, to various kinds of branching systems. An L-system G can be defined as [94]:

G=(V,w,P), (1.9)

where V' is the set of symbols, w is a nonempty string of symbols called the axiom,
and P is the set of production rules. The definition is very similar to the definition
of a formal grammar, with the exception that the distinction between terminal
and nonterminal symbols is not necessary and that the start symbol is replaced by
the start string - the axiom. L-systems are different from formal grammars in the
way in which production rules are applied - rules of formal grammars are applied
sequentially (one rule at a time), while L-systems apply their rules in parallel - at
each iteration the rewriting is performed in all possible places in the string (in all
places where a production rule can be applied). Like formal grammars, L-systems
can be divided into types, according to the properties of their production rules.
In that sense, an important class of L-systems are context-free L-systems, with all

production rules of the form:
A — a, (1.10)
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where A is a single symbol from V and « is a string of symbols from V. If an
L-system is designed to model the growth or the development of a certain object
or system, then the assumption that the L-system is context-free can be related to
the assumption that individual parts of the modeled object develop independently,
without interactions between each other. If for each symbol in V there is exactly
one rule which has that symbol on its left-hand side, then the system is determin-
istic. If any symbol appears as a left-hand side in more than one production rule
(which means that it can be rewritten in multiple ways), then the system is called a
stochastic L-system. In such a system, each time when multiple rules can be applied
to a given symbol, the rule is chosen randomly from the set of possible rules; each
rule in that set has some probability of being chosen.

How an L-system works can be illustrated by the following example. Let G =
(V,w, P), be an L-system where

V ={A,B},
w=A, (1.11)
P={A— ABA, B — BBB}.

String production in such an L-system proceeds as follows. At the beginning, the
string contains one symbol, A. In the first iteration, the rule A — ABA produces
the string ABA. In the second iteration, each A in the string is replaced by ABA,
and each B (here only one) is replaced by BBB; hence, the string ABABBBABA
is obtained. The process is then repeated in consecutive iterations, up to the point
when a predefined number of iterations is reached.

Strings generated by L-systems can be represented graphically, using turtle
graphics - a method of creating graphics in which an imaginary object (called the
turtle) moves around the drawing area according to a sequence of commands, and
the trail left by this object is the desired output. If each symbol in a string gener-
ated by an L-system is treated as a command to a drawing device, then a graphical
representation of this string can be plotted. Since L-systems are able to generate
strings with recursively nested patterns, they are well suited to model self-similar
structures. Therefore, they are used to generate fractals (discussed in Chapter [3))
and other objects exhibiting similar properties; a noteworthy example of L-systems’
application is creating models of plants, used in the field of computer graphics.
Examples of images created with the use of L-systems are presented in Figure [I.4]

The fact that similar mathematical objects like formal grammars and L-systems
are used to model self-similar, hierarchical systems as well as natural language, is
more than a mere coincidence. Multiple aspects of language organization are of
strongly hierarchical nature. In fact, the ability to generate multilevel, recursively
nested structures is sometimes considered one of defining features of natural lan-
guage [40]. This is one of the reasons why analytical tools designed to study such
structures (like fractal geometry) are useful in research on natural language.

An important part of research on natural language is the subfield called quanti-
tative linguistics, which investigates language using statistical methods. It concen-
trates on the properties of language which can be described in terms of probability
distributions, statistical models, time series and related tools, and attempts to for-
mulate linguistic laws pertaining to those properties. Studying such laws and the
reasons of their presence allows to formulate hypotheses about cognitive processes
behind language, and about language origin, evolution, and learning. It also has
a practical purpose, as the knowledge about statistical patterns in language can
be applied in designing natural language processing tools and methods. To pro-
pose linguistic laws and to verify them empirically, quantitative linguistics usually
uses appropriately large samples of language; in case of written language, such a
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(a) Generating an image of the Cantor set. Symbol set: V = {A, B}, axiom: w = A,
production rule set: P = {A — ABA, B — BBB} (this is the L-system defined in Eq.
‘ Commands assigned to symbols: A - move forward a fixed distance and draw a
line, B - move forward a fixed distance without drawing.

n=0 n=1

(b) Generating the Koch curve. Symbol set: V = {F, L, R}, axiom: w = F, production
rule set: P = {F — FLFRRFLF}. Commands assigned to symbols: F - move forward
a fixed distance and draw a line, L/R - turn 60 degrees left/right.

A

(c) Generating a binary tree. Symbol set: V = {F,G, L, R, <, >}, axiom: w = G, pro-
duction rule set: P = {G — F<LG><RG>, F — FF}. Commands assigned to symbols:
F or G - move forward a fixed distance and draw a line, L/R - turn 45 degrees left/right,
< /> - push/pop current position and angle onto/from the stack (a LIFO queue allowing
to save the state of the plotting device and restore it later).

n=0 n=1 n=2

(d) Generating a tree. Symbol set: V = {F,G, L, R, <,>}, axiom: w = G, production
rule set: P = {G - FF<LGRGRG><RRGLGLG>, F — FF}. Commands assigned to
symbols: F or G - move forward a fixed distance and draw a line, L/R - turn 20 degrees
left /right, < / > - push/pop current position and angle onto/from the stack (a LIFO
queue allowing to save the state of the plotting device and restore it later).

Figure 1.4. Examples of images generated with the use of L-systems and turtle graphics.

subfigure (a,b,c,d) presents several images; each image corresponds to a given number n of string
generation iterations (n = 0 corresponds to the starting string - the axiom w). Images within each
subfigure are rescaled, so that they all have the same size. Symbol set V', axiom w and production
rule set P of each used L-system are given along with the plotting device operations assigned to

each symbol.

21



sample - called a corpus (plural: corpora) - usually is a collection of texts in one
language. The diversity and the number of used texts depends on particular appli-
cation. A large enough corpus can be treated as representative for the whole studied
language. Therefore, observations made with the use of a corpus can be generalized
to particular language; analyzing multiple corpora in various languages makes it
possible to draw conclusions about laws universal across languages.

Among the most famous linguistic laws is Zipf’s law [95-97], which specifies
the distribution of word frequencies in texts. Heaps’ law (also known as Herdan’s
law) [98H100] describes how the number of different words in a text varies with the
text’s length. Menzerath-Altmann law [101,/102] states that the sizes of linguistic
constructs are negatively correlated with the sizes of their constituents - for example,
the sizes of sentences - measured by the number of clauses - are negatively correlated
with the sizes of clauses - measured by the average number of words in a clause.
These examples, among others [103-105], are a part of the field of active research,
which attempts to observe general statistical patterns in language, describe them
with appropriate formalism, and explain their origin. Two examples of widely known
linguistic laws - Zipf’s law and Heaps’ law - are discussed in more detail in Chapter

In this context, it is worth to note the distinction between spoken and written
language. Natural languages are primarily spoken; writing is a complement to speech
- an invented system of representing spoken language visually. Spoken language is, in
some sense, more "natural” - it existed before writing and is acquired (in childhood)
without specific instructions, while learning to write requires significant deliberate
effort; some languages do not have a written form at all [17,|18]. Speech and writing
differ in a number of traits. When writing down a spoken utterance, some informa-
tion - conveyed by voice modulation, for instance - might be lost. Written language
is often more formal than speech. Things like grammatical errors, hesitations, or
repetitions are typically present in spoken, not written language. Analysis of one
selected representation of language (spoken or written) is in many situations treated
as sufficient to draw conclusions about language in general. However, it is important
to be aware that some of the effects observed in such analysis may be specific to the
chosen representation.

To investigate the properties of natural language utilizing statistical methods,
samples of language of considerable size are needed. The type of the samples varies
depending on specific area of study (clearly, different tools are needed to study spo-
ken language and written language). For written language, a convenient source of
linguistic data are literary texts written in prose. Obviously, it should be remem-
bered that narrative texts constitute a specific type of data and do not account for
whole language. However, among forms of language used in literary works, prose
is the one which to the greatest extent mimics a natural flow of speech and uses
grammatical structures typical for the language used for everyday communication.
The fact that the language used in literary texts usually adheres more strictly to
grammatical rules and uses more refined vocabulary than colloquial language can
be an advantage - as it allows to study structures of certain degree of sophistication
and complexity, which are often lacking in everyday language. Many narrative texts
have the form of books; books are samples typically large enough to be subject to
statistical analysis on their own. These traits of narrative texts make them highly
useful in quantitative study of language.
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1.3 Complexity and complex systems

Among the most important goals of science, especially physics, is to understand nat-
ural phenomena, to explain them using models, and to make predictions based on
these models. The models are typically designed in such a way that they can grasp
the relevant information about the studied systems, but they also remain as simple
as possible, avoiding unnecessary intricacies. Therefore, an essential method of ex-
plaining and modeling natural phenomena is treating them as effects of other, more
fundamental phenomena. In this view, the characteristics of a system are the result
of the interactions between the elements of that system. Such a line of reasoning
is known under the name of reductionism. An example which illustrates this kind
of approach is the classical theory of electromagnetism. Within a range of scales
appropriate for classical physics, the description of all electromagnetic phenomena
in any system can be reduced to a few equations - the Maxwell equations. All such
phenomena, regardless of how complicated the system is, are the effect of interac-
tions whose complete description is given by a set of "fundamental” physical laws.
Therefore the whole classical theory of electromagnetism can be viewed as a set of
various applications of these laws. Such an approach, applied to describe various
processes in nature, clearly led to a huge number of achievements, both enhancing
humanity’s understanding of the Universe, and allowing for the development of tech-
nology able to solve many practical problems. This is one of the reasons why it has
become the dominant paradigm in scientific activity over the last few centuries, in
which modern science has developed.

However, there exist systems, called complex systems, for which the description
in purely reductionistic manner poses significant difficulties. These are the systems
in which the relationship between macroscopic and microscopic properties might not
be straightforward and direct. Complexity and complex systems do not have a pre-
cise definition; usually a sort of a working definition is used to identify systems whose
properties can be attributed to complexity. Such a definition can be stated as follows:
a complex system is a system consisting of a large number of nonlinearly interacting
elements, which exhibits collective behavior, and, by interacting with its surround-
ings, is able to modify its internal structure and patterns of activity [106]. A common
trait of complex systems is emergence - the presence of phenomena which cannot
be reliably deduced or predicted only from the knowledge about the properties of
system’s constituents and their interactions; it is often summarized with phrases
such as "more is different” [107] or "the whole is something beside the parts” |108].
Emergence occurs when interactions between system’s elements in microscopic scale
give rise to a spontaneous appearance of macroscopic order. This may happen when
the interactions inside a system are nonlinear and can be propagated over long dis-
tances; in that case, local effects (occurring, for example, due to fluctuations) can be
transformed into a collective behavior, depending on the system’s interaction with
the surroundings. This is possible under specific circumstances, particularly when
the system is near the critical state [106,109]. When a system approaches its critical
point, one can observe the divergence of correlation length (a quantity representing
typical, characteristic range of correlations between the states of individual elements
interacting within the system). This leads to a situation where the maximal range
of correlations is limited only by the size of the whole system. Fluctuations might
then propagate to arbitrarily long distances and collective behavior can occur on
all possible scales. Keeping a system in the vicinity of a critical state is often con-
sidered to require some effort to maintain delicate control over external parameters
characterizing the environment (temperature, for instance); however, many complex
systems seem to be able to evolve spontaneously towards a critical state. It is fre-
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quently stated that one of properties characteristic of complex systems is that they
operate "at the edge between order and chaos” [109H116].

The nontrivial relationship between the global characteristics of a complex sys-
tem and the properties of its constituents gives rise to the need of the development of
analytical tools designed specifically to study systems belonging to the class of com-
plex systems. The research area concentrated on studying such systems is sometimes
considered a new, separate scientific discipline, known under the name of complexity
science. It is justified by the prevalence of the characteristics typical for complexity
which can be observed in many, sometimes distant and seemingly unrelated sys-
tems in nature. Examples of phenomena involving effects related to complexity
are: convection [117], phase transitions [109}/110,{118|, formation of landforms and
coastlines [119H122], organization of the Internet [123-126], population dynamics in
ecosystems [127,/128], brain activity [129H13§|, speculative bubbles and functioning
of financial markets [139-148], climate |[149H154], epidemics |[155(162], and organiza-
tion of social systems [163169]. These and many other processes share some aspects
of complexity between each other, although not all properties typical for complex
systems have to be present in every complex system. Among such properties are the
presence of power laws, self-organization, criticality, long-range correlations, fractal-
ity, multilevel hierarchical structure, and the presence of complicated organization
in network representation.

To be able to asses the complexity of various systems in one unified manner,
it would be beneficial to use some kind of quantity able to measure the degree
of complexity of an arbitrary system. There have been multiple attempts to con-
struct such a quantity; each of proposed measures has its own rationale, but also
has significant drawbacks, limiting its use. An important concept in this context is
algorithmic complexity, introduced independently by Solomonoff, Kolomogorov and
Chaitin [170-H174]. Algorithmic complexity of a string (a sequence of symbols) can be
viewed as the length of the description (formulated in some computationally univer-
sal language, that is, a language in which any Turing machine can be implemented)
of the shortest possible algorithm generating that string. This quantity, although
important in the fields of information theory and computability theory, has limited
practical use due to its uncomputability for arbitrary sequences [175] and due to the
fact that it loses its functionality when dealing with random data. The latter stems
from the observation that to specify a truly random sequence one needs to give it
explicitly - as there are no regularities to exploit - and therefore the description of
the relevant algorithm has the length comparable to the sequence itself. A quan-
tity related to algorithmic complexity is the so-called effective complexity [176,177].
To avoid treating random sequences as complex, it is designed to measure only the
complexity of the non-random contribution to a sequence. However, determining the
extent to which a string is random involves some degree of arbitrariness [178,/179].

Another approach to quantifying complexity utilizes the notion of logical depth
- which is also related to algorithmic complexity. Logical depth of a string can be
interpreted as the time needed by a universal computer (a device capable of com-
puting what can be computed by a Turing machine) to execute the algorithm which
generates the string and has description as short as possible [179,/180]. According
to this idea, complex objects (logically deep objects) are the objects which require
large computational effort to be generated. It reflects the intuition that complex
structures are often created by complicated processes; it also treats random data as
relatively ”shallow”.

A concept originating in physics and often employed in quantifying complexity, is
information entropy (Shannon entropy [181,/182]). Information entropy is a quantity
measuring the level of uncertainty of a random variable. For a discrete random
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variable which has n possible values x; occurring with probabilities p; (i = 1,2, ...,n),
information entropy is defined as:

n
H = —Zpilongi. (1.12)
i=1
Depending of the choice of logarithm base in the above definition, entropy can be
expressed in various units; if the logarithm base is 2, then entropy is given in bits;
choosing the base e gives entropy in nats ("natural units”). Information entropy
can be considered a generalization of the notion of entropy known from statistical
physics. If in Equation all probabilities p; are equal (p; = 1/n), then the
equation simplifies to H = logyn. If n denotes the number of possible microstates
which can yield a given macrostate of some system, then after changing the logarithm
base and introducing a multiplicative constant kp (the Boltzmann constant), the
formula can be recognized as Boltzmann’s definition of entropy:

H =kplnn. (1.13)

For a discrete random variable, the lowest possible value of information entropy
is 0; it is attained when the variable has only one possible value (other values either
do not exist or have zero probability; for values with zero probability the product
pi logy pi is assigned the value 0, in accordance with the limit: lim,_,o+ zlogy x = 0).
Information entropy of a random variable with a fixed number of possible values is
maximized when probability is uniformly distributed over those values. Therefore
entropy is interpreted as the degree of uncertainty or randomness inherent in a ran-
dom variable. It can also be treated as an average amount of information contained
in a single measurement of a quantity described by the considered variable. This
view can be presented as follows: if some system can be in one of n states, and
the probability is distributed approximately uniformly among the states - which
means that the entropy of the system is high - then a single measurement revealing
the system’s state gives much information - because it would be difficult to make
a correct assumption about the state before the measurement. Conversely, when
the distribution of probability among states is highly nonuniform and the entropy
is low, a measurement is not very informative - as it typically leads to an expected
result - that the system is in one of the states of high probability.

The usefulness of information entropy as a direct measure of complexity is limited
due to the fact that it attains the highest values for systems with the highest degree
of randomness - and systems organized in a purely random fashion (random strings
of symbols, for instance) cannot be considered complex. However, many methods
aiming to quantify complexity employ entropy and related concepts. An example of
a quantity rooted in statistical physics and intended to measure complexity is ther-
modynamic depth [183], which can be considered a physical counterpart of logical
depth. It is based on the assumption that complex systems are the systems which are
difficult to assemble or create. In that view, complexity is measured by the amount
of information required to specify the trajectory (a history of system’s past states)
that the system followed to arrive at its present state. It can be expressed as the en-
tropy of the distribution of trajectories leading to system’s current state. Although
it is in agreement with the intuitive comprehension of complexity (being a product
of a complicated process), thermodynamic depth encounters serious problems with
its practical application. One limitation is the fact that the knowledge about the
whole history of a system is usually unavailable; another difficulty is arbitrariness
involved in determining the trajectory followed by the system [114}/184].

Another measure of complexity, designed to study symbolic sequences and ob-
jects that can be described by such sequences, based on identifying repeating pat-
terns, is Lempel-Ziv complexity [185]. There exist several definitions of Lempel-Ziv
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complexity, but all rely on the same idea - iterative processing of the string and
identifying patterns which are copies of patterns encountered at earlier stages. This
became a backbone of the Lempel-Ziv algorithm - a lossless data compression al-
gorithm, existing in multiple variants (LZ77, LZ78, LZW, and others [186-188]),
and being of huge importance for computer science and practical applications of
information theory [189]. The key part of the method proposed by Lempel and Ziv
can be briefly presented as an appropriate string partition procedure. One of its
variants relies on dividing a string S into substrings Si, S9, ..., Sy, called phrases,
such that their concatenation is equal to S and that each consecutive phrase S; is
the shortest possible phrase different from each of the phrases Si,Ss,...,Si—1 (ex-
cept for the last one, Sy, which might not be unique). For example, according to
that procedure, the string AABABBBABAABABBBABBABBA is divided into
A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB|A (vertical lines separate consecutive
phrases S1, .59, ..., Sn). For a string containing many repeating substrings, the num-
ber of unique phrases grows with string’s length more slowly than in case of a string
in which symbol sequences are rarely repeated. Hence, string complexity can be
measured in terms of the number of unique phrases. Using the presented scheme to
compress the string relies on the observation that each of the consecutive phrases of
length greater than 1 is a copy of some of the previously encountered phrases, con-
catenated with a single symbol (the symbol determining that the phrase is distinct
from each of the previously encountered phrases). Therefore, instead of specify-
ing the phrase explicitly, one can specify how it can be constructed from previous
phrases: if S; is a phrase which can be obtained by appending a single symbol to
a phrase S; already encountered in the string S, then S; can be described by 3
parameters: the position in S at which S5; starts, the length of S;, and the symbol
that needs to be appended to S; to get S;. For a string of sufficient length, contain-
ing many repeated substrings, such an approach allows to represent the string in a
significantly more compact form.

Measuring complexity using the idea proposed by Lempel and Ziv has certain
advantages - like the fact that Lempel-Ziv complexity can be relatively easily com-
puted for arbitrary strings - but in the context of complex systems it suffers from
the same problem as information entropy - it assigns high complexity to random
sequences (as they have no systematically repeating patterns) and randomness is
different from complexity. In fact, Lempel-Ziv complexity is related to entropy -
for example, procedures of identifying repeating patterns in strings, similar to the
one presented above, are used in methods of estimating information entropy of sym-
bolic sequences [1904{191].

Complexity can also be understood in relation to how system’s parts interact
with each other. In this view, the more relationships and connections are present
between the individual elements of the system, the higher the system complexity.
The occurrence of such connections can manifest itself by statistical dependence of
variables representing the states of system’s constituents. There exist a number of
tools designed to measure dependence of this kind. A basic example is correlation
function - which expresses how, on average, the values of variables pertaining to
individual states of system’s constituents are related to each other, depending on the
distance (in space or time) between those constituents. Another example is mutual
information, which is the difference between the sum of entropies H(X)+ H(Y') and
the joint entropy H(X,Y) of two variables X and Y. If the mutual information
I(X,)Y)=H(X)+ H(Y) - H(X,Y) is greater than zero, it means that observing
the value of one variable allows to reduce the "uncertainty” of the other; in other
words, some information is shared by X and Y, and they are mutually dependent.
Statistical dependence and correlations, especially those of long-range and nonlinear
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character, are common traits of complex systems; however, in some cases, their
presence might be due to reasons more obvious and straightforward than complexity
[106,[192]. For example, a multi-component system in which all components are
in the same state and evolve in the same way, does exhibit very strong internal
correlations, but such a system is not considered complex. Therefore, measuring
complexity solely on the basis of correlations’ strength is not a method that could
be reliably applied to all types of systems.

Finally, complexity can be investigated using tools designed to study fractals
and multifractals. Many systems in nature have hierarchical, multilevel organiza-
tion which is self-similar or statistically self-similar. This means that some statistical
properties specific to higher levels of organization are identical with the properties
corresponding to lower levels; a structure exhibiting such behavior is sometimes
called scale-free, due to the fact that it has similar characteristics regardless of the
scale at which it is inspected. Such systems are often conveniently described with
the use of fractal geometry [193-196]. Certain properties of fractals, like "rough”,
irregular shape, difficult to describe with the standard approach based on Euclidean
geometry, or the presence of recursively nested patterns, can be intuitively inter-
preted as signs of complexity. Fractal geometry allows to identify those properties
and to characterize them quantitatively. From that perspective, the most complex
objects are the so-called multifractals, which can be thought of as systems consisting
of many different fractals. However, despite the fact that fractality is quite abun-
dant in nature, it is not necessarily present in all types of complex systems; there
also exist systems in which fractality, although present, may be difficult to detect.
Therefore the possibility of measuring complexity by identifying fractals and mul-
tifractals in system’s structure or its characteristics is restricted to only a certain
subclass of complex systems.

The methods of quantifying complexity presented above certainly do not exhaust
all the ways in which complexity can be expressed or measured [197]. Instead, they
show that virtually any kind of approach to measuring complexity has its limitations,
either conceptual or practical. Due to the huge diversity of complex systems, each of
the proposed methods, usually designed to specific class of systems or signals (sym-
bol sequences, thermodynamic systems, geometrical objects, etc.), is insufficient to
reliably characterize systems in which complexity is understood differently. There-
fore, when studying complex systems, rather than applying one unified approach,
one usually investigates a number of characteristics related to complexity. It is not
necessary that all of such characteristics occur within one system; having only some
of them is typically sufficient to identify the system as complex.

1.4 Aspects of language complexity

Natural language is clearly an example of a complex system. The properties of its
multilevel, hierarchical structure can be considered as displaying emergence in mul-
tiple aspects. Higher levels of its organization usually cannot be simply reduced to
the sum of the elements involved. For example, phonemes or letters basically do
not have any meaning, but the words consisting of them are references to specific
objects and concepts. Likewise, knowing the meaning of separate words does not
necessarily provide the understanding of a sentence composed of them, as a sen-
tence can carry additional information, like an emotional load or a metaphorical
message. And the meaning of a sentence can be fully understood when analyzed
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in an appropriate context, constituted by other sentences. The presence of many
different types of relationships between various structures in language, each typical
for a specific level of language organization, extends to higher and higher levels; for
written language, examples of such levels are paragraphs, chapters or whole books.
The complexity of language’s hierarchical structure is reflected in the number of the
academic disciplines being involved in research on natural language. The lowest lev-
els of language organization are studied by biology and physiology, the higher ones
- by linguistics and its various sub-fields, and the highest - by sociology, psychology
and literary studies.

Language reveals its complexity also when the system of rules and laws govern-
ing the relationship between various elements of language is considered. On the one
hand, the rules of grammar have to be precise enough to allow for generating utter-
ances which can be understood by other language users; on the other hand, there
is some degree of freedom in constructing an utterance - the rules allow for new
forms and can also evolve over time. A large part of linguistic structures cannot be
characterized by simple rules that are not subject to exceptions. Therefore language
can be considered a system displaying a certain form of balance between regularity
and irregularity. This is one of the reasons which render the description of natu-
ral language difficult and which make studying language from various perspectives
particularly valuable.

Another perspective on language complexity is related to how language changes
over time. The conditions that language has to satisfy (to remain an effective com-
munication tool, for instance) and the way in which it evolves indicate that language
is subject to self-organization. Self-organization of language is typically studied from
two perspectives [198]. One perspective considers language as a system of thought
expression individual for each human, and focuses on the evolution of that system
towards its optimization with respect to the ease of its use and acquisition [199-201].
The other approach treats language as a system of communication between individ-
uals belonging to some population. In this view, self-organization is a process driven
by mutual interactions between language users, leading to continual language change
and adaptation to changing conditions [202-205|. It is important to point out that
language evolution is extremely difficult to describe quantitatively, as it is itself a
complex process, driven by many factors, like the evolution of language users (hu-
mans), the influence that language users have on each other and the interactions
they have with the environment.

Among traits typical for complex systems which are also observed in natural
language, one can mention the presence of power laws and the most well-known
example of such a law - Zipf’s law, describing the distribution of word frequencies in
texts. When language is treated as a signal, one can usually observe long-range cor-
relations and scale-free fluctuations, also described by power laws; this corresponds
to fractal or multifractal structure, being another sign of complexity. Studying var-
ious properties of language with the use of network analysis reveals complicated
patterns of organization, some of them being typical for networks representing other
complex systems. Insights from studying language with the use of power-law dis-
tributions, time series analysis, and complex network formalism are presented in
subsequent chapters.

28



Chapter 2

Power laws

2.1 Basic properties of power laws

In many complex systems the distributions of certain quantities describing system’s
structure or behavior are given by power laws. This property is exhibited by a
great variety of systems, including physical, biological, economic, and social ones
[206-208]. A quantity x is distributed according to a power-law distribution (also
called shortly just a power law, when the context is clear), if its probability density
function (for a continuous variable) or its probability mass function (for a discrete
variable) is of the form:

p(x) = Caz™P, (2.1)

where C' is a normalization constant and 8 > 0. It is assumed that x is bounded from
below by some positive constant x,,;,, being the lowest possible value of z, as for
x — 0 the function z—# diverges. It is common that the distribution of the quantity
of interest adheres to a power law only in the tail - in such case x,,;, is a threshold
above which the analysis of power-law behavior of = is relevant. The power law
given above does not necessarily have to be obeyed exactly - asymptotic agreement
is usually considered sufficient. If the support of the distribution is bounded from
above, then  can be any positive number. However, in many typically encountered
situations, the support is right-unbounded (z can take arbitrarily large values), and
this is the case considered here. Then 3 has to be greater than 1, to allow for proper
normalization. When the support is right-unbounded and « is discrete, that is, when
z € {Tmin, Tmin+1, Tmin+2,...}, the normalization is given by:

+oo
1= > Ck” (2.2)

k=ZTmin

For continuous z, the normalization is:

+o0 C .
1—/C:U dm—l_ﬁ{w } (2.3)

T=Tmin
Tmin

Both the series in Eq. and the integral in Eq. are convergent only when
B > 1, hence the restriction of the possible values of 3.

Since it is often the tail of the distribution that is under consideration when
studying power laws, it is convenient to express a power-law distribution in terms
of its complementary cumulative distribution function F (also called survival func-
tion or tail distribution). For a random variable X the survival function F can be
defined as:

F(z) = P(X > x), (2.4)
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where P(X > z) denotes the probability that X takes on a value greater than or
equal to z. Equivalently, F' can be expressed as:

F(z)=1- F(x), (2.5)

where F' is the cumulative distribution function. Depending on how exactly F is
defined (as right-continuous or as left-continuous), the inequality in Eq. can be
strict or not (this distinction is important only for discrete distributions); here it
is assumed that F(r) = P(X > z). Like cumulative distribution function, survival
function fully specifies the studied distribution.

The survival function of a power-law distribution is a power function. For a
continuous variable it is given by:

+00 C
F(z) = /Ct_ﬁdt = gL, (2.6)
1-p
x
For a discrete variable, the survival function is:
F(z)=)Y Ck". (2.7)
k=x

Although the sum above does not follow a power law exactly, it can be approximated
for large = (using, for example, Euler’s summation formula [209,210]) by an integral:

+00 oo
Y ok P~ /Ct—ﬁdt. (2.8)
k=x T

Therefore, it can be stated that for sufficiently large x both continuous and discrete
power-law distributions have survival functions behaving like power functions:

F(x) oc z7 P+, (2.9)

One can introduce the notation: F(x) oc 7%, where a = 3 — 1; both a and 8 can
be called the exponents of a power law, depending on the context. Since power-law-
like behavior of probability density function or probability mass function is closely
related to the same type of behavior of survival function, the identification of a
power-law distribution can be performed by observing that any of the mentioned
functions is a power function. And due to the fact that certain sums and inte-
grals can be asymptotically approximated by one another (like in Eq. , many
characteristics of continuous power-law distributions are valid also for their discrete
counterparts (calculations for one variant of the distribution might be much more
tractable than for the other, however). For that reason, from now on, the presented
properties of power-law distributions are given for their continuous variants.

Power laws belong to the class of the so-called heavy-tailed distributions. A dis-
tribution with survival function F has a (right) heavy tail [211], when for any A > 0:

-z

lim sup
r—oo €

= o0, (2.10)

that is, a distribution has a heavy tail when for x — oo its survival function decays
slower than any decreasing exponential function. There exists an important subclass
of heavy-tailed distributions - the so-called subexponential distributions; most of
typically encountered heavy-tailed distributions belong to the class of subexponential
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distributions. All power-law distributions are subexponential. A distribution is
subexponential [211,212] when

FxF
In the above formula, F*F' is the convolution of the cumulative distribution function
F with itself - which corresponds to the cumulative distribution function of the sum
of two independent random variables distributed according to F'. Consequently,
FxF is the survival function of such a sum. Subexponentiality is equivalent to
the following property. Let X1, Xs,..., X,, be independent, identically distributed
random variables with a subexponential distribution. Then
P(Xi1+Xo+...+X,>x)

I =1 2.12
200 P (max(X1, X2, Xp) > ) (2.12)

where P (X; + Xo + ... + X,, > z) denotes the probability that the value of the sum
X1+ X2+ ...+ X, is greater or equal to x and P (max(Xy, Xo, ..., X;,) > z) denotes
the probability that the largest value among X1, Xo, ..., X, is greater or equal to x.
Equation [2.12] expresses the fact that for large enough z, the sum of values drawn
independently from a subexponential distribution exceeds x with practically the
same probability as the largest of those values does. In that sense, the behavior
of the sum is to a large extent ”determined” by the behavior of the largest value;
this is known as the single big jump principle, and is a substantial characteristic of
processes described by subexponential distributions [213,214].

Power laws are often characterized as distributions which can span over several
orders of magnitude, in contrast to, for example, normal distribution or exponential
distribution, for which one usually can identify a typical range of values or a charac-
teristic scale. Whether a distribution covers multiple orders of magnitude depends
on the distribution’s parameters and on the units in which the studied quantity is
measured, but power laws found in many systems in nature are indeed associated
with quantities considered to have a wide range of possible values. This is often
related to the fact that the m-th raw moment of a power-law distribution:

+oo
(™) = /Cm_ﬂerda: = ¢ [:L'_ﬂerHr_Jroo (2.13)
m+1-7 T=Tmin
Lrmin

is finite only for 8 > m + 1. This implies that the expected value (z) exists only for
B > 2 and the variance <x2>—<:1:)2 only for g > 3. For that reason, for distributions
with 8 < 3, which are quite common in nature, there is no finite expected value,
or - if it exists - the average squared deviation from the expected value is infinite.
A related effect, attributed to power laws with appropriately low exponents, is the
high degree of "non-uniformity”. When some quantity, which can be interpreted as
a certain kind of resource, is distributed over some population according to such a
power law, then a large fraction of the overall amount of the resource is concentrated
within a small fraction of the population. In some areas this phenomenon has been
called Pareto principle or 80-20 rule; the former name refers to Vilfredo Pareto -
an economist who pioneered in using power laws to represent wealth distribution in
society [215], the latter describes situations where 20% of some population holds 80%
of some resource [216]. It should be noted, however, that exact numbers expressing
that effect may vary; the relationship 80%-20% is obtained for a specific value of
power law exponent . In a continuous distribution with probability density function
p(zx) of the form

plz) = (8- Dt a™?, (2.14)
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which is known as the Pareto distribution, 8 has to be equal to 1+ log, 5 ~ 2.16 to
comply to 80-20 rule precisely.
An important property of power laws is scale invariance. For a power function

f(z)=CzP (2.15)
and a positive constant A, the following condition is satisfied:
f(Az) = C(a)™ = X7 f(a), (2.16)

which means that scaling the argument of the function by a constant A results in
scaling the value of the function by the constant A=%. Therefore, a function of that
type does not have any characteristic scale - its properties are qualitatively the same
in all possible scales. For that reason, all power functions with a particular exponent
are in a sense equivalent, since they differ from each other only by a multiplicative
constant. Scale invariance of power-law probability distributions can be interpreted
as the presence of a certain kind of hierarchy - for a power-law distribution with
probability density function p(x) = Cz~? and any z1, x2 contained in the interval
in which the power-law relationship is valid, the densities p(x1), p(z2) are bound by:

plxz) <$2) - (2.17)

p(x1) x1

Identifying power-law distributions in empirical data usually employs the fact
that a relationship described by a power function f(z) = Cz~? can be transformed
into a linear relationship, by taking the logarithm of both sides:

log(f(z)) =logC — Blogx. (2.18)

Therefore, when f(z) is presented on a log-log plot (which might be a plot in log-log
scale or a graph of log(f(x)) vs. logx), observing a linear relationship allows to
conclude that f is a power function of . The exponent can be determined from the
slope of the line.

To investigate if a sample comes from a power-law distribution, one can compute

the empirical survival function F', defined as:

Niz;o0)

Fla) = =52,

(2.19)

where Nz, is the number of observations greater or equal to x in the sample, and

N is the total number of observations; F is a step function, with steps at points
corresponding to unique values in the sample, therefore it is usually computed only

for = being such values. After F is determined, one can plot the set of points
(log x,log F(x)). If the points lie on a straight line for some range of x, then within

that range F is a power function of z, and since F approximates the survival func-
tion of the underlying distribution, the distribution can be recognized as a power
law. The exponent «, describing the behavior of the survival function (F oc 27%),
which is usually of primary interest, can be obtained by determining the slope of
the observed line. The slope is very often computed by using the least squares
method to fit a linear relationship to F(z). The advantage of this approach is sim-
plicity; maximum likelihood estimation of « is superior in terms of accuracy and
error estimation, but requires choosing carefully the range in which the power-law
relationship holds and, depending on the type of the data, it might involve solving
a transcendental equation [217].
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A tool similar to survival function plots and often used in identifying power-law
distributions in empirical data, is the so-called rank-size distribution. If some col-
lection of values is presented in the form of ranking - that is, a list in which the first
element is the largest observation, the second element is the second largest obser-
vation, and so on, then the rank-size distribution is the function which relates the
value with its position in the ranking. If this function is a power function, the under-
lying probability distribution is a power-law distribution. This can be understood
with the following line of reasoning. Let the values in a N-element sample drawn
from some distribution be sorted into a non-increasing sequence (1, 2, ..., zx). The
rank R(zj) of an observation x; (k = 1,2,...,N) can be defined in a few ways, two
possibilities are considered here:

(1) R(zg) =k (2.20)
(2) R(zx) =max{j:z; =x} (2.21)

In the first variant, the rank R of the observation x; is the position of xj in the
ranking; in the second one, R is the number of observations greater or equal to
xp in the sample. They differ only when the values in the sample might repeat
(which often happens for data coming from a discrete distribution); however, even
when they do, the differences typically appear for large R, and it is the range of
small R that is usually of interest, as it corresponds to the tail of the probability
distribution. Therefore the distinction between definitions in Eq. and Eq.
is rarely significant in practical calculations, but while the first is often used in the
literature, the second one is more suited to the derivation of the formulas given here.
With rank defined as in Eq. [2.21] one can relate each unique value x in the sample
with its rank R; the function xz(R) is called the rank-size distribution (sometimes
also the rank-frequency distribution, if the data represents the frequencies or counts).
Stating that x has rank R is equivalent to stating that exactly R observations in the
sample are larger or equal to z. It means that R/N is an estimate of P(X > z) - the
probability that a random variable X with the considered probability distribution
takes on a value greater or equal to z. That is, R/N is equal to the value of the
empirical survival function at point x:

R ~
— = F(x). 2.22
~=F) (222)
Therefore, rank-size distribution contains information sufficient to fully characterize
a sample, same as empirical survival function. If the rank-size distribution x(R) is
a power law:

xox R™7  for some v > 0, (2.23)

then by raising both sides of that relationship to the power —1/+, the inverse function
R(z) is obtained:
Roc a7, (2.24)

Since N is a constant for a given sample, R/N behaves in the same way as R with
respect to x, that is: R/N Y, using Eq. one gets:

F(z) oc 2~/ (2.25)

This shows that a power law in the rank-size distribution z(R) o< R~7 corresponds to

«

a power-law form of the empirical survival function F(z) oc 2%, and the exponents

« and v are related by:
a=—. (2.26)



Therefore, a power law in the rank-size distribution of some sample indicates that
the sample is drawn from a power-law probability distribution.

It is important to note that the above-presented methods of identifying power
laws based on studying the behavior of survival function or of rank-size distribution
pertain to situations where the probability distribution function (or probability mass
function) is a power function with the exponent /3 greater than 1. The formulas de-
scribing the functional form of the survival function and of the rank-size distribution
cease to be valid for 8 < 1. For distributions with g below or close to 1, other meth-
ods of detecting the power-law relationship should be used; it should be pointed out
that such distributions have to have a bounded support or a cutoff at some point
to be normalizable. For example, one can use a histogram as a piecewise constant
approximation of probability density function or of probability mass function, and
study its behavior in log-log scale. Since power-law distributions, especially those
with low exponents, typically span a wide range of values, it is often beneficial to
construct the histograms of power laws with the use of bins of varying length.

2.2 Generating power laws

Transforming an exponentially distributed random variable

The abundance of power laws in nature raises a question about their origin. It turns
out that they can be generated in multiple types of processes; selected examples
are presented here. One of situations in which power laws appear is when some
quantity is an exponential function of another, exponentially distributed quantity.
Let X be a positive random variable with probability density function px(z) being
an exponential function:

px(x) o ™. (2.27)

with some a # 0. If a > 0 then the distribution’s support must have a finite
upper bound, so that it can be normalized. Let Y be a random variable being an
exponential function of X:

Y oc X (2.28)

with b # 0. This means that if X takes on a value z, then Y takes on a value
determined by the function y(z) oc €. The probability density function py (y) of Y’

can be expressed as:

dz(y)

P (o) = () |52 (229)

where z(y) denotes the inverse function of y(z). Based on Eq. the behavior of
z(y) is given by:

z(y) o %bg(y); (2.30)

where log(-) denotes the natural logarithm. Substituting the relationship of this
form to Eq. one gets:

1
py (y) o< el@/b)logy ‘ . (2.31)
by
Since y is positive, |by| = |bly and py (y) satisfies
py (y) ocy /Ot (2.32)
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Therefore, the probability density function of Y is a power function:

py(y) ocy™’ (2.33)

with exponent f =1 — (a/b). If a/b < 0 then 5 > 1 and the distribution can be
supported on the interval (0, 400); otherwise the support must have a finite upper
bound to allow normalization.

Yule processes

Another mechanism of generating power laws are stochastic processes known under
the names of Yule processes, Yule-Simon processes, or (especially in the context
of complex networks) preferential attachment. Originally conceived for biological
systems - to model the emergence of power-law distributions describing the number
of species in genera, or more generally, the number of subtaxa in taxa - they have
found application in many other areas [206,[218-221]. A Yule process models the
behavior of a system composed of a collection of objects which have a certain positive
quantity assigned to them, when both the number of objects and the total sum of the
studied quantity in the system grow in consecutive time steps in a specific way. For
illustrative purposes it is convenient to imagine the considered system as a collection
of boxes, with balls inside them. Then one of the forms of the Yule process can be
described as follows.

At each point in time, the system consists of a certain number of boxes; the i-th
box has k; balls in it. A single time step of the process starts from adding m > 0
new balls to the system and distributing them among boxes in the following way: m
boxes are chosen randomly from the system, and one ball is added to each of them:;
the probability P; of choosing a particular box is an increasing linear function of the
number k; of balls already present in that box:

P; o< (ks + c), (2.34)

where c is a real constant. After inserting balls into the boxes, one new box with
Ky > 0 balls inside is added to the system; as a consequence, the number of boxes
present in the system increases by 1. The time step ends here; in the next step
the presented procedure is repeated. The constants Ky and ¢ have to satisfy the
condition Ko+c > 0, which ensures that k;+c is positive for any possible k;, because
k; > Ky for all 1.

One of the roles of the constant ¢ in Eq. [2:34]is to allow the boxes added to
the system to participate in the process of distributing new balls among boxes when
Ky = 0. More generally, it allows to make the relationship between P; and k; more
flexible. If ¢ = 0, then the probability of choosing a box is just directly proportional
to the number of balls in that box: P; o k;.

Having defined what happens at each time step, the only thing that remains to
be specified is the initial state of the system (the number of boxes and the number
of balls in each of them at the beginning of the process). The influence of the initial
state on the characteristics of the process becomes negligible in the limit of large
number of time steps; therefore, the initial state is to some degree arbitrary. Here
it is assumed that in the initial state there are at least m boxes and each of them
has at least K balls inside.

Based on the characterization given above, it can be concluded that a Yule
process in the presented form is controlled by 3 parameters: a positive integer m, a
non-negative integer K, and a real number c¢; the parameters ¢ and Ky must satisfy:
c+ Ky > 0. Power laws are generated in Yule processes in the limit of large number
of steps.
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If n denotes the number of performed steps and p(k) denotes the probability mass
function of the distribution of the number of balls in a box, that is, the probability
that a randomly chosen box has exactly k balls inside, then after large number of
steps (n — oo) the distribution p(k) is a power-law distribution [206]:

p(k) ~Ck™%  for k — +oo and some constant C. (2.35)

An example of such a distribution is presented in Fig. 2.1} The value of the expo-

nent & is given by [206]:

PG (o} (2.36)
m

therefore, by tuning the values of the parameters m, Ky, and ¢, an arbitrary exponent
greater than 2 can be obtained.
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Figure 2.1. Survival function F(k) of the distribution of the number of balls in a box generated
by a realization of the Yule process with 1.5 - 10° time steps. The parameters of the process are:

m = 5, Ko = 3, ¢ = 1.25. Since both the argument of the function and its value are under
logarithm, a straight line shape indicates the presence of a power law. The dashed line has the
slope —a = —1.85, corresponding to the limiting distribution.

The key property of Yule processes, allowing to generate power laws, is expressed
by Eq. [2.34] It is the tendency to put new balls into boxes which already have many
balls inside. It can be said that newly added items have the preference to be placed
where their concentration is already high, hence the name preferential attachment.
Other names and phrases used to describe this effect are ”"cumulative advantage”,
"rich get richer” or "Matthew effect” [222],223]; the last name refers to a verse in the
biblical Gospel of Matthew: ”For to every one who has will more be given, and he
will have abundance; but from him who has not, even what he has will be taken away”.
It should be noted, however, that only the first part of the verse correctly describes
the considered effect, as Yule processes do not contain mechanisms removing or
relocating items already present in the system.

Self-organized criticality

A different perspective on generating power laws is related to the concept of self-
organized criticality [207},224-228]. Self-organized criticality is an idea according to
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which some systems naturally, spontaneously evolve in time in the way that keeps
them near critical state. Interpreting what criticality exactly implies for a system
depends on the system’s type, but generally criticality manifests itself in the lack
of finite characteristic scale (in space or time), leading to power-law behavior of
quantities characterizing the system. In a system in a critical state the response to
a small local perturbation can be of any size, limited only by the size of the whole
system. The crucial aspect of self-organized criticality is the fact that keeping the
system in critical state does not require fine-tuning of external control parameters;
the dynamics of the system constantly drive it towards the critical state.

The archetypical model of a system displaying self-organized criticality is the
Bak-Tang-Wiesenfeld model [224]225], also known as the abelian sandpile model.
A basic version of the model can be defined as a celluar automaton on a D-dimensional
hypercubic lattice of linear size L. The cells are identified by their positions on
the lattice; the position of a cell is given by a vector 7 = (r1,72,...,7p) where
ri € {1,2,...,L} for all i. Let é; denote the i-th basis vector of the lattice; this means
that 7 can be represented as 7 = ZiD:I r;€;. For example, for a widely studied two-
dimensional version (D = 2), one can write: 7 = (r1,72) = (z,y), €1 = €z = (1,0)
and €3 = €, = (0,1). Let z be a dynamical variable associated with the system;
z(7) is the value of z in the cell at the position 7. In the one-dimensional version
of the model (D = 1), the system can be imagined as a certain form of a sandpile
(hence the name), and the values of z can be interpreted as the slope at particular
positions (the higher the value of z, the steeper the slope). In higher dimensions, the
interpretation is less straightforward [225]. The automaton is initiated with some
initial distribution of z, such that z(7) € {0,1,2, ..., z. — 1} for all 7} z. is a constant,
and here it is assumed that z. = 2D. One possible initial state is z(7) = 0 for all
7. After initialization, the model evolves in discrete time. At each time step, one
position 7 is randomly chosen (each position is chosen with the same probability)
and the value of z at 7 is increased by 1:

z2(T) — 2(7) + 1. (2.37)

This action is sometimes given the name of perturbation. If after the perturbation
the value of z(7) remains below z., the time step ends here. However, if z(7) > z,
then the cell at ¥ becomes unstable and the process called relaxation or toppling takes
place. The values of z in the cell at 7 and in the cells in its direct neighborhood
(cells at 7=+ é;) are modified according to the following rules:

2(7) — z(7) — 2D,

2.38
2(F£é&) — 2(FLé)+1 fori=1,2,...,D. (2.38)

The above relaxation rules apply to cells which are not at the boundary of the system,
that is to cells for which all r; satisfy r; # 0 A r; # L. The behavior of the cells at
the boundary is determined by boundary conditions. A basic and straightforward
possibility is imposing z = 0 at the boundary of the system:

2(f) =0 ifr; =0V r; =L for any i. (2.39)

The relaxation of a cell might make neighboring cells unstable; in that case the
affected cells also undergo relaxation. When at a given moment there is a certain
nonempty set S1 of unstable cells, all of those cells are relaxed; if this leads to a
state of the system in which there is again a nonempty set So of unstable cells,
then all cells in Sy are relaxed, and so on. This process continues until all the
cells in the system are stable, that is until z(7) < z. for all 7. When all cells
reach stability, the time step is ended. The relaxations of the cells in one particular

37



configuration of unstable cells Sj can be thought of as being parallel, constituting a
global "update” of the system’s state. The number of such updates required to get
rid of unstable cell states is interpreted as the duration of the avalanche. However, in
the implementation of the model the relaxations for particular S; can be performed
sequentially; in fact, in the version of the sandpile model presented here, the order
in which the relaxations for a particular Sy are performed has no influence on the
result of the update (the state the system arrives at); this property is the reason for
calling the model abelian [229}230].

The system is constantly in an nonequilibrium state, as it exchanges the studied
quantity z with the environment (the sum of z over the whole system is increased
with each perturbation event; at the same time, it decreases with each relaxation
taking place in the neighborhood of the system’s boundary, since for the cells at
the boundary z is fixed at z = 0). The key property of the system is the fact that
regardless of the initial state, it spontaneously evolves towards a critical state in
which a single perturbation can lead to an avalanche of any size, up to the size
of the whole system. The distributions of quantities characterizing the system’s
behavior (like the avalanche’s duration or the total number of cells relaxed one or
more times during an avalanche) are power-law distributions. Therefore the system
exhibits scale invariance (for L — 00). An illustration of the abelian sandpile model
is presented in Fig. 2.2

An important aspect of the relationship between power laws and self-organized
criticality is that systems exhibiting self-organized criticality are able to generate
signals in time domain which are characterized by some forms of power laws. In
fact, the original motivation behind the sandpile model and the idea of self-organized
criticality was to explain the fact that in many different natural systems certain time-
varying quantities behave as signals belonging to a specific class of signals, known
under the name of "1/f noise” (described in more detail in Chapter |3). It was
initially stated that a signal generated by the two-dimensional sandpile model (the
changes of the total sum of z induced by consecutive avalanches) is 1/f noise [224].
It was soon realized it is in fact an example of a signal of different type, namely 1/ f2
noise [231-233]. Nevertheless, self-organized criticality became to be considered one
of possible mechanisms of generating 1/ f-type signals; some modified variants of the
sandpile model do after all generate 1/f noise [226}234}235].

The presented mechanisms able to generate power laws - a specific form of depen-
dence between random variables, preferential attachment, and self-organized criti-
cality - definitely do not constitute an exhaustive list. They are examples of possible
explanations for the emergence of power laws in many systems in nature; the diver-
sity of such explanations gives an opportunity to investigate the properties and the
behavior of complex systems from multiple perspectives.
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Figure 2.2. (a) An example of a state obtained in a two-dimensional abelian sandpile model
(D = 2) of linear size L = 50, after 10° time steps. Colors mark the values of z in cells: white
- 0, light gray - 1, dark gray - 2, black - 3. (b) Examples of relaxation clusters which can be
observed when the state presented in (a) is perturbed. When a perturbation causes a relaxation,
an avalanche starts; the relaxation cluster is the set of cells which undergo at least one relaxation
during the avalanche and the number of such cells is the size of the avalanche. The clusters are
colored blue and the cells at which the respective avalanches are initiated are colored red. (c¢) The
distribution of cluster sizes, for a sandpile model defined on a 100 x 100 lattice. The plot presents
log,(P(s)) vs. log,(s), where s is the cluster size and P(s) is a piecewise constant approximation
of the probability mass function. Technically, P(s) is determined by a histogram with varying
bin width (the width is such that the number of counts in each bin is at least 10) and the line
representing P(s) is a linear interpolation between points corresponding to bin centers. The dashed
line is a line fitted to the data; it has the slope —5 = —1.05.
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2.3 Power laws in natural language

2.3.1 Zipf’s law and Heaps’ law

A fundamental statistical property of natural language, first observed by J. B. Es-
toup [236], later systematically studied and popularized by G. K. Zipf [95-97] - and
therefore called the Zipf’s law - is the power-law distribution of word frequencies in
texts, or more generally, in linguistic corpora (a corpus is a text or a set of texts put
together one after another). Assuming that a "word” is a sequence of letters between
whitespace characters, the Zipf’s law can be summarized by a statement that the
frequency (the number of occurrences) of a word in a text is inversely proportional
to the rank of that word, where the rank is the position on the list of all different
words appearing in the text, sorted by decreasing frequency. More precisely, if for
some text R denotes the rank of a word, and w is the number of times that word
appears in the text, then

wox R™9, (2.40)

with a ~ 1. Mathematically, Eq. expresses a rank-size distribution; since the
”size” here pertains to frequency, it is also called a rank-frequency distribution. The
corresponding probability distribution can be characterized as follows. If V is the
vocabulary of a text, that is, the set of all distinct words appearing in the text, then
the probability p,(w) that a word randomly chosen from V has the frequency w in
the text is expressed by

Po(w) x wP, (2.41)

where f = 1/a+ 1 ~ 2. Both Eq. and Eq. are referred to as Zipf's law;
the latter is sometimes called the inverse Zipf’s law [237].

The Zipf’s law is observed in the majority of languages studied with regard to this
aspect, including artificial languages [238], and extinct languages [239]. Exceptions
are languages using logographic writing systems (such as Chinese), but it has been
shown that although Zipf’s law might not hold for logograms, it might be exhibited in
some other way, for example by combinations of logograms [240,241]. An illustration
of Zipf’s law in 7 different languages is presented in Figure 2.3} where rank-frequency
distributions of books listed in Appendix (and of corpora constructed from those
books) are shown.

Although the values of the exponents a and [ are to a large degree universal,
it is possible to observe deviations from Zipf’s law with o ~ 1 and 8 ~ 2 [242].
B greater than 2 is a sign that a text contains lots of rare words (words with low
frequencies); this may be a result of covering a wide range of topics (each with
specific vocabulary), or a consequence of the richness of vocabulary of particular
author. Conversely, 5 < 2 indicates poor vocabulary, which may be specific to
particular language user (for example § < 2 is observed in schizophrenia and in
language used by very young children) or due to specific circumstances (for example,
in military communication, where non-essential words tend to be avoided). It is also
worth mentioning that even when Zipf’s law holds in its basic form (with 8 ~ 2),
linguistic analysis relying on Zipf’s law may reveal properties specific to individual
texts. For example, one can define a distance between Zipf plots of two texts (based
on the ordering of the words in rank-frequency relationship), and it seems that
such a distance is lower for pairs of texts being similar in some sense (belonging to
the same author or genre, for instance) than for pairs of “unrelated” texts [243].
Another interesting observation derived from word frequency analysis pertains to
how statistical regularities like Zipf’s law are manifested in different parts of a text.
For example, it has been observed that if a text is cut into two halves, there are
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Figure 2.3. (a)-(g): Zipf’s law in books in various European languages. Each line represents the
log-log plot of the rank-frequency distribution (its continuity is only to make the graph more legible,
since rank is a discrete variable) for a single book. The books are listed in Appendix Words
are in their original form (they are not lemmatized). The differences of individual lines’ vertical
positions are due to different sizes of the books. (h): Zipf’s law for corpora constructed from all
the books in each language. In all the plots (a)-(h) the dashed line has the slope equal to —1.
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statistically significant differences between some statistical properties of the first and
of the second half [244].

Another linguistic law involving power-law relationships is Heaps’ law (also called
Herdan’s law) [98100]. It describes how the number of distinct words increases with
the increasing size of a text. If N denotes the number of all words encountered up
to some point in the text and V(NN) is the number of distinct words (the vocabulary
size) up to that point, then Heaps’ law can be formulated as:

V(N)~ CyN", (2.42)

where 7 is a real number between 0 and 1, and Cyg > 0 is a constant with respect
to N; it might depend on language and on the specific text. The relationship between
N and V(N) given by Eq. typically holds for a few orders of magnitude of N;
for very long texts (N — 00), the increase of V(IN) becomes slower and slower, as
there are less and less commonly used words in the set of words yet unused. For
some time, Heaps’ law was treated as a trait of language separate from Zipf’s law,
but it has been shown that it can be considered as related to Zipf’s law - that is,
it is possible to show that assuming that language is subject to Zipf’s law leads
to Heaps’ law, under some (mild) additional assumptions [245-247]. Heaps’ law is
illustrated in Figure the figure presents the log-log plots of V(N) for the corpus
constructed from English books listed in Appendix
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Figure 2.4. An illustration of the Heaps’ law, using the corpus constructed from English books
listed in Appendix The dots represent V(N), the size of the vocabulary as a function of
text length. The slope of the dashed line is equal to n = 0.75. The power-law regime holds for
a few orders of magnitude. For small N, the relationship V(V) is practically linear (as almost
every consecutive word in the text expands the vocabulary); for large N, the lack of new, yet
unencountered words makes V(N) grow more slowly.

2.3.2 Attempts to explain the origin of Zipf’s law

As stated before, there are multiple mechanisms which might serve as explanations
of the presence of power laws in various systems. This applies also to natural lan-
guage. There have been many attempts to explain the origin of Zipf’s law, some of
them contradictory to each other, but no universally agreed theory has been pro-
posed. Zipf’s original explanation was the principle of least effort. According to
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this principle, the language optimizes the information transfer between the speaker
(information source) and the listener (information receiver). The messages need to
be as short as possible, but at the same time they have to contain enough infor-
mation to be understandable. The idea of the principle can be roughly presented
with the following line of reasoning [248|. Let words be sequences of symbols, taken
from an n-element alphabet. The cost of using a word is equal to its length (the
number of symbols it contains). Therefore the most frequently used words are the
shortest ones. Assuming that all possible sequences of symbols are used to form
words, it can be stated that the cost of the word of rank R can be approximated as
cg ~ log, R. This can be understood as follows: there are n! words of length [, so for
an arbitrary word of length [ there is m = Zé’:1 n’/ words with lengths less or equal
to [ and therefore occurring with frequencies higher or equal to the frequency of the
considered word. Hence, m can be interpreted as the rank of a word consisting of [
symbols, m = R. Then to approximate R one can notice that

l -1 ]
, 1\J
R=m=Y n=n! () . (2.43)

Since the sum on the right-hand side of the above equation is always smaller than
the sum of the geometric series 3°72(1/n)’ =n/(n — 1), R satisfies

nt < R <n

(2.44)

n—1

The larger the n, the better the approximation of R by R ~ n!. From that ap-

proximation one gets [ ~ log, R. The cost of using a word is expressed by the
length of that word, so the cost cr of using the word of rank R can be expressed
as: cg =l = log, R. If pg is the normalized frequency of the word with rank R (in
other words, it is the probability that a word randomly chosen from the text is the
word with rank R), then the average cost per word (c) is:

max{R}
(¢)= Y prer. (2.45)
R=1

The average amount of information per word can be expressed by information en-
tropy H (here log(-) is the natural logarithm and the entropy is given in nats):

max{R}

H=-— Z prlogpr. (2.46)
R=1

According to the principle of least effort, word frequency distribution in language
is such that the transmission of information is cost-efficient, that is, it minimizes
the quantity (c)/H. The set of numbers pr, which constitute the rank-frequency
distribution, can be found by minimizing (c)/H with the normalization constraint
imposed on pg: Egixl{R}p(R) = 1. This can be done by Lagrange multipliers
method - treating (c¢) and H as functions of pr (R =1,2,,...,max{R}) specified by
Eq. and Eq. one minimizes (c)/H by solving for each pg:

D) <C> max{R} B
(H Y ; pr) =0, (2.47)

Opr

where ) is the Lagrange multiplier. Calculating the derivative transforms the above
equation into:
cr , (c)(ogpr+1)

i 7 —A=0 for each R, (2.48)
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from which one gets

2
pi = oxp [ 2 ) exp (_RH) — ARHUE) (9 49)
(©) (©)

where exp(+) is the exponential function, Ay = exp (AH?/(c) — 1) serves as a normal-
ization constant (which can be set by setting A appropriately), and the last equality
follows from expressing the word usage cost cg in the form cg = log,, R. The above
formula implies that minimizing (c)/H leads to a power-law rank-frequency distribu-
tion pp o R™%, with exponent o = H/({c)logn) (it is worth noting that this result
does not give pr explicitly; to obtain a closed-form solution one needs to explicitly
determine (c) and H).

A model of text generation able to generate power-law rank-frequency distri-
butions, based on a line of reasoning different than the one presented above, is the
so-called model of intermittent silence (also referred to as typewriting monkey [206]),
introduced by Miller [249]. It can be shown that under some general assumptions
the basic idea of that model is in fact mathematically equivalent to the idea of the
least effort principle |250], but the intuition behind is slightly different. Let a text
be generated by adding one symbol at a time, each symbol being either a letter from
an n-element alphabet or a space. The symbol to append at each step is chosen
randomly, the space is chosen with probability ps; if the chosen symbol is not the
space, then it is a letter picked randomly from an uniform distribution, so the prob-
ability of each letter is equal to (1 — ps)/n. The choices of symbols are independent
of each other. To generate a particular word, a specific sequence of symbols followed
by a space must occur. The probability p; of generating a specific word of length [
is therefore given by:

1—ps\! 1-
P = ( ps) Ps = Ps €XP (l log ps) (2.50)
n n

where exp(+) and log(-) denote the exponential function and natural logarithm, re-
spectively. Using the same approximate relation between the length [ and the rank R
of a word as before: | ~ log,, R = log R/ log n, one obtains the normalized frequency
pgr of the word with rank R in the form:

log R 1—ps
log

logn n

log (1 — ps)
logn

PR = P| = Ps €XP ( ) =psR™% witha=1- , (2.51)
where exp(+) and log(-) denote the exponential function and natural logarithm, re-
spectively. Setting n = 26 and ps = 0.18, which are values used originally by Miller,
taken from English language, one gets « =~ 1.06, which is close to the exponent of the
Zipf’s law (Eq. . It is worth noting that the power-law distribution generated
by intermittent silence model can be derived by considering an exponential function
of an exponentially distributed variable (this line of reasoning is discussed in sec-
tion . Since the number of distinct words of length [ is n!, in a finite vocabulary
the probability p(l) that a word randomly chosen from that vocabulary has length [
is proportional to n!, so p(l) o e®!, where a = logn. A particular word of length [
has the frequency w in the text proportional to ((1— ps)/n)!, so w(l) o !, where
b = log ((1 —ps)/n). Using Egs. - one gets the probability that a word
randomly chosen from the vocabulary has the frequency w in the text: p(w) w P,
with 3 given by: :
a ogn
p=1 b 1 log(1 —ps) —logn’

(2.52)

Using the relationship between the exponent [ of a probability distribution and
the exponent « of a rank-frequency distribution o = 1/(8 — 1), the rank-frequency
distribution in the form given by Eq. [2.51]is obtained.
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Other mechanisms generating power laws, like Yule processes and its modified
variants, have also been used as possible explanations of Zipf’s law. An example of
such a mechanism is the model of random text production studied by Simon [220].
According to that model, a text initially consists of a single word and then words
are added in consecutive steps (one word in one step) in the following way. With
probability ¢ a new word (a word not yet present in the vocabulary) is appended, and
with probability 1—q the appended word is randomly chosen from the words already
present in the text; the probability of choosing a specific word is proportional to its
frequency (the number of times it has already occurred in the text); this determines
that the model can be considered a variant of the Yule process. The model gives the
word frequency distribution of the form p,(w) & w™?, with 8 = 1+1/(1 —q), in the
limit of large number of steps. With ¢ close to 0, S is close to 2, which corresponds
to Zipf’s law in the form given by Eq.

Knowing that power-law distributions can be obtained in simple stochastic mod-
els, it may seem doubtful whether the fact that word frequencies in texts are de-
scribed by power laws gives any significant information about language. However,
the studied models are often clearly unrealistic and do not account for many es-
sential traits of language. For example, the intermittent silence model does not
take into account that words in natural language do not consist of random letters;
only some letter sequences are allowed as others might even not be pronounceable.
Also, the distribution of word lengths does not correspond to what is observed in
natural language [237]. Nevertheless, the presented models and other procedures of
similar type remain an important class of models showing it is possible to obtain a
power-law distribution as a result of a rather simple process.

2.3.3 Modifying Zipf’s law

In empirical language samples taken from real-world texts, some deviations from
Zipf’s law in its original form can be observed. One of such deviations is particularly
typical for very big corpora, usually consisting of large numbers of texts. For large
samples, the rank-frequency distribution w(R) with exponent a ~ 1 holds up to
some rank R., and for ranks R > R, it breaks down and transforms into another
power law, with exponent o/, larger than « [251,252]. This is often explained by the
existence of two types of vocabulary: one being a kind of core vocabulary, consisting
of a few thousand words most frequently used in language, the other being more
specialized, consisting of less common words which are specific to particular topics
or circumstances.

Another frequently observed form of discrepancy between Zipf’s law in its basic
form and empirical data is the fact that usually words with lowest ranks have fre-
quencies slightly lower than predicted by Zipf’s law. Accordingly, Zipf’s law holds
for ranks above some rank Rz, usually Ry is on the order of 5 or 10. For R < Ry,
the frequencies w(R) are below the frequencies given by exact power-law relationship
between w and R. To account for this effect, Mandelbrot introduced a correction to
Zipf’s rank-frequency relationship; the resulting formula, known as Zipf-Mandelbrot
law, can be written as:

w(R) x (R+¢)" 7, (2.53)

where R is the rank of a word, w(R) is the frequency of the word of rank R in
the text, and c¢ is a non-negative constant. For ¢ = 0, Zipf-Mandelbrot law reduces
to Zipf’s law. Nonzero values of ¢ in the equation describing the rank-frequency
relationship introduce the flattening of w(R) for small values of R, and therefore
allow for more accurate description of empirical data. An illustration of how the
shape of w(R) given by Zipf-Mandelbrot law depends on the value of ¢ is shown
in Figure [2.5]
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Figure 2.5. Log-log plots of exemplary functions w(R) given by Zipf-Mandelbrot law (Eq. [2.53)),
with @ = 1 and different values of c.

Zipf’s law applies not only to the distribution of words - which in written lan-
guage can be understood as sequences of non-whitespace characters surrounded by
whitespaces from both ends - but also to some other distributions characterizing lan-
guage. One can study, for example, the rank-frequency distribution of words after
lemmatization, that is after reducing each word in the text to its basic, dictionary
form, called lemma. It turns out that lemmatized corpora also conform to Zipf’s
law [253]. In some situations, this allows for more meaningful comparison between
languages, especially between languages with different degrees of inflection usage.
Without lemmatization, the size of vocabulary can be artificially inflated in inflected
languages (languages utilizing inflection to specify words’ grammatical features), as
various inflected forms of the same lemma are then counted as separate words.

Another possible type of word frequency analysis is investigating how subsets
of words behave in terms of frequency distributions. For example, the set of all
words in a corpus can be partitioned into subsets corresponding to different parts
of speech, and the frequency distribution within each subset can be studied [97,
106]. An example of results of word frequency analysis utilizing such an approach
is presented in Fig. When performed for corpora in English, the analysis of
this type reveals various types of rank-frequency distributions, depending on part
of speech under consideration; some parts of speech are subject to power-law rank-
frequency distributions, some exhibit different type of behavior. This is related to the
role of individual word classes in language. Words whose role is mostly grammatical
(like conjunctions, prepositions, pronouns or articles in English) are the ones used
most frequently - and their rank-frequency distribution can be considered a power
law for some range of low ranks, above which their frequencies quickly decay towards
zero. For words being references to specific objects and notions (nouns, for example),
the agreement with power-law relationship is typically better outside the range of
low ranks. The distinctive behavior of verbs, which seem to conform to a power law
in general (in a wide range of ranks), might be related to the fact that verbs play
in a sense a dual role in language - most of verbs are associated with some kind of
action or state, but a group of verbs in English have special grammatical uses (like
be, have or will).
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Figure 2.6. Log-log plots of rank-frequency distributions w(R) determined separately for selected
parts of speech in a book (David Copperfield by Charles Dickens). Words are not lemmatized. The
power-law relationship is most closely followed by verbs.

Word frequency analysis can also be generalized to other entities occurring in
written language. An interesting result has been obtained for punctuation marks
treated as words and included into rank-frequency distributions of literary texts [254].
Some of punctuation marks have frequencies comparable with the frequencies of the
most frequent words. In fact, a comma and a period often occupy ranks between
1 and 3. It turns out that while rank-frequency distributions determined for words
only are typically described by Zipf-Mandelbrot law, the distributions for words to-
gether with punctuation marks are closer to the regime given by "pure” Zipf’s law.
This effect is demonstrated in Figure It can be stated that treating punctua-
tion marks as words decreases the flattening of w(R) for small R. A few European
languages have been studied in that context; all of them have been identified as
displaying the presented effect, but with varying intensity. Quantitatively, the de-
crease in the rank-frequency distribution’s flattening for small R corresponds to the
decrease of the value of the constant ¢ in Eq. [2.53] expressing Zipf-Mandelbrot law.
Among the studied languages, Germanic languages (English and German) have the
weakest tendency to restore Zipf’s law when punctuation is included (¢ decreases,
but remains significant); for Slavic languages (Polish and Russian) including punc-
tuation into analysis results in ¢ dropping close to 0. Therefore, punctuation marks
and words can be considered to fit into the same Zipfian regime of frequency dis-
tribution. Together with results from other methods of text analysis [254], this fact
allows to state that although punctuation marks and words are clearly different ob-
jects, their statistical properties are in many respects comparable. This conclusion
leads to a hypothesis that at least in some aspects punctuation carries information
in a way similar to words. It also justifies taking punctuation into account when
computing word frequency characteristics in statistical analysis of language and its
practical applications.
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Figure 2.7. Rank-frequency distributions for corpora constructed from books in selected Euro-
pean languages (the books are listed in Appendix [B.1]). Red squares represent the distribution for
words, and blue dots - the distribution for words and punctuation marks treated as words; in both
cases words are not lemmatized. Zipf-Mandelbrot law (Eq. fitted to the data is denoted by
solid lines. The power law exponents «, relevant for both distributions (words and words with
punctuation marks), are given under each graph, along with the values of c.
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Chapter 3

Natural language and time
series analysis

3.1 Time series complexity

In physics, describing a system or a phenomenon usually relies on determining var-
ious quantities, relationships between them, and the way in which they change over
time. In some situations such quantities might be viewed as signals, which can be
studied with the use of appropriate tools developed by mathematics and physics.
An important class of signals are time series, which are sequences of values of some
quantity measured in consecutive points in time. Since virtually any time-changing
quantity can be represented (precisely or approximately) in the form of a time series,
methods of time series analysis are of great importance and wide applicability. Ap-
plying such methods to signals encountered in the study of complex systems reveals
that many signals of that type share some common traits. An example of such a
trait is the presence of long-range correlations, which suggests that an event might
significantly influence the occurrence of other events even when they are distant in
time. Certain types of correlations in time series result in the emergence of diverse
self-similar structures - fractals and multifractals - whose properties can be described
with the use of fractal geometry. A notion important in the context of signals with
long-range correlations is 1/f noise. Signals belonging to the class of 1/f noises,
or, more generally, 1/f% noises, can be considered instances of power laws, as they
are characterized by power functions in the frequency domain. Such a characteristic
indicates the presence of a specific structure and allows to quantify the character
of correlations by determining the exponent of a corresponding power law. A time
series usually has the form of a sequence of numbers, but it can also be a sequence of
symbols, representing consecutive values of some categorical variable. Series of this
type can also be subject to methods of time series analysis, which allow to identify
patterns of their organization.

Sections and present several concepts useful in studying time series
from the perspective of complexity. Section briefly presents how the notion of
information entropy can be applied to symbolic sequences to quantify the degree of
their unpredictability. The sections that follow and discuss some elementary
concepts used to identify and study 1/f noises and introduce the basics of fractal
geometry and its applications in the analysis of time series. The remaining part of
the chapter presents the results of applying the introduced concepts to the analysis
of linguistic time series.
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3.2 Entropy of symbolic sequences

Let {X(t)} be a stationary sequence of categorical random variables (here it is
assumed that the possible values of each of the variables are symbols from some
fixed set), indexed by time ¢t € {0,+1,+2,...}; stationarity means that for any
t, s, and 7 the following condition is satisfied:

F(X(t),X(t+1),...,X(t+s)) - F<X(t+7’),X(t—|—1—|—7’),...,X(t+5+7‘)), (3.1)

where F' denotes the joint cumulative distribution function - for some variables
X1, Xo, ..., X, the function F(X1, Xs,..., X,,) is the joint cumulative distribution
function of X1, Xo, ..., X,;,. The above condition expresses that any block of variables
of arbitrary and fixed size has joint probability distribution which does not depend
on time.

Stochastic processes constituted by sequences of random variables like the one
defined above can differ in how values in different points in time depend on each
other. The extent to which variables in a sequence are dependent on each other
can be quantified with the use of information entropy. The entropy rate Hx (or
less precisely, the entropy) of a stationary process { X (t)} with values in some set of
symbols can be defined in terms of conditional entropy:

Hy :nli_{goH(X(t)]X(t— 1),X(t—2),...,X(t—n)) _ -
3.2
~ lim E[ _ log2P(X(t)|X(t 1) X(E—2), o X (1 — n)ﬂ

where ¢ is an arbitrary point in time, P(X (¢)| X (t—1), ..., X (t—n)) is the conditional
probability distribution of X (¢) given X (¢t — 1), X(t — 2),..., X(t — n), and E[-] is
the expectation operator; in the above definition entropy is expressed in bits (per
one symbol). Entropy rate of a process measures the average degree of uncertainty
about the value at some time point, when the values at prior time points are known.

Practical calculation of the entropy of a symbolic sequence can be approached
in few ways. One of possible methods of wide applicability is using an estimator
based on the idea utilized in Lempel-Ziv algorithm - identifying repeating sequences
in the series. For a sequence of symbols xg, z1, z9,... (treated as a realization of
some stochastic process {X(¢)}), let I; be the length of the longest subsequence
Zi, Titl, ..., Ti4i—1 Starting at position ¢ which also appears somewhere between po-
sitions 0 and ¢ — 1. Let L; be defined as I; + 1; L; is the length of the shortest
subsequence starting at position ¢ which does not appear anywhere up to position
1 — 1 in the studied sequence. Let H, be defined as follows:

n -1
a, = (12 Li ) . (3.3)

n — logyi

It can be shown [190,[191] that under some mild assumptions regarding the behavior
of the underlying process in large time scales, H, converges to the value of process’
entropy Hx (in bits per symbol) when n — oco. It is a consequence of the fact that
in a process with high entropy consecutive symbols are highly "unpredictable” and
repeating long symbol sequences is rare; this corresponds to low values of L;. On
the other hand, low entropy processes generate sequences with frequent repetitions
- which correspond to high values of L;. The relationship between H, and Hy can
be used to estimate the entropy of a finite symbol sequence - the entropy can be
approximated by H,, computed for possibly large n (limited by sequence length). It
should be noted, however, that the obtained results might be prone to non-negligible
errors, as the convergence of H, to Hy is relatively slow [191].
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3.3 Long-range correlations in time series

Dependencies introducing complex patterns of organization into signals can have
various forms, depending on signal type. For signals of different type, different
methods of identifying such dependencies and patterns are used. For data having the
form of a sequence of numbers, basic methods often utilize the analysis in frequency
domain and studying the properties of the autocovariance function. Let (x,,) for n €
{0,+1, 42, ...} be a sequence of real numbers, interpreted as values of some quantity
measured in equally spaced points in time. The sequence (x,) might represent a
signal defined both on infinite and on finite time interval; in the latter case one can
set all the values outside the studied interval to 0. If the signal has finite energy,

which means that
+o00

Z |z, < o0, (3.4)

n=-—o0o
then its spectral density S(f) can be defined as the squared modulus of its discrete-
time Fourier transform [255]:

+00 2
Z T e—i(27rf)n

n=—oo

S(f) = (3.5)

For signals with finite energy, spectral density is called the energy spectral density or
energy spectrum. However, many signals do not have finite energy; also, time series
are often realizations of random (stochastic) processes, whose properties cannot be
fully characterized by studying just one realization. For infinite-energy signals and
stochastic processes a useful notion is the power spectral density, also defined in
terms of Fourier transform. For an infinite sequence xg, x1, T2,... power spectrum

S(f) can be defined as [255]:

2

S(f)= lim E

1
N—+4o00 N ’ (36)

N
Z T, e—i(27rf)n
n=0

where E[-] denotes the expectation operator, which averages over the ensemble of
possible realizations, if (x,) represents a stochastic process. For (z,) being a single
sequence of real numbers, the averaging can be omitted. Signals typically encoun-
tered in practice are finite sequences xg,x1,T2,...,xxy_1; for such time series one
can define spectral density, also referred to as the periodogram, in terms of squared
modulus of the discrete Fourier transform (DFT):

2

S(k) =C , (3.7)

N-1
Z T, 671(271'k/N)n
n=0

where C' is a constant and £k = 0,1,2,..., N — 1 is the variable indexing harmonic
frequencies of DFT’s fundamental frequency (corresponding to one cycle per whole
sequence). If the time series represents some process generating signals with finite
power, then C' = 1/N and the periodogram can be interpreted as an approximation
of the power spectral density of the underlying process. If the series is treated as a
signal with finite energy, then C' = 1. When comparing spectra of multiple signals
it is sometimes useful to normalize the signals before computing the periodograms -
for example to unit energy or to unit average power (total energy divided by series’
length), depending on signals’ type. If the series xg,x1,x2,...,xN_1 represents a
sequence of measurements taken with the sampling period Ts, then S(k) can be
interpreted as the value of spectral density corresponding to the frequency f =
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k/(NTs) = kfy, where f, = 1/(NTy) is the fundamental frequency (here it is worth
remembering that due to DFT’s periodicity, all "significant” values of S(k) are
inside the range of k given by: 0 < k < N/2). Thus, spectral density S can be
expressed as a function of f/f, = k or as a function of f, with f having discrete
values: f = kfp. If the indices of the series’ consecutive values do not have a
specific interpretation of points in time, T can be set to 1 and then the fundamental
frequency is expressed by f, = 1/N. From a technical point of view, it should
be pointed out that sometimes determining a reliable estimation of the spectrum
from finite-size data requires additional steps [255], like dividing the time series
into windows, computing the periodogram for each window, and then averaging
the results.

Spectral density of a signal describes how much a given frequency or frequency
band contributes to signal’s total variability. It also gives insight into temporal
correlations, just as the autocovariance function, which is related to spectral density
when the signal or stochastic process is of certain type. For a stochastic process
being a collection of real-valued random variables {X(¢)} indexed by time ¢, the
autocovariance function is defined as:

Rxx(t1,12) = E[(X(tl) - E[X(tl)]) (X(tQ) _E[X(t2)] )] =
3.8
— B[ X (0)X(t2) - EIX ()] BIX (1) o

(again, E[-] denotes the expectation operator). It is worth mentioning that there
exists another naming convention in which the above function is called the autocorre-
lation function. Autocovariance function has a simplified form for weakly stationary
processes. A process {X(t)} is weakly stationary (also referred to as covariance
stationary or wide-sense stationary), if:

E[X(t1)] = E[X(t2)] for all ¢4, to,
E[X(t)’] =0* <o forallt, (3.9)
Rxx(tl,tQ) = RX)((O,tQ — tl) = Rx(tg — tl) = Rx(T) for all tq, ts.

The last condition expresses the fact that the autocovariance function of a weakly
stationary process depends on only one variable, 7 = to — t;, hence the notation
Rx (7). Autocovariance function is related to spectral density: for a weakly station-
ary process with zero mean (E[X (¢)] = 0 for all ¢), spectral density is equal to the
Fourier transform of the autocovariance function |255].

The form of the autocovariance function Rx (7) describes the type of correlations
characteristic for the process. For example, a weakly stationary, zero-mean process
is said to have long-range correlations or long memory when its autocovariance
function decays so slowly that its sum or integral to infinity is divergent [256,[257].
For a process in discrete time, this can be written as:

N
lim Y Rx(r) = oo. (3.10)

N—oo o

A signal whose spectral density S(f) satisfies

S(f) o (3.11)

e
for sufficiently wide range of frequency f, is called a 1/f” noise (or 1/f® noise, since
the exponent in Eq. is also often denoted by «). The range of 3 is typically
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between 0 and 2. The case of 1/ f noise corresponds 8 = 1, but sometimes this name
is used to refer to 1/ f? noise in general. Recognizing a signal as 1 / f? noise implies
the presence of a specific structure of correlations. For example, it can be shown [258]
that a weakly stationary, zero-mean process in discrete time whose autocovariance
function for large 7 has the form:

Rx(t)x7 % «ae€(0;1), (3.12)

(which makes the process a long-memory process), has spectral density also behaving
like a power function for small f (that is, for large time scales; for finite time series
minimal f is determined by the series’ length):

(3.13)

Therefore, 1/ f? spectrum for 3 between 0 and 1 can be directly related to long-range
correlations. The most elementary characteristics of 1/ f? noises with 3 between 1
and 2 can be illustrated with the use of an important and widely studied example
of a process able to generate such signals - the so-called fractional Brownian motion
[259,1260]. Ome of the ways in which it can be defined is using another process, the
fractional Gaussian noise. In its discretized variant, fractional Gaussian noise can
be characterized as a collection of variables { B (t)} indexed by discrete time ¢, in
which all the variables BY;(t) have the same normal distribution with zero mean and
standard deviation o, and the autocovariance function is given by:

2
g
Rp (1) = 5 (Ir + 127 =207 + | = 1]7). (3.14)

The autocovariance function of fractional Gaussian noise depends on the parameter
H € (0;1) called Hurst parameter, Hurst index or Hurst exponent. The value of
H determines the character of the correlations; for H = 1 the variables {B};(t)}
are independent. For H < % the process is antipersistent, that is, its values in
consecutive time steps are negatively correlated; for H > % it is persisent - which
means that its consecutive values are correlated positively. It can be shown [256]
that Rp, () behaves as a power function with exponent 2H — 2 for large 7

Rp (T) o 22 (3.15)

Spectral density S(f) of fractional Gaussian noise for small f satisfies [256,259.260]:

S(f) f;,_l (3.16)

Therefore, for H greater than % fractional Gaussian noise is a process exhibiting
long-range correlations.

Fractional Brownian motion can be defined by specifying its increment process -
fractional Brownian motion By with Hurst exponent H is a process whose increment
process is fractional Gaussian noise with Hurst exponent H [257,261]. For processes
in discrete time this can be written as:

By(t) =>_ By(s). (3.17)
s=0

A time series representing the fractional Brownian motion can be considered a real-
ization of a correlated random walk (starting at zero, according to the characteriza-
tion given above). The correlations of the increments are determined by the Hurst
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exponent H; for H = % the process reduces to classical Brownian motion. Fractional
Brownian motion is a non-stationary process, its autocovariance function depends
on two variables. Spectral density S(f) of a fractional Brownian motion with Hurst
exponent H holds 257,259} 260]:

S(f) o< fgim- (3.18)

Examples of fractional Gaussian noises and fractional Brownian motions with dif-
ferent values of H are shown in Figure 3.1]

One of important properties of fractional Brownian motion is related to the
behavior of the variance - for any ¢y and ¢t > 0 [256,262]:

E[(Bu(to +t) — Bu(to))*] = o**", (3.19)

where o2 is the variance of the increments of By (constant in time, since the in-
crements are stationary). This relationship can be used to define Hurst exponent
in a more general sense - for processes other than fractional Gaussian noise and
fractional Brownian motion. If {Y'(¢)} is a process whose increments are given by a
(weakly stationary) process {X (¢)}, and {Y(¢)} satisfies (for any ¢ and ¢ > 0):

E[(Y(to+1) — Y (t0))"] o< £, (3.20)

then H can be called the Hurst exponent of {X(¢)}. It characterizes the process
by quantifying how the quantity expressed by the left-hand side of Eq. scales
with time, compared to a random walk process. Knowing that H = % is observed
when {Y(¢)} is a random walk with uncorrelated increments, observing H > %
or H < % allows to identify, respectively, the persistence or the antipersistence
of {X(¢t)}. It is worth mentioning that the notion of the Hurst exponent occasionally
pertains to the “cumulative” process {Y (¢)} instead of the increments {X(¢)} (the
case of fractional Gaussian noise and fractional Brownian motion both using the
name "Hurst exponent” to refer to their parameters is an example) - the exact
meaning might be dependent on the context.

It can be concluded from Eq. and Eq. that using fractional Gaussian
noise or fractional Brownian motion one can generate 1/ f% noises with 3 both below
and above 1. White noise - a signal with no correlations and flat spectral density
(proportional to 1/f°) - is obtained from fractional Gaussian noise with H = %
Fractional Gaussian noise with H € (%, 1) produces a long-memory signal of 1/ 1B
type with 8 € (0;1). Fractional Brownian motion with H € (0;1) is a 1/f7 signal
with 8 € (1;2). Classical Brownian motion, obtained by setting H = % in fractional
Brownian motion, generates 1/f2 noise (Brownian noise). Apart from summarizing
the relationships between power laws, correlations, and spectral properties of a cer-
tain class of signals important in studying many natural phenomena, the presented
statements allow to illustrate why 1/f noises (here understood as 1/f? noises with
B equal to or close to 1) are in a sense special. = 1 is at the interface between two
regimes; one corresponding to (correlated) random-walk-like processes (1 < § < 2),
the other describing the processes behaving like the increments of a correlated ran-
dom walk (0 < 8 < 1). For that reason in some contexts § = 1 is considered to be a

case of particular interest, corresponding to signal’s maximum complexity [263}264].
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Figure 3.1. (a) Time series being realizations of fractional Gaussian noise (fGn) and fractional
Brownian motion (fBm) with Hurst exponents H = 0.25, H = 0.5 and H = 0.75. The length of
the series is 1500 for f{Gn and 20000 for fBm. The effect of H on the behavior of the series can be
clearly seen in fBm - the higher the value of H, the greater the smoothness of the curve representing
the series. (b) A log-log plot of the spectral densities of f{Gn and fBm for selected values of H; each
spectrum is computed by averaging and smoothing spectral densities of 100 time series with 2 - 10*
points, generated by the relevant process. The signals are normalized to have the same average
power. The power-law behavior of the spectra allows to identify the underlying signals as 1/f”
noises, with 8 € [0;2]. The lines drawn on the plot are fitted by least squares method (in the
range where the spectra are approximately linear); the values of §, which represent the slopes of
the lines with the minus sign, are given alongside the parameters of the processes used to generate
the signals.
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3.4 Fractals and multifractals

3.4.1 Elementary concepts in fractal geometry

The origins of the study of fractals can be dated back to 1960s and 1970s, when
B. Mandelbrot developed foundations of fractal geometry |119,/193]. A number of
concepts which are today incorporated into fractal geometry had appeared from
time to time in works of mathematicians before the unified theory was established;
however, those concepts were usually considered highly abstract and having little
practical application. It was only after the systematization of the relevant ideas
initiated by Mandelbrot that fractal geometry became an important tool in under-
standing and describing many shapes and patterns formed by nature.

The notion of a fractal is typically associated with a geometrical shape having
the property of self-affinity, which can be loosely understood as being composed
of parts that are downscaled and possibly rotated or reflected copies of the whole
shape. More precisely, self affinity is defined in terms of affine transformations. An
affine transformation S : R" — R™ is a transformation of the form:

S(v) = T(v) + b, (3.21)

where v and b are vectors in R”, and 7" : R” — R" is a linear transformation,
usually represented as a n X n matrix; linearity of 7' means that T satisfies T'(v; +
ve) = T(v1) + T(vg) and T(Av1) = AT(vq1) for all v1,v3 € R™ and all A € R.
An affine transformation can therefore consist of scaling, rotation and translation
(reflection, which is sometimes mentioned in this context, can be treated as scaling
with the scale of —1). Scaling is in general anisotropic, that is, the scaling factors for
different directions can be different. If all the scaling factors have the same value,
then the scaling is isotropic. An affine transformation in which scaling is isotropic
is a similarity transormation - therefore, affine transformations can be considered
generalizations of similarity transformations. If there exists a number ¢ € (0; 1) such
that for all v1,v9 € R™ an affine transformation S satisfies

1S5 (v2) = S(on)l| < ¢ljvg = wall, (3.22)

where ||+ denotes the norm of a vector, then S is called a contraction mapping (or
shortly a contraction). If S1,So, ...y, is a sequence of contraction mappings in R",
then there exists a closed and bounded set F' such that [265]

F =[] Si(F). (3.23)

This means that if each of the transformations S; is applied to F', the union of
their images is F'; F is therefore a fixed point of the system of contraction mappings
51,59, ...5m,. The existence and uniqueness of F' is guaranteed by Banach fixed point
theorem (also known as contraction mapping theorem). Another consequence of the
theorem is that an approximation of F' can be obtained by applying the sequence
of transformations 51,59, ...5,, recursively, starting from a practically arbitrarily
chosen, closed and bounded set. If S(A) denotes the union of the images of some
set A € R™ under Sy, S, ...Sn, then the sequence (F}), defined as

= {A, for k=0 (3.24)

S(Fg-1), fork=1,2,3,..

tends to F as k — oo, provided that A is nonempty, closed, bounded, and satisfies
Si(A) C A for all i = 1,2,...,m. This fact is the basis of an important method of
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generating fractals, the so-called Iterated Function Systems (IFS). The method, in
its basic form, is a straightforward application of the fact that if a fractal set F' is
a fixed point of some known contraction mappings system, then by applying the
contractions over and over again, one can obtain successive approximations of F.
Figure [3.2] shows an example of the identification of the contraction mapping system
whose fixed point is a fractal set (Sierpinski triangle).

If a set is a fixed point of a contraction mapping system, it is called self-affine.
Self-similarity is the case where all the contractions in the system are similarity
transformations. However, the term self-similarity is often used to describe both
self-similarity in strict sense and self-affinity; such a convention can be used when it
does not lead to confusion.

Y A
1__

Figure 3.2. Self-similarity of the Sierpinski triangle. The whole triangle can be divided into
three parts - red, green and blue - each of which is an image of the whole triangle under one of
similarity transformations Si, Sz, Ss. If (z,9)” is a column vector representing the coordinates of
a point on the plane, the transformations Si, S2, Ss can be written as: S1((:5,y)T) = %(Jc,y)T,

Sa ((:v, y)T) =2z, )" +(3,07, Ss ((m, y)T) =z, y)" + (?, 0)T. This shows that the Sierpinski
triangle is a fixed point of the contraction mapping system constituted by Si, S2, Ss.

Although self-similarity is a typical property of fractals, it is not sufficient to
define a fractal. There are objects which do exhibit self-similarity and are not
fractals. For example, a square in R? is self-similar (it can be easily seen that a
square can be divided into four smaller squares, each being an image of the original
square under a similarity transformation), and yet, it is not identified as a fractal.
In fact, the notion of a fractal does not have a precise definition; fractals are usually
characterized with a collection of statements regarding their properties. These can
be summarized as follows [265].

e A fractal has a fine structure, that is, detail on arbitrarily small scales.

o Fractals have irregular, "rough” shape, which makes it difficult to describe their
properties in terms of "traditional” geometry.

o They can typically be defined as objects generated by recursively repeated (and
often relatively simple) procedures.

o7



o Fractals exhibit some form of self-similarity (or self-affinity), possibly in approx-
imate or statistical sense.

e A fractal usually has fractal dimension greater than its topological dimension
(fractal dimensions are discussed in subsection [3.4.2)).

The fact that fractals are often produced by a simple procedure applied re-
cursively many times can be exemplified by Iterated Function Systems, L-systems
(Figure and some other methods of generating fractals (Figure . It also
allows to intuitively understand the abundance of fractal patterns in nature - re-
peating the same action recursively over and over again is a kind of process which
can be identified in many natural phenomena (some examples of fractal shapes ob-
served in nature are presented in Figure . Self-similarity, which can be exact
for idealized mathematical objects, in case of shapes and patterns encountered in
nature is typically approximate. Self-similarity can also be understood in statistical
sense - a fractal can be an object whose certain statistical properties are the same
in all scales (or in a wide range of scales). In order to refer to different types of
self-similarity, fractals are sometimes distinguished into deterministic fractals and
random (or stochastic) fractals. Self-similarity implies lack of characteristic scale,
and is therefore expressed by power laws.

rr
2
e

n=3 n=4

n=3

Figure 3.3. Examples of fractals generated by recursive removal of selected parts of a shape. The
number of iterations is denoted by n. First row: The Sierpinski triangle generated by dividing an
equilateral triangle into four identical parts, removing the central part, and repeating this step in
the remaining triangles recursively. Second row: a fractal obtained by dividing a square into 16
identical parts, removing three of them in the way shown in the picture corresponding to n = 1, and
applying this procedure recursively to the remaining parts. Third row: an example of a stochastic
fractal, generated by the procedure same as the one producing the fractal in the second row, with
the difference being the random choice of the three squares to remove at each stage of the process.
Although the shapes generated in the second and in the third row look different, they have the
same box-counting dimension (defined in subsection , equal to log(13)/log(4) ~ 1.85.
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Figure 3.4. Examples of fractal patterns in nature - tree branches (a), Romanesco broccoli (b),
the paths emerging at an electrical breakdown (c), mountain ridge system (d).

3.4.2 Fractal dimension
Self-similarity dimension

Fractals are often characterized with the use of fractal dimension. There are a
few ways of defining fractal dimension, but all the variants express the same idea
- they characterize the power law describing the structure of an object. A strictly
self-similar object is composed of smaller copies of itself. If N is the number of
such copies of a given size and s < 1 is the stretching factor of the similarity
transformation which transforms the whole object into one of those copies, then
the following relation holds:

N = (1/s)%s, (3.25)

where dg, the exponent of the power law describing the relationship between N
and s, is called the self-similarity dimension of the studied object. Hence, dg can
be written as log N
o

dg = og(1/5)" (3.26)
This quantity differs from topological dimension in that it can be a non-integer num-
ber, which is often (but not always) the case for fractals. For example, Sierpinski tri-
angle consists of N = 3 copies of itself, each of the copies being the image of the whole
triangle under similarity transformation with stretching factor s = 1/2, and there-
fore the self-similarity dimension of Sierpinski triangle is dg = log(3)/log(2) ~ 1.59.
For self-similar objects which are not fractals, self-similarity dimension is equal to
topological dimension. For example, a square with side of length L can be divided
into N = 4 squares with side of length L/2; the smaller squares are similar to the
bigger one, and the stretching coefficient s is equal to 1/2. Therefore, self-similarity
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dimension of a square is dg = log(4)/log(2) = 2, which coincides with its topologi-
cal dimension.

Hausdorff dimension

A notion which is more general and applicable to objects that are not necessarily
strictly self-similar, is Hausdorff dimension. Let F' be a nonempty set in a metric
space. Let diam(U) denote the diameter of a set U, that is

diam(U) = sup {p(z,y) : xz,y € U}; diam(0) =0, (3.27)

where p is the distance function (the metric), and () is the empty set. For any ¢ > 0,
let the d-cover of F' be a countable collection of sets {U;} such that F' C |J; U; and
0 < diam(U;) < 6 for all 4. For any s > 0, the following quantity can be defined:

H5(F) = inf {Z (diam(U;))® : {U;} is a d-cover of F} ) (3.28)

7

Obtaining Hj(F'), requires covering F' with sets U; of diameters at most 0, and then
finding the infimum of the sum of the s-th powers of diameters of U;. H(F') is a
non-increasing function of §, because for any 41,92 € Ry such that §; < d2, the
set of all possible do-covers of F' contains the set of all possible §;1-covers of F', and
therefore the infimum in Eq. for d2 can only be smaller or equal to infimum for
delta;. As a consequence, when § decreases, H3(F') does not decrease, and therefore
when 0 — 0, H;(F) approaches a limit, finite or not. That limit, denoted by H*(F),
is called the s-dimensional Hausdorff measure of F":

HO(F) = lim H5(F). (3.29)

For sufficiently large s, the value of s-dimensional Hausdorff measure of F' is equal
to 0. The Hausdorff dimension of F (also commonly referred to as the Hausdorff-
Besicovitch dimension), denoted by dp, is defined as:

dy = inf{s:s>0AH(F)=0}. (3.30)

This can be understood as follows. For almost all choices of s, the s-dimensional
Hausdorff measure of a set is either infinite or equal to zero. There exists a critical
value of s, at which H*(F') changes its value from oo to 0. This value of s, s = dy,
is the Hausdorff dimension. So it can be stated that for a set F, the Hausdorff
dimension dg is the number such that:

oo, fors<dy

(3.31)
0, for s > dp.

H(F) = {
The value of H*(F) for s = dp is usually a finite number different from zero, but
it also can be infinite or equal to zero; it is the point at which H*(F') switches
from infinity to zero that is important for the definition. The exception is the case
in which H*(F) is equal to zero for s = 0; since s is a non-negative number, this
implies that there are no values of s such that H*(F) = oo, and the Hausdorff
dimension is then equal to zero.

Box-counting dimension

Hausdorff dimension is an important mathematical tool allowing to formalize the
description of fractals. However, in practical applications, like describing the prop-
erties of fractals encountered in nature, another definition of fractal dimension is

60



widely used - the definition of the so-called boz-counting dimension, also known as
capacity dimension or Minkowsk: dimension. Let F' denote a bounded nonempty set
in a metric space; stating that F' is bounded means that it is contained inside some
(hyper)ball in the considered space. Let N(J) denote the smallest possible number
of balls of diameter § needed to cover F'; the cover of F' is again understood as a
collection of sets such that their union contains F', and the diameter of a ball is
equal to its radius multiplied by 2. The box-counting dimension of F' is defined as:

to — 1 B (V)

~ 550 log(1/0) (3:32)

provided that the limit exists. When it does not exist, it is sometimes helpful
to consider limit inferior and limit superior, which lead to the definitions of lower
Minkowski dimension d¢ and upper Minkowski dimension d, respectively. The need
to distinguish between d¢, d¢, and de happens rarely in practical applications, and
usually do is used to characterize the studied object. The coverings of F' do not
necessarily have to be done with balls, other types of sets with given diameter or
characteristic size directly related to diameter can be used. When the considered
space is R™, one can use (hyper)cubes with the side of length 4. The sets used to
cover the studied set F' are often called boxes. The name - box-counting dimension
- comes from the fact that do describes how the number of boxes N(J) needed to
cover the considered object changes with the size § of the boxes. From Eq. it
can be seen that d¢ is the exponent of the power law of the form:

N(@) ~C(1/8)% asd—0 (3.33)

where C' can be treated as a constant (technically, Eq. allows C' to be a
function of § varying sufficiently slowly, namely a function C' = C(¢) such that
log(C(9))/log(1/6) — 0 as 6 — 0). The importance of box-counting dimension
is due to the relative ease of its use in numerical computations - to estimate the
fractal dimension of an object, one needs to cover the object with a (possibly small)
number of boxes of given size §, repeat the procedure for various 9, and determine
the exponent of the power-law relationship (holding for small §) between the size § of
a box and the number N (§) of the boxes used (Eq. [3.33). It should be emphasized,
however, that estimating the box-counting dimension of objects not being idealized
mathematical constructions (like fractals occurring in nature) might be prone to
quite large numerical errors, which can be a result of the limited amount of relevant
data (an insufficiently detailed representation of an object, for instance) or the slow
convergence of log(N(6))/log(1/d). An illustration of the procedure of estimating
box-counting dimension is shown in Figure [3.5

Similarly to other presented fractal dimensions, box-counting dimension can have
a non-integer value and it gives results agreeing with intuition when applied to non-
fractal sets in R™ - objects like a line segments, polygons, or polyhedrons have
box-counting dimension equal to their topological dimension.

Correspondence between different fractal dimensions

It is worth noting that self-similarity dimension can be considered a simplified variant
of box-counting dimension, suited to strictly self-similar objects. A strictly self-
similar object can be covered by boxes in such a way that each box contains one
piece being the image of the whole object under similarity transformation with
stretching factor s < 1; in such a case, the number of boxes required for covering is
equal to the number of the pieces. If §g is a constant such that the whole studied
shape fits in the box of size dg, then a piece of the whole shape being its copy scaled
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Figure 3.5. Estimating the box counting dimension of the Sierpinski triangle. (a), (b), (c) - three
examples of coverings with boxes of different sizes (boxes are marked in blue); (d) - the log-log plot
of the number of boxes as a function of box size; the dimension estimated from the slope of the fitted
line, equal to 1.57, is close to the true value of the fractal dimension, dc = log(3)/log(2) ~ 1.59.

by the stretching factor s = 3’5, where so < 1 and k = 1,2,3, ..., fits in the box of
size dgs§. Therefore, to calculate the box-counting dimension of a strictly self-similar
object, one can use the sequence of coverings with box sized given by a sequence Jy,

of the form:
5k = 5050, 508%, 5088, e = (508]8 for k = 1, 2,3, (3.34)

The number of downscaled copies of the whole shape obtained by applying similarity
transformation with stretching factor 5]8, can be determined from Eq. by
inserting s = sf. This number is equal to the number N(d;) of boxes of size dy,
needed to cover the shape. Hence N (0;) = (1/s§)%s, where dg is the self-similarity

dimension. The ratio log(NN(dx))/log(1/dx) can therefore be expressed as:

log (N (8x)) log ((1/30)kds) g klog(1/s0) B
log (1/61) ~ log (1/(60sf)) —  klog (1/(66"s0)) (3.35)

s log(1/50)
log(1/s0) + (1/k) log(L/3)°

k
where in the second equality the identity &g = (55/ k) is used. The limit of the

above expression as k — oo (which corresponds to 6 — 0), defines the box-counting
dimension d¢o. Since the value of that limit is equal to dg, one can write: dg = dg.
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So, the self-similarity dimension of a strictly self-similar object can be interpreted
as the box-counting dimension determined with the specific choice of boxes which
simplifies the calculation.

In most cases relevant from the standpoint of practical computations, box-
counting dimension d¢ and Hausdorff dimension dg are equal and referred to simply
as "fractal dimension”, but in principle they satisfy dg < d¢. They both might ex-
ceed topological dimension dr, therefore in general dp, dy and d¢ satisty [266):

dy < dy < de-. (3.36)

Fractal dimension can be thought of as a way of expressing the information about
how the characteristics of an object change when inspected at different scales - for
example, the box counting dimension describes how the number of boxes needed to
cover the object changes with the changing size of the boxes. Fractal dimension is
often summarized as a quantity expressing the "complexity” of a shape, understood
as "roughness”, or the capacity to fill the space that the shape is embedded in (for
example, comparing two curves in R? having different fractal dimensions, one can
typically observe that the one with the lower fractal dimension looks more smooth
while the one with the higher fractal dimension is more "wiggled” or "jagged’).

3.4.3 Multifractals

Although fractal dimension can give insight into the properties of various shapes and
patterns, in many situations the information provided by examining just the fractal
dimension itself is insufficient. An obvious reason for that is that fractal dimension
does not give information about the structural details or about the process that
generated the object; many different fractals can have the same fractal dimension.
Also, fractal dimension characterizes a shape as a whole; however, there exist ob-
jects whose different parts have different local properties. To describe the so-called
multifractals, more general tools are required. Multifractals can be thought of as
objects in which multiple different fractal structures are entangled. With the use of
appropriate formalism, these structures can be identified and their contribution to
the structure of the whole multifractal can be quantified [194}265-268]. While the
mathematical description of fractals utilizes the notion of a set, the description of
mutltifractals is formalized in terms of measures (a measure can be thought of as a
function specifying how some non-negative quantity is distributed over some space).

Let u be a measure in R™; u can represent a quantity like mass, probability
(provided that g is normalized to 1), or electric charge (technically, it should be
taken into account that electric charge can be negative and a measure is always
non-negative). Let supp(u) denote the support of the measure p, that is, the largest
possible set in the considered space such that every open neighborhood of every point
of the set has positive measure. Let u be distributed in such a way that around an
arbitrary point zy € supp(u) it satisfies:

p(K(xg,e)) ~ Cu e®0)  for ¢ — 0, (3.37)

where K (z9,¢) is the (hyper)cube of side length e centered at xq, u (K (xg,¢)) is
the measure of K (z,€), a(xp) is a non-negative real number, and C), is a constant
(independent of g and €). This means that for £ — 0, the distribution of measure
w around xq is given by a power law with exponent «(zg). This exponent, called
singularity exponent or Hélder exponent, describes the ”strength” of singularity of
w around xg - the lower the exponent, the more singular the measure is; the limit
a(zg) = 0 corresponds to a behavior similar to a Dirac delta at x. Conversely, the
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greater the a(zg), the more uniform the measure is around xy. From Eq. it
can be seen that the singularity exponent can be defined as:

a(xg) = lim log p(K(z0,¢)) E))

e—0 loge (3:38)

An equivalent definition can be obtained for K(zg,¢) replaced with another type of
set, for example a (hyper)ball with diameter ¢, centered at xy. The values of the
singularity exponent may be different for different points in space, and therefore o
is a function on xy. For any value of o one can define a set E, being a subset of
supp(p) such that all the points in E, have the singularity exponent equal to «:

E, ={z: 2z €supp(p) A a(x) = a}. (3.39)

For each a, the set F, can be characterized by its Hausdorff dimension; this dimen-
sion is denoted by f(a):

fla) =du(Eq) (3.40)

(here, dg(+) denotes the operation of determining the Hausdorff dimension of a set).
So f(«a) is a function which assigns to each « the fractal dimension of the set of
points having singularity exponent equal to a. The set of pairs («, f(«)) for all
@ € (min; max) (that is, for all @ occurring in a system) is called the singularity
spectrum. It shows how the whole structure of the studied quantity’s distribution is
composed of multiple intertwined components, each of them having its own singu-
larity exponent and fractal properties. When the whole system is characterized by
the same singularity exponent «q, then the singularity spectrum reduces to a single
point: (g, f(ap)); the value of f(«ap) depends of the fractal dimension of the support
of the measure. A singularity spectrum reduced to a single point corresponds to a
measure that is called homogeneous or monofractal. Conversely, a measure whose
singularity spectrum consists of many points - indicating that there is some range
of singularity exponents - is called multifractal. Objects and quantities described by
measures of the presented types - are referred to as monofractals and multifractals,
respectively. A term often appearing in relation to multifractality is multiscaling; it
refers to the fact that different parts of a multifractal object exhibit different types
of scaling behavior. In typically studied cases, the singularity spectrum is a concave
function, spanned between some finite values qi, and amax, having the maximum
value max{f(a)} equal to dg(supp(r)), and assuming a shape resembling ”an in-
verted U” (Figure [1941|196,[265-267]; this is the case considered here, but it is
worth mentioning that it is possible to consider objects with singularity spectra of
different shapes [269-272]. The width of the singularity spectrum Ao = qypax — Omin
expresses the variety of the singularity exponents - and therefore a wide spectrum
is often a sign of a certain kind of complexity.

Detecting and quantifying multifractality in empirical data based on the defini-
tions given above typically suffers from large errors. Therefore an approach based
on the so-called partition function is utilized. The space R" can be divided into
(hyper)cubic cells of side length e. The cells containing any points belonging to
supp(u) are then numbered by i = 1,2,3, ..., N(¢); the measure p contained in the
i-th cell is denoted by p;(¢). The partition function Z(g,¢) for ¢ € R is defined as:

N(e)
Z(¢.2)= Y mile)” (3.41)
=1

The behavior the partition function in the limit ¢ — 0 and with fixed ¢ is given by
a power law:

Z(q,€) ~ Cze™ @ for e — 0 and fixed g. (3.42)
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Here C is a constant (independent of £) and 7(q) is an exponent in general depen-
dent on g, called the (generalized) scaling exponent or the mass exponent. To relate
q and 7(q) to singularity spectrum, a following line of reasoning can be utilized.

Determining Z(q,€) from the definition given above relies on calculating the g¢-
th power of p in each of the boxes and summing the results. But Z(g,¢) can be
expressed in another way. It can be informally stated, that to calculate Z(q,e) one
can calculate the g-th power of the measure (K (x,¢)) contained in a cell K(z,¢)
of size e centered at an arbitrary point = € supp(u) such that its Holder exponent
is equal to «, multiply the result by the number of cells characterized by the Holder
exponent equal to «, and then integrate over all possible ae. More precisely, Z(q, ¢)
can be approximated as follows:

Qmax
Z(q,e) = / Cy u(K(x,¢))? pla, €) da, (3.43)
Qmin
where C is a constant and p(a,e) can be interpreted as the distribution of «,
inspected at scale ¢; in other words, p(«,¢)da is the probability that a randomly
chosen cell K(z,e) with non-zero measure has the coarse Holder exponent between
a and a + da (the coarse Holder exponent & of a cell K(x,¢) of size ¢ is defined
as & = log u(K(z,e))/loge). The support of the measure consists of sets E, with
singularity exponents a and fractal dimensions f(«), that is supp(p) = U, Fa,
where « runs over the continuum of possible values between auin and apax. The
number of cells of size ¢ needed to cover F, behaves as e ~/(®). Hence, p(a,e) can
be written as p(a,e) o p(a)e /(@) where p(a) can be interpreted as a function
assigning weights to sets F, according to their contribution to supp(u); in other
words, p(a)da can be understood as the probability that a randomly chosen set
E, has the singularity exponent o/ between o and « + da. By inserting p(«, €)
pla)e= (@ and p(K(z,e)) ~ C,e® (Eq. , into Eq. [3.43] one gets:
Qmax
Z(q,e) =~ /Cgp(a)aaq_f(o‘)da, (3.44)
Qumin
where Cy is a constant. In the limit € — 0, the above integral is dominated by
the values of the integrand corresponding to the lowest values of the exponent of ¢.
Therefore the behavior of Z(q,¢) for ¢ — 0 and fixed ¢ can be summarized as:

Z(q,e) ~ C327 7@ with o minimizing (aq — f(a)), (3.45)

where C3 is a constant. The value of o minimizing (ag — f(«)) can be found as the
solution of the equation:

0

7 (aq~ fla) =0, (3.46)
from which one concludes that a(q), the searched value of «, satisfies:
daf
— =q. 3.47
dat|a=a(q) (347
Comparing Eq. with Eq. gives
7(q) = qa(q) — f(alq)). (3.48)

This equation, along with Eq. m allows to derive formulas expressing (¢, 7(q)) in
terms of («, f(«)) and expressing («, f(«)) in terms of (¢, 7(q)):

&mwzg @W@ZZ (3.49)
(2) 7(g(a)) = ag(a) — f(a) (4) flalq)) = qa(q) — 7(q).
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The interchangeability of the descriptions of a multifractal in terms of (o, f(«)) and
in terms of (¢, 7(q)) facilitates practical calculations; 7(g) is often easier to compute
numerically. Another way of characterizing a multifractal employs the so-called
generalized fractal dimensions Dy, which can be defined as:

T(q)l, for g #£ 1

_Ja—

Dy = o 7@ T+ A dr for g — 1 (3.50)
ge—1lqg—1 Ag—0 Agq dq g=1 ’ '

A number of properties can be demonstrated using the above presented equations. If
the singularity spectrum consists of a single point (the measure is monofractal), then
dr/dq is constant, and 7(q) is linear; nonlinearity of 7(¢) indicates multifractality.
For large ¢, the value of Z(q,e) is dominated by the contributions coming from
cells ¢+ with high u;; conversely, low ¢ in principle ”selects” the cells with low u;.
Therefore, for different values of ¢, 7(¢q) characterizes the scaling behavior within
the cells of different measure. For ¢ = 0, Z(q,¢) is the number of boxes required
to cover supp(u); therefore using Eq. Eq. and Eq. one can identify
—7(0) = Dg as the fractal dimension of the support of the measure d¢(supp(u)),
which is also the maximum value of f(«):

—7(0) = Do = dc(supp(p)) = max {f ()} (3.51)

The concavity of f(a) can be seen by noticing that «a(g) is found as the value
minimizing (ag — f(«)) in Eq. this implies that the second derivative of
(aq — f(a)) is greater than 0; setting 02/0a?(aq — f(a)) > 0 yields d?f/da? < 0 for
any «(q), which shows that f(«) is concave. This also allows to notice that ¢(«) is
a decreasing function of «; differentiating the first formula in Eq. with respect
to a yields dg/doa = d?f /da?, which is less than 0; using the derivative of an inverse
function, one concludes that also a(q) is a decreasing function of g.

The generalized fractal dimensions D, for some specific values of ¢ have specific
interpretations. As mentioned above, Dg is the fractal dimension of the support
of the measure. For ¢ = 1, Z(q,¢) = Zi]i(f)ui = p(supp(p)); therefore 7(1) = 0.
Inserting this into the first and the second formula in Eq. gives 1=df /da| alg=1)
and f(a(g=1)) = a(g=1), respectively. Using the definition of 7(¢), that is 7(¢) =

lim. 0 ((log Zﬁ(f),ui(e))/log £), to calculate dr/dg, one obtains:

N(e)

dr ‘ lliz‘(f)log/iz‘(ﬁ)

D = =1)= — = lim = . 3.52
1=a(g=1) dql, S loge ( )

If the measure is normalized (u(supp(p)) = 1), it can be interpreted as probability,

and then the expression —ZZJ-\L(IE ) wi(e)log p;i(e) is the entropy of the measure dis-
tributed over cells of size e. Thus, D; describes how the entropy changes with the
change of ¢, and is often called the information dimension. Setting q = 2, gives Do,
known as the correlation dimension:

N(e)
log ; pi(e)?

If the measure is normalized and represents the density of points in space - meaning
that the probability that a randomly chosen point belongs to the i-th cell of size
is proportional to u;(e), then the expression Zﬁ(f ) pi(€)? can be interpreted as the
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probability that two randomly chosen points belong to the same cell of size €. So,
Do describes the behavior of that probability for varying €. Dividing both sides of
the second formula in Eq. by (¢ — 1) # 1 yields:

7(q) q  flo)
=a(q)—— — —=. (3.54)
q—1 g—1 q—1
Since f(a) is bounded both from above and below, taking the limits ¢ — +oo and
q — —00 gives:
D = a(q=+00) = Omin,
“+o00 (q ) min (355)
D_ = a(q:—OO) = Omax;
which means that D, and D_., characterize the weakest and the strongest singu-
larity, respectively. An exemplary shape of a singularity spectrum of a multifractal
object, with some characteristic points described above, is shown in Figure

fle) A

D
.}

) . E:_OO>
/ AN
Omin :DJroo a(}: 0) Umax :D—oo

Figure 3.6. A sketch of a typical singularity spectrum of a multifractal object, with some charac-
teristic points marked on the plot.

3.4.4 Fractals and multifractals in time series

Hurst exponent and fractality

Among the examples of objects which are often studied with the use of (multi)fractal
analysis are signals and time series. The complexity of signals can be manifested by
the presence of properties which can be attributed to fractality or multifractality.
Identifying such properties in a signal typically allows to characterize some aspects
of the process generating that signal, for example multifractality is often linked to
heavy-tailed distributions and the presence of nonlinear correlations (correlations
that are not captured by autocovariance function or spectral density) [148,273H275|.

One of the methods of investigating the behavior of a signal in various scales
utilizes the notion of the Hurst exponent. Hurst exponent is related to fractality
in a few ways. For example, the fractal dimension d¢ of a fractional Brownian
motion with Hurst exponent H is given by: do = 2 — H (d¢ can be interpreted as
the fractal dimension of the graph of the function - it describes how the number of
boxes required to cover the line representing the trajectory of the process changes
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with changing box size; it is worth noting that there are also other ways of defining
the fractal dimension of a signal) [193,[276]. According to Eq. the Hurst
exponent of a time series is the exponent of the power law describing how the
variability of the series behaves in various time scales; as the relationship has the
form of a power law, it can be said to be scale-free. Lack of characteristic scale can
also be considered in the following sense. If, for any positive constant A, a process
represented by a function X (¢) satisfies [256,1276):

X(to + M) — X (to) £ X(X(to + ) — X (t0)) , (3.56)

where 727 denotes the equality of probability distributions, then the process is called
self-affine or (less precisely) self-similar; c is called self-similarity index or the Hurst
exponent, as its value is equal to the Hurst exponent (defined as in Eq. for
certain processes - fractional Brownian motion, for instance. The interpretation of
the above equation can be expressed as follows: if a process represented by a signal
X (t) is self-similar and has self-similarity index ¢, then rescaling the argument ¢ by
some factor A together with rescaling the values of X (¢) by the factor 1/A¢ gives a
process statistically indistinguishable from X (¢).

Multifractal Detrended Fluctuation Analysis

There are a few methods of detecting and quantifying fractality and multifractality
in time series. The method used in this work is Multifractal Detrended Fluctua-
tion Analysis (MFDFA) [277]. MFDFA is a generalization of a simpler method -
Detrended Fluctuation Analysis (DFA) [278,279], designed to estimate the Hurst
exponent of a series; MFDFA contains DFA as a special case. It allows to estimate
both the singularity spectrum and the Hurst exponent of a time series. An impor-
tant feature of MFDFA is that it allows to analyze non-stationary series; it removes
trends from the data and focuses on the fluctuations around the trends. The method
can be divided into a few steps, which are listed below.

Let z(1),2(2),x(3),...,x(IN) be a time series with real values. The first step of
MFDFA is computing the profile of the series, that is, the cumulative series:

y(k) = Zx(z) (3.57)

=1

The second step is dividing the range of the variable representing time into Ny =
| N/s| non-overlapping segments of equal length s (the notation |-| represents the
floor function; a segment of length s starting at some time step k£ consists of time
series’ indices k,k + 1,k + 2,...,k +s — 1). To avoid disregarding any piece of
the data, two partitions are done - one starting from £ = 1 and one starting from
the opposite end of the series; this gives 2Ny (overlapping) segments in total. The
segments are then numbered by v = 1,2, 3, ..., 2N,; the set of indices corresponding
to the segment number v is denoted by I,,.

The third step starts from detrending - a local polynomial trend p, is computed
for each segment [, using the least squares method and the detrended cumulative
series y(k) — py (k) is constructed. The order of the chosen polynomial influences the
shape of the trend that can be removed from the data; common choices are linear,
quadratic, and cubic polynomials. After detrending, the quantity F?(v,s), called
variance, is computed for each segment I,:

F2(v,s) = = > (y(k) — pu (k). (3.58)



In the fourth step, a single value of the g-th order fluctuation function Fy(s)
for a given s is computed as the power mean of order ¢ of the square roots of the
variances F?(v, s):

1 2N a/2 e
<2N Z (F2(V,S)> ) , for ¢ #0
Fy(s) = S =l (3.59)

1 2N
exp <4N log (F2(V7 3))) , forg=0
=1

Sv

(here exp(+) and log(+) denote the exponential function and natural logarithm, re-
spectively). This is done for multiple values of ¢; typically one uses an equally spaced
sequence of ¢ values in some range centered at 0, for example in the interval [—4;4].
F,(s) characterizes the fluctuations of given magnitude at a given scale; the main
contribution to Fy(s) for strongly negative ¢ comes from small fluctuations, and for
large ¢ the largest fluctuations are "amplified”.

The steps from the second to the fourth need to be repeated for different seg-
ment lengths s chosen from some range [Smin;Smax); the choice depends on the
studied data, but it is often suggested that sy, should be not less than 10 and syax
not greater than N/5. With that procedure, the set of values of F,(s) for different
q and s is obtained. Then the scaling behavior of Fi(s) is investigated; if within the
studied range of s the g-th order fluctuation function is described by a power law of
the form:

Fy(s) = Cs"@) (3.60)

where C' is a constant, then h(q) is the generalized Hurst exponent, dependent on q.
For ¢ = 2, h(q) is identical to the ”ordinary” Hurst exponent, h(2) = H. If the
only considered value of ¢ is ¢ = 2, MFDFA reduces to DFA (Detrended Fluctua-
tion Analysis). The sequence of generalized Hurst exponents h(q) characterizes the
scaling of the fluctuations of different magnitudes. If h is independent of ¢ (that is,
h(q) is constant), the series can be characterized by a single scaling relationship; if
there is a significant dependence of h on ¢, then the series exhibits multiscaling.

The relationship between the generalized Hurst exponents and the description
of multifractals based on the partition function and singularity spectrum can be
demonstrated on an example of a stationary, normalized series with non-negative
values. If (1), 2(2),x(3),...,x(IV) is a time series generated by a covariance station-
ary process, satisfying z(i) > 0 and Zf\il x(i) = 1, then the analysis of fluctuations
does not require detrending, as there is no trend to remove. In such a case, quanti-
fying the fluctuations within a segment [, can be done with a simplified definition
of variance F(v, s):

F?(v,s) = (y(max I,) — y(min I, )2. (3.61)

In the above definition, min [, is the smallest index in I, (the left end of the segment),
and max I, is the largest index in I, (the right end of the segment). Here F(v, s)
is the squared sum of the time series’ values in the segment I,,. Inserting this form
of F2(v,s) into the definition of fluctuation function yields:

1 2N 1/q
Fy(s) = <2N Z ly(max I,)) — y(min L,)|q> for ¢ # 0. (3.62)
S v=1

Identifying the expression Z?ﬁj ly(max I,) — y(min I,,)|? as the partition function

Z(q,s) of a certain measure and assuming scaling of Fy(s) in the form given by
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Eq. allows to state that

1 1/q N
~ (9)
<2Ns Z(q,s)) Cs™, (3.63)

Noticing that Ns &~ N/s and using Eq. gives
C157D ~ Oyt =1 (3.64)

where C7 and Cs are constants. Hence, the relationship between 7(q) and h(q)
is given by: 7(q) = gh(q) — 1. Using this result and Eq. one can derive the
equations for computing the singularity spectrum from generalized Hurst exponents:

dh
a=h(q) + qd7q (3.65)

fla) =q(a—h(q)) +1.

3.5 Entropy in written language

Samples of written language can be naturally represented in terms of symbol se-
quences. In the most straightforward approach, a text can be treated as a sequence
of letters (and spaces). Another approach is to consider words as individual sym-
bols - a text becomes then a sequence of words. Determining the entropy of such a
sequence gives an insight into how much, on average, the occurrence of a word in
a text is determined by the specific word sequence preceding the considered word.
However, instead of using the entropy itself, one can also study the difference be-
tween the entropy H,rig of the original text and the entropy H,4,q of the same text,
but with words shuffled randomly. In a symbolic sequence in which the order of the
symbols is random, the entropy is determined purely by the distribution of symbol
frequencies. Hence, the difference H,qnq — Horig provides information about the
decrease in text’s entropy caused by the specific order of words, compared to the
entropy which would be observed if words were placed at random in the text. The
usefulness of the quantity H,q,q — Horig, which in the considered context is referred
to as relative entropy, is due to the fact that it allows to remove the influence of
purely frequency-based effects. For example, if words are not lemmatized in the
analysis (as is the case here), texts in languages with extensive use of inflection typ-
ically have more unique words (symbols) than texts in languages in which inflection
is less developed; this influences the frequency distribution - and consequently, the
entropy - but since the distribution is the same in the original and in the randomized
text, the relative entropy can be anticipated to capture only the effects related to
word ordering. Relative entropy has been reported in the literature [280,281] to be
approximately independent of language (this was tested on corpora in a number of
languages), with values ranging from about 3 bits per word to about 4 bits per word.
This suggests that despite the differences between the grammars and the vocabu-
laries of individual languages, the amount of “order” contained in how words are
placed with respect to each other is to a certain degree universal across languages.

Figure shows the entropy (estimated using the estimator given by Eq.
of texts from dataset specified in Appendix Each text is considered in both
its original form and in a randomized variant (with random word order), giving two
values: the entropy of the original text H,.;; and the entropy of the randomized
text H,qnq- The figure also shows the entropy for the same texts computed with
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punctuation marks taken into account and included into the analysis on the same
terms as words. Data sequences including punctuation marks are in two variants
as well - the original and the randomized one - giving rise to two values of entropy,
HPunet - grenet espectively. Additional quantities: Hyqng — Hypig, H unct _ pppunct

orig  trand > rand orig
¢ ¢ . L
H ffizc — Horig, HE'W' — Hypgna, are also shown in the figure. The narrow distribu-
: . punct _ prpunct . .
tions of Hyqnd — Horig and H, " — H g confirm the mentioned result reported in

the literature - that the values of relative entropy of word ordering are concentrated
in the range between 3 and 4 bits per word. The distribution of Hg‘,ﬁgd — Horig
(all values slightly below 0) indicates that taking punctuation marks results in a
decrease of text’s entropy. This could lead to a conclusion that punctuation orga-
nizes written language in a manner that lowers the "randomness” of a text; however,
since practically the same effect is observed for randomized texts (Hf;? gt — Hygng is
also slightly below 0), the decrease of entropy can be attributed to changes in fre-
quencies of individual symbols introduced by including punctuation marks into the
analysis. This can be understood with the help of results regarding how punctua-
tion influences the shape of word frequency distribution in texts (Fig. . Treating
punctuation marks as words brings the shape of word frequency distribution closer
to the one specified by a power law - the frequencies of the most frequent symbols
(words or punctuation marks) become higher than in the original distribution. The
distribution becomes thus less "uniform” - as the discrepancy between the highest
and the lowest frequencies increases. This results in a decrease of distribution’s en-
tropy (as entropy is maximized for maximally uniform distributions) which affects
the entropy of a sequence consisting of symbols coming from the considered distribu-
tion. Hence, the behavior of the entropy caused by introducing punctuation marks
into analysis can be considered a consequence of the influence that punctuation has
on Zipf-Mandelbrot law describing word frequencies in texts.

Hona * W" °
= -l
He -~ -
Hyona — Hom'g . .“‘
Hp— HI ' s
Hpunct o Hom'g |

orig

8
Hpunct - Hm,nd I '.
0
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Figure 3.7. Distributions of the values of several quantities constructed from entropy rates com-
puted for texts from dataset specified in Appendix [BI] The values of entropy rates are obtained
with the use of the estimator given in Eq. [3:3] Each point on the plot corresponds to one text.
Different positions along the vertical axis correspond to different quantities. The studied quantities
are: entropy rate of a text treated as a sequence of words (Horig), entropy rate of a text treated as a
sequence of words and punctuation marks (H, 5:2’;“), entropy rate of a randomly shuffled text treated
as a sequence of words (Hrand) , entropy rate of a randomly shuffled text, treated as a sequence of
words and punctuation marks (H”“"¢"). Four additional quantities are constructed from the listed

rand
. t t t t
ones and presented in the plot: Hrgna — Horig, HE S — HEU ) HPUY — Hrig, HPY™Y — Hypana.

rand orig ! orig rand
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3.6 Time series constructed from sentence lengths

3.6.1 Long-range correlations

Time series analysis is a tool well-suited to the study of natural language, as in
certain situations language can be treated as a signal, often having the form of time
series. There are multiple ways of representing a language sample as a signal in time
domain; different approaches allow to focus on different properties. Spoken language
takes the form of auditory signal, which can therefore be considered a basic, "raw”
representation of language. Extracting individual sounds (phones), words, sentences
etc. allows to construct higher-level representations. This applies also to written
language (with the distinction that on the most basic level information is carried by
appropriate symbols instead of sounds).

Studying linguistic data having the form of a time series might give an opportu-
nity to reveal patterns of organization which can be universal for language or specific
to particular language samples (samples of language typical for particular situations,
for instance). Investigating the behavior of the quantities like grammatical distances
between words, word recurrence times, or word lengths (as a function of their po-
sitions in text) allows to identify certain statistical regularities which are useful in
attempts of characterizing the processes governing language usage [280-287].

An interesting example of a signal constructed from linguistic data is a time series
representing the lengths of sentences in a text, measured by the number of words.
It is a sequence of numbers in which the k-th number is the number of words in the
k-th sentence (for practical purposes, sentence can be understood as a sequence of
words between punctuation marks belonging to the following group: period, ques-
tion mark, exclamation mark, ellipsis; usually the text needs to be appropriately
pre-processed - to remove periods denoting abbreviations, for instance). Such a
time series allows to investigate organization of language on a level higher than the
one corresponding to individual words. Sentences are structures in which the com-
plexity of syntax is manifested and in which words fully acquire their meanings. The
content of a sentence is usually linked to the content of neighboring sentences, which
constitute the context. But it turns out that the correlations typically have range
larger than a few closest sentences; this effect can be captured by analyzing time
series representing sentence lengths.

Figure shows spectral densities of time series representing sentence lengths,
for 239 books in 7 languages. The books are listed in Appendix The series
seem to behave as 1/f? signals, with 3 depending on the text. The histogram
of the values of 3, obtained by fitting lines to log-log plots of spectra S(f), is
shown in Figure typical values of § lie between 0.2 and 0.8. The presence of
long-range correlations is confirmed by observing power-law behavior of fluctuation
functions (Fig. , yielding Hurst exponents H greater than 0.5 (Fig. [3.8d)). The
correspondence between Hurst exponents H and the exponents of spectral densities
5 is presented in Fig. [3.8€} it can be seen that the data conforms to an approximate
relationship § = 2H —1. That relationship, mentioned before for fractional Gaussian
noises (Eq. , can be considered a more general result, holding approximately
for a wider class of signals [261].

Assessing the compliance of fluctuation functions F5(s) with power-law behav-
ior used to determine Hurst exponents can be done by inspecting the linearity of
relevant log-log plots; to present all of them in a single figure one can use a linear
transformation which makes each of the plots fit in the square [0,1] % [0, 1] and in
which the linearity of original plot is transformed into the linearity with slope 1
and intercept 0. The transformation having those properties is defined as follows.
Let y(x) be the relationship between finite sets of values x and y whose linearity is
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investigated. Let (Zpmin,TmazsYmin;Ymaz) be the minimum and the maximum values
of x and y, respectively. Let y = a + bz be the equation describing the assumed
linear relationship. The boundaries of the rectangle enclosing the y(z) plot, denoted

by Iplot.mins Lplot.maxs Yplot.min, Yplot.max, are defined as follows:

. Ymin — @
Tplot.min = M § Tmin, b )

Ymaxz — @
Tplot.maxz — MaX {xmama b} ) (366)

Yplot.min = min {ymina a—+ b$mzn} )

Yplot.max = MaxX {ymagm a+ bxmax} .

The transformation from (z,y) to the normalized coordinates (Z, %), which fit in the
unit square and in which y = a + bz is transformed into y = Z, is given by:

T — Tplot.min

8
Il

3
Tplot.max — Lplot.min

3.67
Y — Yplot.min ( )

<)

Yplot.max — Yplot.min

When multiple data sets (z,y), transformed with the given equations, are all pre-
sented in one 7 vs. ¥ plot, and all the data points lie close to the line §y = Z, then all
the original sets (z,y) can be considered to approximately conform to linear rela-
tionships (with possibly different slopes and intercepts). So a collective plot of § vs.
Z for multiple linear fits can serve as a tool for a qualitative assessment of the linear
relationships’ detection validity. The presented idea is applied in Fig. the
log-log plots of the fluctuation functions Fy(s) computed for the studied texts are
transformed to normalized coordinates (Z, y) by setting = log s and y = log (F5(s))
in the procedure given above.

3.6.2 Sentence lengths’ multiscaling

Fluctuation scaling having the form of a power law with Hurst exponent H > 1/2
indicates that sentence lengths are arranged into a specific scale-free structure. How-
ever, Hurst exponent provides information which is in some sense averaged over the
whole text. Complex patterns of organization in some texts can be investigated
in more detail with the use of multifractal formalism. Multifractality of sentence
lengths in literary texts has been studied in [285]; the analysis has revealed that
while fractality is a rather general property, the degree of multifractality is more
rare and specific to individual texts. Among the studied books, the ones with the
richest multifractal structure are quite often the ones that use the narrative tech-
nique known as the stream of consciousness. On one hand, this technique can be
considered as ”natural” in certain sense, as it attempts to mimic the natural flow
of thoughts and feelings passing through a character’s mind, which often results in
the presence of incomplete thoughts, sensory impressions, unusual grammar, and in
general, certain degree of disorganization. On the other hand, it can be considered
“unnatural”; as it is clearly different from how the majority of written language
looks like. The distribution of sentence lengths can be highly inhomogeneous, with
intermittent bursts of long sentences clustered together. This effect can be captured
by multifractal analysis.

Multifractality of a time series, which is usually quantified in terms of the
width A of series’ singularity spectrum f(«), is typically associated with two fac-
tors: heavy-tailed distributions and nonlinear correlations. While the presence of
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Figure 3.8. The properties of time series representing sentence lengths, quantified by spectral
densities and Hurst exponents, for the books listed in Appendix (a) Spectral densities S(f/ f»)
for each of the studied texts, plotted in the range of small f in the form of a log-log plot (f, denotes
the fundamental frequency of the DFT). Each solid line corresponds to one text. Determining
S(f/fs) for a given series involves splitting the series into 3 segments of equal length, computing
the periodograms within the segments, averaging the results, smoothing, and restricting the range
of f/fv to the one presented in the plot. Series are normalized to have the same power in the con-
sidered range of frequencies. It can be seen that for small f/f, (spanning more than two orders of
magnitude), the signals exhibit a 1/ f% behavior. The dotted and the dashed line represent, respec-
tively, the slopes determined by the 10th and the 90th percentile of the distribution of estimated £
(taken with minus sign); the values of the percentiles are 0.34 and 0.61. (b) The histogram of the
spectral density exponents 8, obtained by fitting linear relationships to log-log plots of S(f/fs).
(¢) A plot demonstrating power-law behavior of fluctuation functions F»(s), computed with DFA.
The plot presents y(z), where = and y are normalized coordinates, obtained by setting z = log s
and y = log (F>(s)) in Eqs. and Each solid line represents one text; its deviation from the
y = 7 relationship (dashed line) corresponds to a deviation from a power law. (d) The histogram
of the Hurst exponents H. (e) The relationship between H and . Each point represents one text;
the dashed line is given by the equation 5 = 2H — 1.
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correlations of specific type is essential for the emergence of a multifractal struc-
ture, a heavy-tailed distribution of the series’ values might increase the width of the
spectrum both in case when the series is truly multifractal and in case when the
nonzero width of the spectrum is an artifact being a result of the finite length of
the series. The latter case is related to the fact that a spectrum of a finite-length,
uncorrelated random series can spuriously indicate multifractality, although such a
series does not have any specific organization and in the limit of infinite length is
either monofractal or bifractal (having two distinct values of singularity exponents)
- depending on the distribution of series’ values [273]. To clarify whether a spectrum
of nonzero width is indeed related to series” multiscaling, it is profitable to confirm
that the values of the series are correlated with each other in some way, using tools
like autocovariance function [273]. To demonstrate that the correlations responsi-
ble for multifractality are of nonlinear character, one can investigate the singularity
spectrum of a specifically constructed surrogate series - a series which is random-
ized in a way that removes all correlations except the linear ones. Constructing
such a surrogate relies on phase randomization of the Fourier transform: for a series
XTn = Tg,T1,T2,...xN—1 the (discrete) Fourier transform Ty = Zg, %1, T2, ...Tn_1 iS
computed; then the phases arg(Zy) of the transform’s coefficients are randomized,
by multiplying each of them by an uniformly distributed random number from the
interval [0; 27r]. Then the inverse Fourier transform gives the desired surrogate. Such
a surrogate has the same spectral density as the original series (as spectral density
depends only on the modulus of the Fourier transform), and, consequently, the same
linear correlations. Correlations of other types are destroyed. It is worth noting that
this procedure in general alters the distribution of the series’ values. The expected
result of the multifractal analysis of such a surrogate series is a singularity spectrum
practically reduced to one point, corresponding to singularity exponent determined
by linear correlations.

Figure shows the run charts x(t), the autocovariance functions Rx(7), the
fluctuation functions Fj(s) and the singularity spectra f(«), for sentence lengths in
three books: As I Lay Dying, Finnegans Wake, and Quo Vadis (each in its original
language - English or Polish). Power-law decay of the books’ autocovariance func-
tions confirms the presence of long-range correlations, also detected by the analysis
of spectral density and of the Hurst exponents (Fig. . The first two of the books
are examples of works utilizing stream of consciousness writing style, and Finnegans
Wake is additionally known for its highly experimental, unusual language with un-
common grammar and vocabulary. The last of the books is more typical in terms
of narrative techniques and does not rely on experimental linguistic constructions.
The books exhibit different kinds of fluctuation scaling; while Quo Vadis is clearly a
monofractal (as evidenced by singularity spectrum f(«) collapsed to a narrow range
of a), As I Lay Dying and Finnegans Wake have a multifractal structure. As I Lay
Dying and Finnegans Wake are in a sense extreme - their singularity spectra are
wider than the spectra of typical examples of literary texts in prose (as mentioned
before, this is to some degree characteristic of some forms of experimental writing).
Sentence lengths in a literary text in prose are often either monofractal or have only
some trace of multifractality, manifested by spectra of moderate width.
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Figure 3.9. Results of multifractal analysis of the time series representing sentence lengths, for
three books - As I Lay Dying (a), Finnegans Wake (b), and Quo Vadis (c). The analysis is performed
with the use of the MFDFA method. Each box corresponds to one book and consists of two rows;
the upper row presents the run chart z(¢) of the series and the log-log plot of the autocovariance
In the lower row, there are three plots: the first two are the log-log plots of
fluctuation functions Fy(s) with integer ¢, for the original series and for the phase-randomized
("PR”) surrogate series (five independent realizations). The third plot shows the singularity spectra
f(a) of the original series (black), and for the PR surrogate series (blue). The overall range of q is
[—4;4] and s is in the range in which the log-log plots of Fy(s) are approximately linear, and which
is a subinterval of [20; N/5], with N being the length of the time series. The width of singularity
spectra Aaor and Aapgr (for the original series, and for the PR surrogate series, respectively) are
given in the upper right corner. Estimating f(a) for surrogate series involves averaging the results
obtained in five independent realizations; for each realization the fluctuation functions Fy(s) and
the generalized Hurst exponents h(q) are computed, and then the value of h(q) averaged over the
realizations is used in computing f(«). As expected, the resulting spectra of PR surrogate series are
nearly collapsed to single points, indicating that removing nonlinear correlations destroys patterns

function Rx (7).

of organization within the series that are responsible for multifractality.
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3.7 Punctuation waiting times

3.7.1 Correlations, Hurst exponents, and multiscaling

Dividing a text into sentences seems quite natural - a sentence typically constitutes
a complete, closed structure, capable of expressing a concrete thought. Such a
partition is also meaningful from a quantitative point of view. A sentence can be
treated as a sequence of words between two appropriate punctuation marks. So the
length of a sentence can be interpreted as the "waiting time” for the next such mark,
right after the previous one is encountered; here, "time” is measured by the number
of words. If, for example, instead of punctuation marks used to end sentences, one
considers some selected words as the delimiters of the sequences of other words, the
waiting times are no longer multifractal [285]. This result in a sense confirms the
significance of the multifractal analysis of sentence lengths, as it indicates that their
multifractality is not a spurious effect.

Another way of partitioning a text into word sequences and representing it as a
signal is based on considering all punctuation marks, instead of only the ones used
to end a sentence. A time series can be formed of the punctuation waiting times,
that is, the lengths of the word sequences between consecutive punctuation marks.
Although it may seem somewhat artificial, from a certain point of view a time
series of punctuation waiting times can constitute a representation encoding useful
information. The historical origins of the use of punctuation in written language are
related to the attempts to split texts into pieces in order to make reading in public
more manageable [288]; punctuation was less specialized and less standardized than
today. The classification of punctuation marks and the rules of their usage have
been established in modern times. Therefore, an approach in which all punctuation
marks are treated as symbols indicating the presence of some kind of a pause seems
justified. The ”pauses” do not have to be related to reading out loud - they might
be necessary to keep the logical consistency of the text or to avoid ambiguity, for
instance. So it can be postulated that punctuation marks act as boundaries for word
sequences which are separated from others logically, grammatically, or in the way
that facilitates comprehension and reading.

As is the case with sentence lengths, punctuation waiting times in literary texts
exhibit long-range correlations and behave as 1/f? signal. Figure shows the
spectral densities S(f/ fp), the histogram of the spectra’s exponents /3, the scaling of
the fluctuation functions F5(s) (in normalized coordinates defined by Eq. and
Eq. , and the relationship between the values of 8 and Hurst exponents H, for
the books listed in Appendix The punctuation marks taken into consideration
are: period, question mark, exclamation mark, ellipsis, comma, dash, semicolon,
colon, left parenthesis and right parenthesis. Symbols not present on that list and
not being words (quotation marks, for instance) are removed from the texts. The
time series are formed of non-zero waiting times (a waiting time equal to zero occurs
when two punctuation marks are placed next to each other, for example when a
question mark is followed by an exclamation mark; since such cases correspond to a
single "pause” in a text, they can be disregarded in the construction of the series).
It can be observed that punctuation waiting times usually have the Hurst exponent
H lower than the Hurst exponent of sentence lengths in the same text (Fig. [3.11]).
Nevertheless, punctuation waiting times have the value of H still above 0.5, which
indicates their persistence.

In terms of fluctuation scaling, punctuation waiting times typically display more
uniform behavior than sentence lengths (Fig. [3.12)) - their singularity spectra are
usually significantly narrower than the spectra of sentence lengths. However, some
degree of multifractality can sometimes be observed, especially when the range of
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Figure 3.10. The properties of time series representing punctuation waiting times (numbers of
words between consecutive punctuation marks), quantified by spectral densities and Hurst expo-
nents, for the books specified in Appendix (a) Spectral densities S(f/f») for each of the studied
texts, plotted in the range of small f in the form of a log-log plot (f, denotes the fundamental fre-
quency of the DFT). Each solid line corresponds to one text. Determining S(f/f5) for a given series
involves splitting the series into 3 segments of equal length, computing the periodograms within the
segments, averaging the results, smoothing, and restricting the range of f/f, to the one presented
in the plot. Series are normalized to have the same power in the considered range of frequencies. It
can be seen that for small f/f, (spanning more than two orders of magnitude), the signals exhibit
al/ f? behavior. The dotted and the dashed line represent, respectively, the slopes determined by
the 10th and the 90th percentile of the distribution of estimated 8 (taken with minus sign); the
values of the percentiles are 0.18 and 0.42. (b) The histogram of the spectral density exponents
B, obtained by fitting linear relationships to log-log plots of S(f/fs). (c¢) A plot demonstrating
power-law behavior of fluctuation functions Fs(s), computed with DFA. The plot presents y(7),
where 7 and y are normalized coordinates, obtained by setting z = log s and y = log (F2(s)) in Egs.
[3.66|and [3.67] Each solid line represents one text; its deviation from the y = & relationship (dashed
line) corresponds to a deviation from a power law. (d) The histogram of the Hurst exponents H.
(e) The relationship between H and /3. Each point represents one text; the dashed line is given by
the equation 8 = 2H — 1.
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Figure 3.11. The scatterplot of the Hurst exponent of punctuation waiting times Hap versus
the Hurst exponent of sentence lengths Hg, for the books specified in Appendix Each point
represents one text; colors correspond to languages: red - English, green - German, dark blue -
French, light blue - Italian, gray - Spanish, orange - Polish, purple - Russian. The dashed line has
the equation Hap = Hs. The Pearson correlation coefficient between Hs and Hap in the whole
dataset is equal to 0.59.

the values present in the series is wide enough (as is the case for As I Lay Dying,
for instance). The histogram in Figure illustrates how much the singularity
spectrum width decreases when the representation of a text changes from sentence
lengths to punctuation waiting times. The quantity presented in the histogram is the
relative change of singularity spectrum width, that is (Aaap — Aag)/Aag, where
Aag is the spectrum width for sentence lengths and Aa4p is the spectrum width
for punctuation waiting times (the subscript "AP” is derived from ”all punctuation
marks”). The books used in this part of the analysis are the books which are given
in Appendix[B.2|and which satisfy three additional conditions. Firstly, they have no
less than 3000 sentences each; secondly, the log-log plots of their sentence lengths’
fluctuation functions Fy(s) for all ¢ € [—4;4] are approximately linear for s in the
range [20; N/5], where N is the overall number of sentences in a text, and thirdly,
the width of their singularity spectra of sentence lengths is not less than 0.2. The
presented conditions aim to ensure that the books are sufficiently long and have a
range of F,(s) scaling wide enough to provide reasonable amount of data for the
automated estimation of multifractal properties, and that their sentence lengths
exhibit at least weak multifractality.

The Hurst exponents of sentence lengths Hg and the Hurst exponents of punctu-
ation waiting times H 4 p have values above 0.5 and are correlated (the Pearson cor-
relation coefficient between Hg and H 4p is equal to 0.59), as evidenced in Fig. [3.11
This raises a question about how the properties of these two types of series are re-
lated, and whether the relationship between their Hurst exponents is a consequence
of the way in which the series are constructed, or whether it can be attributed to
other factors. Since sentence-ending punctuation marks constitute a subset of all
punctuation marks used in written language, it seems natural that the properties of
sentence lengths and of punctuation waiting times are not entirely independent. To
way of approaching that issue quantitatively is to investigate the behavior of both
types of series, randomized in the way that keeps the other series unchanged. A ran-
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Figure 3.12. Results of multifractal analysis of the time series representing punctuation waiting
times, for three books - As I Lay Dying (a), Finnegans Wake (b), and Quo Vadis (c). The analysis
is performed with the use of the MFDFA method. Each box corresponds to one book and consists
of two rows; the upper row presents the run chart z(¢) of the series and the log-log plot of the auto-
covariance function Rx (7). In the lower row, there are three plots: the first two are the log-log plots
of fluctuation functions Fy(s) with integer g, for the original series and for the phase-randomized
("PR”) surrogate series (five independent realizations). The third plot shows the singularity spectra
f(a) of the original series (black), and for the PR surrogate series (blue). The overall range of q is
[—4;4] and s is in the range in which the log-log plots of Fy(s) are approximately linear, and which
is a subinterval of [20; N/5], with N being the length of the time series. The width of singularity
spectra Aaor and Aapgr (for the original series, and for the PR surrogate series, respectively) are
given in the upper right corner. Estimating f(«) for surrogate series involves averaging the results
obtained in five independent realizations; for each realization the fluctuation functions Fy(s) and
the generalized Hurst exponents h(q) are computed, and then the value of h(q) averaged over the
realizations is used in computing f(«). As expected, the resulting spectra of PR surrogate series are
nearly collapsed to single points, indicating that removing nonlinear correlations destroys patterns

of organization within the series that are responsible for multifractality.
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Figure 3.13. The histogram of (Aaap — Aas)/Aas, where Aag and Aaap are the widths of
singularity spectra for sentence lengths and punctuation waiting times, respectively. The studied
texts constitute a subset of the books given in Appendix these are the books of at least 3000
sentences, having Aag greater or equal to 0.2. The considered quantity (Aaap —Aag)/Aasg repre-
sents the relative change of singularity spectrum width observed when changing the representation
of a text from sentence lengths to punctuation waiting times.

domization of text’s sentence lengths which does not alter the series of punctuation
waiting times can be done by permuting randomly the positions of all the punctu-
ation marks present in the text. The set of punctuation marks’ positions remains
unchanged, but which mark occupies which position is decided by chance. There-
fore, sentences lose their original structure, as sentence-ending marks are located at
random positions allowed by the overall arrangement of punctuation marks. This
method of randomization models the situation in which punctuation is placed as
in the original text, but sentence lengths, apart from satisfying the condition that
they are delimited by symbols belonging to an appropriate subset of punctuation,
are completely random.

To perform randomization the other way round, a procedure described below
can be used. The sentences in a text can be grouped into ”"buckets”, each bucket
corresponding to particular range of lengths. For example, in such a partition, one
bucket might consist of all the sentences in the text which have lengths equal to 1
or 2, another bucket can contain all the sentences of length 3, yet another bucket can
be composed of all the sentences with lengths between 12 and 18, and so on. Each
sentence in the text needs to be assigned to a (single) bucket; the range of lengths
covered by a bucket should be as narrow as possible, provided that each of the
buckets contains at least a few (3-5) sentences. Randomization consists of assigning
sentences to buckets, and permuting the positions of sentences inside each bucket.
This means that sentences randomly swap positions with other sentences belonging
to the same bucket (having the same or similar length). Consequently, the series
representing sentence lengths is approximately the same as the original one (the exact
level of agreement depends on the length ranges used to define buckets), but the
contents of sentences (including punctuation) become randomly scattered across the
text. However, it should be noted that the resulting the series of punctuation waiting
times can be affected by statistical relationships binding the structure of punctuation
inside a sentence with sentence length. An example of such a relationship is the one
expressed by Menzerath-Altmann law; for sentences, the law can summarized by
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the following statement: the longer a sentence, the smaller the average size of the
constituents it is composed of. Under the assumption that sentences can be divided
into constituents separated by punctuation marks, Menzerath-Altmann law results
in a tendency of punctuation waiting times to be short in regions where sentences
are long, and to be long in the parts of texts in which sentences are short.

Figure presents how the Hurst exponents of sentence lengths and of punc-
tuation waiting times change when the randomization procedures given above are
performed on the texts presented in Appendix Typically, the Hurst exponents
of the appropriately randomized series are substantially lower than the exponents
of the corresponding original series, but their value is usually still above 0.5. This
means that the persistence of sentence lengths and the persistence of punctuation
waiting times can be partially explained by each other - when for a given text one
type of series is randomized and the other is kept unchanged, the randomized one
exhibits some degree of persistence due to the persistence of the other one. Also,
performing randomization of any of the presented types does not remove the corre-
lations between the Hurst exponents of sentence lengths and of punctuation waiting
times - that is, texts with high Hurst exponents describing sentence lengths Hg
also tend to have high Hurst exponents pertaining to punctuation waiting times
Hap. Conversely, low Hg typically co-occurs with low H4p. Pearson correlation
coeflicients between Hg and H sp, describing that effect, is equal to 0.87 for the
randomization of sentence lengths (preserving H4p) and equal to 0.62 for the ran-
domization of punctuation waiting times (preserving Hg). So even when one of the
two series is random, it is correlated with the other one, provided that the condi-
tions making sentence lengths and punctuation waiting times consistent with each
other are satisfied. Therefore, the correlation between Hg and H4p can be seen as
an effect caused by the fact that sentence-ending punctuation marks constitute a
subset of all punctuation marks.

Comparing sentence lengths and punctuation waiting times in terms of long-
range correlations, fractality, and multifractality provides an insight into the signif-
icance of punctuation’s role in language. In a sense, the properties of punctuation
waiting times seem more universal than the corresponding properties of sentence
lengths - for example, the variability of Hurst exponents among different texts is
lower when all punctuation marks are considered instead of only the marks which
divide texts into sentences. Also, in terms of fluctuation scaling, punctuation marks
treated collectively determine a structure more homogeneous than the one consti-
tuted by sentences; this fact is reflected by a stronger inclination of punctuation
waiting times towards monofractality. The presented results can be viewed as being
in agreement with a common intuition that the division of a text into sentences
involves some degree of arbitrariness. A message or thought which is expressed by
a long sentence, composed of several components, usually can also be expressed by
a few short sentences, each of which corresponds to some component of the long
sentence. Therefore, the number and the lengths of the used sentences depend on
author’s choice. However, when the first of the two options is chosen (one long sen-
tence), the components of the sentence usually have to be separated by punctuation
marks (comma, for instance). Hence, a certain number of such marks has to appear
inside the sentence and punctuation waiting times are not arranged entirely freely.
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Figure 3.14. The Hurst exponents of sentence lengths Hs and of punctuation waiting times Hap,
computed for the original and the randomized time series, for the books specified in Appendix [B-2}
Fig. (a) pertains to the randomization of sentence lengths (preserving Hap); Fig. (b) pertains to
the randomization of punctuation waiting times (preserving Hg). Arrows mark the change of the
Hurst exponent induced by randomization - dots denote the Hurst exponents of the original series,
arrow heads denote the Hurst exponents of the randomized series (computed as an average over 5
independent randomizations). Consecutive dot-arrow pairs represent consecutive books from the
dataset specified in Appendix [B-2} colors correspond to languages: red - English, green - German,
dark blue - French, light blue - Italian, gray - Spanish, orange - Polish, purple - Russian.

83



3.7.2 Distributions of punctuation waiting times

The conclusion that time series constructed from punctuation waiting times behave
in a more "consistent” way compared to series representing sentence lengths can
also be supported by analyzing the probability distributions of the values of the
two types of series. It turns out that the distribution of punctuation waiting times
in texts can be characterized by two numbers, being the parameters of the so-
called discrete Weibull distribution. The distribution can be introduced with the
help of the following reasoning. When a text is considered a sequence of words
and punctuation marks occurring between some of them, it can be assumed that
distributing punctuation marks across text is governed by some process deciding for
each consecutive word whether a punctuation mark is to be placed after that word
or not. Assuming that the process is random and it puts a punctuation mark after
a word with some constant probability p, each such decision is a Bernoulli trial with
p being the probability of success. In such a case, the punctuation waiting time (the
number of words between consecutive punctuation marks) is the number & of trials
required to obtain the first success, after the last one observed (k =1,2,3,...). The
number of trials until the first success in Bernoulli process follows the geometric
distribution. Observing a waiting time longer than k is equivalent to not observing
a success in the first &k trials; therefore, one can write:

1—F(k)=(1-p*, (3.68)

where F' is the cumulative distribution function (F(k) is defined as the probability
that a waiting time is less than or equal to k). The above relationship pertains
to situation when punctuation marks are placed independently of each other, with
constant probability. However, it is reasonable to anticipate that the probability of
placing a punctuation mark after a particular word depends on the sequence of words
and punctuation marks preceding the considered word. Hence, a distribution more
general than the geometric distribution is required. One way of generalizing the
geometric distribution is introducing an exponent, 8 > 0, into its survival function:

1-Fk)=1-p". (3.69)

A distribution specified in such a way is a discrete analogue of the Weibull distribu-
tion, therefore called the discrete Weibull distribution [289]. Due to its flexibility,
Weibull distribution, especially in its continuous version, is widely applied in vari-
ous fields of science and engineering, for instance in survival analysis, in medicine
and health sciences, or in modelling natural phenomena like wind speed or rain-
fall intensity [290]. Interestingly, it has also been employed in studies on natural
language, namely in investigating the distribution of word recurrence times in tex-
tual data [284].

The parameter 8 of the discrete Weibull distribution determines the deviation
from the geometric distribution, which is recovered for § = 1. It describes how the
probability of obtaining a success depends on how many trials have been performed
since the last success observed. This dependence can be characterized by the so-
called hazard function h(k). Hazard function can be defined as the conditional
probability that a success occurs on the k-th trial, given that it has not occurred in
the preceding k—1 trials. With P(k) denoting the probability mass function, the
hazard function of the discrete Weibull distribution is given by:

h(k) = 1_?8?_1) — - (1= (3.70)

For 8 < 1, the hazard function is a decreasing function - the probability of observing
a success becomes smaller as the waiting time gets longer. For 8 > 1, it is increasing
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with time. For § = 1, the hazard function is a constant - one obtains the geometric
distribution, which is therefore said to be memoryless. The parameter p of the
discrete Weibull distribution also can be intuitively interpreted - it is the probability
of observing a success in the first trial. The plots presenting the discrete Weibull
distribution for selected values of p and 3 are shown in Figure [3.15]

\ \ \ \ \ \
5 10k15 20 25

Figure 3.15. The probability mass function P(k) of the discrete Weibull distribution, for p = 0.1
and three different values of 8: 8 = 0.75 (red), 8 = 1 (green), 8 = 1.25 (blue). The corresponding
hazard functions are presented in the inset. Since the distribution is discrete, P(k) and h(k) are
defined only at integer k and their values are represented by dots; the connecting lines are only
guides for the eye and do not indicate continuity.

An easy way of assessing how well a given data set fits to a Weibull distribution
(both in continuous and discrete case) is constructing the so-called Weibull plot. It
can be shown that Eq. [3.69 can be rewritten as:

log(—log(1—F(k))) = Blogk + log(—log (1—p)) . (3.71)

Therefore, if the data comes from the discrete Weibull distribution with parameters
(p, B), then when plotting the empirical cumulative distribution function Fey,p (k) in
coordinates (z,y), where

r=logk
y = log (—log (1 = Femp(k))) ,

one should observe a straight line with slope 8 and intercept log (—log (1 — p)). To
make comparison between fits to different Weibull distributions easier, one can use
the transformation analogous to the one given by Eq. and Eq. to rescale
the coordinates (z,y) to (Z,y), fitting in the square [0, 1]x[0, 1]. In a plot in rescaled
coordinates (here referred to as a rescaled Weibull plot), the deviation from the
Weibull distribution is observed as the deviation from the line §y = 7.

Figure shows the empirical distributions of punctuation waiting times and of
sentence lengths, for two books: Alice’s Adventures in Wonderland by Lewis Carroll
and David Copperfield by Charles Dickens. Discrete Weibull distribution is fitted to
the data - maximum likelihood estimation (MLE) is used to find the parameters of
the distribution. It can be seen that punctuation waiting times in both of the books
are well described by discrete Weibull distribution, but in case of sentence lengths
one of the books (Alice’s Adventures in Wonderland) exhibits considerably worse
agreement between the empirical and the proposed model distribution. It turns out
that this applies also to other texts - while the distribution of punctuation waiting
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Figure 3.16. Examples of the distributions of punctuation waiting times and of sentence lengths,
for two books: Alice’s Adventures in Wonderland by Lewis Carroll and David Copperfield by Charles
Dickens. In each figure, histogram represents the empirical distribution and blue dots represent the
discrete Weibull distribution fitted using maximum likelihood estimation (the obtained parameters
p and (3 are given above the plots). Insets show the corresponding rescaled Weibull plots, in which
deviations from the line 3y = z correspond to discrepancies between the fitted and the empirical
distribution.

times can almost universally be modeled by discrete Weibull distribution, the dis-
tribution of sentence lengths might either be of the same type or of more "irregular”
nature (meaning that it is much harder to find a distribution with relatively simple
functional form that would accurately represent the data). This fact is demonstrated
in Figure [3.17] which presents rescaled Weibull plots of punctuation waiting times
and of sentence lengths for 223 books in 7 languages (books from Appendix .
The deviations from the line §y = ¥ in the rescaled Weibull plots of sentence lengths
tend to be significantly larger than the ones observed in the rescaled Weibull plots
of punctuation waiting times.

From the viewpoint considering only the probability distribution characterizing
punctuation, the process of writing a text can be thought of in terms of a simple
mathematical model, based on the properties of the discrete Weibull distribution.
The model assumes that a text is generated word by word, and a punctuation
mark can be placed after each word, with some probability h(k) which depends
only on k, the number of words that occurred since the last placed punctuation
mark. The relationship between h and k is of the form given in the Eq.
The resulting distribution of distances between punctuation marks in the text is the
discrete Weibull distribution. By adjusting the parameters p and 8 in the function
h(k), one can obtain a distribution observed in real texts. The parameters are easily
interpreted: p is the probability that a punctuation mark appears right after the first

86



0.0

\ \ \ \
0.0 0.2 04 _ 06 0.8 1.0
X

(a) (b)

Figure 3.17. The rescaled Weibull plots of punctuation waiting times (a) and sentence lengths
(b), for books listed in Appendix Each curve on a plot corresponds to one book; the dashed
line y = = represents the ideal fit to the discrete Weibull distribution.

word since the last punctuation mark; S describes how fast the probability of the
punctuation mark occurrence changes with the growing number of words appearing
since the last punctuation mark observed. The assumption that the probability of a
punctuation mark occurrence depends only on k, which is equivalent to the statement
that word sequences between punctuation marks are generated independently, is of
course idealized. In real texts, it is obviously violated by the presence of long-
range correlations, for instance. However, when only the probability distribution is
considered, correlations between punctuation waiting times can be neglected.

Discrete Weibull distributions characterizing punctuation waiting times in all of
the studied texts have the value of 8 between 1 and 2; this means that h(k) is an
increasing function. With & — oo, it converges to 1. It seems to be a reasonable
result - the sequences of words without punctuation should not be infinitely long.
The values of p are typically below 0.2. Interestingly, the parameters of the distri-
butions (determining their shape) seem to be to some degree specific to particular
languages. When the values of p and f related to each book are plotted on a plane
(each point represents one book), one can distinguish regions occupied mainly by
the texts in the same language (Figure . Average values of p and (8 for each
language can be calculated to determine the corresponding hazard functions h(k)
(Figure . Using the concept of random process underlying the arrangement of
punctuation in texts, these functions characterize the dynamics of the process; they
provide information how "urgent" it is to place a punctuation mark in order to finish
an uninterrupted word sequence, depending on the length of that sequence.

It can be noticed in Figure that within the range of waiting times between
1 and 15 (which corresponds to more than 80% of all observed waiting times in
each of the studied texts), the Slavic languages have the highest values of the av-
eraged hazard functions among the studied ones, therefore being the most inclined
towards short word sequences between consecutive punctuation marks. Regarding
the punctuation distribution properties, two of the Romance languages considered,
French and Italian, turn out to be quite similar to each other. They have close av-
erage values of p and 8 and their dispersions are overlapping. The averaged hazard
function for German, having the lowest p and the highest 3, starts from a low value
and increases quickly. The most slowly-varying averaged hazard functions belong
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Figure 3.18. The parameters p and 3 of the discrete Weibull distributions fitted to punctuation
waiting times, for the books listed in Appendix The chart in the upper left corner (ALL)
pertains to all the studied languages collectively, the remaining ones present results for the individual
languages. In each plot, a text is represented by a point (p, 8). All the plots are in the same scale.
The dashed lines are isolines of constant expected value of the discrete Weibull distribution - all
distributions with (p, 8) along one such line have the same expected value. In each plot pertaining
to a single language, the quantities (p) and (8), the average values of p and S, are given, and the
centroid of the point cloud, ({p), (8)) is marked by "+”. The ellipses characterize the distributions
of points - the semi-axes of each ellipse are the principal components of the point set in the given
language. The major semi-axis of the ellipse gives the direction of the greatest variance and its
length is the square root of that variance. The length of the minor semi-axis is the square root of
the variance in the perpendicular direction. The ellipses for each language are shown collectively
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Figure 3.19. (a) The ellipses characterizing the distributions of (p, 3), the parameters of the dis-
crete Weibull distributions describing punctuation waiting times in texts, for the languages consid-
ered in the dataset specified in Appendix (these are the same ellipses as in Figure collected
in a single chart). The centroids of (p,3) for each language are marked by ”+”. (b) The hazard
functions of discrete Weibull distributions with parameters (p, 3) corresponding to the centroids of
the ellipses presented in (a).
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to English and Spanish, suggesting that long sequences of words between pauses
indicated by punctuation marks are more natural for those languages than for the
others. However, a comprehensive description of such properties would require a
more detailed investigation. For example, the above-mentioned tendency of Polish
and Russian to favour short intervals between punctuation marks may be caused by
the lack of articles in these languages; in other languages studied here, articles are
present. Although they are not stand-alone words, they are treated just as the other
ones in the analysis, and therefore they lengthen the sequences of words appearing
between punctuation marks.

The analysis of linguistic time series using methods discussed in this chapter gives
access to information about certain fundamental properties of language. When it
comes to the distribution of punctuation, for example, it allows to observe general
statistical regularities (applying to various texts in various languages), as well as to
identify differences between languages. It gives an insight into the character and the
origin of long-range correlations in texts and allows to compare how different levels
of language organization (sentences, sentence components) behave when treated as
a signal. Finally, it can detect complex, multifractal structures and relate their pres-
ence to specific styles of writing. The results obtained with the use of the presented
methods might be used to quantitatively characterize samples of written language
(as they make it possible to express the differences between texts in terms of measur-
able quantities, for instance) or to hypothesize about rather general problems in the
study of natural language, like the significance of partitioning a text into sentences
and the dependence between such a partitioning and other ways of breaking a text
into parts or components.

89



Chapter 4

Linguistic networks

4.1 Basic concepts in network theory

A multitude of systems in nature can be characterized by a very general statement,
that they consist of a large number of constituents interacting with each other.
The nature of the interaction is system-specific. However, if from the standpoint of
studied properties it is sufficient to treat a system as a set of some objects and a set
of pairwise relations between these objects, then often the system can be represented
as a network. The advantage of network representation is the fact that it allows to
describe diverse systems with the use of unified, abstract formalism. This makes it
possible to look for common traits of various systems and formulate universal laws
describing their structure or behavior. Although the study of networks is rooted in
the concepts of the graph theory, it has evolved into a theory which can be considered
a separate field of research, sometimes called network theory or network science. The
wide applicability of the network theory resulted in the development of research on
systems such as social networks, biological networks, networks representing financial
dependencies, the structure of the Internet, or the organization of transportation
systems [106}/142,|144,/167,291-301].

From a mathematical point of view, a network is the same as a graph, therefore
the terms "network” and “graph” are often used interchangeably. Formally, a graph
is a pair of sets G = (V, E), where V' (called the vertex set) is some set (here assumed
to be finite) and E (the edge set) is a set of two-element subsets of V' (in other words,
the elements of E are pairs of distinct vertices). The elements of vertex set V are
called vertices or nodes; the elements of edge set E are called edges or (sometimes)
links. The vertices belonging to an edge are called the endpoints of that edge. An
edge and a vertex being one of the endpoints of that edge are said to be incident
to each other or be touching each other. Vertex set and edge set of a graph G are
sometimes denoted by, respectively, V(G) and E(G).

According to the above definition, a graph is a set of some objects (nodes) to-
gether with a set of connections between these objects (edges). Connections are
binary in their nature, that is, a pair of distinct vertices is either connected by an
edge or not. A graph defined in such a way is a simple graph; a number of modifi-
cations can be introduced to generalize that concept. If pairs of vertices are allowed
to be connected by more than one edge (multiple edges connecting the same pair of
vertices are sometimes called parallel edges) or edges are allowed to connect a vertex
with itself (such edges are called loops), then a multigraph is obtained. If edges are
assigned numbers, called weights (often used to represent the strength of individual
connections), then the graph becomes a weighted graph; to avoid ambiguity, graphs
whose edges do not have weights are sometimes called unweighted graphs. If, instead
of being two-element subsets of V' (unordered pairs), edges are ordered pairs, then
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a direction can be assigned to each of them, and the graph is a directed graph; when
there is a need to specify explicitly that a graph does not have edge directions, then
a term undirected graph is used.

A graph can be completely described by the so-called adjacency matriz. Let N
be the number of nodes of a graph G and let the nodes be numbered by consecutive
positive natural numbers; this means that V(G) = {1,2,3,..., N}. The adjacency
matrix A of the graph G is a N x N matrix with elements a;; (7,7 =1,2,3,...,N),
defined as:

1, if{z,7 E
a;j = » 1 {Z’]}. € (G)7 (4.1)
0, otherwise.

So, each element of the adjacency matrix of a graph expresses whether a certain
connection exists or not. The adjacency matrix of a simple graph is a binary sym-
metric matrix with zeros on the diagonal. In a weighted graph, the elements of the
adjacency matrix represent edge weights, and therefore they can be different from 0
and 1. In a directed graph, the adjacency matrix does not have to be symmetric, as
in such a graph the presence of an edge from ¢ to j does not imply the presence of
an edge from j to ¢. If loops are allowed, then the diagonal of the adjacency matrix
might contain elements not equal to zero.

An important concept in network theory is the notion of connected graph. Let
G = (V, E) be a graph. A path from some vertex u € V to some other vertex v € V
is a sequence (e, e, €3, ..., €,) of edges of G such that:

e w is the first endpoint of eq;
e v is the second endpoint of ey;
o for each k =1,2,3,...,n, the second endpoint of e, is the first endpoint of efy1.

The distinction between the first and the second endpoint of an edge is important
only in a directed graph; in an undirected graph, they are interchangeable. A path
which starts and ends in the same vertex is called a cycle. A graph is a connected
graph when any vertex can be reached from any other vertex, that is, when for any
pair of vertices (u,v) there exists a path from u to v.

Graphs can be considered abstract objects, as few restrictions are imposed on
the nature of graph’s vertices and edges. Therefore, the notion of a graph is general
enough to be useful in the description of a wide range of systems; this is the reason
for which complex networks gain interest in various fields of research. A complex
network is often defined as a graph with a nontrivial structure, different from the
one observed in random graphs or in graphs with regular, repeatable patterns of
organization. The presence of such a structure - occurring in multiple systems
whose organization or behavior can in certain aspects be modeled with the use of
networks - is often related to system’s complexity. Therefore, networks constitute
an important tool in studying complex systems.

4.1.1 Network characteristics

Studying complex networks often involves studying a number of network character-
istics - quantities describing various properties of networks. Some characteristics are
global - describing a network as a whole, some are local - they pertain to a single
node. Below, selected quantities often used in the analysis of complex networks
are presented. They are given in their basic form designed for unweighted net-
works, along with their variants generalized to weighted networks; generalizations
onto directed networks are not presented, since the networks studied in this work
are almost exclusively undirected networks. It is worth mentioning that unweighted
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Figure 4.1. Examples of networks: a network with simple, regular structure (a), a random
network (b), a network with nontrivial organization (c).

characteristics are not reserved to unweighted networks; they can be determined also
for weighted networks - edge weights are then ignored.

Vertex degree and strength

Degree is a quantity describing individual vertices. In an unweighted network, the
degree of a node v is the number of edges incident to v, that is, the number of edges
that v belongs to. The degree of v is denoted by deg(v). In weighted networks,
the degree can be generalized to weighted degree (also called strength and denoted
by str(v)), which is the sum of weights of the edges incident to v. An important
relationship regarding the (unweighted) node degrees is the degree sum formula,
sometimes called the handshaking lemma; it states that the sum of all nodes’ degrees
equals twice the number of edges in the network. With V' denoting the vertex set
and M denoting the number of edges in the network, this is written as:

Z deg(v) = 2M. (4.2)
veV

Clustering coefficient

In unweighted networks, the clustering coefficient of a given vertex represents the
probability that two randomly chosen direct neighbors of that vertex are also direct
neighbors of each other. A direct neighbor of a vertex v is here understood as a vertex
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connected with v by an edge. Let m, be the number of edges in the network that
link the direct neighbors of v with other direct neighbors of v. Then the clustering
coefficient C,, (the subscript "u” comes from the word "unweighted”) of the node v
is given by:
_ 2m,,

deg(v) - (deg(v) — 1)
An example of determining node’s clustering coefficient in an unweighted network
is presented in Fig.

Generalization of the clustering coefficient onto the weighted networks can be
done in multiple ways. In this work a definition proposed by Barrat et al. [302] is
used. Let S(v) denote the set of direct neighbors of a vertex v, and let w,, denote
the weight of the edge connecting vertices u and v (if there is no such edge, then
Wyy = 0). Let ay, denote an unweighted adjacency matrix element, i.e. a number
defined in Eq. [f.I] The weighted clustering coefficient of v is written as:

Cu(v) (4.3)

1 Wy + Wyt
(V) = > aua, 4.4

where summation is over all pairs (u,t) of neighbors of v. It is worth noting that
if degv = 0 or degwv = 1, the clustering coefficient cannot be determined from the
above-given formulas; in such cases, it is often assumed to be equal to 0.

The above definitions pertain to individual vertices of a network. Global clus-
tering coefficient can be defined in more than one way; in this work the approach
based on averaging local clustering coefficients is applied. If V' stands for the vertex
set of a network and N is the number of elements in V', then the global clustering
coefficient of the network is given by:

1
C= N Z C(v). (4.5)

veV

Here the subscript "u” or "w”, indicating the unweighted or weighted network, is

omitted, because the formula is identical in both cases.

(a) (b) (© (d)

Figure 4.2. An example of computing clustering coefficient in an unweighted network. Node
v1 has 3 neighbors. There are 3 possible connections between the neighbors of v1; these possible
connections are marked with dashed lines. The clustering coefficient of v1 is equal to the number
of edges existing between the neighbors of v; divided by the number of possible connections; hence,
in (a), (b), (c) and (d) it is equal to 0, 2, 2 and 1, respectively.

1373
Average shortest path length

In unweighted networks, the length of a path between two vertices is the number
of edges constituting that path. In weighted networks, the length of a path can be
defined as the sum of the reciprocals of edge weights on that path. The length of
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the shortest path between vertices u and v is also called the distance between u and
v and is denoted by d(u,v).
The average shortest path length ¢(v) of a vertex v is the average distance from
v to every other vertex in the network. It is one of the measures of the centrality of
a vertex in the network, and is given by the formula:
1
N1 Z d(v,u), (4.6)

ueV\{v}

L(v) =

in which V' is the network’s vertex set, and N is the number of elements in V.

The quantity defined above has finite values only in connected networks. If
there are at least two vertices that are not connected by any path, the distance
between them is not defined; usually it is treated as infinite, and therefore ¢(v)
cannot be calculated.

Global average shortest path length is a quantity describing the whole network;
it is the average distance between all pairs of vertices. If local average distances ¢(v)
for all v in V are given, then the global mean distance in the whole network can be
expressed by:

(= % > l(w). (4.7)
veV

Equations and [£.7] apply both to unweighted and weighted networks; the dif-
ference between the unweighted and the weighted average shortest path length arises
as a consequence of different definitions of distance in those two types of networks.

Assortativity

Assortativity is a global characteristic of a network, describing the preference of
vertices to attach to others that have similar degree. A network is called assortative,
if vertices with high degree tend to be directly connected with other vertices with
high degree, and low-degree vertices are typically directly connected to vertices which
also have low degree. In disassortative networks, the high-degree nodes are typically
directly connected to the nodes with low degree.

In unweighted networks, the assortativity coefficient can be defined as the Pear-
son correlation coefficient between the degrees of nodes that are connected by an
edge. Let (u,v) denote an ordered pair of vertices that are connected by an edge.
Since edges are undirected and the pair (u,v) is ordered, two such pairs can be
assigned to each edge in the network. For each pair one can determine the de-
grees of vertices u and v, and form a pair (deg(u),deg(v)). The set of all pairs
(deg(u), deg(v)) for all edges can be treated as the set of values of a certain two-
dimensional random variable (X,Y’). With such notation, the assortativity coeffi-
cient r, is expressed by the Pearson correlation coefficient of variables X and Y

Ty = corr(X,Y). (4.8)

The generalization of the above formula to weighted networks used in this work is
done by replacing the degrees of vertices by their strengths, and calculating weighted
correlation coefficient instead of the usual one. Let (X,Y’) be a two-dimensional
random variable whose values are pairs (x,y) = (str(u),str(v)) for all pairs of ver-
tices (u,v) connected by an edge. Let w be a function that assigns to each pair
(z,y) = (str(u),str(v)) the weight of an edge connecting u and v. Then the weighted
assortativity coefficient r,, can be written as:

rw = weorr(X,Y; w), (4.9)
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where weorr(X,Y; w) denotes the weighted Pearson correlation coefficient of vari-
ables X and Y with the weighing function w. Some of the definitions encountered
in literature, for example in [303|, are equivalent to the one given above.

In this work, one more variant of assortativity coefficient is introduced and used
in addition to the one presented above. It is defined with the use of Spearman
correlation coefficient instead of Pearson correlation coefficient; to avoid ambiguity
it is referred to as rank assortativity coefficient and denoted by p. The reason behind
such an idea is the fact that while Pearson correlation coefficient measures only linear
correlations, Spearman correlation coefficient - which is equal to Pearson correlation
coefficient computed for ranks of the original variables - allows to detect monotonic
relationships (whether linear or not). To obtain unweighted and weighted rank
assortativity coefficients p,, and p,,, it is sufficient to replace X and Y with their
ranks, R(X), R(Y), in Equations and respectively. As a technical remark,
it is worth mentioning that the definition of rank used in Spearman correlation
coefficient might assign fractional ranks to repeating observations: identical values
are assigned ranks equal to the average of their positions in the sorted sequence
of values.

Since assortativity coefficient is expressed by correlation coefficient, it has val-
ues between -1 and 1. Networks with positive r are assortative, while networks
with negative r are disassortative. Examples of networks with different values of
assortativity coefficient are presented in Fig.

(a) (b) (c)

Figure 4.3. Examples of unweighted networks with different values of assortativity coefficient.
The network in (a) is assortative (r = 0.74), the network in (b) is dissasortative (r = —0.82), and
in the network in (c), the degrees of directly linked vertices are not correlated (|r| < 0.01). In each
network, the vertices are colored according to their degree - blue, purple and red colors correspond
respectively to low, medium and high degree.

Modularity

Modularity is a global characteristic of a network, measuring the extent to which
the set of network’s vertices can be divided into disjunctive subsets which maximize
the density of edges within them, and minimize the number of edges connecting one
with another .

Let G = (V, E) be an unweighted network. A partition of the network G is some
division of V' into disjoint subsets (called modules, clusters or communities). Let
ayy denote the adjacency matrix element (defined in Eq. . Let ¢, denote the
module to which the vertex v is assigned by some given partition. The modularity
of the partition is defined as:

qu = ﬁ gejv ([au - W} 5(cu, cv)> , (4.10)
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where M is the number network’s edges, deg(u), deg(v) are degrees of vertices u and
v, and function d(cy, ¢,,) has value 1 if ¢, = ¢, and 0 otherwise.

Modularity of a partition has value between -1 and 1, and indicates whether the
density of edges within the given modules is higher or lower than it would be if edges
were distributed at random. The random network that serves as a reference in this
definition is constructed using the configuration model (presented in section .

The modularity of a network, denoted by @, is the maximum value among modu-
larities g, of all possible partitions. Determining the network’s modularity precisely
is computationally intractable, hence a number of heuristic algorithms have been
proposed. In this work, modularity is estimated using the Louvain algorithm [304].

The generalization of modularity onto weighted networks can be done by replac-
ing the quantities appearing in Eq. by their weighted counterparts. If wy,
denotes the weight of an edge connecting vertices v and v, W is the sum of all edge
weights, and str(u), str(v) are the strengths of vertices u, v, then the modularity of
a given partition is equal to:

Quw = ﬁ ([wu - Str(“;;/tr(”)} 5(ca, cv)> : (4.11)

u,veV
Again, the weighted modularity of the network, @, is the greatest of modulari-
ties obtained in all possible partitions of the network. Examples of networks with
different values of modularity are presented in Fig. [£.4]
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Figure 4.4. Examples of unweighted networks with (a) low modularity (Q. = 0.07) and (b) high
modularity (Q. = 0.58). In figure b) the colors represent the partition which leads to the given
value of modularity.

4.1.2 Random network models

A number of complex network properties can be considered universal to some ex-
tent, since they are shared among networks representing many different systems.
The existence of such properties drives the development of various random network
models - which can be understood as numerical procedures designed to gener-
ate networks having some properties predefined, but being random in terms of the
remaining characteristics. The term "random network” is sometimes used to refer
to one particular network model - Erdés-Rényi model (discussed below) - but here
it is used in a more general sense - to refer to networks constructed with the use
of procedures involving some random processes. Random network models allow to
investigate the origin of certain phenomena and organization patterns observed in
networks representing diverse natural systems. Moreover, random network models
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are useful in situations when there is a need to compare the properties of some stud-
ied network with the properties of a random network keeping some features of the
original network (like the size), but lacks other traits implied by original network’s
structure. Such a comparison can be used to assess the significance of various re-
sults - when some characteristic of the original network is not observed in a random
network, then it can be considered as resulting from network’s specific organization
rather than a coincidence.

Erd6s—Rényi networks

The most "basic” model of random networks is the Erdds—Rényi model [306,307].
The name comes from the names of the authors, P. Erdés and A. Rényi, but it is
worth noting that the model was independently studied by E. Gilbert [308]. The
model generates graphs which are unweighted and, in the version presented here,
also undirected (however, generalization onto directed networks is straightforward).
The model exists in two slightly different variants. In the first one, here denoted
by G(N, M), the network is chosen uniformly at random from the set of all graphs
with IV vertices and M edges. Constructing a G(IN, M) network consists of defin-
ing an N-element vertex set, randomly choosing M pairs of distinct vertices from
the set of all possible pairs of distinct vertices (the number of all possible pairs is
Mpax = N(N — 1)/2), and introducing edges constituted by the chosen pairs into
the network. In the second variant of the model, denoted by G(N,p), each pair of
distinct vertices is connected by and edge with a fixed probability p. Constructing
a G(N,p) network consists of defining an N-element vertex set, iterating over all
pairs of distinct vertices and connecting each pair with an edge with probability p
or leaving it unconnected with probability 1 — p, independently from other pairs.
Since deciding the presence or the absence of each edge can be treated as a Bernoulli
trial with success probability equal to p, and the number of pairs of distinct vertices
is equal to Mpax = N(N — 1)/2, the number of edges M in a network generated
by the G(N,p) network is a random variable having a binomial distribution with
parameters Mpax and p. Hence, the probability P(M) that the generated network
has M edges can be expressed as:

P(M) = (Mmax>pM(1 — p) M=, (4.12)

where (¥) denotes the value of the binomial coefficient for = and y.

The expected value of the number of edges (M) is equal to pMp,ax. For a fixed p
(different from 0 and 1) and N — oo, the value of M.« also goes to infinity; then,
by virtue of de Moivre-Laplace theorem, the binomial distribution with parameters
Mpax and p can be approximated by the normal distribution with mean pM,,x and
standard deviation \/p(1 — p)Mmax. This allows to show that relative dispersion
of the number of edges M, which might be expressed by the standard deviation of
M divided by the average value of M, goes to zero in the considered limit (Noo,
fixed p). So, for large enough networks, one can approximate the number of edges
in a G(N,p) network by the average value (M) = pMpa.x (as the relative error
of such an approximation becomes negligible for large networks). This approach
allows to establish a correspondence between G(N, M) and G(N, p) models - it can
be stated that for large enough N, networks generated by the G(N, p) model behave
similarly to networks generated by the G(N, M) model with M = pN(N — 1)/2.
However, the correspondence is only an approximation and holds only in terms of
some properties. For example, if the property of interest is having an even number
of edges, then G(N, M) and G(N,p) might behave differently irrespective of how
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large are the networks (G(IN, M) generates a fixed number of edges, while G(N, p)
can generate both odd and even numbers of edges for a single combination N and p).

Erdés—Rényi networks are a very useful model of ”"purely random” networks -
networks which have no specific patterns of organization beyond the ones arising
from distributing edges randomly over the graph. Their capability of modeling
real-world networks (networks representing the organization of various real-world
systems) is severely limited. One of fundamental reasons for this is the distribution
of node degrees. Node degrees in Erdés—Rényi networks are binomially distributed;
if k& denotes the degree of a node and P(k) denotes the probability mass function,
then for a large enough G(NV, p) network (N — o0) one can write:

P(k) = (Nk_ 1)19’“(1 —p)NI, (4.13)

For the reasons mentioned above, the relative dispersion of the this binomial distri-
bution decreases with growing N. Therefore, it can be stated that in an Erdés—Rényi
network, node degrees are concentrated around the average value. Node degrees in
real-world complex networks, on the other hand, usually span many orders of mag-
nitude, which is often a consequence of being distributed according to a power-law
distribution. The fact that certain properties of Erdés—Rényi networks (like the
shape of node degree distribution) seem to be unrealistic in many situations, led
to the development of other random network models, attempting to mimic at least
some of the characteristics of real-world complex networks.

Configuration model

Configuration model [291] is a model which generates networks with an explicitly
prescribed node degree distribution; the distribution is specified by a sequence of
numbers, in which each number is the degree of one node. If the given sequence
of numbers ki, ko, k3, ..., kv satisfies conditions required to constitute a valid degree
sequence (the sum of all the numbers in the sequence has to be an even number, for
instance), then, in the simplest variant of the model, the network (undirected and
unweighted) is generated as follows. The set of N nodes is created, and each node
is given the number of edge stubs equal to its target degree, in other words, the
i-th node gets k; edge stubs. Then two stubs are chosen uniformly at random and
connected to form an edge. Connecting pairs of randomly chosen stubs is repeated
until there are no unconnected stubs left. The resulting network has exactly the
degrees specified by the sequence ki, ko, k3, ..., kN .

The configuration model is often used in situations when there is a need to deter-
mine whether certain properties of some network are directly related to node degree
distribution. The model allows to construct a randomized version of the studied net-
work (using the degree sequence taken from that network) which can be expected
to preserve properties resulting from node degree distribution and to be random in
other regards. Just as the Erdés—Rényi model can be considered a model of net-
works whose properties are a result of a random arrangement of edges not subject
to any specific restrictions (in a G(N, M) model all arrangements of M edges on
among N vertices are equally probable), the configuration model can be considered
a model of a network whose structure is random, but has a condition of preserving
prescribed node degrees imposed on it. This, together with the fact that node de-
grees are of fundamental importance in network analysis, makes configuration model
particularly useful in studies on complex networks.

It is important to note that the procedure of generating networks presented above
is the simplest algorithmic approach to configuration model, which has certain un-
desirable properties. As the pairing of edge stubs to connect is unrestricted with
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(a) (b) (©)

Figure 4.5. Examples of random network models usage. An Erd8s—Rényi network G(N,p) with
parameters N = 250 and p = 0.03 is shown in (a). In panel (b), an example of a network with
moderately modular organization is presented; the randomization of that network based on the
configuration model (that is, a network with the same number of nodes and edges and having the
same degrees as in the original network) is presented in (c).

regard to the allowed choices of pairs, a network generated by the presented method
might contain loops and parallel edges, which make it a multigraph. Also, when the
number of edges is relatively small, the generated network might not be connected.
This is a potential problem when configuration model is used as a method of gener-
ating a randomized version of a connected network, as it might be preferable for the
randomized network to be connected as well. However, there exist methods
which overcome these problems and generate networks with the desired properties.

The configuration model can serve as a starting point for more complicated net-
work randomization procedures. For example, when a weighted network needs to be
randomized in such a way that the (unweighted) node degrees are kept unchanged,
then one of the possibilities is generating a random network according to the con-
figuration model (using the unweighted degrees of the considered weighted network
as the input degree sequence), and then randomly assigning the edge weights from
the original network to the edges of the generated network. The distributions of
node degrees and of edge weights in the obtained network are identical to the dis-
tributions describing the original network. However, other properties, even the ones
related to node degrees and edge weights (node strengths, for instance), might not
be preserved. In case when such properties are to be kept unchanged, some other
method of randomization needs to be applied.

The two presented types of random network models (Erdés—Rényi model and
configuration model) are examples of well-known, widely studied models having
a significant influence on research on complex networks; however, they certainly
do not constitute an exhaustive list. There exist many more models of random
networks, designed for various applications, like testing computational methods of
network analysis or explaining phenomena observed in systems having a network
representation. An example worth mentioning in that context is the Barabdsi-Albert
model , which uses a mechanism based on a Yule process to generate networks
with power-law distributions of node degrees; the model constitutes an important
contribution to the study of power laws’ emergence in complex networks.

4.1.3 Minimum spanning trees

One of the problems sometimes encountered in research on complex networks is
related to the fact that the analysis of highly complicated structures might suffer
from the presence of a large number of details which can make it difficult to get the
general understanding of the essential properties. Investigating the characteristics
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of large, densely connected networks sometimes benefits from removing certain ele-
ments which can be considered redundant from the viewpoint of the analysis. One
of the concepts particularly useful in this context is the so-called minimum spanning
tree (MST). Minimum spanning tree is defined as a subnetwork of a given weighted
network satisfying certain conditions; constructing the minimum spanning tree of a
network can be thought of as a procedure which removes all the edges except for the
most important ones. Therefore, in certain cases, it can be considered a particular
kind of a "filter” removing information of little importance.

To define a minimum spanning tree, it is convenient to define the notions of a
tree and a spanning tree first. A tree is a graph which is connected, undirected and
acyclic (not containing any cycles). In a tree, exactly one path exists between each
pair of vertices. A spanning tree of some connected graph G = (V, E) is a tree with
the vertex set V' and the edge set being a subset of . In other words, the minimum
spanning tree of a connected graph G is a tree containing all of the vertices of G
and some subset of the edges of G. Let G be an undirected connected graph in
which every edge has a real number, called edge cost, assigned to it. The minimum
spanning tree (MST) of G can be defined as the spanning tree of G having the
minimum possible sum of edge costs. The fact that costs are numbers assigned to
each edge of G makes it possible to consider G a weighted graph and to treat costs as
edge weights. In fact, definitions of MST often do not utilize the notion of edge cost,
and define MST as the spanning tree of a weighted graph minimizing the sum of
edge weights. However, in some situations it is desirable to introduce costs distinct
from weights and to minimize the sum of costs instead of the sum of weights. This
happens, for example, when the studied network is a weighted network in which
edge weights can be interpreted in terms of connection intensity - the greater the
weight, the stronger the relationship between the connected vertices. In such a
case, introducing edge costs equal to, for example, the reciprocals of edge weights,
and using those costs to construct an MST allows to treat the obtained MST as a
subnetwork keeping only the most important edges of the original network. There
are several algorithms finding the minimum spanning tree of a graph; the algorithm
used in this work is the Prim’s algorithm [310,311]. An example of constructing the
MST of a network is presented in Figure
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Figure 4.6. A weighted network (a) and a minimum spanning tree of that network (b). The
numbers labeling edges are edge weights; edge costs (minimized by the MST) are equal to the
reciprocals of weights.

Minimum spanning trees have a number of applications in various fields, like
the study of financial markets [142}/144], image processing [312], or the analysis of
brain networks (networks representing certain aspects of brain organization, con-
structed from neuroimaging data) [313]. It is worth mentioning that although the
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concept of MST is inherently related to weighted networks, there exist methods
of applying MST to the analysis of unweighted networks. This is done by trans-
forming an unweighted network into a weighted one and constructing the MST of
the latter. For example, edges in an unweighted network can be assigned weights
based on the number of shortest paths they are part of - the greater the number
of network’s shortest paths containing the considered edge, the greater the weight
assigned to that edge; this approach comes down to the analysis of the so-called
betweenness centrality [314].

4.1.4 Fractal analysis of networks

Scale-free networks owe their name to the particular form of their node degree dis-
tributions; those distributions, being power laws, lack characteristic scale. But the
specific shape a of node degree distribution is not the only aspect in which organiza-
tion of the network can be scale-free. A network can be organized into a hierarchical,
statistically self-similar structure, which can be identified with the use of fractal anal-
ysis methods, like the estimation of box-counting dimension. Box counting method
applied to a network relies on partitioning the set of network’s nodes V into possibly
small number of boxes, that is, disjoint subsets V; (UJ; Vi = V') such that for every
pair of nodes v1, vy belonging to the same V;, the distance d(vi,v2) between v, and
vy is less or equal to some fixed value, s (box size). The number of boxes obtained
in such a partition is denoted by N(s). Making partitions with many different val-
ues of s gives a collection of different values of N(s); if a power-law describes N (s)
behavior: N(s) o< s7%, then d¢ can be interpreted as the box-counting dimension
of the network [315].

(a)

Figure 4.7. Exemplary covering of a network with boxes of size s = 2. Nodes having the same
label belong to the same box.

Figure [£.7] shows an example of covering a network with boxes. In general,
the minimum number of boxes of given size required to cover a network cannot be
computed exactly except for very small networks. For that reason, a number of
algorithms finding an approximate solution have been proposed; the algorithm used
in this work is based on the idea of greedy coloring [316]. To cover a network G with
boxes of size s, the algorithm transforms G into another network G’ with an identical
set of nodes and having the following property: for any nodes u, v, an edge between
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u and v exists if and only if the distance between w and v in the original network G
is greater than s. Then a greedy algorithm is used on the resulting network G’ to
solve the problem of vertex coloring, that is, labeling the nodes in such a way that no
two nodes connected by an edge have the same label. The obtained labels constitute
the partition of the original network G - nodes having the same label are assigned to
the same box. The construction procedure of G’ along with the coloring rule ensure
that nodes separated by distances larger than s never end up in the same box.

Fractality, meaning the presence of scale-free, statistically self-similar organiza-
tion of a network, is related to several other properties and patterns of network’s
behavior under certain circumstances. For example, fractality has been shown to be
related to a tendency of high-degree nodes to be separated instead of being directly
connected (this effect, occasionally called hub repulsion, is expressed by network’s
disassortativity); also, fractality decreases network’s vulnerability to attacks (which
can be interpreted as the number of high-degree nodes which need to be removed
- together with the incident edges - to make large pieces of the network disconnect
entirely from the remaining part) [317].

It is worth mentioning that fractal analysis is sometimes applied to some trans-
formed or filtered versions of a network instead of the original one; one of the ex-
amples of transformation used for this purpose is constructing a minimum spanning
tree (which in this context is sometimes referred to as network skeleton) [318]. In
some networks, fractal properties of the original structure and of the network skele-
ton are approximately the same; however, there exist networks whose self-similarity
can be detected only after applying a transformation which removes edges of lit-
tle importance |319].

4.2 Word-adjacency networks

A number of problems related to natural language can be studied with the use of
network theory. Networks allow to represent language on various levels of its struc-
ture - they can represent word co-occurrences, semantic similarities or grammatical
relationships, for instance. Such networks, collectively called linguistic networks,
often consist of a large number of nodes and edges and exhibit complex patterns
of organization, but graphs with relatively simple structure (for example consist-
ing of over a dozen of vertices), also have their applications in language-related
areas of research (examples of such graphs are parse trees, presented in Chapter [1)).
Graphs and networks have been used to approach various practical problems related
to natural language processing, like keyword selection, document summarization,
word-sense disambiguation or machine translation [320H323]. Also, network formal-
ism is used in research areas at the interface between linguistics and other scientific
fields, for example in sociolinguistics, which, by studying social networks (networks
representing the organization of human communities), investigates human language
usage and evolution [324}325].

An example of a linguistic network with a very simple construction procedure
is the word-adjacency network, sometimes also called word co-occurrence network.
A word-adjacency network is constructed from a text or a corpus in the following
way: each (unique) word in a corpus becomes a vertex of the network. If two words
appear next to each other in the text at least once, then the nodes corresponding
to those words are connected by an edge. A network defined in such a way is an
unweighted word-adjacency network. If the numbers of co-occurrences of the words
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are assigned to edges as weights, then a weighted word-adjacency network is created.
Word-adjacency network can be directed or undirected - depending on whether the
ordering of word pairs is taken into consideration. Words can be lemmatized or
kept in their original forms - each of the choices leads to slightly different variant
of the resulting network. All word-adjacency networks discussed in this chapter
are undirected, weighted networks. When their unweighted characteristics are of
interest, edge weights are neglected. The words used to construct the networks are
not lemmatized. Examples of word-adjacency networks are shown in Figure 4.8

Despite their simplicity, word-adjacency networks have a number of interesting
properties and provide a useful language representation, as they are able to capture a
number characteristics of the underlying text. Since each occurrence of a particular
word adds 1 to the weight of the edge between that word and the previous word,
the strength str(v) of a vertex v in a weighted word-adjacency network is equal
to 2w(v), where w(v) is the frequency of the word represented by v (the number of
times it appears in the text). The exception from this rule happens in cases in which
two or more consecutive occurrences of the same word appear next to each other
in the text; such cases are ignored in the process of network construction (no edges
connecting a vertex with itself are created). Since such cases are relatively rare, it
can be stated that str(v) ~ 2w(v). Vertex degree (which is strongly correlated but in
general not equal to vertex strength - Fig. gives information about how many
different co-occurrence pairs a word forms with other words in the corpus. Clustering
coeflicient describes the structure of the node’s neighborhood; it reveals how often
the words being direct neighbors of some word v are also direct neighbors of each
other. Measuring network’s assortativity provides information about the correlations
between the quantities describing words occurring next to each other (degrees and
strengths), and modularity gives insight into the extent to which the vocabulary of
a text can be divided into clusters of words frequently appearing together.

4.3 Comparing networks of different sizes

Word-adjacency networks constructed from texts of different lengths in general have
different sizes - they differ in the numbers of nodes and edges and in magnitudes of
edge weights. To compare the properties of word-adjacency networks representing
different texts, it is sometimes useful to perform some type of characteristics’ nor-
malization. One of possible ways of doing that is referring to the characteristics of
a network randomized in a specific way. The randomization procedure adopted in
this chapter consists of shuffling the order of the words in a text in a random fash-
ion, and constructing a word-adjacency network from the so-obtained random text
(Figure . It is worth mentioning that this procedure preserves node strengths,
as word frequencies remain unchanged. After constructing the randomized network,
the characteristic of interest - either global (pertaining to the whole network) or local
(describing specific words) is determined for the randomized network. Randomizing
the network and computing the desired characteristic is repeated multiple times and
the results are averaged; the average value of the studied quantity in a randomized
network serves as a reference for the value obtained for original network. Conse-
quently, the investigated quantities can be of the form g — g™ or g/g"*"?, where
g is some network characteristic like assortativity coefficient, clustering coefficient,
or modularity, and ¢"®"¢ is the average value of the same characteristic in a ran-
domized network (network constructed form a randomized text). When g is a local
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Figure 4.8. Word-adjacency networks constructed from text samples of different lengths excerpted
from Alice’s Adventures in Wonderland by Lewis Carroll. The text samples used to construct the
networks are: the first sentence of the book (a), the first 10 sentences (b), the first 5000 words (c),
the whole book (d). In (¢) and (d) node labels are not shown because of networks’ size. In all the
presented networks, punctuation marks are treated as words; their labels start from "#” symbol.
The sentence used to construct the network in (a) is shown below the resulting network.

characteristic, like the clustering coefficient of a node representing a specific word
in a network, then ¢"**? is the average value of that characteristic in a randomized
network, computed for the node corresponding to the same word. The choice of
g— g or g/g""? as a quantity to investigate is to some degree arbitrary; it may
be specific to a particular problem and depend on a particular characteristic.
Normalizing network parameters is aimed to allow for a meaningful comparison
between networks of different sizes, and also to compensate for the effects being a
direct result of words’ different frequencies. Since a randomized text has the same
length and word frequency distribution as its original source text, it can be antici-
pated that normalized characteristics neglect the purely frequency-based effects and
capture the properties of network’s specific organization, as they express how the
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have been reserved to the people of this country, by
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question, whether societies of men are really capa-
ble or not, of establishing good government from
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destined to depend, for their political constitutions,
on accident and force.
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Figure 4.9. An unweighted word-adjacency network and its randomization. Figure (a) presents
the network created from one sentence excerpted from The Federalist Paper No. 1 by Alexander
Hamilton. Figure (b) shows the network created from the same piece of text, but with randomly
shuffled words. Punctuation is taken into consideration in the construction of network; comma and
full stop are denoted by "#com” and "#{s”, respectively.

network structure differs from the structure that would be observed if words were
placed randomly in the text. An example of normalization’s impact on network
characteristics can be seen in Figure [£.10] where unweighted clustering coefficients
Cyu(v) of 100 most frequent words in each of the texts listed in Appendix are
presented, along with their normalized counterparts. The tendency of C,(v) to
increase with increasing word rank R(v), is not observed for C,(v) — Cr%4(v), ex-
pressing the differences between the clustering coefficients in the original and in the
randomized network.

4.4 Punctuation in word-adjacency networks

The word-adjacency networks’ construction procedure can be extended to include
objects other than words into the analysis. An extension which seems natural in
this context is taking punctuation marks into consideration - when treated as words,
punctuation marks become vertices of word-adjacency networks (the set of studied
punctuation marks is the same as in section [3.7]- it consists of period, question mark,
exclamation mark, ellipsis, comma, dash, semicolon, colon, left parenthesis and right
parenthesis; in the figures presented in this work these marks are denoted by #fs,
#qu, #ex, #ell, #com, #pau, #sem, #col, #bra and #ket, respectively). It turns
out that in terms of certain parameters expressing their role in a network, nodes
representing punctuation marks behave in the same way as nodes corresponding to
words of comparable frequency in the text |[254]. An example of such an effect can
be seen in Figure The results presented there are obtained by transforming
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Figure 4.10. An example of the influence of word frequencies on word-adjacency network’s local
characteristics. For each of the networks representing individual texts from dataset specified in
Appendix the unweighted local clustering coefficient in its unnormalized (a) and normalized
(b) form (Cy(v) and Cy(v) — C5"%(v), respectively) is plotted against the rank of a word (the
position on the list of most frequent words); this is done for 100 most frequent words. The red line
represents the average values, that is the values of clustering coefficients obtained for consecutive
ranks, averaged over all the considered networks. It can be observed that while the unnormalized
characteristic depends on word frequency (as evidenced by the increase of average Cy(v) with
increasing R(v)), the normalized quantity does not seem to exhibit such a dependence. Therefore,
it can be anticipated that the variability of the normalized characteristic can be attributed to the
specific traits of a word in a particular network rather than to word frequency.

the corpora consisting of books from Appendix into word-adjacency networks
(with punctuation marks included), and investigating selected words’ properties, ex-
pressed by local clustering coeflicients and average shortest path lengths. For each
language, the set of studied words is composed of two parts: one being a set of a few
most frequent words (and punctuation marks) in the analyzed corpus, and the other
consisting of words listed in Table [{.I] While the role of the most frequent words
in language is often mainly grammatical, the words in the table are words carrying
certain meanings - they refer to specific objects and concepts. Their frequencies
are significantly lower than the frequencies of a few most frequent words, but high
enough to allow for statistically reliable analysis of their properties. It can be seen
in Figure [£.11] that in terms of normalized unweighted local average shortest path
lengths £, — "¢ and normalized unweighted local clustering coefficients C,, —Cr%"4,
the two groups of words exhibit different patterns of variability. While most frequent
words tend to be confined along the horizontal axis on the (£, — ¢ C, —Crond)
plane, the words listed in Table [£.1] are more scattered with respect to their normal-
ized clustering coefficients. In all the studied languages, punctuation marks seem to
belong to the regime determined by most frequent words. This is in accordance with
the results of frequency analysis, supporting the idea that from certain points of view
punctuation marks can be treated as words; not only they have frequencies compa-
rable to the frequencies of most frequent words and fit into the power-law regime
of rank-frequency distributions, but also some of their properties in word-adjacency
networks resemble the properties of high-frequency words. As a consequence of the
presented line of reasoning, all the word-adjacency networks studied in this chapter
involve punctuation marks.
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Figure 4.11.

Average shortest path lenghts and clustering coefficients (both unweighted and

normalized) of selected words and punctuation marks in word-adjacency networks constructed from
corpora in 7 languages: English (EN), German (DE), French (FR), Italian (IT), Spanish (ES), Polish
(PL) and Russian (RU). The corpora consist of books listed in Appendix The set of words
considered in each language is composed of two word groups. The first group is constituted by 20

words having the highest frequencies in the corpus (punctuati

on marks are treated as words); those

words are marked with red dots in the figures. The second group consists of the words collected in
Table In contrast to most frequent words, whose role is usually mostly grammatical, the words
from the table have specific meanings - they are references to specific objects and concepts. They are
marked with blue dots in the figures. It can be observed that on the plane (£, /€.°™?, C\, —C%"%) the
most frequent words tend to be aligned along the horizontal axis, while the second group of words
has more variability in the vertical direction (but some dispersion in the perpendicular direction

is also visible).
ordinary words with high frequencies.
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Table 4.1. Words used in the analysis presented in Fig. [4.11| (along with the set of most frequent
words). The table is constructed by translating a set of arbitrarily selected, predefined meanings
into all of the 7 studied languages (it should be noted that the accuracy of the translations might
vary, as a word in one language might not have a counterpart with exactly the same meaning in
other languages). One table row corresponds to one meaning. The words in the table are typically
words with moderate frequencies; their ranks (positions on the list of most frequent words) in the
studied corpora (corpora constructed from books listed in Appendix are given in parentheses.

English German  French Italian Spanish Polish Russian
time Zeit temps tempo tiempo czas BpeMs
(82) (110) (107) (103) (101) (194) (89)

face Gesicht face faccia cara twarz JIUTIO
(149) (230) (376) (248) (253) (148) (135)
home Haus maison casa casa dom I0M
(195) (295) (195) (79) (63) (421) (323)
day Tag jour giorno dia dzien JIeHb
(138) (279) (128) (111) (93) (179) (140)

air Luft air aria aire powietrze BO31yX
(313) (468) (330) (622) (326) (715) (806)

old alt vieux vecchio viejo stary cTapbIit
(86) (894) (324) (273) (375) (167) (561)
good gut bon buono bueno dobry Xopormmuit
(95) (145) (178) (682) (273) (532) (1871)
white weifl blanc bianco blanco biaty Gestblit
(283) (174) (697) (668) (654) (1235) (1687)
small klein petit piccolo pequetio maly MaJIeHbKHT
(292) (1154) (160) (445) (1292) (690) (1024)
late spat tard tardi tarde pézno TO3THO
(539) (1039) (507) (567) (215) (1359) (966)
quickly schnell vite presto rapidamente szybko OBICTPO
(836) (401) (541) (324) (2876) (391) (275)

see sehen voir vedere ver widzieé¢ BHUIETH
(94) (166) (117) (225) (105) (739) (432)
speak sagen parler parlare hablar méwic TOBOPUTH
(311) (128) (254) (290) (305) (303) (228)

4.5 Word-adjacency networks in various languages

Figure shows the log-log plots of degree distributions and edge weight distri-
butions of word-adjacency networks constructed from corpora consisting of books
listed in Appendix[B.I] The form of degree distributions indicates that the networks
can be considered approximately scale-free, with degrees described by power laws
with exponents of the survival function slightly above 1. This result is to a degree an
expected one: Zipf’s law ensures that word frequency distributions are described by
a power law; word frequencies are approximately equal to node strengths, and since
degrees are strongly correlated with strengths, one can anticipate that degree distri-
butions in word-adjacency networks are significantly influenced by word frequency
distributions. Edge weights in a word-adjacency network correspond to frequen-
cies of 2-grams (pairs of words) in the underlying text. It can be seen that edge
weight distributions in the studied networks can be approximated by power laws;
this can be associated with the fact that frequencies of certain linguistic constructs
larger than words also seem to be conforming to power-law distributions [326,[327].
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Figure 4.12. Log-log plots of empirical survival functions F representing node degree distribu-
tions (a) and edge weight distributions (b) of word-adjacency networks constructed from corpora
consisting of books listed in Appendix (each corpus is constructed from books in one language).
The slope of the black dashed line in (a) is equal to the average of slopes of the lines fitted to each
node degree distribution (—1.11). The slopes of black dashed lines in (b) represent the minimal and
the maximal slope of the lines fitted to edge weight distributions (—1.29 and —1.10, respectively).

It should be noted, however, that the effect is not as evident as in case of individual
words, described by Zipf’s law [97},328l/329].

While a number of properties of word-adjacency networks can be considered gen-
eral and possibly universal, some traits seem to be specific to particular languages,
at least to some degree. Figure shows how the values of selected (normal-
ized) global network characteristics are distributed in texts in different languages;
the texts used are the books from the dataset specified in Appendix The dif-
ferences between the distributions of the some of the considered characteristics in
different languages are evident. This results in a tendency of texts in the same
language to group together in the space of quantities describing network structure.
One of the ways of detecting such clustering is using a hierarchical clustering algo-
rithm [330]. The algorithm applied here can be described as follows: given a set
of m points in some space, hierarchical clustering aims to link together the points
that are close to each other, according to a certain metric (a function specifying the
distance between points). It starts from creating m clusters and assigning one point
to each cluster. Then the clusters that are closest to each other are merged together,
and this is repeated until there is only one cluster. The distance between clusters
can be defined in multiple ways; in the approach utilized here, the distance between
two clusters is the greatest Euclidean distance between pairs of elements of these
clusters (each element in a pair belongs to different cluster). The result of clustering
can be presented in the form of a dendrogram - a tree-like diagram representing the
consecutive merges along with the height at which they take place (the height of a
merge is the distance between the merged clusters). Fig. m shows a dendrogram
of the clustering of the books from Appendix in the space of the characteristics
presented in Fig. It can be seen that such a clustering tends to link texts with
other texts in the same language. However, the separation between texts in different
languages is far from perfect.

The differences between languages can also be illustrated with the use of another
method of data analysis - the so-called Linear Discriminant Analysis (LDA) [331].
Given a set of points in some space, each belonging to some predefined class and la-
beled by that class, LDA sequentially finds vectors (orthogonal to each other) such
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Figure 4.13. The highest node strengths and degrees in word-adjacency networks constructed from
corpora consisting of books listed in Appendix [B:I] Each of the figures pertains to one language
(one corpus) - English (EN), German (DE), French (FR), Italian (IT), Spanish (ES), Polish (PL)
or Russian (RU). The hoizontal axis specifies consecutive ranks R of words (their positions on
the list of most frequent words), while vertical axis is used to specify both the degree (squares)
and the strength (dots) of the nodes representing those nodes in the network; both quantities are
under logarithm. It can be observed that although degree and strength are strongly related, their
values might be significantly different from each other. Punctuation marks are treated as words

and included in the analysis.
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Figure 4.14. Global characteristics of word-adjacency networks constructed from texts in different

languages.

Each figure pertains to a single (normalized) characteristic; each dot in the figure

represents one text from the dataset specified in Appendix[B-1] It can be seen that the distributions
of individual characteristics can be substantially different for different languages, but the presence
and the strength of that effect varies among languages.
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Figure 4.15. The dendrogram of hierarchical clustering of texts listed in Appendix in the
attribute space consisting of (normalized) global characteristics of word-adjacency networks, pre-
sented in Fig. [4.14 The scale on dendrogram’s radius gives the height of merges (the distance
between merged clusters). Numeric labels correspond to the numbers assigned to books in the
studied dataset; colors correspond to languages: red - English, green - German, dark blue - French,
light blue - Italian, gray - Spanish, orange - Polish, purple - Russian. The presence of clusters
consisting of texts in the same language indicates the presence of word-adjacency network’s traits
specific to individual languages.

that the projection of the data points on the subspace spanned by those vectors
results in the maximum possible separation between classes. The first vector max-
imizes the class separation, and each subsequent vector maximizes the separation
under the condition that it is orthogonal to all the preceding vectors. Since the abil-
ity of each vector to discriminate between classes is weaker than for the preceding
vectors, projecting the data onto the subspace spanned by the first few such vectors
can be sufficient to detect the patterns of variability between classes. Hence, LDA
is often used as a dimensionality reduction technique. Therefore it can be treated
as a method of finding a linear subspace in which the overlap between the clouds of
points belonging to different classes is minimal. Figure [£.16] presents the projection
of the dataset onto a 2-dimensional space spanned by vectors obtained by performing
LDA on the books from Appendix [B.1] in the space of four network characteristics:
Cy, —Crand ¢, —crand o, — prand o, — prand being the unweighted and weighted
normalized clustering coefficients and the unweighted and weighted normalized rank
assortativity coefficients, respectively. The results indicate the presence of clusters
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of points representing texts in the same language, but there is still some overlap;
among the studied languages, distinguishing between French and Italian and between
Polish and Russian seems particularly difficult in terms of the network parameters
considered. It can be concluded that using word-adjacency network representation
allows to investigate certain statistical properties of texts, expressed by quantities
characterizing the structure of such networks, and to describe quantitatively how
languages differ in terms of those properties. In that context, it is worth noting that
other types of linguistic networks, for example networks based on syntactic relation-
ships between words, can also have the property of displaying different patterns of
organization for different languages [332].
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Figure 4.16. Texts in different languages in a subspace of the space constructed from word-
adjacency networks’ global characteristics. The original space consists of the (normalized) charac-
teristics presented in Fig. [4.14] The 2-dimensional subspace presented in (a) is spanned by the
first two linear discriminants LD, LDy - vectors computed with the use of LDA, determining the
directions along which the texts are best separated with respect to language. Each dot in (a) rep-
resents one text from the dataset specified in Appendix colors represent languages. LD; and
LD are linear combinations of the basis vectors (each basis vector represents one of the studied
network characteristics); the coeflicients of those linear combinations are shown in (b). The absolute
values of the coefficients can be treated as quantities measuring the extent to which a particular
characteristic allows to separate texts in different languages; in that regard, clustering coefficient
(both in its weighted and unweighted form) seems to be most significant.

4.6 Word-adjacency networks and text authorship

Since word-adjacency networks, apart from having a number of properties being
common for various corpora, exhibit a tendency to distinguish between texts in dif-
ferent languages, a question arises whether network representation allows to classify
texts by attributes other than language. An example of what can be studied in that
context is writer’s individual style of writing [333]. Stylometry (the analysis of writ-
ing style) relies on the fact that the specific way in which a particular author uses
language is, at least to some degree, reflected by certain statistical properties of texts
written by that author. It can be anticipated that the structure and organization
of word-adjacency networks are also influenced by individual writing style. A trace
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of such an effect can be seen in Fig. where selected network characteristics of
English and Polish 5000-word text samples drawn randomly from books written by
different authors are shown. It can be observed that although derived from different
books, the networks corresponding to texts of the same author tend to be similar in
terms of the computed characteristics. The number of authors considered in each
of the plots in Fig. is only three; with a larger number of authors, the overlap
between regions occupied by points representing text samples of different authors
overlap to a larger degree and the differences between authors are much less evident.

A more detailed analysis of the utility of network representation in recognizing
the authorship of texts is presented below. The used dataset consists of English and
Polish books listed in Appendix [B-3} in each of the languages there are 8 different
authors and 6 books of each of the authors, giving 48 books per language and
96 books in total. Since it is the authorship, not the properties of a particular
language, that is of interest, the analysis is performed separately for English and for
Polish books.

Figure [£.18|shows the dendrograms of hierarchical clustering performed in space
of four normalized, global, unweighted characteristics of networks. The studied
characteristics are: average shortest path length, clustering coefficient, assortativity
coefficient and modularity. The characteristics are normalized by dividing their val-
ues by the values obtained in network constructed from a text with words shuffled
randomly, so the quantities constituting the clustering space are ¢,,/ KZ‘md, Cu/ C’q’;a”d,
70 /7T Q. / QT where £, Cy, T4, Q. denote, respectively: average shortest path
length, clustering coefficient, assortativity coefficient and modularity of the original
network, and ¢rend Crand - prand - Qrand gre the same characteristics computed for
a randomized network. From the results presented in Fig. one can conclude
that hierarchical clustering is not sufficient to reliably distinguish between the au-
thors present in the dataset; however, one can observe a number of small clusters
(consisting of 2-3 books) belonging to the same author.

To further examine the correspondence between the authorship and the param-
eters of word-adjacency networks, one can use a method of supervised machine
learning. The reasoning behind such an approach can be explained as follows. The
sharper the differences between the structure of networks representing texts of differ-
ent authors, the easier it should be to train an algorithm of statistical classification
to recognize authorship in the space of network characteristics. So the accuracy
of the classifier can be considered a measure of how well texts of different authors
are separated in network parameters’ space. The classifier used here is an ensem-
ble of decision trees; it is based on the so-called bagging (bootstrap aggregating) of
decision trees [334]. A short characterization of decision tree ensembles is given in
Appendix [A] The set of texts in each of the studied languages (English and Polish),
represented by a set of points in the space of network characteristics, is randomly
divided into two disjoint sets: the training set and the test set. These sets are con-
structed in such a way that each author is equally represented; more precisely, from
six books of each author four are randomly selected to the training set, and the
remaining two are assigned to the test set. Then an ensemble of 100 trees is trained
on the training set to classify books with respect to the author - each book con-
stitutes one observation whose attributes are the appropriate network parameters.
Then the classifier classifies observations in the training set. The partition of the
data into training and test sets and training the decision tree ensemble is repeated
10000 times. The average accuracy of the classifier (the fraction of observations with
correctly recognized authorship) in the test set is treated as a measure of how dis-
tinct the structures of word-adjacency networks constructed from texts of different
authors are. if the authors were not distinguishable at all, then the classification
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Figure 4.17. The projections of the triplets of word-adjacency network characteristics (¢u, Qu, Cy)
onto planes (£, Qu), (Lu,Cu), (Qu,Cu), for texts in English (a, b) and Polish (c, d). Each triplet
of characteristics pertains to one chunk of text of length 5000 words. Texts samples were randomly
chosen from all of the studied works of considered authors (contained in the dataset specified in
Appendix [B.3). Different markers denote different authors - red dots, green triangles and blue
squares denote respectively: Charles Dickens, Daniel Defoe and Mark Twain in (a), George Eliot,
Jane Austen, Joseph Conrad in (b), Wladystaw Reymont, Janusz Korczak, Jan Lam in (¢) and
Henryk Sienkiewicz, Jozef Ignacy Kraszewski, Stefan Zeromski in (d). It can be seen that points
representing texts of different authors tend to occupy different regions of space. The characteristics
are not normalized, as all the samples have the same length.
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Figure 4.18. The dendrograms of the hierarchical clustering of (a) English and (b) Polish books
from the dataset specified in Appendix in the space of (normalized) unweighted global
characteristics of word-adjacency networks. Each text is labeled by the surname of its author.

would not be significantly different from a random choice, which has the expected
accuracy of 1/n, where n is the number of authors.

The results of classification in the same space that the one considered in Fig. [4.18]
that is, a 4-dimensional space constructed from £, /¢r*"¢, C, /Cromd  r, /rrand and
Qu/ Q{L‘md, are presented in Table The table is organized as follows. In each
part (one part corresponds to one language), the number in the i-th row and the
j-th column is the probability of classifying a text of the i-th author as a text of the
j-th author, obtained by counting such classifications in the test set and dividing the
number of counts by the number of performed repetitions of the test set selections
(10000). The probabilities of correct classifications reside on the diagonal. The sum
of values in each row is equal to 1, as it is the probability of assigning a text to any
of the authors. The average overall probabilities of correct classification in the test
set are: 35% with standard deviation of 10% for English, and 41% with standard
deviation of 10% for Polish. This indicates that the some information about the
authorship of texts is indeed encoded in the parameters of the networks, as the
results are clearly better than a random classification; however, there is certainly
room for improvement.

One of possible improvements is taking into account the fact that networks are
weighted, and including weighted characteristics into the analysis. Unweighted char-
acteristics, typically being conceptually simpler and easier to compute, can be com-
bined with their weighted counterparts form a space in which the algorithms of
hierarchical clustering or statistical classification can be applied. Table presents
the results of classification performed by decision tree ensembles in an 8-dimensional
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Table 4.2. The results of the classification of (a) English (b) Polish books (from the dataset
specified in Appendix with respect to the authorship, in the space of (normalized) unweighted
global characteristics of word-adjacency networks. A number in the i-th row and j-th column
is the probability of classifying a text of i-th author as a text of j-th author.

(a) The classification of English books. The
authors are denoted by the two first letters of
their surnames: Au - Austen, Co - Conrad, De
- Defoe, Di - Dickens, Do - Doyle, El - Eliot, Or
- Orwell, Tw - Twain.

(b) The classification of Polish books. The au-
thors are denoted by the two first letters of their
surnames: Ko - Korczak, Kr - Kraszewski, La
- Lam, Or - Orzeszkowa, Pr - Prus, Re - Rey-
mont, Si - Sienkiewicz, Ze - Zeromski.

Au Co De Di Do ElI Or Tw
Au|.33 22 .17 .06 .01 .11 .10 .00
Co|.08 .34 .01 .21 .02 .11 .14 .09

Ko Kr La Or Pr Re Si Ze
Ko|.18 .23 .14 .18 .04 .00 .09 .14
Kr|.16 .57 .00 .02 .00 .18 .03 .04

De|.21 .00 .54 .00 .09 .04 .12 .00 La|.21 .06 .54 .02 .05 .00 .08 .04
bi|.18 .21 .00 .05 .23 .18 .08 .07 Or|.14 .00 .02 .26 .11 .00 .22 .25
Do|.00 .12 .06 .09 .28 .03 .24 .18 Pr|.02 .00 .09 .12 .65 .00 .10 .02
El|.10 .22 .16 .05 .04 .39 .04 .00 Re| .05 .21 .00 .01 .00 .44 .07 .22
Or|.10 .04 .09 .07 .23 .12 .18 .17 Si|.04 .00 .18 .21 .09 .00 .46 .02
Tw|.00 .00 .00 .03 .12 .16 .03 .66 Ze|.19 .10 .01 .32 .00 .17 .00 .21

space of normalized global network characteristics - average shortest path length,
clustering coefficient, assortativity coefficient and modularity, in unweighted and
weighted variant. The average classification accuracy obtained in the test set is
42% with standard deviation of 11% for texts in English, and 44% with standard
deviation of 11% for Polish texts. The increase of classification accuracy is rather
negligible, indicating that the information regarding the individual style of particu-
lar authors encoded in networks’ weighted characteristics overlaps to a large degree
with the information carried by the characteristics in unweighted variant. in terms of
the In term of the ability to distinguish between authors, the results of hierarchical
clustering utilizing both unweighted and weighted characteristics are similar to the
results obtained with unweighted characteristics only; therefore the dendrograms are
not presented here. Also, using only the weighted variants of the studied quantities
(without the unweighted ones) leads to the distinguishability between authors at a
level similar to the one obtained in the analysis of unweighted characteristics only,
both in clustering and classification.

Table 4.3. The results of the classification of (a) English (b) Polish books (from the dataset
specified in Appendix with respect to the authorship, in the space of (normalized) unweighted
and weighted global characteristics of word-adjacency networks. A number in the i-th
row and j-th column is the probability of classifying a text of i-th author as a text of j-th author.

(a) The classification of English books. The (b) The classification of Polish books. The au-

authors are denoted by the two first letters of
their surnames: Au - Austen, Co - Conrad, De
- Defoe, Di - Dickens, Do - Doyle, El - Eliot, Or
- Orwell, Tw - Twain.

Au Co De Di Do ElI Or Tw
Au|.20 .17 .18 .12 .00 .22 .11 .00
Co|.12 .62 .00 .06 .02 .07 .03 .08
De|.11 .00 .52 .11 .09 .14 .01 .02
Di|.16 .03 .03 .21 .22 .18 .09 .08
Do|.02 .10 .00 .22 .33 .01 .14 .18
El|.17 .16 .13 .04 .00 .46 .00 .04
Or|.06 .03 .05 .04 .05 .01 .55 .21
Tw|.00 .01 .03 .02 .10 .13 .22 .49

thors are denoted by the two first letters of their
surnames: Ko - Korczak, Kr - Kraszewski, La
- Lam, Or - Orzeszkowa, Pr - Prus, Re - Rey-
mont, Si - Sienkiewicz, Ze - Zeromski.

Ko Kr La Or Pr Re Si Ze
Ko|.22 22 .16 .09 .01 .01 .15 .14
Kr|.21 .35 .03 .07 .01 .29 .00 .04
La|.06 .04 .55 .05 .12 .00 .03 .15
Or|.16 .04 .02 .34 .13 .00 .12 .19
Pr|.01 .00 .08 .18 .63 .00 .10 .00
Re|.01 .12 .00 .00 .00 .50 .18 .19
Si|.10 .00 .07 .06 .15 .01 .61 .00
Ze|.22 .03 .08 .08 .00 .28 .00 .31
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A slightly different approach to identifying how various texts differ in their net-
work representations is based on studying local characteristics - quantities describing
individual nodes in a word-adjacency network. In each text, nodes corresponding to
n most frequent words in the studied language are identified, their characteristics
are computed and supplied as components of the space in which the classification
of clustering takes place. Punctuation marks are included into the analysis, and
they are treated in the same way as words; this means that they are present in the
frequency ranking from which n most frequent words are chosen. Identifying the
most frequent words in language requires a large enough corpus; here these words
are extracted from the corpus consisting of all studied texts. The characteristics in-
vestigated in the analysis are: vertex degree, local clustering coefficient, and average
shortest path length, all in both unweighted and weighted variants. The character-
istics are normalized by dividing their value by the average value in a randomized
network. Node strength (the weighted counterpart of node degree) is an exception
here - since it is roughly equal to the doubled frequency of the corresponding word in
the underlying text, and word frequencies remain unchanged during randomization,
dividing node strength by its randomized counterpart always gives a value equal to
or very close to 1. Therefore the normalization of node strength is performed in
another way: the normalized strength of a node v in a network is the strength of v
divided by the sum of strengths of all nodes in that network, str(v)/ >, cy str(u).
This is equivalent to word’s relative frequency, that is the number of its occurrences
divided by the length of the considered text.

A dendrogram of the clustering in 12-dimensional space of the weighted clustering
coefficients of n = 12 most frequent words is presented in Fig. [4.19] Results of
classification with decision tree ensembles performed in the same space are collected
in Table The obtained overall classification accuracy is 90% with standard
deviation of 8% for English texts, and 86% with standard deviation of 8% for the
Polish ones. The choice of the network parameter (clustering coefficient) and the
number of words to study (n = 12) is a consequence of the results presented in
Fig. which pertain to the effectiveness of particular network characteristics in
distinguishing between texts of different authors. From what is presented in Fig.
[4:20] one can conclude that weighted clustering coefficient gives the best classification
results in English and one of the best in Polish for a wide range of the most frequent
words studied. In both languages, it is sufficient to analyse the 11-12 most frequent
words to obtain the accuracy of 85-90%; further increase in the number of words
does not improve the classifier’s performance.

The results indicate that the quantities describing individual words in a word-
adjacency network are much more effective in capturing the writing styles of in-
dividual authors compared to the characteristics pertaining to the whole network.
The number of attributes associated with each text can be significantly larger when
analyzing local characteristics instead of the global ones, as the number of words
taken into consideration can be chosen arbitrarily. However, even for comparable
dimensions of the classification space, local characteristics (like nodes’ clustering
coefficients) provide classification accuracy significantly higher than the accuracy
obtained with global characteristics.

From Fig. [4.20] it can be seen that a characteristic which works comparably
well to normalized weighted clustering coefficient in recognizing the authorship of
texts is normalized node strength, which, due to reasons mentioned above, expresses
the relative frequency of a word in the text. The analysis of word frequencies is a
basic yet effective method of authorship attribution, widely applied and discussed
in the relevant literature [335H339]. The fact that word frequency analysis is often
able to provide a decent result leads to a question whether it is viable to introduce
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Figure 4.19. The dendrograms of the hierarchical clustering of (a) English and (b) Polish books
from the dataset specified in Appendix [B-3] in the space of the weighted clustering coefficients
of word-adjacency networks’ nodes, corresponding to 12 most frequent words. Each
text is labeled by the surname of its author.

Table 4.4. The results of the classification of (a) English (b) Polish books (from the dataset
specified in Appendix with respect to the authorship, in the space of the (normalized) weighted
clustering coefficient of word-adjacency networks’ nodes, corresponding to 12 most
frequent words. A number in the -th row and j-th column is the probability of classifying a text
of i-th author as a text of j-th author.

(a) The classification of English books. The (b) The classification of Polish books. The au-
authors are denoted by the two first letters of thors are denoted by the two first letters of their
their surnames: Au - Austen, Co - Conrad, De surnames: Ko - Korczak, Kr - Kraszewski, La
- Defoe, Di - Dickens, Do - Doyle, El - Eliot, Or - Lam, Or - Orzeszkowa, Pr - Prus, Re - Rey-

- Orwell, Tw - Twain. mont, Si - Sienkiewicz, Ze - Zeromski.

Au Co De Di Do ElI Or Tw Ko Kr La Or Pr Re Si Ze
Au|.96 .00 .00 .01 .01 .02 .00 .00 Ko|.73 .00 .00 .00 .00 .06 .03 .18
Co|.00 .92 .00 .00 .00 .04 .04 .00 Kr|.00 .80 .00 .12 .00 .00 .05 .03
De| .00 .00 1.0 .00 .00 .00 .00 .00 La|.00 .00 1.0 .00 .00 .00 .00 .00
Di|.01 .00 .00 .88 .04 .00 .00 .07 Or|.00 .15 .00 .83 .00 .00 .01 .01
Do | .01 .00 .00 .05 .93 .01 .00 .00 Pr|.00 .00 .00 .00 1.0 .00 .00 .00
El|.02 .02 .00 .03 .01 .87 .02 .03 Re|.04 .00 .00 .00 .00 .77 .02 .17
Or|.00 .13 .00 .01 .01 .07 .78 .00 Si|.00 .05 .00 .00 .04 .01 .90 .00
Tw|.00 .01 .00 .00 .01 .02 .07 .89 Ze|.01 .15 .00 .00 .00 .03 .02 .79
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Figure 4.20. The classification of books from the dataset specified in Appendix in the feature
spaces constructed from a single word-adjacency network parameter determined for a set of n words
occurring most frequently in the whole book collection. Charts (a) and (b) present the average clas-
sification error as a function of n, for English and Polish books, respectively. Each point on a chart
represents the average classification error in the test set, obtained in one experiment. One exper-
iment consists of selecting the n most frequent words, computing one network parameter for each
of these words in each text, and performing the cross-validation of classification in the so obtained
n-dimensional space, 10000 times. All the considered network characteristics are normalized. The
studied characteristics are: vertex degree and strength (deg(v)/ deg™*"?(v), str(v)/ Y uey str(u)),

unweighted and weighted average shortest path length (£, (v)/£52"%(v), £y (v) /€507 (v)), unweighted
and weighted clustering coefficient (C,, (v)/CL*"(v), Cw(v)/Crt™(v)). The legend specifying the
symbols used to represent the characteristics is given above each plot.

the network formalism when a simpler, frequency-based method allows to recognize
authorship with satisfying accuracy. An answer to such a question can be given
based on the results presented in Fig. it turns out that combining frequen-
cies with purely network-based characteristics (clustering coefficients) can constitute
a beneficial approach to author identification; classification using both frequencies
and clustering coefficients leads to accuracy better than the accuracy obtained when
studying either frequencies or clustering coefficients alone. This indicates that the
information encoded in word frequencies is to a certain degree distinct from the infor-
mation contained in the set of word’s clustering coefficients. A practical application
of the presented results can therefore be based on combining the already known
features used in text classification with the ones pertaining to word-adjacency net-
work structure. It can be anticipated that classification aimed at identifying traits
other than authorship can also benefit from incorporating network characteristics
into the analysis.

Recognizing authorship with the use of word frequencies (or equivalently, node
strengths) focuses on studying the tendency of individual authors to use particular
words more often than others. Clustering coefficient of a node representing word in
a word-adjacency network describes the structure of the neighborhood of that word
in the network (in its normalized form, it describes how that structure is different
from the one observed in a randomized network). So the classification based on
clustering coefficients relies on investigating the way in which words are used more
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Figure 4.21. The classification of books from the dataset specified in Appendix in the feature
spaces constructed from the sets of word-adjacency network parameters, determined for a set of n
words occurring most frequently in the whole collection of books. Charts (a) and (b) present the
average (obtained from 10000 repetitions of cross-validation) classification error in the test set, as
a function of n, for English and Polish books, respectively. 3 sets of quantities describing words in
texts were investigated, namely: (1) normalized vertex strength str(v)/ " _, str(u), (2) normalized
weighted clustering coefficient C., (v)/C5"(v), (3) normalized vertex strength str(v)/ > uey Str(u)
together with normalized weighted clustering coefficient Cy, (v)/C5*"%(v).

than their frequencies. The fact that the best results are obtained when both types of
information are included seems to be in agreement with a quite natural expectation
that author’s individual style is expressed by both the preference to use particular
words or linguistic constructs and the specific way of using them.

Among the studied characteristics, average shortest path length (especially in
its weighted variant) seems to be the weakest in authorship attribution (Fig. ;
this suggests that average shortest path lengths of nodes representing most frequent
words behave in roughly the same way in texts of various authors. Indeed, when
a text is sufficiently long, the construction procedure of word-adjacency network
leads to the formation of a densely connected cluster of most frequent words, in
which all nodes are connected by a relatively short path. The distance between an
arbitrarily chosen node v; in the network and a node v belonging to the cluster is
similar for all choices of vo. To describe that effect quantitatively, one can consider a
subnetwork consisting of some arbitrary number of nodes representing most frequent
words, compute the (global) average shortest path length in that subnetwork, ¢34,
and compare it with the global average shortest path length in the whole network, £.
Figure m presents the strip charts of the distributions of the quotient £5*/¢, for
all the studied networks, with the subnetworks consisting of the 50 most frequent
words. For the unweighted networks, the value of £5%*/¢ is usually around 0.4-0.5,
and for weighted ones it is typically smaller than 0.1. The difference between the
two is a consequence of the fact that while for unweighted path lengths the smallest
possible distance between two distinct vertices is equal to 1, the distance taking
edge weights into account can be made arbitrarily small by increasing those weights.
Hence, for any v being one of 50 most frequent words, the weighted local average
shortest path length ¢,,(v) has roughly the same value. This effect is present also
for networks constructed from randomized texts (Fig. , which confirms that
it is related to how word-adjacency networks are constructed more than to specific
properties of texts.
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Figure 4.22. The distributions of the quantity £°“®/¢, for word-adjacency networks constructed
from (a) English and (b) Polish books from the dataset specified in Appendix £°%% denotes
the global average shortest path length in a subnetwork consisting of 50 most frequent words, and
¢ denotes the average shortest path length in the whole network. Both original and randomized
networks are considered, in both weighted and unweighted version.

The publication dates of the studied books vary from 1719 to 1949. Since the
evolution of language certainly has an influence on some of its statistical properties, it
can be suspected that the fact that books come from different centuries might affect
the results of authorship attribution. One can anticipate that literary works written
around the same time are more likely to be confused than these separated by a long
time interval. The approach to this issue adopted here is based on investigating how
the distinguishability between authors varies with time interval separating their
works. This is done as follows. For each author, a “time centroid” is determined
as an arithmetic mean of publication dates of that author’s works considered in
the analysis. Then a distance between the centroids (in years) is assigned to each
pair of authors and treated as a time interval separating them. Next, for each two
authors a classification considering only their works is performed multiple times
(in feature space consisting of frequencies and clustering coefficients of the 12 most
frequent words; the set of texts of each author is split into training and test set with
ratio 4:2). The error rates in such pairwise classifications (for each pair of authors)
are then plotted versus time intervals to assess whether the authors separated by
greater time intervals are easier to distinguish between or not. The results are
presented in Fig. [£.23] It can be seen that in case of English, for the writers who
are separated by more than 100 years the probability of misclassification is lower
than 2%, while for others it exhibits more variability. It is worth noting however,
that in all except one pair of authors separated by time intervals longer than 100
years one of the authors is Daniel Defoe, who lived and wrote much earlier than
the rest of the studied writers. When only time intervals shorter than 100 years
are considered (Figure inset), no clear relationship between the classification
accuracy and the length of the time interval separating authors can be observed. So
for the analyzed set of texts the effects of language change over time seem to have
little to no effect. However, this does not mean that language evolution does not
have an effect on text classification in general - this might depend on the type of
classification and especially on the studied timespan.
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Figure 4.23. The influence of differences in publication dates on text authorship classification’s
accuracy, for the books listed in Appendix [B-3] The scatterplot presents the error rates of pairwise
authorship classifications and the time intervals separating the studied writers. Each marker denotes
one pair of authors; squares pertain to English, and dots pertain to Polish language. All points
with time interval greater than 100 years, except one, correspond to pairs in which one author is
Daniel Defoe. These points are labeled with writers’ names, abbreviated in the same manner as in
Tables @ For the rest of pairs, the scatterplot is presented in more detail in the inset.

The data presented in Fig and Fig. allows to observe some differences
between classification of English and of Polish texts. It can be noticed, for example,
that reaching the limit of the classification accuracy in Polish requires analyzing less
words than for the books in English (it is most clearly visible in the case of classi-
fication based on word frequencies and on both frequencies and weighted clustering
coefficients). This effect might be an example of consequences of structural differ-
ences between languages. In Polish, being an inflected language, the syntactic role of
a word in a sentence is determined mainly by inflection. The syntax of English relies
more on the word order and on utilizing function words (articles, auxiliary verbs,
etc), which are among the most frequent words in the language. It can be antici-
pated that in a language whose grammar imposes stronger conditions on the usage
and order of some of the most frequent words, there is less room for the diversity of
usage patterns related to individual writing styles. In such a case, more words need
to be included into the analysis to obtain a reliable classification accuracy.

An issue worth pointing out is the role that punctuation has in the classification.
Quantifying the influence of including punctuation marks into the analysis can be
done by removing punctuation marks from the set of studied words (in which punc-
tuation marks are included), replacing them with subsequent words from the list of
most frequent words - to keep the dimension of the attribute space unchanged, and
comparing the accuracy of classification with and without punctuation marks. It
turns out that the accuracy substantially decreases when punctuation is removed;
For example, a classification in the space of the normalized weighted clustering coef-
ficients Cy,(v)/CL9(v) of n = 12 most frequent words without punctuation marks
gives the average accuracy of 75% for English and 76% for Polish texts. These
values being significantly lower than the ones obtained in classification including
punctuation marks indicate that specific patterns of punctuation usage constitute
a non-negligible contribution to the writing style and that taking punctuation into
account on the same terms as words has a potential to considerably improve the
effectiveness of stylometric analysis.
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4.7 Semantic networks and word-association networks

As mentioned before, there are multiple aspects of language structure that can be
described with the use of complex networks. The formalism discussed in the context
of word-adjacency networks can be applied also to relationships other than word
co-occurrences. An example of a class of networks used to represent the aspects of
language organization different from the ones described by word-adjacency networks
are the so-called semantic networks. A semantic network is a network in which
nodes represent concepts and edges express semantic relationships between these
concepts. Among the examples of semantic networks are networks representing the
structure of certain linguistic databases like WordNet [340,/341]. WordNet is a lexical
database consisting of words grouped into collections of synonyms, called synsets,
which express certain concepts. Synsets can be connected with each other with
various semantic relations, like hyponymy and hypernymy (if Y is a subtype of X,
then Y is a hyponym of X and X is a hypernym of Y; examples of hypernym-
hyponym pairs are plant - tree or astronomical object - star), or meronymy and
holonymy (if Y is a part of X, then Y is a meronym of X and X is a holonym
of Y; tree - leaf and building - window are examples of holonym-meronym pairs).
An example of a network representing hypernymy-holonymy relations in an excerpt
from WordNet database is shown in Fig.
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Figure 4.24. An excerpt from the network representing hypernym-hyponym relations between
nouns in the WordNet database. In such a network, synsets are represented by nodes, and
hypernym-hyponym pairs are connected by (unweighted) directed edges (from hypernyms to hy-
ponyms). The presented piece of the original WordNet-based network consists of synsets that are
at most 2 steps from the synset "dog.n.01” (the letter "n” denotes nouns; the numbers appended
to synsets’ names are used to distinguish between synsets which might be confused - for example,
"bank” meaning a financial institution and ”bank” meaning a sloping raised land). It is constructed
from the original network of hypernym-hyponym releations by removing all the nodes whose dis-
tance (ignoring the direction of edges) from the synset "dog.n.01” is greater than 2.

Apart from having a number of applications in the field of automatic natural

language processing [342,343|, semantic networks are studied in psycholinguistics -
a field of research focused on cognitive mechanisms responsible for representing and
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processing language in human brain. For example WordNet, now serving as a lexi-
cal resource in a wide range of natural language processing solutions and language-
related research, has been initially developed as a lexical database consistent with
certain hypotheses regarding how semantic memory (the knowledge of words) is
organized in human mind. Theories developed in 1960s and 1970s suggested that
memory is organized in a hierarchical fashion, with concepts on deeper levels of
hierarchy inheriting the properties assigned to relevant higher-level concepts [344].
Some aspects of such a view have been found to be oversimplified [345]; however,
the idea of using network formalism to study the organization of words and con-
cepts in human mind (often referred to as mental lexicon) is more general than the
mentioned theories and remains highly influential in relevant research. A class of
networks important in that context are word-association networks (or associative
networks). A word-association network can be described as a network whose nodes
represent words and edges correspond to associations between words. Edges often
have weights, representing strengths of individual associations. An usual way of
constructing a network representing word associations typical for a population of
users of some particular language is conducting an experiment in which participants
are presented words - one word at a time - and are asked to write down the first
word that comes to their mind. Collecting the data from many participants and
for many different words allows to build a network in which words become nodes
and associations manifest themselves as connections between nodes, with weights
proportional to the number of participants giving a particular response.

The significance of word associations has been investigated in a number of psy-
cholinguistic experiments, involving tasks like word memorization or recognition (an
example of word recognition task is deciding whether a given sequence of letters con-
stitutes a word or not); in one of possible variants of such an experiment, the actual
task - recognizing some word or recalling a previously memorized word - is preceded
by showing some other word to a participant. It has been established that the per-
formance in tasks of that kind depends on the strength of relationship that the word
of interest and the preceding word have in a word-association network (this strength
can be measured by the number of associates shared by the words) [346,347].

The fact that the characteristics of word-association networks allow to make
predictions regarding the performance in tasks involving word processing and usage
[3481:349] supports the claim that the structure of a word-association network can be
in some contexts considered a rough approximation of the structure of the lexicon
in mind [348,350]. This allows to describe certain activities involving language
processing in terms of network theory, for example, a task consisting of finding
a word that matches semantically to a set of given words can be represented by
an appropriate walk on a word-association network [348]. Therefore, studying the
structure of word-association networks with the use of tools and methods applied to
complex networks modeling various systems in nature [345,349,351] has a potential
to give an insight into some aspects of how language is organized and processed in
human brain.

Selected properties of word-association networks are presented here with the
use of data coming from two datasets: University of South Florida Free Associ-
ation Norms [352] (here abbreviated as USFFA) and Edinburgh Associative The-
saurus [353-355] (abbreviated as EAT); both of them are available at [356] in the
form allowing for their easy transformation into networks. The data in USFFA and
EAT datasets was collected in experiments involving a large group of people and
conducted according to the scheme mentioned above: participants were asked to
write down the first words coming to their minds in response to some presented
word. Although there are some differences between USFFA and EAT regarding the
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details of the data collection procedure, the general idea of the experiment is shared
by both datasets. The networks constructed from raw data are directed weighted
networks; nodes correspond to words and edges correspond to associations: the pres-
ence of an edge from node vy to node vy means that word ve was given as a response
to word vy. The weight of an edge from wv; to vy represents the number of partici-
pants who responded with vo when being presented v1. Networks in that form were
preprocessed before being subject to the analysis.

Preprocessing consisted of removing nodes not representing “typical” words (se-
quences of digits, for instance), and transforming directed networks into undirected
ones, by ignoring edge directions and retaining their weights; in cases where two
oppositely directed edges were present between a pair of nodes, these edges were
replaced with an undirected edge with weight equal to the sum of the weights of the
original edges. After that, the final step of preprocessing took place: removing the
nodes with strengths equal to 1, as they represent the words which appeared only
once in the whole experiment, and hence are treated as providing information less
reliable than the others. The resulting undirected weighted networks are the basis of
the analysis discussed here; keeping the names of the datasets from which they are
derived, they are referred to as the USFFA network and the EAT network. USFFA
has 9958 nodes and 62491 edges; EAT has 15184 nodes and 90236 edges.

Apart from the two discussed networks in their original form, their randomiza-
tions are studied. The randomization consists of two steps: in the first step, the
network is randomized according to the configuration model, treating the network
as if it was unweighted. Then, in the second step, edge weights from the original
network are randomly assigned to the edges of the randomized network. Hence
the obtained network has a randomized structure, but preserves the distributions
of node degrees and of edge weights. The randomized versions of the USFFA net-
work and the EAT network are here referred to as USFFA-RAND and EAT-RAND
networks, respectively. Since different realizations of randomization are different
from each other, studying the characteristics of randomized networks involves aver-
aging the results obtained in multiple realizations. In addition to USFFA and EAT
networks and their randomizations, the minimum spanning trees (MSTs) of each
of them are considered in the analysis. For a word-association network, determin-
ing the minimum spanning tree (with edge costs inversely proportional to weights)
can be treated as a procedure which tends to remove all the associations except the
strongest ones. Both the MST of a randomized network and the randomized network
itself serve as reference networks allowing to decide whether the studied properties
of the original networks are due to the presence of specific network organization, or
whether they can be attributed solely to the distributions of node degrees and of
edge weights. Figure presents the visualizations of the USFFA network and the
USFFA-RAND network (one particular realization), along with the visualizations of
the MSTs of those networks. Figure demonstrates an example of how words
are organized in a word-association network; it shows a subnetwork of the USFFA
network and a subnetwork of the MST of the USFFA network.

Figure [4.27] shows node degree distributions in USFFA network, EAT network,
and in their MSTs. The tails of the distributions in USFFA and in EAT networks can
be approximated by power laws. Since USFFA-RAND and EAT-RAND networks are
constructed with the use of the configuration model, their node degree distributions
are identical to the distributions in USFFA and EAT, respectively, and therefore they
are not shown in Fig. The MSTs of both the original networks (USFFA and
EAT) and their randomizations also have node degree distributions approximately
described by power laws. In terms of node degree distributions, USFFA and EAT are
quite similar; this applies also to their MSTs. Moreover, node degree distributions
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(c) (d)

Figure 4.25. Visualizations of selected examples of networks studied in relation to word associa-
tions: (a) USFFA network, (b) USFFA-RAND network (one particular realization), (¢) minimum
spanning tree of the USFFA network, (d) minimum spanning tree of the USFFA-RAND network
(one particular realization).
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Figure 4.26. Examples of word-association networks. The network in (a) is a subnetwork of the
USFFA network consisting of nodes which can be reached in at most 2 steps starting from the
word "pumpkin”. Node size and edge thickness represent node degree and edge weight, respectively.
The network is constructed from the original USFFA network by removing all the nodes whose
unweighted distance (the distance computed as in an unweighted network) from the word "pumpkin”
greater than 2. The network in (b) is a subnetwork of the minimum spanning tree of the USFFA

network, also restricted to nodes at most 2 steps away from the word "pumpkin”.
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in MSTs of USFFA and of EAT are not much different from the ones observed in
MSTs of USFFA-RAND and EAT-RAND, in terms of distribution shape and the
value of power law exponent.

Table presents selected (unweighted) characteristics of the studied networks.
While some of the results can be considered as expected - for example, clustering
coefficient C, close to 0 in randomized networks and in MSTs, or average shortest
path length £, being much longer in MSTs than in the networks from which MSTs
are constructed - some of the presented quantities provide more specific information
about the considered networks. The value of ¢, in USFFA and EAT being only
slightly higher than in, respectively, USFFA-RAND and EAT-RAND, indicates that
in each of these networks, at least some edges connect the parts of the network
which would be distant from each other if those edges were absent; such edges serve
as shortcuts” responsible for keeping the average shortest path length relatively
low, similar to the one observed in a random network. The relatively high values
of modularity @, (0.44 and 0.43; significantly higher than in randomized networks)
reflect the fact that to some extent, words can be grouped into clusters such that the
associations connecting words are more dense inside the clusters than outside them.
The presence of such clusters can also be related to the nonzero values of clustering
coefficient C), in both USFFA and EAT. In case of MSTs, modularity does not
provide much information, since a network having the structure of a tree cannot
contain densely connected clusters. Negative values of assortativity coefficients, r,
and p,, express the preference of edges to connect high-degree nodes with low-
degree nodes. This is a common situation in networks having many nodes with low
degrees and a certain number of hubs with high degrees; this is also the case here.
However, in USFFA and EAT networks, the effect cannot be attributed solely to
degree distributions, as both r, and p, are close to 0 in USFFA-RAND and EAT-
RAND. For MSTs, the observed disassortativity seems to be related more to how
an MST is constructed than to any particular property of the studied networks,
as MSTs of USFFA and of EAT have assortativity coefficients similar to MSTs of
USFFA-RAND and EAT-RAND, respectively.

Table 4.5. Selected characteristics of the studied word-association networks - USFFA network,
EAT network, and networks derived from these two. Each row corresponds to one network; in the
first column network names are given, the remaining columns contain unweighted, global charac-
teristics of networks: clustering coefficient C,,, average shortest path length ¢,, modularity Q.,
assortativity coefficient 7, and rank assortativity coefficient p,,.

network Cy ly, Qu Tu Pu

EAT 0.10 4.06 044 -0.09 -0.07

EAT-RAND  0.01 3.83 024 -0.02 -0.01

MST of EAT  0.00 27.78 0.98 -0.10 -0.36

MST of EAT-RAND  0.00 35.78 0.98 -0.13 -0.40
USFFA  0.12 3.95 043 -0.08 -0.07

USFFA-RAND  0.01 3.77 023 -0.01 -0.01

MST of USFFA  0.00 31.07 0.98 -0.12 -0.41

MST of USFFA-RAND 0.00 32.22 0.98 -0.16 -0.40
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Figure 4.27. Log-log plots of survival functions of node degree distributions F(deg(v)), for the
USFFA network (a), EAT network (b), MST of the USFFA network (c), MST of the EAT network
(d), MST of the USFFA-RAND network (e), MST of the EAT-RAND network (f). The slopes of the
blue lines are given in the top-right corner of each figure. The distributions in the USFFA-RAND

network and in the EAT-RAND network are not

shown, as they are identical to tge distributions in

USFFA and EAT networks, respectively. The figures pertaining to MSTs of randomized networks -
(e) and (f) - present the superimposed results for three independent realizations of randomization.
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An interesting characteristic shared by USFFA and EAT networks is the fact
that their MSTs are organized in a hierarchical fashion, exhibiting statistical self-
similarity. In that regard, both USFFA and EAT networks differ from their random-
ized counterparts - as the MSTs of USFFA-RAND and of EAT-RAND do not have a
fractal MST. Figure [£.28 presents the results of box-counting analysis performed for
the discussed networks (MSTs of USFFA, EAT, and their randomizations)- it shows
how the number of boxes Ny, of given size s needed to cover a network depends on
box size; a straight line on a log-log plot of Ny, (s) can be interpreted as the presence
of fractality. Although the presented analysis might suffer from relatively small sizes
of the available networks (resulting in restricted range of box sizes, which can affect
the numerical stability of certain results, like fractal dimensions), it allows to detect
qualitative differences between the structure of the MSTs of word-association net-
works and the structure of their randomizations. The existence of such differences
suggests that the ”skeletons” of the studied word-association networks, representing
the strongest associations between words, are organized into a self-similar structure,
which would not be observed if associations were connecting words in a random
fashion. The estimated fractal dimensions of both networks have comparable val-
ues, 1.83 for the MST of USFFA and 1.98 for the MST of EAT. A question arises
if such a result is characteristic only for the studied networks, or if it constitutes a
more general property of word-association networks. However, a larger set of data,
possibly in multiple languages, would be required to decide whether having an MST
exhibiting self-similarity in the form discussed above is a common property of word-
association networks, and to identify the possible implications of the existence of
such structure on the understanding of how language is organized in human mind.
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Figure 4.28. Identifying fractality in minimum spanning trees of word-association networks. The
figures show the log-log plots of Npoz(s); s denotes the size of a box, and Npoz(s) is the number of
boxes of size s needed to cover the network (using greedy coloring). The studied networks are: the
MST of the USFFA network (a), the MST of the EAT network (b), the MST of the USFFA-RAND
network (c) and the MST of the EAT-RAND network (d).
relationship Neoz(s) can be approximated by a power law can be identified; the slopes of the lines
marked in blue are given in the top-right corner. In (c) and (d), which pertain to randomized
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networks, the data for three independent realizations of randomization is presented collectively.
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Summary

A system so multifaceted and complicated as natural language is naturally a subject
to research in diverse scientific fields. Since language is a complex system, various
aspects of its organization and structure can be investigated using mathematical
tools designed to study systems exhibiting complexity, ranging from basic methods
of statistics and time series analysis to fractal geometry and network theory. With
the use of such tools a number of natural language characteristics can be described
in a quantitative way.

The analysis of word frequency distributions in literary texts confirms the validity
of a well-known statistical law of natural language - Zipf’s law. Studying word
frequencies in more detail - for example considering words of different types (like
different parts of speech) - reveals the differences between these types in terms of
their statistical properties. An interesting and novel result is obtained for word rank-
frequency distributions approximated by Zipf-Mandelbrot law when punctuation
marks are included into the analysis - it turns out that treating punctuation marks
in the same way as words decreases the value of the constant ¢ responsible for the
flattening of the rank-frequency distribution w(R) in Zipf-Mandelbrot law (Eq.[2.53).
In other words, with punctuation marks included, word frequency distribution is
better approximated by a power law. The effect is present in all the languages
studied in this work (English, German, French, Italian, Spanish, Polish and Russian);
however, its strength depends on particular language. This can be an argument for
including punctuation marks into statistical analysis of written language (especially
from the standpoint of models attempting to explain power laws in word frequencies).

A valuable insight into the organization of natural language is obtained with the
use of tools designed for time series analysis. Representing quantities like sentence
lengths in the form of time series allows to reveal certain signs of complexity, like
the presence of long-range correlations and fractal or multifractal structure. Not
only the mentioned properties can be identified and quantified, but also they can be
related to other specific characteristics of a text - for example, the presence of strong
multiscaling in time series representing sentence lengths, evidenced by a wide multi-
fractal spectrum f(«), is characteristic for texts using a narrative technique known
as the stream of consciousness. An interesting perspective on certain aspects of the
organization of written language is provided by analyzing the partition of a text de-
termined by consecutive punctuation marks; a reason for which such a partition can
be considered meaningful is the general purpose of punctuation in written language
- that is, splitting text into parts determined by grammatical or logical consistency.
From a text divided into pieces separated by punctuation marks one can construct a
time series consisting of the lengths of consecutive pieces, measured by the number of
words between consecutive punctuation marks. Such series of “punctuation waiting
times” also have properties indicating the presence of complex patterns of organiza-
tion, like long-range correlations or mutlifractality. Typically, the strength of both
of the mentioned effects for punctuation waiting times is weaker than in case of time
series representing sentence lengths. This is evidenced by the Hurst exponents of
punctuation waiting times being lower than the Hurst exponents of sentence lengths
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(but still above 0.5) and by the width of multifractal spectra f(a) - a text having a
wide singularity spectrum of sentence lengths usually has a singularity spectrum of
punctuation waiting times of significantly smaller width.

The correlation between the Hurst exponents of sentence lengths Hg and the
Hurst exponents of punctuation waiting times H 4 p reflects the fact that the partition
of a text into sentences and the partition into parts determined by punctuation
marks are related, since the ends of sentences are marked by a certain subset of
all punctuation marks. To approach the problem of measuring the strength of that
relationship, one can study the Hurst exponents Hg and Hap of texts randomized
in a specific way; two types of randomization procedures seem to be useful in that
context. The first type randomizes the series of sentence lengths, keeping the series
of punctuation waiting times unchanged; the second type randomizes punctuation
waiting times, retaining the original sentence lengths. Both types of randomization
result in a decrease of the Hurst exponent of the randomized series, but its value
usually remains higher than 0.5. This indicates that the presence of correlations in
time series representing sentence lengths and the presence of correlations in time
series representing punctuation waiting times are indeed related to each other, but
one cannot be fully explained by the other.

Investigating the probability distributions characterizing the values of the men-
tioned linguistic time series (representing sentence lengths or punctuation waiting
times) leads to a conclusion that the distribution of punctuation waiting times can
be successfully approximated by discrete Weibull distribution. This allows to view
the arrangement of punctuation marks in written language in terms of a process
whose statistical properties can be quantitatively expressed - by appropriate haz-
ard functions. Different languages have different typical values of the distributions’
parameters p and 3, and therefore texts in different languages occupy slightly differ-
ent regions on a (p, $) plane. It is worth noting that the approach to text analysis
which leads to the discussed results can be considered a novelty - as the structures
emerging from the partition of a text determined by consecutive punctuation marks
have not been studied in the literature.

The analysis of time series representing sentence lengths and punctuation waiting
times emphasizes the significance of punctuation in written language. Since both
types of series are determined by the arrangement of punctuation marks (either all
of them or the ones being of a specific type), it can be stated that punctuation in
general is responsible for organizing written language in a specific way which results
in the presence of complex patterns and structures. Moreover, the fact that the
range of the observed Hurst exponents and the width of the multifractal spectra
are smaller for punctuation waiting times than for sentence lengths indicates that
while the placement of the ends of sentences leaves some freedom to the writer, the
arrangement of punctuation as a whole seems to be less diverse and more uniform
across texts in a given language. The same conclusion can be drawn from the
analysis of probability distributions - while punctuation waiting times in texts seem
to be quite universally described by discrete Weibull distribution, regularities of such
kind are much harder to observe for sentence lengths. The presented results suggest
that studying the structure determined by all punctuation marks can provide more
information about the universal (not specific to a particular text) characteristics of
written language, compared to the structure determined by sentences.

Studying linguistic networks - networks used to represent certain aspects of lan-
guage structure - also leads to a number of interesting results. Word-adjacency
networks - networks representing the co-occurrence of words in texts - are a tool
which allows to investigate a number of statistical properties of a given language
sample and to express them in terms of quantities used to describe complex net-
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works. Some basic characteristics of a text, which are usually studied with the use
of a representation simpler than word-adjacency networks (word frequency distribu-
tion is an example of such a characteristic), are incorporated into word-adjacency
networks and can be easily retrieved. Word-adjacency networks allow to observe
some effects which seem to be universal across languages, like the specific behavior
of the most frequent words and the words with moderate frequencies in terms of net-
work’s local characteristics, namely local clustering coefficients and average shortest
path lengths. At the same time, word-adjacency networks are able to grasp certain
differences between texts. For example, global characteristics (clustering coefficient,
assortativity and modularity, in several specific variants) of networks constructed
from texts in different languages have slightly different ranges of variability; this al-
lows to observe that in the space of the mentioned characteristics, different languages
reside in different regions, and they are separated to some degree.

The structure of a word-adjacency network can be characteristic not only to a
particular language, but also to a specific style of writing. This gives an opportu-
nity to use word-adjacency networks in stylometry. The effectiveness of stylometric
analysis utilizing word-adjacency networks is demonstrated on an example of au-
thorship attribution task. The analysis of about 50 texts of 8 different authors in
English and in Polish language shows that networks constructed from texts of differ-
ent authors differ in some of their structural properties. While in terms of networks’
global properties this effect can be identified only to some degree, local character-
istics of selected words in word-adjacency networks allow to distinguish between
texts of different authors with much better accuracy. Since local characteristics of
a word-adjacency network describe certain statistical properties of word usage, and
the considered words are the ones with the highest frequencies, it can be stated that
structural differences between networks representing texts of different authors are a
result of authors’ individual patterns of using the most frequent words. A charac-
teristic that seems to be particularly useful in grasping the information needed to
recognize text authorship is the weighted variant of the clustering coefficient. Au-
thorship attribution task, having the form of the statistical classification of texts
with respect to their authorship, performed in the studied set of English and Polish
books with the use of a general-purpose machine learning method - decision tree
ensemble - achieves accuracy of about 80-90% when the clustering coefficients of
only about 10-15 most frequent words are taken into account. It is important to
note that network-based approach to text classification can be combined with other
methods to improve the quality of the results.

As is the case with other representations of language samples, punctuation plays
an important role also in the analysis based on word-adjacency networks. In all of
the discussed word-adjacency networks punctuation marks are involved in the pro-
cess of network construction, and they are treated in the same way as words. The
characteristics of network nodes representing punctuation marks exhibit the behav-
ior similar to the one exhibited by nodes representing most frequent words. This,
being in accordance with the results of word frequency analysis taking punctuation
into account, supports the claim that punctuation marks can be treated as words in
some quantitative aspects. Moreover, patterns of punctuation usage are an impor-
tant factor in the presented authorship attribution procedure: the accuracy of the
performed text classification is significantly lower when punctuation marks are not
included in the set of studied words. This shows that punctuation carries valuable
information regarding the details of text structure dependent on factors like author’s
individual style of writing, and that with appropriate methods of statistical analysis
the information of this kind can be utilized in practical applications.
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Applying methods of network analysis to linguistic networks other than word-
adjacency networks, namely word-association networks (which are designed to rep-
resent associations between words in human mind) identifies them as also having
complex organization. A number of characteristics describing networks’ basic sta-
tistical properties indicate that the two studied networks are similar to each other,
although the data used to construct them comes from slightly different, independent
experiments. An interesting fact about these networks is that their minimum span-
ning trees, which might be considered subnetworks consisting of only the strongest
associations, have a statistically self-similar, fractal structure. The estimated fractal
dimensions of both minimum spanning trees have similar values. This raises a ques-
tion whether such an observation is valid only for the discussed networks, or whether
it represents a more general property of word-association networks. Investigating
the generality of the presented results, as well as establishing their relationship with
other results regarding the organization of language in human mind, constitutes a
possible direction of research in the future.
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Appendix A

Decision tree bagging

In Chapter [4] the possibility of recognizing the authorship of texts is investigated
with the use of a method of statistical classification known under the name of decision
tree bagging. Here a short description of the key ideas of the method are discussed.

Classification with decision trees [334] (also called classification trees) is a method
of supervised learning, which means that it aims at learning the patterns present in
the data with the use of a set of already classified examples, called the training set.
The information about the detected patterns is then used to classify other samples.

Creating an ensemble of decision trees requires constructing individual trees in
the first place. Let A denote the set of n-dimensional vectors of real numbers; ele-
ments of A are called observations, and their coordinates are called attributes. Each
observation is labeled with one of K categories, also called classes. The training of
a single classification tree consists of: considering all possible one-dimensional splits
of A, selecting and executing the best split, and repeating these steps recursively in
the resulting subsets; splitting stops when A is partitioned in such a way that each
subset contains observations of only one category. The one-dimensional split related
to some attribute x; is the choice of a constant number S and grouping the observa-
tions according to whether their coordinate x; is smaller or greater than S. The best
split is the one that maximizes the decrease of the diversity of distribution of classes
in the considered set. The diversity can be measured, for example, by information
entropy: H = — Zszl pr log pr. (pr denotes the fraction of the observations in the
set that belong to category k). In such case, the maximization of diversity decrease
is equivalent to the maximization of the quantity Hy — Hpi, where Hy is the initial
entropy, and Hy;; is the weighted sum of entropies in the resulting subsets, with
weights proportional to the numbers of elements in these subsets and adding up to 1.

The scheme of the consecutive splits of A is equivalent to a system of condi-
tions imposed on the observations’ attributes; such a system is a classification tree.
A trained tree can be used to categorize observations with unknown class member-
ship, by assigning them to appropriate subsets of A, according to the conditions
satisfied by their components.

Classification with a single decision tree might suffer form instability, which
means that the classifier may produce significantly different results for only slightly
different training sets. Also, decision trees are prone to overfitting, which leads to
decrease of classification accuracy of unknown observations.

Decision tree bagging (bootstrap aggregating) [334] is a method of enhancing the
performance of classification based on decision tress. Given a training set with
m observations, one can create N new training sets of size m, by sampling with
replacement from the original set. Obtained sets, called bootstrap samples, for
large m are expected to have the fraction 1 — 1/e (which is roughly 63.2%) of the
unique observations from the original set, the rest being duplicates. A decision tree
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is trained on each of the bootstrap samples, and the ensemble of N trees becomes
a new classifier. When such an ensemble is given an observation to classify, each
tree being its part classifies the observation on its own, and then the class that was
chosen by most of trees becomes the final result of classification.

A typical method of verifying the performance of classification is cross-validation
[357]. Its general idea is dividing the set A of observations with known class mem-
bership into two disjoint sets: the training set Airqin and the test set Asess. The
classifier is trained on Ayyq;n and then it classifies the observations in Ageq, treating
them as if their class memberships were unknown. Then the results are compared
with the true class memberships of elements of A, and the number of correct
matches indicates the classifier’s performance. Partitioning A (using fixed sizes of
Atrain and Ayest), training the classifier, and testing its performance is repeated a
certain number of times, and the average result becomes the final assessment of
classification’s accuracy. The methods and rules of partitioning A may vary; the
approach utilized in this work is the repeated random sub-sampling cross-validation
(also called Monte Carlo cross-validation). In such an approach, each partition of A
into Atrain and Ages is random and independent of other partitions. The procedure
can be modified by stratification, that is a condition imposing fixed proportions
upon the numbers of elements of each class; stratification is often used to ensure
that all classes are equally represented in the training set, but choices other than
equal class contributions are also possible.
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Appendix B

The books used in the study

B.1 Dataset B.1

Listed below are books comprising the main dataset used in this work. There are
223 books in 7 languages: English, German, French, Italian, Spanish, Polish and
Russian. Each of the books is at least 1000 sentences long.

English

1. A Room with a View - E. M. Forster

2. Alice’s Adventures in Wonderland - C. L. Dodg-
son

. Animal Farm - G. Orwell

. Anne of Green Gables - L. M. Montgomery

. Brave New World - A. Huxley

. David Copperfield - C. Dickens

. Frankenstein; or, The Modern Prometheus - M.
Shelley

8. Gone with the Wind - M. Mitchell

9. Gulliver’s Travels - J. Swift

10. Heart of Darkness - J. Conrad

11. The History of Tom Jones, a Foundling - H.
Fielding

12. Ivanhoe - W. Scott

13. Jane Eyre: An Autobiography - C. Bronté

14. Kim - J. R. Kipling

15. Little Women - L. M. Alcott

16. Middlemarch - M. A. Evans

17. Moby-Dick; or, The Whale - H. Melville

18. Old Mortality - S. Walter

19. Olivier Twist - C. Dickens

20. Pride and Prejudice - J. Austen

21. Sense and Sensibility - J. Austen

22. Sons and Lovers - D. H. Lawrence

23. Tess of the d’Urbervilles - T. Hardy

24. The Adventures of Sherlock Holmes - A. C. Doyle
25. The Adventures of Tom Sawyer - S. L. Clemens
26. The Catcher in the Rye - J. D. Salinger

27. The Great Gatsby - F. S. K. Fitzgerald

28. The Last of the Mohicans - J. F. Cooper

29. Robinson Crusoe - D. Defoe

30. The Lion, the Witch and the Wardrobe - C. S.
Lewis

31. The Old Man and the Sea - E. Hemingway

32. The Pickwick Papers - C. Dickens

33. The Prince and the Pauper - S. L. Clemens

34. The Rotters’ Club - J. Coe

35. The Scarlet Letter - N. Hawthorne

36. The Thirty-Nine Steps - J. Buchan

37. The Time Machine - H. G. Wells

38. Treasure Island - R. L. Stevenson

39. Vanity Fair - W. M. Thackeray

N O Ut W

German

40. Also sprach Zarathustra - F. Nietzsche

41. Buddenbrooks: Verfall einer Familie - T. Mann
42. Das Schloss - F. Kafka

43. Der grine Heinrich - G. Keller

44. Der Mann ohne Eigenschaften - R. Musil

45. Der Process - F. Kafka

46. Der Schimmelreiter - T. Storm

47. Der Stechlin - T. Fontane

48. Der Untertan - H. Mann

49. Der Zauberberg - T. Mann

50. Die Blechtrommel - G. Grass

51. Die Chronik der Sperlingsgasse - W. Raabe

52. Die Judenbuche — FEin Sittengemadalde aus dem
gebirgichten Westfalen - A. von Droste-Hulshoff

53. Die Leiden des jungen Werthers - J. W. von
Goethe

54. Die Leute von Seldwyla - G. Keller

55. Doktor Faustus - T. Mann

56. Effi Briest - T. Fontane

57. Emal und die Detektive - E. Késtner

58. Eulenpfingsten - W. Raabe

59. Frau Jenny Treibel - T. Fontane

60. Hiob - J. Roth

61. Klein Zaches genannt Zinnober - E. T. A. Hoff-
mann

62. Lebens-Ansichten des Katers Murr - E. T. A.
Hoffmann

63. Pfisters Miihle - W. Raabe

64. Professor Unrat oder Das Ende eines Tyrannen
- H. Mann

65. Radetzkymarsch - J. Roth

66. Wilhelm Meisters Lehrjahre - J. W. von Goethe
67. Winnetou - K. May

68. Wir Kinder vom Bahnhof Zoo - C. Felscherinow

French

69. Adolphe - B. Constant

70. Bel-Ami - G. de Maupassant

71. Candide - F. M. Arouet

72. Germinie Lacerteuzr - J. & E. de Goncourt
73. Jacques - A. A. L. Dupin

74. L’Education sentimentale - G. Flaubert
75. La Chute - A. Camus
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76. La Peste - A. Camus

77. La Petite Fadette - A. A. L. Dupin

78. La Princesse de Cléves - M. M. de La Fayette
79. La Reine Margot - A. Dumas

80. Le Comte de Monte-Cristo - A. Dumas

81. Le Fantome de I’Opéra - G. Leroux

82. Le Grand Meaulnes - H. A. Fournier

83. Le Petit Prince - A. de Saint-Exupéry

84. Le Rouge et le Noir, Chronique du XIXe siécle -
H. Beyle

85. Le Tour du monde en quatre-vingts jours - J.
Verne

86. Les Liatsons dangereuses - P. C. de Laclos

87. Les Misérables - V. Hugo

88. Les Trois Mousquetaires - A. Dumas

89. Lourdes - E. Zola

90. Madame Bovary - G. Flaubert

91. Mademoiselle de Maupin - T. Gautier

92. Histoire du chevalier Des Grieuz et de Manon
Lescaut - A. Prévost

93. Nana - E. Zola

94. Notre-Dame de Paris - V. Hugo

95. Valentine - A. A. L. Dupin

96. Vingt Mille Lieues sous les mers - J. Verne

97. Vol de nuit - A. de Saint-Exupéry

Italian

98. Addio, amore! - M. Serao

99. Canne al vento - G. Deledda

100. Cenere - G. Deledda

101. Con gli occhi chiusi - F. Tozzi

102. Cuore - E. De Amicis

103. Dell’arte della guerra - N. Machiavelli
104. Ettore Fieramosca - M. d’Azeglio

105. Fosca - 1. U. Tarchetti

106. I Malavoglia - G. Verga

107. I promessi sposi - A. Manzoni

108. I Viceré - F. De Roberto

109. 1l Corsaro Nero - E. Salgari

110. Il fu Mattia Pascal - L. Pirandello

111. Il marchese di Roccaverdina - L. Capuana
112. Il nome della rosa - U. Eco

113. I piacere - G. D’Annunzio

114. Il romanzo di un maestro - E. De Amicis
115. Il romanzo della fanciulla - M. Serao
116. L’Illusione - F. De Roberto

117. La coscienza di Zeno - 1. Svevo

118. Le avventure di Pinocchio. Storia di un burat-
tino - C. Collodi

119. Le confessioni d’un italiano - 1. Nievo
120. Le mie prigioni - S. Pellico

121. Le tigri di Mompracem - E. Salgari
122. Malombra - A. Fogazzaro

123. Mastro Don Gesualdo - G. Verga

124. Niccolo dei Lapi - M. d’Azeglio

125. Piccolo mondo antico - A. Fogazzaro
126. Tre croci - F. Tozzi

127. Una vita - 1. Svevo

128. Uno, nessuno e centomila - L. Pirandello
Spanish

129. A la costa - L. A. Martinez

130. Abel Sanchez - M. de Unamuno

131. Amaya o los vascos en el siglo VIII - F. Navarro
Villoslada

132. Clien anos de soledad - G. Garcia Marquez
133. Don Quijote de la Mancha - M. de Cervantes
134. Don Segundo Sombra - R. Giiiraldes

135. Dona Bdrbara - R. Gallegos

136. Dona Luz - J. Valera

137. Dona Perfecta - B. Pérez Galdos

138. El Criticon - B. Gracian

139. El Periquillo Sarniento - J. J. F. de Lizardi
140. El Senor de Bembibre - E. Gil y Carrasco
141. El sombrero de tres picos - P. A. de Alarcén

142. Facundo o civilizacion y barbarie en las pampas
argentinas - D. F. Sarmiento

143. Fortunata y Jacinta - B. Pérez Galdés

144. La barraca - V. B. Ibanez

145. La Regenta - L. Alas

146. La vida del Buscon - F. de Quevedo

147. La vordgine - J. E. Rivera

148. Los cuatro jinetes del Apocalipsis - V. B. Ibanez
149. Los pazos de Ulloa - E. Pardo Bazén

150. Maria - J. Isaacs

151. Misericordia - B. Pérez Galdéds

152. Pedro Pdramo - J. Rulfo

153. Penas arriba - J. M. de Pereda

154. Pepita Jiménez - J. Valera

155. Sab - G. Goémez de Avellaneda

156. Sotileza - J. M. de Pereda

157. Tirano Banderas - R. M. del Valle-Inclan

Polish

158. As - A. Dyganski

159. Chlopt - W. Reymont

160. Cudzoziemka - M. Kuncewiczowa

161. Dewajtis - M. Rodziewiczéwny

162. Faraon - A. Glowacki

163. Ferdydurke - W. Gombrowicz

164. Imperium - R. Kapuscinski

165. Inny $wiat - G. Herling-Grudzinski

166. Kamienie na szaniec - A. Kaminski

167. Kariera Nikodema Dyzmy - T. Dolega-
Mostowicz

168. Koroniarz w Galicji - J. Lam

169. Krol Maciu$ Pierwszy - J. Korczak

170. Lalka - B. Prus

171. Lato lesnych ludzi - M. Rodziewiczéwna
172. Ludzie bezdomni - S. Zeromski

173. Na srebrnym globie. Rekopis z Ksiezyca - J.
Zutawski

174. Nad Niemnem - E. Orzeszkowa

175. Nienasycenie - S. 1. Witkiewicz

176. Ogniem i mieczem - H. Sienkiewicz

177. Ozimina - W. Berent

178. Poganka - N. Zmichowska

179. Popioly - S. Zeromski

180. Préchno - W. Berent

181. Przedwio$nie - S. Zeromski

182. Quo wvadis - H. Sienkiewicz

183. Sklepy cynamonowe - B. Schulz

184. Stara basn - J. 1. Kraszewski

185. Szalenstwa panny Ewy - K. Makuszynski
186. Szatan z siédmej klasy - K. Makuszyriski

187. Trans-Atlantyk - W. Gombrowicz

188. Tredowata - H. Mniszkéwna

189. W pustyni © w puszczy - H. Sienkiewicz

190. Zaklety dwor - W. Lozinski

191. Ziemia obiecana - W. Reymont

Russian

192.  Awnna Kapenuna (Anna Karenina) - JI. H.

Toacroit (L. N. Tolstoy)

193.  Apzunenae I'VJIAI' (Arkhipelag GULAG) -
A. M. Comxennnpir (A. I. Solzhenitsyn)

194. Benas zeapius (Belaya gvardiya) - M. A.
Bynrakos (M. A. Bulgakov)

195.  Becw (Besy) - ®. M. Jlocroesckuit (F. M.
Dostoyevskiy)

196. Bpamova Kapamasosw (Brat’ya Karamazovy)
- ®. M. Jocroesckuii (F. M. Dostoyevskiy)

197. Yeeeneyp (Chevengur) - A. II. Ilnatoros (A.
P. Platonov)

198.  Jepeena (Derévnya) - . A. Bynun (I. A.
Bunin)
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199.  Zoxmop XKusazo (Doktor Zhivago) - B. JI.
IMTacreprak (B. L. Pasternak)

200. Jlsopancroe enezdo (Dvoryanskoye gnezdo) -
HU. C. Typreses (L. S. Turgenev)

201. Jwim (Dym) - U. C. Typrenes (1. S. Turgenev)
202. TI'epoti nawezo epemenu (Geroy nashego
vremeni) - M. I0. JlepmorToe (M. Y. Lermontov)
203. Kanumancraa douxa (Kapitanskaya dochka) -
A. C. ITymxkun (A. S. Pushkin)

204. Komaosan (Kotlovan) - A. II. Ilnatonos (A.
P. Platonov)

205. Macmep v Mapeapuma (Master i Margarita)
- M. A. Byaraxos (M. A. Bulgakov)

206.  Mépmeuwe dywu (Mortvyye du’shi) - H. B.
Torons (N. V. Gogol’)

207. Hosw (Nov’) - 1. C. Typrenes (I. S. Turgenev)
208. Obaomos (Oblomouv) - . A. Tonuapos (I. A.
Goncharov)

209. O6pws (Obryv) - U. A. Tomuapos (I. A.
Goncharov)

210. Omuyw u demu (Ottsy i deti) - U1. C. Typrenes
(I. S. Turgenev)

211. Hanaama M 6 (Palata M 6) - A. TI. Yexos (A.
P. Chekhov)

212. Ilemepbype (Peterburg) - B. H. Byraes (B. N.
Bugaev)

213. Iuxnux ne obowune (Piknik na obochine) - A.
H. & B. H. Crpyrauknit (A. N. & B. N. Strugatsky)
214. Hoedunox (Poyedinok) - A. . Kynpun (A. L.
Kuprin)

215.  Hpecmynaenue u naxasanue (Prestupleniye

i nakazaniye) - ®©. M. J[ocroesckuit (F. M.
Dostoyevskiy)
216. ITymewecmeue us Ilemepbypea 6 Mocksy

(Puteshestviye iz Peterburga v Moskvu) - A. H. Pa-
numes (A. N. Radishchev)

217.  Tapac Byavba (Taras bul’ba) - H. B. Toross
(N. V. Gogol’)

218.  Teampasvrut poman (Teatral’nyy roman) -
M. A. Byaraxkos (M. A. Bulgakov)

219.  Tuzut How (Tikhiy Don) - M. A. IlTonoxos
(M. A. Sholokhov)

220.  Tpu e0de (Tri goda) - A. II. exos (A. P.
Chekhov)
221. Botina u mup (Voyna i mir) - JI. H. Toscroii

(L. N. Tolstoy)

222. Bocxpecenue (Voskreseniye) - JI. H. Toscroit
(L. N. Tolstoy)

223.  XKusno Apcenveea (Zhizn’ Arsen’yeva) - 1.
A. Bynun (I. A. Bunin)

B.2 Dataset B.2 - extension of Dataset B.1

Dataset B.2 consists of all texts from Dataset B.1 and additional books listed below.
Since the dataset can be considered an extension of Dataset B.1 used for certain
parts of the study, the numbering of the additional books extends the numbering of

Dataset B.1.

224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.

Absalom, Absalom! - W. Faulkner [English]
As I Lay Dying - W. Faulkner [English]
Finnegans Wake - J. Joyce [English]
Pointed Roofs - D. Richardson [English]
The Ambassadors - H. James [English]

The Portrait of a Lady - H. James [English]
The Waves - A. V. Woolf [English]
Tristram Shandy - L. Sterne [English]
U.S.A. - J. Dos Passos [English]

Berlin Alezanderplatz - A. Doblin [German)]
Mort a crédit - L. F. Céline [French]

2666 - R. Bolafio [Spanish]

Rayuela - J. Cortézar [Spanish]

B.3 Dataset B.3

A Heartbreaking Work of Staggering Genius - D. Eggers [English]

The dataset presented in the tables below is used in the analysis of authorship
attribution using the characteristics of word-adjacency networks. It consists of 96
books in English and Polish. For each language, there are 8 different authors, and
6 books of each author. Each of the books is at least 1500 sentences long.
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English language

Number
Number
Number of punc-
Year of . of sen-
. of words tuation
Author Title pub- . tences
. (in thou- marks .
lishing . (in thou-
sands) (in thou-
sands) sands)
Micah Clarke 1888 178.1 23.8 9.2
Arthur The Adventures of Sherlock Holmes 1892 104.6 15.0 6.9
Conan The Ezxploits of Brigadier Gerard 1896 74.7 9.8 4.0
Doyle The Lost World 1912 75.8 10.2 4.5
(1859-1930) The Refugees 1893 122.9 17.3 7.8
The Valley of Fear 1915 57.7 8.3 4.3
A Tale of Two Cities 1859 136.2 23.2 7.8
Charles Barnaby Rudge 1841 254.0 44.3 12.7
Dickens David Copperfield 1850 356.0 63.0 19.5
(1812-1870) Oliver Twist 1838 157.7 29.4 9.2
The Mystery of FEdwin Drood 1870 96.0 16.6 5.7
The Pickwick Papers 1837 300.3 55.6 16.4
Colonel Jack 1722 141.4 20.6 4.2
Daniel Memoirs of a Cavalier 1720 101.2 13.8 2.6
Defoe Rozana: The Fortunate Mistress 1724 160.9 23.4 3.8
(1660-1731) Moll Flanders 1722 136.2 18.9 3.2
Robinson Crusoe 1719 232.3 34.0 4.1
Captain Singleton 1720 110.8 16.1 2.4
Adam Bede 1859 215.1 28.0 9.0
George Daniel Deronda 1876 311.1 39.2 14.3
Eliot Felix Holt, the Radical 1866 182.2 24.1 8.1
(1819-1880) Middlemarch 1872 318.1 41.2 14.9
Romola 1863 227.9 29.5 9.1
The Mill on the Floss 1860 207.3 30.5 9.0
Animal Farm 1945 30.1 3.8 1.6
George Burmese Days 1934 97.7 15.1 7.4
Orwell Coming up for Air 1939 82.8 10.4 5.3
(1903-1950) Down and Out in Paris and London 1933 66.8 9.9 4.0
Keep the Aspidistra Flying 1936 87.1 14.3 7.8
Nineteen Fighty-Four 1949 103.7 14.2 6.7
Emma 1815 160.3 26.5 8.6
Jane Mansfield Park 1814 159.8 22.5 6.9
Austen Northanger Abbey 1818 77.3 11.4 3.6
(1775-1817) Persuasion 1818 83.3 12.4 3.7
Pride and Prejudice 1813 121.8 17.2 6.0
Sense and Sensibility 1811 119.5 18.0 5.2
An Outcast of the Islands 1896 104.4 18.0 8.8
Joseph Chance: A Tale in Two Parts 1913 137.4 18.3 9.6
Conrad Lord Jim 1900 129.3 20.4 8.9
(1857-1924) Nostromo: A Tale of the Seaboard 1904 168.3 24.3 10.1
Under Western Eyes 1911 112.8 16.9 8.6
Victory: An Island Tale 1915 114.8 18.3 8.6
Following the Equator 1897 186.7 26.1 9.2
Mark Life on the Mississippi 1883 143.9 21.1 6.8
Twain The Adventures of Huckleberry Finn 1884 110.8 16.9 5.9
(1835-1910) The Adventures of Tom Sawyer 1876 70.5 11.6 4.9
The Innocents Abroad 1869 192.4 25.4 8.8
The Prince and the Pauper 1882 67.2 10.8 3.3
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Polish language

Number
Number
v, ¢ Number | of punc- of sen-
. car o of words tuation S

Author Title pub- (in thou- marks tences
lishing sands) (in thou- (in thou-

sands) sands)
Anielka 1885 46.6 11.6 5.7
Bolesltaw Dzieci 1909 66.1 19.1 9.1
Prus Emancypantki 1894 249.2 63.5 30.2
(1847-1912) Faraon 1897 193.3 45.8 19.7
Lalka 1890 246.4 61.2 28.2
Placowka 1886 68.6 17.5 7.7
Cham 1888 59.4 14.2 4.4
Eliza Dziurdziowie 1885 50.6 10.8 3.7
Orzeszkowa. Jedza 1891 40.1 9.9 3.7
(1841-1910) Marta 1873 62.1 12.5 4.5
Meir Ezofowicz 1878 97.3 18.4 6.9
Nad Niemnem 1888 164.4 32.6 11.8
Ogniem i mieczem 1884 239.0 51.9 19.4
Henrvk Potop 1886 380.4 84.7 32.8
Sienkieii]vicz Quo Vadis 1896 168.3 34.1 11.4
(1846-1916) Rodzina Polanieckich 1894 210.2 47.3 15.1
W pustyni i w puszczy 1912 99.5 18.1 6.5
Wiry 1910 92.7 20.0 6.6
Dziwne karyery 1881 70.9 14.8 4.7
Jan Humoreski 1883 37.6 7.5 2.3
Lam Idealisci 1876 100.9 21.3 7.0
(1838-1886) Koroniarz w Galicyi 1870 62.0 11.6 3.3
Rozmaitosci © powiastki 1878 52.4 10.3 2.6
Wielki swiat Capowic 1869 37.7 6.7 1.6
Bankructwo matego Dzeka 1924 41.7 10.3 4.3
Janusz Dziect ulicy 1901 50.2 13.2 5.9
Korczak Dziecko salonu 1906 54.1 16.7 6.3
(1879-1942) Kajtus czarodziej 1934 46.0 17.9 9.8
Krol Macius na wyspie bezludnej 1923 45.9 12.1 5.2
Krol Maciu$ Pierwszy 1923 67.0 15.1 6.2
Barani Kozuszek 1898 60.3 14.8 5.5
Joézef Boza opieka 1873 51.3 11.9 4.9
Ignacy Bozy gniew 1886 112.0 24.9 7.8
Kraszewski Bracia rywale 1877 42.0 10.5 3.8
(1812-1887) Infantka 1884 111.3 23.2 8.2
Zlote jablko 1853 1075 22.6 9.7
Dzieje grzechu 1908 148.5 35.0 15.9
Stefan Ludzie bezdomni 1900 97.2 20.2 8.6
Zeromski Popioly 1902 222.4 46.5 21.0
(1846-1925) Przedwiosnie 1924 81.3 17.5 7.3
Syzyfowe prace 1897 61.9 11.6 4.5
Wierna rzeka 1912 39.5 8.6 4.0
Bunt 1924 40.2 9.0 3.8
Fermenty 1897 1179 30.9 9.8
ngdrﬁs:v Lili 1899 25.0 6.3 2.2
(186y7_1925) Marzyciel 1910 77 11.0 14
Wampir 1911 53.0 13.0 4.5
Ziemia obiecana 1899 170.9 38.0 13.3
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