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Abstract

The Debye model presents an elegant description for the relaxation and dispersion phenom-
ena based on statistical mechanics. However, it describes systems, characterized by a single
relaxation time, as perfect liquids and crystals, quite far from the complexity which affects
almost all materials. In the last decades, many phenomenological models were developed to
consider the anomalous deviations from the Debye model. Among these anomalous models,
the Havriliak-Negami dispersion model in the frequency domain and the Kohlrausch-Williams-
Watts relaxation in the time domain are cornerstones that successfully fit experimental data
in their respective domains despite not being the relevant Fourier counterparts.

This thesis deals with a novel approach, involving nonlinear time and frequency variables, in-
spired by the idea to restore this broken symmetry between dispersion and relaxation models
in order to tune the Debye’s idea with the anomalous behaviours observed in experiments.
Firstly, we introduce a phenomenological model based on a second order differential equation
with time-dependent coefficients to describe the anomalous relaxation dynamics in photolu-
minescence highlighting the role of the complete monotonicity and the physical meaning of
the Kohlrausch-Williams-Watts function with its singularity. Secondly, we introduce a general
evolution equation for anomalous relaxation processes in terms of a commutator based on the
Reynolds-Leibnitz theorem and a material transform that bridges the Havriliak-Negami dis-
persion model and the Kohlrausch-Williams-Watts relaxation. Collecting all the results was
possible to find two different origins for the anomalous behaviour. To conclude, our attention
focused on a more mathematical issue: the conditions for complete monotonicity of special
functions used in the description of relaxation processes as the Mittag-LefHler function and
the Meijer G-function.
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Streszczenie

Model Debye’a przedstawia elegancki opis zjawisk relaksacji i dyspersji w oparciu o mechanike
statystyczna. Jednak uklady charakteryzujace sie pojedynczym czasem relaksacji opisuje jako
doskonate ciecze 1 krysztaly, doéé dalekie od ztozonoéci, ktora dotyczy prawie wszystkich ma-
terialow. W ostatnich dziesiecioleciach opracowano wiele modeli fenomenologicznych, aby
uwzgledni¢ anomalne odchylenia od modelu Debye’a. Wérod tych anomalnych modeli, model
dyspersji Havriliaka-Negami w domenie czestotliwosci 1 relaksacja Kohlrauscha-Williamsa-
Wattsa w domenie czasu sa kamieniami wegielnymi, ktore z powodzeniem dopasowuja dane
eksperymentalne w swoich domenach, mimo ze nie sa one odpowiednimi odpowiednikami
Fouriera. Ta teza dotyczy nowatorskiego podejscia obejmujacego nieliniowe zmienne czasu
i czestotliwodci, inspirowane idea przywrocenia ztamanej symetrii miedzy modelami dysper-
syjnymi i relaksacyjnymi w celu dostrojenia pomystow Debye’a do anomalii obserwowanych
w eksperymentach. Najpierw wprowadzamy model fenomenologiczny oparty na réwnaniu
rézniczkowym drugiego rzedu ze wspotezynnikami zaleznymi od czasu w celu opisania anoma-
Inej dynamiki relaksacji w fotoluminescencji, podkreslajac role catkowitej monotonicznodci i
fizyczne znaczenie funkeji Kohlrauscha-Williamsa-Wattsa z jej osobliwosé. Po drugie, wprowad-
zamy ogoblne réwnanie ewolucji anomalnych proceséw relaksacji w kategoriach komutatora
oparte na twierdzeniu Reynoldsa-Leibnitza i transformacji materialowej, ktora taczy model
dyspersji Havriliaka-Negami i relaksacje Kohlrauscha-Williamsa-Wattsa. Zebranie wszyst-
kich wynikéw umozliwito znalezienie dwoch réznych zrodet anomalnego zachowania. Pod-
sumowujac, nasza uwaga skupila sie na bardziej matematycznym zagadnieniu: warunkach
petnej monotonii funkeji specjalnych stosowanych w opisie proceséw relaksacyjnych, takich
jak funkcja Mittaga-Lefflera i funkcja G Meijera.
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Alqs
CC
CD

KWW
HN
OLED
PL
SSR

Tris(8-hydroxyquinoline)aluminum(I1I)
Cole-Cole (dispersion model)
Cole-Davidson (dispersion model)

Debye (relaxation or dispersion model)
Kohlrausch-Williams- Watt (function)
Havriliak-Negami (dispersion model)
Organic Light Emitting Diode
Photoluminescence (or Photoluminescent)
Sum of the squared of residuals
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Nomenclature

A Surface of conducting plates in a parallel-plate capacitor (m?)
A Generator of the semigroup
B Magnetic induction (T)
¢ Speed of light (2.997 924 588 ms™!)
C  Set of Complex numbers
C'  Capacitance (F)
Cy Capacitance in the vacuum (F)
d Separation between conducting plates in a parallel-plate capacitor (m)
0 Loss angle
D Dielectric displacement (Cm™?)
D Dispersion factor
V-  Divergence
Vx  Rotor
D~! TInverse derivative operator (or anti-derivative operator)
Ae  Dielectric increment of dielectric relaxation strength
AV Electric potential difference (kg m2 s3A1)
dV  Surface of incompressible volume
e Elementary charge (1.6020717C)
¢ Dielectric permittivity
¢ Normalized dielectric permittivity
g9 Vacuum electric permittivity (8.85418781281071% C*m=2N~1)
e, Relative dielectric permittivity
¢’ Real part dielectric permittivity
¢” Imaginary part dielectric permittivity
£5 Optical (high frequency limit of) dielectric permittivity
g Static (low frequency limit of) permittivity
E Electric field (NC™! or V™)
F Force (N)
I'(-) Gamma function
h  Planck constant (1.054 572 66 1034 Js)
H Magnetic field (Am 1)
‘H Hamiltonian of the system
¢ Imaginary unit
S Imaginary part
I(t) Photoluminescence intensity decay (relaxation function for luminophores)
J  Ohmic current density (Am ?)
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xiv Nomenclature
Kp Total detrapping rate (s™')
Kige Intersystem crossing rate (s™')
Ko Triplet trap decay rate (s™')
Kp Total trapping rate (s™')
K 1 Reverse intersystem crossing rate (s')
Ks Total singlet (state) decay rate (s™!)
K..qs Radiative singlet (state) decay rate or fluorescence decay rate (s7h
Koon-rads Non-Radiative singlet (state) decay rate (s™')
Ky Total triplet (state) decay rate (s 1)
K..qr Radiative triplet (state) decay rate (s')
non-radr Non—radiativeltriplct (state) decay rate (s~ !)
Lagrangian of the system
L Laplace transform
¢ Integration path, Bromwich contour
g Magnetic permeability (kg m s™2A2)
po Permeability of free-space (47 1077 kg m s 2A?)
1 Relative magnetic permeability
me Mass of the electron (9.11 10731Kg)
77 Reduced mass
n. Electronic density per unit volume (electrons m—?)
ng Initial number of relaxing centers
ns Number of relaxing centers in singlet excited state
ny  Number of relaxing centers in triplet state

AT AN Ry B O e TS EE e 22

Set of Natural number without zero
Set of Natural numbers with zero
Frequency (s71)

Natural resonant frequency (s=')
Material frequency

Plasma frequency (s™')
Polarization vector (C m~?)
Pulse response function
Relaxation function

Charge of a particle (C)

Quality factor

Electric charge density (C m™?)
Set of Real Numbers

Real part

Specific conductivity (S m~!)
Ground state

Singlet excited state
Temperature

Triplet state

Time

Material time

Semigroup operator
Characteristic relaxation time (s)
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Material characteristic relaxation time
Loss tangent

Velocity of a particle (m s™')
Impressible volume

Electron displacement

Susceptibility

Normalized susceptibility

Banach space

Damping ratio (s~ 1)
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Motivation for writing the thesis

This thesis investigates the physical mathematical background needed for modelling
relaxation processes in complex and disordered systems, highlighting the relation be-
tween the physical meaning and the mathematics used to analyse dynamical systems.
Different novel methodologies and approaches have been introduced to enlarge the land-
scape of the possible mathematical methods and intriguing physical interpretations to
extricate successtully the complexity that characterizes real physical processes.

In fact, the intrinsic complexity of the anomalous relaxation processes creates barriers
that obstacle a comprehensive knowledge.

Problems and open questions as

¢ the physical origin of the Kohlrausch-Williams-Watts function e for 8 >0,
¢ the role of its singularity,

¢ the physical interpretation of the complete monotonicity,

¢ as well as the formulation of the evolution equations

are closely linked to each another. We need only the correct lens to see the common
thread behind these crucial issues, and this thesis wants to be exactly that lens. And
to be sure that it is a useful lens, we need the theory agrees with experiments. Theory
and experiments are strongly dependent upon each other.

This is the essence of Science.

Outline of the thesis

The structure of the thesis is explained trying to put in evidence the essential tech-
nical points and the main results. The thesis is divided into five interrelated and
self-consistent chapters.

Chapter 1 briefly reviews the fundamentals of the classical electromagnetic theory,
fixes the notation and the basic formulas that will be used throughout the thesis, and
it highlights possible analogies between different models of dielectric permittivity in-
creasing the impact of the results obtained.

In Chapter 2, we focus our attention on the Kohlrausch-William-Watts (KWW) func-
tion. Despite its popularity and success in modelling relaxation processes, the physical
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origin of this function is quite elusive and it is still a matter of debate in the scien-
tific community. In order to bring out its meaning, a phenomenological model based
on a second order differential equation has been formulated and articulated into three
steps. Firstly, we extricate the complexity due to the anomalous behaviour introducing
a different frame: the material frame. This strategic change of perspective favours the
emerging of the Physics that can be modelled as a damped harmonic oscillator. Once
the usual laboratory frame has been restored, the solution of the differential equation
is exactly the KWW function, unveiling its meaning. However, the introduction of
this material frame has dragged other interesting results. Analysing the singularity
in the second order differential equation, we have the possibility to deepen the prob-
lem of the divergence on the first derivative in the stretched KWW function (i.e. for
0 < B < 1). The singularity is not as disturbing as it appears. Moreover, considering
the Lagrangian and the Hamiltonian associated with the differential equation, we can
define a precious physical quantity, the reduced mass, that unveils the dynamics and
the physical meaning of the complete monotonicity and monotonicity in modelling re-
laxation processes.

As a second step, the validation of the phenomenlogical model has been performed
framing the results in the context of physicol-chemical reactions. The bi-exponential
model commonly used in photoluminescence is a special case of the phenomenological
model proposed in this thesis. The bi-exponential model consists in a weighted sum of
two exponential functions and it is the result of the approximation in the dynamics of
the system.

The last step represents the most meaningtul test bench for the model: its predictions
with respect to the data collecting in the experiments. Among all the physical system
experienced relaxation processes, the photoluminescence from organic molecule as the
Tris(8-hydroxyquinoline) alluminium (Alg3) has been considered. The choice of this
molecule as a test case is due to on the large amount of available data and the widely
applications in Organic Light Emitting Diodes (OLEDs), a spreading technology in our
daily life. It should be remarked that the model presents a very general approach and
for this it can be used to describe other photoluminescent materials.

Chapter 3 describes and design new methodologies in modelling dynamical systems
involved in relaxation processes. Our attention has been focused on the evolution-
ary problems that can be addressed with the composition rule. We can consider the
composition rule as a physical manifestation of the semigroup property governing the
evolution of any linear and deterministic system. The definition of the operation needed
to compose the relaxation syntagms, that is the relaxation functions on a finite time
intervals, is the main issue of the Chapter.

The term syntagm is borrowed from linguistics and it means a syntactic autonomous
unit that has meaning both alone and when contextualized in an ordered sequence of
other syntagms. In this respect, the term relaxation syntagm manages to convey its
physical meaning in a very natural way. It defines a relaxation function in a finite time
interval that can be analysed separately or in a wider time interval when it is composed
with other relaxation syntagms.

As it will be illustrated in this Chapter, the composition rule is not so easy task when
we consider anomalous behaviours and their anomalous (or non-Debye) relaxation func-



tions. However, we present two different methodologies. The first approach defines the
composition rule for the one-parameter Mittag-Leffler function from which it is possible
to define an integro-differential relation playing the role of the time evolution equation.
The hallmark of this approach is the compelling and logical use of the mathematics.
On the other hand, the issue of the composition rule can be addressed also from a
physical point of view. Inspired by Reynolds-Leibnitz theorem, it is possible to define
a very general composition rule as a commutator operator that involves a derivative
and its inverse operator, that can be bought under the name anti-derivative. Being the
relaxation syntagms a part of the relaxation function keeping its meaning, the relax-
ation syntagms are intensive functions and for this reason, Reynolds-Leibnitz theorem
plays a paramount role as it will be explained in this Chapter. This general compo-
sition rule gives a further validation to the model proposed in Chapter 2, since the
relaxation can be distorted, compressed or stretched but it always keeps its mean-
ing. This idea inspired a modification of the Fourier transform in order to understand
what is the effect of the anomalous behaviour on the frequency domain. The main
result of this investigation was the possibility to explain the experimental recurrences
of the Havriliak-Negami and KWW function in modelling relaxation processes allow-
ing to completely restore the symmetry from a dynamical point of view between the
relaxation and the dispersion models. The Chapter continues briefly illustrating math-
ematical tools and methodologies we developed in analysing evolutionary problems in a
different context: the anomalous diffusion with the fractional Fokker-Planck equation.
In fact despite the evident differences between the two processes, i.e. the relaxation
and the anomalous diffusion, the mathematical methods share the same backbone.
The problem is also addressed in terms of the semigroups theory in order to bring
out a connection between the semigroup operator in the differential equation with the
Reynolds-Leibnitz composition rule. We need to show that the solution of the second
order differential equation arises as a consequence of the action of the semigroup oper-
ator to the initial condition. Therefore, a track of the semigroup property is embedded
in the solution and it confirms that the Reynolds-Leibnitz composition rule is actually
a manifestation of the semigroup property.

Chapter 4 is dedicated to the problem concerning the mathematical requirements
to be satisfied by complete monotonic functions. As shown in the previous chapters,
this property plays a relevant role in the physical and mathematical interpretation of
relaxation processes. Therefore the definition of the mathematical requirements to be
satisfied by the special functions involved in the description of relaxation processes rep-
resents a remarkable issue for the current research. The attention will be focused on
the Mittag-Lefller function whose complete monotonicity has been proven keeping as a
compass the papers written by Pollard and Wiman. The Chapter continues considering
another special function, the Meijer’'s G-function. Here we formulated a conjectured
theorem for its complete monotonicity that can be framed in the context of the known
literature.

Finally, in Chapter 5 we will summarize the results of the thesis framing them in
a broader context and we will give the future lines of research and development.
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Chapter 1

Introduction

In this thesis, the theory of the relaxation processes plays a central role, so it is impor-
tant to outline the main aspects of the interaction between matter and electromagnetic
fields.

All these interactions are described by the macroscopic Mazwell equations [144, 145
which at the very beginning were twenty. Only after the simplification carried with the
modern vector notation developed by O. Heaviside and J. W. Gibbs [89] all the electro-
magnetic phenomena were summarized in the well-known set of the four macroscopic
Maxwell equations as follows

¢ Gauss’ law: V-D=p (1.1a)
oD

o Ampere’s law: VxH=J+ v (1.1b)

¢ Faraday’s law: VxE= —%—]f (1.1c)

¢ Gauss’ law for magnetic fields: V-B=0, (1.1d)

where the International System of units (SI units) are assumed throughout.

The Maxwell equations (1.1) are fundamental pillars in the description of the interrela-
tions among quantities that depend on the material medium as the electric displacement
D, the magnetic field H and the ohmic current density J, and quantities that do not
depend on the material medium as the electric field E, the magnetic induction B and
the electric charge density p.!

However, we can reduce the four Maxwell equations to only two equations noting that
the current density J and the charge density p are linked together by the so-called
continuity equation

ap
EJrV'J—U,

which is obtained taking the divergence of (1.1b) and then, by applying (1.1a). In
its turn, the Gauss law (1.1a) can be used to eliminate the unknown electric charge

1Only for thoroughness, it is clarified that all field variables are functions of time t and space
x = (x,y,2) € R3.
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density p, by defining it in terms of D as
p=V-D.

Adding the continuity equation to the two remaining Maxwell equations, i.e. Ampere’s
law (1.1b) and Faraday’s law (1.1c), the essential system valid in any material medium
still contains unknown vector functions. Thus, to find a self-consistent solution for the
electromagnetic field, Maxwell’s equations should be supplemented by three relations,
known as constitutive relations. These equations are not universally valid, but depend
upon the properties of the materials under consideration. We can assume that these
equations have the form of the following local relations

o D =cE =¢.:E,
o J=0E,
o B=pH = ppoH,

where

CE

o £ 1= £yE, 1s the permittivity of the material and its unit is N??

2
¢ g9 = 8.8541878128 10712 %; is the vacuum permettivity,

© &, is the relative dielectric permittivity (or simply relative permittivity) and it is

dimensionless,
= Jtojty is the permeability of the material and it i ed in 8 or K310
© p:= popty is the permeability of the material and it is measured in g or “&->=,
o ,Tkg m . .-
o po = 410 AT 1S the vacuum permeability,

o p, is the relative magnetic permeability that is a dimensionless quantity,

2
¢ o is the specific conductivity of the material and its unit is S o A
m kg ms3

In ST units, the vacuum permittivity ¢ and the vacuum permeability pg are related to
the speed of light in vacuum ¢ as follows:
2 1

¢t = —o.
Eoto

The constitutive equations allow us to solve the Maxwell system embracing the physical
meaning of the quantities introduced which are therefore called constitutive parameters.
Materials can be classified according to these constitutive parameters, as schematically
shown below:
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( . . N .
£, i are scalars, if the material is isotropic,

Exax Ezy Eaz Hzax Hzy Hezz
. nd e P - R
§ &, are 2 rank tensors, i.e. g, = |6y, Eyy Eyz| OF Mij = |yx fyy fyz|s
Ezx 5z,y Ez,2 Hzz P'Jz,y Hz 2

\if the material is anisotropic;

(¢, >0 j, >0 most dielectric materials,

e, <0  p. >0 metals, electrical plasmas, thin wire structures ,

. >0 pu. <0 gyrotropic magnetic materials as some ferrites,

ler <0 . <0 metamaterials;

{O’ =0 dielectrics,

g >0 conductors.

If the constitutive parameters are frequency-dependent, the material is named disper-
stve, as it will be explained in Section 1.1.

Finally, the radiation-matter interaction is accomplished by coupling the Maxwell equa-
tions and the Lorentz force acting on a particle of charge ¢ and velocity v which reads

F =q(E+vxB),

emphasizing how the electromagnetic fields can be related to measurable forces.

At this point, the characterization of the interactions between electromagnetic fields
and any medium has been illustrated, so it is possible to fix the relevant tools and the
framework in which the investigations will be carried out.

1.1 The zoo of permittivities: ¢, ¢y and &,

The dielectric permittivity € plays an important role in understanding the electromag-
netic properties of materials [30, 31, 94, 99, 180] since it affects the propagation of
the electric fields influencing their amplitude and phase. In other words, the dielectric
permittivity € is a measure of how the electric field D behaves while the external field
E interacts with any material.

In particular, measurements of dielectric properties imply measurements of the relative
permittivity &, that differs from the permittivity £ by the constant vacuum permittivity

Ep-

o
The significant role of the relative permittivity can be physically unveiled using two
circuital configurations where we integrate a capacitor into a circuit with direct or
alternating current. The difference in the two configurations is hidden in the relative
dielectric permittivity: it can be considered a constant, or it can be modeled as a
complex-valued function depending on the frequency of the applied field:

gr(w) =&l (w) + 1", (w). (1.2)
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Figure 1.1: Dipole orientation in an unpolarized dielectric between the electrodes of
a parallel-plate capacitor.

Firstly, we will consider the case of a direct current circuit (DC), where €, is a constant.
Here, the amount of charge ¢ stored in a capacitor C' is linearly proportional to the
electric potential difference AV between the electrodes. Thus, we may write

q = C|AV],

where C' is a positive proportionality constant called capacitance.

Physically, capacitance measures the capacity of the electric charge storage for a given
difference of potential AV. The SI unit of capacitance is the farad (F).

As long as the electric field is switched off and the capacitor is not polarized, the
dipoles in the dielectrics have a random orientation, without any resulting pole. It
may in principle looks like Fig. (1.1).

After switching on the electric field, the dielectric starts to be polarized and the dipoles
organize themselves in chains as shown in Fig. 1.2. Every dipole chain binds in the
electrode due to a torsional moment induced by the presence of the field. Thus, when
the dipole chains are perfectly aligned, the electrode is able to receive as many new free
charge carriers as those the dipole chains have bound without creating an increase of
the electric field strength (or the voltage) above that of the starting point. This means
a corresponding increase in capacitance.

From a phenomenological point of view, this effect can be described by the introduction
of the relative dielectric permittivity ¢, which takes into account the presence of the
dielectric material and the consequent increase of its storage capacity unlike the case
when there is only vacuum between the electrodes.

So, the capacitance is linked to the relative dielectric permittivity &, according to the
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Figure 1.2: Dipole orientation in a polarized dielectric between the electrodes of a
parallel-plate capacitor. The arrows represent the direction of the electric field E.

following expression

, C

r C()j

where ¢/ is the real part of the relative permittivity ¢,, C is the test capacitance that
is the capacitance when among the plates there is only the vacuum.

In case of a parallel-plate capacitor, the test capacitance is

A

Co = EOE:

£

and, the capacitance C' with a dielectric between the electrodes is

!

C:E(]srd,

where A and d denote respectively the surface and the distance between the plates of
the electrodes. Otherwise, if a time-varying electromagnetic field (i.e. AC voltage) is
placed across the same capacitor, the resulting current will be made up of a charging
current [~ and a loss current [;, that is related to ,. The energy losses in the material
are the inherent dissipation of electromagnetic energy in the dielectric material and
can be represented as a conductance in parallel with a capacitor. So, the dielectric
permittivity gains an imaginary part, and it becomes complex-valued depending on the
frequency of the applied field. In (1.2), €/ (w) represents the storage or the absorption
and €”(w) is the imaginary part which describes the energy loss. The imaginary part
of permittivity £/ (w) is always greater than zero, and it is usually much smaller than
the real part £/.(w). The loss factor includes the effects of both dielectric loss and
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conductivity.

When complex permittivity is drawn as a simple vector diagram, the real and imaginary
components are 90° out of phase. The vector gye,(w) forms an angle § with the real
axis (i.e. the axis fixed by £¢cl.(w)). The relative energy loss in a material is the ratio
of the energy lost to the energy stored. Mathematically, we conveniently describe the
energy losses by means of the so-called electric loss tangent and its loss angle o:

el(w) 1

r :D:—

tan(d) = ) o

where D denotes the dispersion factor and its inverse, @ is the quality factor.
For very low-energy loss materials, since tan(d) =~ 4, the loss tangent can be expressed
in angle units, milliradians, or microradians.
The dielectric loss tangent of any material describes quantitatively the dissipation of
the electric energy due to different physical processes such as electrical conduction,
dielectric relaxation, dielectric resonance and loss from nonlinear processes (such as
hysteresis). When measuring the energy loss of a dielectric at a single frequency,
in general, it is impossible to get knowledge on their dependence on the frequency.
Phenomenologically, they all give rise to just one measurable quantity, namely, the
total measured loss tangent. The origin of dielectric losses can also be considered as
being related to the time delay between the electric field and the electric displacement
vectors (i.e. the dipole rotation).
The definition of the electric displacement D given by the corresponding constitutive
equation reads

D(x,t) = cE(x,t) = ¢,50E(x, 1),

and it can be regarded as correct only if the medium assumes a time-independent
relative permittivity, i.e. € = £q¢, is a constant. Otherwise, the system is a temporally
dispersive medium whose permittivity £ depends on the history of the electric field
strength. In such a case, the displacement and the electric fields are related by the

convolution )

D(x,t) = 50E(x, t) +50/ dt' B(x,t)x(t —t). (1.3)
In the right-hand side of (1.3) there are two contributions: the first term represents the
free-space response which contains the vacuum permittivity £y, and the second term
is the time domain polarization vector P(x, ), that is the material response described
by the susceptibility kernel x():

1
P(x,t) = Eof dt’ BE(x,t')x(t —t'). (1.4)
Thus, we can recast the electric displacement (1.3) in a more compact form using (1.4)

as follows
D(x,t) = gE(x,t) + P(x,1).

The convolution form used for defining the displacement D(x,¢) in (1.3) and the po-
larization P(x,t) in (1.4) implies the causality. In other words, the values of the
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displacement D(x, t) and the polarization P(x,t) at the present time ¢ depend only on
the values assumed by the electric field E(x,#) at a time prior and equal to ¢.

1.2 Relaxation and dispersion: complementary con-
cepts

The term relaxation means the irreversible process of a perturbed system towards a
novel equilibrium state. When a system in equilibrium is disturbed by an external field,
that system is pushed out of equilibrium. We deal with a relaxation process only if the
time needed to reach a new equilibrium state is longer than the time of interaction with
external field. The time delay, usually denoted with 7, is the relazation time which
characterizes the system previously influenced by an external field. In fact it represents
the delay in the response of a system due to the changes of the external field. So, the
relaxation time 7 could be considered as a distinctive mark of a physical process under
examination.

The description of relaxation is achieved in the time domain introducing the relax-
ation function ¥(t) accounting for the pulse decay and the pulse response function ¢(t)
linked to p

o(t) = ——U(t). >0

In case the external field is an electric field E and the system is a dielectric (or a di-
electric material)?, the relaxation process is called dielectric relaxation process. Unlike
what happen in conductor materials, electrical charges do not flow into the material,
but they are slightly shifted from their average or equilibrium position causing the
polarization of the dielectric. After switching off the external dielectric field, the po-
larization starts to decay.

Once introduced the definitions of the static permittivity &,

ESIET(LQ%O) (15)
and the optical permittivity .
Eoo = Ep(w — 00), (1.6)

we can make evident the relation between the relaxation function W(#) (or the pulse
response function ¢(t)) with the normalized complex permittivity

W) — €co

E(w) = ETE — (1.7)
or with the normalized complex susceptibility
X(w) =1—é(w) (1.8)

2A dielectric is an electrical insulator that can be polarized by an electric field.
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As shown in [66], the Fourier transform F on the real positive line

F(w) = F[f#);w] = fom dt f(t)e "

or equivalently the Laplace transform L, i.e.
F(s)=L[f(t);s] = / dt f(t)e ™,
0

relate both the time-dependent function W(t) and ¢(¢) with the normalized complex
permittivity £(w) and susceptibility y(w).

The replacement in favour of the Laplace parameter s = iw compacts the notation of
the two transforms and define the following correspondences for the relaxation function

1. 711
() = 1— L7 x| = £ - = ket
1 S 5 5 (19)
=L 28(s):t
- E |:S (S‘)’ ?L:|J
and the pulse response function or relaxation response
o(t) = £ [)}(s);t] =L [1 - é(s);t]. (1.10)

This fact opens the possibility to address the analysis both in the time domain with
the relaxation function ¥(t¢) (or the pulse response function ¢(¢)) and in the frequency
domain with the dispersion model and its spectrum defined by the normalized complex
permittivity £(w). This possibility occurs when dielectrics are considered as passive
and casual linear systems [66]. Analysing the complex dielectric permittivity £(w), we
define the dielectric spectrum that can be presented in two equivalent ways. Usually
the real and the imaginary components of the complex permittivity are plotted vs. the
frequency in logarithmic scale. The lines obtained are respectively named dispersion
and absorption curves. The second method plots the imaginary component of the
dielectric permittivity £”(w) with respect to the real one £/(w). The result is a semicircle
whose symmetry depends strictly on the relaxation process considered. Such plots are
called the Cole-Cole plots [38] or Argand’s diagrams of dielectric constant [6]. Examples
of the Cole-Cole plots can be found in Fig. 1.5 of Section 1.3.

As last remark, we emphasize that the normalized complex dielectric permittivity
£(w) - as well as the normalized complex susceptibility x(w) - satisfies the Hermitian
symmetry property

é(—w) =& (w),

or equivalently,

since the permittivity is the Fourier transformed function of the relaxation W(¢) that
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is a real function.

To conclude, dispersion models can classify the relaxation of different polarization.
For this reason, relaxation models are a useful approach to investigate dielectric dis-
persion.

The State of Art of dispersion models and relaxations is based on three well-known
pillars, which are nowadays spreading in photonics, plasmonics and in dielectrics: the
Lorentz model, the Debye model and the Drude model.

1.3 Dispersion models and Debye relaxation

The Dutch physicist H. A. Lorentz was able to grasp the essence of the polarization
phenomena introducing a model for describing the behaviour of a wide range of disper-
sive materials, as dilute or dense gases, metals, semiconductors, and even dielectrics®.
This model is based on the concept of a mass-spring system, and it is able to describe
the behaviour of the polarization and the permittivity in the dispersive materials. In
presence of the external electric field, the electrons surrounding the nuclei in the atoms
react by vibrating like damped harmonic oscillators, creating a small separation or dis-
placement between the centres of positive and negative charges denoted by x(t). Their
motion is the result of the superposition of different effects, which take into account
the forces involved in the system. Applying the Newton law, the differential equation
which rules the Lorentz dispersion model is

d*x(t) dx(t)
Me o = —me§7 — mewpx(t) — eB(t), (1.11)
where
o Fir = me@ represents the total force acting on the electrons which causes

their oscillatory motion, and m, denotes the mass of the electron;

o Fp=—-m. d’;(;) is a friction force due to multiparticle interactions as the colli-
sions between electrons, the interaction between electrons and the lattice or even
to the radiative emission determining global losses with a consequent damping of
the system. Here, ( denotes the damping factor and d’;—f) is the velocity of the
electron;

¢ Fr = —m.wjx(t) plays the role of a restoring spring force due to the positive
charges in the nucleus that oscillate with a natural resonant frequency wy;

¢ Fpu = —eE(t) is an external driving force originated by the applied local electric
field.

#The Lorentz dispersion model can be used also for describing the the magnetization if the magnetic
field has been applied to the material instead of the electric field as described in the text. In fact, the
magnetic field can speed up or slow down the motion of the electrons around the nucleus producing
a variation on the magnetic momentum dipole.
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The electric field E(#) and the electron displacement x(#) can be written respectively
in a complex notation

E(t) = R[Epe™™"] = Egcos(wt),

x(t) = R[xpe™"] = xgcos(wt),

where x and Ej are in general complex constants. The solution of (1.11) in the Fourier

space reads
- e 1 ~
X(W) = —E (wg — w2) n zng(W) (112)

The above result is useful to calculate the polarization density, or simply the polariza-
tion of the material, which is given by the electron density n. (per unit volume) times
the polarization due to a single electron:

P(t) = nep(t) = —encx(t). (1.13)

Multiplying both sides of (1.12) by —en, and then, taking the Fourier transform of
(1.13), we define the polarization in terms of the frequency as

Pyt 1 g (1.14)

me wip — w? + iw(

_ 32713
MeEQ

2

The factor w, is the plasma frequency squared, so (1.14) can be written as

~ (_.dp ~

Comparing the definition of the polarization in the frequency domain

P(w) = Y(w)z0E(w),

with (1.15), and solving for y(w), yields
2
X =71t 1.16
X(w) wd — w? + 1w (1.16)

Replacing the above definition of susceptibility (1.16) in

e(w) = eo(1 + x(w)),

the permittivity of the material at the frequency w can defined as follows

2

w
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Figure 1.3: The real and the imaginary part of the dielectric function (1.21), £/ (w)
and £”(w) vs. w. Here we set ¢, = 2.4, 6. = 1, wy = 3.94- 10 THz and ¢ = 1.71 - 10?
THz.

Finally, the Lorentz relative permittivity e,.(w) is defined as

w2

(W) =14 ——L 1.18
&) +w8—w2+iwC' (1.18)

and then, its real and imaginary components read

W (wd — w?)

(W) =14 — 2

&y (LU) (Wé _ w2)2 + wQCQ
wﬁwg

- (w2 —w?)? + w2

(1.19a)

(1.19h)

The form of the imaginary part of the permittivity, €”(w), is often referred to as a
Lorentzian function as it is clearly visible from Fig. 1.3. This figure illustrates the
behaviour of the real and imaginary part of the permittivity £(w). Note that &'(w) has
its maximum at the resonant frequency wy.

Resorting to the definitions of static permittivity (1.5), and the optical permittivity
(1.6), and applying them to (1.19), we obtain

2

(w—0)=1+ “r
s = w = —_—
TE W (1.20)

foo = E(w — 0) =1
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and consequently, we define the complex dielectric function £, as follows

(25 = £o0)ui

_ 1.21
wi — w? + iw( (121)

er(w) = €00 +
Considering that the difference between the static permittivity and the optical dielectric
constant, £, — €., denoted by Ac is called the strength of the relaxation process, the
complex dielectric function £,(w) in (1.21) can be written as below

2
Ae w;

2 _

—_ . 1.22
wi — w? + iw( (1.22)

e (W) = e +

Among the variations of the Lorentz model, there are two well-known special cases:
the Drude model and the Debye model.

The Lorentz model (1.11) reduces to the Drude model given by the equation

d*x(t)
dt?

()
= _mGCT —eEK(t), (1.23)

Me

when the restoring force Fr is neglected. This condition is fulfilled if the conduction
electrons can be considered free, therefore the Drude model makes excellent predictions
about the nature of the conduction electrons in metals and in plasma [8, 51].
The permittivity of the material based on the Drude model is
@y
gr(w) =1 i
The other variant of the Lorentz model (1.11) is the Debye model that describes
systems composed by an ideal and non-interacting ensemble of freely rotating dipoles
induced by an alternating external electric field 31, 46, 47, 172].
It is possible to model the response of dipoles, that have a natural frequency wg, in
terms of the displacement between positive and negative charges
megd};—f) = —mwx(t) — eB(t). (1.24)
Comparing the differential equation which rules the Debye model (1.24) with the one
of the Drude model (1.23), it is possible to highlight the following features.
In the Drude model, the electrons are free to move and this justifies why the restoring
force term is missing in (1.23), whereas in the Debye model (1.24), the second order
derivative can be dropped out. The physical assumption behind this mathematical
simplification is rooted in the relaxation processes: the presence of a high friction that
causes the damping tones down the contribution of the inertia force.
It is therefore possible to oversee the acceleration of the dipoles without much error.
The equation of motion (1.24) leads to the following dielectric function

er(W) = oo + 5. (1.25)
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Replacing ¢ = 7wi and

(1.26)

Debye assumed that the polarization decays exponentially with a single relaxation
time 7, after the removal of the external electric field. In the time domain, the coun-
terpart of the dispersion relation (1.26) is the Debye relaxation

V() =e7, (1.27)

and consequently its dielectric response function is

(1.28)

For many systems - except for example ferroelectric materials, water in liquid state
and weak solution of polar liquids in non-polar solvents [172|, the Debye relaxation
(1.27) (or its response function (1.28)) does not sufficiently describe the experimental
data since the relaxation behaves not-exponentially. This implies taking into account
the distribution of relaxation times in formulating relaxation laws, now named non-
Debye or anomalous relaxation laws. Consequently, the response function (1.28) and
the complex dielectric permittivity (1.26) can be expressed in terms of a distribution
function G for the relaxation time 7:

U(t) = fo S G(r)e~ (1.29)

Hw) = /0 T G0 (1.30)

1+ iwr

and

Here, the distribution function G(7), which satisfies the normalization condition
fox G(7)dr =1, can be regarded as the fraction of polarization processes where relax-
ation times range between log(7) and log(7) + d(log(7)) and it satisfies the following

normalization condition -

d(log(7)) G(logr) = 1. (1.31)
[t is quite hard to obtain the actual distribution of relaxation times. In the last decades,
many phenomenological relaxation and dispersion models have been developed starting
from the Debye dispersion model (1.26) and the relaxation function (1.28), paving the
way to a new branch of physics: the so-called anomalous or non-Debye relaxation
models.
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1.4 Non-Debye or anomalous relaxation and disper-
sion models

The most important and popular anomalous models are the Kohlrausch-Williams-
Watts (KWW) function [112, 198] and the Havriliak-Negami model |66, 76, 87| with
its variants the Cole-Cole [38| and the Cole-Davidson |44]. Recently, the Hilfer excess-
wings model [92, 93| and the Jurlewicz-Weron-Stanislavsky (JWS) model [100| have
been added to the list of anomalous models.

The most popular function used to fit the time-domain relaxation data which do not
obey the simple exponential law, is the Kohlrausch-Williams-Watts (KWW) function
[112, 198|

U(t) = e"(ﬁ)ﬁ, (1.32)

where 7 is the characteristic relaxation time constant, and the parametric exponent
denoted by the Greek letter [ is non-negative and its range can be divided as follows:

o 0< p<l,
o f=1,
o A>1.

The value 5 = 1 denotes the pure exponential function that is a watershed case for the
behaviour of the KWW function. If 5 € (0,1), the KWW function is called stretched
exponential function since it decays slower than the exponential function (§ = 1) as
shown in Fig. 1.4. For # > 1, the function runs faster then a pure exponential function
as illustrated in Fig. 1.4, and therefore it is called compressed exponential function.
We can appreciate the meaning behind the choice of the names considering Fig. 1.4
where the three different trends are shown: the stretched, the pure and the compressed
exponential behaviour. The KWW relaxation function (1.32) appropriately models
the intricate behaviour of liquids [55, 65, 110, 111, 151, 184, 201]|, glasses [128, 162,
163|, biological tissues [113], dielectric materials and especially the folding of proteins
[84]|. This ubiquitous feature promotes the consideration of the Kohlrausch-Williams-
Watts function as a universal model for describing the relaxation behaviour in the time
domain.
The exceptionally wide range of applications of the KWW function overcomes the
field of physics and it spreads throughout the sciences. In fact, in probability theory
and statistics [153], the KWW exponential function is known as the complementary
cumulative Weibull distribution [50]| or as reciprocal Weibull distribution in [152]. In
mathematics, the KWW function can be also defined as the Laplace transform of the
Lévy stable distribution [26, 73, 167].

On the other hand, in 1967, Havriliak and Negami proposed a two parameters
phenomenological formula in the frequency regime in order to take into account the
asymmetry and the amplitude of the dielectric dispersion curve [87] and their formula
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Figure 1.4: The Kohlrausch-William-Watts (KWW) function for different values of
B at 7 = 1 in order to highlight the three different trends: the stretched (solid red
line), the pure (dotted black line) and the compressed (dashed blue line) exponential
function.

reads:

(W) —ex
Acg
1

(0
—
&
—

|

(1.33)

nowadays well-known as Havriliak-Negami model.
Here As = £, — e is the relaxation strength of the process, £, and e, are respectively
the low and high frequency limit of the dielectric permittivity and the parameters «
and v range according to 0 < @ < 1 and 0 < v < 1. These two phenomenological
parameters make the shape of the relaxation peak more pliable compared to the Debye
model (1.26). The parameter ~ takes into account the asymmetry of the dispersion
curve whereas «v its broadness. All that we know about v and v comes from experiments
as well as their ranges. In order to appreciate how these phenomenological parameters
influence the relaxation curve, Fig. 1.5 collects the Cole-Cole plot of (1.33) for different
choices of the parameters.

The real and the imaginary part of the Havriliak-Negami dielectric function (1.33)
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Figure 1.5: Cole-Cole plot of (1.33) for different values of the parameters a and ~.
The dotted black line is the Debye (D) semicircle. The other three cases are respectively
the Cole-Cole (CC, dashed blue line), the Cole-Davidson (CD, long dashed blue line)
and the Havriliak-Negami (HN, solid green line). The presence of the symmetry axis
(the vertical solid black line) allows to better appreciate the asymmetry characterizing
the anomalous behaviour of the Cole-Davidson model and the Havriliak-Negami model.
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are
£ (w) = eq + Ae cos(v9) >
[1 + 2(wT)? cos(TE) + (w’r)m] ’
sin(yt) (1.34)
S”T"(w) = AE { I
[1 + 2(wT)* cos(%) + (w’r)zﬁ] ’
where

= arctan (wr)* sm(?) 35
U = arcta (1 + (wr)® COS(%))J (1.35)

and the relaxation time, related to the critical frequency wy, is

T= i[tan(—Q(ﬁyi 1))] m. (1.36)

From the Havriliak-Negami dispersion model (1.33), other two anomalous dispersion
models stand out considering special choices for its parameters: the Cole-Cole disper-
sion model and the Cole-Davidson dispersion model; obviously in the last instance the
Debye dispersion model.

Fixing v = 1 in (1.33), we obtain the Cole-Davidson dispersion model

Aw) = SR (1.37)

whose real and imaginary parts are

1+ (wr)® cos(%)
1+ Q(wr) 0s(%) + (wr)?
(w7)™ sin(7})

1+ 2(w)™ cos(%5) + (wr)?e

g (W) =00 + Ae

(1.38)

e’ (w) = Ae

The other special case is the Cole-Davidson dispersion model and it steps out from the
Havriliak-Negami dispersion model when « is set equal to 1. As we have done with the
Cole-Cole dispersion model, the real and imaginary parts of the Cole-Davidson are

& () = £n + Ac cos(y arctan(w;r) )

[1 + (wT)? ]_

2
() = Ac sin(~y arctan(w:) )

[1 + (&J‘T)Q] ’

(1.39)

In Fig. 1.5, the Cole-Cole model preserves the symmetry that characterizes the Debye
model but its semicircle is dampened compared to the Debye one. Conversely, the other
two anomalous behaviours, the Cole-Davidson model and the Havriliak-Negami model,
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are skewed with respect to the symmetry axis. Taking into account these peculiarities,
it is licit to suppose that there are two different origins for the anomalous behaviour:
one carried out by the Cole-Cole model and the other one by the Cole-Davidson model.
Obviously, the Havriliak-Negami model merges both the two types of anomalies as it is
a generalization of the previous two. We will unveil the nature of the different anoma-
lies considering the presence or the absence of symmetry and connecting this aspect to
the dynamics of the systems itself in a framework that restores the symmetry between
the frequency and the time domains in the light of the harmonic oscillator.

It is worth to note that the relaxation parameters in these non-Debye models (i.e.
Havriliak-Negami model and its special cases) are extracted upon fitting the experi-
mental data providing a deeper understanding of the anomalous behaviour. However,
it is important to point out that the physical meaning behind these parameters is very
limited although the success of these methods.

After analysing dielectric properties of many insulating and semiconducting materials
[96-99] using a logarithmic scale, Jonscher formulated a universal law for dielectric
relaxation models.

As Jonscher stated in [97], the higher frequency branch follows the fractional power
law £(w) ~ (iw)"" !, where n is a number almost near zero.

The frequency dependencies of dielectric permittivity follow a common universal pat-
tern for almost all the materials. Here below the universal response behaviour:

(1.40)

w<w, a(w)~w™ and & (w)~1-¢&"(w)
~ wnfl

n—1

12

w>w, &rw) and & (w)

N w

The frequency w,, is to be found temperature dependent. According to this universal
law, the deviation from the Debye behaviour could be described by the functional
relation

B A
ST

P

(1.41)

whereas ¢'(w) is derived numerically from the Kramers-Kronig relations. The expo-
nentials m and n fall in the range between 0 and 1. Despite having certain universal
behaviours, such as the above-mentioned two fitting functions (1.40) and the Jonscher
functional relation (1.41), their origins are not entirely clear yet [99, 156, 157|. To
emphasize the universality of the asymptotic dependence highlighted in (1.40), it is
possible to consider Fig. 1.6 where the circles represent the imaginary part of the per-
mittivity for different materials according to their behaviour at high and low frequency
limit.
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Figure 1.6: Relaxation diagrams for the dispersion models: the Havriliak-Negami
(HN), the Cole-Cole (CC) and the Cole-Davidson (CD). The empty circles represent
the measured imaginary susceptibility x”(w) for different materials collected in |96].
The labels of the axes refer to the powers used to describe the asymptotic behaviour in
Egs. (1.40) and (1.41). Reprinted from “Stochastic tools hidden behind the empirical
dielectric relaxation laws” by A. Stanislavsky and K. Weron, 2017, Report on Progress
in Physics, Volume(80), 036001. Copyright [2017| by the Name of Copyright Holder.
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Chapter 2

Photoluminescence for shining a light
on anomalous relaxation processes

2.1 Basic concepts and mechanisms in photolumines-
cence

Photoluminescence (PL) is the emission of light from atoms or functional groups in
chemical compounds as a result of the absorption of the electromagnetic radiation.
The prefix photo- reveals the nature of the underlying mechanism [146|: the photoex-
citation. From now on, the emitters will be called luminophores, since these atoms or
functional groups are responsible for luminescence [130]. The term photoluminescence
embraces both fluorescence and phosphorescence. In other words, the class of PL pro-
cesses can be divided into two main categories based on the nature of the excited state.
As the Pauli’s exclusion principle affirms [103, 159|, a pair of electrons occupying the
same electronic ground state must have opposite spins — see Fig. 2.1(a). Such a
state is called singlet since the net angular momentum is zero and the emitted pho-
ton has a single spectral line. After absorbing a photon, the electron in the singlet
ground state is promoted by photoexcitation to a higher energy level leaving in the
ground state a positively charged electron hole. The photoexcitation of the electron in
the luminophore generates a bound state composed by an electron and its hole called
exciton. The exciton can be in a triplet or in a singlet state and its relaxation gives
rise to the luminescence via electron-hole recombination. It is hence evident that the
difference between the fluorescence and the phosphorescence is in the spin multiplicity
that characterizes the electrons in the ground state and in the excited one.

The PL takes the name of fluorescence in case the light emission arises from a sin-
glet excited state [189]. In fluorescence, the electron absorbs the electromagnetic wave
(generally in the ultraviolet range) and it moves into an excited state, as schematically
shown in Fig. 2.1(b). Here, the electron in the ground state is paired to the electron of
opposite spin in the photoexcited state. However, the energy suddenly acquired by the
photoexcited electron is quickly dispersed in approximately 10ns since this electron is
in a particular unstable state. The equilibrium can be reached emitting a photon in
the visible light range.

As mentioned, the other PL process is the phosphorescence, and it can be observed
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Figure 2.1: Electron configurations for a singlet ground state (a); a singlet excited
state (b); and a triplet excited state (¢). The dashed red box denotes the bound state
of an electron and its hole called exciton. The exciton is the emitting center of the
luminophore.

when the excited electron is in a triplet state after the photoexcitation as shown in
Fig. 2.1(c): the electron in the photoexcited state has the spin orientation of the
electron in the ground state [63]. Even in this PL process, the spin multiplicity of the
excited state strictly influences the amount of time necessary for emitting the radiation.
In phosphorescence, the range of this amount of time could be from few milliseconds
to even hours after the photoexcitation of the initial ground state. The delay in the
emission is due to the fact that the electron does not reach directly the ground state
after its de-excitation, but it stops into an intermediate state (i.e. the triplet state)
from which the probability of falling to the ground state is extremely low. In other
words, the emission rate is much slower than singlet transitions. However, these tran-
sitions become more probable when a significant interaction between the spin angular
momentum and the orbital angular momentum is observed, for example in the pres-
ence of heavy atoms. Furthermore, solutions rich in paramagnetic species, such as
molecular oxygen O,, increase the transition probability between two electronic states
with different spin multiplicity, the so-called intersystem crossing, making these spin
transitions more probable [129, 158].The presence of the oxygen favours the mixing
between the triplet state and the singlet state of organic molecules and consequently,
the intersystem crossing occurs.

The difference between these two PL mechanisms can be better appreciated consider-
ing the following energy diagram illustrated in Fig. 2.2 which is known as the Frank-
Condon energy diagram [39, 62]. The Frank-Condon energy diagram shows how tran-
sitions can occur to different vibrational levels, resulting in characteristic shapes for
the excitation and emission spectra, as schematically shown in Fig. 2.2.
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Figure 2.2: Frank-Condon energy diagram. The horizontal lines inside the two curves
represent the vibrational energy levels generated by the oscillation of the nuclei in the
molecule with respect to their equilibrium positions. However, the allowed transitions
according to the selection rules between electronic levels are vertical. It means that
the nuclei are assumed to be frozen during the extremely short time (1071° s) needed
for the absorption of a photon, so their oscillations can be neglected as stated by the
Frank-Condon principle.
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2.2 Time-resolved photoluminescence

As time passes, the initial number of luminophores n(0) begins to decrease. The lu-
minophores will be quenched as the excitons relax, and they will not emit luminescence
anymore leaving the system free to evolve towards equilibrium. All the luminophores
are considered to be identical, and their excitons can be in a triplet or in a singlet state,
playing the role of the excited emitter. To describe the PL emission, the relaxation
function of the luminophores is a key notion and in the most general case, it is defined
as a fraction between the numbers of luminophores at a specific time n(f) and the
initial number of luminophores n(0).

The aim of this Section is to introduce a phenomenological model based on a second-
order differential equation for describing the dynamics underling the relaxation of the
luminophores, as we illustrated in [123]. A preview of the advantages of this model
that will be described throughout the Chapter are summarized here below.

¢ Firstly, the model restores the symmetry from a dynamical point of view with
dispersion models presented in Chapter 1. In fact, we describe the dynamical sys-
tem as a damped harmonic oscillator introducing a second order differential equa-
tion with time-dependent coefficients whose solution is the Kohlrausch-Williams-
Watts function. This model not only restores the parallelism with the Lorentz
dispersion model, but it paves the way to a novel approach in relaxation processes.
As it will be explained in Chapter 3, a novel transform bridges the solution of
the model and its generalization to a driven damped harmonic oscillator (i.e.
a generalized Kohlrausch-Williams-Watts function) with the Havriliak-Negami
model.

¢ Secondly, the model gives a clear physical interpretation not only for the Kohlrausch-
Williams-Watts (KWW) function, but it unveils the role of the complete mono-
tonicity and simple monotonicity in relaxation processes. These mathematical
properties are strictly linked to the nature of the dynamics experienced by the
system during relaxation.

¢ Moreover, the model solves the problem of the infinite relaxation rate at the origin
that affects the first derivative of the stretched KWW function. This singular
point is not intrinsic to the physical system, but it is only nested in the frame.
For this reason, the role of the frame is vital in the correct interpretation of the
anomalous behaviours.

¢ Last and not least, this model generalizes the bi-exponential model (i.e. a model
described by the weighted sum of two exponential functions) used in photolumi-
nescence and explains the anomalous behaviours and dynamics observed in the
experiments. The proposed model and its predictions are validated in different
environmental conditions and for a wide time-range of measurements (more than
six years of measurements).

2.2.1 Part I: the material clock frame
The necessity to introduce a second order model is linked to the frictional and restoring
nature of the forces acting on the system. The radiative friction or resistance is the
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retarding force acting on charges when the electromagnetic radiation is emitted during
a PL process. The consequence is the ineluctable decreasing of the energy and the
damping of oscillations. It is important to remark that the damping of the oscillations
occurs not only as the result of the emission, but also as the result of the collisions
with other oscillators and of the decelerating effect of the surrounding medium. The
presence of the restoring force is due to the Coulomb attraction between the positive
and negative charges that constitute the bound state in the excitons.

Despite the simplified analysis of the forces acting on the system, the relaxation still
exhibits complex and nonlinear behaviours that complicate the investigations on the
material response and properties. The key notion to understand this anomalous be-
haviour is to change the perspective with the introduction of a new frame, called
material frame, that is different from the classical laboratory one and centred in the
material itself. The anomalous behaviour has been enclosed in the flexible scale of the
material frame. Such a scale can stretch and compress the system giving an insight of
what happens from the point of view of the material during the relaxation, focusing
the attention on the dynamics which finally results to be simplified. According to this
approach, during the relaxation process the material follows its own clock, called the
material clock or material time, which is in general different from the one set in the
laboratory [52, 60, 90, 141, 148, 155, 177, 186]. The material clock represents the time
measured by a clock, whose rate itself changes: it can accelerate or decelerate. Conse-
quently, in the laboratory, the relaxation processes evolve with a different speed as the
system ages. The material clock embeds the thermal history dependence at the origin
of the anomalous behaviour

. f dx
o= 2y

where a(T (z)—"T) is a time-dependent function of the temperature of the system, T (x)
is the current temperature and 7y is the reference temperature. The only requirement
on a(7T (x) — To) is to be non-negative to ensure that the material time ¢* can never go
backwards with the increasing of the laboratory time ¢. Such a transformation implies
that the relaxation that occurs over time ¢ with time dependent relaxation time 7 in
the real time domain is equal to what occurs in the material time domain with constant
relaxation time. To model how the material clock t* marks the time, we have to define
the function a(7 (z) — 7Ty) in terms of the (inverse) Arrhenius equation in order to
explicit how the material time depends on the absolute temperature:

1 el L L
aoT(@) =To): = 755 ¢ ()
_ L L u-slog(z)
67-{:‘71
— Il_ﬁ
8

Here above, the symbol E denotes the activation energy and R is the gas constant
defined as R := N4 kg where N, is the Avogadro number and kg is the Boltzmann
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Figure 2.3: Time-dependent behaviour of the material clock (2.2) in the stretched,
compressed and laboratory frame. The vertical axis highlights the switching point in
the time-behaviour observed in the stretched and compressed case.
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directly follows considering the logarithmic version of the Arrhenius law. Once the
function a has been defined, the material clock assume the following form (2.1):

t
t —fﬂ dx Tlﬁ_ﬁ =17 (2.2)

The material clock captures all the anomalous behaviours including re-configurations,
the relaxation times distribution, the nonlinear response and also effects as ageing and

rejuvenation.

As it appears from Fig. 2.3, the concept of the material clock can be visualized by
comparing it with the linear behaviour. Here, the values of the exponent 3 can be split
into two ranges: 0 < § < 1 (solid blue line) and § > 1 (dashed red line) where the case
3 = 1 is the linear time (dotted black line) in the laboratory frame, and it represents
the only case where the clock rate is constant.

If 3 belongs to the first range (i.e. 8 € (0,1)), which from now on will be called the
stretched range, the time flows initially slowly than the time in the laboratory. After
crossing the intersection with the linear time line, the time in the material starts to
speed up and increase almost linearly. In this case, the material clock stretches the
timescale. On the other hand, if 3 > 1, the material clock compresses the timescale:
the passing of time is faster at the beginning and then, for £ > 1 it slows down its rate
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as shown in Fig. 2.3. This explains the name "compressed range", when 3 assumes
values greater than 1.

Taking into account the material frame and the forces acting on the system, the relax-
ation dynamics can be described by the following initial value problem:

n(t*) 2 dn(t") N n(t*)

=10
dt*? T dt* T2
n(0) = ng (2.3)
dn(t*)l B 7§-n0
dt* t*=0 — )

where 7% = 77, The parameter ¢ is the damping ratio, and it critically determines
the evolution of the system. Mathematically, the presence of the damping term in the
differential equation for n(#) changes the form of the solution so that the oscillations
are perturbed or even dramatically attenuated. The damping harmonic oscillator can
be:

o overdamped (¢ > 1): the system exponentially decays to a steady state without
oscillating. The return to equilibrium is slower then the critically damped case;

o critically damped (¢ = 1): the system returns to a steady state as quickly as
possible without oscillating;

¢ underdamped (0 < ¢ < 1): the system oscillates with a slightly different fre-
quency than the undamped case (¢ = 0) where the amplitude gradually decreases
to zero.

The solution of the second order differential equation (2.3) reads:

t* t*
n(t*) = nge ¢+ cos(—\/ 1-— CQ) (2.4)
T
Considering the increment of the material clock chosen (2.2)

d 1 d
dt*  Bto-1dt’

the differential equation (2.3) can be written in the laboratory frame as follows

d*n(t) 1—p3  20BtF-t\dn(t) p2t2#2
at? ( P ) a T =0

n(0) = ng

() 0 forfg>1 (2.5)
n
o limo =4 —2 for f=1

o for0< g <1
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and its solution now reads

8
ot 3
n(t) = nge C(T) cos( 5

Tt

Vi=@). (2.6)

Assuming that the system returns to equilibrium as fast as possible, i.e. the system
has been critically damped (¢ = 1), the solution of the initial value problem (2.5), i.e.
(2.6), reduces to the Kohlrausch-Williams-Watts (KWW) function:

n(t) = noe(i) : (2.7)

We should focus the attention on the initial conditions of the initial value problems in
both the frames. The first condition results to be the same of the initial value problem

in the material frame:
n(t*)

as expected since the initial number of the luminophores should be the same in any
frame. On the other hand, the second initial condition presents a variety of behaviours
according to the value of the 3 parameters. All these behaviours are a consequence of
the choice of the frame, and in order to support this idea we highlight how this initial
condition in the laboratory frame is linked to the material frame. Mathematically, we
have

=0 = n(t)];=0 = ng,

dn(t)  dn(t*) CHvl-¢ tan(i—i Vi1- CQ)

dt  dt* |t*:t75 + B (1 - ﬂtﬁil)n(t)u

and for ( = 1, we obtain

(1 — Bto=1)

dn(t dn(t*
( ) = ( ) =B T Tn(t)

dt  dt*

Thus, the two relaxation rates differ by a term which accounts for the change of the
frames: from the laboratory frame to the material frame and vice versa. At ¢t =0, it is
possible to recover the initial conditions previously defined for the respective frames.
The presence of this extra term supports our idea that the frame plays a key role in a
clear understanding of the dynamics. To be sure that the singularity does not affect the
physics, we analyse the nature of the singularity in the coefficients of the differential
equation.

The coefficient in front of the first order derivative in (2.5) represents the time-dependent
frictional term in the laboratory frame and its form is a direct consequence of the ma-
terial clock chosen (2.2):

P(t) = (2.8)

(22,
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whereas, the coefficient in front of n(t) is

324262
Q) = " (2.9)

Both of these coefficients are singular for £ = 0. This singularity influences the deriva-
tives of the KWW function. However, the singularity is not particularly disturbing,
in fact it is classified as a regular singularity |25, 95, 115, 171, 173|. In other words,
P(t) diverges no more rapidly than { and Q(t) diverges no more rapidly than %. We
remark that the singularity appears when we come back to the laboratory frame, and
it does not exist in the material frame. We therefore suspect that it is a coordinate
singularity, i.e. a singularity that is nested in the choice of the frame and therefore, it
can be erased.

At this point, we focus our attention on the time-dependent frictional term P(t). It
is important to investigate the role of this term in the dynamics of the system so we
need to find a related physical quantity in order to unveil the mechanism behind the
anomalous behaviour.

From a mesoscopic point of view, the quenching of the luminophores occurs when the
excitons relax via electron-hole recombination. The mass of the luminophores during its
emitting-life changes because of the cloud of virtual particles such as phonons, photons
and also others particles as the more reactive species in the atmosphere that surrounds
and interact with the exciton. Here, the laboratory damping coefficient in front of
the first order derivative (2.5) is the key tool to interpret correctly the experimental
results. It is therefore important to investigate the role of this term in the dynamics of
the system finding a related physical quantity in order to unveil the mechanism behind
the anomalous behaviour. The problem can be formulated introducing the Lagrangian
Z of a harmonic oscillator:

o lf’(_(t) (dn(t))Q B lfz(t)wg(t)nz(f); (2.10)
2 dt 2

where 77(t) and w(t) denote respectively the reduced mass and the frequency of the
system that are both time-dependent functions and lastly, n(t) represents the gener-
alized coordinate that defines uniquely the system. Applying the Lagrange equation,
we obtain a differential equation describing the relaxation dynamics as a damped har-
monic oscillator in terms of its time-dependent reduced mass 77 and time-dependent
frequency w(t)

d*n(t)  77(t) dn(t)
- () dt

+w?(t)n(t) =0, (2.11)

where 77 is the time derivative of the reduced mass 7. Comparing the differential
equation obtained from the analysis in the material frame (2.5) with the one derived
from the Lagrangian formalism (2.11), we get an explicit expression for the time-
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dependent reduced mass 77(t) and frequency w(t):

"Z(t)ZMtl_ﬁezc(?) , (2.12a)
,thzﬁ_z
w(t) = 5 (2.12Db)

Before investigating the key role of the reduced mass 77(t) in the dynamics, we remark
once again the correctness of the result since the expression of the Hamiltonian H of
this dynamical system given by

H— tlﬁex(f)ﬁ [ﬂ'_; (d”;it))z + %5 2;22_2712(::)] (2.13)

generalizes the Caldirola-Kanai Hamiltonian H ¢ [33, 101] that emerge fixing 3 = 1:

Hox = (¢ [f(dz—f)f + é:i,nZ(t)]. (2.14)

As it is evident, the Caldirola-Kanai Hamiltonian H v retains a time dependent re-

t

a8
QC (T) ]
duced mass 77(t) = Me but for f = 1 the frequency is merely constant w = Tiz

On the other hand, the Hamiltonian H has both a time-dependent mass and frequency.
The importance of the time-dependent reduced mass 7(t) in the dynamical equations
lies in the fact that it shows the presence of damping or/and pumping mechanisms
probing the inertia of the system that is proportional to the decay rate. The time
evolution of the reduced mass /7(t) gives a physical insight of the dynamics during the
relaxation. In Fig. 2.4, we illustrated the reduced mass 7(t) for different values of the
(3 parameter.

Firstly, let us consider the special case 3 = 1 where the reduced mass /7(t) is logarit-
mically constant in the first part of its evolution. Here the luminophores are quenched
at the same rate and the surrounding environment does not have any influence on
the dynamics of the system. In other words, the cloud of virtual particle, as phonons
and photons, generated by the radiation emitted by the luminophores do not obstacle
the luminescence. As ¢ approaches to 7, the reduced 77(t) starts to increase its value
and it implies that the dynamics is governed by a damping mechanism. Otherwise, if
3 < 1, the dynamical system present a more real behaviour. From the very beginning,
the luminophores interact with the cloud of virtual particles. This cloud deforms the
initial situation creating micro-environments and configurations that causes a distribu-
tion of relaxation time. These deformations around the luminophores can be modelled
as traps where the excited particles are captured and then released. Despite the dif-
ference between the aforementioned cases, the dynamics is essentially the same and
it is named single dynamics. The luminophores decay in parallel: the fastest decay
earlier and all the other follow according to a hierarchical order based on the relaxation
time. On the other hand the dynamics of the luminophores described by the KWW
function with 3 > 1 is dual. In other words, the dynamics is governed by a serial
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Figure 2.4: Reduced mass term 77(t) at 7 = 1 and M = 1.

mechanism as a consequence of the markedly different behaviour of the reduced mass.
In the compressed range, the reduced mass has a convexity which is absent in the other
two cases. The convexity is a hallmark of the dual dynamics. The dashed blue curve
in Fig. 2.4 initially decreases until % = 1 when the reduced mass reaches its minimum.
The decreasing of the reduced mass implies that a pumping mechanism is active. The
system favours the emission and the luminophores populates the singlet excited state.
However, as time passes, the pumping mechanism is damped and at the minimum of
the reduced mass, we reach a sort of equilibrium. The luminophores behave ideally and
emit radiation freely. According to this phenomenological model, the minimum of the
reduced mass should correspond to a plateau in the luminescence, i.e. a time interval
in which the luminescence seems to be constant (in the double log plot). Physically,
the presence of the plateau can be explained as a reconfiguration or reorganization of
the molecules: the nature of the luminophores has been changed from the triplet to the
singlet state. As the reduced mass cross the minimum, the dynamics has its turning
point and the damping mechanism takes the lead. Now, the luminescence dramatically
decreases as the reduced mass increases its value. In conclusion to this Section, there
are two possible classes of luminophores which can be distinguished on the basis of
their origin modelled by the two KWW functions. In order to adduce evidence for the
single and dual dynamics, the problem must be considered in the framework of the
physico-chemical interpretation.
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2.2.2 Part II: the KWW function as a sum of PL decays

As was evident in Section 2.2.1, two mechanisms govern the dynamics of the PL emis-
sion depending on the range of the parameter 5 and therefore there should be two
different origins for the damping. The aim of this Subsection is to find these differ-
ences expanding in series the KWW function via the so-called Prony series [49, 203].
This series reproduces quite faithfully the behaviour of the KWW function using a
finite sum of N simple exponential functions

() .y

e \T/ oy AT (2.15)
i=0

weighted by the coefficients A; that should only satisfy the following constraint:

N
d A=1 (2.16)
i=0

Under the condition (2.16), the parameters A; and K; should minimize the sum of the
squared residuals (SSR) between the KWW function and the Prony series. The SSR
is a relevant index describing the quality of the approximation obtained by the least
squared method. The more the SSR index is small, the more the Prony series ap-
proximate the KWW function. Concerning even a simple two terms Prony series, it is
possible to obtain a sufficiently high-quality approximation and both KWW functions
clearly can show its own peculiarities.

The choice to use the Prony series instead of more sophisticated results known in liter-
ature as |73, 161, 167| is due to the fact that we need only two terms in order to show
how the proposed model not only generalizes the bi-exponential model used for mod-
elling relaxation processes, but it improves the physical interpretation of experimental
data and quantities in the light of the results obtained in Section 2.2.1.

The stretched KWW function (0 < 8 < 1) can be quite well approximated by the
two-terms Prony series (2.15) provided that K; and A; are real and positive parame-
ters satisfying the condition (2.16). In Tab. 2.1, there are collected few examples of
the stretched KWW function approximated by the two-terms Prony series (2.15) with
the corresponding values of SSR. An interesting feature emerged from Tab. 2.1 is that
the K; parameters differ by several order of magnitude. Such difference increases as 3
tends to zero. Another aspect that it should be noted is the sign of the coefficients A;:
all the coefficients are positive and this is not a mere numerical coincidence as it will
be explained in Section 2.2.3.

Concerning the compressed KWW function, the two terms Prony series can be consid-
ered a satisfactory approximation also in this case, as confirmed by the values of the
SSR in Tab. 2.2. Contrary to what occurs for the stretched KWW function, the terms
in the Prony series, which is approximating the compressed exponential function, can
assume both positive and negative signs. Another difference between the stretched
and the compressed Prony series is the values of the decay rates (or the inverse of a
relaxation time). In Tab. 2.2, the two components have almost the same values of the
K; parameters, whereas, as previously remarked, in Tab. 2.1 the discrepancy needs
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Table 2.1: Parameters of the two-terms Prony series that approximates the stretched
KWW function for several values of 3. The last column is the sum of the squared

residuals (SSR).

3 parameters SSR
A, A, K, K,

0.1 0.906071 0.0939289 0.356131 1.0391 10°° 10.9237
0.2 0.891382 0.108618 0.71233  2.1053 1072 5.24985 10!
0.3 0.808055 0.191945 1.2683  3.1232 1072 3.25275 102
0.4 0.749713 0.250287 1.56817  9.9424 1072 4.84242 1073
0.5 0.694155 0.305845 1.73787 1.9646 1072 9.52931 10~*
0.6 0.63105 0.36895 1.83565 3.1490 10°!  1.99314 104
0.7 0.552047 0.447953 1.88862 4.5187 10~! 3.83391 10~°
0.8 0.445005 0.554995 1.90991 6.0787 107! 5.68391 10°¢
0.9 0.284997 0.715003 1.90434 7.8697 107! 4.29233 1077

several order of magnitude to be filled. However, expanding the KWW function into

Table 2.2: Parameters of the two-terms Prony series that approximates the com-
pressed KWW function for several values of 3. The last column is the sum of the

squared residuals (SSR).

3 parameters SSR
Ay A, Ky K

1.1 927217 -8.27217 0.79703  0.773835 8.98102- 10~
1.2 13.827 -12.827 0.758224  0.73983  4.28344- 10~*
1.3 181737 -17.1737 0.741702  0.726466 9.96678- 10~*
1.4 19.5284 -18.5284 0.734959 0.719935 1.7287- 1073
1.5 21.9199 -20.9199 0.731631 0.717709 2.55749- 103
1.6 224522 -21.4522 0.730799 0.716776 3.42634- 10~
1.7 238176 -22.8176 0.730602 0.717073  4.2894- 103
1.8 24.809 -23.809 0.730919 0.717692 5.11091- 103
1.9 27.0386 -26.0386 0.731071 0.718768 5.86421- 10~
2.0 26.5933 -25.5933 0.731862 0.719196 6.53116- 103
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Figure 2.5: Partial energy diagram showing the fundamental decay rates used to

model a photoluminescent system. Excited vibrational levels have been omitted for
semplicity.

a Prony series does not allow an immediate understanding of the physical meaning
and role of A; and K;. The key to unlock the physical meaning behind the above
observations is to introduce the physical-chemical interpretation based on the kinetic
equations. The physical-chemical interpretation of the PL emission based on the ki-
netic equations allows us to consider few decay pathways, the one showed in Fig. 2.5.
The time evolution of the excited luminophores in singlet and triplet states is given by
the following coupled equations modelled using the scheme shown in Fig. 2.5:

dn(i‘t(t) (2.17)
= Kp ns(t) = Kp nr(t),  nr(0) =n,

where
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¢ ng(t) is the fraction of the luminophores in the singlet excited state at the time
t whereas ng(0) = m denotes the initial fraction of luminophores at ¢ = 0;

o np(t) is the fraction of the luminophores in the triplet excited state at time t.
Here, the triplet state is a special trap where the excited electron can be caught
after inverting its spin ns(0) = n is the initial fraction of luminophores at ¢ = 0
that populate the triplet state;

¢ K . and K . denote the radiative and non-radiative rates from S to

rad s non-rad s \
the ground state Sy, respectively. A determines the rate of the fluorescent

rad s
emission (= #),

o K.oq 7 and K 1 _rad 7 are the radiative and non-radiative rates characterizing
the transition from the triplet state T' to the ground state Sy, respectively. K., q

determines the rate of the phosphorescent emission;

¢ Kp is the total trapping rate, and it coincides with the intersystem crossing rate

Kigo = , that is the rate at which the triplet state has been populated by
T

the singlet exicited state;

¢ Kp is the total de-trapping rate, and it is defined as the difference between the

reverse intersystem crossing rate K jqc = (i.e. the re-population of the

r1
singlet excited state from the triplet one) and the triplet-trap rate Ky. Ky is the
rate at which the excited triplet state is impoverished via interaction with an
external trap due to the presence of more active species as the molecular oxygen.

The system (2.17) can be solved for both excited states. However, since we are in-
terested in the fluorescence intensity emission that is proportional to the number of
luminophores in S, we will consider only the solution that describes the time evolution
of the number of the luminophores in that excited state. The form of the solution is a
bi-exponential function of the form

ng(t) = Ay e K1t 4 Ay e B2t (2.18)

where K; denotes the total decay rates and the coefficients A; are defined as follows

_ Ks+ Kr++/(Ks— Kr)?+4KpKp

<& K1 5
Ks+ Ko — \/(K5+KT)2+4KDKP
< KQ = 5
o A _m(Ks—KT)+m\/(Ks—KT)2+4KDKp—2KDn
! 2/(Ks — Kr)2 + 4K, Kp
o A — —m(Kg — Kr) +m\/(Ks — Kr)2 +4KpKp + 2Kpn
2 _— .

2/(Ks — Kr)? + 4K pKp
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The coefficients A; and A, result to be normalized as we divide ng(t) by the initial
condition ng(0) = m. The decay rates should respect the constraints listed below in
order to match the experiments:

Ks > Kr 20, (2.19a)
Ko >> Ks (2.19b)
Kisc >> A (2.19¢)
Kigo >> Kisc (2.19d)
Knon-rad T >~ Krad T- (2.19)

The singlet decay rate Kg is greater than the triplet decay rate Kr (2.19a), as ex-
pected due to the fact that the fluorescent emission is a faster light-emitting process
than the phosphorescence. The constraint on the intersystem crossing (2.19b) (or the
reverse intersystem crossing (2.19¢)) prevails on the de-activation of the excited states
explaining the excitons crossover between S and T states. However, as established
by Hund’s rule [57], the triplet state T is always energetically lower than the singlet
excited state S, therefore the intersystem crossing is more favourable then the reverse
process (2.19d). To guarantee the reverse intersystem crossing, two requests should be
fulfilled: the energy split AE¢r between S and 7" should be small and an endothermic
process, as the thermal activation, should be involved to overcome the energy gap.
Under these requirements, the S state can be re-populated with a delay as compared
to the time needed to populate the S state directly via photoexcitation.

The last constraint (2.19e) imposes a direction to the competition between the non-
radiative and radiative decay rates: Ko yad T >> Krad T- This inequality can
explain the not-observed phosphorescence at room temperature.

However, it is important to underline that the reverse intersystem crossing decay rate
Ki1g¢ is strongly dependent from the temperature according to an Arrhenius law

[18, 64, 190]:

Ko = Ce o, (2.20)

where C' is the prefactor related to the spin-orbit coupling, AFE' is the singlet-triplet
energy gap, kg = 8.617333262 10_5% is the Boltzmann constant and 7 is the temper-
ature measured in Kelvin. Therefore, the de-trapping rate Kp, defined as a difference
between K g and Ko, can be both positive or negative and it plays an important
role in the interpretation of what KWW function governs the dynamics of the system.
Kp influences the sign of coefficients A; and A,. For any combination of the signs,
the sum of the coefficients A; and A, always reduces to the unity, so it results that
the bi-exponential function (2.18) is normalized. Such a normalization imposed on the
coefficients of the solution (2.18) hides the constraint A; + Ay = 1 which is the same
constraint imposed on the coefficients of the Prony series to approximate the stretched
and the compressed KWW function.

Taking into account the previous mathematical considerations on the Prony series as an
approximation to the KWW function, the attention should be focused on the physical
meaning. For this reason, we will firstly resort to an ideal experiment and then, when
the meaning of the terms in the Prony series has been understood, we can consider a
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real physical system.

After switching off the initial photoexcitation, all the luminophores are caught in the
singlet excited state. Mathematically, the initial conditions for the system (2.17) are
S(0) = m and T(0) = 0. The luminophores decay and relax to the ground state
according to (2.18) when n = 0:

m e_%(K5+Kr+\/(Ks—KT)2+4KDKP)(KS — Ky + \/(KS — K7)2 +4KpKp)
2\/(K§, —Kyp)? +4KpKp
+ = e 3 stV Kr KK KD (Ko — g + V(Ks — Kr)? +4KpKp)
2\/(KS —Kp)? +4KpKp

ns(t) =

(2.21)

As in the general case, the normalization of the coefficients result as we divide the
solution by the initial condition ng(0) = m. As depicted in Fig. 2.5, the luminophores
in the excited singlet state S decay to the ground state or to the triplet excited state T,
which is initially empty and therefore it begins to be populated via intersystem crossing.
Whatever the path chosen by the excitons, the singlet excited state is depleted in any
case. In this situation, both A; and A, assume only positive values and respect the
normalization condition (2.16). This result perfectly frames the physical situation: the
singlet excited state is decaying via intersystem crossing or to the ground state (directly
or after being captured a bit longer, explaining the differences between the order of
magnitude in the decay rates), whereas the reverse intersystem crossing and the other
radiative and non-radiative pathways are present but still asleep. Combining all the
information: the positiveness of both coefficients and the aforementioned decay routes,
the dynamics is dominated by a damping mechanism and the bi-exponential model is
therefore modelled with a stretched KWW function.

At this point, both excited states are populated and then, other paths illustrated in
Fig. 2.5 are available. The conditions on the parameters involved in the definition of
A; and A, to be satisfied are:

Ks > Kp >0, (2.22a)

Kp = K90 — Ko <0 (2.22b)

Kp>0 (2.22¢)
(Ks — Kp)*

Kp < — —-~ 2.22d

T ( )

Compared to the previous situation, the reverse intersystem crossing plays a more
relevant role. As K190 = Ko, the bi-exponential models for the fluorescence from
the singlet excited state reduces to a simple mono-exponential function. This implies
the presence of a plateau in the double-log plot highlighting a re-configuration of the
luminophores: a change of their spin. As the temperature goes down, K,jg¢: tends to
zero, whereas the triplet-trapping rate grows up due to the increasing of the concen-
tration of the quenchers Kp = K g0 — Ko < 0, and then the damping mechanism
dominates the dynamics.

To validate the approach, we consider a special case of the system (2.17): when the
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triplet and the singlet states are in quasi-equilibrium, that is the rate of production of
the triplet state is zero. The presence of the pumping mechanism is neglected if the non-
radiative triplet-trap decay rate Ko is more competitive than the reverse intersystem
crossing rate K jgc: the concentration of the quenchers starts to be enough influential
on the dynamics of the system. The pumping mechanism has just stopped its action,
Kp < 0, and the decay of the number of luminophores is unstoppable. Under these
conditions, the system (2.17) can be reduced to

dng(t
ns (1) = —Kgng(t) — Ko nr(t), ng(0)=m
dn{it( 9 (2.23)
7 0, nr(0) = n.
The solution of the system (2.23) reads
K K
ng(t) = (m + K—ETL)G_I{St — ?Zn (2.24)

As expected, it can be rewritten in terms of a two terms-Prony series (2.15) where the
parameters and coefficients are obviously

K.
o Kj=Kgand A; =m + ?On,

o Ky=0 and Ay = ——n,

and fulfil the constraint (2.16) imposed on the Prony series coefficients once we normal-
ize the result. We can separate the solution (2.24) into two contributions. The zero-th
order kinetics is a constant rate that is dependent on the concentration of luminophores
in the triplet state, whereas it is independent on the concentration of the luminophores
in the singlet excited state. The first-order kinetics is directly proportional to the con-
centration of luminophores in the singlet state. To validate the assumptions about the
Prony series presented above, the solution (2.24) should behave as a compressed KWW
function since the A; coefficients involved in the series expansion have always opposite
sign. The values of the parameters, coeflicients and the corresponding SSR. which
evaluates how good is the overlapping between the compressed KWW function and
the Prony series, are summarized and collected in Tab. 2.3. The sum of the squared
residuals ranges between 10~* + 1072 confirming a good agreement between the two
approaches. The solution is consistent with the one obtained in [15].

2.2.3 Part III: complete monotonicity vs. monotonicity: a
mathematical tool able to sum up all the physical prop-
erties

The term component is used to indicate the ordinate spatial aggregation inside the class
of the luminophores that shows the same PL degradation decay (i.e. the same value
of 3) and consequently, also the same dynamics. Concerning the results obtained up
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Table 2.3: Parameters of the zero-th and first-order kinetics (two-terms Prony series
with Ky = 0) that approximates the compressed KWW function for several values of
S. The last column is the sum of the squared residuals (SSR).

parameters

B SSR
A K

1.1 2.09995-10~7 1.03288 3.76718- 1074
1.2 3.53297-10°7 1.06063 1.26035- 103
1.3 4.54678-10°7 1.08409 2.40555- 103
1.4 5.28605-107 1.10393 3.66868- 10~*
1.5 5.83922-1077 1.1207 4.96133- 1073
1.6 6.26239-1077 1.13483 6.22604- 103
1.7 6.59223-10~7 1.14669 7.4234- 103
1.8 6.85322-1077 1.15659 8.52553- 1073
1.9 7.06193-10°7 1.16477 9.51321- 103
2.0 7.22969-10~7 1.17146 1.03749- 1072

to now, there are two classes of luminophores: one described by the stretched KWW
function and the other one by the compressed KWW function. The introduction of
these components inside the classes do not imply a long-range spacial grouping but it
describes ensembles whose elements are locally distributed on the entire system. The
phenomenological intuition on the aggregation in components, which influences the
behaviour of the luminophores relaxation, can be interpreted in the light of the crucial

mathematical properties of monotonicity and complete monotonicity.

These properties can be used as catalysts for collecting all the physical features illus-
trated in the previous subsections.
Here below there are the definitions that we will use [149|:

Definition 2.2.1. Let (a,b) be an interval on the real axis, and f(x) be a real
valued function defined on (a, b). The function is called monotonically increasing,
if for all x; and x5 € (a,b) such that x; < xy, f(z1) < f(x), so f preserves
the order. Likewise, a function is called monotonically decreasing if, whenever
xy1 < xg, then f(x) > f(x2), so it reverses the order.
In case the above inequality is strict, the function is called strictly increasing (or

decreasing).

Definition 2.2.2. Let (a,b) be an interval on the real axis, and f(z) be a real

valued function defined on (a,b). The function f(x) is said to be convex if for
any x1 and x5 € (a,b), and 0 < A < 1, we have

FIL = Ny + Axa] < (1= X)f(21) + Af(22).
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This inequality is called Jensen’s inequality.
If the above inequality is strict whenever x; # x5 and 0 < A < 1, the function is
called strictly convex.

Definition 2.2.3. Let (a,b) be an interval on the real axis, and f(z) be a real
valued function defined on (a,b). The function f(x) is said to be concave if for
any r; and x5 € (a,b), and 0 < XA < 1, we have the following Jensen’s inequality

FIT =Ny + Axa] = (1= N)f(xy) + Af(x2).

If the above inequality is strict whenever x; # x5 and 0 < A < 1, the function is
called strictly concave.

Definition 2.2.4. Let (a, b) be an interval on the real axis and f(x) be a convex
function. Then f(z) is continuous on the interior of that interval.

Comparing the definitions of convex function and concave function, it is evident
that the results obtained for convex function can be modified into results for
concave functions by multiplication of —1 and vice versa. As a last remark,
concave and convex functions may be not continuous everywhere, but the point
of discontinuity have to be on the boundary of the interval.

Definition 2.2.5. For our purposes, we can simplify the definition 2.2.2, if the
function is differentiable.

The differentiable function f defined on an open interval (a, b) is convex on (a, b)
if and only if

f(xy) = flag) > f(@g) (21 — x2) (2.25)
for all x; € (a,b) and x5 € (a,b) such that x; > x5 and is concave on (a, b) if and
only if

fxy) = fza) = fl(@o) (2 — 23) (2.26)

for all z; € (a,b) and x5 € (a,b);

Preposition 2.2.1. A twice-differentiable function f(x) defined on the interval
(a,b) is convex if and only if f”(z) > 0 for all x in the interior of (a,b) and vice
versa, it is named concave if and only if f”(z) < 0 for all x in the interior of
(a,b).

In case the above inequality are strict, we have strict convexity and strict con-
cavity respectively in the interval (a, ). The proof of the second preposition can
be found in [175].

Definition 2.2.6. A real valued function f(z), defined on an interval I = (a,b) €
R, is called complete monotone on I = (a,b), if the function f has derivatives of
all orders and satisfies the condition

(=1)"f"™(t) >0, ne€Ny, nel, (2.27)

where (" represents the n-th derivative with respect to t. Therefore, a complete

monotone function is non-negative as it is immediate to conclude considering the
case n = 0 in (2.27).
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By applying the above definitions and properties, the compressed KWW function sat-
isfies the requirement needed to be a monotonic function, whereas the stretched KWW
function is completely monotone. In this last case, the proof can be obtained either
via Laplace transform and Bernstein theorem or applying the algorithm presented here
below. If the KWW function (or more generally a relaxation function) satisfies the
following properties:

¢ it is positive, strictly convex and decreasing ;

o it is said to be of class C™(I,R) in (0, 00) is an open subset of the real number
R;

and if we consider the above prepositions on convex and concave functions we establish
a "domino-effect" algorithm that guarantees the complete monotonicity if the relax-
ation function is positive, strictly convex and decreasing. A graphical illustration is
represented in Fig. 2.6.

The stretched KWW function describes the class of completely monotone luminophores.

Oth - order | positive | strictly convex | strictly decreasing
Ist-order | negative trictly concave strictly increasing
2nd-order | positive trictly convex strictly decreasing
3th-order | negative strictly concave strictly increasing
dth-order | positive

Figure 2.6: A graphical illustration for the domino-effect algorithm.

The complete monotonicity reveals the single nature of the PL emission decay: only
the damping mechanism governs the overall dynamics. This aspect is important be-
cause it guarantees that the luminophores in the class follow parallel decay routes,
or in other words the damping mechanism dominates on the time-evolution PL decay
resulting into parallel daughters pathways, i.e. the fluorescence decay and the inter-
system crossing (see Fig. 2.5). Here, the luminophores follow pathways that exist
from the beginning: the fluorescent decay, the non-radiative excited singlet decay and
the intersystem crossing. Other possibilities are still not active. It means that the
luminophores do not interact with other species, as molecular dioxygen or more active
molecules in the environment when the dynamics is ruled by a complete monotone
relaxation function.

On the other hand, the compressed exponential function models the class of monotone
luminophores that is governed by a serial or strictly sequential decay process. Here,
the dynamics has a dual nature: there is a pumping mechanism followed by a damping
mechanism, as obtained analysing the reduced mass 77 in the compressed range. The
serial nature of the monotonic decay can be physically appreciated by the presence
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of a plateau in the luminescent emission. This plateau testifies the re-organization
experienced by the class of monotone function and it is a remarkable difference from
the class of complete monotone luminophores. The monotone dynamics described by
the compressed KWW function is not a self-consistent process as the stretched KWW
decay but it has to follow the latter in case of photoexcitation of the sample since
the pathways involved are activated only after the damping mechanism ruled by the
stretched KWW function. In fact the photoexcitation allows populating only the sin-
glet excited state and therefore the compressed KWW function can start only when
the triplet state is populated. Here, the number of the quenchers or their concentration
grows up in the sample, so their influence becomes more and more important until the
decay is unstoppable and increasingly faster with the consequent degradation of the
sample itself. The destructive effect of the increasing concentration of the quenchers
has been observed considering the Prony series expansion of the KWW function where
the main differences characterizing the two classes of luminophores clearly emerged:
in the Prony series of the stretched KWW function all the terms are positive whereas
in the Prony series that approximates the compressed KWW function there are also
negative terms. The negative terms in the compressed Prony series approximation are
related to the quenching of the luminophores by the molecular dioxygen present during
the PL measurements. These very reactive species can impoverish the triplet state
detrapping the excited electron and favouring the de-activation of the state preventing
the fluorescent emission.

The next step is to consider a physical system that can be used as a test-case for the ap-
proach: the PL emission of the Tris(8-hydroxyquinoline)aluminum molecule, or briefly
the Alqs molecule. The relaxation of the excitons described by the KWW relaxation

3
_| t
function W(t) = e (T) can be related to the decay of the number of the luminophores
that can be experimentally probed by measuring the photoluminescence decay curve.
From a mathematical point of view, we define the following notation:

o) = M0 . (2.28)

n(0)

Without loss of generality, this approach can be also applied for other photolumi-
nescent molecules.

2.3 OLEDs and Alqgs: an organic molecule for photo-
luminescence

In the last 30 years, photonics experienced a technological revolution as a result of an
intense research activity that played a key role in designing a new class of light-emitting
devices based on organic materials: OLEDs [32, 67, 134, 183]. Organic light-emitting
diodes, or shortly OLEDs, are now a reality in many practical applications (as flat panel
displays) and they are extremely competitive compared to devices made by inorganic
semiconductors |20]. OLEDs are optoelectronic devices in which the active layers are
organic thin films sandwiched between a transparent conducting anode and a metallic
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cathode as shown in Fig. 2.7.

cathode

emissive layer
(organic molecules
or polymers)

conductive layer

(organic molecules
or polymers)

anode

substrate

Figure 2.7: Schematic basic configuration of an OLED.

A wide interest in organic materials for application in OLEDs began with the pi-
oneering work of Tang and Van Slyke in 1987 [191], where the first high-luminance
low-voltage driven device is based on the molecule Alqs.

Tris(8-hydroxyquinoline)aluminum, Alqs, is one among many metal chelates well

known since a long time in the analytic literature under the name of metal oxinates.
Its condensed formula is Al(CgHgNO); where the compound in parenthesis is known
as 8-Hydroxyquinoline or Quinoline, which has been formerly used as a precipitating
or chelating agent to separate metals, and as a parent compound to make anti-malaria
drugs, fungicides, biocides, alkaloids, dyes, rubber chemicals and flavouring agents,
present in medicinal, agricultural and industrial applications, and lately in optoelec-
tronics. Alqs is a coordination complex wherein aluminum is bonded in a bidentate
manner to the conjugate base of three Quinoline ligands, as in Fig. 2.8. However, it
is not a planar molecule and it forms two different geometric isomers, meridianal and
facial, and it has been found that thin films of it are constituted mainly of meridianal
isomers.
After 30 years of research in OLEDs, Alqs is still one of the most commonly used
electron-transporting layers and luminescent materials in OLEDs. Indeed, it is essen-
tial to study the luminescence properties of this low molecular weight organic material
in order to produce good OLED devices. For that purpose, PL measurements were
performed in various samples in a systematic way.
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Meridional Facial

Figure 2.8: Molecular structure of meridianal and facial isomer of Alqs.

Alqgs has different absorption bands for wavelengths less than 450nm and it shows the
typical bell-shaped emission peaked at 540nm when a photoexcitation is driven under
pumping at 395nm. Hence, Alqs is a luminescent material in the green light region, as
illustrated in Fig. 2.9. The green emission is commonly used in OLED devices.

Due to their thermal stability, Alqsz is usually deposited in the OLED structures by

using the thermal evaporation technique in vacuum.
In this case, the evaporation rate plays an importance role to control the surface mor-
phology of the thin film and enhance the luminescence efficiency of the Alqs-based
OLED. Additionally, the thermal evaporation method allows the thin film of Alqs
to be either an emissive or an electron transporting layer in a multi-layer structure
OLED.

Unfortunately, as any other organic material, a film of Alqs is extremely sensitive
to temperature and atmospheric exposure. Such an exposure produces non-emissive
species acting as luminescence quenchers. The encapsulation of the sample is an at-
tempt to contrast the degradation: the lifetime is extended but its final demise is an
unavoidable destiny.

Figure 2.10 illustrates the experimental PL peak intensity of a 140nm thick film of
Algs, sample alq60, as a function of time in atmosphere and in a dry box: actually,
they are two samples evaporated in the same batch and therefore nominally equal.
The data show that the sample in the dry box degrades more slowly than the sample
in the atmosphere. In fact, comparing the half-life of the two films, it is evident how
influential the presence of atmospheric exposure and temperature are. In the sample
alg60 kept in a dry box the half-life is reached approximately at 6300h, whereas in the
same sample alq60 decaying in atmosphere the half-life is at 1000h.

Figure 2.10 also shows that PL intensity decays in both samples at different rates as
time increases. Indeed, in the first 1000h the rate is much faster than after that, and
overall the two decays cannot be described by a pure exponential trend that would have
been linear in a semi log representation. The two solid curves in Fig. 5 are best fits
of the experimental data with a sum of exponential functions that will be introduced
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Figure 2.9: Optical absorption spectrum (left) and emission spectrum, (right), at
room temperature of a 32 nm thick Alqs film thermally evaporated on a silica sub-
strate. The arrow indicates the pumping wavelength Aexe — 395 nm. Reprinted from
"Singular Photoluminescence Behavior of Alg3 Films at Very Long Decay Times" by G.
Baldacchini et al. Journal of Luminescence, 2018, Volume (193), 106-113. Copyright
[2018] by the Name of Copyright Holder.

later on.

Anyway, on the basis of its promising applications in optoelectronics, many studies
have been focused on the optimization of the device performance with respect to effi-
ciency, long-term stability, as above, and charge transfer properties.

Among many technical approaches, thermal annealing was discovered to be very effec-
tive in influencing the above properties.

The thermal annealing is a heat treatment process which alters the microstructure of
a material in order to change its mechanical and/or electrical properties. The thermal
annealing of the emissive layer in an OLED improves incredibly not only the efliciency
of the devices but also the PL emission and the lifetime contrasting the degradation
for very long time, more than 10,000h.

However, in spite of advances in Alqz based devices, the knowledge and understanding
of the optical properties of Alqs and its chemical and environmental stability is still
limited, a situation that requires further studies.

2.4 The PL emission in the Alqgs; molecule

The aim of this Section is to use the approach delineated in Section 2.2 and in [123] to
explain the PL intensity decay of the Algs molecule. As presented in [12-15], the PL
intensity decay can be described with a multi-exponential model based on the KWW
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Figure 2.10: Photoluminescence intensity peak of the 140nm thick film alq60 in at-
mosphere (black square) and in dry box (white square). Reprinted from "Singular
Photoluminescence Behavior of Alg3 Films at Very Long Decay Times" by G. Baldac-
chini et al. Journal of Luminescence, 2018, Volume (193), 106-113. Copyright |2018]
by the Name of Copyright Holder.
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functions, the so-called four components model:
1 A
I(t) =Y Le (’) } (2.29)

where the total intensity I(t) consists of four components characterized by three param-
eters I;, 3; and 7;, which respectively represent the amplitude, the KWW parameter
and the constant time of the i-th component. In order to satisfy the normalization
condition to the overall process, the four component model (2.29) should respect the
following constraint imposed on the sum of the amplitudes

4
d Li=h+L+I+1=1 (2.30)

1=1

Here, the amplitudes of the components depend on the physical and chemical condi-
tions during the thermal evaporation and annealing processes, whereas the character-
istic times depend on the environmental conditions.

Figures 2.11 and 2.12 illustrate the normalized intensity emission (black circles) of the
reference sample alq63-3 and of the sample alq65-1, which is annealed in dry oxygen
at 180°C. The solid red line represents the best fit of the experimental data by using
(2.29), whereas the dashed lines are the components. The inserts of Figs. 2.11-2.12
display with magnification the end tail of the normalized PL emission. Only the fourth
component is still surviving in the very long time range.

Comparing the intensity decay of the two samples, it is evident that the thermal treat-
ment significantly improved the PL emission: the normalized emission intensity in the
reference sample alq63-3 at 50,000h is about 3 - 1077, whereas is 0.02 in the annealed
sample alq65-1, almost three orders of magnitude bigger! More detailed information
is contained in the retrieved amplitudes and time constants of the four components
collected in Table 2.4.

From a strictly numerical point of view, the process of annealing produced these re-
markable consequences:

¢ I; and I, are the same within the standard deviation (4%),
o Iy decreases from 51% to 27%,

o I increases from 17% to 45%,

¢ 74 increases from 7200h to 30,398h,

which clearly reflect the sizeable increment in the intensity and duration of the lumi-
nescence.

Another consequence of the thermal annealing is the rearrangement of the compo-
nents, which is better deduced by observing the behaviour of the components (dashed
lines) illustrated in Figs. 2.11 and 2.12. In the reference sample alq63-3, the order
among the components has not been preserved during the photoluminescent decay. Up
to a hundred hours, the order of the intensity arranged from the lowest to the highest
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Figure 2.11: PL intensity of sample alq63-3 decaying in air with a zoom for the
time-resolved PL after 10,000 h (black circles).
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Figure 2.12: PL intensity of sample alq65-1 decaying in air with a zoom for the

time-resolved PL after 10,000 h (black circles).
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is Iy, Iy, 15 and finally I3. Between 100h and 1500h, I and I, swap. Only after 6000h
the order is restored, as remarked in Fig. 2.11. Instead, in annealed sample alq65-1 all
four components are perfectly organized from the very beginning till the end of the PL
decay, i.e. from a fraction of a second to 50,000h, as remarked in Fig. 2.12. However,
the fourth component in alg65-1, as in alq63-3, is described by a compressed KWW
function that is a simply monotone function: a re-organization or re-configuration has
been expected in both the samples.

Table 2.4: Amplitudes, time constants, and KWW parameter 3 of the four compo-
nents for the reference not-annealed sample alq63-3 and the sample alq65-1, which has
been annealed in dry oxygen at 180°C, retrieved by fitting the experimental data with

(2.29).

Sample  Amplitude (%) Time constant(s™!) 5 Y2 (107%)

L I, Iy Iy 1 T2 T3 T4 B1 B2 B B4

alg63-3 11 41 40 & 0.72 332 3195 13381 1 1 2 1.57 15

alg65-1 14 20 25 41 0.61 300 2819 30398 1 1 1 1.39 117

Once we understand how many components are needed for describing the profile of
the PL emission and the best fit function for interpolating the experimental data, we
apply our model to investigate the hidden dynamics in terms of pumping and damping
mechanism behind the abrupt decreasing observed at the end of the time evolution of
the photoluminescent intensity, see Figs. 2.11 and 2.12, and the negative bump in sam-
ple alq63-3 around 5000h, see Fig. 2.11. Knowing the time behaviour of the reduced
mass (2.12a), it is possible to establish if the pumping or the damping mechanism is
acting on the system and then observe how it influences the luminescence. Figure 2.13
represents the time evolution of the reduced mass 7(t) for the I, component in the
alq63-3. The choice to consider the fourth component is due to the fact that it is the
only component in the very long time range that still survives (see inserts of Figs. 2.11
and 2.12). This allows us to observe clearly the mechanism behind the intensity decay
in a physical system in order to apply it to the whole range of data validating our ap-
proach and hypothesis. Once the minimum of the function /7(), i.e. the turning point
at 4514h in Fig. 2.13, has been exceeded, the reduced mass 7(t) starts to increase and
so, the damping mechanism dominates the dynamics of the system. The first derivative
with respect to time of the reduced mass should be analysed in order to find the exact
time instant when the damping takes the place of the pumping mechanism and the
plateau of the luminescence should appear. In a neighbourhood of 3000h < ¢ < 5000h,
the PL intensity is expected to be almost constant. As shown in Fig. 2.14, we found
the expected plateau. As explained in Section 2.2.2, this phenomenon is due to the fact
that the values of the triplet-trapping rate K and the reverse intersystem crossing rate
K 1g¢ are approximately equal. The system is in a quasi-equilibrium and the decay
slows down according to a pure exponential behaviour that appears as a plateau in the
normalized PL intensity. As Ko overcomes definitely K 1gcy, the concentration of the
quenchers cannot be neglected any more and becomes the main influential responsible
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Figure 2.13: The time dependent reduced mass 7(t) (2.12a) of the fourth component
of the sample alq63-3.

for the abrupt decreasing in the PL intensity observed in proximity of t=10,000h. The
dynamics hidden behind the whole intensity emission can be analysed evaluating the
time-dependent reduced mass 7(t) for each component that highlights the range of
the influence of each component in the PL decay. With the knowledge of the time
behaviour of the reduced mass, it is possible to predict the presence and the posi-
tion of the plateau. To support this idea, it is useful to compare all the curves of
the reduced mass with the data collected concerning the reference sample alq63-3 as
shown in Fig. 2.15. Each solid line represents the reduced mass corresponding to each
component. The presence of the knee, borrowing the term from high-energy physics,
can be explained as the result of the superposition of the effects determined by all the
components. The appearance of the “knee” is due to the damping effect of the first
three components and the pumping of the last one. It is also crucial for the reliability
of the model to observe that the faintest decrease in photoluminescence around 2000h
has been identified by the minimum of the third component. However, it is less evident
than the knee since there is still living the fourth component and its pumping mecha-
nism is active at that moment. After 10,000h all the reduced masses contribute as a
damping mechanics explaining the abrupt decay observed. From 10, 000h the pumping
and the quasi-equilibrium phase have been overcome and the system starts to rapidly
“quench” the luminescence giving a physical interpretation to this sudden decreasing
of the luminescence: there are no other (relevant) components in this time range that
are pumping against the decreasing of all four components. Analogous results have
been obtained also for the sample alq65-1 (see Fig. 2.12, Fig. 2.16 and Tab. 2.4 ), but
they have been reported here for sake of conciseness.

However, as observed in Section 2.2.3, the compressed KWW function is not complete
monotone and this fact, according to our phenomenological model, indicates that the
dynamics is dual and therefore, it should be another reconfiguration, or in other words
another plateau has been expected. In fact, the presence of the compressed exponential
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Figure 2.14: PL intensity of the sample alq63-3 decaying in air (blue dots) and the
time-dependent reduced mass 77(t) (red solid line).
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Figure 2.15: PL intensity of the sample alq63-3 decaying in air (blue dots) and the
time-dependent reduced mass /7(t) at different relaxation time corresponding to each
component: 7=0.72h blue solid line, 7=332h green solid line, 7=3195h orange solid
line and finally 7=13381h red solid line.



2.4 The PL emission in the Alq; molecule a7

— uf(t) for the 1st component
p(t) for the 2nd component
pit) for the 3th component

o | T pit) for the 4th component

Figure 2.16: PL intensity of the sample alq65-1 decaying in air (blue dots) annealed
at 180°C in dry Oy and the time-dependent reduced mass 7(t) at different relaxation
time corresponding to each component: 7—0.61h blue solid line, 7—300h green solid
line, 7=2819h orange solid line and finally 7—32,451h red solid line.

£ means that there is a disorder or an heterogeneity in the system (i.e. the increasingly
cumbersome presence of the molecular oxygen), which implies the increasingly faster
decay and consequently, the pressing degradation of the Alqs sample. This plateau has
been expected since the number of the quenchers has been increased but meanwhile
also the number of the luminophores that are still active has decreased, therefore the
rate of decay Ko slowed down. So, it is possible to gain again a quasi-equilibrium
situation: Kp = 0 that physically explain the presence of the plateau.

This plateau, which until now had gone unnoticed, "appears" at t = 40,000h and it
gives a physical evidence of our model. A similar observation emerges also for the
annealed sample. The thermal annealing allowed to even out differences between the
plateau and the following damping in the decay till 30,000h as it can be observed in
Fig. 2.12, but this unnoticed plateau results to be evident even if less than what is
observed in the reference sample alq63-3, and it approximately occurs at the same time,
approximately 40, 000h.

[t should be also highlighted that the time that elapses between the plateau during the
PL degradation gives an indirect measurement of the pumping time range needed to
populate the singlet excited state. A better overview can be obtained by considering
also the kinetics equation approach. This allows us to give a further evidence of the
correctness of the interpretation. Figures 2.17 and 2.18 illustrate how the theoretical
fits defined via two-terms Prony series (i.e. the bi-exponential model used in photolu-
minescence (2.18) and its approximation (2.24)) can match the data of the reference
sample alq63-3 and the annealed one, alq65-1.
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Table 2.5: Amplitude and time constant of the fourth component I, for the reference
not-annealed sample alq63-3 and alq65-1, which has been annealed in dry oxygen at
180°C, retrieved by fitting the experimental data with (2.29).

parameters
A Ks Kp
alq63-3 none 0.15 0.1210~* 0.62 1077
alg65-1  dry O 0.40 0.013 67.0 1077

sample annealing

alq63-3 best fit
— = two-terms Prony series Eq. (2.18)

----- two-terms Prony series Eq. (2.24)

Figure 2.17: PL intensity of sample alq63-3 decaying in Air after 10, 000h (full black
circles), best fit (solid red line) by using (2.29) and parameters presented in Table 2.5
and the Prony series approximation of the fourth component by using (2.18) (dashed
purple line) and (2.24) (dashed orange line).

algh3-3 best fit
| = = two-terms Prony series Eq (2.18)

1 =---- two-terms Prony series Eq. (2.24)

Figure 2.18: PL intensity of sample alq65-1 decaying in Air after 10, 000h (full black
circles), best fit (solid red line) by using (2.29) and parameters collected in Table 2.5
and the Prony series approximation of the fourth component by using (2.18) (dashed
purple line) and (2.24) (dashed orange line).

It is immediately observed that the two-terms Prony series is a reliable approxima-
tion tool for the KWW function even for a physical real system, so confirming the
mathematical results obtained exploiting the minimum square method in Section 3.
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In particular the two term Prony series (2.24) with only damping mechanisms active
seems to be in better agreement with the experimental data. The parameters of the
Prony series (2.24) obtained from the best fit are reported in Table 2.5.

Table 2.6: Amplitude and time constants of the fourth component [, for the reference
not-annealed sample alq63-3 and alq65-1, which has been annealed in dry oxygen at
180°C, retrieved by fitting the experimental data with Eq. (19).

Prony series approximation parameters
samples amplitude(%) Kg[107%s7!| Kp[10~7s7!]
alq63-3 15 0.12 0.62 1077
alq65-1 40 0.013 67.0 1077

It should be noted that the best fit (solid red line) and the Prony approximation
(2.24) (dashed orange line) tend to overlap. Indeed, the discrepancies between the two
lines is no larger than 0.0005! The fitting values in Table 2.5 are in accordance with
the ones collected in Table 3 in reference [15|, where the singlet decay rate K is equal
to Ti and Ko is equal to the parameter oy introduced in [15]. Framing these values in
the physical context of the excited states sketched in Fig. 2.5, it is possible to interpret
the a parameter introduced in [15] as the triplet-trap decay rate due to more reactive
species as the molecular oxygen that inhibits the luminophores. Finally, the dashed
purple lines in Figs. 2.17 and 2.18 represent the solution in terms of the two-terms
Prony series, i.e. the usual bi-exponential model in photoluminescence, (2.18) and it
is drawn not only to highlight the quality of the underlying assumptions in (2.24) but
it also helps in the identification of the unnoticed plateau. The compressed KWW
function (red solid line) and the kinetics equation approximation (blue dashed line) are
confining the last plateau in Fig. 2.17. The plateau at 4500h can represent a transition
from an amorphous to crystalline phase transition, or in other words an early stage of
the crystalline phase «, whereas the last plateau at 40, 000h can be associated with the
so-called ar phase transition. In conclusion, the damping mechanism, which dominates
the decay after the fourth component in both samples, may be counteracted by the
pumping effect generated by a fifth component. Since this fifth component appears
only after 50,000h and its intensity is extremely low, approximately it is 10% less than
the corresponding amplitude of the fourth component, it is possible to truncate the
model up to the fourth component.
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2.5 Conclusions to Chapter 2

The relaxation of various physical systems has been found to follow the Kohlrausch-
Williams-Watts (KWW) function, as for example in glass-forming liquids [201], glassy
materials [162, 163| and in the luminescent decay in solid state matter [12, 15, 29, 36,
42, 61, 125, 126, 181]. Although the qualitative agreement between the experimen-
tal data and the theoretical fit based on the KWW function, its physical meaning is
quite elusive. In order to find out this meaning, we outlined a phenomenological model
based on a second order differential equation. The model has been articulated into
three steps.

Firstly, the anomalous relaxation governed by the KWW function has been simplified
by choosing an alternative frame, called material frame, where the relaxation behaves
ideally thanks to the introduction of the so-called material clock. This clock marks
the time in a different way from the laboratory one: it can slow down or accelerate
the passing of time embedding the deviations from the pure and mono-exponential be-
haviour that the system experienced during the relaxation. The main result of this step
is the definition of a second order differential equation describing a damped harmonic
oscillator characterized by a time-dependent reduced mass /7(t) and a time-dependent
frequency w(t). The introduction of a time-dependent reduced mass 7¢(#) in the labora-
tory frame unveils the relaxation dynamics distinguishing the stretched KWW function
from the compressed KWW function on the base of their influence on the dynamics
of the system. There are two dynamics: a pumping and a damping mechanism. The
stretched KWW function is governed only by a damping mechanism, whereas the com-
pressed KWW function describes a dual dynamics where both these mechanisms occur.
In case of dual dynamics, the main features in the time-resolved photoluminescence are
the faster than exponential decay and the presence of a plateau in the photolumines-
cent intensity emission in correspondence of the minimum of the reduced mass 77(t).
The plateau appears when a quasi-equilibrium is established between the pathways
followed by the luminophores during their relaxation. The quasi-equilibrium can be
considered as a quasi-phase transition.

In the second step, the analysis is worked out approximating the KWW function via
Prony series. This approximation paves the way to an interesting result: it highlights
the origin of the KWW function as a superposition of the photoluminescent decay path-
ways and it gives further evidences of the differences between the two KWW functions.
The stretched KWW function can be approximated by a sum of simple exponential
functions whereas the compressed KWW function has in its series expansion both pos-
itive and negative terms. The presence of the negative terms is due to the fact that
the luminophores, i.e. the emitting centres, are quenched after interacting with more
active species as the molecular dioxygen O; in the atmosphere.

The third part of our approach consists in the introduction of the mathematical con-
cept of monotonicity and complete monotonicity. These mathematical properties are
able to sum up all the physical properties, features and results found in the analysis
of the relaxation giving a physical insight of their importance in modeling relaxation
processes.

Among all the physical system experienced relaxation processes, the photoluminescence
from organic molecules as the Tris(8-hydroxyquinoline)alluminium (Alqgs) has been con-
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sidered. The choice of this molecule as a test-case is based both on the large amount
of data available and the widely applications of this material in organic light-emitting
diodes (OLEDs), a spreading technology in our daily life. However, it is important to
emphasize that our phenomenological model can be extended and generalized also to
other photoluminescent materials. The large amount of data allowed to have a com-
plete overview on the time-resolved PL emission giving the possibility to have a good
test-case for the approach proposed.

In conclusion, we want to focus the attention on the advantages carried out by the
phenomenological model proposed. In addition to being consistent with the known
literature, and to framing the physical meaning of the KWW function always keeping
in mind the role in the dynamics of the complete monotonicity, the proposed model
solved the problem of the singularity at the origin classifying it as a coordinate singu-
larity. Last but not least, it restored the symmetry from a dynamical point of view
between the dispersion and the relaxation models that are both described by a damped
harmonic oscillator (or a driven damped harmonic oscillator as shown in Chapter 3).
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Chapter 3

Dynamical systems and their
evolution: mathematical methods and
physical interpretations

3.1 Introduction to modelling dynamical systems

A dynamical system is a mathematical model that describes how a real system evolves
in time in terms of a differential equation once the physics governing the system has
been abstracted from the complexity nested in real processes.

As described in Chapter 2 and in [123], the analysis of a complex system is successfully
performed changing the perspective using a material frame, that is a frame equipped
with a clock that marks the time differently from the one set in the laboratory. The
choice of a different frame favours the emerging of the physics and consequently, a
clearer description of the luminophores relaxation as a second order differential equation
whose physical meaning is inscribed in the framework of a damped harmonic oscillator.
More generally, we state that the relaxation functions are solutions of evolutionary
problems emerging within relevant mathematical treatments that include fractional
calculus |78|, operational methods |23, 24| and the theory of exponential operators and
semigroups [116].

Our investigation on the properties of the relaxation functions and their evolutionary
problems starts with the composition rule.

The term composition rule was introduced for the first time in [78] and it refers to
a binary and associative operation that composes relaxation functions imitating the
semigroup property |5, 56, 57, 68|.

Mathematically, the composition rule reads

W(t ) o W(ty, to) = W(t, tg), (3.1)

where ty and ¢ denote the initial and the final endpoints in the time interval consid-
ered whereas ¢; is an intermediate (or dummy) time instant ranging between ¢, and ¢
which splits the evolution into two parts, lastly ‘o’ denotes the binary and associative
composition operation.

Here, W(t, tp) is the relaxation function in the time interval [to,t] and it is built from
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W(t, ty) and W(ty,t;) that from now on are called relaxation function syntagms or
shortly relaxation syntagms. The relaxation syntagms are analogous or identical sub-
sets of the overall relaxation function in the respective time intervals [to, 1] and [t;, ]
that can exist alone or be part of an ordered sequence aimed to obtain a description
ranging in a wider time interval. In other words, the time-ordered ensemble of these
syntagms reproduces the evolution of the system in the whole time interval.

The notation used in (3.1) is consistent with the one presented in Chapter 1, that is
the function W(t) is the relaxation function defined in [0, ¢].

As shown in Chapter 2, we defined the relaxation function W(¢) in [0,¢] as the fraction
of relaxing centres at time ¢ with respect to the initial number of relaxing centres at

t=20:
n(t)

V() =5 (3.2)

As a mean to highlight that we consider relaxation syntagms, we will add square

brackets to the right-hand side of (3.2) that evoke the square parentheses of the time
intervals and so, the meaning of the relaxation syntagm is clearly stated:

_ [n(t) ‘
W(1) = [n (0)]. (3.3)
In this way we emphasize how the composition rule reflects the composition of the
underlying time interval on which each relaxation syntagm has been defined.
Resorting to the above definition of relaxation function (3.3), we can recast the com-
position rule (3.1) in [fg,#] in terms of the fraction of relaxing centres at time ¢ with
respect to the number of relaxing centres at a general starting time instant ¢, as the
result of the composition of the relaxation syntagms:

[n(t) ] . [n(tl)] _ [n(t) ] (3.4)

n(ty) n(to) n(tg)

The two definitions, (3.1) and (3.4), are equivalent.
A system that satisfies the composition rule is deterministic, and it can be physically

interpreted as follows.

Imagine you have a couple of observers that analyses the same system from a different
point of view. The evolution of the system does not change if the composition rule
is fulfilled. This is the fundamental requirement to be considered when modelling a
dynamical system.

The aim of this Chapter is to describe and design new methodologies, approaches,
and results in modelling dynamical systems. The idea is to address the problem of
modelling the evolution of relaxation processes from different perspectives, so we en-
large the landscape of possible mathematical methods and physical interpretations to
simplify the complexity that characterizes the relaxation processes.

As previously described, we firstly design the methodologies to obtain the composition
rule for the relaxation functions of physical interest in complex processes. The com-
position rule offers an alternative tool to solve the initial value problems in terms of
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ordinary, partial or fractional differential equations framed in the context of the theory
of exponential operators and semigroups.

3.2 Debye or pure exponential composition rule

In this Section we design the methodology for the time syntagms’ composition through
mixed types of research techniques taking the advantages of the Debye relaxation that

is the simplest case: t

Up(t)=e~, (3.5)
where 7 is the relaxation time.
In order to simplify the notation in the following calculations, we assume a dimension-

less definition for the time variable: £ =T
According to this notation the Debye relaxation function (3.5) now reads:

Up(T)=eT. (3.6)

As described in Section 3.1, the time interval [T}, T'] is split up in two subsets, [Tj, T1)
and [T}, T|, and therefore we define the Debye relaxation (3.6) associated to all these

time intervals

_ﬂ, T -

lIJD(Z'F :TO) = n (T[))) D = e_(T_TO):
rn(T) T

\I,D(T 1Tl) = ,n(T]_), D =e€ T Tl): (37)
rn(T))7 o

Up(Th, To) = -TLETS.D = ¢~ (=T,

The composition rule for the Debye relaxation has the following form, where 'o is the
unknown binary and associative operation that composes the relaxation syntagms

U (T, 1)) o Up(T), Tp) = [n(T) ]D . [n(TL)]D

n(Ty) n(Ty)
— o~ (T-T) g ,~(T\—Th)
= ¢~ (T-To) (3.8)
Nl

n(Tu) D

= ‘I’D(T, Tg)
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In the Debye case (3.8), the composition rule is evidently fulfilled replacing the "o’
operation with the multiplication, as shown here below:

Up(T,1y) - Vp(Th,Th) = [:((’;))]D ' [ZE?;;]D

— o~ (T-T) | ,~(Ti~To)

— ¢~ (T=To) (3.9)
_ [n(T)]

n(Ty)dp
= ‘I’D(T Tg)

However, the anomalous (or non-Debye) relaxations cannot satisfy the composition
rule if the associative and binary ‘o’ operation is the multiplication. And accordingly,
we have to introduce a more general ‘o’ operation to compose anomalous relaxation
processes.

3.2.1 Composition rule via Cauchy convolution product

A first possibility to generalize the Debye composition rule is to follow the methodology
we illustrated in |78, 79|. Focusing the attention on the terms involved in the ‘o’ oper-
ation, we can define an ad hoc operation aimed to validate the composition rule (3.8).
In order to consider only the strictly necessary factors involved in the ‘o’-operation, we
perform the series expansion of each relaxation syntagm and we get

Up(T,Ty) o Up(Ty, Ty) = [n(-T)] 5 [n(Tl)]

n(Tl) D H(T[)) D
— ¢ (T-T) o ~(T1-To)
e (T Tl - (T —To)" (3.10)
ST S T

RS PN (T—Tl) (T, — Tp)" ¥
=21 Tk+1)  Tr—Fk+1)

r=0 k=0

where in the last line we use the series identity named Cauchy convolution product [81]

ZZ(LW = Z A r—k- (311)

Now we introduce the ad hoc definition for the Debye relaxation

Fk+1)I(r—k+1)
I'(r+2)

(T =T o (Th = Tp)" ™ = (T -Ty)" (3.12)
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that can be replaced in (3.10) so we obtain

volt o wy(r 1) = [2D)] o (M)

_ o~ (T=T1) o —=(T1=Tp)

(T =T (T) —T,)" "
—~Tk+1)  T(r—k+1)

_ = 1\ - (T_TO)T
=2V Ty (313)

_ = *.-"(T_TO)T
i)

ng
Y

n(T)
ml:
=W (TaTU)

and thus, the composition rule for the relaxation syntagms is fulfilled.

The ad hoc definition (3.12) is the starting point for building an integro-differential
evolution equation for the Debye process (3.6). The first step is to write (3.12) in its
integral form

| r_ 1
(T =T o (Ty = Ty) " = T,

/ ' dT(T —T)* - (T — Ty)* (3.14)

and then, we replace the above definition (3.14) of the ‘o' operation in (3.10).
After swapping the series with the integral, we obtain

Up(T,Th) 0 Wp(Th, To) [ ((T))] o [”g;;]u
S CrS ro(T- T1 ATy = Ty) 0
XY [, e E
. T dT = T " (T TD)T k
_fTOT Tgrz; pr F(1+k 1+r—k)'

(3.15)
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Once again we resort to the identity (3.11) in order to point out the two Debye relax-
ations in each time syntagms

Tdn O o (T =TT — Ty) "
/TO T-T, TZ_;(_I) Z_g T(1+k)D(1+7 — k)
(T dh ST -T) S (M- Ty)”
/TO T—Tokz_; L(k+1) Z_O: I(r+1)

T
= / ﬂe—(T—Tl) .o~ (T1=Th) (3.16)
To T — TU

/T ih_, (T,Ty) - U p(Ty, Tp)
- TOT*TO D s 41 D\L1,40

Todrn n(T) n(Ty)
B /T T—1, [n(Tl)]p' [n(TO)]D'

According to the procedure illustrated in [78], we can embed the normalization term

T%To in (3.16) introducing a dummy variable u that ranges in [0, 1] as shown below

d T 1
—/ dT1/ du Vp(u T,uTy) - Vp(u Ty,u Tp)
Tu
n(u 1Y)
dT d .
T dr /Tn l/ " n(u T1 [ (1 TO)]D

Tu

ﬁ ; dTL/ du ¢~ T-To)

—(T—-To)

(3.17)

B [:LL((;;))]D
=Up(T,Tp).

The strategy to introduce the dummy variable w is proven to be very useful in Section
3.3 where we face the problem of the composition of two relaxation syntagms in terms
of the one-parameter Mittag-Lefller function.

3.2.2 Composition rule via Reynolds-Leibnitz theorem

In this Subsection, we present another promising and original method based on a
kinematic application of the Euler expansion formula (the Reynolds-Leibnitz transport
theorem [174]) for the change of an integral of a fluid quantity over an arbitrary fluid
volume moving along the fluid path.

The method defines a general integro-differential equation that fulfils the requirement
to be a composition rule for anomalous relaxation syntagms and at the same time, it
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offers a clear physical interpretation.

Once we establish that the system obeys to the composition rule, we implicitly assume
that the relaxation behaves intensively. Let us explain what we mean with the concept
of intensive behaviour of the relaxation function. The relaxation functions in each
time syntagm, [T, 73] and [T3,T], has the same evolution of the relaxation in the
whole time syntagm [T}, T]. For this reason, the relaxation function and the product
of its syntagms are considered as an intensive property of the system, and therefore we
resort to the Reynolds-Leibnitz theorem to track their evolution and their composition.
This theorem states that the total rate of the changes of an intensive quantity f in
a moving (time-dependent) incompressible volume V(7T') is equal to the generation of
this quantity within the volume plus the flux of this property in and out of the volume
through the surface 9V(T") bounding the volume V(T') itself.

As the quantity moves and distorts the flowfield, the volume V(T') and its surface
IV(T) move and distort with it.

Mathematically, the Reynolds-Leibnitz theorem reads

d , of
< de_f av 2L 3.18
dT V(1) V(1) aT net ( )

where f is an intensive property of the system, fnct: fin' fout denotes the net flux,
V(T) is the control volume or region in the Euclidean space with boundary oV(T').

However, the time syntagms are one-dimensional and therefore, it is possible to reduce
the theorem in its one-dimensional case, also known in literature as Leibniz theorem:

d [ B B(T) of(T,Th) db(T) da(T)
0T Jy 1T = f A g g0, G — s, 1%
(3.19)

Now we assume that a(T) = Ty, b(T') = T and the intensive function coincides with
the product of the relaxation functions in the respective time syntagms

AT, T =V(T,Th)  U(Ty, Ty)

n(T n(T, (3.20)
- [n((Tl))] ' [nETU;]’

where T, is considered as a constant.

Under these assumptions, we recast (3.19) as follows

% TdeI U(T, Ty) - U(Ty, Tp) _/Tdel %@(T,Tl)-\P(ThTD)
= [ D) O [ MDY
- (2]

= U(T,Tp).
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It is possible to compact the notation introducing the commutator operator:

& [ an)semy= & g - [l )

dT To Th To

According to the Reynolds-Leibniz theorem, the result of the composition rule repre-
sents the net flow of the relaxation function in [Ty, 7]: W(7,7,). This interpretation
based on the commutator operator (3.22) perfectly frames the result since the relaxation
function evaluated in the total time range [Tp, T is made up with its time syntagms,
[Ty, Ty] and [Ty, T], and it does not depend on the time instant 77.

To deeply understand the meaning of the commutator, we introduce the concept of
inverse derivative operator. This operator can be also bought on the name of anti-
derivative (or negative-derivative). In fact with this formalism it is possible to evaluate
integrals and derivatives on the same footing. In case of real order derivatives, as the
present case, the distinction between the derivative and the integral become superflu-
ous and the physical meaning of the evolution equation can emerge.

In [11, 41], the actions of the derivative operator D and its inverse operator ,, D;l are
defined as follows p

D:ﬂﬂh%af(ﬂ (3.23)
and .
n D7 f(T) — T(ﬂ}fﬂﬂ. (3.24)

The inverse operator is a special case of the known formula usually attributed to Cauchy
that reduces the calculation of the n—primitive of a function to a single integral of
convolution type

T
W D7 f(T) — /(HMTﬂﬁ*ﬂﬂL neN. (3.25)
T

0

L(n)

In case n is a positive real number, that is n € R, the definition (3.25) is the Riemann-
Liouville fractional integral 70, 166].

We extend the definitions of the derivative operator D in (3.23) and its inverse operator
7,D7" in (3.24) to the function f(T,Th).

To make the notation we introduced as clear as possible, we add a second subscript
to the operators that specifies the variables on which the operators act. Specifically,
the subscripts 1 and 2 mean respectively that the operators act on the first or on the
second variable in the argument. According to this notation, the operators defined in
(3.23) and (3.24) can be generalized as follows:

Dy f(T.T) s = f(T.T)) (3.26)

and
T

nDry: (T, Th) — dTh f(T,T1). (3.27)
To
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The formalism we have just envisaged can be combined with the result (3.22) and we
get

[DluTgDi}z]f(Tﬂ Ty) = (Dl D15 — 1,075 Dl)f(T: T1)

d " o d 3.98
-5 [ ) - /T Ty (29)
= f(T, T).

In order to point out the two relaxation syntagms, the result (3.28) can be recast as
follows:

[Dl TODTQ] W(T,T)) - (T, Ty) = (Dl 2 D7h — 1 D7h Dl)\D(T, ) - W(Ty, Tp)

d (7 Tood
== | AL W(T.T) - W T) - f ATy, V(T 1) - W(T), Ty)
= U(T,Ty),

(3.29)

or equivalently

e ToDmH ) ligg] = (o 0i—w0m 00) [T] - [z
n n{iy g n n(Ty
d? a1 [n((;?)] [nggoi] _fTO di %[n((;?)] [ngoi] (3.30)
_[s&))]‘

The commutator operator will be always different from zero, since if we compose two
non-zero relaxation syntagms, we have a composed relaxation different from zero. De-
spite its application on the simplest relaxation function, the validity of the approach can
be easily generalized to other relaxation functions, as for example in Section 3.4, pro-
vided that the relaxation functions are analytical and normalized in zero, i.e. ¥(0) = 1.
In case of the Debye relaxation, we have

| D1y, Db Wo (T, 10) - Wn(13, To) = (D1 5, D5 = 1, D Dy ) Un(T, 1) - Wn(T3, To)

d (7 rod
ﬁ dTl\IJD(T,Tl) . \I’D(Tl,TO) —f dTlﬁ\I’D(T Tl) lIfD(Tl,TU)
i (T-T) , —(Th-Th) _ i —(T-Tv) | ,—(Th—Tp)
o7 dT e € dTldTe e
Th
— e (T- To)

s
= Up(T, Ty).
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Hence, if the commutator acts on the relaxation function defined in the whole time
interval [Ty, T] we have

D11, Db | o (T, Ty) = | Dy, g, Db e
— o~ (T-Tv) (3.31)
= ‘I’D(T, Tg)

Here the commutator reduces to the identity operator.

3.3 One-Parameter Mittag-Leffler composition rule via
Cauchy convolution product

In this Section, the methodology that we set out in Subsection 3.2.1 and in details in
[78| has been applied in order to show how it is possible to obtain the composition rule
for the one-parameter Mittag-Leffler function whose numerous and various properties
have guaranteed it the high-sounding title of Queen function [43, 72, 136, 139|. This
special function is defined as follows

(3.32)
— r ﬁk +1
where z € C and [ is a real positive parameter.
8
Fixing z = — ($ and assuming 3 € (0, 1), the one-parameter Mittag-Leffler function

acquires a physical and mathematical interest since the the Fourier transform F on the
real positive line (or the Laplace transform £) of its expression

() = By~ (2)) (3.33)

-
is the Cole-Cole dispersion model [66]:

1

E(w) = T G’ (3.34)

where /3 ranges in (0, 1], 7 is the relaxation time, w denotes the frequency and i is the
imaginary unit.

The first step to define the composition rule for the one-parameter Mittag-Leflier
relaxation function (3.33) is to fix the notation for the relaxation syntagms in each
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time interval resorting to the dimensionless time variable T' = =

W (T, To) = Eﬁ( - (T- TO)ﬁ) - [::((T]“;))]ML
o (T.11) = Eﬁ( (T~ Tl)ﬁ) - [:LL((;))]ML (3:35)
W (T, To) Eﬁ(_ (1 = To) ) - [Sg;;]nn

We compose the relaxation syntagms W(74,Ty) in [Ty, 71] and ¥(7,7y) in [T}, 7]
into the relaxation ¥(7',T;) in the whole time interval [Tj, T, as follows

W (T, T1) o Wy (T, Ty) = [;L((;))]ML © [ZE;;H ML
= Eﬁ[— (T— Tl)ﬁ] OEﬁ[_ (TL _To)ﬁ]
= 5[~ (r-m)’] o
(7))
N [n(TO)]ML
= W (T, Tp).

As opposed to the Debye model, the simple multiplication cannot replace efficiently the
o’ operation. We can visualize the onset of the problem that obstacles the composition
of the relaxation syntagms (3.36) once we resort to the definition by series of the one-
parameter Mittag-Leffler function (3.32) and to the Cauchy identity (3.11), as shown
below

SIS

U (T,10) 0 Warn(Th, To) = [T?((;))]AJL © [z( )]ML

-5 on[- (5]

e DT =T & - Ty (337)
=2 T(Bk + 1) OZ ﬁr+1)

r=

- 00 (T Tl)ﬁk (Tl . T) r—k)
=2 z_; L(Bk+ 1)I(B(r — ko) +1)

At this point we introduced an ad hoc definition of the ‘o’ operation in order to guar-
antee that the composition rule (3.36) is satisfied:

(r-m)"e (r-n)" " < FOERES T - e
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Replacing (3.38) in the last line of (3.37), we get

n(T) n(Ty)
n(T—L)] L [m] ML

o[- (1) ][~ ( )]

_m()T TP N To)?r
_Z D(Bk +1) OZ 6T+1

Warr (T, T3) 0 Ware (11, Ty) = |

Il
o

k=0 r=0
e (T =T o (T = Ty)Pr
=2 (Y Z CEE+ DTG -1 (3.39)
N gp e (T =Ty
B TZ;( 2 ; (14 r)(Br+1)

To validate the result, an important step is to find an integro-differential equation able
to embed the ‘o’ operation and compose directly the time syntagms. Firstly, we need
to re-define the o' operation (3.38) as an integral

l+p6n 1
1+n T -1,

T
(T —T) o (T, — Ty) ") .= / dTy (T —T)? (T, — Tp)?"=") (3.40)
Ty

and then, we replace the new definition (3.40) in the last line of (3.37) so we obtain:

\I’ML(T: Tl) © ‘I’ML(TL: To)
_ [TL(T)] 5 [n(Tl)]

n(1y)Imr (To) I e (3.41)
N /T T, i (—=1)"(1 + fn) x—~ (T — T)"(Ty — Ty)*" ™)
CJn T-Th= (L+n) D(1+4 3r)T(1+ Bn — Br)’

=

Following the methodology we illustrated in Subsection 3.2.1 and in details in [78], the
composition rule needs to point out the relaxation syntagms.

The relaxation syntagms cannot emerge for the presence not only of the term H#n , as
in the Debye case, but also for the factor (1 + Sn). The first term can be absorbed

introducing the dummy variable u ranging in [0, 1], therefore ﬁ is replaced by the

integral fol du u™.

Unfortunately, the second obstacle — the presence of the factor (1 + Sn) — is more
difficult to fix, and we need more laborious and technical mathematical steps that we
collected in the appendix of [78].

Once developed the required procedure, we find the following expression for the com-
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position rule, where the two relaxation syntagms in terms of the one-parameter Mittag-
Leffler function have been explicitly shown:

4T Jr dTlf d“ n(u Tl ]ML. [ZEZ g;]ML - [z((]j;)))]nm (3.42)

Here, the symbol © - ' is the usual multiplication. The composition rule rewritten as
(3.42) improves its value since it makes evident its nature as an integral-differential
evolution equation. As = 1, the composition rule (3.42) for the one-parameter
Mittag-Leffler function reduces to the Debye composition rule defined in (3.17).

3.4 The general composition rules for anomalous re-
laxation functions

In this Section, we want to show how the composition rule generated from the Reynolds-
Leibnitz theorem can address elegantly the problem of composing anomalous (or non-
Debye) relaxation syntagms. The procedure to follow is described in Section 3.2.1 and
in [116]. We will consider three examples of application of this method to anomalous
relaxation functions: the three-parameter Mittag-Leffler function in Subsection 3.4.1,
the one-parameter Mittag-Leffler function in 3.4.2 and the (upper) incomplete Gamma
function in Subsection 3.4.3. In this last Subsection and in [116], we will also find out
the composition rule for the pulse response function of the (upper) incomplete Gamma
function as a derivative of the general composition rule. The result is an important
achievement since it shows not only how the general composition rule generates a
daughter composition rule via differentiation valid for the pulse response function,
but also how the theory of semigroup operators is the natural habitat for the general
composition rule. This fact supports our idea that the composition rule is a physical
manifestation of the semigroup property.

3.4.1 The case of the relaxation function based on the three-
parameter Mittag-Leffler function

As shown in Section 3.3, the composition rule for the one-parameter Mittag-Leffler
function has required substantial efforts to be obtained, and the problem is intensi-
fying as the number of the parameters increases. In this Subsection, it is possible to
have a direct evidence of the convenience of this method to define the composition
of the relaxation syntagms. Among the possible generalizations of the one-parameter
Mittag-Leffler function, we consider the three-parameter Mittag-Leffler function known
in literature as the Prabhakar function [169]:

()" -
£ ( Z AT k , a,B,7veC, R(a) >0, R(B) >0, R(y) >0, (3.43)

v dk =+ "}f



Dynamical systems and their evolution: mathematical methods and

76 physical interpretations
where («),, := F(FOE:)” ) is the Pochammer symbol [1] and 7 is the relaxation time.

8
Fixing the parameter v as equal to af + 1 and assuming z = —(%) , o <1 (or

aff < 1 as proposed in [88] and highlighted in [66]) and 5 > 0, the three-parameter
Mittag-Leffler function reads

N > (o + k)?‘ﬁk )
(= (2)) = o) kz_(; w [n’k—lrab’)rﬁ‘ ' (3.44)

The interest in this special function is due to the fact that it is involved in the definition
of the following relaxation function

Wanip(t) :==1— (E)ﬁaEgﬁaH( - (3)5)’ (3.45)

T T

whose Fourier transform F on the real positive line (or the Laplace transform L)
coincides with the Havriliak-Negami dispersion model |66]:

1

(W)= ———M 3.46
£(w) 1 ()P (3.46)
where o« < 1 (or aff < 1), f > 0, 7 is the relaxation time and w denotes the fre-
quency. Replacing f with the dimensionless time T in (3.45), we define the relaxation

Wsnrr (T, Tp) in [Ty, T

n(T)

Usni (T, To) = [;Q(TO)]:«;ML

=1 (T =) Bjpor( — (T - T)’)

and its relaxation syntagms corresponding to the subsets [Ty, Ti| and [T}, T, respec-
tively labeled as W (7T, Ty) and W(T',T})

Uy (T,T7) = [;((;))]mﬂ =1—(T—1T)% Eg,ﬁaﬂ( — (T - Tl)ﬁ)
n(Ty)

Wann (T, To) = [ =1—(Ty — Tp)P E?MH( (- T1)ﬁ).

n(Tp) ] 3ML
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Once introduced the relaxation syntagms and the relaxation function in the whole
interval [Ty, T, the general composition rule (3.29) (or (3.30)) reads

[Dh T Dilg] U (T, Th) - Waner(Th, To)
= (Dl TUD;}z - TODElg Dl)‘l’:ﬂML(T V) - Wsnr (Th, 1)

(Dl TUD;’.lz DT2 D ) [ ((Tl))] 3ML [TLE;;;

(% ijdTl—/ AT, —)

]3NIL

<1z*ﬂ%%m4—@—m%>

(1= 0 7 (- (- 0) )|

(3.47)

= o[ - (1= ]
- [sg’;))]:mu
= W (1. 15).

3.4.2 The case of the one-parameter Mittag-Leffler function

In this Subsection, we want to point out one of the special cases of the relaxation
function Wsprz(7T) when o is set equal to 1 in (3.45): the one-parameter Mittag-Leffler
function. We have therefore a direct comparison with the procedure shown in Section
3.3, and it is possible to have a fair idea of how this method overcomes the difficulties
keeping alive a clear physical meaning as explained in Section 3.2.2.

Fixing a = 1, the relaxation function Wy, (7T) in (3.45) reduces to ¥, (T) as shown
below

Uarrp(T)]am1 = 1 = T7Es 41 (= 17)
= Ey(-17) (3.48)
= ‘I’]\,{L(T).
Having got this far, we resort to the relaxation syntagms corresponding to W (7)

defined in (3.35) so that we can directly apply the general composition rule (3.29) to
the product of the relaxation syntagms Wy, (T, ) - W (11, 1) in order to compose
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them into the total relaxation syntagm V(7' T):
D11, D7h | aars (T Th) - Wara (T3, Ty)

(Dl ToDiFé - TDD;Q Dl) U (T, 1Y) - W (Th, 1)

= (Dl TODTLQ DT2 D ) [n((;jl))]ML . [ZE;;;]ML

~(ir [, m- / it o) (- (r-1)) &a( - (- )')

(3.49)

3.4.3 The case of the (upper) incomplete Gamma function: in
the laboratory frame and in the material frame

Without any loss of generality, the issue has been address also for the (upper) incom-
plete Gamma relaxation function

Yalt) = FQLJ = r(la)/t et (3:50)

where av < 1 is a real parameter, I'(+) is the well-known Gamma function [1].
This special function describes the relaxation corresponding to the Cole-Davidson dis-
persion model [66]:

1
(1 + wr)®’
where o < 1 and w denotes the frequency. The calculation of the composition can
be simplified introducing the dimensionless time variable T = ; Consequently, the
(upper) incomplete Gamma function reads

Ue(T) = ngj) = F(la) /T " de eeo1, (3.52)

£(w) =

(3.51)

In order to find the composition rule for the (upper) incomplete Gamma function
(3.52), we need to define this relaxation function in the time interval [15, 7] and in its
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respective time syntagms [Tg, 7] and [T%, T):

L GL)

v = myle ™~ @
P N e . !

wotrry - [20] - T8) 359
nry D(eTi—T

w1 = [zl - ( o) )

We compose the relaxation syntagms (73, 7y) in [Ty, 71| and W(T,Ty) in [17,T] into
the relaxation W(7T,T,) in the whole time interval [T}, T]. According to these time
intervals and their corresponding relaxation functions, the composition rule reads

Ve(T,Tp) o Ve(Ty, To) = [z((;))]( ° [Zg;g](‘

F(mT - Tl) I‘(a, T, — TU)
@)  I(a)

B [:((;;))]( = V(T Tp).

(3.54)

As described for the one-parameter Mittag-Leffler function and for the three-parameter
Mittag-Leffler function, the multiplication is not the right candidate to be the "o’ op-
eration good at satisfying the composition rule (3.55). We therefore resort once again
to the approach based on the Reynolds-Leibnitz theorem, and we obtain:

Dy, 4, D4 | Wa(T, 1)) - We(T3, Ty

1
—
~—

Ve (T, Th) - Ya(T1,To)

The relaxation function Ve (7', Ty) evaluated on the total time range [Ty, 7] is inter-
preted as the net flux according to the Reynolds-Leibniz theorem.

The semigroup property for the (upper) incomplete Gamma function (3.55) has been
verified, and the result receives a preliminary validation, considering that for @ = 1,
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the composition rule reduces to the one obtained for the Debye relaxation.
A further validation arises when the composition rule is recast in its integral form as
follows
> d (T e (@ -1 a, Ty - Ty)  T(a,T—T
/ dr X [ ar ( ) (e = Th) _ Da, 0)
T

aT I T(a) M)~ T 3%

The above expression is a convenient starting point for defining the differential form
of the composition rule valid for the pulse response function ¢g(7") = —d¥e(@)

dT
Deriving both sides of (3.56) with respect to 7', we obtain

T —(T-T0) ( _ a—1 _ —(T-To)( _ a
d ar, € (T -1)*'T(aTi Ty e (T —Tp) . (3.57)
dT" Jr, [«) [«) I«)

The above result (3.57) is exactly the Gamma semigroup with the parameter «. Here,
the semigroup operator acts on a function that in this case coincides with the (upper)
incomplete Gamma function w It is therefore possible to define the semigroup

Gamma operator exploiting the notation used in [102]:

T 6_(T_T1)(T _ Tl)oe—l
Wila)opa(T — T —/ drT
1) da( 0) L ah o)

At this point, we obtain the differential composition rule for the pulse response function
perfectly framed in the context of semigroups theory:

da(Th — To). (3.58)

d (T e T-TN(T —T)* ' T'(a, Ty — Tp)

i Jy, T T@ o)
B /T . e—(T—Tl)(T o Tl)cr—l 6_(T1_TU)(T1 o To)oz—l
! I'(a) T'(a) (3.59)

= I’VL(OJ)GD(‘;(T — T[))
B e—(T—Tn)(T _ TO)Q—I
B INC)

This additional result gives a further validation to the approach, and it brings out its
physical meaning not only for the relaxation functions but also for the pulse response
function.

As we have shown, the general composition rule is exactly the same for all the relaxation
functions considered, and it can be easily extended also to other relaxation functions
provided that are analytical and normalized in zero, as for example the Jurlewicz-
Weron-Stanislavsky relaxation function. This result is gaining in value if we consider
the comment in [66] where the evolution equation of W3y () in terms of the Caputo
derivative for o = 1 is slightly different from the operator used for defining W, (¢).
In other words, the evolution equation of the most general case does not coincide with
the one found for its special case when we fix o = 1.

Mathematically, the issue can be figure out comparing
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C B 1 ‘
o Dy W (t) = _ﬁlIJML(t): (3.60)
with . .
(007 + 5 )W) = - (3.61)

that is the special case of the following evolution equation when o = 1:

1 Vo t t — 3
C(ODE + ﬁ) Wanrr(t) = /0 du (t — f)_aﬁEE,(f-aﬁ ( - %) Wi (€) (3.6
1
=——

gy

where the action of the operator C(ng + i)a is defined in formula (B.23) in [66].

Here below, we remind the definition of the Caputo fractional derivative:

1 T 1 d
C By _
Dof(T) = ——— dY ——f(Y).
/(T) I‘(lb’)/o (T —Y)# de( )
As explained in the appendix of [66], the two operators (3.61) and (3.60) are different,
but it is possible to consider the first evolution equation as a special case of (3.60)
assuming a Caputo regularization that affects only the fractional derivative and not
the identity operator as well.

3.5 Material time: the counterpart of material fre-
quency in anomalous dispersion models

The idea to consider the relaxation function as an intensive quantity and the formula-
tion of a general composition rule in terms of a commutator (3.29) (or (3.30)) suggests
once again that the anomalous behaviours are disturbing effects linked to the choice
of the frame. In other words, the anomalies that we observe are due to a sort of a
lens that distorts, compresses, and stretches the laboratory frame. The presence of
the anomalies causes the system to be too complicated to be clearly understood. It is
therefore vital to figure out how this lens works so that the dynamics can emerge.
Our strategy is to recognize that there are two sources of anomalous behaviours. The
first source is rooted in the material time and in its frequency counterpart. We have
encountered this first type in Chapter 2 and in [123]. We found that the KWW re-
laxation function stands out when we move from the material frame to the laboratory
frame if their clocks do not mark the time in the same way. The clock set in the ma-
terial frame can accelerate or decelerate, and it is a distinctive feature of the material
medium under relaxation. In this case the dynamics of the anomalous behaviour has
been encoded in the material medium as a damped harmonic oscillator and its effects
are modelled by the material time that stretches and compresses the laboratory frame.
In the ideal Debye case, the clocks of the two frames mark the time in the same way
and the relaxation function is a pure exponential function.



Dynamical systems and their evolution: mathematical methods and
82 physical interpretations

The other source emerges for the presence of a compensating force, an internal force
that has been generated when the external field or the external force acts on the sys-
tem. In that event, the material frame has been distorted.

In this Section, we focus our attention on the first type of source that is linked to
the material time, since we need to define its frequency counterpart: the material fre-
quency. This step is an important achievement since it restores the symmetry between
the frequency and the time domain, both of them described by nonlinear variables. Let
us explain what we mean with restoring the symmetry and its importance in the de-
scription of anomalous behaviours. All anomalous (dispersion and relaxation) models
have the Debye model as a limit case, therefore we want to gather the result obtained
up to now in order to show how the correct calibration of the frame allows not only
to restore the Debye model from an anomalous point of view, but it also explains the
experimental recurrences of the KWW function and the Havrialiak-Negami models.
As highlighted in Chapter 1, Havriliak and Negami empirically introduced a nonlinear
frequency in order to generalize the Cole-Davidson dispersion model that is known in
literature as the Havriliak-Negami dispersion model [66]. In Chapter 2 and in [123],
we introduced the material time t* =t (or the dimensionless material time 7% = i—z)
that is a nonlinear time variable, pointing out its key role in the physical interpreta-
tion of experimental data in photoluminescent relaxation processes. Accordingly, we
replace the time variable with the material time into the (upper) incomplete Gamma
relaxation (3.54) as it corresponds to the Cole-Davidson (CD) dispersion model whose

expression is
(W) — e 1
fop(w) = Ae T 1+ (iwT)]

and we get a sort of modified (upper) incomplete Gamma function:

o]

l:[]G(T*) = F(Of)

(3.63)

What makes this modified version of the (upper) incomplete Gamma function inter-
esting, is the fact that for a = 1, we can recover the KWW function! By keeping the
« parameter equals to 1 also in the Havriliak-Negami (HN) dispersion model whose
expression is

. (W) — e 1
(@) = T S T
we obtain the Cole-Cole (CC) dispersion model:
R B gr(w) — €0o B 1
foolw) = Ae T 1+ (iwT)B”

Gathering all these considerations, it is licit to assume that there should be a link
between the Havriliak-Negami dispersion model and the KWW relaxation function.
Last but not least, as for the other relaxation functions presented in Section 3.4, the
modified (upper) incomplete Gamma function (3.63) obviously fulfils the general com-
position rule. Consequently even the KWW function obeys to the general composition
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rule since it is a special case of the former.
However, despite we followed what Havriliak and Negami did in the frequency regime,
the relaxation function obtained (i.e. the generalized (upper) incomplete Gamma func-
tion) is not the Fourier-Laplace counterpart of the Havriliak-Negami dispersion model.
The symmetry is broken. However, a broken symmetry is always a fundamental source
of information, and therefore it is essential to understand how to fix it. During the
dispersion or the relaxation, the system in the laboratory is below our lens and con-
sequently, it manifests the observed anomalous behaviours. By introducing nonlinear
variables it is possible to extract the anomalies due to the stretching or the compressing
of the frame favouring the emergence of the physical meaning and fixing the value of
the parameter « is possible to control the compensating force.
For this reason, it is essential to introduce a transform that keeps in consideration the
presence of the lens and therefore, it is possible to calibrate correctly the problem.
In this Section, we consequently want to close the circle: the material time should have
a counterpart in the frequency regime that it is called from now on material frequency
w = w” (or the dimensionless material frequency Q* = w?77).
The idea is to introduce a novel transform that modifies the Fourier transform in or-
der to relate the material frequency space to the material time space. According to
this point of view, it is possible to justify the empirical modification introduced by
Cole-Cole and then by Havriliak and Negami as a natural consequence of the material
frame. Together with the results illustrated in Chapter 2 we formalize the material
frame and its role in the analysis of relaxation processes.
This novel transform named material A transform explains experimental evidences of
the recurrence of the KWW function in the time domain and the Cole-Cole dispersion
(or the Havriliak-Negami dispersion) in the frequency regime.
In this way we finish restoring the symmetry between the dynamics in the frequency
and in the time domain, as it will be highlighted at the end of this Chapter.
The material A transform can be defined starting from the Fourier transform and re-
placing the time and frequency variables with the non-linear variables called material
frequency and material time. Moreover, we need to introduce an operator that describes
how the frame has been twisted. In fact the anomalous behaviour that we observe ex-
perimentally is not only related to the compression or stretching of the timescale but
also to the rotation of the frame itself.
This second requirement can be realized resorting to the exponential operator method.
We introduce a similarity transformation described by an operator named complex-
scaling operator S'T’gi

Srg = e0eTor, (3.64)

where the rotation angle € is a real parameter and the variable of integration in the
material A transform integral is 7' € R —in our case its domain is restricted to the
real positive line, i.e. R since 7" denotes the normalized time variable.

The factor e can be considered as a unit vector which describes a rotated line by
an angle # with respect to the real line (¢ = 0). In other words, the axis of the
measurement is rotated through the angle .
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The action of the operator S'Tﬁ on the function f(7°) is shown here:
Srof(T) = ¢’ f(Te”) = fo(T). (3.65)
Once defined the dimensionless material variables
QF = w'r* = Wirf

and p
t* t

T* = — = —

T T‘B

and using the definition of the complex-scaling operator ,SA’T*,G, we can introduce the
material A transform

AgealF(T](@) = f ATt T gy, (3.66)

This transform acts on the system that not only experienced a compression or stretching
of its scale because of the presence of the material variables, but also it has been twisted
as a direct result of the action of the complex-scaling operator on the integrand function.
The definition of the material transform (3.66) leads to the following property:

Ao TN = [ dr T g

— OOdT* e—‘iT*!'l*GiB 4 Gib'.T*
fo e T) (3.67)

o)

_ eéGSQ*,—B/ dT* efiT*Q”‘f(T*)
0

= F(eQ").

A formal equivalence with the scaling property of the Fourier transform clearly emerges.
In Fig. 3.1, the action of the complex scaling operator on the functions involved in
the transforms has been schematically shown. To better understand the role of the
complex-scaling operator, it is possible to consider Fig. 3.2 where the angle of the
Cole-Cole dispersion model has been shown with respect to the Debye one.

3.5.1 The material A transform and the hidden relationship
between KWW and HN

The aim of this Subsection is to show explicitly the link between the KWW relaxation
function and the Havriliak-Negami dispersion model by using the material A transform
(3.66). As explained in Section 3.5, the operator S'Tlg acts on the integrand function
of the material transform and the imaginary unit ¢ gains an exponent that depends on
the value of the € angle. In other words, the power of the imaginary unit ¢ is related
to how twisted is the reference frame. Firstly, we need to define the pulse response
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Figure 3.1: A graphical representation of the action of the complex-scaling operator
in the A transform. As expected, the complex-scaling property shows a behaviour
similar to the known scaling property of the Laplace-Fourier transform: a complex-

scaling rotation in the time domain implies another one in the opposite direction in
the frequency domain.

function ¢ that will be transformed in the material frequency space, that is

d
66(T") = ——U(T")
d Tla, 17

dT T(a) (3.68)

and then, the action of the material A transform on this pulse response function ¢
gives the corresponding normalized dielectric permittivity £(€2*) as shown here below

A[@G,B(T*)] () = foo dT* =i bo(T™)

0

B f dT* e T Sp. g 66(T7)
0

_ foo . eia(ewT*)aflefT*ewP_iT*Q*dT*
0 ['(a) )

(3.69)

1
1+ iem Q)

The above novel dispersion-relaxation pair introduced by applying the material A trans-
form is the seed for the generation of a very useful dispersion-relaxation pair: the
Havriliak-Negami dispersion model and the modified (upper) incomplete Gamma re-
laxation. Looking at the left-hand side of (3.69), the relaxation function obtained by
the material transform is equal to the Havriliak-Negami by a proper selection of the ¢
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Figure 3.2: Cole-Cole plot for the Cole-Cole dispersion model where the angles with
respect to the Debye diagrams have been shown.

parameter.

Fixing the value of the angle # equals to (1 — ) and restoring the linear dimensionless
. 8
time variable i— = (f) , the material transform pair (3.69) writes

I}
B va—1 —i5
oy

1 o0 L8 8 A (_-?) e =
_—— dtﬁ' /—zt‘ w! S e (1-/—)
T =, @ Ses0n (TR

/[ R .5
/OO g —ithuh .1_3(2'1_'8%)04—16—%1 iy
Cit‘k e b 1 f T -

0 F(a)q-ﬁ

(3.70)

The integrand of (3.70) is clearly related to the KWW function. The coefficient in

t,d
front of the exponential e -7 can be interpreted in the framework of the diffusive trap

model [54, 109, 163]. Assuming that the material is filled with randomly distributed
traps, excited molecules diffuse through the material and then fill the traps. The term
which multiplies the exponential describes the difficulty of an excited molecule to find
a trap when the traps are going to be almost all filled.

The integrand of (3.70) represents the well-known probability density function of the
Gamma distribution. It nests both the power and the exponential function generalizing
the structure of the power law. It is possible to consider separately the behaviour of
the pulse response function in its limiting ranges. Near zero the trend is ruled by
a power law, whereas in the long-times region the power law is dampened by the
exponential function in agreement with the Jonsher’s Universal law [97, 99| that has
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Figure 3.3: Comparison between the real and the imaginary parts of (3.70) for dif-

ferent values of the parameters o and £.

In the left-hand side (lhs) we have the

Havriliak-Negami function (dashed blue line) and in the right-hand side (rhs) we have
the A transformed function after the action of the complex-scaling operator (solid red

line).

been introduced in Chapter 1.
In Fig. 3.3, the right and the left-hand sides of (3.70) are plotted for different values
of the parameters. Fixing the parameters a and f, the pair (3.70) can be reduced to
the following special cases.
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1. For 3 >0 and « = 1, we obtain that the material counterpart of the Cole-
Cole dispersion relation is exactly the KWW function

t8

1 i 2  _aB,.8 A e 7P ‘
T dt? e v g z( ) (3.71)
1+ (iwT)?] /0 ¢ Si.1-9)3 T8

Among the special cases, the material A transform pair that links the KWW
function and the Cole-Cole dispersion model is the most relevant one since it
gives another novel useful pair able to restore the symmetry with respect to the
Debye relaxation and dispersion models [196];

2. for =1 and «a < 1, the material clock and the laboratory clock mark the
time in the same way. Consequently, the distortion effect does not stretch or
compress the material medium as it results considering the complex-scaling op-
erator that in this case is equal to 1. Here, the general pulse response function
(3.68) reduces to the (upper) incomplete Gamma function and then, its material
A transform results to be the Cole-Davidson dispersion model:

1 - —itw tail —
[1+ dwr]> _/0 dt e (T“F(Q))e )

3. Finally for 8 = 1, = 1, the Debye dispersion and relaxation have been recovered
again;

5 =

(3.72)

t

1 o0 2T
:/ dt & et (3.73)
0

1+ iwT] T

The introduction of the material transform along with the similarity transformation
operator 5‘91t gives another evidence in favour of the model proposed: the experimental
recurrences of the dispersion models as the Havriliak-Negami and the Cole-Cole are
linked to the KWW function.

3.6 Evolution equations for relaxation processes in
dynamical systems

The aim of this Section is to collect and frame the results in the context of evolution
equations so that it is possible to have a further validation of their correctness.

3.6.1 Evolution equation for the one-parameter Mittag-Leffler
relaxation
As we highlighted in [66, 78, 166], the integro-differential equation based on the com-

position rule for the one-parameter Mittag-Leffler function Ez(—1"7) is equivalent to
the following fractional differential equation:

oii).. -

Tln(Ty) '.‘rl,(’_l’“o)]ML7 (3.74)
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where [:(%))] = Ey(—(T — Tp)?), the fractional derivative is in the Caputo sense
1L
[166],

C B 1 g ()
Drf(T) = I'(n—p) /0 o (T —y) = (3:75)

and n — 1 < § < n. In this case, the parameter 5 runs in (0, 1) and therefore n = 1
and the above definition of the fractional Caputo derivative is

g, 1 T 1 d
fojlf(T)zm_ﬂ)/o dy Tovpay (V). (3.76)

In other words, the Mittag-Leffler function is eigenfunction for the fractional Caputo
derivative operator.
By replacing the Caputo derivative (3.76) with the Riemann-Liouville derivative [166]

RL 1 d (T 51 ‘
Dy f(T) = T3 ﬁ/ dy (T =Y)" 7 f(Y), (3.77)
we end up to )
RL n(T) (7)) T- ‘
DT’Q [H(TO)]AIL o [m] ML + m (378)

Although the relaxation and diffusion processes describe very different physical situa-
tions and the functions depend respectively on one or two variables, the above equation
(3.78) is similar to the well-known fractional Fokker-Planck equation

t8

RLDE Fy(x,t) = LppFa(x,t) + D)

Fs(z,0). (3.79)

This resemblance is more evident if the Fokker-Planck operator Lpp is set equal to —1
and the initial condition is Fjz(x,0) = 1|75, 78|. However, we should point out that the
two equations describe two different physical processes (i.e. anomalous relaxation and
anomalous diffusion respectively) and therefore the consideration about the similarity
is concerning the mathematical tools and methodologies that allows us to solve the
equations. The solution of the fractional Fokker-Planck equation can be obtained
in more than one way [19, 75, 77|. The most common procedure is to apply the
Fourier-Laplace transform as shown in [107, 166], so we end up to the following general
expression:

+o00 ~
Fs(x,t) = f dk e Es(t° LY F(k,0),  0<pB<1. (3.80)

o

The result (3.80) can be also interpreted in the light of the evolution operator method.
We often resort to this method not only for solving the Fokker-Planck equation, but
also for other evolutionary problems as we have shown in [117, 118, 120, 122, 193, 194].
The formal solution in terms of the evolution operator Uﬁ = Eﬁ(tﬁL I3 p) reads

Fy(w,t) = UsFs(x,0). (3.81)
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Another possibility is to use the umbral method we illustrated in |77|, once the Mittag-
Leffler function has been represented as an umbral function [11|. The aforementioned
methods allow to find the solution for a wide class of Fokker-Planck operator but if
the L rp operator is simply a constant as in our case, the solution can be determined
in terms of Lévy stable distribution [167]:

n(T)] /°° s

— = ds e *rg(s,T). 3.82

[R(O) ML ; 5 € h.@(ga ) ( )
RAC DI

Here, rg(s,T') is equal to s 7 gﬁ T 7) where gs 1s a one-side Lévy stable distribu-

tion. On that subject it is of paramount importance the results collecting in [73] and
[74] where the Lévy stable distribution is defined in a closed analytical form and in
terms of hypergeometric function.

3.6.2 Evolution equation for the modified (upper) incomplete
Gamma function and its sub-classes

As observed in [123] and in Chapter 2, the Kohlarusch-Williams-Watts function is the
solution of the second order differential equation:

d’n(t*) | 2 dn(t") N n(t*)

di+? T dt* T2 =0
n(0) = ng (3.83)
dn(t*) o

=

The physical meaning of (3.83) is explained in Chapter 2 as a result of the restoring
and frictional forces acting on the system. In particular, we analysed the physical
meaning in both the material frame ¢* = ¢’ and in the laboratory, where time flows
linearly. In order to give a further validation to the correctness of the model, we want
to unravel the semigroup property hidden in its evolution (3.83). This issue allows to
understand the connection between the semigroups operators governing the differential
equation (3.83) and the commutator operator that describes in a complementary way
the evolution starting from the physical manifestation of the semigroups, i.e. the
composition rule. In particular, as it will be shown, the analysis framed in the context
of semigroups allows to find a generalization and the corresponding solution for the
second order differential equation (3.83).

The first step is to reduce the second order differential equation (3.83) to a system of
two first order differential equations as follows

d [y (t*) B 0 1 wy (t%) ‘
dt* (Ug (f*) o —TL*E f% ’U-Q(t*) (384)
with the initial conditions

(0) = (ulggg) . (3.85)
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The system of differential equation (3.84) can be written in a matrix form as follows

dzgi*) B (_(L 12)71(]5*)7 (3.86)

T*2 =
where ()
®Y Uy t .
n(t") = (uz(t*)) : (3.87)
Now we can introduce the concept of semigroups [37, 56, 57, 82, 160]. Among the
applications of semigroups, we will focus our attention on the translation semigroups.

Definition 3.6.1. Let (X, || - ||) denote a given Banach space on W (i.e. W =R
or W = C) equipped with a norm ||-|| and let 7 : [0,00) — Lyw(X) be a linear
and bounded operator! on X, i.e. T' € Lyw(X) where the symbol Ly (%) indicates
the space of bounded linear operators in X.

The family of bounded linear operators A = {T(t) : t > 0} C Lw(X) forms a
semigroup if the following functional equation is satisfied

Tt+s)=T(t) -T(s), t>0, s>0. (3.88)

If additionally, T(U) = [ and the map T()a: : [0,00) — X is continuous for
each € X, then 2l is called strongly continuous operator semigroup or shortly
Cy-semigroup.

Co-semigroup serves to describe the time evolution of linear systems and for this reason,
it is crucial to frame the differential equation in this context.

[t gives a further validation to the key role of the material frame in modelling anomalous
relaxation processes and to the general composition rule in (3.29) (or (3.30)) as a
manifestation of the semigroup property.

Definition 3.6.2. Given a Cy-semigroup 2, one defines the infinitesimal gener-
ator, or shortly, the generator A of the semigroup 7" as a linear and closed (not
necessarily bounded) operator on X by

~

~ T(t)r —x
Az = lim Tz (3.89)
t—0t i
with domain .
o L Thr—z
D(A) := {T €X: f1_1>rér1+ —_ ex1sts}. (3.90)

Then, D(A) is dense in X and it is the subspace where the (right) derivative Az
exists.

As a conclusion, the functional equation (3.88) is satisfied by the Cy-semigroup given
by: A
T(t) = e (3.91)

"We will say that the linear operator T is bounded if there exists M > 0 such that ¥z € X one has
|7@)| < Mz
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The requirement for the generator A to be bounded is essential since it assures that
et converges. This semigroup corresponds to the solution semigroup of the differential
equation (3.84) with its initial conditions (3.85). Considering the semigroup relation
in (3.88) with 7(0) = 1, it is evident that this functional equation can be regarded as

an analogue of the well-known Cauchy functional equation that is formally equivalent
to (3.88):

u(t+s) =u(t) - u(s), t >0, s=>0

3.92
u(0) = 1. ( )

The solution of the system of differential equations (3.86) is given by
u(t) = e A®(0), (3.93)

where

A= (_01 _11) : (3.94)
T*'Z T*

The matrices e!"4 may be thought of as solution operators mapping the initial value
®(7*) to the solution e’ A ®(7*) at time t*.

Using the theory of exponential operators framed in the context of semigroups, the
above result can be generalized in order to define a differential evolution equation also
for the modified (upper) incomplete Gamma function.

As we stated for the material A transform, we should follow the symmetry and then,
the generalization does not have to change the structure of the second order differential
equation. The second-order differential equation (3.83) (and the corresponding differ-
ential equation in the (linear) time domain) are built up from physical considerations
on the forces acting on the system. However, considering Fig. 1.5 in Chapter 1, we
immediately note that the Cole-Davidson dispersion model has been represented as a
flattened semicircle with respect to the Debye and the Cole-Cole dispersion models.
This observation lead us to introduce a non-homogeneous term for the second-order
differential equation that carries out another source for the anomalous behaviour re-
sponsible for the asymmetry.

The primary source of anomalous behaviour is collected in the material variables that
stretches and compresses the timescale explaining for example rejuvenation or ageing
effect in materials. This source of anomalous behaviour is intrinsic to the dynamical
system. On the other hand, the second source should be originated externally to the
system as for example when an external field is acting on the system and then when the
external force has been switched off, the system naturally compensate. This compensa-
tion force drives the damping of the harmonic oscillator. Adding the non-homogeneous

term, g(t*,7%), in the differential equation (3.83) and we get
En(t*) 2 dn(t*) n(t)

= = q(t*). 3.95
dfi*2 +T* dt* + T*2 g( ) ( )
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Once the second order differential equation (3.95) has been decoupled into two of first
order equations, its solution is

~ t* ~
n(t*) = e 1®(0) +/ ds* el =45 (), (3.96)
0
for every ¢t > (. Here the only symbol not previously explained is the non-homogeneous

term that in the system takes the following form:

=(#) = (9(2*)) _ (3.97)

=D a1 S e F (57

N T T

the solution is exactly the modified (upper) incomplete Gamma function:

In case

e, i—]
[(a)

n(t*) = (3.98)
As expected when a = 1, this general case reduced to the one described in Chapter 2.
To conclude this Chapter, it is fascinating to remark once again that the differential
equation (3.95) describes a driven damped harmonic oscillator, whereas (3.83) depicts
a damped one, since the external source has been set equal to zero and the system is
unable to generate a compensation. These initial value problems for anomalous relax-
ation functions, as the KWW function and the modified (upper) incomplete Gamma
function, in terms of harmonic oscillators establish a parallelism with the Lorentz model
outlined in Chapter 1.

By introducing the material variables, the material A transform and an external source,
we restore the symmetry in the dynamics between the relaxation and dispersion models.

3.7 Conclusions to Chapter 3

Fractional calculus, operator methods and exponential operators’ theory 23, 24| framed
in the context of semigroups are the mathematical tools used to model the evolution
of anomalous relaxation processes in dynamical systems.

The essential foundations of the evolution are rooted in a natural property named com-
position rule that is the physical manifestation of the semigroup property.

The term composition rule was introduced in |78, 79| and it was applied to the one-
parameter Mittag-Leffler function, the counterpart of the Cole-Cole relaxation via
Laplace transform [66]. However, the concept of the material frame inspired the re-
search to consider the relaxation function as an intensive property. This paves the way
to the use of the Reynolds-Leibnitz theorem that gives a general composition rule for
the relaxation functions that are normalized and analytical in zero.

This original result concerning the composition rule is defined in terms of a commuta-
tor involving a derivative and its inverse operator that can be bought under the name
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of anti-derivative [116]. The crucial value of the result is not only in its mathematical
form in terms of a commutator, in fact all fundamental physics is based on the opera-
tors that do not commute, but also in its generality and in its physical meaning. The
commutator is equal to the net flux of the product between the relaxation functions
in their respective time syntagms: [Tp, 73] and [T, T] and at the end, it coincides with
the relaxation function in the whole time syntagm [Ty, T]. In other words, the com-
mutator can be regarded as an integro-differential equation describing the evolution of
the system under consideration.

We considered here four examples of its application: the composition of two Debye
relaxations, the composition of two Prabhakar (or three-parameter Mittag-Leffler) re-
laxation functions, the composition of two one-parameter Mittag-Lefller and the com-
position of two (upper) incomplete Gamma relaxation functions. In particular, we
focus our attention on the latter case, it was possible not only to define the composi-
tion rule for the relaxation function but also for its pulse response. The composition
rule for pulse response function coincides with the semigroup operator of the Gamma
function known in literature [102| and it gives a further validation of the result.

The idea to consider the relaxation functions as an intensive quantity and the for-
mulation of a general composition rule in terms of a commutator suggests once again
that the anomalous behaviours are only disturbing effects linked to the choice of the
frame. For this reason, we introduce a novel transform, the material A transform, that
keeps in consideration the disturbing effects. Such a transform is a modified Fourier
transform, where we consider the action of a complex-scaling operator in the material
frame that has made clear the connection between the Havriliak-Negami dispersion
model and the KWW function. Moreover, we observe that we have two sources of
anomalous behaviours: one is mathematically embeded in the material variables that
stretch, compress and twist the frame, whereas the other one is rooted in the (upper)
incomplete Gamma function and in the external source (or compensating source inter-
nal to the system) in its second-order differential equation.

This result intrigues us, and for this reason we framed the second-order differential
equation in the context of exponential operators and semigroups. It was therefore
possible to bring out a concrete connection between the semigroup operator of the
differential equation and the composition rule valid for its solutions. As known, the
operators methods simplifies the approach, and we can easily generalize the result for a
non-homogeneous second-order differential equation, that is a driven damped harmonic
oscillator. Fixing an opportune function for the non-homogeneous term, we can obtain
as a solution the modified (incomplete) Gamma relaxation function. This confirms our
suspect that there are two origins for anomalous behaviours: one intrinsic to the frame
and it is the cause of rejuvenation and ageing effect, whereas the other one is due to
the presence of an external influence and its effects once the force has been switched
off are described by a compensating force. A visual effect of the subtle external influ-
ence can be appreciated considering the Cole-Cole plot in Fig. 1.5 in Chapter 1 where
the Cole-Davidson and the Havriliak-Negami dispersion models show a clear flattened
asymmetric semicircle with respect to the Cole-Cole and the Debye ones. A last but
not least comment concerns the initial value problems. The differential equation for
the KWW function has been presented for the first time in Chapter 2 and thanks to
the exponential operators and semigroups theory we generalize the result to describe
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the evolution of a more general relaxation function in terms of a driven damped har-
monic oscillator. Both these evolution equations allow to restore the symmetry in the
description of the dynamics between the relaxation and the dispersion models. The
latter are described by the Lorentz model as outlined in Chapter 1 that is basically a
driven damped harmonic oscillator.
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Chapter 4

Complete monotonicity and special
functions in relaxation processes

4.1 Special functions: an overview.

As Richard Askey states in the preface of his book [9]: " Certain functions appear so
often that it is convenient to give them names. These are collectively called special
functions. There are many examples and no single way of looking at them can illumi-
nate all examples or even all the important properties of a single example of a special
function".

Special functions form a remarkable area of mathematics which is particularly interest-
ing for applied sciences. Such functions, characterized by specific notations, established
names and a fair amount of properties, have proved to be indispensable and precious
tools in the current scientific scenario.

Among all the special functions, we focus our attention on the Mittag-Leffler function
and on the Meijer G-function that we encountered in Chapter 3 as relaxation functions.

4.1.1 The Mittag-LefHler function

At the end of the 19th century, the Swedish mathematician Gosta Magnus Mittag-
Leffler introduced a new special function, the so-called Mittag-Leffler function F,(z),
in order to solve the problem of the analytic continuation of power series outside the
disc of their convergence [85, 176].

Definition 4.1.1. The Mittag-Leffler function is defined as follows:

'

- z

and it is treated in [58, 69, 86, 166-168, 199]. The series (4.1) converges in the
whole complex plane if R(«) > 0. On the other hand, for R(«) < 0 the series
diverges everywhere on C (except in z = 0). In the watershed case R(«) = 0, the
series (4.1) has a radius of convergence R = e2|3z|.

97
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This function caught the attention of the mathematicians since the very beginning,
in fact several generalizations have been formulated and their classification is on the
number of parameters involved. For this reason the definition (4.1) has known in
literature as one-parameter Mittag-LefHer function.

The first generalization of E,(z) is the Wiman function (1905) [199] and it is also
known as two-parameter Mittag-LefHer function. This special function is a complex
function defined by the following power series

EMQ%_ghﬁiiﬁT @B eC, Ra)>0, RB) >0 zeC. (4.2)
The two-parameter Mittag-Leffler function (4.2) coincides with the Mittag-Leffler func-
tion £,(z) (4.1) as 8 = 1. On the other hand, the convergence conditions closely follows
the one above defined. Last but not least, most of the properties are intensively studied
in [86].

Another generalization of the Mittag-Leffler function based on the Wiman function
was introduced by Prabhakar in 1971 [169]:

>0 A . zn
E 5(2) = Z n'IE(/(l—ner’)’ a,8,veC, R(a) >0, R(S) >0, R(y)>0, zeC,

n=0
(4.3)

where (), := F(F"’J)”) is the Pochammer symbol [1].

Moreover, there are another two possible generalizations of the Mittag-Leffler function

that involve four parameters.

In 2007, Shukla and Parakapati introduced a four-parameters generalization of the

Mittag-Lefller function [185]:

y - ("/ )m 2"
EY(2) =Y =M By e C R(a) >0, R(B) >0, R(y) >0,
ge (0,1)UN, zeC,
D(y+gn) -

where (V)n, = o) s the generalized Pochammer symbol.

Another generalization of the three-parameter Mittag-Leffler function (4.3) was pre-
sented by Srivastava and Tomovski in 2009 [188] where the parameter g has been
replaced by k with (k) > 0. This last four-parameter Mittag-Lefler embeds also the
generalization (4.4) as a special case if we set k& = ¢ and min{R(53), R(v)} > 0.

The blooming of Mittag-Leffler functions highlighted the considerable interest of math-
ematicians. However, only in the last decades, the Mittag-Leffler function evolves
from Cinderella to Queen |45, 137| for its numerous applications in fractional calculus
[16, 17, 34, 48, 53, 71, 86, 91, 107, 127, 135, 154, 166, 176, 178, 179, 195, 197|]. Among
the possible applications, we remind here the role of the Mittag-Leffler function as
solution of the Fokker-Planck equation, as shown in Chapter 3 and in more details in

[77].



4.1 Special functions: an overview. 99

4.1.2 The Meijer G-function

The Meijer G-function, introduced by Cornelis Simon Meijer in 1936, represents a wide
range of mathematical relations from basic elementary functions to the majority of the
special functions such as the generalized hypergeometric function and the MacRobert’s
E-function.

Definition 4.1.2. The Meijer G-function is given by the following contour inte-
gral in the complex plane: [4, 108, 131, 147]:

ap ] / (b + s) HJ Tl —a;—s) e
51 by | 2mi HJ o Dlag +8) [10, T =0 =)

(4.5)
where the upper and lower indices (m, n, p, q) are non-negative integers such that
0<m <gand 0<n <p, the parameters ¢; (i =1,...,p) and b; (j =1,....q)
may be real or complex numbers, and I' denotes the Gamma function. Here the
empty product is equal to unity, i.e.

Pq

G!nﬂ,|:

0 0 m
HF(bj+.S) =1 Hf(l—aj—s) =1 H [(a;+s) = H I'(1-b;—s) =1
J=1 Jj=1 j=n+1 j=m+1

(4.6)

It is worth noting that the Meijer G-function (4.5) can be viewed as a Mellin-Barnes
integral [21], i.e. an inverse Mellin transform where the integrand is a ratio of Gamma
functions with linear arguments.

In (4.5) the contour £ is an integration path in the complex s-plane from oo — it to
o0 + i7 where 7 is a positive number. As shown in Definition 4.1.2, the argument of
the Meijer G-function does not depend on 7. The convergence of the integral does not
depend on the chosen integration path.

The aforementioned contour ¢, also known as Bromwich path, is one of the three pos-
sible choices, as was noticed by Erdelyi [58, pp. 206-222|.

If it is possible to choose more than one path, the result of the integral will be the
same, as follows from the Cauchy’s residue theorem.

Throughout this Chapter, the parameters a; (i = 1,...,p) and b; (j =1,...,q)
have to fulfil the following condition

a; — b; # a positive integer, (i=1,....n; j=1,...,m). (4.7)

This last assumption (4.7) implies that the contour ¢ is always chosen to separate the
poles in I'[b; — s| from any pole of I'[1 — a; + s|, otherwise the Meijer G-function is not
defined.

Although the Meijer G-function is rather general, there are a few special functions
that could not be presented in its terms if we consider the more general case involving
irrational weights for the s variable, as for example the Mittag-Leffler [150| and the
Wright generalized hypergeometric function [200]. This is why the Fox H-function
[91, 143], a generalization of the Meijer G-function, has been introduced.
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Definition 4.1.3. The Fox H-function is defined by the following complex con-
tour integral

m,n (al A ) (a2=A2) (a )
Hyy [ (0 B) (O2B) o (b By
(bj + Bjs) J " T —a; — Ajs)

T
25 (4.8
me 1‘1} wr(a T A [T T T(1—0b—Bs) (48)

where A; and B;, called weights, are assumed to be positive numbers and all the
parameters a; and b; may be real or complex. The components of the orders
follow the same restrictions imposed on the Meijer G-function.

Comparing the definition between the Fox H-function and the Meijer G-function, we
obtain a formal correlation between the two functions. Mathematically, the Fox H-
function reduces to the Meijer G-function when A; = --- = A, = B;,--- = B, = C,
where C' is a positive number [187, p. 50].

In this case,

P.a

HT)’I ,n |:

(alaAl) (aZ:AZ) (apﬂAP) myn %
(b, By) (b, Ba) ... (bq,Bq)} CGM{

pon] o

Moreover, if C' =1 in (4.9) the Fox H-function is exactly the Meijer G-function.

This identity (4.9) is quite interesting, since it simply allows us to realize how it is
possible to extend the result also to the Fox H-function. Moreover, this identity shows
clearly the importance of the Meijer G-function among all the special functions'.

In addition to its ability to represent most of the well-known special functions, the
Meijer G-function has also fascinating closure properties under several operations such
as integration, differentiation, the Laplace transform, the Euler transform and even
the multiplicative convolution [22, 81, 170]. Therefore, some results that could be
evaluated only numerically can now instead be expressed in closed form in terms of
the Meijer G-function. For this reason, modern computer algebra software programs
such as Maple, Mathematica and Maxima contain an implementation for the Meijer
G-function.

In light of these properties, the Meijer G-function is nowadays considered an effective
and handy tool and its growing importance emerges from various applications in dif-
ferent arcas from applied mathematics to physics [40, 104-106, 164, 165].

4.1.3 The motivations behind the investigations on the com-
plete monotonicity

Among the properties fulfilled by these two special functions, there is the complete
monotonicity once we impose adequate restrictions on the parameters involved. In

!Other interesting and useful relations between the Meijer G-function and the Fox H-function can
be found in [170]
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Chapter 2 and in [123], we observed that this mathematical property has a clear phys-
ical meaning since its presence (or absence) reveals the nature of the dynamics behind
relaxation processes. The complete monotonicity is associated to a single dynamics,
i.e. the system experienced only damping mechanism and therefore, it follows only
decay pathways. On the other hand, the relaxation described by monotone function is
heterogeneous, and we have the so-called dual dynamics: there is not only a dumping
mechanism but also a pumping mechanism.

As proven in Chapter 2 and in [123], the two types of dynamics, validated by exper-
imental data, explain the observed anomalous behaviour and the improvement of the
system performances when the relaxation is described by complete monotone functions.
In other words, the mathematical modelling of relaxation processes by complete mono-
tone functions implies that the system has a higher-ordered organization of its parts,
with consequent improvement of the performances (as for example the intensity of the
luminescent emission).

To sum up, finding the constraints on the parameters involved in these special func-
tions allows to determine the nature of the dynamics in physical systems affected by
anomalous relaxation processes. The issue has also a mathematical interest.

As remarked in [80], the proof of the complete monotonicity of the three-parameter
Mittag-Leffler function as an independent mathematical object has not been investi-
gated.

Therefore, we want to broaden the already rich literature on the complete monotonicity
of the three-parameter Mittag-Leffler function (see for example [45, 138, 192]) summa-
rizing the result we obtained in [80].

The theorem on complete monotonicity of the three-parameter Mittag-LefHler function
in [80] is the natural extension of the result obtained by Pollard [168] for the Mittag-
Leffler (4.1) and by Schneider [182] for the Wiman function (4.2).

On the other hand, even the Meijer G-function is gaining a key role in the description of
relaxation processes. This special function embraces the modified (upper) incomplete
Gamma function defined in Chapter 3 as its special case, and the use of the material
A transform allows to extend the physical meaning also to the frequency regime. In
the light of the results obtained in Chapter 2 and in [123] concerning the dynamics
of complex systems, it is fascinating to find the mathematical requirements to have a
complete monotone relaxation function in terms of the Meijer G-function.

Even in this case, the complete monotonicity has been previously investigated as for
example in [104, 106] but, the crucial plus points of this original result, presented in
Section 4.3, are both in its simplicity able to directly highlight the relationship between
the parameters and coeflicients, and in its strategic methodology that paves the way
to generalizations of the result for more convoluted Meijer G-functions. A last but not
least asset concerns the set of values where the parameters range: now, the parame-
ters can assume also negative values! Standing on the shoulders of giants of literature
devoted to the Meijer G-function [2, 3, 83, 104-106, 142|, it was possible to go beyond
what is known and conjecture the idea from which the result stands out.

For our purposes, it will be useful to remind here below the definition of complete
monotone function [149] introduced in Chapter 2 and the statement of the Bernstein
theorem:

Definition 4.1.4. A real valued function f, defined on an interval I C R, is
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called complete monotone on [, if the function f has derivatives of all orders and
satisfies the condition

(=) f™(x) >0, neNy, zelcCR, (4.10)

where (" represents the n-th derivative with respect to z.

From this definition a complete monotone function is non-negative as it is imme-
diate to conclude considering the case n = 0 in (4.10).

Theorem 4.1.1 (Bernstein theorem). A real function f is a completely mono-
tone function if and only if there exists a positive measure p on [0, 00) such that
t — e " is integrable with respect to u for all x > 0 and

f(x) = /000 dp(t) e (4.11)

Further details can be found in |27, 114].

4.2 Complete monotonicity for the three-parameter
Mittag-Leffler function

As hinted in Section 4.1.1, our proof of complete monotonicity for the three-parameter
Mittag-Leffler function is outlined proceeding as Pollard did for the one-parameter
Mittag-Leffler function [167, 168].

The main result is the formulation of the following theorem published in [80].

Theorem 4.2.1. The three-parameter generalized Mittag-Leffler function £ ;(—z)
is completely monotone for 0 < o < 1, v > 0, and 3 > a.

Proof. The cornerstone of the proof is to write the three-parameter Mittag-Leffer
function as a Laplace transform of a positive function so we can use the Bernstein
theorem 4.1.1 to complete the proof.

Our starting point is to consider the inverse Laplace transform of the Prabhakar

function
EY (—at®) P2 g 57 (4.12)
“’ﬁ( W= 2w J,, 2 (s + )7’ '

where ¢, is the Bromwich contour with R(s) > 0. Now, we can replace the
argument of the transform with the following Gamma identity formula

1 [ ),
(€ +at*)7 = f du e &gt (4.13)
I'(v) Jo

and we obtain

L (E+at)u, 71
—_— du e ST w0 (4.14)
I'(v) /0 (

B} y(—at?) = — f dfef”"es‘”‘f“l{
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We should remark that the integral contour ¢, was changed in {¢ by the replace-
ment £ = (st)* and consequently R(s) = [s*|t*cos(ay(s)) > 0. The absolute
convergence of the integrals allows us to swap their order, so we get

. 1 o o 1/ ay—pF+1
E;ﬁ(_wta) = ﬁ/ du e “ Uyt [/ d¢ e* / —ubg e (4.15)
’ Y) Jo

- 2mial’ e

After performing another change of variable § = u=!'2®

function g;’;,ﬁ, defined as follows

and introducing the

—3
Y - > Y / dz V7 5018 =2
ga,,ﬁ(y) 1—1(,},) i . z ez €

/) (4.16)
= ———5 fasW),
L(y)y? "’
the three-parameter Mittag-Leffler function now reads

¥ o 1 > —ztou, —1-L1 -1

E] 5(—xt?) = - du e u gl s(ue)
; O . 3 (4.17)

_atou —1-L14B _1
- F(ﬂ/)/{} du ™" T [T (7).

To conclude the proof we need to demonstrate the non-negativity of f;’ pon Ry
In fact, the strategy consists in the application of the Bernstein theorem 4.1.1
as a serial and logical interlocking implication between the non-negativity and
the complete monotonicity in Laplace pairs. It is therefore of vital importance
to identify the first ring of the chain: the function f),. By straightforward
comparison between the two lines in (4.16), the function f;f,g can be defined as the
inverse Laplace transform of the function f (2) := z%7Pe=*" that is completely
monotone for
0<a<l,v>0, and 5 > a~,

since it is the product of complete monotone functions (see theorem 1 in 149,
p. 390]): a power function and the KWW stretched exponential function [168|.
At this point, we can apply once again the Bernstein theorem 4.1.1 to (4.17) and
then, we conclude the proof. O

4.3 Complete monotonicity for the Meijer G-function

In this Section, we present an original result concerning the mathematical require-
ments that the Meijer G-function Gg:g should fulfil to be a non-negative and complete
monotone function. Since this function is a less well-known with respect to the Mittag-
Leffler function, we need to remind the definition of logarithmically complete monotone
function and some useful theorems and lemmas that will be used in the proof.

Definition 4.3.1. A positive function f(x) is said to be logarithmically com-
pletely monotone function on an interval I C R if it has derivatives of all orders
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on [ and its logarithm log(x) satisfies
(=1)" [logf(x)]™ >0, ne Ny, v €1CR, (4.18)

where [logf(z)]"™ is the n-th derivative with respect to = [10, 35, 202].
Moreover, the function f is said to be strictly logarithmically completely mono-
tone function if inequality (4.18) is strict.

It has been proved that any logarithmically completely monotone function on 7
is also completely monotonic on I, but not conversely.

Lemma 4.3.1. Let ¢ a complete monotone function and let v a positive function
with a complete monotonic derivatives, then ¢(1) is completely monotone.

Lemma 4.3.2. If the first derivative of the function h, h’, is completely mono-
tonic on (0, 00), then e™" is also completely monotonic on (0, c0).

A proof of the previous two Lemmas 4.3.1 and 4.3.2 can be found in [28, p. 83]
and in |59, p. 441].

This last lemma is equivalent to the following theorem:

Theorem 4.3.1. If p(z) is a complete monotone function, then e#®) is a com-
plete monotone function. The proof can be found in [149, p. 391-392].

3 3

Lemma 4.3.3. Let a; (i=1,...,k)and b; (i =1,..., k) be real numbers such
k k

that: ap > -+ > ay; by > -+~ = by and > a; > > b; for i = 1,... k. If the
i=1

i=1
function f is decreasing and convex in R, then

k

> fb) > Z f(ai). (4.19)

i=1

In 1949 Tomi¢ demonstrated this lemma and its proof can be found in [140,

p. 157

Theorem 4.3.2. Let K(s,t) be completely monotone function in s for all the
t € (0,00) and let a non-negative locally integrable function f(¢) such that the
integral

F(s) = /0 Tt K(s ) f(1) (4.20)

converges uniformly in a neighborhood of any point s € (0,0¢). Then F(s) is
completely monotone function. This theorem can be found in {149, p.392].

At this point, we can formulate the statement concerning the mathematical re-
quirements for the non-negativity and the complete monotonicity of the Meijer
G-function.
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Theorem 4.3.3 (the Meijer G-conjectured theorem). Let a; (i =1,...,p)

and b; (j =1,...,q) be real numbers such as
> ... >

dp=rr=m (4.21)
by == b

where ¢ > p, a; > b; and moreover the following inequality has been satisfied

P P
d ;=D b (4.22)
=1 i=1

then for any real x, the Meijer G-function

G a0 |:’I‘

b4

ay - ay
b bJ (4.23)

is non-negative in x on (0, 00) when ¢ > p.
Introducing as additional conditions the non-positiveness of the smallest b pa-
rameter, i.e. by <0, and a; > by, and

p+l

Zp:ai = Zbi: (4.24)
i—1 i—2

the Meijer G-function in (4.23) for ¢ > p results to be complete monotonic in
on (0, c0).

It should be also remarked that it is possible to define a family of complete
monotonic Meijer G-function using the closure properties under the convolution
of two Meijer G-functions extending the validity of the result.

Just one caveat: not all the software programs use the same definition of the
Meijer G-function. Here, we assume the Definition 4.1.2 that is adopted by
Mathematica but not by Maple. So, before making any numerical check please
be sure that the definition of the Meijer G-function used by the software programs
and in this thesis coincide.

Proof. Highlights of the proof:

¢ Firstly we prove the complete monotonicity of the Gamma functions ratio
for s € (=b1,1 — by) when p = ¢ according to the following steps:

(a) we introduce a real-valued function h(s) and we investigate its non-
negativity;

(b) we prove the complete monotonicity of h(s) evaluating its derivatives
and their signs under the conditions established in the statement;

(c) we show the (logarithmically) complete monotonicity of the ratio of

Gamma functions resorting to theorem 4.3.1 (or see theorem 3 in [149,
p. 391-392] for further details).
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¢ Secondly, we demonstrate the non-negativity of the Meijer G-function Gﬁ}?
on (0,00) as listed below:

(d) we resort to the definition of the Meijer G-function (4.5) as an inverse
Mellin transform;

(e) once observed that the path chosen does not contain any pole, we can
reduce the limit of integration ;

(f) after performing a change of variable, we resort to the Bernstein theorem
to prove the non-negativity of the Meijer G-function in the integrand.

¢ And number three, we show the complete monotonicity of the Meijer G-
function G2 on (0, 00) as follows:

(g) we define the Meijer G-function Gg’g as an integral transform with a
complete monotone kernel acting on the non-negative locally integrable
Meijer G-function G277

(h) the theorem 4.3.2 (or theorem 4 [149, p. 392|) guarantees the complete
monotonicity of the Meijer G-function G];{’qo on (0, 00).

This completes the proof.

Firstly, we focus on the requirements for the non-negativity of the Meijer G-
function G} }? and the key element is the formula here below:

P T (b + e
=1 (b + 9) —f dt t+-1GrY {t
o I(ai +s) 0 ’

i ap -
bl---bq}' (4.25)

As hinted in the highlights of the proof (and as it will be explained in details in
the following), the complete monotonicity of the Gamma functions ratio implies
the non-negativity of the Meijer G-function, therefore it is vital to demonstrate
independently of the right-hand side of (4.25) the complete monotonicity of the
Gamma functions ratio. To pursue our aim, we introduce the following real
function.

Let

his) = ZP: Inl'(s + b;) — zp: Inl'(s + a;) + ¢, (4.26)

i=1

where s € (—by;,1 — by) and c is a positive constant that guarantees the non-
negativity of the function hA(s). We should note that the function h(s) is the
logarithm of the ratio of Gamma function, consequently the conditions for the
complete monotonicity that we found in the following are logarithmically com-
plete monotonic conditions according to the definition 4.3.1.

The strategy to find the value of the ¢ constant is based on the analysis of the
higher order derivatives of the function h(s). In fact as we will see here below, the
second order derivative is positive under the conditions imposed in the statement
4.3.3. The non-negativity of the second order differential equation implies that
the function is convex in (—by, 1 — b;). Here below there are the explicit math-
ematical steps that allows us not only to define the convexity of the function
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but also to observe how the derivatives at all the orders of the function h(s) are
alternating their signs.
The first derivative of h(s) with respect to s, denoted with h'(s), reads

P
(s +b;) "(s + a;)
h'(s) = - 4.27
() ; (s+b;) Z ['(s+ a;) ( )
where the symbol I means the first derivative of the Gamma function with
respect to s.
For convenience we rewrite (4.27) in terms of the Digamma function ¢(z) = %

58, p. 15-20] [1, p. 258-259]:

:Z¢(5+bi) —Z¢(8+ai)- (4.28)

For higher order derivative (n € Ny or n > 0), Eq. (4.28) can be written as

;0
(5)] ") = Zv(” (s + b)) = Y v (s + ). (4.29)
=1

Here [h(s)]™ ™) represents the n+ 1 derivative of (4.28) and 1™ (s) = L4 (s) =
;::1 logl'(s) is n-th derivative of the Digamma function also well known as
Polygamma function [1, p. 260]. As follows from the notation just explained,
the symbol ¢(%) corresponds to .

Exploiting the integral transform tabulated in [133, p. 16]

() = —v+ /000 dt clze® (R(z) > 0), (4.30)

where 7y is the Euler-Mascheroni constant, the Polygamma function reads

e~ t:::tn,

P (z) = (—1)" ]OOO dx = (R(z) >0, andn € Ny,...), (4.31)

and we finally obtain for n € N,

[A(s)]"+D = (—1)+! / dt 1“:1( S ie—ml). (4.32)

0

Lemma 4.3.3 guarantees the non-negativeness of the function in round brackets
and then the non-negativity of the integral (4.32) since the function s +— ™" is
decreasing and convex. This result also implies that

(—1)™ [A(s)] ™) > 0 (1.33)
for n € Ny. In particular, fixing n = 1, we obtain that the second order derivative
of h(s) is non-negative, i.e. h"(s) > 0 and consequently, we demonstrated that
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the function h(s) is convex.

Now we have all the necessary elements to fix the value of the constant ¢ in order
to guarantee that the function h(s) is non-negative in (—by, 1 —by). We calculate
the limits at the endpoints of the interval (—by, 1 — by):

P
¢y ;= lim ZIHF ,+ ) Zlnf(ai + s) (4.34a)

S—r— bl

:Ezmﬂh—bﬂ—Ejmn%_mJ:+w

D
¢y = lim Zlnf‘ (b; + s) Zlnf(ai + s5) (4.34b)

54)'(1 bl

=§:mmm+1—m)—§:mnm+1—bg
i=1

i=1

At this point we understand the importance of the condition a; > by in the
statement: it avoids the indeterminate form in the limit (4.34a). Once evaluated
the limits, we consider the presence of the local minimum ¢z in (—by, 1 — by) and
then, we can compare the result with the ones found previously calculating the
limits (4.34). At this point, we find the value of the constant ¢ as the modulus
of the minimum value between ¢y, ¢z and c3:

¢ > |min{cy, e, c3}] . (4.35)

The constant ¢ allows us to shift the function h(s) in the first quadrant and then,
the function h(s) is non-negative. The non-negativity of h(s) with the result
concerning the alternating signs of its derivatives in (4.33) allow us to conclude
that h(s) is (logarithmically) completely monotone on (—by, 1 —b;). As it will be
shown below, this constant ¢ is a dummy constant for our final purposes, and it
can be easily dropped. Applying Lemma 4.3.1 we obtain that

‘;}71 L(b; + s)

M) = e 2d= 4.36
’ ‘ i Dlai + ) (4.36)

is also completely monotonic on (—b;,1 — b;). Under such conditions, the left-
hand side of (4.36) can be represented in terms of Meijer’s G-function exploiting
the following Mellin transform

i L(bi + 5) /m 1 {
= dt e t° GP’
i L(ai +s) 0

al...ap p
. b]. (4.37)

It is now clear that the non-negative constant ¢ plays the role of a multiplicative
constant and therefore, without loss of generality, can be dropped out and we get

Ll ) ™ g gl
?:1 [(a; + s) 0

..ap p
. b]. (4.38)
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The integral representation (4.38) arises from the Mellin-Barnes integral (4.5)
used for the definition of the Meijer G-function in Section 4.1.2. We should
remark that we will reduce the limits of integration in (4.38) from [0, o) to [0, 1]
because the Meijer G-function Gﬁ}? is zero for [t| > 1 as it is evident considering
the definition of the Meijer G-function (4.5) for the case n = 0. In fact, when
the upper index n is zero, the integration path ¢ in (4.5), chosen among all the
possible paths established by Erdelyi (see [58, pp. 206-222]), is a loop beginning
and ending at +o0o that does not encircle any pole, i.e. []/= ,OF(l —a; —s) =1,
gives an empty product, and since we excluded by construction all the pOlEb
from the b parameters, the Meijer G-function vanishes for |[t| > 1. On these
considerations, the integral on the right-hand side of (4.38) now reads

(b +5) :/ gt 1 1Gpo[
?:1 ['(a; + s) 0

sy c
b } (4.39)

and performing the change of variable t — e™¥, we obtain the following expression

_ F(bz + S) foo _ 0|:
= dy e Gp
Y L(ai+s) 0

1 .. .ap
b ] (4.40)

Now we apply the Bernstein theorem 4.1.1 that gives a sufficient and necessary
condition to the non-negativity of the Meijer G-function in (4.40). We therefore
declare that the Meijer G-function in (4.40) has domain [0, 00) and ranges in-
cluded in [0, 00). Observing that this Meijer G-function is a composite function
of the type g(f(y)) where g is the Meijer G-function and f is the exponential
function, we gain information also on the co-domain of the Meijer G-function
with ¢ as argument since its co-domain has to be the same co-domain of the
composite function according to the composite function rule, so we can write:
GPY:[0,00) = [0, 00). (4.41)
Once we demonstrate the non-negativity of the Meijer G-function (4.41), the
complete monotonicity and (then) the non-negativity of the Meijer G-function
follow considering the closure properties under the convolution of the Meijer
G-functions (formula 2.24.1.1 in [170]): the product of two arbitrary Meijer’s G-
functions integrated over the positive real axis can be represented by just another
Meijer’s G-function.
For our purposes, we define the convolution below

R SRTIE: p,0 Ay p+1.0 Ap,-- 5 ap
/D di Go L k}G bt | = Gt [

Qr, -+, qp ]
o by

where k is a real number.

The first Meijer G-function in (4.42), G[}!’P {f

0 (4.42)
+1,
- G;f;p+1 |:r

t

;] multiplied by %, plays the role
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k
of the kernel of the integral transform and it is simply e~ % (f) . As it is evident

the kernel is non-negative in z for all ¢ € (0, oc), and as previously demonstrated,

the second Meijer G-function G/ 0 [

ey | o .
b bp ] is a non-negative function.
1°

Now let us focus our attention on the value of the k parameter.

For &k < 0 the kernel introduced in (4.42) is complete monotonic in x for all
€ (0,00). However, the action of this kernel influences both the indices and

the parameters, so we should keep in mind that the & parameter will be enrolled

among the b parameters and the order could change. In case b; is positive, the k

parameter can assume any non-positive real value, i.e. £ < 0 without perturbing

the order, otherwise if b; < 0, we should choose the k parameter as a negative

number such that ) )
Y ai=> bi+k>=0 (4.43)
i=1 i=2

This inequality assure us that the introduction of the k parameter among the
b parameters do not invalidate the non-negativity condition (4.22) even in case
of exchange between b; and k. So in the end, after evaluating the transform we
obtain that the new b} is the smallest negative b parameter as required in the
statement and two inequalities

i a; — Zp: b, >0, (4.44)
i=1 =1

and

-]
+
[\

Zp: a; — b > 0. (4.45)

2

i=1 i

Both (4.44) and (4.45) are always satisfied once the Meijer G-function in the
integrand of (4.42) is defined as a non-negative function. In fact, assuming for
example that the smallest and negative b’ parameter is the & parameter, i.e.
k = b}, the inequality (4.44) is verified since it built from the inequality for the
non-negativity condition when we replaced by with k, and we have that k£ <
0 and k < b;. It goes without saying that a; > b} = k. Quite simply, the
negative b} helps the inequality to be satisfied since it increases the sum of positive
terms. On the other hand the second inequality in (4.45) is also satisfied. In
(4.45) we assume b) = k, so now we have by = b; and therefore the parameters
involved in (4.45) are the same parameters of the non-negative Meijer G-function
n (4.42). Consequently, the inequality (4.45) is the inequality that proven the
non-negativity condition for the Meijer G-function, and it explains the condition
a; > by in the statement, that here reads a; > b}.

According to these considerations and once the inequalities (4.44) and (4.45) are
satisfied, the Meijer G-function in the right-hand side of (4.42) is a complete
monotone function as follows from theorem 1 in 4.3.2.

In case the parameter k is positive (i.e. k£ > 0), the integral of the product of
two non-negative functions is again a non-negative function without any further
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restriction. In fact, for any choice of & > 0, the inequality statement (4.22)
is always verified: for & > b,, the k is outside the range of the series and if
0 < k < by, the k parameter takes the place of one of the b parameter, and
it helps verity the inequality since it contributes with a term smaller than that
carried by the parameter b replaced.

Each time we apply the integral transform the number of b parameters increases
by one and so do the ¢ indices and therefore we can generate a family of non-
negative or complete monotone function whose parameters ¢ and p differ for more
than one unit:

>~ 1 T |- a;+--a a1, -, 0
[Tageis|s el ] el ]
0 g 1 q » Y1 1 Yg ( 44 6)
a. s . s s s a
- Gfﬁ’lo |:r bﬂl_ . ”p ] s
1 » Yg+41
where £/ € R and it follows the same considerations discussed for k.
This completes the proof. O

The family of the Meijer G-functions (4.42) generated by the convolution embeds
among its special cases the (upper) incomplete Gamma function, the modified Bessel
function of the second kind and the Wittaker function as shown in Subsection 4.3.1.
The fascinating problem to define a complete monotone kernel in terms of Meijer’s
G-functions able to define the non-negativity and complete monotonicity requirements
not only for the kernel itself but also for the corresponding Gamma functions ratio has
been addressed in Subsection 4.3.2 providing an intriguing example of application of
the conjectured theorem 4.3.3 to a more general and complex situation.

4.3.1 Special functions and the conjectured theorem

Let us consider some examples of well-known special functions in order to probe the
validity of the Meijer G-conjectured theorem 4.3.3 as a useful tool for determining the
conditions of their non-negativity and complete monotonicity.

© Among the special functions, the (upper) incomplete Gamma function |1, p. 260|
has an honourable mention among the examples of application of the conjectured
theorem. Firstly, the (upper) incomplete Gamma function equipped with a non-
linear argument t” is the relaxation function introduced to be the counterpart
in the material frame approach delineated in Chapter 3 to the Havriliak-Negami
model. When the parameter 3 is set equal to 1, the (upper) incomplete Gamma
function is the relaxation function corresponding to the Cole-Davidson dispersion
model.
Secondly, the importance of this special function springs from its applications in
statistics as a remarkable tool for evaluating the y?-distribution functions, the
cumulative Poisson or Erlang distributions, exponential integrals and even the
Error functions.
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Here below, a representation of the incomplete Gamma function in terms of Mei-
jer’s G-function follows:
1
6, 2) =GH |z . (4.47)
' 0,0

Considering the assumptions in the statement 4.3.3, this function is non-negative
for any value of 4 € R. This conclusion arises from the fact that for any choice of
0 there is always at least one of the two values of the parameters b is less than a;.
In addition, the (upper) incomplete Gamma function (4.47) results to be also a

complete monotone function since the requirements b, < 0 and (4.24) are always
satisfied provided that § < 1.

Another class of functions that we encountered in practical applications of math-
ematical physics, as for example in the analysis of the Salpeter equation and the
Pearcey equation in quantum mechanics [118, 120, 122, 193, 194], is the modified
Bessel function of the second kind (also known as Medonald function) K, (z) [179]
which in terms of Meijer’s G-function reads:

; } . (4.48)

Since p is equal to zero, there are no parameters indicated by the letter "a",
therefore the inequality (4.22) in the statement 4.3.3 is always verified for v € R:

voov
by =— — — =0, 1.4
D bi=5-5=0 (4.49)

and the modified Bessel function of the second kind (4.48) results to be a non-
negative function. In addition, observing that one of the b parameters is always
negative for any choice of v € R, the modified Bessel function of the second kind
(4.48) is also a complete monotone function.

Our analysis ends with a more engaging example: the Whittaker function. This
function written in terms of Meijer’s G-function is represented as follows [1,
pp. 503-515|:
1—-v
W,u(7) = e"*G1y) H ] : 4.50
W) =GRl (1.50)
According to the requirements in the statement of the conjectured theorem 4.3.3
this function will be non-negative when a; > by. The parameter a; is equal to 1—v
whereas by is the smallest value among all the b-values. The range of parameters
that guarantees the non-negativity of the Meijer G function is governed by one
of the two following inequality depending on the value of u:

1
v < §—|—\,u,|, i e R, (4.51)

Imposing the additional requirement that by <0, ie. p > % or it < —% (here, the
inequalities (4.22) and (4.24) are the same and for this it has been satisfied for
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the non-negativity condition), the Meijer G-function involved in the definition of
the Whittaker function is a complete monotone function.

4.3.2 A corollary: the complete monotone Meijer G kernel

In this Subsection, we show how the Meijer G-conjectured theorem 4.3.3 can be used
to build a complete monotone kernel in terms of Meijer’s G-functions and then, deter-
mine its complete monotonicity providing an intriguing example of application of the
previous results in a more complex situation.

The ratio of Gamma functions in (4.25) can be generalized as follows

H;ﬂr(ijrS) fm ar---a
= = dt -G a0 {t ! P] . 4.52
Y D(a; +s) 0 pa | "y by, | (4.52)

where this more general Gamma functions ratio is related to a Meijer G-function of
the type G},?j;?.

We can define the requirement concerning the complete monotonicity of the left-hand
side of (4.52) proceeding as shown in the proof in a total independent way from the
other side. In fact once we fixed the requirements for the parameters as required in
the statement 4.3.3, the complete monotonicity of the Gamma functions ratio follows
immediately since the crucial inequality

(Zq: e i Zp: e’t“i) >0 (4.53)
i=1 i=1

is evidently satisfied. The extra b parameters help verify the inequality (4.53). However,
the right-hand side of (4.52) should be rewritten in order to clearly bring out the
complete monotonicity of the kernel in s for all ¢ in the range of integration and the
non-negativity locally integrable function in order to generate a complete monotone
(Gamma functions ratio as stated in theorem 4.3.2.

Firstly we use a basic functional relation of the Meijer G-function that allows us to
move the s variable into the parameters of the Meijer G-function. This functional
relation that can be found in formula 9.31.5 in [81, p. 1034 is reported here below

g0 |A1 Op | gol, |0 HE Ayt 2
¢ G}"aq |:t blbg] _G-p,q |:t bl+Z"'bq+Z . (454)
Applying (4.54) to the integrand of (4.55), we obtain
q . o0
Hj=1r(bj‘+8): dth’Otal—FS_l‘”ap—FS_l . (4‘55)
i Dlag+5) o pa | Moy s — 1 by +s—1

The use of this functional relation allows us to identify the non-negative locally in-
tegrable function with the constant function f(¢) = 1 whereas the Meijer G-function
plays the role of the kernel K(s,t) of the integral transform. In order to use the theo-
rem 4.3.2, we need to bring out the complete monotonicity of the kernel K (s,t).

At this point we focus on the limits of integration so that we can split the integral into
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two contributions:
> gol Jar+s—1 - a,+s—1|
/0 dtGi”*q[t by+s—1---b;+s—1]
1
_ 0
_/0 dtG;}lq{t
_/ dfG‘?O[
0
1
_ 0
- [ (ol

In the second integral of the third line of (4.56), we performed a change of variable, i.e.
t— %, and then, since the new variable y is a dummy variable we restored the letter
t. The first Meijer G-function in (4.56) is completely monotone (and so it is positive)
according to the requirements in the statement 4.3.3 and for —b; < s < 1 —by. On the
other side, what we know about the second Meijer G-function is that the function is
positive since it is a composite function of two positive functions, one is the constant
function f(¢) = 1 and the other one is the Meijer G-function whose non-negativity is
proven by applying the requirements in 4.3.3 provided that —b; < s < 1 —b;. It is
therefore possible to conclude that the function between the round brackets in (4.56)
is non-negative.

At this point we derive the above integral with respect to s in order to check if the
signs of the derivatives are alternating as required by the property of the complete
monotonicity. Let us evaluate the first derivative of the integral in (4.56):

ap+s—1-a,+s—1
by+s—1 - by+s—1
am+s—1-a,+s—1
bh+s—1---b,+s—1

bi+s—1 - bos—1

dy G0 F

p.q

+ / dt GIJ [t

Y

+
a+s—1- --ap+9 qu
by +s—1 - Pq

(4.56)

d mdtho a;+s—1 - --aere 1
ds J, PO by +s—1 - by +s—1

:f:c dtiaq“[
- /0 "t log(t) (G% [

Even in this case, the first Meijer G-function is completely monotone provided that
the assumptions in 4.3.3 are satisfied, and in particular, we want to point out that
this function is not only positive but also decreasing as observed in the "domino-
effect" algorithm illustrated in Chapter 2 (see Section 2.2.3). Conversely, the second
Meijer G-function is an increasing function. This behaviour is predictable, considering
once again that the second Meijer G-function is a composite function where both the
functions are decreasing. The difference between the two Meijer G-function in (4.57)
is positive as it can be easily verified evaluating the difference between their Mellin-
Barnes integral representations: t~° is always greater the t* for any s € (by,1 — by)
when ¢ € (0,1). The presence of the natural logarithm as a factor provides the minus

a+s—1-a,+s5—1
by+s—1--- b, +s—1

a;+s—1- --aers—l B qu
by +s—1 - b, +s5—1

(4.57)

ap+s—1-a,+s—1

ap+s—1-a,+s—1
by+s—1 - b,+s—1

Llag +s—1 - -aers—l
byj+s—1--- by, +s—1 ’

|
|

Llag+s—1 - ap+s—1
tibr+s—1--b,+s—1

)
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sign to the overall function that assures the negative sign of the first derivative. We
can continue to perform higher order derivatives, and we observe that for a general
n-derivative we have

a+s—1--- aersl} B

dﬂ, oo
q,0
ds"fo dtGp’q{t biy+s—1 - b,+s—1
o0 d’n,
= dt GVt
/0 dsn P [
1
- /O dt (log(t))" (Gg;;’ [t
0

+(=1)" G,

P.q

ap+s—1-a,+s—1
by+s—1 - b, +s—1

ap+s—1--a,+s—1 (4.58)
bi+s—1---b,+s—1

1
:
The function in the round brackets results to be a completely monotone kernel acting
on a constant function equals to 1. The ratio of Gamma function in (4.52) turns out
to be a complete monotone function according to theorem 4.3.2. In order to check
the correctness of the result, we can reproduce the same steps illustrated in the proof
in order to demonstrate the complete monotonicity independently of the right-hand

side. Such complete monotonicity arises provided that —b; < s < 1 — b; and if the
requirements established by 4.3.3 are fulfilled.

bh+s—1---b,+s—1

a+s—1--- ap+s—1])

4.4 Conclusions to Chapter 4

Among the properties enjoyed by the special functions, the complete monotonicity is
one of the most fashionable mathematical property and until now its meaning in the
modelling dynamical systems was also quite elusive. The complete monotonicity not
only gives information on the special function that fulfils the requirements, but also the
behaviour of its derivatives without any calculation. As observed in Chapter 2 and in
[123], we introduced a "domino-effect" algorithm where starting on basic assumption
on the function, it is possible to establish a chain of properties that leads us to verify
the complete monotonicity of the relaxation function. Last but not least, as observed in
Chapter 2 and in [123], it was possible to associate a physical meaning to the complete
monotonicity in modelling relaxation processes. The complete monotonicity emerges
when the dynamics of the system is ruled by purely damping mechanisms. Therefore,
it is crucial to investigate what are the minimum requirements to impose on the pa-
rameters involved to guarantee the complete monotonicity from a different perspective
of what we presented with the "domino-effect”" algorithm in Chapter 2 and in [123].

Our attention has been focused on two special functions: the Mittag-Leffler function
and the Meijer G-function that are officially presented at the beginning of the Chap-
ter. The choice to consider these two special functions is due to the fact that they are
involved in the modeling of relaxation processes. In particular, the Mittag-Leffler func-
tion is the relaxation function corresponding to the Cole-Cole relaxation [66]. On the
other hand, the Meijer G-function generalizes the relaxation function in the material
frame defined in terms of incomplete Gamma function. Once ended the presentation
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of the special functions, we presented a theorem for establishing the complete mono-
tonicity of the three-parameter Mittag-Leffler function. The result has been published
in [80] and its proof has been inspired by Pollard [168] and by Schneider [182]. This
is the peculiar mark of the result: it establishes a formal connection with these works
enriching the demonstrations on the three-parameter Mittag-Leffler function known in
literature [45, 138, 192].

Concerning the Meijer G-function, a novel and original result has been conjectured and
proven in Section 4.3. This result allows us to approach to the complete monotonicity
of the Meijer G-function simplifying the determination of the constraints on the param-
eters. The proof is based on the work of Alzer [2, 3] and it offers a different perspective
from the results known in literature [104-106] and it provides a methodology that can
extend the strategy and the validity of the results to more general cases. In both the
proofs presented in this Chapter, the Bernstein theorem has a key role.



Chapter 5

Conclusions

This thesis aimed to extricate the complexity that affects the anomalous relaxation
processes proposing novel methodologies and approaches able to enlarge the landscape
of the possible mathematical methods and deepen the understanding of their physical
interpretations.

After briefly reviewing the fundamentals of the classical electromagnetic theory and
presenting the main anomalous relaxation and dispersion models developed from the
Debye model in Chapter 1, we focus our attention on two of these well-known and suc-
cessful models: the Kohlrausch-Williams-Watts function used for describing relaxation
in the time domain, and the Havriliak-Negami dispersion model (and its special cases)
applied to the analysis in the frequency domain.

In Chapter 2 and in [123], we have faced the problem of the physical origin of the
Kohlrausch-Williams-Watts function introducing a phenomenological model able to
unveil the origin of this relaxation function and the nature of its singularity resorting
to a comprehensive approach in agreement with the experimental data and able to
define the role of the monotonicity in the mathematical modelling of relaxation pro-
cesses. This important achievement paves the way to a novel approach in the analysis
of the time-resolved photoluminescence, and it was acknowledged in the book written
by Prof. Giuseppe Baldacchini titled "Organometallic Luminescence: A Case Study on
Alg3, an OLED Reference Material" published by Elsevier in 2020. This point of view
allowed the understanding of the issues linked to the function itself (in its stretched
and compressed versions) but also to the realization of a general model where the role
of the restoring and frictional forces have been related to a physical quantity as the
time-dependent reduced mass. To understand the crucial value of the model and the
approach, we should bear in mind the difficulties in the interpretation of the nonlinear
friction mentioned in [132| where the approximation to a first order differential equa-
tion elegantly avoids the mathematical obstacle to solve a second-order differential
equation with time-dependent coefficients, in this case the downside is the difficulty in
understanding the nature of the nonlinear forces. Our model preserves the second order
differential equation and introduces the nonlinear time variable, named material time
or material clock, as a change in the coordinates. Part of these results were presented
at the conference "33rd M. Smoluchowski Symposium" held in Krakéw on the 3th and
4th of December 2020.

The essential role of the material time in the description of anomalous relaxation pro-
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cesses has been unveiled in Chapter 3. In this Chapter there are three main outcomes
that have been carried out using our papers [23, 24, 77-79| as starting point for the
research. Firstly, we introduced a general composition rule in terms of a commutator
to describe the evolution of anomalous relaxation processes that can generalize and
simplify the approach we presented in [78] and in [79]. This formula roots its physical
interpretation in the Reynold-Leibnitz theorem and it is based on the assumption that
the relaxation function should be considered as a intensive function [116]. Secondly,
we linked the material time to the material frequency introducing a material transform
based on the Fourier transform reinterpreted in the light of a frame that twists and ro-
tates. This transform bridges a time-weighted Kohlrausch-Williams-Watts relaxation
function with the Havriliak-Negami dispersion model. This is a significant achievement
since not only the material transform explains the success of these two models in their
respective domains as two faces of the same coin, but also it paves the way to interest-
ing theoretical and experimental applications in the field of frustrated magnetism as
pyrochlore systems. The third result concerns the generalization of the model proposed
in Chapter 2: the harmonic oscillator results to be also driven by an external force.
This outcome shows that there are two different origins of anomalous behaviours, one
that is nested in the material medium and described by the material time, the other
one emerges when an external force has been applied. This result explains respectively
the distortion and the damping observed in the semicircles illustrated in the Cole-Cole
plot in Chapter 1. Part of the results have been presented at the conference "XXXVII
International Symposium on Dynamical Properties of Solids" held in Ferrara (IT) from
the 8th to 12th of September 2019 [121], and in other two occasions where I was invited
lecturer: at the conference "International Conference of Physics and Related Science
Education" held in Subotica from the 17th to the 19th of October 2019 [119] and at
the seminary at the Physics Department of the University of Ferrara held on the 13th
of Febraury 2020.

Last but absolutely not least, Chapter 4 collects the theorem (published in [80]) about
the minimum requirements that the three-parameter Mittag-Leffler function should
tulfill to be a complete monotone function. In second place, an original result on the
non-negativity and complete monotonicity of the Meijer G-function has been presented
in Chapter 4. The result extends the set where the parameters range: now it is possible
to consider also negative values for the parameters! The choice of this function is due
to the fact that it plays a key role in our framework of anomalous relaxation processes
since its material-frequency counterpart is the Havriliak-Negami dispersion model.

There are a number of additional areas for further research that have been high-
lighted by the studies undertaken for this thesis. These include the further investiga-
tions of other photoluminescent materials in addition to the Alg3 molecule in order to
extend the validity of the model and its predictions to other experimental situations.
However, it seems to be equally interesting to use this model in order to reverse the
course and try to anticipate the experimental observations introducing novel relaxation
functions as we presented in [124]. In this paper we introduced a stretched hyperbolic
decay generalizing the Becquerel decay law via fractional calculus. The result presented
is significant since not only it enlarges the landscape of the functions that model pho-
toluminescence but it is an example of how the model presented in this thesis allows
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to proceed in modelling non-exponential or anomalous behaviour, merging the physi-
cal meaning and the mathematical requirement. In particular, it is worth to mention
that the results can be extended to the description of non-exponential current decay
in superconductors as we show in [124|. The interplay between different fields of con-
densed matter physics favours a clearer physical interpretation for these anomalous
behaviours. As reminded previously, it could be very interesting to extend the research
in the direction of frustrated magnetism in order to use the transform and the mathe-
matical tools introduced in this thesis to analyse complex systems as pyrochlores.
Regarding the analysis of the complete monotonicity requirement for special functions,
an extension for the near future is to promote this conjectured theorem as a theorem
and then, generalize the methodology set out in this thesis in order to define the min-
imum set of conditions for convoluted special functions as the Meijer G-function with
all different indices and the Fox H-function.
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