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Chapter 1

Introduction

The intricacy of the financial markets attracts the interest not only of economists
and mathematicians but also of physicists. An extremely complicated structure, a
multitude of dependencies between market elements, and herding behaviour among
investors causes financial markets to resemble the complex systems found in nature,
which can be quantitively described within formalisms commonly used in physics
[1, 2, 3, 4, 5].

One phenomenon characteristic of complex systems in general also observed in
the financial markets is the emergence. The market itself can be perceived as a set
of individual entities having various objectives and strategies, possessing different
resources, and, importantly, having the ability to interact with one another. The
fact that traders exchange information and opinions about financial instruments can
influence their investment decisions. For example, when a known trader shares his
thoughts about a particular stock in public, other investors can follow this opinion,
and, as a result, may tend to align their trading actions. Dependencies between
market participants, which are not very interesting when a single entity is viewed,
can lead to intriguing phenomena observed on a global scale. Speculative bubbles
and market crashes exemplify this tendency [6]. In this context, financial markets
have much in common with the emergence existing e.g., in biological |7, 8, 9, 10|,
sociological [11, 12, 13, 14, 15|, and physical systems [16, 17, 18, 19].

The complexity of financial markets also reveals itself in the rate of return sig-
nals. Interestingly, regardless of the asset or market being considered, financial time
series have common properties, known customarily as stylized facts. One of the most
significant features of this signal type is its distribution. Originally, as proposed by
Louis Bachelier in his doctoral thesis [20], price fluctuations were modeled using
the Wiener process and relied on the assumption that returns follow a normal dis-
tribution. This work provided the foundation of modern quantitative finance and
was inspirational for many researchers (e.g., Merton, Black and Scholes, who in-
cluded Wiener process in their famous Black-Scholes option pricing formula [21]).
However, as has been well established, rates of return do not enter into a Gaussian
distribution. In fact, the distribution of asset price changes consists of an elongated
central part with fat-tails that usually scale themselves according to the power law
[22, 23, 24, 25, 26|. In physics, this characteristic of system fluctuations is commonly
observed in near-critical states [27, 28], and so is another similarity between physical
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systems and financial markets.

The power law dependency of returns distribution is related to another interest-
ing feature of the financial time series: multifractality. In 1963, Mandelbrot noticed
that an asset’s price movement, considered on different time scales, have similar tra-
jectories [29]. This finding set up the foundation of a new branch of mathematics.
The fractal analysis in question, focuses on the multiscale regularities observed in
various objects. In the following years, it has been completed with the more ad-
vanced theory of the multifractals, which are the convolution of fractal structures.
The new formalism has been successfully applied in different areas of science includ-
ing physics [30, 31], biology [32, 33|, chemistry [34, 35], geophysics [36, 37|, linguistics
[38, 39|, and primarily, quantitative finance [40, 41, 42, 43, 44, 45, 46, 47, 48, 49|.
The multifractal nature of the rate of return signals indicates the presence of non-
linear, long-range dependencies, which are also manifested by the slow decay of the
absolute returns autocorrelation function [23]. Interestingly, at the same time, these
signals do not reveal significant linear autocorrelations [50]. The dependencies ex-
isting in financial time series become even more intriguing when multiple assets are
considered; typically, the correlations between different financial instruments also
exhibit a multiscale character. It has substantial practical implications as the corre-
lation, and cross-correlation analysis constitutes the foundation of modern portfolio
theory [51] that enable financial market practitioners to minimize the investment
risk.

The complexity of the financial markets and the nontrivial character of returns
are difficult to model using mathematical formulas. Therefore, in recent years, an-
other approach, agent-based modeling (ABM), has gained popularity in the financial
area. In this technique, instead of building complicated mathematical expressions
that try to capture entire dynamic of the market, the considered system is divided
into multiple, relatively small, and interacting elements (agents), which, by exchang-
ing information, can generate signals characterised by nonlinear correlations. This
approach has its roots in the von Neumann machine and cellular automata, and
nowadays it is applied in multiple areas of science, including physics [52, 53, 54|,
biology [55, 56, 57|, geology 58, 59, 60|, sociology [61, 62, 63, 64, 65|, and economics
[66, 67, 68, 69]. Since financial markets consist of numerous and vastly different
parts, the modeling of such a system where every element has a mathematical rep-
resentation might be complicated and heavy in terms of required computational
resources. In fact, crucial features of the financial markets, including stylized facts,
can be relatively easily reproduced by agent-based models in the form of cellular
automata. These models are often inspired by natural phenomena, such as phase
transition in ferromagnetic materials and naturally make use of frameworks com-
monly applied in physics, such as the Ising Model. A notable example of a financial
market model inspired by physical phenomena is the framework proposed by lori
[70] which is a variation of Random Field Ising Model adapted to stock market
conditions. Another example is the model introduced by Bornholdt, in which the
classical two-dimensional Ising Model is enriched with a minority game factor |71].
These two frameworks are well-recognized in the literature and have been studied
in different contexts [69, 72, 73, 74, 75]; therefore, they constitute the foundation of
the multiscale correlation analysis in Ising-inspired agent-based models presented in



this dissertation.

This work has two primary objectives. The first is the multifractal analysis
of daily data from major stock exchanges (DJIA, DAX, NIKKEI, NASDAQ), and
FTSE from 1950-2020') and components quoted within DJIA (from 1962 to 2020),
emphasizing the time evolution of the multifractal properties of different assets and a
network-based analysis of their cross-dependencies. The second, more important ob-
jective is related to modeling of the financial time series properties mentioned above
using agent-based models. Besides examining the frameworks mentioned above, the
authorial, Ising-inspired Multi-Asset Three-State Agent-Based Model of the
financial market is proposed and then comprehensively analysed in the context of
the multiscale properties of signals it generates.

The dissertation contains nine chapters. Chapter Two introduces the fundamen-
tal quantities used in the financial time series analysis and includes an examination
of the basic statistical properties of returns, such as fluctuations distribution and
autocorrelation functions.

In Chapter Three, the analysis is extended to an examination of nonlinear depen-
dencies, preceded by a comprehensive introduction to the fractal and multifractal
formalism. The emphasis in this part of the thesis is on a multifractal rolling window
analysis of the returns? as well as network analysis of the multiscale cross-correlations
between assets.

Chapter Four introduces agent-based modeling. Using two fundamental models,
namely, Schelling segregation model [77]|, and Boids model [78], it has been shown
how emergent behaviour and phenomena having the appearance of a phase transition
can be reproduced within this type of framework. In the next sections, the criticality
of the agent-based models, in the form of cellular automata is discussed more for-
mally, and simulation of such models using Monte Carlo methods is demonstrated.
Subsequently, two Ising-inspired financial market frameworks, namely Iori’s model
and Bornholdt’s model, are described and examined in the context of reproducing
stylized facts observed in the financial time series.

Chapter Five contains a theoretical description and examination of the funda-
mental statistical and multifractal properties of the time series generated by the
single-instrument variant of the authorial multi-asset three-state model of the finan-
cial market with default parameters.

Chapter Six is entirely devoted to analyzing the model’s microscopic dynamics
and the impact of its parameters on the multiscale characteristics of the generated
signals. Moreover, it is shown which elements of the model stand behind the hierar-
chical organization of the signals it produces and how the richness of the generated
structures can be controlled. Additionally, in this chapter, multifractal rolling win-
dow analysis is used to demonstrate, how the framework can recreate the dynamical
changes of returns multiscale properties.

In Chapter Seven, the analysis of the model is extended to two asset scenar-
ios. This part is focused on understanding how simulating multiple linked financial
instruments influences the nonlinear properties of the time series generated by the

'DAX and NASDAQ datasets are limited to the range 1962-2020 and 1971-2020, respectively
2This part is an extended version of an analysis originally presented in the article [76], to which
the author of this thesis contributed.



model. To improve clarity, the analysis has been divided into three parts; the first
quantifies the impact of the global coupling between subsystems, the second fo-
cuses on the linkage between assets on the agent-agent level, whereas in third it was
demonstrated how the combination of both types of interactions leads to nonlinear
cross-correlations similar to those observed in the financial markets.

Chapter Eight discusses practical applications of the model. Here, the fully-
fledged variant of the framework is presented and used for building two artificial
indices. The first one, which consists of ten assets, demonstrates how the proposed
solution can resemble stock market dynamics, including temporal correlation and
decorrelation phases. The second, inspired by DJIA, consists of thirty linked assets.
This section demonstrates how the model can reproduce a non-trivial multiscale
cross-correlations structure, captured here using a complex network analysis. The
last chapter contains a comprehensive summary and concludes this dissertation.
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Chapter 2

Fundamental statistical properties of
financial time series

The financial market is an example of a complex system, which analysis, in order
to provide adequate and valuable insight, has to incorporate multiple factors and
capture changes in market dynamics over time. One of the primary methods used in
analyzing financial markets is examining the basic statistical properties of the rate
of return time series. Such analysis facilitates observation of the market dynamics,
and if extended to a multi-asset scenario, can help in understanding the relationship
between financial instruments.

This chapter introduces the basic statistical methods commonly applied in the
analysis of financial time series. Based on the major stock indices and DJIA com-
ponents data, the characteristic features including fluctuations clustering, fat-tailed
distributions of returns, and volatility correlations are presented. Examination of
these properties provides a foundation for further discussion of the nonlinear depen-
dencies existing in financial time series.

2.1 Probability distributions of returns

Financial assets, as any goods and services, are subject to the law of supply and
demand [79]. The number of asset units available on the market and the demand
for it brings changes in a financial instrument valuation, which is reflected in its
price. This law applies to any kind of assets including stock shares, contracts, and
currencies [23, 50|. Universal character and ubiquity make price a fundamental
quantity used in financial analyses and modeling. However, direct examination of
price, even using simplified models, could be complicated. The primary issue is
that time series made up of prices in consecutive time steps are non-stationary.
Moreover, from the investor perspective, more important than asset valuation is
an asset’s price change over time, which is usually expressed as a percentage value.
Therefore, consideration of price differences, measured by logarithmic rates of return
is more suitable:

R = R(t,At) = In(P(t + At)) — In(P(t)), (2.1)
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where ¢t = 1,..., N is the time instant, At indicates the analysed scale, and P(t)
corresponds to the asset’s price at a given point of time. Rate of return, defined
in such a way, is more convenient for statistical analysis than price, as the first
moment of a returns signal for large scales is typically stable over time. Moreover,
it facilitates capturing the percentage changes in the price asset over time, which, as
mentioned above, is one of the main objectives of the financial market practitioners.
Naturally, investors often compare different assets; thus, in practical applications,
standardized returns (shortly called returns) are typically used:

R(t,At) —u

v

r(t, At) = (2.2)
where v is the standard deviation and u is an average of returns, both calculated for
the entire analysed period. Despite having completely different prices and therefore
unrelated absolute daily price changes, financial instruments typically have similar
percentage returns, thus making comparison of different assets at the r(¢, At) level
is an apparent choice. Furthermore, for large time intervals, returns are usually pro-
portional to asset valuation. However, analysis of relative, standardized differences
in the price nullifies this effect and allows comparison of a given asset in distinct
periods of time. Due to the benefits mentioned above, further calculations in this
study uses standardized logarithmic returns (shortly called returns). It is worth
noting that this definition is not free of defects. In fact, for high-frequency data
(e.g., tick-by-tick) and idiosyncratic financial instruments, returns are primarily in-
dependent of asset price. Such a situation commonly occurs on the foreign exchange
and option markets [50].
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Figure 2.1: Logarithm of daily closing prices (panel (a)) and returns (panel (c)) of Dow Jones
Industrial Average (DJIA) from 1950 to 2020. NASDAQ daily rates of return from 1990 to 2020
(panel (b)) and increments of Brownian motion (panel (d)). Red dotted lines in panels (b) and
(d) denote +30 range.

A vital part of the modern financial market analysis and modeling is related to
risk management. The primary measure used for quantification of the risk associated
with the investment in the particular asset is its volatility. By definition, it refers
to the amount of uncertainty related to the size of changes in a security’s value. A
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higher volatility means that an asset’s valuation can potentially be spread out over
a more extensive range of values, and hence, its price can change dramatically over
a short period, in either direction. On the other hand, lower volatility means that
a financial instrument’s value does not fluctuate significantly and tends to remain
relatively steady over time. In general, volatility can be estimated using various
parametric and nonparametric models. The former approach is based on an explicit
functional formula, e.g., the stochastic volatility model [80]. Usually, parametric
models are relatively easy to use; however, they have recently become increasingly
restrictive, and so there has been a movement toward the use of more flexible and
computationally simple nonparametric measures [81]. One of the most commonly
used nonparametric methods of quantification of instrument price volatility is based
on tracking the absolute return values. This approach is the basis of much of the
modeling efforts presented in the literature, and in recent years has shown itself to
be one of the most accurate measurements of the volatility [82], and thus, it is used
in analyses presented in later sections of this dissertation.

Historically, returns, and consequently volatility time series, were modeled using
Gaussian-distributed random variables. This idea became very popular in the 1950s,
and it is one of the main ingredients of the famous Black-Scholes option pricing
formula [21]. Indeed, if one considers each price change as a sum of many small
and independent random contributions from various market factors, the Central
Limit Theorem suggests the Gaussian as a natural candidate. In some financial
problems; this model is still in use, mainly because of its simplicity, though it does
not correspond to reality. Based on the empirical studies, it is well established that
returns do not follow the Gaussian distribution |23, 50]. To see this phenomenon,
it is sufficient to look at Figure 2.1 which shows returns of NASDAQ index from
1990 to 2019 (7560 data points) and increments of Brownian motion (panels (b) and
(d), respectively). As is clearly visible, in the case of Gaussian-distributed variables,
almost all observations are within a £30 range (denoted by the red dotted lines),
whereas for the returns signal, in periods of increased volatility (e.g., NASDAQ in
years 1997-2003), this range is significantly and repeatedly exceeded. In general,
distributions of returns are leptokurtic, and exhibit an elongated central part and
fat tails (also called heavy tails), which scale according to the power law:

P(r>ax)~a*, (2.3)

where the p exponent typically assumes values of 3 to 5; however, for immature
markets and those having low liquidity, this can be around 2 and below (e.g., cryp-
tocurrencies [83]). Scaling of this type can be observed not only in financial markets,
but is also common in other areas of science, e.g., physics [84, 85|, linguistics [86, 87],
neuroscience [88], and many more [89]. Mathematically speaking, the power law re-
lation may introduce extra calculation issues, as the variance is finite only for p > 2,
which can, in turn, lead to major flaws in commonly accepted theories. For example,
an infinite variance in the formalism of equilibrium statistical mechanics would lead
to infinite temperature [90]. From a financial-analysis point of view, the power law
dependency usually indicates the structural self-similarity of the considered signal
and the existence of huge fluctuations, which are typically observed during financial
crashes [6].
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Figure 2.2 presents cumulative distribution functions of absolute returns calcu-
lated for major stock indices (panel (a)) and companies quoted within the DJIA
index (panel (b)). For all analysed assets, fat tailed distributions are observed. The
scaling exponent for indices, estimated using the least squares method, varies from
= 3.33 £ 0.20 for the NASDAQ to p = 3.84 £ 0.24 for the DAX, while for DJIA
components, it fluctuates between p = 2.64 + 0.10 for GE and p = 4.24 4+ 0.18 for
BA (see Appendix A for a full list of components).
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Figure 2.2: Cumulative distributions of daily absolute rates of return for major stock indices
(panel (a)) and components of Dow Jones Industrial Average index (panel (b)).

Worth noting is that return distributions converge to the Gaussian as the time
scale increases. However, this transition is slower than that observed for random
signals, possibly indicating the presence of correlations in the examined series [91].
Indeed, as will be demonstrated in later sections of this study, financial time series
are characterized by non-trivial self- and cross-dependencies, which underlie the
fractal nature of the examined processes.

2.2 Autocorrelation and cross-correlation in finan-
cial data

Analysis of the stochastic processes governing asset price changes, in addition to dis-
tribution examination, requires quantification of correlations. In the case of financial
time series, correlation analysis is critical as it constitutes a foundation of modern
portfolio management strategies, and enables market participants to balance risk
against performance [51].

The primary measure of the temporal self-dependencies found in time series is
an autocorrelation function. It determines the influence of previous signal values
(within a given time lag 7) on the current observation and can assume positive
values (in range (0,1]), if changes in the signal are in the same direction, or are
negative (in range [—1,0)), if changes in the signal are in opposite directions. For
random data, it quickly converges to 0. Formally, the autocorrelation function of a
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signal X (t) with respect to the lag 7 can be calculated as follows:

BI(X(t) - X)(X(t+7) - X)]

2 Y

Co(1) = (2.4)

o
where o is the variance of the time series being analysed. As reported in numerous
studies |23, 50| and shown in Figure 2.3, the rates of return time series are not
characterised by linear correlations. In the case of daily returns of selected indices
and stocks (panel (a)), the autocorrelation function drops to zero for 7 greater than
one and does not exceed the noise level indicated by the red dotted lines. The
situation is slightly different in the case of one-minute data. As presented on the
panel (b) of Figure 2.3, for returns of selected stocks, for a small lag (7 = 1) a weak,
negative, autocorrelation appears. Usually, this effect is related to the occurrence
of zero values in the time series being examined; therefore, it is assumed to be a
computational artifact. However, in the case of the analysed assets, similar results
were obtained, even when zeros were removed from the signal, indicating that, on the
short time scales, positive and negative returns are more likely to be interlaced than
is typically observed on larger time scales. This phenomenon can be linked with
a relatively low supply and demand inequilibrium combined with the continuous
flow of orders placed by market makers. On the small time scales, when the buy
and sell orders are almost balanced, the clear trend manifested by a consecutive
chain of positive or negative returns cannot develop. In fact, price is more likely to
fluctuate up and down rather than move firmly in either direction. Even though for
high-frequency data and small lags 7 weak negative correlations were observed, over
a long range, returns are not linearly correlated regardless of the time scale being
considered.
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Figure 2.3: Autocorrelation functions of daily (panel (a)) and one-minute (panel (b)) returns of
the selected indices and stocks. Red dotted lines indicate noise level.

Based on the returns’ autocorrelation function, one might conclude that the
process governing price fluctuations has no memory. However, the lack of linear
correlation does not imply independent returns since higher order correlations may
exist. It is sufficient to look at panels (b) and (d) of Figure 2.1, which present the
daily NASDAQ returns from 1990 to 2019 (panel (b)) and increments of Brownian
motion (panel (d)) to notice that financial fluctuations size changes over time. For
example, returns in years 2000-2003 are significantly larger than in years 1993-1997,
and, hence volatility in these periods differs. Such grouping of volatility is called
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volatility clustering, and it is observed in many financial instruments. In comparison,
increments of Brownian motion, an example of a homoscedastic process, have the
same volatility across the entire dataset. In fact, the volatility signal has temporal
correlations. Therefore, if at a given point of time ¢, rate of return assumes a
large value, it is highly probable that it will have a large value in the next time
step t + 1 as well (analogously for small fluctuations). Figure 2.4 presents the
volatility autocorrelation function of the selected indices and stocks calculated for
daily (section (a)) and one-minute (section (b)) absolute returns. In both time
scales, the autocorrelation function declines slowly and maintains a statistically
significant level for approximately 103 time steps for daily volatility and more than
10° time steps for one-minute data. Additionally, the autocorrelation function for
high-frequency data in lag range 7 € [3 % 102, 3 x 10%] fluctuates substantially. These
oscillations are related to the daily trading cycles observed in the financial markets.
The number of orders placed by investors is not constant over time and regular
periods of increased activity in the market, and, thus increased volatility can be
identified. Usually, the market is more volatile during session opening, when pre-
market orders are executed, and in the last hour before market closure, as intraday
traders close their positions.
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Figure 2.4: The autocorrelation function of the daily (section (a)) and one-minute (section (b))
absolute returns of the selected indices and stocks. Red dotted lines indicate the noise level.

Naturally, examination of financial data correlations can be extended to analysis
of multiple assets. The basic technique used for a quantitative description of the
interrelation between financial instruments is based on a cross-correlation function,
which measures the degree to which the series follow one another when shifted by lag
7. Formally, when two time series X (¢) and Y (¢) are considered, the cross-correlation
function can be calculated as follows:

ny<7_) _ E[(X(t) — X)(Y<t + T) — Y)]’ (25)

00y

where oy and oy are the standard deviations of the respective series and X and
Y are the averages calculated for the entire signals. For C,,(7 = 0), this formula
comes down to the Pearson correlation coefficient, and its interpretation is analogous.
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The coefficient assumes values from —1 < C,, < 1 where C,, = 1 means perfect
correlation, Uy, = —1 indicates ideal anti-correlation, and C,, = 0 corresponds to
independent signals.

Figure 2.5 shows C,, () functions calculated for daily (panel (a)) and one-minute
(panel (b)) volatility of selected pairs of assets. In the case of DJIA and NASDAQ
daily data, the interdependencies have a long-range character and maintain the
statistically significant level for more than 103 time steps, while the cross-correlations
between DJIA and NIKKEI are substantially weaker and fluctuate around noise
level (denoted by the red dotted line). This discrepancy is naturally related to the
fact that DJIA and NASDAQ are indices quoted on the US market and multiple
NASDAQ components are also present in the DJIA index, while DJIA and NIKKEI
are technically separate assets.

Slight differences in volatility interdependencies are also visible on the level of
the individual components. Here, three pairs of companies representing information
technology (HPQ, IBM), consumer goods (DIS), and industrial (GE) sectors are
considered on the daily (panel (a)) and one-minute (panel (b)) time scales. Natu-
rally, regardless of the frequency of the data, the correlations between components
from the same sector (HPQ-IBM, yellow line) are stronger than those observed for
companies belonging to different baskets, e.g., HPQ-DIS (orange line) and HPQ-GE
(purple line).
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Figure 2.5: Volatility cross-correlations of selected market indices and stocks calculated for daily
(panel (a)) and one-minute data (panel (b)). The red dotted lines denote the noise level.

Analysis of autocorrelation and cross-correlation functions of returns and volatil-
ity provides valuable insight into financial market dynamics and can help market
practitioners build optimal portfolios. However, these methods do not differentiate
fluctuations with respect to their size. In order to investigate the dependencies of
the financial time series in a multiscale manner, considering the magnitude of the
fluctuations, a multifractal analysis is usually employed. Related formalism and
techniques are discussed in the next chapter.
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Chapter 3

Multifractal concept and its
application to financial time series

Temporal self- and cross-dependencies of the financial time series have a multiscale
character, which cannot be precisely described using basic statistical methods such
as a linear autocorrelation function, a power spectrum, or a Pearson cross-correlation
coefficient. To analyse the signals characterized by long-range, non-linear dependen-
cies, the multifractal methods are typically used.

In this chapter, the necessary fractal formalism as well as two analysis methods,
MFEFDFA (Multifractal Detrended Fluctuation Analysis) and MFCCA (Multifractal
Cross-Correlation Analysis), are introduced and then applied to investigate the hier-
archical organization of the selected indices and DJIA components. Extra emphasis
is placed on the time evolution of the returns’ multifractal properties, captured using
rolling window analysis. Moreover, the structure of the multiscale cross-correlations
is investigated on the basis of the complex network formalism. This comprehensive
multiscale analysis aims at quantifying financial time series non-linear dependencies
at different levels, and the results obtained are used to examine the agent-based
models, discussed in the later chapters of this dissertation.

3.1 Fractal and Multifractal formalism

The world around us is irregular and filled with roughness; therefore, an attempt to
characterize the shape of real objects within a Euclidean geometry formalism can
be laborious and sometimes even impossible. The mathematical approach to such
structures changed in 1970s, when Mandelbrot developed the foundation of so-called
fractal geometry [92]. The word fractal itself is derived from the Latin fractus and
means fractional or broken. The term is applied to the irregular objects that exhibit
self-similarity. In this context, self-similarity means that the part of the structure
is similar to the entire object, regardless of the scale being considered. Fractal
geometry allows the investigation of the complex, apparently chaotic structures from
which an ordered and hierarchical picture can emerge. Such objects can be created
relatively easily using recurrent, or iterative procedure. Examples are the Sierpinski
triangle [93], which is created by an iterative division of an equilateral triangle into
four pieces and removal of the center part, or Koch curve [94] which also results
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from an altering an equilateral triangle (Figure 3.1, panels on the left-hand side).

Interestingly, fractal features are present not only in abstract mathematical con-
structs. The shapes of a leaf, snowflake, shoreline, or cardiovascular system are
examples of natural objects which exhibits self-similarity, however only in a statisti-
cal sense (Figure 3.1, panels on the right-hand side). Such structures, usually called
stochastic fractals |95], may differ in details depending on the scale being considered,
but, in terms of general statistical properties, are nonetheless the same.

Al LSO

Figure 3.1: Examples of fractal structures. On the left-hand side: a mathematical fractals
development procedure diagram (Koch curve on the top and Sierpinski triangle at the bottom).
On the right-hand side, three examples of natural fractals: pulmonary vessels, a Diffusion Limited
Aggregation process, and detailed photography of a broccoli.

Importantly, the financial time series also have a fractal nature. Basic, visual
analysis of the price trajectory presented in Figure 3.2, shows that respective parts
of such time series are similar to the entire structure. Moreover, if multiple finan-
cial time series on different scales are considered, distinguishing which series has a
particular time scale is difficult, meaning that financial time series exhibit not only
spatial self-similarity but also self-similarity within the time dimension.

Despite the frequent occurrence of the fractal structures in nature and mathe-
matics, a single definition that facilitates the classification of a particular object as
a fractals does not exist. However, based on the work done by Mandelbrot [92],
which Falconer extended [96], the set of features characteristic of fractal objects was
established:

e Fractals are self-similar (at least in statistical sense)

e Fractals have a structure that can be investigated in detail on arbitrarily small
scale

e Fractals are so irregular that they cannot be described with a Euclidean ge-
ometry formalism

e Fractals can have non-integer dimension, usually ones greater that their topo-
logical dimension

The properties presented above are not specific; however, in practice, they allow
unambiguous determination of whether the analysed object is a fractal or not.
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Figure 3.2: Self-similarity of the IBM price trajectory.

3.1.1 Self-similarity, self-affinity, and fractal dimensions

Fractals are inextricably linked with the concept of self-similarity, which, as men-
tioned previously, can be interpreted in a strict sense (mathematical fractals) or be
limited to the statistical sense (stochastic fractals). Self-similarity is characterised
by isotropy. It means that the translation, rotation, reflection, and scaling oper-
ations, that constitute the similarity transformation are identical in all directions.
However, many natural fractals cannot be reproduced by isotropic transformation;
therefore, the generalized concept of self-affinity and a corresponding affine transfor-
mation are typically employed. In contrast to a similarity transformation, an affine
operation can depend on the direction and so is anisotropic in nature. Formally, an
affine transformation can be defined as follows:

S(z) =T(x)+ b, (3.1)

where T' is a linear transformation, usually represented by an n X n matrix, and
b is vector in R™. Moreover, transformation S: R™ — R” for z,y € R" defined as
follows: |S(x)—S(y)| < ¢|x—y| is contraction mapping if ¢ € (0,1). If foregoing weak
inequality is reduced to an equation, then S describes the similarity. Worth noting
is that self-similarity (self-affinity) does not imply the fractal nature of the analysed
object. For instance, although a square or a line can be divided into fragments by
using a similarity (affinity) transformation, they are not fractals.

Apart from their irregular shape, roughness, and self-similarity, fractals have
another interesting feature. For example, let consider the mass of the Sierpinski
triangle. It can be calculated according to the formula M = (%)n, where n is a
number of performed divisions of the triangle. As can be easily seen, the object’s
mass decreases with every alternation of the original structure and, hence it can
be infinitely small after large number of iterations. Moreover, when the object’s

side length is doubled, then the mass increases three times. Formally, mass can be
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expressed as a function of triangle side length:

M(L) ~ L%, (3.2)
where exponent dy = }Zgg ~ 1.585%. The relation above is a form of the power law,
typical for the fractal objects. The same kind of dependency can be observed not
only in mathematically created structures but also in stochastic fractals existing in
nature, including financial time series. Assuming that f(x) represents the self-affine
signal, it satisfies the following relationship [97]:

F(a) = A" f(a) (3.3)

where A > 0 and H is the Hurst exponent which describes the level of long-range
dependencies present in the signal. It indicates, whether the signal being considered
is random (H = 0.5), persistent (0.5 < H < 1) or anti-persistent 0 < H < 0.5 in a
linear sense.

The scale-free character of fractal structures manifested by the power law rela-
tionship constitutes the foundation of the quantitative description of this type of
objects. Scaling and self-affinity is usually quantified by so-called fractal dimension.
For ordinary Euclidean spaces, the topological dimension (Lebesgue covering dimen-
sion) can be defined as the number of the coordinates required to unambiguously
specify the location of the point within a given object (i.e 0 for point, 1 for line, 2
for surface etc.). In the case of fractal structures, the dimension can be calculated
employing a few different procedures, and importantly, can assume fractional values.

The fundamental fractal dimension is the self-similarity dimension d,, which
describes the number of parts N into which an object can be divided using the
given scale s:

log N

ds = m. (3.4)
For basic geometric objects such as a line, a square, or a cube, the self-similarity
dimension has an integer value that equals the topological dimension. Nonetheless,
for a fractal structure, such as Sierpinski triangle, the self-similarity dimension is
fractional and, naturally differs from topological dimension. Practically, obtained
result means that the Sierpinski triangle is a structure between a line and a surface.
The self-similarity dimension is useful in the investigation of the fractal structures;
however, it can be applied only to objects that exhibit strict self-similarity.

Felix Hausdorff [98, 99] proposed a more general approach that can be em-
ployed in studying the natural fractals. In order to discuss it, firstly the Haus-
dorff measure must be introduced. Let U be a non-empty set in R", with diameter
U=suplr—y| <e:x,y € U. Moreover, let U; be a countable set, which covers

the set I’ and has diameter less than e. If F' C |J U;, scale s > 0 and F' € R", then
i=1

He =inf {|J |U;|® : {U;}} is e-cover of the set F. Practically, this means that set F
i=1

is covered with subsets U; having a diameter €, and the one with the smallest sum

!An increase in Sierpinski triangle side length causes mass to increase three times and thus,

297 =3 — dy = {25 ~ 1.585
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of s-degree exponents is selected. As diameter € — 0 the more detailed view on the
set is obtained. In most cases, the Hausdorff measure is equal to 0 or co. However
the critical value s for which the H*® assumes value in between exists, and it is called
Hausdorff dimension dg:

oo for s < dy

) (3.5)
0 for s>dyg

HE(F)Z{

Due to the complex calculations involved, the Hausdorff dimension is difficult to
apply in practice, and so, alternatively, the boz-counting dimension is commonly
used. Assuming that F' is a set in R™ and N (F') is a smallest number of sets with
diameter € covering the set F', the box-counting dimension is defined as follows:

log N.(F'
dy = lim 228 NlF)
—0 —loge

(3.6)

The huge advantage of this procedure is its simplicity; however, in practical ap-
plication, the box-counting dimension is burdened with greater error than the one
proposed by Hausdorff [100]. Nevertheless, it can be successfully employed in some
problems, especially when a large dataset is available. Worth noting is that fractal
dimensions calculated using different procedures can vary, although, in most cases,
the Hausdorff dimension equals box-counting dimension. In general, the relationship
between dimensions being considered assumes the form:

dr < dy < dp. (3.7)

3.1.2 Singularity spectrum

Examination of the fractal dimension does not always provide complete information
about the object being investigated and the nature of the processes governing its
development. In many instances, analysed structures are a convolution of multiple
fractals, each having a different fractal dimension. Mathematically speaking, the
fractal measure is not uniform, and multiple distributions of this measure for a given
topological support are possible. Hence, determining the fractal dimension of the
entire object provides averaged information. In order to describe such a structure
precisely, studying its local properties is necessary. Consequently, specific changes
in the formalism are required.

Assuming that, in the vicinity of point zg, in scale €, local scaling fulfills the
relation which can be expressed by measure p:

P Bay (€)) ~ €0, (3-8)

where B,,(€) is a sphere with radius e centered at xy. The p(B,,(€)) can be inter-
preted as a distribution of the measure in the vicinity of point zy. Then, the so-called
singularity exponent a can be calculated using the following formula [98, 97]:

(3.9)



The greater the value of singularity exponent, the more uniform the measure is in
the vicinity of xy and the weaker is singularity. Usually, to quantitively describe the
distribution of « for given structure, the singularity spectrum f(«) is calculated:

f(a) = du{zy € supp p: azg) = at. (3.10)

The function obtained is interpreted as a Hausdorff dimension of the support for
which the singularity assumes particular value a(z) = «. The singularity spec-
trum facilitates distinguishing between homogenous (monofractal) measures, where
the singularity spectrum assumes a pointwise form, and heterogenous (multifractal)
measures, where the f(a) function assumes a shape similar to an inverted parabola
spread between «,,,;, and ,,.., which reflects strongest and weakest singularities,
respectively (see Figure 3.3). Practically, to describe local properties of the object,
the structure is decomposed by the value of the measure, using the partition function

[101], as is done here:
N

Z(q.0) = 3 o). (3.11)

i=1
where N is the number of bins in the histogram of singularity spectrum of « for
e — 0 and ¢ € R. The relation between singularity exponent o and measure p
shown in equation (3.8) implies that the distribution of « for a given € has the form
o(a)e= /@ which, combined with equation (3.11), yields the following:

Z(q,€) ~ /Q(a)eqo‘_f(a)da, (3.12)
where partition function Z(g, €), assuming ¢ — 0, fulfils the power law dependence:
Z(q,€) ~ €9, (3.13)

and 7(q) is a scaling function typically called generalized scaling exponent. The
primary input to the integral above is the « for which the expression qa — f(«)
assumes its lowest value. Thus:

7(g) = min(ga — f(a)). (3.14)

From the equation above, the inverted Legendre transformation can be employed to
obtain singularity spectrum f(«):

#(@) = min(ga — 7(q)). (3.15)

q

In general, the relation between generalized scaling exponents 7(¢) and singularity
spectrum f(a)) can be expressed by the following system of equations:

{q:dq/da {Oé:dT/dq (3.16)

7(q) = qa — f(a) fla) = qa —7(q).
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It has to be emphasized that the foregoing transformation does not affect the infor-
mation included in 7(gq). Moreover, from partition function Z(q, €) one can obtain
generalized fractal dimension:

-1 log Z
d, = lim 198 2(2:€) (3.17)
qg—1es0  loge

that can be also expressed as follows:

7(9) 1
dy = or d,= q_—l(qa — f(a)). (3.18)

The dimension specified in this way has few characteristic values. Namely, for ¢ = 0
the singularity spectrum f(a) has a maximum value, and d,—¢ is a topological sup-
port of measure p. Moreover, for ¢ = 1 and normalized measure Z(1,¢) = > u(e) =
1 (thus 7(0) = min,(a — f(a)) = f(a(g=1)) = a(q = 1)) the corresponding value
dy is an information dimension, which indicates change in amount of information
needed for describing the point in a set, as scale e changes [98]. Finally, values for
q > 2 refer to the correlation dimension having degree ¢, which measures the prob-
ability that two randomly chosen points from the object are away from each other
by a certain distance [102]. The exemplary singularity spectrum with characteristic
values is presented in the figure below.

dy
dy
8
=| flo=«a
g = +o0
0 Qmin o AOmaz

Figure 3.3: Schema of singularity spectrum f(«).

Furthermore, the multifractal formalism presented in this chapter can be directly
linked with the concepts employed in thermodynamics [95]. As shown in study [95],
the partition function Z(g,¢€) is formally analogous to the partition function Z(5)
in thermodynamics, and thus f(a) can be interpreted as the entropy of the system.
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3.1.3 Multiscale analysis methods

Quantification of the non-linear correlations and memory present in time series typ-
ically reduces to an examination of its multifractal properties. Currently, there are
two commonly accepted and complementary methods that facilitate description of
the time series multifractality, even in case of non-stationary signals. The first,
the Wavelet Transform Modulus Maxima (WTMM) [97]|, makes use of the wavelet
expansion of the series under consideration. The basis of the second method, Mul-
tifractal Detrended Fluctuation Analysis (MFDFA) is investigation of the scaling
properties of different moments of the detrended signal [103, 104]. Both algorithms
are relatively simple to implement, and therefore, are regularly used in different
branches of the science, including physics [105, 106], biology [107, 108|, chemistry
[34], natural language analysis [38, 39], and economics [40, 41, 47, 109, 110]. How-
ever, the latter method often appears to be more accurate, numerically stable [111],
and can be extended to the cross-dependence analysis of the time series [112]; there-
fore it will be used in the later sections of this dissertation.

Multifractal Detrended Fluctuation Analysis method (MFDFA)

Multifractal Detrended Fluctuation Analysis method is a generalization of the com-
monly used DFA method [113], which allows identification of correlations in the
non-stationary signals. The algorithm consists of a few steps, and yields a singular-
ity spectrum or generalized Hurst exponents. Assuming that z; is a one-dimensional
time series of length N where i = 1,..., N, the MFDFA procedure consists of the
following steps:

1. The profile function Y'(j) is calculated according to the formula:

YU)ZE:hr—ﬂ, (3.19)

where 7 is a mean value of the entire signal.

2. The time series is divided into M, = |&] segments, each having length s.
In order to avoid exclusion of the elements at either end of the signal, the
procedure is repeated twice - once from the beginning in the natural order and
again from the end in reversed order. In result, one obtain the 2M, segments
v.

3. For each interval v, the trend, represented by polynomial function P,,(m) of
degree m, is subtracted from the profile signal Y (7). The variance of each of
segment is then determined as follows:

1 S
F? =) [Y((v—1)s+i)— P™]2 3.20
2 () SZ?(@ )s +1) — B (3.20)
The detrending character is determined by the degree of the polynomial func-
tion. In financial applications, typically, the quadratic function is used (m = 2)
[114].
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4. Next, the average of the variance of each segment v, called the fluctuations
function, is calculated:

2M 1/f1
Fu(q,s) = {2;4 > [F, S)]"/z} , g eR\{0} (3.21)

where exponent ¢ allows examination of the signal with respect to the size
of its fluctuations. For positive ¢, the main input to Fj (g, s) comes from the
large values of the original signal, whereas for negative ones it comes from the
small fluctuations.

If the calculated fluctuations function F(q, s) follows power law relationship:
F,(q,s) ~ s"P, (3.22)

then the signal being analysed has the fractal properties described by the generalized
Hurst exponent h(q). For monofractal structures h(q) is constant and equal to the
Hurst exponent h(q) = H, whereas, for multifractal time series, h(q) depends on
scaling parameter ¢. Since returns and volatility distributions are leptokurtic the
moments for exponents ¢ > 4 are divergent [41]; thus the range of considered values
is usually limited to ¢ € [—4,4].

Based on the calculated exponents h(q), using transformation 7(q) = qh(q) — 1
and equation (3.15) the multifractal spectrum can be determined. Figure 3.4 shows
singularity spectra (panel (a)) and corresponding fluctuation functions calculated
for Brownian motion (panel (c)), which is an example of the random process,
and a log-normal cascade (panel (b)) which is a multifractal structure?. For non-
autocorrelated time series, the singularity spectrum is narrow and reaches its max-
imum at o =~ 0.5. Theoretically, it should scale down to a single point; however,
due to the limited size of the data, a blur is observed. On the other hand, for
non-linearly correlated signals, the multifractal spectrum has the shape of a wide,
inverted parabola. The width of the f(«) function is measured as follows:

A = (@min) — (Gmaz)- (3.23)

This function quantifies the diversity of individual fractal structures that constitute
analysed time series. The greater is A«, the reacher is the dynamics of the process
governing the considered series and the stronger are non-linear correlations between
the individual elements making up the signal. Naturally, spectrum width is used to
distinguish between monofractal and multifractal signals. In this dissertation, the
series is considered as a multifractal, if Aa > 0.1.

The difference between multifractal and monofractal time series is also visible
on the level of the fluctuations functions. As shown on the panel (c) of Figure 3.4,
for random processes, the F;(q, s) function for different ¢ are parallel to each other,
which corresponds to the constant value of h(q). In contrast, for the non-linearly
correlated signal (panel (b) of Figure 3.4), the slope of the fluctuation function
depends on the value of exponent ¢ and h(q) is a decreasing function of q.

2Detailed description of log-normal cascade can be found in study [115]

26



(@) (b)

[--Log-normal cascade +Brownian motion]] 10-3

T \III\I\I T T TTTTT T T TTTTT
q=4

=06 L ] 107° %— = I q=—4 ‘ Log-normal cascade%
=t ] © e
0.4 ST -
- = W £ 3
I 1 = :
0.2 Aavepy 4 & [ ]

- N 0 _ _
: 1 VE T

0 1 | 111 | 111 | 11 | 11 | 111 | 111 | 11 C 1 | III\I\| | 1 I\Ille
04 06 08 1 12 14 16 10! 10? 10° 10*
o S

Figure 3.4: Singularity spectra f(«) (panel (a)) and corresponding fluctuations functions F (g, s)
determined for examples of multifractal (Log-normal cascade - panel (b)) and monofractal (Brow-
nian motion - panel (c)) signals.

The example of a multifractal signal being considered has a symmetrical sin-
gularity spectrum, where the width of the left part is almost identical to that of
the right. However, many series observed in nature, including financial data, are
characterised by asymmetric singularity spectrum [105]. In order to quantify this
feature, the asymmetry coefficient A, is typically used:

o AOéleft - Aaright

A - 9
“ AO5left + ACkm'ght

(3.24)

where Aayer = g — Qumin and Aight = Qupar — . As reported in a study [105],
multifractal spectra of financial time series usually exhibits left-sided asymmetry of
the spectrum, suggesting that the correlations in large fluctuations are significantly
stronger than those observed in small changes in a signal’s value.

Multifractal Cross-Correlations Analysis method (MFCCA)

Analysis of non-linear correlations of time series is not only limited to investigation
of internal dependencies but is often extended to an examination of the relationship
between separate signals. The Multifractal Cross Correlations Analysis method is
a consistent extension of the Detrended Cross-Correlation Analysis (DCCA) [116],
which is able to detect multifractal cross-correlations between signals [112]. Assum-
ing that x; and y; are time series of length N where ¢ = 1, ..., N, then MFCCA is a
procedure consisting of the following steps:

1. The profile functions are calculated for signals being analysed according to the
following formulas:

X(G) =Y [wi—7, Y(i) = [v:—7, (3.25)

i=1 =1

where T and 7 are the average values of the respective time series.
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2. Each time series is divided into M, = [£] segments v of length s. In order to
avoid exclusion of values at either end of the series, the procedure is repeated
twice - once from the beginning in the natural order then again from the end
in reversed order. For each series, 2M, segments v are thus obtained.

3. For each interval v of the respective proﬁles X(j) and Y (j) the polynomial

trend of degree m is calculated: PXmV), P Slmllarly to the MFDFA method
discussed in a previous section, the degree of polynomial typically used in
financial application has m = 2.

4. In the next step, the trend in each segment is subtracted from the examined
series and the detrended cross-covariance is then calculated according to the
following formula:

R, (r,5) = = S (X (0 = 15 + k) = PERDY (0 = D5 + k)~ PEI ()}
(3.26)

k=1
5. Then, a fluctuations function of degree ¢ is calculated and averaged over all
intervals v as follows:

2 2
P 2M (v, 2, (0, ), (327)

where sign(F2, (v, s)) determines the sign of the function F},(v,s) and ¢ €
R\{0} is an exponent that decomposes the time series with respect to the
fluctuation size. Since distributions of the financial time series are typically
leptokurtic, moments for exponents ¢ > 4 are divergent, and thus the range
of ¢ is limited to —4 < ¢ < 4. For a positive ¢, the primary input to the
F7,(s) comes from large fluctuations, whereas, for negative values of ¢ the
small changes in the time series are amplified and thus, are the predominant
component of the fluctuations function. For ¢ = 0, the following formula is
used:

1 .
Fyy =g > sign(Fy, (v, 5)) In|F2, (v, )], (3.28)
S =1

The procedure presented above, using the sign function preserves the original di-
rection of signal changes, and prevents numerical errors related to exponentiate
negative values. It also prevents the occurrence of the complex values in the fluc-
tuations function, which may appear when other methods, such as MFDXA [45] or
MFHXA [117], are used. As in the MEDFA method, MFCCA calculates fluctuations
function for different scales s, and, thus if the cross-correlations between signals have
a fractal nature, the fluctuation function scale itself according to the power law:

F,(s)/1 = Fuy(g. 5) ~ 5™ (3.29)
or exp(FuB’y) = F,,(0,s) ~ s for ¢ = 0, where \, is the corresponding scaling

exponent, whose range of dependence on ¢ quantifies the degree of complexity in
the signal. The multifractal character of the relationship between analysed signals is
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manifested by the existence of multiple )\, values which change along with considered
g parameter, while for monofractal relationship ), is constant and independent of g.
Based on the examination of the cross-covariance function F (s) obtained through
use of MFCCA method, the cross-correlation coefficient p? can be calculated as
follows: Fa(s)
Ty S

pi(s) = F:3/2—F§1/2’ (3.30)
where F! and F}! are the detrended fluctuation functions determined by the MEDFA
method. The cross-covariance function and the fluctuation function are computed
for ¢ € R parameter, which in financial applications is typically limited to the range
—4 < g < 4. This cross-correlation measure allows quantification of the dependence
degree between two time series x; and y; at different scales s and, by manipulation
of g, makes possible estimation of the correlations, dependent on the magnitude
of the fluctuations. The filtering ability of p?(s) constitutes a crucial advantage
of this method, as financial time series cross-correlations typically vary depending
on the size of the considered fluctuations. However, convenient use of this cross-
dependency measure necessitates additional adjustment. Even though, for ¢ > 0 the
p?(s) always assume value from range [—1, 1], for negative ¢ exponents the obtained
results might be slightly different. Namely, for weakly correlated processes, for
g < 0, the numerator in the formula (3.30) is much greater than the denominator,
and therefore, the cross-correlation coefficient may go far beyond interval [—1,1]. In
order to overcome this issue, the coefficient is adjusted as follows:

¢ (5= J7"0) for [p?(s)| < 1
Poy(s) {(pq(s))_l for |p9(s)] > 1 (3.31)

Cross-correlation coefficient pf, (s) defined in such a way always assumes values in
range p?,(s) € [—1, 1], thereby simplifying interpretation and being compatible with
the Pearson cross-correlation coefficient. Moreover, for ¢ = 2, it reduces to the

classic DCCA method.

3.2 Multiscale analysis of returns: autocorrelation
and cross-correlation case

The formalism introduced above facilitates quantification of the non-linear correla-
tions in financial time series on the single-asset level as well as between different
instruments. In this section, presented techniques are applied to the returns of the
major stock indices and components of the DJIA. Next, the analysis is extended to
a multi-asset scenario, and the cross-correlation are measured using coefficient pf, .

Figure 3.5 shows fluctuation functions (section (a)) and the corresponding mul-
tifractal spectra (section (a)) calculated for daily returns of the major stock indices
and selected DJIA components. Obtained F, (g, s), for all analysed assets, obey the
power law over wide range of scales, which suggest the fractal nature and existence
of non-linear, temporal dependencies in these signals. Since rates of return usually
follow the leptokurtic distribution, and higher moments of the analysed series are
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divergent, the fluctuation functions are limited to the range ¢ € [—4, 4] with a step
equal to 0.1, excluding ¢ = 0. Naturally, due to the limited size of the analysed data,
some distortions were observed for large values of s. However, power law dependence
of F.(q,s) spans, at least, over two orders of magnitude of scales. For each of the
analysed assets, the scaling range used for determining the multifractal spectra was
adjusted individually, as denoted by the black dotted lines.

The fractal nature of the time series being considered is noticeable in obtained
singularity spectra as well. Spectrum width, which measures the degree of the signal
hierarchical organization, significantly exceeds the assumed multifractality threshold
(Aa > 0.1). As shown in Table 3.1 in case of indices it varies from Aa = 0.20 for
DAX to Aa = 0.30 for DJIA returns, while for stocks from Aa = 0.21 for BA to
Aa = 0.40 for DIS. Interestingly, some discrepancies are visible in the asymmetry
coefficient A, which in case of indices vary from A, = —0.68 for FTSE to A, = 0.83
for NIKKEI, while for stocks vary from A, = 0.05 for CVX to A, = 0.55 for KO.
Typically, financial time series reveals left-sided asymmetry A, > 0, suggesting
the strong hierarchical organization of large fluctuations, whereas the dynamics of
the small fluctuations remain relatively poor [105]. However, for analysed daily
returns of selected DJIA components, almost symmetrical singularity spectra are
observed, meaning that non-linear self dependencies are present in large as well as
small fluctuations.
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Figure 3.5: Fluctuation functions (panels in section (a)) and corresponding multifractal spectra
(panels in section (b)) obtained for daily returns of major stock indices and selected companies
from DJIA.

Besides quantifying non-linear dependencies, a multifractal analysis provides in-
formation about the linear correlations in the signal. Since, generalized Hurst ex-
ponent for ¢ = 2 equals the ordinary Hurst exponent (h(q = 2) = H) the linear,
long-range correlations can be measured. For analysed indices, the Hurst exponent
varied from H = 0.44 for DJIA to H = 0.5 for FTSE, whereas for DJIA components
it fluctuated between H = 0.39 for CVX to H = 0.48 for IBM and BA. This result
indicates that signals being analysed reveal slight anti-persistence or are linearly
independent, which is typical for the financial time series. Worth noting is that the
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level of long-range anti-correlation observed for CVX stands out significantly from
the results obtained for other assets. Practically speaking, it means that periods of
high and low returns of CVX are more likely to interlace.

Table 3.1: Spectra width (Aa), asymmetry (A,), and Hurst exponent (H) obtained for daily
returns of selected indices and stocks.

‘DJIA NASDAQ FTSE DAX NIKKEI

Aa | 0.30 0.29 0.26 0.20 0.27
Aq 0.55 0.57 -0.68 0.31 0.83
H 0.44 0.47 0.50 0.47 0.44

‘AA BA CVX DIS GE HPQ IBM JNJ KO XOM

Ao | 027 021 028 040 0.22 029 027 032 028 0.35
A, [ 026 018 005 013 042 008 028 0.12 055 0.33
H | 044 048 039 044 045 045 048 046 042 046

As mentioned previously, multifractality is a non-linear phenomenon; therefore,
non-linear dependencies can only be its source. However, the scaling observed on the
level of the fluctuations function can be, to some degree, caused by the heavy-tailed
distribution of the analysed data [118, 119, 120]. For example, as shown in studies
[121, 122], for uncorrelated time series characterized by a g-Gaussian distribution
with a sufficiently large value of ¢, the scaling of the fluctuations function may
appear and can lead to incorrect conclusions about correlations in analysed signal.

To quantify the impact of broad data distribution and confirm that wide sin-
gularity spectra observed for the returns being analysed is not a spurious effect,
two different techniques were applied. The first one is based on random shuffling
of the signal, which preserves the distribution of the time series, while linear and
non-linear correlations are destroyed. As shown on the left panel of Figure 3.6, the
singularity spectra calculated for shuffled time series are significantly narrower than
was observed for the original signals. The width of the f(«) function for shuffled
data varies from Aa = 0.05 for DIS to Aa = 0.10 for DJIA, both of which are below
the assumed multifractality threshold.

The second technique applied in this study is based on the Fourier surrogate
method [123|. This transformation combines two operations, namely, a Fourier
Transformation and random mixing of the phases obtained. Next, using the in-
verted Fourier Transformation, the so-called Fourier surrogate signal is calculated.
This modified time series has the same linear dependencies as the original one, but
the non-linear correlations are destroyed, and data distribution is changed to the
Gaussian. The right panel of Figure 3.6 shows the singularity spectra calculated for
the returns modified using the technique described above. Similarly to the shuffled
data, a significant reduction of the f(«) width is observed. Obtained singularity
spectrum widths vary from Aa = 0.02 for HPQ to Aa = 0.07 for CVX, proving
that the analysed rates of return multifractal character is rooted in the non-linear
correlations.

The complex character of the financial markets is also visible in the cross-
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Figure 3.6: Multifractal spectra of the major stock indices and selected components of DJTA
shuffled returns (panel on left-hand side) and signals transformed according to the Fourier surrogate
method (panel on right-hand side).

dependencies between different assets. As shown in the previous chapter (see Figure
2.5), financial instruments quite commonly exhibit non-trivial cross-relationships.
Interestingly, the dependencies between assets, like the temporal correlations anal-
ysed above, can have a multi-scale nature, especially when instruments from the
same basket (sector) are considered. The panels in section (a) of Figure 3.7 present
the cross-fluctuation functions Fj,(q, s) of selected pairs of assets. In this analysis,
considered values of scaling parameters were limited to the range ¢ € [2,4], as the
cross-fluctuation functions of financial time series usually obey the power law only
for positive values of ¢ parameter [112].

The F,,(q, s) functions calculated for the stocks, and DJIA-NASDAQ pairs obey
the power law in a relatively wide range of scales (varying from s € [30, 280] for HPQ-
DIS pair to s € [25,880] for DJIA-NASDAQ pair), whereas for DJIA-NIKKEI pair
the cross-correlation does not have a multifractal character. Again, it has to be noted
that the time series being considered span from 1950 up to 2020, and the results
obtained are the averaged information. In past decades, due to geographical distance
and differing monetary policies of US and Japan [124], these assets were, to some
degree, decoupled. However, due to globalization, Japanese and US companies are
in a strong economic relationship nowadays; thus, major indices from these countries
reveal strong cross-correlations.

Discrepancies in synchronisation between assets with respect to the analysed size
of fluctuations are also visible in the differences between scaling exponent A(g) and
the mean value of the generalized Hurst exponents h(q) = (h.(q) — hy(q))/2, which
is usually measured by d(¢q) = A(q) — h(q). The lower the value of d(q), the more
synchronised signals are, and in the case of perfect alignment between analysed
series, d(q) = 0. As shown in the panels in section (c¢) of Figure 3.7, for analysed
pairs of indices (DJIA-NASDAQ), plot on the left-hand side) and companies from
the same sector (HPQ-IBM, third plot from the left), the difference between A(q)
and W yields d(q) =~ 0.07 and d(q) =~ 0.025, respectively, and does not significantly
change with the increase of considered size of fluctuations. On the other hand, when
the assets being analysed belong to different sectors d(q) substantially decreases for

larger returns: from d(2) = 0.09 to d(4) ~ 0.04 for HPQ-DIS and from d(2) ~ 0.07 to
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d(4) ~ 0.03 for HPQ-GE pair. As these findings show, synchronization of the indices
having common components and companies from the same sector maintain similar
level regardless of the considered size of fluctuations (medium or large), whereas,
when components represent different areas of the economy, alignment between large
fluctuations is significantly stronger than that observed for medium-sized returns.
From the practical application perspective, it means that highly correlated assets are
synchronized regardless of the financial market cycle, as companies from different
baskets become more aligned during crises or other economic events characterized
by large fluctuations.

In order to quantify the multifractal cross-correlations between the instruments
being analysed, p,(s) coefficients were determined®. As shown in section (b) of
Figure 3.7, the pair DJIA-NASDAQ has strongest inter-dependencies, which, re-
gardless of the fluctuation size being considered (examined ¢) reach maximum value
pl,(s) = 0.9 for middle and large scales (s > 3 * 10*, which corresponds to approx-
imately 12 years). Interestingly, for small scales, the cross-correlations are signifi-
cantly weaker, meaning that for short time spans (days), the fluctuations of DJIA
and NASDAQ are more loosely coupled (pZ,(s) ~ 0.65), whereas over longer time
periods (months, years) they are almost fully aligned. The high level of cross-
correlations between considered indices is rooted in the components which comprise
each of them. As has been noted, most of the tech companies (e.g., APPL, CSCO,
INTC, MSFT) quoted within DJIA are also components of the NASDAQ index.

On the level of individual stock shares, multifractal cross dependencies are also
significant; however, some discrepancies of value p?, (s) can be observed. The yel-
low, orange, and purple lines on plots in section (b) represent three different pairs
of assets: HPQ-IBM, HPQ-DIS, HPQ-GE, respectively. The analysed instruments
were chosen so that cross-correlation between assets from the same sector (IT sec-
tor, pair HPQ-IBM) and different buckets could be captured (IT and Consumer
Goods sectors, pair HPQ-DIS and IT and conglomerate, HPQ-GE pair). Naturally,
in the range of small scales s < 102, the multi-scale cross-correlation between assets
from the same sector is significantly higher than is observed for instruments repre-
senting different areas of the economy. This effect is even more pronounced when
medium-sized fluctuations are examined (pg,(s) ~ 0.7 versus pf,(s) ~ 0.6 for the
HPQ-IBM and HPQ-DIS(GE) pairs, respectively). On the other hand, when longer
time spans s > 102, or larger fluctuations (q € [3,4]) are considered, the difference
in the strength of multifractal cross-dependencies becomes less meaningful. From a
practical application perspective, analysis of pl, (s) for different pairs of assets shows
that, over relatively short time spans, the actual similarity between instruments (be-
longing to the same sector or having common components) plays an important role,
whereas for larger scales the global economic trends enter into the equation, causing
higher alignment, even between instruments associated with different business areas.

3Due to lack of scaling observed for DJIA-NIKKEI pair, it was omitted in further analysis of
multifractal cross-correlations
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Figure 3.7: Multiscale cross-dependencies analysis of selected indices and stocks. Section (a):
cross-fluctuations functions Fy, (g, s) calculated for exponents ¢ € [2,4], black dotted lines indicate
range of scaling. Section (b): cross-correlation coefficients pg, (s) for scaling parameters g € [2,4].

Section (c): Scaling exponents A(q) (black line), and mean generalized Hurst exponents h(q) (blue
line). Due to lack of scaling, the pair DJIA-NIKKEI is not included in the pg, (s) and A(g), h(q)
analyses (sections (b) and (c)).

3.3 Network representation of financial time series
non-linear cross-dependencies

Financial time series are characterized by non-linear cross-dependencies, which can
be quantified using generalized cross-correlation coefficients p,(s). Examination of
the multiscale dependencies between assets can provide valuable information about
the hierarchical organization of the financial market. However, analysis and inter-
pretation of coefficient pZ, (s) for multiple instruments on different scales could be
difficult. In this section, the non-linear correlations are examined using techniques
commonly applied in complex network analysis. Based on the calculated pZ,(s) co-
efficients, the minimal spanning trees (MSTs) are built and then analysed in respect
of their properties including the node degree distribution, the average short path
length, and betweenness coefficient.

The minimal spanning tree can be defined as follows: having the graph G with
V nodes, a set of edges E € {{u,v} : u,v € V}, and edge weights c,,, the graph T
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with V nodes and D € E edges constitutes a minimal spanning tree if the sum of
the edge weights w, is the smallest possible. In order to build such a network, the
distance between considered time series must be determined. In this dissertation it
is defined as follows: d.,(q,s) = \/2(1 — czyf), where ¢, is the matrix of pg,(s) co-
efficients determined for given scale s and ¢ parameter. For fully correlated signals,
dyy(q,8) = 0; for anti-correlated signals v/2 < d,,(q,s) < 2, while for uncorrelated
signals d,,(g,s) = V2. The distance measure d,,(g,s) must meet the triangle in-
equality, namely du,(q, $) + dpe(q, $) > dac(q, s), where a,b and ¢ denote time series.
The condition above, as shown in the study [125], is fulfilled only for positive ¢
parameters, thus in further analysis only ¢ € [2, 4] will be considered. With a metric
defined, in the Kruskal’s algorithm of building MSTs [126], that was employed here,
the time series are sorted by the distances between them, ranked in increasing order
and then connected with respect to d,, (g, s) in such a way that each node can be
attached only once. The result is the network having the smallest possible sum of
the edge weights w,.

In addition to a visual representation of the relationships between financial time
series, the quantitative description of the network features allows numerical exam-
ination of the market structure. The fundamental characteristic of the network is
the distribution of node degree P(k), which communicates the probability that a
randomly selected node has k connections with other nodes. Mathematically, it is
expressed as follows:

PR = S,

(3.32)
where N}, is the number of nodes with defined degree £ and N is the total number
of nodes in the graph.

The important feature, commonly observed in the real-world networks (e.g. so-
cial networks [127, 128, 129|, semantic networks [130], or airline networks [131])
is the power law character of node degree distribution P(k) ~ k~". Networks of
this type, customarily called scale-free, are also observed in the financial market
e.g., currency comovements for which the distribution scaling exponent vary from
n =24 ton=2.7/[132, 133].

One of the characteristic feature of the scale-free networks is their relatively small
average shortest path length, which, for network having N nodes and shortest path
[(7, k) between nodes j and k, can be calculated using the following formula:

L= N(N;_l);l(j, k). (3.33)

The average path length provides information about level of concentration of the
network; the greater the average path L, the more scattered the network is.
Moreover, analysis of the financial data correlations usually requires identifica-
tion and quantification of the most important assets quoted within the considered
index. Using network representation, one can relatively easily obtain this informa-
tion by calculating betweenness, which describes the significance of a particular node
¢ in the network. More formally, it measures the number of shortest paths between
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nodes that are passing through node ¢:

bi=> Z((j :;, (3.34)

where n;(j, k) is the number of shortest path between nodes 7 and k passing through
the node 4, while n(7, k) is the total number of shortest paths in the network. Besides
the quantification of the node importance, the betweenness can also be interpreted
as a measure of the influence of a particular node on the information propagation
throughout the network.

Figure 3.8 presents the minimal spanning trees based on thirty companies quoted
(currently or historically) within DJIA from 02.01.1981 to 31.12.2019 (see Appendix
A for a full list of components). The analysis covers scaling parameters g € [2, 3, 4]
and three scales s € [20,63,249], which correspond approximately to one trading
month, one quarter, and one year, respectively. Moreover, components were divided
into six sectors, each denoted by a different-colored nodes: Industrials (black), Fi-
nance (blue), Information technology (orange), Energy (purple), Consumer goods
(yellow), and Healthcare (green). The size of the node indicates the value of the
betweenness coefficient, according to the legend presented in the bottom right corner
of the figure.

For medium-sized fluctuations (¢ = 2) and a monthly scale (panel (a)), the largest
group of assets (10 components) is formed from companies belonging to the Financial
and Consumer goods industries, and its hub (AXP) has the highest node degree in
the graph (k = 9). Such a cluster, which represents a combination of assets from the
Financial and Consumer goods sectors, is not surprising, as individual customers,
who are the main source of income for the companies from the Consumer goods
sector, strongly rely on the financing provided by banking institutions and payment
operators such as American Express (AXP). In general, clusters built of components
belonging to different sectors are quite common, as the areas in which companies
operate often overlap. Interestingly, the node with the highest degree (AXP) is not
the crucial one from a structural point of view. The most important node, which
concatenates all clusters in the graph, is General Electric (bgr = 0.77, k = 5). The
central position of the GE, which was also observed in study [125], is understandable,
as this company is a huge conglomerate that operates and usually plays a dominant
role in multiple industries (e.g., aviation, technology, renewable energy, finance).
Furthermore, as marked with dotted lines, in addition to Financial/Consumer goods
sector, other three clusters can be extracted, namely Information technology with
IBM (brgy = 0.19, k = 4) as a cluster hub, Industrials with RTX (bgrrx = 0.42,
k =5) as a hub and Consumer goods/Healthcare with KO (bxo = 0.31, k =4) in
the center.

The structure of component cross-correlations changes slightly when larger fluc-
tuations are considered. For ¢ = 3 still, pronounced clusters are visible; however, GE
loses its importance (bgp = 0.62, k = 4), whereas the Consumer goods/Healthcare
cluster becomes tightly coupled with the Finance sector and the AXP becomes the
node with the highest betweenness and degree (baxp = 0.71, k = 7). For the
largest returns, the structure becomes more dispersed, and three nodes from differ-
ent sectors play a major role in terms of information propagation in the network
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(XOM - bxon = 0.59, DIS - bprs = 0.66, AXP - baxp = 0.54). Additionally, for
the largest fluctuations, General Electric becomes a marginal node, tightly coupled
with Citibank.
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Figure 3.8: Minimal spanning trees build upon the multiscale cross-correlation coefficient p‘%y(s)
calculated for three scales: monthly, quarterly and yearly (s € [20,63,249]) and three different ¢
parameters: ¢ € [2,3,4]. Each row of the panels corresponds to single scale s, whereas each column
contains graphs calculated for same ¢g. The color of the nodes in the graph indicates the sector to
which particular asset belongs (black: Industrials, blue: Finance, orange: Information technology,
yellow: Consumer goods, green: Healthcare and purple: Energy). Moreover, dotted lines denotes
the clusters of highly coupled stocks. The size of the node indicates the value of the betweenness
coefficient, as shown in the figure legend.

For medium-sized fluctuations, the market structure viewed on a quarterly scale,
is similar to one observed for a monthly scale. Again, four clusters are pronounced,
with GE in the center. However, here, a certain shift is visible for larger fluctuations.
For ¢ = 3 (panel (e)) GE loses its importance in favour of RTX (b; = 0.71, k =
6), and the entire market can be divided into two parts: the first is dominated
by companies from Industrial area and the second consists of assets representing
Finance, Consumer goods and Information technology sectors with AXP acting as
a hub (b; = 0.67, k = 8). A similar structure is also visible for ¢ = 4 (panel (f)).

Considering the yearly scale and medium-sized fluctuations (¢ = 2), one can
notice that clusters of the companies representing the same or highly coupled sectors
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exist; however, there is no central node that concatenates different sectors, and the
graph assumes a more chain-like structure. A similar shape is also noticeable for
larger ¢ exponents (panels (h) and (i)).

Interestingly, regardless of the analysed scale or size of the fluctuations, clusters
of IT companies (marked with orange dashed lines) are always distinguishable, indi-
cating that stocks belonging to this sector are highly coupled and are driven by the
same factors during periods of stability on the market as well as in volatile phases.
Another observation having practical applications is that for medium-volatile and
volatile market phases considered in quarterly scale (¢ = 3, ¢ = 4, and s = 60, pan-
els (e) and (f) of Figure 3.8) the structure can be divided into two parts (denoted
by blue and black dotted lines). Therefore, in the market phases mentioned above,
from a non-linear cross-correlation perspective, the risk exposure can be minimized
by simultaneously investing in companies from both of these uber-clusters.

As mentioned above, one of the fundamental characteristics of the network is the
distribution of node degrees. In the analysis performed in this dissertation, due to a
relatively small number of analysed assets (30 companies), the fully legitimate, power
law distribution cannot develop. However, as shown in the Figure 3.9 even for such
a small number of nodes the incipient of this type of characteristic is noticeable. The
slopes of the obtained distributions are approximately n =~ 2 regardless of analysed
scale and size of the fluctuations, which is in consonance with the value reported for
the entire New York Stock Exchange in the study [134] (n ~ 2.1).
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Figure 3.9: Cumulative distributions of the node degree determined for MSTs built for three
different scales: monthly (panel on the left-hand side), quarterly (middle panel), yearly (panel
on the right-hand side) and three different scaling parameters ¢ = 2 (black circles), ¢ = 3 (blue
squares), ¢ = 4 (orange diamonds).

Moreover, for each graph the average shortest path length L was determined (see
Table 3.2). In general, as the considered scale or ¢ exponent increases, the network
becomes increasingly dispersed (the exception here is the value of L for ¢ = 3 on
the quarterly scale).

As the presented analysis shows, DJIA structure measured by non-linear cross-
correlations, evolves along with the magnitude of considered returns and scales. The
most significant changes are observed for small scales, for which the market struc-
ture transits from a centric layout with GE as a dominant node (for ¢ = 2) to
an increasingly dispersed arrangement. The common feature of obtained minimal
spanning trees is the sectorial division of the nodes that is manifested by clusters
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Table 3.2: Average path length L of the Minimal Spanning Trees based on non-linear cross-
correlation coefficients pgy(s) between components of DJTA determined for three exponents ¢ €
[2,3,4] and three scales: monthly, quarterly and yearly.

L q=2 q=3 q=4
Monthly 3.59 3.96 4.07
Quarterly | 3.93 3.59 4.02

Yearly 4.72 4.74 5.11

formed by companies operating in the same or similar business areas. These sectors
are usually connected with one another by single component e.g General Electric
(GE, e.g panels (a) and (d) of Figure 3.8) or by two dominant nodes e.g United
Technologies Corporation/American Express (RTX/AXP, e.g panels (e),(f) Figure
3.8). However, the sector-based structure of the market becomes less and less ev-
ident as the size of considered fluctuations (¢ exponent) increases, indicating that
the sectorial binding between companies is typical for moderate returns. For large
fluctuations, due to investors’ herding behaviour all stocks become volatile and the
fact that a particular company belongs to a given sector plays less significant role.
This effect is also manifested by the increased value of the average shortest path
length (see Table 3.2) observed for ¢ = 4. It is worth noting that such representa-
tion of the cross dependencies between assets can have practical applications. The
minimal spanning trees build on linear correlation coefficients are already used in
the investment portfolio diversification [135|. Extending this approach to non-linear
dependencies measured by the pf (s) coefficient, allows more accurately identify
the coupling between different financial instruments and thus better control risk
exposure.

3.4 Time evolution of assets’ singularity spectra

The hierarchical organization of the financial time series, as shown in previous sec-
tions, can be distorted. The effect is manifested by either the left- or right-side
asymmetry of multifractal spectra. Detecting such distortions, combined with the
examining widths of singularity spectra, provides valuable information about the
mechanism governing the dynamics of particular time series. However, as shown
in the study [76], asymmetry and width of the singularity spectrum may vary in
time. Thus to better understand the underlying process dynamics, analysis of a
multifractal spectrum’s evolution over time is necessary. In this section, the changes
in the multifractal properties of the major indices and selected stocks are investi-
gated using the rolling window analysis method. The time evolution of the assets’
self-dependencies are qualitatively analysed and also quantified by spectrum width
Ac«, asymmetry coefficient A, and Hurst exponent H. Performed analysis includes
reference to the major economic events and their influence on financial market dy-
namics.

As mentioned above, in order to investigate changes in the multifractal proper-
ties of assets over different time periods, a rolling window analysis was applied. The
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window length was 5000 data points, which corresponds to approximately 20 trading
years, and a step size was 20 data points, reflecting about one trading month. The
series of such a length, in presence of temporal, non-linear dependencies, are suffi-
ciently long to detect it since the absence of such correlations demands significantly
longer time series [121]. However, a single, outstanding fluctuation might affect the
results obtained. As an example, such a return occurred on the 18th of October,
1987, in what is known as the Black Monday crash, during which the DJIA fell by
22.9%. In order to capture the general changes in dynamics of the processes govern-
ing the evolution of the multifractal properties of considered assets, the mentioned
rate of return is omitted in the rolling window analysis.

Figure 3.10 shows the result of the rolling window analysis of singularity spectra
for the DJIA index and HPQ company, calculated from January 1950 to December
2019 and January 1962 to December 2019, respectively. Panels (a) and (b) show
a three-dimensional plot of the singularity spectra obtained consecutively for each
window. In order to better visualize evolution of A«, A,, and H the panels below
contain two dimensional projections onto the time-« plane (plots (¢) and (d)), with
f(a) maxima denoted by red crosses and values of A«, A,, H and rate of returns
time series shown in the sections (e)-(f). Moreover, three historically significant
events that influenced the financial markets are denoted by vertical dashed lines:
the Black Monday crash - yellow line; Dot-com bubble - purple line; and bankruptcy
of Lehman Brothers - green line.

Initially, the DJIA returns’ singularity spectra expand gradually, with a local
maximum A« ~ 0.4 occurring in 1984. The multifractal spectra, starting from 1985,
become narrower (A« & 0.25), but this narrowing is primarily the result of shrinkage
of the right arm of f(«), which is also manifested by an increase of A, coefficient.
From the time windows ending in 1993 up to 2007, the right side of f(«) almost
disappears (A, ~ 0.9), suggesting weak or even lack of non-linear correlations in
small fluctuations. However, after the Lehman Brothers bankruptcy, the singularity
spectra begins to recover, with some fluctuation occurring in the years 2018-2020.
On the level of the multifractal spectra width, this effect is visible in a gradual
increase of A« in recent years. Interestingly, before the Black Monday Crash and the
Lehman Brothers bankruptcy, a significant decrease of singularity spectrum width
is noticeable. Such a decrease means that, in the periods preceding these major
market events, the dynamics of the process governing price changes became poorer.
In terms of the long-range linear dependencies measured by the Hurst exponent, a
clear, progressing downtrend is visible. Up to 1985, H fluctuates around 0.5, then
it decreases significantly to H &~ 0.42, and, this level is maintained to date, with a
slight increase for the windows that ends in period 2007-2009, indicating increased
randomness in those years.

Slightly different characteristics are observed in the HP(Q singularity spectra
time evolution. Here, up to 1998, the multifractal spectrum is broad (A« = 0.5)
and reveal left-side asymmetry (A, =~ 0.5). A significant change of the singularity
spectrum’s shape is noticeable for windows that end in period 1998-2000 (before
Dot-com bubble crash), when, initially, the right-side of f(«), followed by the left-
side, shrunk substantially. As a result the spectrum width decreased to Aa = 0.2.
The less hierarchical organization in the HP(Q returns is observed up to 2010, when

40



| i I | | | Il | I I |

L MR R P L L L L L
1990 2000 2010 2020 1985 1990 1995 2000 2005 2010 2015 2020
t [year] t [year]

0] S N
1970 1980

(e) |+DJIA --shuffled data + fourier surrogate ® I+HPQ - shuffled data + fourier surrogate|
— T T T T g L e . L T

L — T

1 1 1 11 1 1 1 I 1 11 1
1970 1980 1990 2000 2010 2020 1985 1990 1995 2000 2005 2010 2015 2020
t [year] t [year]

Figure 3.10: Multifractal rolling window analysis of DJTA (plots on the left-hand side) and HPQ
(plots on the right-hand side). The panels (a) and (b) display a three-dimensional view of the
singularity spectra of each window, where black and blue colors corresponds to left and right sides
of f(«), respectively. Panels (c) and (d) show the projections of the multifractal spectra onto the
time-a plane, where the red crosses illustrate displacement of maxima of f(«). Panels in section
(e) and (f) show quantities describing the multifractal spectra (from top: width Ac«, asymmetry
A, and Hurst exponent H) as well as analysed return signals (bottom panels). The calendar date
assigned to each data point corresponds to the end date of a window. The yellow, purple and green
vertical lines in sections (c)-(f) indicate important economical events (Black Monday 19.10.1987,
Dot com bubble crash - 13.03.2000, Bankruptcy of Lehman Brothers - 15.09.2008, respectively).

the right side of f(«) rapidly developed and the total width came back to previously
observed levels. This effect is even more intriguing, as the left side of the singularity
spectrum almost disappeared beginning in 2007 (A, ~ —0.7), and has shown gradual
recovery in recent years. Thus, in the last two decades, large returns of HPQ were
weakly correlated, which is unusual for financial time series. Moreover, in recent
years, the weakening of the linear dependencies manifested by H = 0.5 is visible.

In order to verify that the multifractality of the time series in analysed windows
is not a spurious effect caused by the broad distribution of the data, f(«) functions
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were determined for randomly shuffled series and the signal modified according to the
Fourier surrogate method (the procedures were applied in each window individually).
The width of the obtained singularity spectra are presented in the upper panels of
the sections (e) and (f) (blue squares and orange diamonds for shuffled data and
the Fourier surrogate, respectively). For both assets, the width of f(«) for modified
signals is substantially lower than observed for original data; however, for some
windows, the assumed multifractality threshold (A« = 0.1) is violated, usually
during turbulent market periods. This effect is primarily caused by the limited
length of the data in each window (5000 data points), and qualitatively does not
undermine the obtained results.

To some extent, similar changes in the multifractal properties are also visible for
NIKKEI returns. As shown on the panels in section (a) of Figure 3.11, the index,
which is commonly recognized as a barometer of the Asian economy, does not reveal
changes in dynamics related to the Black Monday, which may be a result of the
loose monetary policy of Japanese regulators, that reduced the impact of the 1987
crash [124]. However, such a policy led to the asset price bubble, which burst in late
1991 [136], and this is clearly visible in singularity spectra width - A« decreased by
approximately 0.12. Moreover, starting from the windows that end in 1992, a slow
symmetrization of the multifractal spectrum is noticeable. The downward trend of
A, is interlaced with temporal increments of the asymmetry coefficient during the
Dot-com and Lehman Brothers bankruptcy crises (purple and green dotted lines,
respectively). These changes in multifractal characteristics are also accompanied
by a gradual decrease of the linear correlations in period 1990-2009, reflected by
the Hurst exponent value H =~ 0.5, and then were followed by an increase of the
returns’ anti-persistence starting from 2009 and continuing to date. In general, the
multifractal rolling window analysis suggests that NIKKEI, and by extension the
entire Japanese economy, was strongly influenced by the early 1990s’ crash up to
2009, when the Bank of Japan announced another round of quantitative easing,
which translated into richer dynamics of NIKKEI returns. The long-range effects of
the Japanese bubble crash were described in studies [137, 138].

In contrast, the changes in singularity spectra width and asymmetry observed for
DAX are not that sudden. In the 1990s, its returns exhibit a monofractal nature,
and, starting from the beginning of the 20th century, the steady increase of the
Aa, accompanied by increasing symmetrization of f(a) and a slight downtrend in
the Hurst exponent, is visible. Lack of sharp changes in its multifractal properties
suggests that DAX was not significantly affected by crashes that occurred in past
decades and, in terms of non-linear correlations, seems to be relatively poorer than
other analysed assets.

Similar to the DAX index, the returns of CVX (section (b) of Figure 3.11) up
to the window that ends in 2000, exhibit poor hierarchical organization, manifested
by narrow singularity spectra (Aa ~ 0.18) and accompanied by large fluctuations
of the asymmetry coefficient. Starting from the beginning of the 20th century, cor-
relations in the large CVX rates of return are gradually strengthen, as shown in the
increased total width of the singularity spectra and the growth of A,. Interestingly,
conterminously to the DJIA, sudden reduction of the Ao and asymmetry coefficient
are observed before the Lehman Brothers crash in 2007.
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Figure 3.11: Time evolution of the multifractal properties of indices (section (a) - NIKKEI,
section (c) DAX) and selected components of DJIA (section (b) - CVX, section (d) DIS)) rates
of return. Each section contains four panels, from top: spectrum width A« (calculated for original
data (black dots), shuffled data (blue squares) and data modified accordingly to Fourier surrogate
method (orange diamonds)), asymmetry A,, Hurst exponent H and rates of return signal r(¢),
respectively. The calendar date assigned to each data point corresponds to the end point within a
window. The yellow, purple and green vertical lines indicates important economical events (Black
Monday 19.10.1987, Dot-com bubble crash - 13.03.2000, and bankruptcy of Lehman Brothers -
15.09.2008, respectively). Due to limited DAX data availability, the analysis was not possible for
time windows end dates in 1970-1980, indicated by grey area.

Decrease of hierarchical organization level before the recent crisis is also visible in
the the DIS returns. Starting from the window that ends in 2005 a gradual decrease
of Aa can be observed. The weakening of the non-linear correlations of returns
Aa =~ 0.2 is observed up to 2015, when the width surges to approximately Aa ~ 0.6
and the singularity spectrum reveals right-hand side asymmetry A, ~ —0.5. In
this context, the multifractal properties of DIS returns are to some degree similar
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to those observed for HPQ indicating that these components might become non-
linearly correlated. The source of such a similarity is probably related to the fact
that Disney has became more involved in the technology sector in recent years.

Again, in order to confirm that the results described above were not significantly
influenced by the limited size of the data and its broad distribution, as with the
DJIA and HPQ analyses, the singularity spectrum width of the shuffled signal (blue
squares) and that modified by Fourier surrogate method (orange diamonds) were
calculated for each window. Regardless of the analysed asset, the width of the altered
time series is significantly lower than was observed for original data; however, due to
limited data size, the multifractality threshold (here set to Aa: = 0.1) is occasionally
violated, usually during turbulent market periods.

Analysis of the changes in multifractal properties of the major stock indices
and components from DJIA demonstrates that they evolve through a variety of
shapes whose changes typically appear correlated with the historically most signif-
icant events experienced by the world economy. Notably, the variation in a hierar-
chical organization typically manifests prior to an asset’s valuation collapse, thereby
demonstrating the prediction potential of the applied method.

3.5 Variability of multiscale cross-correlations be-
tween financial instruments

Naturally, significant changes in multifractal features of the indices and stocks pre-
sented in the previous section reflect different market phases that vary in degree
of coupling among the components [139]. In this section, these phases are inves-
tigated using a multifractal rolling window analysis of 10 selected components of
DJIA as well as Proxy Index constructed from these companies. Examination of the
multifractal properties’ time evolution is supported with correlation matrix analysis.

The indices are built of components; thus, the hierarchical organization of the
index is the superposition of the features observed on the stocks level. It is expected
that multifractal properties of sum of many uncorrelated multifractal signals disap-
pears along with an increasing number of the components [105]. However, stocks can
be linearly and non-linearly correlated; thus, coupling among the companies quoted
within the same index may produce interesting multifractal features observable on
the global level. To study these effects, by summing up prices of 10 companies from
DJIA, the proxy of the index was created (AA, BA, CVX, DIS, GE, HPQ, IBM,
JNJ, KO, XOM from 02.01.1962 to 31.12.2019). Since DJIA is a price-weighted
index ands the components of the proxy are dispersed across different sectors, the
created instrument well approximates the real index, as shown in Figure 3.12.

For such created Proxy Index as well as its components, a rolling window anal-
ysis was performed. Again, to capture general changes in system dynamics, not
dominated by outstanding fluctuations, the return that occurred on 18th October
1987 (the Black Monday crash) was omitted. Figure 3.13 displays the result of this
analysis. To improve illustrative clarity, the multifractal spectra of the individual
components, are represented by the average value, calculated separately for each
window. The upper panels ((a) and (b)) show the f(«) function projected onto
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Figure 3.12: Daily prices (panels (a) and (c)) and returns (panels (b) and (d)) of the DJIA
index and its proxy formed from 10 companies (AA, BA, CVX, DIS, GE, HPQ, IBM, JNJ, KO,
XOM).

the time-a plane, the middle panels present the multifractal spectra properties of
the corresponding assets (panel (c¢) - spectrum width Aa, panel (d) - spectrum
asymmetry A,), and the panel (e) contains the obtained values of the Hurst ex-
ponent H. Clearly visible is the similarity of the changes in multifractal spectra
shape and location for both analysed instruments, which is manifested by similar
values of the asymmetry coefficient A, and Hurst exponent H. However, the av-
erage f(«) spectrum is never narrower than the one obtained for the Proxy Index,
which is understandable result, because equality is expected in the case of perfect
correlation among price fluctuations of all participating companies. Interestingly,
the discrepancy between Proxy Index spectra width and the average value A« of
its components is not constant over time. An especially noteworthy case occurs in
the period between 1991 and 1994, indicated by the red area. In this period, the
width of the mean singularity spectra of the considered companies stabilise around
Aa ~ 0.22 while the width of the Proxy Index enters into mono-fractal regime
Aa < 0.1. Such narrowing of the Proxy Index singularity spectra indicates that, in
this period, the non-linear correlations among the components were weak. On the
other hand, starting from 1995 up to 2003 (on Figure 3.13 marked with the green
area), the hierarchical organization of the Proxy Index as well as its components are
characterized by similar singularity spectra widths, suggesting a stronger coupling
between companies. In recent years, the analysed companies seem to decorrelate
again, a tendency manifested by a gradually increasing difference in A« observed
from 2005 to date, with the exception of the financial crisis period, during which
the discrepancy in singularity spectra broadness shrunk.

In order to verify that the narrowing and broadening of the Proxy Index singu-
larity spectra in different periods is related to suppression and amplification of the
cross-correlations among components, a rolling window analysis of the correlation
matrix was performed. Under the assumption that M denotes a N x T rectangular
matrix formed from N time series x;(t) of length 7', the correlation matrix can be
defined as follows:

C = (1> MM?T. (3.35)

T
The entries of matrix C' constructed in such a way, correspond to the Pearson cor-
relation coefficients, for which, by diagonalization (Cv* = M), the eigenvalues

45



@ 14 T T T

I ' [ '

]

0.8F : | Average of 10 components|
E 1 |

O-8 Sy L

0.4 I I

0.2 E— 1

0.8F |
0.6§ I
0.4F ' L I
0.2F !

E 1
OTII|IIII|IIII|IIII|IIIII|IIIII|IIII|IIII

o Average of 10 components = Proxy Index
T l T T T T I T T T T

© 06

f“'l

04 o ap AN SN

IO, e ./.-h" PAAL - i L G R AT TR -
1
I,

|

A

=}

[N
|B||||||—

@ Y

0.5

llIllI[l‘l‘_l T

A(k
a}
A
i,
z

-0.5
© |
0.75

T 0.5
0.25

'llllllll Illllllll Tlllllllll

1 | 1 1 1 1 1 1 1 1 1
1985 1990 1995 2000 2005 2010 2015 2020
t [year]

Figure 3.13: Multifractal rolling window analysis of the Proxy Index built of ten instruments
quoted within DJTA (AA, BA, CVX, DIS, GE, HPQ. IBM, JNJ, KO, XOM) compared with average
calculated for components individually. Panels (a) and (b) show sequence of singularity spectra
calculated for average spectrum and Proxy Index, respectively. Panels (c¢) and (d) presents time
evolution of the multifractal properties of analysed assets (red circles - average of the components,
blue squares - Proxy Index), namely, spectra width A« (panel (c)), spectra asymmetry A, (panel
(d)) and linear long-range correlations measured by Hurst exponent H (panel (e)). The black
dotted line in plot (c¢) indicates assumed threshold of the multifractality A« = 0.1. The yellow,
purple and green vertical lines indicate important economical events (Black Monday 19.10.1987,
Dot-com bubble crash - 13.03.2000, bankruptcy of Lehman Brothers - 15.09.2008, respectively).

Me(k = 1,...,N) and corresponding eigenvectors v¥ can be obtained. Accordingly

to the Marchenko-Pastur law [140] for the entirely random signals, the density of
eigenvalues pco(\) is known analytically as follows:

po3) = 5oy Vmar ZNA An)

where the \,,;, and \,,., bounds are as follows:

o — o (1 + é + 2\/5) : (3.37)

In these equations, @ = T'/N, and ¢? is the variance of the analysed time series. The

(3.36)
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degree of deviation of the largest eigenvalue A\; above \,,,, measures the strength
of the correlations among the time series used to construct the correlation matrix
[1, 141]. Figure 3.14 presents the time evolution of the largest eigenvalue A; (blue
squares) for the window of length 7" = 100, moved by 20 data points each step.
Moreover, in the same figure, the black circles represent the changes of the largest
eigenvalue ~; of an analogous matrix composed of the multiscale cross-correlations
coefficients pg, (s) for scale s = 100 and exponent ¢ = 2. Clearly visible is the
similarity in the time evolution of these two measures, both of which reach their
minima in January 1994. In this period, the A; touches the border of purely random
series, while v, drop to 2.5. Moreover, downtrend in the A\; and ~; is also noticeable
in recent years, confirming that, in these periods, considered components are less
correlated, thus explaining the narrow singularity spectra of the Proxy Index. On
the other hand, in period 1995-2003 (green area), both measures maintain higher
levels; however, the slight decorrelation followed by stronger coupling is observed
during the dot-com bubble crash. Such an effect is typical for significant financial
events when investors’ panic behaviour and massive sell-offs observed on the market
translate into the stronger coupling between companies.
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Figure 3.14: Rolling window analysis of the largest eigenvalue of correlation matrix (A; - blue
squares) and matrix composed of multiscale correlation coefficients pZ, (s) (71 - black circles). The
horizontal black dotted lines indicate the noise regime of the correlation matrix calculated according
to equation 3.37. The yellow, purple and green vertical lines indicate important economical events
(Black Monday crash 19.10.1987, Dot-com bubble crash - 13.03.2000, Lehman Brothers bankruptcy
- 15.09.2008, respectively).

The rolling window analysis of the Proxy Index and selected companies presented
in this section shows that cross-correlations between companies are one of the main
factors responsible for the dynamical variability of the hierarchical organization ob-
served in financial market indices. Furthermore, the changes in coupling between
companies are usually correlated with significant financial events and crashes. The
approach introduced in this section constitutes a valuable tool that can be used as
a confirmation method for other prediction techniques.

The multifractal analysis of the major stock indices and components of DJIA
presented in this chapter shows that financial time series have non-trivial char-
acteristics. Returns, beside incorporating non-linear autocorrelations can also be
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non-linearly depend on one another. On top of that, the hierarchical organization
of the financial time series is not constant in time. In different market phases the
correlations among components can substantially increase or decrease, which results
in intriguing phenomena observed on the index level. Producing signals charac-
terised by the features mentioned above is not an easy task and require application
of clever modeling techniques. Undoubtedly, one of such techniques is agent-based
modeling. The fundamentals of this approach to generating time series, correspon-
dence to models applied in physics and analysis of two, well-recognized agent-based
models of financial markets are discussed in the next chapter.
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Chapter 4

Agent-based modeling

Many processes appearing in the nature are marked by high degree of complexity.
The interdependencies present in many physical, biological or environmental systems
are too complicated to be modeled using conventional modeling tools and examining
these using traditional deductive and inductive reasoning is therefore difficult [142].
Due to the economic development and increasing globalization, the same can be said
about sociological and economical systems [143]. The intricacy of the world around
us, and the need for simple techniques able to reproduce complex phenomena led to
rapid development of a bottom-up approach to the modeling. In such a methodology,
rather than creating general formula, which describes the entire considered process,
the modeling effort is focused on dividing the system into multiple linked parts,
which by defined interactions, are able to generate complex phenomena observed on
the system level.

This chapter begins with an introduction to agent-based modeling. Using two
fundamental models of this type, namely, Schelling segregation model [77] and Boids
model [78] it is demonstrated how frameworks of this class can reproduce complex
phenomena including herding and processes having the appearance of the phase
transition. Moreover, using Ising Model as an example, it is shown how phase tran-
sition and criticality of the physical systems correspond to the phenomena observed
in real financial markets and how such behaviour can be simulated with relative
ease, using Monte Carlo methods. Finally, two financial agent-based frameworks
inspired by Ising Model, namely lori’s model |70], and Bornholdt’s model [71] are
discussed and examined in the context of reproducing hierarchical organization of
the returns.

4.1 Fundamentals

Agent-based modeling (ABM) is one of the primary methods belonging to the group
of bottom-up, micro-scale modeling techniques. This approach represents a system
as a collection of autonomous, interacting, decision-making agents, that operate in a
defined environment [144]. An ABM’s definition is abstract; nonetheless, two main
components existing in every model of this class can be distinguished. Naturally,
the first common element ABMs share is the presence of agents. Since these models
are usually characterized in the context of their application, often using the jargon
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of particular scientific field, no exact and standardized definition of ’agent’ exists.
However, definitions present in the literature tend to agree on more points than
they disagree [142]. The list below contains several fundamental, but not obligatory
properties of and agent [55, 59, 145, 146]:

e Autonomy: Agents are autonomous, self-directed units that are capable to
operate independently in the environment.

e Self-containedness: Agents are discrete, identifiable individuals, that can be
described through use of a set of properties. The agent’s discreetness implies
that they have well-defined boundaries, thereby one can simply and unam-
biguously determine whether part of the system is an agent or not.

e Interactivity: Agents are able to interact and exchange information with
other entities existing in the system.

e Heterogenity: The state of an agent can vary across individuals and can
change over time. For instance, an agent representing a human being, can
posses attributes such as age, job or wealth, and these attributes can evolve as
the simulation advances. On the other hand sex, nationality or race remains
constant.

e Reactiveness: Agents are aware of their surroundings and can anticipate and
react to signals coming from the simulation environment and other individu-
als. In more advanced models, agents can have memory and alter their state
depending on previous states as well as learn and adapt.

Characteristics of an agent can be divided into two groups: attributes and methods.
Attributes describe the state of a particular agent and, as mentioned above, can
either be static (e.g., name, sex) or evolve over time (e.g., memory, wealth). On the
other hand, methods specify the rules of the behaviour of an entity. In this context,
ABMs are flexible and it fully lies in the modeler’s hands, whether an agent takes
action based on the simple if-else clauses or applies sophisticated decision trees or
neural networks [147].

The second component which exists in every ABM is an environment. It defines
the space in which agents operate and, in a basic scenario, provides information on
the spatial location of an agent. In more advanced models, the environment may
supply extra data that could affect agents behavior (e.g., global economic sentiment
in financial market simulations [148, 149]). The topology of the environment is usu-
ally domain-specific and strongly depends on the problem that the model is designed
to address. It can be an abstract non-spatial 'soup’ (e.g., computational economy
models [150]), an Euclidean space (e.g., flocking [78]), a two dimensional-lattice (e.g.,
game of life [151]) or spatial network (e.g., traffic jam model [152]). Importantly,
model’s topology usually defines an agent’s neighborhood, which, in turn determines
individuals that given agent can interact with. In the case of a two-dimensional
lattice, von Neumann or Moore neighborhoods are typically applied (see Figure 4.1
left and central panels, respectively), whereas, for network-like environments, the
individuals are linked according to node edges (see Figure 4.1, right panel).

The information exchanged by connected agents depends on the problem being
considered and scientific field to which the model is being applied. In simple physical
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Figure 4.1: Examples of the topologies and neighbourhoods commonly employed in agent-based
models. Left panel: von Neumann neighbourhood in the two-dimensional lattice, central panel:
Moore neighbourhood in the two-dimensional lattice, right panel: neighbourhood in the network.
The black color indicates selected agents and gray marks their neighbours.

models it could be a position (e.g., molecule position [52]), in biological systems
the type of an agent (e.g bacteria, antibiotic, cell etc. [56, 153, 154]), while in
sociological and economical models typically an opinion (e.g., voting preference 61,
72]) or sentiment is exchanged [67]. In general, individuals share details about their
state with the entities in the vicinity and, based on the information received from
neighbours agent modifies its state.

Lack of concrete definition of ABM and their ability to incorporate different
agent’s decision-making mechanisms (e.g., machine learning [155]) and environment
topologies can lead some to view this modeling technique as complicated. This is
partially true, for example in the case of so-called large-scale models, in whose the
simulation can consist of thousands of widely varied agents behaving accordingly
to the complex rules (e.g., models of global economy [68, 150]). However, many of
ABMs, capable of generating complex phenomena can be implemented in a sim-
ple form such as cellular automata [156]. An example of such framework is the
Schelling’s segregation model [77]|, which reproduces the racial division in a soci-
ety. This model is based on a two-dimensional lattice, and the agents are divided
into two groups (A and B), representing people of different races. Each individual
in the system can assume one of two states (happy and unhappy), and which en-
tity assumes is determined by the percentage of units of the same type inhabiting
its neighbourhood (a Moore neighbourhood in this case) and tolerance threshold
T € [0,1]. If the percentage of agents of a different race in the neighbourhood ex-
ceeds the individual’s tolerance threshold 7', an agent is considered as unhappy, and
thus, in the next time step, it randomly changes location to any other unoccupied
cell in the system. In an extreme case, when 7' = 0 an individual is happy only when
entities of the same type are in the vicinity, whereas for 7' = 1 agents are always
happy, regardless of the type of units surrounding them. As shown in Figure 4.2,
the dynamic of such a system significantly depends on the tolerance threshold.

For a high level of tolerance, the system remains unordered, and qualitatively,
the agents’ spatial distribution does not significantly change over time, whereas for
tolerance values below the certain threshold (7" < 0.3), strong spatial segregation
emerges. In physics, such a dramatic change in system organization is characteristic
of phase transitions and usually is associated with changes in the state of matter.
The phenomenon itself, as well as techniques of modeling it, are described in more
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Figure 4.2: Time evolution of the Schelling’s Segregation Model employing two different tolerance
thresholds: T = 0.3 (upper panels) and T'= 0.7 (bottom panels). The lattice has size 100x100 and
70% of the cells are occupied by agents of type A (blue dots) or B (red dots). The plots in the
same column show the configuration of the system in the initial state, after 5 time steps and after
20 time steps, respectively. For a low tolerance threshold 7" = 0.3, the spatial segregation occurs,
and clusters of agents of the same type, separated by empty cells, are formed. This phenomenon
does not appear for a high tolerance threshold 7" = 0.7. In this case agents are distributed more
uniformly.

detail in the next section.

The second, crucial observation with regard to Schelling’s segregation model
dynamic is that simple, local interactions between agents lead to creation of clusters
of individuals belonging to the same group. Such collective, organized behaviour
observed on the system level and rooted in local interactions is called emergence.
This phenomenon is even more visible in the Boids model |78], which imitates the
movement observed in the flock of animals such as fishes or birds. The model’s
environment is a two-dimensional Euclidean space with periodical boundaries, and
agents move according to three basic rules:

1. Cohesion: Each agent steers toward the central of the mass of the entities in
the neighbourhood.

2. Separation: Each agent avoids collisions.

3. Alignment: FEach agent steers towards the average direction of the entities
in the neighbourhood.

As shown in Figure 4.3, initially, agents have randomly assigned orientations and
locations on the plane. As the simulation proceeds, the rules mentioned above make
the movement appear purposeful and coordinated. Worth noting is that the model
does not assume any kind of leadership by any agent (or agents), and the same
rules govern all individuals in the system. Such herding behaviour is observed not
only among animals but also appears in human actions (in sociological systems and
financial markets, for instance). Moreover, many believe that herding behavior is
the root cause of the formation of speculative bubbles and crashes |75, 157, 158].
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Figure 4.3: Time evolution of the Boids model consisting of 25 agents. The panels present the
initial configuration of the system, configuration after 50 time steps and configuration after 150
time steps, respectively. As the simulation proceeds, the movement of the individuals appears
increasingly coordinated, and in final state, the flock is formed as almost all entities steer towards
the same direction.

The examples considered above reveal the fundamental features that underlie
the popularity of the agent-based modeling. The ability to reproduce complex phe-
nomena, including spontaneous change of the system dynamic and emergence man-
ifested by collective actions taken by agents, have found applications in many areas
of science spanning social, economic, physical, and biological systems. Not without
significance is the flexibility of the agent-based models and rapidly advancing com-
putational power, which allows performing large-scale simulations that would not
have been feasible a few years ago.

In the context of the agent-based modeling applications, worth noting is that,
based on the degree of the complexity and purpose of the model, two different ap-
proaches can be distinguished. The first one entails a detailed representation of
the analysed system. These models, whose primary purpose is to predict system
behaviour, usually have plenty of parameters and utilize huge data sets. This mod-
eling approach is often used in the analysis of individual countries” economic policies
and their influence on the global market. Here, the advantage of agent-based model-
ing over traditionally used econometric and dynamic stochastic general equilibrium
models (DSGE) is indisputable [66], as these models are not able to simulate inter-
dependencies between different economic components.

The second approach, preferred by physicists, is based on building simple, ele-
gant models with a limited number of parameters and an appropriate generalization
level. Simulation of the phenomenon in controllable conditions facilitates analysis
of the system dynamics and provides valuable insight into the considered process. A
small number of free parameters simplify interpretation of results and aid in identifi-
cation of the crucial mechanisms underlying phenomenon being analysed. Moreover,
such models usually focus only on one segment of the large system. A prominent ex-
ample here are the models of financial markets which simulates trading preferences
of the investors. Naturally, prediction capabilities of such models are limited; how-
ever, they are able to provide an explanations for stock market bubbles and crashes
[159, 160, 161, 162, that do not appear in econometric or equilibrium models [66].
Interestingly, many agent-based models of financial markets were designed origi-
nally by physicists and consequently, are inspired by frameworks commonly used
in physics [71, 163, 164, 165, 166]. A typical example of a model that comes from
physics but has found applications in multiple areas of science is the Ising Model.
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Its properties and applications are presented in the next section of this dissertation.

4.2 Ising Model and criticality of financial markets

Agent-based models, as shown in the previous section, are able to reproduce col-
lective behavior and phenomena having the appearance of the phase transition.
In the context of the financial markets modeling, the former feature is especially
compelling. Phase transitions are usually associated with the thermodynamic pro-
cesses in which the state of matter change, for instance, from liquid to solid. Such
a dramatic alternation of system properties can also be observed in ferromagnetic
materials, liquid helium, superconductors, and many more [167]. In this section,
phase transitions and criticality of the physical systems are compared to phenom-
ena observed in the financial markets during the crises and bubble bursts. Next, it
is demonstrated how phase transitions in the ferromagnetic materials can be easily
reproduced using the Ising Model and Monte Carlo methods.

Based on the behaviour of the system in the vicinity of a transition temperature,
two types of phase transitions are possible, namely, first-order and second-order
phase transitions. Considering a system in the thermodynamic equilibrium, a first-
order phase transition is a process in which a sharp, noncontinuous change of a
thermodynamic function, such as entropy or specific heat, is observed. During such
a transition, the system can release (or absorb) a significant amount of energy with-
out changing the temperature. This stage of the process is called a mixed-phase
regime, in which only a fraction of the system completes the transition, with the
rest remaining in its original phase. A typical example is boiling water, which, be-
fore completely turning into vapor occupies a mixed-phase regime manifested by a
turbulent mixture with bubbles.

Alternatively, in the second-order phase transition the system’s state function
changes continuously. For instance, in a ferromagnetic material, the spontaneous
magnetization of the system disappears above a certain temperature called Curie
Temperature (also called critical temperature). Practically speaking, the assignment
of a particular process to a type of phase transition is performed based on latent
heat, which can be defined as the amount of energy required to change the phase
of a single particle at a given temperature. First-order transitions are processes in
which latent heat is observed; thus, during the transition, a finite amount of energy
is released (or absorbed), whereas, for second-order transitions, the latent heat does
not appear.

From the perspective of the system microstructure, a distinguishing feature of
most phase transitions is the appearance of a non-zero value of the order parameter
in the system’s ordered phase but zero (or nearly zero) in its disordered phase [168].
The order parameter definition depends on the type of the considered system. For
instance, in a liquid-to-crystal transition, it will be the orientational order of the
particles, whereas, in liquid-to-gas, the order parameter is the difference in the
density between the material in these two phases. Typically, the order parameter
assumes a scalar form; however, it may also take on a multi-component or tensorial
value.

Phase transitions are interesting, extensively studied phenomena that have coun-
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terparts in different areas of science. In the context of this effect’s multidisciplinary
applications, especially compelling is the second-order phase transition. In the vicin-
ity of a critical point, fluctuations of many quantities, such as energy or magnetiza-
tion increase significantly. Interestingly, the distributions of these quantities often
assume power law characteristic, suggesting the existence of a non-trivial hierarchi-
cal organization and non-linear correlations. Moreover, correlation does not appear
only in the time dimension, but strong spatial dependencies are observable as well.
As a result, when the system is in a near-critical state, any small, local change in
the system has global effects that can lead to macro-consequences.

As mentioned in the previous section, dramatic changes in system dynamics
having an appearance of a phase transition are observed in non-physical systems as
well. Tt is sufficient to look at Schelling segregation model time evolution (see Figure
4.2) to notice that the significant increase of the order is observed for simulation
performed with tolerance threshold above certain value. In this case, the simplest
measure of the order of the system is the average number of neighbours of a different
type in the agent’s vicinity. Assuming that 70% of the cells in the system are
occupied and tolerance threshold T' = 0.3 (see Figure 4.2, upper panels), the average
number of the individuals of different race drops to zero after approximately 30 time
steps, while for T' = 0.7 it stabilises around 1.6 (see Figure 4.2, bottom panels).

Phenomena exhibiting signs of a phase transition also occur in the financial
markets [6, 169, 170]. According to the theory introduced by Sornette, formation
of bubbles and crashes in financial asset valuation has multiple features in com-
mon with phase transition. Cooperative actions taken by investors eventually put
the market into a metastable phase, where even a small disturbance can trigger
instability that results in a crash. Increased sensitivity of markets is similar to the
behaviour of a physical system, e.g., ferromagnetic material, in the vicinity of its
critical temperature, where a little adjustment causes a dramatic change of the sys-
tem properties. Interestingly, when the financial market drifts towards its critical
point, the precursory fingerprints in the stock prices can be observed [6, 171] and
even modeled using, for instance using, Log-Periodic Power Laws (LPPL) method
[172, 173, 174].

The most popular and, at the same time the simplest physical model that is
able to reproduce a second-order phase transition is the Ising Model [167]. In some
metals, such as iron or nickel, spins spontaneously orientate in one direction, and
in consequence, a macroscopic resultant magnetic field is observed. However, above
Curie temperature, these materials lose their magnetic properties and become para-
magnetic. Simulation of such phase transition was the initial intention of Lenz, who
in 1920 proposed the model [175], which was developed and solved analytically in
one dimension by Ising in 1925 [176].

The model consists of discrete variables that represent the nuclear magnetic
moment and, in a basic scenario, are arranged in a chain, where each variable has
two neighbors. For instance, let consider a chain of ions with spin s = 1/2 and
internal magnetic moment iy, which are influenced by an external magnetic field.
According to quantum mechanics, such spin can be oriented in one of the directions,
namely, along with the external field (customarily called 'up’), and in opposition to
the external field (customarily called ’"down’). Hamiltonian of such system can be
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calculated as follows:

H=—-J Z aiaj—hZUi (4.1)

<i,j> i

where < 4,75 > is the sum over the nearest neighbours, ¢, denotes spin, J is a
coefficient that determines the preference of the spins, and h is the energy of spin
in an external magnetic field. For J > 0 the spins orient in the same direction
as in ferromagnetic materials, whereas for J < 0, an alternate configuration of the
spins, typical for antiferromagnetic materials, is favored. By convention, the entire
component is multiplied by -1; however, it does not have any physical interpretation,
and the change of the sign comes down to the flipping of all spins in the system.
The second part of the equation is the sum of all spins existing in the system, scaled
by an external magnetic field h. At this point, one can notice that the parts of
the Hamiltonian represent different types of interactions, namely, local (with the
nearest neighbors) and global (with an external magnetic field), which as will be
demonstrated in later sections of this dissertation is crucial in modeling of financial
markets multiscale properties. Mathematically, solution of the Ising Model, as with
other systems considered within thermodynamics formalism, comes down to the
calculation of the partition function:

Z =Y exp(~E/kpT), (4.2)

where E is the total energy of the system (value of the Hamiltonian H), kg is a
Boltzmann constant, and 7" is the temperature. The sum of equation 4.2 is over all
N possible states of the system, and so depends on the size and number of degrees of
freedom of each variable. The partition function is used to determine the probability
of the particular state of the system, as follows:
P exp(—E, /kgT)

u T Z Y
where F, is the energy at state u (i.e., value of the Hamiltonian H in the state
u). Moreover, from the partition function, by use of the procedures of statistical
mechanics, the thermodynamic functions of the system, such as free energy, entropy,
and internal energy can be derived. As shown by Ising [176], in the one-dimension
case, no phase transition to the ordered state occurs at any temperature. In other
words, the ordered state is unstable at any finite temperature because a single
thermal fluctuation manifested by the spin oriented in the opposite direction destroys
the ordering in all consecutive spins in the chain, until another thermal fluctuation
appears. As a result, a break in "communication" between different parts of the
system occurs.

Interestingly, such behavior is strictly connected to the number of neighbors
of a given spin. For instance, two-dimensional Ising Model with von Neumann
neighborhood, or a one-dimensional chain with long-range interactions, undergo the
phase transition from the ferromagnetic to the paramagnetic state and vice versa.
The former case, in a basic scenario without external field, was analytically solved
by Onsager in 1944 [177] and the transition appears at critical temperature T:

_ 2J
© kplog(1++2)’

(4.3)

(4.4)
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where J is an interaction coefficient and kg is a Boltzmann constant. Despite its
simplicity Ising Model can be strictly solved only for one-dimensional chains and two-
dimensional lattices without an external magnetic field. Other cases can be puzzled
out by usage of various approximation methods, such as mean-field approximation
or renormalization techniques.

4.2.1 Monte Carlo methods for Ising Model

In practice, one of the most convenient ways to solve the Ising Model is through
use of Monte Carlo numerical methods, which are relatively simple and typically
provide accurate results. In this section, the fundamentals of employing Monte
Carlo methods to solve an Ising Model, including different dynamics, are presented.

Considering a system in thermal equilibrium at given temperature 7', from basic
principles of thermodynamics, it is known that the probability of finding the system
in a given state u is described by Boltzmann distribution (4.3). Now, let X, be an
observable of the system that characterises the state u; for example, this could be
the energy or entropy of the system. Then, at the given temperature, the average
value of the observable can be calculated as follows:

(X) = PX., (1.5)

where P, is the probability that system is in the state u, and X, is a value of inves-
tigated thermodynamical quantity in this state. From the perspective of probability
theory, X is an ordinary random variable that assumes one of the possible values X,
accordingly to distribution P,. Now, to obtain the average value, the possible states
u can be randomly drawn from the configuration space. This technique, though
correct, is inefficient. Even a small system can have a tremendous number of pos-
sible configurations; for instance, the Ising Model, which consist of N = 200 spins,
has 229 possible configurations. Another issue that arises in this context is that
the Ising Model’s Hamiltonian (4.1) describes only the system in thermodynamical
equilibrium and thus does not provide any information concerning system dynamics.
Nonetheless, both of these issues can be overcome through use of Markov chains.
The concept itself corresponds to the stochastic process, in which the current state
depends only on its immediate predecessor. Stated more formally, a Markov chain
is a stochastic, discrete process z;, (where t; < to < ... < t,) occurring in the sys-
tem which has finite number of the possible states Si, Ss, ..., Sw, if the conditional
probability:

P(x, = Su,|Tt, = Sup_1s s Tty = Suy) (4.6)

is not 0 only for the previous state of the system: P(zy, = Su,|Tt, , = Su, 1)
Thus, this conditional probability can be interpreted as a transition probability of
the system’s moving from state u to v [167]:

Wu%’u = P(.fL'tn = Sv’xtn_l = Su> (47)

Naturally, W, _,, is greater than or equal to 0, and the sum over all possible tran-
sitions is normalized. Now, having the definition of the transition probability, for
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infinitely small time steps, one can write the master equation as follows:

dP,(t)
dt

== [Put)Warso — Po(t)Woss, (4.8)
UFAV

where P,(t) and P,(t) are probabilities that the system, at time ¢, has state u,
v respectively. Worth noting is that the basic property of Markov processes that
the next state of the system depends only on the current state, is not typical for
all physical systems, and only some of them have dynamics compatible with the
equation (4.8) [178]. As long as the examined process can be described as a Markov
chain, the derivative in the formula above is equal to 0, and thus the terms on the
right-hand side must be equal. This leads, in turn, to the expression known as
detailed balance:

Pu(t)Wqu = Pv (t)Wv%w (49)

Under the assumption that, at some point in time, the system reaches its equilibrium,
and that the probability of given state is given by the 4.3, following condition occurs:

7 exp(—= By kpT)Woy sy = Z 7 exp(— By kT)Wy_su, (4.10)

which, by basic transformations, leads to the formula for determining the probability
of the transition:
Wysw  exp(—Ey/kpT)
Wysu  exp(—E,/kpT)

= exp(— (B, — B,)/ksT). (4.11)

The formula above does not explicitly define the transition probabilities between
given states, and any form that satisfies the detailed balance is acceptable. In sta-
tistical physics, the dynamics proposed by Metropolis [179] is commonly used:

- —AF/kgT) if AE
- {7'0 exp( JksT) i >0 (4.12)

7" if AE <0,
where AF = E, — E, and 7y is the time required to attempt a spin-filp, which is
customizable and usually set to 79 = 1. In practice, assuming that the system is in
the initial state (usually generated randomly), the algorithm can be described as a
few steps procedure:

1. Choose a site k

2. Calculate the resultant change in energy AFE in case of flipping the spin at site
k

3. If AE < 0, flip the spin and repeat the procedure, starting from point 1;
otherwise continue to the next step

4. Generate random variable r from the uniform distribution

5. If r < exp(—AE/kgT), then flip the spin; otherwise the site & remains un-
changed. Continue from the step 1.
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This procedure is repeated for each site, and one full cycle is considered to be
a typical measure of Monte Carlo time (MCS/site). Optionally, the sites can be
chosen randomly. In such a scenario, assuming that the system consists of N sites,
1 MSC/site corresponds to N random selections of the site. This technique is usually
applied when not only static equilibrium properties but also the dynamic correlation
functions of the stochastic model being studied [167|. Once a sufficient number of
cycles are completed the average of the discretionary thermodynamic quantity can
be calculated according to equation 4.5. Figure 4.4 shows the example of time
evolution of the magnetization and energy for the two-dimensional Ising Model in a
zero magnetic field. In the initial phase, the system drifts towards the equilibrium
state, where both internal energy and magnetization stabilise. Moreover, as the
simulations proceeds, a global spin inversion is observed. This effect is related to
the finite size of the system; however, these states have equal energy and differ only
in sign.
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Figure 4.4: Time evolution of magnetization, here calculated as the sum of all spins in the system
M(t) = Zszl o) (panel on the left-hand side) and the energy (panel on the right-hand side) for a
two-dimensional Ising Model without an external magnetic field at temperature T, ~ 2.26.

Worth noting is that the Metropolis algorithm works well for a limited range
of temperatures. If the system has high temperature, 7' — oo the probability of
flipping the spin drifts toward 1, which, in practice, means that with every sweep
spins are overturned. Such a process is the direct opposite of the ergodicity principle,
which states that any state of the system should be reachable from any other state.
In fact, however, many of the transition rates from and to a particular state can be
zero, but given two arbitrary states u and v there should exist, at the very least,
a single path of the transitions having non-zero rates and so able to connect them.
An alternative dynamics, that lacks this defect, is Glauber dynamics [180]. It uses
a single-flip transition rate defined as follows:

Wassw = (270) '[1 + o tanh(E},/kpT)] (4.13)

where o F). is the energy of the kth spin in state u and 7y is a time required to
attempt a spin-filp. Using Glauber dynamics, at a high temperature probability
of flipping the spin approaches 1/2 (assuming 79 = 1). Thus the process remains
ergodic.

Another approach, commonly used in Ising-like models of sociological and eco-
nomical systems, is called the heatbath method. Instead of calculating the change
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in the energy between two spin configurations and then accepting or rejecting the
new configuration, in the heatbath method, the spin direction is chosen randomly
and compared with the Boltzmann probability of the trial configuration. For in-
stance, assuming that each spin can have one of two different values o, = +1 with
probability pr and o, = —1 with probability 1 — p,, where:

o eXp(2/kBT) Zje'rm Jj
I+ eXp(Q/kBT) Z]Enn 0j

Dk (4.14)

then by generating a random number r new state can be calculated: o = sign(py —
r). The probability of the spin’s being up or down is the same as in Glauber dy-
namics, meaning that the process is ergodic; however, the implementation is slightly
different:
, sign(r — (1 —pg)) if op = +1
sign(py, — 1) if o, = —1

The heatbath algorithm is not very efficient, and other methods such as the Wolff
algorithm [181] (which is a cluster flipping technique), typically yield better per-
formances with acceptable levels of accuracy [167]. However, the heatbath method
is useful in systems where determining the energy of the entire system is time-
consuming, and the acceptance rate of the new configuration is relatively low. As
mentioned previously, heatbath algorithm is commonly applied in Ising-like models
of the sociological and economical systems, including models of financial markets;
thus, it was used in the research being described herein and so appears in later
sections of this dissertation.

(4.15)

4.3 Spin models of financial markets

Thanks to their simplicity and ability to reproduce complex phenomena, use of spin
models of financial markets is now widely accepted in the economic mainstream.
A significant portion of these models are rooted in the statistical mechanics and
derive from the solutions commonly used in physics, including Ising and Percolation
models. Combination of the local interactions, similar to Ising Hamiltonian, with
finance specific components, appears to generate signals with properties resembling
those observed in financial time series. The dynamics of such systems, coupled
with their ability to perform simulation in, to some extent, controllable conditions,
facilitates analysis of the processes governing the financial markets and the behaviour
of its participants. Worth noting is that physics-inspired spin models are applied not
only to simulate financial markets and related trading activity [182, 183], but also to
reproduce different aspects of economy such as bankruptcies [184], systematic risk
in the inter-bank lending system [185] or impact of the crisis on the global financial
sector [186].

In this section, two fundamental agent-based frameworks inspired by Ising Model
are examined in the context of reproducing stylized facts, including the hierarchical
organization of the generated signals. Extra emphasis is placed on the strengths
and weaknesses of these models as well as their practical applications.
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4.3.1 Modified Random Field Ising Model

A common variation of the Ising Model successfully applied in financial market
modeling is the modified Random Field Ising Model (RFIM) [187] proposed by
Tori in 1999 [70]. The model is based on a two-dimensional lattice with periodic
boundaries, where each site represents an agent that communicates with others
according to the von Neumann neighbourhood. An individual’s investment decision
is represented by state S,, and it is driven by the influence of the entities in the
vicinity as well as two types of idiosyncratic noise:

K(t) = Z J@'Sj(lf) + AUZ‘ + BE(t), (416)

<,j>

where < ¢, 7 > is the sum over the nearest neighbours, J;; is the influence coefficients
matrix that describes the strength of the interactions between agents, and S; is
a spin of the j-th neighbour. The spin can assume one of three possible values
S, € {—1,0,1} that correspond to the three positions of an agent in the market: sell,
on-hold and buy, respectively. The first component of the equation above, except
for the extra possible state, is similar to the original Ising Model and represents
the local interaction between the investors. The modification is in the consecutive
components of the Hamiltonian. The v; is a random signal, usually drawn from a
uniform distribution and it is scaled by arbitrary constant A. This term corresponds
to the individual investment preferences of a given agent and can empower the total
signal Y;(t) or lessen it. In turn, this may lead an investor to assume a neutral or
opposite state relative to the neighbours. Moreover, the behaviour of the individuals
can be disrupted by the global signal €(¢), which in the basic version of the model,
assume non-zero value drawn from a uniform distribution with probability p. &~ 0.01
or else it is equal to 0. The global signal can be interpreted as financial news
appearing on the market, which is accessible by all agents in the system. In general,
the individual signal Y;(¢) is composed of the local interaction component (i.e., the
sum over the spins of the neighbours), which lead to the collective behaviour of agents
and random signals (i.e., v;(t) and €(¢)) which can amplify or weaken synchronization
of the investment decisions among individuals.

As mentioned above, the model generalizes the traditional Ising Model intro-
ducing additional state S; = 0, which represents inactive agents. In this context,
the Iori model can be seen as the Potts Model with ¢ = 3 [188]. Bringing the ad-
ditional state in requires modification of the rules that determine the position of a
particular agent in the market. In the considered framework, the following threshold
mechanism was proposed:

~1 () < ~6(0)
S =40 if —&(1) < Yilt) < &(1) (4.17)
1Y) > &),

where threshold &; can be interpreted as trade friction related to transaction costs
or imperfect capacity to access information and is calculated based on its previous
value and the price of the modeled asset: &(t+ 1) = P](f;;)l)gi(t). Consequently,
in periods of increased volatility, agents tend to stay inactive, which, in turn slows
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down the dynamics of the entire system. On the other hand, in case of low volatility,
the threshold drifts towards 0, and the system behaves more like the ferromagnetic
material in the classic Ising Model.

Another innovation introduced by Iori relates to the interaction-strength matrix
Jij. In the field of statistical physics, it is commonly known that the dynamics of
the system significantly depends on the J;; values. In many models, the interactions
are symmetrical; thus, the J;; reduces to the scalar, or it is randomly chosen from
a Gaussian distribution, as in the spin-glass model [189]. In the basic version of
the Iori’s model J;; = 1 with probability p and J;; = 0 with probability 1 — p.
Such a rule applied to the interaction strength matrix suggest associations to the
Percolation model. Indeed, as shown in the following paragraphs and in study
[70], system behaviour depends to a great extent on the assumed value of p, and
the richest dynamic is observed for probability rates around percolation threshold
p = p., which, for a two-dimensional lattice, is approximately p. =~ 0.6.

Moreover, the model introduces another few modifications directly related to the
organization of the financial markets. Each agent has a certain amount of money
and stock shares to trade with the market maker, which is also limited in terms
of resources. The ability to reproduce stylized facts, especially non-linear correla-
tions, is not significantly affected by these rules. However, if there are insufficient
resources in the system, an agent’s activity declines substantially, and, in extreme
cases, trading entirely disappears. More important in terms of the system dynamic
is the information-propagation procedure. Each time step consists of multiple con-
sultation rounds, in which the agents exchange information and assume one of the
three possible states. These consultation rounds are executed according to the heat-
bath algorithm and are repeated until the state of the system converges, meaning
that in the two consecutive consultation rounds, no agent changes its state. When
the individual investment preferences of agents stabilize, the orders are placed and
then simultaneously cleared by the market maker. Finally, the price for the next
time step is calculated as follows:

D(t)\*"

P(t+1)=P(t) (Z(t)) ) (4.18)
D(t) and Z(t) in the equation above are demand and supply measured as a normal-
ized numbers of agents having states S; = +1 and 5; = —1, respectively, whereas
describes the asymmetric reaction of the market maker to imbalanced orders placed
in periods of high, versus low trading activity. This is calculated according to the
formula: a, = aw, where a is discretionary constant and N is the number of
individuals in the system. After a full cycle has been performed as described above,
agents update their thresholds &; and next cycle begins. Assuming that the system
is initialized with resources (money and stocks) and default individual thresholds
&:(0), the simulation algorithm consists of the following steps:

1. Each agent receives individual and global signals (v;(t) and €(t), respectively)

2. Entities update their states according to equation (4.17). This step is repeated
until the system converges.

3. Orders are cleared by the market maker.
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4. Based on the supply and demand, the price in the next time step is calculated.

5. Agents update their threshold values &;(t + 1), and the entire procedure is
repeated.

In the model under discussion, the ability to generate time series resembling those
observed in the financial markets strongly depends on the probability of interaction
between agents p and the individual investment preferences represented by factor
Av;. If the entities willingly communicate with agents in the vicinity (i.e., p value
equal to or greater than percolation threshold p. ~ 0.6), then collectivity increases,
and thus, large fluctuations can form. On the other hand, when entities mostly
rely on their individual investment preferences (i.e., the value of A is considerable),
then the generated signal has a white-noise character. Based on these observations
and the results presented in study |70], the further analysis of the model focuses on
the variant that seems to be an optimal balance between agents’ collectivity and
independence (p = 0.6, A =0.2 and B = 0).

As shown in Figure 4.6 (panel (a)) for selected parameters, the model reproduces
the typical price trajectory observed on the financial markets and is able to form
bubbles and crashes manifested by large fluctuations (e.g., in period ¢ € [6* 10%, 8 x
10%]). Oscillations observed on the rates of return level obey the power law with slope
p =~ 3 (Figure 4.6, panel (e)), a value commonly seen for real financial time series
(see Figure 2.2). However, the system generates large fluctuations only for relatively
low prices (less than 1). The reason for such behaviour is the threshold mechanism
design and price impact function (equation 4.18). The thresholds ;(¢) are based on
the price ratio in subsequent time steps, which is not symmetrical. For example,
assuming that & (1) = 1 and that price decreases by 20 percent in five consecutive
time steps, &(5) = 0.3277, whereas in the opposite scenario, when price increases
by 20 percent in five consecutive time steps &;(5) = 2.4883. This asymmetry has a
direct impact on the transaction volume. Low thresholds encourage agents to invest;
thus, the total transaction volume in the system increases, and the «a, exponent in
the price impact function reaches its maximum (o, = a), which in turn translates
into large price fluctuations.

Such a construction of the threshold mechanism and price impact function led to
an important problem, namely, model instability. Since the volatility clustering and
other properties typical of the financial market appear in the time series generated by
the model characterised by interaction probability close to the percolation threshold,
quite commonly, at some point of the simulation, the system becomes dominated
by one group of agents, usually those having sell positions on the market. If a large
cluster of individuals having state S; = —1 forms, then, accordingly to equation
(4.18) the asset price drops. As a result, as shown in Figure 4.5, extremely low
values of the price translates into large fluctuations observed on the rates of return
level. Even though the system is usually able to recover from a non-stable regime
(see price trajectory for t € [4.5 % 105, 5 % 107]), such simulations must be rejected,
significantly limiting the practical applications of the model.

Despite the limitations mentioned above, the returns generated by the stable re-
alizations of the model, similarly to the ones observed in real financial markets, are
not linearly correlated (see Figure 4.6, panel (b)), but show strong temporal depen-
dence on the level of volatility signals (see Figure 4.6, panel (d)). The autocorrelation
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Figure 4.5: Example of unstable price signal (upper panel) and corresponding returns (bottom
panel) generated by Iori’s model. The system collapses in the period t € [3.7 x 107, 4.5 x 10].

function of the rates of return decreases immediately and does not exceed statisti-
cal significance thresholds (denoted by the red dotted lines), while absolute rates of
return remain at relatively high levels for more than 10* time steps. Long-range non-
linear correlations of the returns are also visible on the fluctuations function level
(see Figure 4.6, inset of panel (f)) which obeys the power law for scales s € [20, 10].
Scaling of the fluctuations function translates into relatively wide singularity spectra
(see Figure 4.6, panel (f), black dots) with width Aa ~ 0.21 and strong left-hand
side asymmetry A, =~ 0.97. In order to verify that the multifractality of the series
generated by the model is not a spurious effect, singularity spectra of shuffled data
(blue squares) and signal modified according to Fourier surrogate procedure (orange
diamonds) were determined. In both cases, the f(«a) is considerably narrower than
for the original series, and hovers around A« = 0.1 for shuffled data and Aa ~ 0.03
for Fourier surrogate.

In general, the Tori model is able to reproduce stylized facts, including long-range
non-linear correlations. However, the hierarchical organization of the time series
generated by the framework might not be sufficient to model dynamics of finan-
cial instruments characterized by a wide singularity spectrum, for which Aa > 0.3.
Moreover, model implementation, especially the sequential character of the consul-
tation round, significantly impacts the computational effort and time required to
generate sufficiently long time series that, combined with the instability issues de-
scribed above, inhibit the use of the model in practice. Nevertheless, the relevance
of this framework in the context of the analysis of multiscale correlations is indis-
putable, and the model itself constitutes a good foundation for further study of the
subject.
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Figure 4.6: Statistical properties of the example of signal generated by the Iori’s model based on
the square lattice L x L = 100 x 100 and the following parameters: p =0.6,J =0.2,4A =0.2,B =
0,a = 1.0. Panel (a): price trajectory, panel (b): autocorrelation function of returns, panel (c):
rates of return, panel (d): autocorrelation function of volatility, panel (e): cumulative distribu-
tion function of absolute returns, panel (f): singularity spectrum and corresponding fluctuations
function (inset).

4.3.2 Fundamentalists and chartists in financial market mod-
eling

Another group of spin models of financial markets that have had a profound influence
on the further research in this area, are those that introduced division of the market
participants into groups. In this section, two fundamental models, that incorporate
such a division are examined. Next, one of these, namely Bornholdt’s model [71] is
investigated in the context of reproducing features observed in financial data.

The innovation of the first framework discussed here, the Lux-Marchesi model
[190], relates to the division of the agents into two groups: fundamentalist, who
follow the premise of the efficient market hypothesis, and chartists (also called noise
traders), who can be associated with the technical traders that do not trust in
the fundamental value of an asset. In practice, a fundamentalist trades the assets
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in the belief that price follows imposed fundamental value, whereas chartists’ in-
vestment decisions are driven by a so-called investment mood, which assumes two
values: optimistic and pessimistic. Noise traders switch between possible moods
with a probability defined as an exponential function. Moreover, agents are allowed
to change their strategy, that is, they can change from being chartists to become
fundamentalists and vice versa. Such a transition is driven by difference in profits
between these groups as well as a transition probability factor. Naturally, agents
prefer to belong to the group, having better performance. As a result, the number of
individuals in these groups determines the difference between demand and supply,
which in, turn causes price adjustments that affect an agent’s choice of strategy.
Such a feedback loop leads to permanent fluctuations in the number of agents in a
particular group and works as a self-stabilizing mechanism, that does not allow all
individuals to use the same strategy.

Interestingly, as shown in [191, 192|, price fluctuations generated by the Lux-
Marchesi model reveal non-trivial hierarchical organization and reproduce the non-
linear correlations existing in financial time series. Moreover, the size of the fluc-
tuations generated by the system is directly linked to the number of noise traders,
and the periods of increased volatility interlace with times of lower agents activity.
Theoretical analysis showed that the critical value that determines the dynamics
of the system exists, and the system has the richest dynamics, when a number of
noise traders drifts close to the critical value [190]. As in the Iori’s model, large
fluctuations generated by the Lux-Marchesi framework, result from continuous skir-
mishing of two different forces, where one support collective behaviour (chartist
traders) and the other, that depending on the system’s state, can amplify or weaken
synchronization among agents (fundamentalists).

The Lux-Marchesi model well reflects the dynamics of financial markets and is
able to reproduce a great deal of the stylized facts; however, from a practical point
of view, it has one major drawback - complexity. Analysis of the model, which
contains more than ten free, adjustable parameters, is inconvenient. This, among
other factors, led Bornholdt to propose another, similar but simpler framework |71].

Bornholdt’s model is based on the two-dimensional lattice, where each node is
occupied by an agent that communicates with others according to von Neumann
neighbourhood, and, similarly to the Lux-Marchesi model, individuals belong to
one of two groups: fundamentalist or chartists (noise traders). The agent (spin) can
assume one of two possible values, +1 and -1, which reflects buy and sell sentiments,
respectively, and is determined by the following formula:

+1 with p = 1/(1 + exp(—28hs(t)))

, (4.19)
—1 with 1 —p,

Si(t+1) = {

where 7 is an index of the individual and its state calculation is based on a Boltzmann-
like distribution, h;(t) is an individual signal received by the agent and [ is an inverse
temperature. In each iteration, performed with heatbath dynamics, the agents re-
ceive signal:

hi(t) = Y J3S; — acCi(t) M(1), (4.20)

<i,7>
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where the first component is the local Ising Hamiltonian with nearest neighbours
interactions. In the basic version, interaction strength matrix J;; reduces to a scalar
and typically J;; = J = 1. The second term is related to global coupling and consists
of the magnetization M (t) = + Zjvzl S;(t) scaled by a discretionary constant o, > 0,
where N donates the number of the spins in the system. Agent’s strategies are
represented by coefficient C;(t), which assumes one of two values +1 and -1. C;(t) =
1 corresponds to anti-ferromagnetic global coupling and reflects fundamentalists who
desire to join global minority in order to invest in possible future gains [71], whereas
C;(t) = 1 corresponds to ferromagnetic global coupling characteristic of the chartist
traders, who tend to follow the trend on the market. If all agents in the system
follow the same strategy, in other words, have the same value of C;(t) coefficient,
the system dynamic is not very intriguing as C;(t) = 1 lead to full oneness of the
agents, even for temperatures lower than critical, while for C;(t) = —1, in every
single iteration of the heatbath algorithm, each spin is flipped to the opposite value.
The time evolution of the system becomes much more complex once agents follow
different strategies and are allowed to change them. The simplest possible scenario
proposed by Bornholdt is that agents in the majority group may often tend to join
the minority and vice versa. In the context of financial markets, this corresponds
to the situation in which the majority opt to trade against the market for future
prospective gains or to escape a future crash, while traders in the minority group are
not satisfied with present returns and desire to follow the global trend. Formally,
assuming that the change in the strategy can be performed instantaneously, without
costs, the rules of the transition can be formulated as follows: C;(t) = S;(¢), and
then the signal received by each agent has the form:

hi(t) =) TS — aeSi(t)|M(t)]. (4.21)

<1,5>

As in the models studied previously, the signal h;(t) that drives agents investment
decisions is composed of two different components, representing possibly conflicting
forces. The local interaction component leads to the collective behaviour of the
agents, while the second term (global coupling) can encourage individuals to join
the minority /majority and, as a result, amplify or weaken the signal h;(t).

Model dynamic is characterized by metastable phases, where periods of relative
stability of the system interlace with intermittent phases of rapid rearrangements.
Figure 4.7 shows snapshots of the system configuration extracted from an example
simulation performed with the following parameters: T = 1/ = 0.625, J = 1,
a. = 30, and lattice size L = 120.

The fluctuations of magnetization generated by the model have characteristics
similar to those observed in financial time series, especially when the temperature is
relatively low. Assuming that rate of return is equal to the difference of magnetiza-
tion in consecutive time steps r(t) = M (t) — M (t — 1), periods of increased activity
of the agents translates into increased volatility. As shown in Figure 4.8 (panel
(e)), the distribution of the fluctuations, to some extent, obeys the power law, and
has two different regimes. In the first regime, which includes returns r(t) € [1,7],
slope i1 &~ 2, while, the tails of the distribution are thinner - y ~ 5. Importantly,
the generated signal is not linearly correlated. The autocorrelation function of the
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Figure 4.7: Snapshots of system configuration at temperature T' = 0.625 (8 = 1.6). Each square
represents an agent, and the color indicates agent’s state: green - S;(t) = 1 red Si(t) = —1.

First and third snapshots were taken during rearrangement periods, when the magnetization of
the system fluctuates significantly. The second and fourth panel show configuration of the system
in the metastable phase.

returns (see Figure 4.8, panel (b)) disappears after a few time steps and does not
exceed statistically significant thresholds. Weak negative linear dependence is ob-
served for small lags 7 € [1, 3], meaning that positive and negative returns are likely
to interlace, a behaviour also observed in financial time series, especially when high-
frequency data is considered (see Figure 2.3). Moreover, the fluctuation clustering
present in the signal reveals itself in the long-range correlations of the absolute re-
turns (Figure 4.8, panel (d)). In this case, self-dependencies last for more than
103 time steps, which is similar to that observed in the daily returns of common
indices and stock shares (see Figure 2.4). Non-linear correlations of the produced
returns are also manifested by the relatively wide singularity spectrum (panel (f))
which for the considered signal has width A« & 0.24, reveals left-hand side asym-
metry A, ~ 0.37, while the Hurst exponent indicates weak negative autocorrelation
H =~ 0.45. In order to confirm that the multifractality of the generated returns is
not a spurious effect, the singularity spectra of shuffled data and Fourier surrogate
were calculated. In both cases, the spectra obtained were significantly narrower and
even converged to the point for Fourier surrogate (Aa ~ 0.04 and A« =~ 0.01 for
shuffled data and Fourier surrogate respectively).

The model proposed by Bornholdt is capable of producing signals that, to some
degree resemble features observed in real financial time series. The major drawback
of this framework is the inability to generate fluctuations characterized by extra
rich hierarchical organization (A« > 0.3), which substantially limits the spectrum
of possible practical applications. Also, worth noting is that, in this model agent
state is reduced to only sell and buy (-1 and +1, respectively), and it does consider
that investor might be out of the market. That in turn can influence the dynamic
of the system, and potentially affects correlations in the generated signals.

Analysis of the popular Ising-inspired spin models of financial markets shows that
frameworks of this type, despite their simplicity, are able, to some degree reproduce
complex phenomena appearing in financial markets. Even though the models dis-
cussed above differ from each other, the common element can be extracted. The
signal which drives the investment decision of the agent consists of two types of
components where one supports collective behaviour (local) and the other can stand
in opposition or amplify the herding (global). Such a composition of two, to some
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Figure 4.8: Statistical and multifractal properties of signal generated by the Bornholdt’s model
with the following parameters: T = 1/ = 0.5, J;; = J = 1, a. = 30, and lattice size L x L =
120 x 120. Panel (a): magnetization; panel (b): autocorrelation function of returns (red dotted
line denotes the noise regime); panel (c): rates of return; panel (d): volatility autocorrelation
function (red dotted line denotes noise level); panel (e): absolute returns cumulative distribution;
panel (f) singularity spectrum of the returns (black dots) and shuffled signal (blue squares), and
series modified according to Fourier surrogate method (orange diamonds). The inset plot contains
fluctuations function of the generated signal, with black dotted lines denoting range of scaling.

degree, antagonistic forces leads to significant fluctuations of the entire system that,
in their nature are similar to these observed during the phase transitions. More
precisely, the system undergoes multiple phase transitions from ordered to disar-
ranged state and vice versa. Based on these observations and known limitations of
the presented models, in the next chapter, the generalized multi-asset, three-state
model of the financial market is proposed.
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Chapter 5

Multi-asset three-state model of
financial market

The increasing popularity of ABMs inspired by physical phenomena, such as sponta-
neous magnetization in ferromagnetic materials, has led to development of multiple
models, that are able to reproduce stylized facts observed in financial time series. As
shown in previous sections and in study [193], not all of these solutions are able to
reproduce the extremely rich hierarchical organization of returns signals. Moreover,
some of the frameworks (e.g., lori’s model) have significant stability issues that limit
their usefulness in practical applications.

Given these gaps, in this chapter, a new multi-asset three-state model of fi-
nancial market is proposed. Design of this framework focuses on the ability to pro-
duce time series characterised by multiscale autocorrelations and cross-correlations.
The following paragraphs describe the model and present statistical and multifractal
properties of an example of the signal produced by the framework.

5.1 Motivation

In agent-based models, the ability to generate fluctuations characterized by a rich
hierarchical structure could be linked with system criticality. As known from physics,
power law characteristics and other free-scale features are intensified in a near-
critical state of a system [194]. This has profound consequences on the practical
applications of such models. Since the systems in the near-critical state are usually
unstable, these models are not able to repeatedly generate signals characterized by
similar statistical properties. This, in turn, affects the ability to study dynamics
of these models. For example, the framework proposed by lori, which, as shown
in the previous chapter, is able to produce fluctuations characterized by non-linear,
long-range correlations manifested by relatively wide singularity spectrum (Aa =
0.21), however, these properties develop for interaction probabilities close to the
percolation threshold, a not stable regime of the model. Simulations performed for
the sub-critical value of the interaction probability quite often collapse, leading in
turn to the dramatic decrease in modeled asset price and huge fluctuations (see
Figure 4.5). Instability of the model combined with sequential character of the
consultation round significantly reduce its usefulness in practical applications.
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Nonetheless, multiple models are able to reproduce complex phenomena in a
more repeatable manner, even for sub-critical values of the parameters. Many of
them, similarly to the Lux-Marchesi model [190], are quite complicated due to the
number of free parameters they contain. In turn, these models are more difficult
to analyse and explicit identification of the source of the long-range, non-linear
correlations in generated time series is tough. The framework proposed by Bornholdt
constitutes a compromise between model complexity and the ability to produce
multifractal signals. As was already shown in previous chapter (see Figure 4.8) and
other studies [195, 196], Bornholdt model properly reproduces the most important
stylized facts. However, like the Tori model, it is not able to generate time series
characterized by extra rich hierarchical organization, manifested by wide singularity
spectrum (Aa > 0.3). Moreover, it does not consider some facts concerning financial
market mechanisms, that are crucial from the perspective of the system dynamics
and multifractality of the generated signals.

First, the model is based on the assumption that there are only two possible
states of an agent, namely buy and sell. It ignores that investors might be out of
the market, meaning that they do not actively participating in trading at a given
point in time. Multiple reasons account for such behaviour of market participants,
but the primary factor is the risk aversion. Well established is that many investors,
especially those with a conservative, defensive approach to trading, avoid risk to the
greatest extent possible. During a crisis, such investors move their funds to less risky
instruments such as bonds or term deposits [197] or simply cash their assets out.
On the other hand, a substantial number of market participants are professional,
short-term speculators who prefer a volatile market since, higher risk typically goes
hand in hand with the potential for higher profits.

Furthermore, similar to most of the spin models of financial markets, Bornholdt
framework is limited to single-asset modeling and does not consider inter-asset de-
pendencies. Investors usually trade multiple assets at the same time in an attempt
to build an optimal, diversified portfolios, that fit their risk preferences. Hence,
dependencies between assets have a significant impact on investors’ investment de-
cisions [51]. As an example, traders with high exposure to the commodity market
avoid buying shares of companies from the mining industry. Such interdependencies
occur not only between different asset classes (e.g., currency and shares, commodity
and shares) but are also present within the same group of financial instruments. A
typical example are correlations between assets belonging to the same sector, which,
as shown in Chapter Three, can have linear and non-linear nature.

5.2 Model description

Given the gaps present in Bornholdt’s model, the practical inconveniences inherent
in use of the Iori’s solution, and the complexity of other framework such as the
Lux-Marchesi, new, generalized multi-asset three-state model of financial market is
proposed. In the model agents are located on the square lattice with periodical
boundaries and von Neumann neighbourhood. The agent can trade multiple assets
at the same time, and on each of them (denoted by m) assume one of the three

states, represented by the spin Sg(cm) € {—1,0,1}, respectively. From the topological
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perspective, the entire system can be perceived as a set of subsystems (lattices)
linked together, where each subsystem reflects a single asset (see Figure 5.1). Spins
in each subsystem are updated according to the following heatbath dynamics:

0 if — &™) < B™(t) < kM(1)

St +1) = clee (5.1)
i ")+l withp=1/ (1 + exp(—25h§m>(t)>) '
1 with 1—p,

where 5 = 1/T is the inverse temperature, hgm) (t) is the signal that agent i receives
at given point of time ¢, and m is the record number of the traded asset (subsystem).
As in Tori’s model, the individual assumes on-hold state Si(m) (t) = 0 if the received
signal does not exceed threshold (™ (¢). The threshold itself is calculated as follows:

(5.2)

where k. is an arbitrary constant, V™ (¢ — 1) = Nim) (t—1)+ Ngm)(t — 1) is the
trading volume calculated by summing number of spins in subsystem m that have
changed to S™ = +1 (N/™(t — 1)) or to S™ = —1 (N™(t — 1)), and N is the
total number of agents in the system. This definition of the trading threshold re-
flects mechanisms observed in real financial markets. In a period marked by high
volatility, when many agents change positions, the threshold increases, and some
individuals assume an on-hold state (also called out of the market state). On the
other hand, when the market is quiet and price fluctuations are small, the value
of k™ (t) decreases, and agents more willingly assume an active position. In the
proposed definition of the threshold, the market dynamic is quantified by the trans-
action volume. In general, any other variable that captures the activity of traders
can be used (e.g., rates of return). This procedure of determining the trading thresh-
old is, similar to that proposed by Sieczka and Holyst [198|, where the threshold
value is based on the absolute magnetization of the system in the previous time step
K(t) ~ |M(t — 1)|. The primary difference between the approach proposed in [198|
and the method introduced here is that former assumes investors to be less likely to
trade extremely cheap/expensive stocks, whereas the procedure introduced here is
based on the assumption that some investors are afraid of a market volatility, rather
than the high or low pricing of an asset. Also worth noting is that, by distinguishing
between positive and negative volume (i.e., agents that change state to positive or
to negative, respectively), formula (5.2) can be modified to introduce asymmetric
thresholds that vary with regard to the negative and positive value of the signal
received by the agent and thus more granularly model agent’s risk aversion.

The central element of the model that drives agents behaviour is signal hgm),
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which individuals receive in each time step:

agent-agent cross-asset
local interaction

~

R ZZﬂmsl () ()| MO () I+ D ymM(t—=1).  (5.3)

=1 <i.j> global coupling I=1,l#m P
Vv
agent-agent inter-asset
local interaction global coupling

The primary innovation introduced here is an extension that allows simulation of
multiple linked assets. As mentioned above, the model assumes that agents can
trade K different assets at the same time. Investment decisions of agent ¢ regarding
asset m are determined by the signals hgm) calculated per financial instrument. The
first term of the formula (5.3), is a modified version of the Ising Hamiltonian, which
incorporates interaction with the neighbours on the level of a single subsystem (i.e.,
agent-agent local interaction, where < i,j > denotes nearest neighbours) and also
different subsystems (i.e., agent-agent cross-asset interaction at local scale, where
[ denotes considered subsystem). Interactions are weighted by four-dimensional
influence strength matrix ijm that assumes non-zero values only for the agents in
the vicinity of the individual under consideration.

Agent trading
three assets
(having three
spins)

Figure 5.1: Schema of model that consists of three subsystems (i.e., models three assets). The
yellow arrows indicate the agent under consideration and blue marks its neighbours’ spins. Purple
arrows indicate agent-agent local interaction between individual and its neighbours within consid-
ered subsystem. Red arrows show how agent interacts with the neighbours on the cross-asset level
(i-e., agent-agent cross-asset local interaction).

The second component is similar to the one introduced in Bornholdt’s model and
represents global coupling to the magnetization of the given subsystem (i.e., global
coupling term in equation 5.3). It reflects the different strategies adopted by agents:
fundamentalists C;(t) = +1 who, in addition to the ferromagnetic signal received
from neighbours, prefer joining the subsystem minority, and chartists C;(t) = —1
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who follow the global trend and imitate the trading actions taken by the subsystem
majority. Naturally, agents are allowed to change their strategies. Here, the simplest
possible transition rule is adopted. Agents in the minority prefer joining the majority
and vice versa, stated mathematically: C\™(t) = S™(¢).

Moreover, the agents are influenced by the magnetization of other subsystems,
which is reflected in the last component of formula (5.3). A similar term was orig-
inally proposed by Takaishi [199]| as a form of global connection between assets.
Coupling strength is controlled by matrix 7;,,, which assumes positive values for
the correlated financial instruments, negative for anti-correlated stocks, and zero for
independent assets. Such a linkage between different assets can exert considerable
influence over system dynamics. For example, given two positively correlated instru-
ments A and B, large magnetization of asset B, causes increase of the individual
signal h}(t) that agents receive when trading asset A. As a result, individuals are
more likely to buy the asset A rather than sell it, since hi'(¢) assumes higher values
(analogously for negative magnetization of subsystem B). In general, depending on
the v4p (7pa) values, magnetization trajectories of coupled assets tends to align (or
disharmonize).

Based on individual signals hgm) (t) the magnetizations in subsystems are deter-
mined as follows: M (t) = 1/N 3V Si(m) (t), where N is the number of agents in
the system. Next, the returns are calculated r™ (t) = M) (¢t) — M) (¢t — 1), and
standardized. It is worth noting that correlation properties of the signals generated
by the model are influenced by the number of simulated agents, as larger number of
entities translates into granularity of rates of return. On the other hand, excessive
number of entities in the system significantly increase computational effort required
to perform simulation. In the preliminary study of the model it was checked, that
to generate stable, complex signals and fulfill technical requirements the reasonable
size of the lattice is L = 120 (thus the system contains N = 14400 agents).

Simulation of the model where multiple assets are considered at the same time
could also lead to extra concurrency issues. It is sufficient to look at formula (5.3) to
notice that the signal hgm) (t) is determined based on the magnetization and spins at
step t. However, when the individual signal for a particular agent is being calculated,
other spins might not be updated. Combining it with a sequential procedure, where
agents are visited one by one, always in the same order, may produce artificial
regularities. In order to avoid such a behaviour of the system, spins are updated in
random order.

Moreover, the same type of issue may arise on the cross-asset level since the last
component of formula (5.3) depends on the magnetization of other subsystems. If
assets are always updated in the same order, the subsystem that is revised in the
first place is favored. As a result, instruments updated later follow the ones which
were considered earlier (depending on the values of 7;,,). Again, to avoid such an
artificial effect and fully control the global coupling between assets using ;,,, matrix,
the magnetization in the cross-asset global interaction component of equation (5.3)
is shifted in time M (¢t — 1). It is worth noting that without the time shift and by
visiting the subsystems in random order, one can obtain similar results; however, in
such a scenario, a detailed analysis of the model on the microscopic level as well as
debugging is handicapped.
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In general, model design is based on a combination of two types of interactions
on two different levels. Namely, on the single subsystem level, agents interact with
other individuals in their neighbourhoods (agent-agent local interaction term in
the equation (5.3)) and their decisions are also influenced by the magnetization
of a given subsystem, which can be interpreted as an average sentiment of agents
regarding that asset (global coupling term in the equation (5.3)). The second level
of the information propagation within the model is based on the inter-subsystem
(inter-asset) interactions. Again, two types of forces come into play here, namely:
agent-agent cross-asset local interaction, which is an extension of agent-agent local
interaction, and inter-asset global coupling, which allows agents to obtain averaged
information about positions of individuals on different assets.

Model that incorporates such a combination of interactions, can generate se-
ries characterized by non-linear autocorrelations and rich hierarchical organization
on the cross-signal level. Moreover, the proposed model distinguishes itself as a
highly reducible solution. For instance, considering a single subsystem (i.e., K = 1),
automatically three state variation of Bornholdt’s model is obtained, whereas, by
additional assumption that k. = 0, the original version is recreated. Such extensi-
ble construction facilitates verification of the influence of particular parameters on
system dynamics and the multi-scale correlations of the generated signals.

Figure 5.2 shows the characteristics of an example of signal generated by the
model, in a basic, single-asset scenario with parameters g = 2.0, J}j1 =1.0, a. = 30
and k. = 0.5. The simulation was based on a two-dimensional square lattice with
N = 14400 agents interacting according to a von Neumann neighbourhood. The
total length of the signal was 3+ 10° time steps; however first 0.5 10° was considered
as a system thermalization period and omitted. Thus, the effective length of the
analysed signal is 2.5 * 10°.

The fluctuations generated by the model reveal strong clustering (panel (c)),
while the distribution of the absolute returns, to some degree, obeys the power law
with slope p ~ 2.5 in the middle section and p = 6 for the tail (panel (e)). Impor-
tantly, clustering of generated signals is also manifested by long-range correlation of
the absolute returns, lasting 7 ~ 10* time steps (panel (d)), while the autocorrelation
of the returns, for lag 7 greater than two time steps does not exceed the statistical
significance thresholds (panel (b)). Moreover, the proposed model generates signals
characterized by rich hierarchical structure manifested by wide singularity spectrum
A« ~ 0.36 with left-hand side asymmetry A, ~ 0.37 (panel (e)). In addition, the
power law dependency of fluctuations function is observed for large range of scales
s € [50,4780] (inset of panel (e)). In order to verify that the multifractality of the
generated signals is not a spurious effect, spectra of shuffled series (blue squares) and
Fourier surrogates (orange diamonds) were determined. In both cases, f(«) function
is significantly narrower than for original signal, exhibiting widths Aa ~ 0.07 and
Aa = 0.01, respectively.

Introduction of a third possible state of the agent (Si(m) (t) = 0 - on-hold state)
clearly impacts the multifractal characteristics of the generated signal, as manifested
by a significant increase of the singularity spectrum width (i.e., from Aa ~ 0.24 for
Bornholdt’s model to Aa ~ 0.36 for proposed framework). Importantly, other
statistical properties, including absolute returns distribution and returns linear de-
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Figure 5.2: Statistical and multifractal properties of time series generated by the single-asset
variant (K = 1) of the three-state multi-asset model with the following parameters: 5 = 2.0,
Jl-lj1 =1, a. = 30, and k. = 0.5. Panel (a): magnetization; panel (b): autocorrelation function of
returns (red dotted line denotes the noise regime); panel (c): rate of returns; panel (d): volatility
autocorrelation function (red dotted line indicates the noise regime); panel (e): absolute rate of
returns cumulative distribution; panel (f): singularity spectrum of the returns (black dots) and
shuffled signal (blue squares), and series modified according to Fourier surrogate method (orange
diamonds). The inset plot contains fluctuations function of the original signal and black dotted
lines denote the scaling range.

pendencies remained almost unchanged. Moreover, the choice of k. parameter value
(here k. = 0.5, which is the model’s default value) significantly affects the features
of generated time series. The relation between the richness of produced signals and
the threshold value is discussed in details in further sections of this dissertation.
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Chapter 6

Multiscale analysis of the single-asset
model variant

As shown in the previous section, proposed model can generate time series charac-
terised by rich hierarchical organization (Aa > 0.3). In the context of this result,
two fundamental questions arise: Firstly, what is the model’s dynamics, and how it
translates into fluctuations clustering in the generated signals? Secondly, how par-
ticular parameters of the model affect the hierarchical organization of the produced
time series? This chapter addresses these two major questions. Based on an investi-
gation of the model dynamics, the elements of the framework that are responsible for
the multifractality in generated signals were identified. Moreover, in the following
subsections, each parameter of the single-asset variant of the framework is examined
in the context of its impact on stylized facts, including non-linear autocorrelations!.

6.1 Microscale dynamics of the model and fluctua-
tions clustering effect

Multifractality of time series is inextricably linked with fluctuations clustering,
meaning that signal can exhibit multiscale properties only if fluctuations of sim-
ilar sizes are grouped together. In the model, fluctuations clustering is related to
changes in the system configuration. This section comprehensively describes the
microscale dynamic of the model and shows how it translates to clustering observed
in the signals it produces.

In general, dynamics of the multi-asset three-state model can be described as
interlaced periods of meta-stability and rearrangement phases (also called turbulent
phases). The panels in section (a) of Figure 6.1, show the snapshots of system con-
figuration in the meta-stable phases (outer panels) and during the turbulent periods
(inner panels). The green, white, and red colors indicate agents having states +1, 0,
and -1, respectively. The difference on the microscopic level is clearly visible. Dur-
ing the meta-stable phase, agents form large, relatively stable clusters of individuals
with the same position in the market. Some fluctuations of the agent states exist

!Since the single-asset variant of the model is considered in this chapter K = 1, m =1 = 1 and
Yim = 0 in all equations and figures.
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only on the boundaries of the clusters, as entities located in this area typically receive
ambiguous signals from neighbours and, in turn, make investment decision in a more
random manner. Mathematically speaking, for these agents, the local interaction
term in the individual signal formula (see equation (5.3)) typically assumes value 0,
and, in turn hgm) (t) has a relatively low value. In such a scenario, the probability
function p, used for calculating a particular spin (see equation (5.1)) is closer 0.5,
and thus, spin can assume value +1 or -1 with almost equal probability. Moreover,
during a meta-stable period, agents view the market situation as nonhazardous,
and, therefore, all individuals have active positions - either sell or buy. Naturally,
such behaviour of entities results from the threshold mechanism construction and
assumed k. value (here, it was set to default value of k. = 0.5). When the number of
agents that change state in consecutive time steps is low, then transaction volume in
the system is exiguous as well. In turn, the value of the threshold x(™ (t) approaches
0. As the trading friction almost disappears, the number of agents being out of the
market also vanishes.

System dynamics in a turbulent period is dramatically different. In this case,
clusters of the agents having the same state are considerably smaller and are usu-
ally separated by an area of inactive individuals. During the rearrangement phase,
entities that are not part of a cluster, willingly change their position in the market,
causing total transaction volume to increase. In turn, according to equation 5.2,
threshold (™ (t) rise as well, and the number of individuals who are out of the mar-
ket increases. This behaviour corresponds to the situation in which investors avoid
financial risk exposure due to high market volatility and the hazards associated with
it.

The spin configurations observed during meta-stable and rearrangement periods,
to some extent, resemble the behaviour of the physical systems in different phases.
Large clusters of individuals having the same state, that are observed when the
system is relatively stable, signifies the order existing among entities. On the other
hand, during a rearrangement period, this order is, at least partially, broken. This
effect is manifested by smaller clusters of the individuals characterised by the same
state and through a substantial number of agents that assume on-hold position,
scattered among the system.

On the microscopic level, analogous dynamics can be observed in ferromagnetic
materials, for which, below the critical temperature, the order parameter has a non-
zero value (i.e., the spontaneous magnetization occurs), whereas above this tem-
perature, it drops to zero. The primary difference between ferromagnetic materials
modeled using the Ising Model, and the proposed solution is the non-deterministic
character of the phase transitions in the latter framework. In the multi-asset, three-
state model, for a given temperature the system undergoes multiple phase transi-
tions, moving from an ordered to an unordered state (and vice versa), and doing so
in unpredictable manner.

The distinction between dynamics of the system in different phases is also visible
in the fraction of agents having a particular value of the individual signal hf;m) (t).
The panels in section (b) of Figure 6.1 depict the normalized histogram of individuals
depending on h,(;m) (t). The charts presented correspond to the system configuration
snapshots discussed previously, and by colored, dashed lines are mapped to the
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certain rates of return showed in the panel below (section (c)). For the three-
state, single-asset variant of the model with two-dimensional lattice topology and
von Neumann neighbourhood, the possible individual signal that agent can receive,
depends on two factors. First one is the signal received from the entities in the
vicinity (see first term of equation (5.3)), which for, Jj7* = J = 1, can assume values
[—4,—3,...,3,4]. The second, which shifts the resultant individual signal towards
negative or positive values, is proportional to the magnetization (see the global
coupling term of equation (5.3)). These two components reveal themselves in the
location of hgm) (t) histogram’s bars; they are located relative to reference points
determined by the signal received from agents in the neighbourhood and are shifted
proportionally to the magnetization.

Naturally, the polarized histogram of the individual signal, with peaks corre-
sponding to two edge values of a possible signal coming from neighbours (hgm) +4),
manifests the large clusters of agents having the same spin observed during the
meta-stable phase. Moreover, as only entities located on the boundaries of the clus-
ters can have hl(m) values relatively close to 0, the inner bars of the histogram are
significantly lower. Such a distribution of an agent’s individual signal, combined
with the probability function p used to determine the agent’s state, results in the
low fluctuations observed on the system magnetization level. On the other hand,
during system rearrangements, the lack of large clusters of individuals having the
same state translates into a Gaussian-like shape of the hﬁ’”) histogram. In such
a situation, the probability of flipping a spin is high for a substantial number of
agents. As these individuals frequently change the state, thereby possibly causing
a significant imbalance between supply and demand and, consequently, leading to
large fluctuations of the system magnetization.

As mentioned previously, high trading activity of agents impacts the values of
x™(t), which, on the histograms are denoted by black dotted lines. Clearly visible
is that in the meta-stable phase, the thresholds drift towards 0, and none of the
individuals assume an on-hold state. In the turbulent period, when trading is in-
tensive, k(™ (t) rises and numerous agents that receive ambiguous signals stay out
of the market. In the context of the system dynamics, the threshold mechanism
has a dual nature. On the one hand, it enriches system dynamics, as the number
of possible configurations increases; on the other hand, during the rearrangement
phase, a dozen agents assume on-hold position, resulting in the cooling down of the
entire system (i.e., decrease in agent’s trading activity).

The intermittent character of system dynamics is also visible in the time evo-
lution of the individual signal distribution. Panel (d) of Figure 6.1 shows the two-
dimensional, grayscale projection of hl(-m) (t) values over time, with color intensity
indicating the number of agents having a particular value of individual signal. Dur-
ing a meta-stable phase (e.g., t € [10%,3 * 10%]), strong polarization with relatively
small fluctuations of the individual signal value is observed, whereas, in a rear-
rangement period (e.g., t € [3.3 x 10%,4.6 x 10%]), the spectrum of assumed hgm) is
significantly wider.

In terms of the fluctuations generated by the model, the crucial observation
is relation between shape of the hgm) histogram and size of returns. Gaussian-

like shape of hgm) histogram corresponds to large fluctuations, while polarized one,

79



(2)

o) [
0.4 JF It It i
= |
—0.2} 1t 1t 1t -
Ohul...I-. T E1NT ..|...|.- .|J..AII“ |l|l| I'Ill-..lu. .|...|...|...|...|...|...|.. M | ST T e [ n
6 -4-202 46 -6-4-20246 -6-4-2024©6 -6-4-2202 46
h™ (2251) ™ (39611) ™ (69766) K™ (78120)
(C)QO_IEIIIIIIII|IIII|IIII§|IIII |||||||||||||E||||||||||

E.
c : i N, ¢ 2 v L NP P, WA AP ¥ SO UL L W U AT LTI Wkl VIR N
sE st B it i S :
+ E 1 1 1 I 1 1 1 1 | 1 1 1 1 I 1 1 1 1 :l 1 1 1 1 | 1 1 1 1 | 1 1 1 1 l 1 1 1 E | 1 1 1 1 I 1 1 1 1 +
0 1 2 3 4 5 6 7 8 9 10
t x10*

Figure 6.1: Dynamics of the single-asset variant of the model with parameters g = 2.0, ijm =

a. = 30, and k. = 2.0. Panels in section (a) present snapshots of system configuration in meta-
stable phase (outer panels) and rearrangement periods (inner panels). Color of square indicates the
state of an agent: red - Si(m) = —1, green - Si(m) = +1 and white - Si(m) = 0. Panels in section (b)
display corresponding normalized histogram of agents having particular values of individual signal
hgm) captured at certain time steps. Thresholds (™) (t) are denoted by black dotted lines. Panel
in section (c) displays returns signal. Panel in section (d) presents two dimensional, grayscale
projection of the time evolution of the individual signal. The intensity of the color indicates the

number of agents having particular value of hgm)(t). Vertical colored lines in sections (c) and (d)

corresponds to hgm)(t) histograms and configuration snapshots presented in sections (a) and (b)
(assigned based on the colour).

dominated by two values, underlies small changes in system magnetization. As the
simulation continues, these phases, manifested by a different type of individual signal
distributions, interlace with each other in a nondeterministic manner, however, the
meta-stable phase prevails most of the time.

Worth noting here is that the transition between different types of individual sig-
nal histograms is a smooth process without precipitous changes. Figure 6.2 presents
the schematic transition that occurs when the system transforms from a meta-stable
to a turbulent phase. For clarity, the process is shown in four stages, each presented
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in a separate panel. Moreover, the two-state variant of the model x. = 0 is consid-
ered here; however, similar dynamic can be observed in the three-state variant of the
model. The orange color denotes the fraction of the agents for whom the individual
signal will change in the next time step, and the arrows indicate the values of hl(m)
that these entities will assume.
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Figure 6.2: Schema of the individual signal histogram time evolution during transition from a
meta-stable phase to a turbulent period. The orange color indicates the fraction of agents for

whom individual signal will change in the next time step, whereas the arrows indicate the future

)

values of hgm assumed by these entities.

During the initial phase of the break down in agent clusterization, the number of
individuals having hl(m) ~ +4 significantly reduces in favour of units characterised by
individual signal hl(m) ~ 4+2. On the microscopic level, this corresponds to the blur
of boundaries between clusters of agents having the same state (see configuration
snapshot taken at t = 69766 in Figure 6.1). As the process continues, more and more
individuals receive an ambiguous signal from their neighbours, a trend is manifested
by an increased number of entities having hgm) ~ 0. Finally, when clusters of agents
having the same state almost disappear, the hgm) histogram resemble a bell-like
curve centered at h\™ = 0.

Moreover, the schema display another effect. As the magnetization of the sys-
tem fluctuates, the values of hl(m) assumed by the agents fluctuate as well. This
phenomenon is related to global coupling (see the global coupling term in equation
(5.3)). When magnetization increases, the pairs of possible hgm) values, that corre-
sponds to the signal coming from neighbours (see the local agent-agent interaction
term in the equation (5.3)) are more dispersed, as denoted on the last panel of Fig-
ure 6.2. These fluctuations does not significantly affect the clustering of generated
signals, however it has impact on their hierarchical organization.

In order to show that, the following experiment was conducted. For each time
step of the simulation performed with parameters®: 8 = 1.6, a. = 30, Jf]m =
1, and k. = 0 the signals hz(m) were extracted and then reduced (or increased,
depending on the spin sign) by factor a..S;|M(t)|. In turn set of possible values of
hgm) reduced to values equaling signal that agents can receive from their neighbours,
namely hl(m) € [—4,-2,0,2,4]. Then, based on such artificially modified individual
signals, according to equation (5.1) the states of the entities at each time step were
determined, and finally, the magnetization was calculated. The procedure applied in
this experiment substantially reduces the impact of the global coupling on individual

2For simplicity, in the experiment, the two-state version of the model was considered
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Figure 6.3: Comparison of returns (panels (a) and (b)), individual signal histograms time evolu-
tion (panels (c¢) and (d)), and fluctuation functions (panels (e) and (g)) generated by the original
model (panels on the left-hand side) and by modified procedure explained above (panels on the
right-hand side). The black dotted lines on panels (e) and (g) show the range of scaling. In order to
highlight differences in fluctuation functions between the originally generated signal and produced
in the experiment, the envelope of the F (g, s) of the originally generated signal was projected to
F,.(q, s) plot of the returns produced by modified version of the model (blue dashed lines in panel
(g)). Moreover, panel (f) presents corresponding singularity spectra.

Figure 6.3 presents a comparison of the original simulation results and those of
simulation based on the modified individual signals. As shown in panels (a) and (b),
the rates of return produced by these two variants of the model are almost identical
and only a few discrepancies are noticeable (see the fluctuations for ¢ ~ 2.5 * 10%).
Naturally, striking differences are visible in the hgm) (t) histograms time evolution,
which, in case of the experimental simulation (panel (d)), is concentrated around
hl(m) = 44. Moreover, the fluctuations function calculated for the signal generated
by the experimental simulation is similar to the fluctuations function of the original
returns. However, closer inspection shows that the slope of F,(q,s) of originally
produced time series is slightly higher (see the envelope of F,(q,s) of the origi-
nal signal projected onto F(q, s) obtained for the modified simulation - panel (g),
shown with blue and orange dashed lines, respectively). Additionally, for the series
generated by the experimental simulation, increased curvature of the fluctuations
function is observed, meaning that scaling is poorer. These discrepancies are clearly
visible on the singularity spectra level. As shown in panel (f), f(«) function of
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the original signal has width Aa =~ 0.17 accompanied by the left-hand side asym-
metry A, =~ 0.65, whereas the singularity spectrum of the series generated in the
experiment is narrower Aa ~ 0.12. This narrowing is the result of the shrinkage
observed in the right-hand side of f(«) function, while the left part remains almost
the same. Moreover, the long-range linear correlations measured by Hurst exponent
are also differ - H ~ 0.39 and H = 0.47 for the originally generated signal and
series produced in the experiment, respectively. It means that global coupling is the
element of the model, which does not significantly affect fluctuation clustering in the
generated signals, however it influences the non-linear correlations of the generated
time series, especially in the range of small fluctuations. Moreover, agents potential
to have different strategies and ability to change them prevent the development of
the linear dependencies.

6.2 Influence of system temperature on produced
time series features

As shown in the previous section, the fluctuations clustering of the signals gener-
ated by the model, is rooted in the agents’ collective behaviour, manifested by the
presence of the meta-stable clusters of entities having the same position in the mar-
ket, that are to some extent, broken up during the rearrangement phases, causing
large fluctuations. The collective behaviour of the individuals in the model can be
controlled in several ways. The natural choice is the § parameter, which changes
the shape of probability distribution p used in the system dynamics equation (see
equation (5.1)). This chapter contains a comprehensive exploration of the influ-
ence of this parameter on the stylized facts and multiscale characteristics of signals
generated by the model.

Figure 6.4 shows a few examples of the probability functions p depending on
individual signal hgm) for different values of parameter 5. As is clearly visible,
increase in [ result in steeper probability distribution function in the vicinity of
hgm) = 0, which for large values of this parameter, assumes shapes similar to the
signum function. The influence of probability function p on the collective behaviour
of agents and, by extension, on system dynamics is essential. For instance, consider
an agent that has state Si(m) = —1 and is surrounded by individuals having the
same position on the market and, for sake of simplicity, assume that M (™ (t) =
0. In such a scenario, the agent receives individual signal hl(m) = —4. Now, the
probabilities that this entity will trade against its neighbours (will assume positive
state SZ-(m) = +1) have values 0.018, 6.14 x 1075, 2.06 * 107 for 8 = 0.5, 3 = 1.5,
and = 2.5, respectively. With N = 14400 agents in the system, roughly 259, 4.82,
and 3% 10° entities in each time step will trade against individuals in their vicinity,
respectively 3. Clearly visible is that statistically, number of agents trading against
their neighbours dramatically decreases as the § parameter assumes higher values.
Naturally, these numbers are higher when agents with the individual signal closer
to 0 are considered, however this estimations well illustrates the influence of the

3Trade against individuals means that agent that receive negative signal from neighbours as-
sumes positive state, and vice versa.
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parameter on the collectivity of the entities and thus on the stability of the agent’s
clusters.
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Figure 6.4: Probability function p in dependence of the value of agent’s individual signal hz(-m)
calculated for different values of 5 € [0.5,1,1.5,2,2.5, 3].

The dependence between agents collectivity and the S parameter has its reference
in physical systems. In thermodynamics [ is proportional to the inverse temperature
B~ % A higher temperature (assuming that other parameters are kept constant)
translates into a higher energy, which can introduce extra oscillations of the system
observed on the microscopic level. In contrast, low temperatures (high values of /3)
correspond to system stabilization characterized by small fluctuations.

The impact of probability distribution function p on system dynamics is clearly
visible in the temporal evolution of the individual signal’s histograms as well. Figure
6.5 shows a two-dimensional, grayscale projection of hgm) (t), for different values of
S. For relatively small values of 8 (e.g., 5 = 0.8 - panel (a)), which corresponds to
the gradual rise (decline) of the probability function in the vicinity of h;(t) ~ 0, the
individual signal histogram flattens and has Gaussian-like shape during, virtually,
the entire simulation. Such a system is almost constantly in the rearrangement phase
and clusters of the individuals having the same state cannot develop. More collective
behaviour of the agents is observed as [ increases. For § = 1.6 (panel (b)) and
f = 2.0 (panel (c)) the meta-stable phases manifested by the polarized distribution
of the individual signal, with h§’"> ~ 44 dominant, is noticeable. Moreover, as [
increases, the rearrangement periods occurs with increasing rarity, and the system
is in a meta-stable phase most of the time, e.g., 5 = 2.3 (panel (d)).

Analysis of the time evolution of individual signal histograms reveals the second
element of system dynamics, that probability distribution function significantly af-
fects, namely, the frequency of rearrangement periods. As mentioned above, for high
values of 3, turbulent phases occur sporadically, while, for low values, they dom-
inate during almost the entire simulation. The reason for such system behaviour
originates from the number of agents trading in opposition to the received individual
signal. To be initialized, rearrangement phase requires a sufficient number of indi-
viduals that behave contrary to the entities in their vicinity. In the next time steps,
these agents reduce the individual signal of their neighbours and trigger a peculiar
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Figure 6.5: Two-dimensional, grayscale projection of time evolution of the agent’s individual

signal histogram hgm) (t) for an example model simulations with parameters: le]m =1, o, = 30,
ke = 0.5, and different values of 8 € [0.8,1.6,2.0,2.3].

avalanche that leads to the breakdown of clusters. The number of agents required
to initialize a transition between phases is hard to estimate as it depends not only
on the total number of entities in the system but also on the shape of the clusters
of agents having the same state, which is highly non-deterministic.

Naturally, differences observed on the individual signal distribution level reveal
themselves in the character of the time series generated by the model. Figure 6.6
presents an example of system magnetization signals (panels on the left-hand side)
and corresponding rates of return (panels on the right-hand side) obtained for /3 val-
ues given above. For small values of inverse temperature, the system’s magnetization
frequently fluctuates; however, these changes are relatively small. In result, rates of
return, typically span over r™(t) ~ 6 and 7™ (t) ~ —6 and, to some degree, are
similar to white noise. Along with increases in 3, the collectivity of the agents be-
haviour increases, and thus meta-stable periods, characterized by low magnetization
M (t) = 0 are extended. Additionally, the rearrangement phases are less likely
to occur but are, however, more volatile. On the returns level, it brings about the
interlaced periods of small and large oscillations with multiple spikes that resemble
fluctuations observed in financial time series. Moreover, for § = 2.3, periods of
the full stabilization of magnetization, manifested by r(™(t) = 0, are visible (e.g.,
t = 136742). In such a scenario, in two consecutive time steps, the magnetization
does not change. This is possible only when exactly the same number of agents
change their position in the market in opposite directions (from —1 to +1 and vice
versa) or when the system configuration remains the same over consecutive time
steps. In fact, for a large value of the [ parameter, the former scenario is observed -
the system temporarily freezes, and all agents preserve the positions they assumed
in the previous time step.

Physically speaking, the system reaches its temporal equilibrium, a phenomenon
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Figure 6.6: Magnetization (panels of the left-hand side) and corresponding rates of return (panels
on the right-hand side) generated by the model with parameters: Jf]m =J=1, a.=30, k. =0.5,
and different values of § € [0.8,1.6,2.0,2.3].

also observed in many natural systems. Since the model has its roots in the solution
proposed by Ising [176], the dependence between system dynamics and temperature,
to some degree, resembles the spontaneous magnetization observed in ferromagnetic
materials. For high temperatures (low values of 3), the system’s energy is high, and
thus spins are not aligned with each other. On the other hand, for low temperatures
(immense values of ), the partial order, manifested by large clusters of the agents
having the same state, emerges.

In the financial context, 1/8 can be viewed as the market temperature. When
it is high (e.g., 8 = 0.8), agents behave more independently and change position
quite frequently. In financial markets, it corresponds to a situation when investor
sentiment is uncertain. On the other hand, when the market temperature is low
(e.g., B = 2.0), the agents behave more collectively and are less likely to change the
position. and this reflects the stable situation in the economy, during which market
participants make long-term investment decisions. Also worth noting is that for a
system characterized by low temperature, the rearrangement periods are volatile,
which resemble the crises and crashes observed in financial markets.

The influence of market temperature on the characteristics of generated time
series is also visible on the absolute returns distribution level. As shown in Fig-
ure 6.7 (panel (a)), an increasing value of the § parameter results in heavier tails
of the absolute returns distributions, which, for low temperatures, to some degree,
obey the power law, with slope p ~ 2.5 in the middle section and ¢ ~ 5 — 6 in
the tail. For all analysed values of 3, generated signals are characterized by weak,
negative linear correlations for small lags 7 and a lack of linear dependencies over
larger time horizons. The existence of the negative correlations observed for small
lags 7 < 4 is inextricably linked to the interlaced character of the model - the
positive and negative returns tend to interlace as the firmly trend manifested by
consecutive positive (negative) returns hardly develops. Moreover, since the /5 pa-
rameter’s value enhanced the volatility clustering observed in the generated signals,
differences in the absolute returns autocorrelation function are also noticeable (panel
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(c)). The strongest volatility correlations are observed for 5 = 2.0, which naturally
has its source in the strong collectivity of the agents; however, the range of these
dependencies for the analysed set of s does not change significantly and lasts for
approximately 3 * 10° time steps.

It is vitally important that the probability function and the associated [ pa-
rameter affect the non-linear correlations of the generated time series. Panel (e)
of Figure 6.7 shows the mean fluctuations functions calculated for ten consecutive
simulations of the model for a given value of 5 (other parameters were set as follows:
Jf]m =1, a. = 30, k. = 0.5). The primary observation here is the distortion in the
hierarchical organization of the signals, manifested by deformation of Fj(q,s) that
appears in the negative range of ¢ (see equation 3.21) for low temperatures of the
market. For 8 = 2.0 this effect is present only in the small range of scales s € [20, 30]
and in general does not prevent calculation of the singularity spectra. However, for
£ = 2.3, the distortion spans a significant range of scales s. Thus these signals, in the
range of the small fluctuations (negative ¢), cannot be considered to be multifractal.
Mathematically speaking, the effect is caused by the temporal equilibrium phases
that occur for low temperatures of the market and translate into periods without
fluctuations (low variance). In turn, the value of the F,(q,s) decreases dramati-
cally for negative g exponents. Moreover for 5 = 2.0 the range of scales where the
fluctuation function obey the power law is slightly wider and approximately spans
s € [20,3 % 10%] for 8 = 2.0 in contrast to s € [10,2 * 103] for other values of /3.
In practice, this means that the non-linear correlation generated by the model with
B = 2.0 lasts longer than for other values considered.

Naturally, features of the fluctuation functions reveal themself on the multifractal
spectra level. Panel (d) of Figure 6.7 shows the mean singularity spectra calculated
for F,(q, s) presented on the right-hand side of the figure. As expected, the higher
collectivity among agents, which increases along with increasing values of (3, resulted
in a wider f(«) function. However for § = 2.3, it is impossible to determine the
multifractal spectra in the range of negative ¢, thus only positive ¢qs were considered
resulting in a significantly lower f(a) width (Aa = 0.1140.02). For other considered
values of 3, the width A« hovers from Aa = 0.16+0.01 for S = 0.8 to Aa = 0.40+
0.05 for § = 2.0. Worth noting here is that, all obtained spectra are characterised
by left-hand side asymmetry, that vary from A, = 0.71 £ 0.08 for § = 1.6 to
Ay, = 0.29 £0.11 for f = 2.0. The properties of the multifractal spectra obtained
are also presented in Table 6.1.

Table 6.1: Mean singularity spectra properties of the signals generated by the single-asset variant
of the model with following parameters: le]m =1, a. = 30, k. = 0.5, and different values of
B €[0.8,1.6,2.0,2.3].

| B=0.8 B8=1.6 B=2.0 B=2.3
Aa [ 0.16+0.01 0.21+0.02 0.40=+0.05 0.11=+0.02

Ay | 062£0.11 0.714+£0.08 0.29£0.11 1.00+——
H | 03£0.01 042+£0.02 0.45£0.04 0.47£0.03

In order to verify that the observed multifractality of the generated signals was
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Figure 6.7: Mean statistical and multifractal properties of the series generated by the single-asset
variant of the three-state multi-asset model based on a two-dimensional lattice L x L = 120 x 120
with von Neumann neighbourhood, the following parameters: Jlljm =J=1,a.=30,k.=0.5, and
different values of 8 € [0.8,1.6,2.0,2.3]. Panel (a): distribution of the absolute returns; panel (b)
autocorrelation function of the rates of return; panel (¢): autocorrelation function of the absolute
returns (volatility); panel (d): returns singularity spectra f(a) (main plot) and result obtained
for signals modified by Fourier surrogates method (inset on the left-hand side) and shuffled data
(inset on the right-hand side); panels in section (e): mean fluctuation functions of the signals. The
red dotted lines in plots (b) and (c) denote the noise level. The black dotted lines in section (e)
denote range of scaling of the F,(q,s) functions. Presented results were calculated based on ten
independent simulations of the model with the given parameters.

not a spurious effect, the singularity spectra for randomly shuffled signals (panel (d),
right inset plot) and Fourier surrogates (panel (d), left inset plot) were determined.
In both cases, the calculated f(«) functions widths were significantly lower than
for the original signals and hovered from Aa = 0.05 to Aa = 0.11 for the shuffled
signals, while for series modified by Fourier surrogate procedure, the spectra were
pointwise.

The dependence between the richness of the hierarchical structure observed in
the time series generated by the model and the shape of probability function p is
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even more pronounced when a wide range of s is considered. Figure 6.8, shows
the width (panel (a)) and asymmetry coefficient (panel (b)) of the mean singularity
spectrum as well as value of the Hurst exponent (panel (c)) in the function of inverse
temperature 3 € [0.5,2.5].

The multifractal spectra for large temperatures (8 € [0.5,0.6]) are narrow and
almost symmetrical, indicating a lack of the non-linear correlations in the analysed
signals. This characteristic changes as the [ parameter increases. In the range
p € [0.6,1], the widths of the singularity spectrum growth up to Aa ~ 0.2 and
exhibits left-hand side asymmetry as manifested by positive values of A,. For these
values of (3, agents begin to act more collectively, and, as a result, the non-linear
temporal dependencies emerge. Interestingly, the observed asymmetry of the sin-
gularity spectrum suggests that correlations of large fluctuations are significantly
stronger than those existing in the low rates of return. Further reduction of the
temperature (5 € [1.1,1.8]) does not substantially affect the richness of the hierar-
chical organization of the generated time series (A« stabilize around 0.2); however,
an initial increase in the spectrum asymmetry, changes into a downtrend for g > 1.4.
In fact, along with the increase in the § parameter, non-linear correlations emerge
on the level of small fluctuations; thus, the spectrum becomes more symmetrical.
This effect is dramatically amplified in the vicinity of 8 = 2.0, where spectrum width
soars and reaches its maximum A« = 0.40 £ 0.05, accompanied by a relatively low
value of the asymmetry coefficient A, = 0.29 + 0.11. Successive increase of the in-
verted temperature value (8 > 2.05) result in periods of temporal equilibrium of the
system, which cause the distortion observed on the fluctuations functions level, that
prevents calculation of the multifractal spectra in negative range of ¢ parameter. In
turn, the f(a) function demonstrate full, left-hand side asymmetry while its width
declines significantly.

Singularity spectrum width describes the richness of the non-linear correlations
present in the signal, thus measuring the non-linear order among agents. The dra-
matical narrowing of the f(«) function that occurs when a particular value of the
[ is exceeded, has the appearance of a phase transition. Moreover, the high value
of A« in the vicinity of a particular value of S resembles characteristics of physical
systems that are in near-critical state, where free-scale properties are amplified.

The analogy between the change in the system dynamics observed for g > 2.05
and a phase transition raises the question of why this phenomenon occurs in the
vicinity of the particular value of 8. Of course, this is the resultant of all parameters
present in the model; however, it depends primarily on the probability that the agent
will act in opposition to the signal it has received. Two parameters, § and local
interaction strength Jil]’-”, control this effect, as an increase in the value of either of
these parameters amplifies collectivity among agents. Also significant is the number
of individuals in the system. As mentioned above, the temporal equilibrium phases
occur when no agents change position in the market over two or more consecutive
time steps; thus, a higher number of individuals in the system increases likelihood
that, even for low temperatures (or high interaction strength) at least one agent
changes position and thereby prevents the freeze of the system configuration. In
general, the strongest non-linear dependencies are observed in the series generated
by the system, in which agent collectivity and independence are balanced.

89



(a) :III|IIIIIIIlIII|III|III|III|III|III|III|III|III|III|III|III|III|III|III|III|III:

~

=

=

e

OO uUt= O
IIII|IIII_|_ T I T

: -
|

I E
3 1 E
0.5E 3
©) 73 B H S
o 05E kgt
0~25:|—IIIIIIIIIlIlIIIIlIllIIlllllllllllIIIlIlIII|lIIIIIIIIIlIlIIIIlIIlIIlIIIlllllll—l:

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
g

Figure 6.8: Mean multifractal properties of the time series generated by the single-asset variant
of the model with following parameters ijm =J =1, a. = 30, k. = 0.5, and different values
of § € [0.5,2.5]. Panel (a): spectrum width Ac«; panel (b): spectrum asymmetry A,; panel
(c): Hurst exponent H. The calculations are based on 10 independent realizations of the model
for each considered value of 8. The red area indicates the range of 8 values, where distortion
of the fluctuations function F,(q, s) prevents calculation of the singularity spectra for negative ¢
exponents.

6.3 Impact of agent-agent local interaction strength
on model characteristics

Another element of the model that determines the level of collective behaviour
among the individuals in the system, thus significantly impacts multiscale properties
of generated signals, is agent-agent local interaction strength. This section focuses
on studying influence of the ijm value on the dynamics of single-asset variant of the
model and signals it generates.

In general, Jlljm can assume discretionary values, for example, drawn from Gaus-
sian distribution?; however, in most of finance-related applications, interaction be-
tween agents is symmetrical and thus le]m can be reduced to a scalar usually equal-
ing 1 (in a single-asset scenario [ = m = 1 then, Jll]m = J =1). From the hz(m)
histogram perspective, the interaction strength parameter determines the possible
values of the signal that the agent receives from its neighbours (see the first term
of equation (5.3)). For instance, in the single-asset model variant with symmetrical
interaction between agents, when ijm = 1, the neighbour influence factor of the
individual signal can assume integer values from interval [—4, 4], while for Jf]m =0.5
this range is reduced by 2 and includes fractional values [-2,—1.5,—1,...,1,1.5,2].

Naturally, this effect is clearly visible in the time evolution of the individual signal
histograms. As shown in Figure 6.9, in the case of low value of interaction strength

“4In such a scenario, the spin-glass model is obtained [189)].
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(Ji7* = 0.5, panel (a)), the hgm) histogram is more greatly centered around 0, than for
higher values of ijm Since an agent receives lower individual signal, the probability
that an entity will act against its neighbours increases. As a result, individuals
behave in a less collective manner, manifested by the Gaussian-like shape of hz(m)
histogram, meaning that the system is almost constantly in the rearrangement phase.
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Figure 6.9: Two-dimensional, grayscale projection of the agent’s individual signal histogram
hz(.m) (t) time evolution in the single-asset variant of the model with the parameters 8 = 1.6, a, = 30,

ke = 0.5 and different values of the agent-agent local interaction strength Jf;" € [0.5,0.75,1.25,1.5].

Along with the increase in agent-agent local interaction strength, periods of meta-
stability, manifested by the polarized distribution of hz(-m), begin to dominate, and the
entire dynamics of the system, to some degree, resemble that observed for high values
of # parameter. It should be emphasized that § and interaction strength ijm are a
pair of parameters wherein either of the pair can, to some extent, cancel the influence
of the other. When g = 1.6 and Jf]’” parameter assumes low value, e.g., Jf]’” = 0.5 as
shown in the figure above the system constantly undergoes rearrangement. However,
if 8 sufficiently increases, and as result the probability function p in the vicinity of
hgm) = 0 becomes steeper, system dynamics will resemble the one observed for pair
8 = 1.6 and ij’”" = 1. For instance, if o, = 0, the parameters pair ijm = 0.5 and
£ = 3.2 correspond to ijm = 1, f = 1.6 with respect to their effect on system
dynamics.

Changes in collectivity of the agent behaviour affect the characteristics of the sig-
nals generated by the model. Figure 6.10 shows a time series of magnetization (pan-
els on the left-hand side) and corresponding rates of return (panels on the right-hand
side) for simulations performed with different values of lejm € [0.5,0.75,1,1.25,1.5].
For small values of interaction strength (lejm = 0.5), system total magnetization
fluctuates constantly; however, these oscillations are relatively small and exhibit an
almost constant amplitude. As a result, the corresponding rates of return have a
noise-like character. As the ijm increases, system magnetization tends to fluctuate
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Figure 6.10: The magnetization (panels of the left-hand side) and corresponding rates of re-
turn (panels on the right-hand side) for example realizations of the model with parameters

B = 16, a. = 30, k. = 0.5, and different values of agent-agent local interaction strength
Ji€10.5,0.75,1,1.25,1.5].

close to M) (t) = 0. These periods of stability in magnetization of the system
intersperse with spans marked by the large fluctuations and significant spikes that
occur in rearrangement periods. This effect is also visible in the rate of return sig-
nals. For high values of Jl-l]’-”, volatility clustering is amplified, and sharp changes of
the returns are observed.

Differences in system dynamics and in the character of the generated signals for
different agent-agent local interaction strength values are also visible in the statistical
properties of the time series produced by the model. As shown in Figure 6.11
(panel (a)), due to lack of large fluctuations, the distribution of absolute returns for
small lejm is not characterized by fat-tails. However, along with the increased Jil;”,
the probability of large rates of return rise, and for high values of the interaction
strength, the volatility cumulative distributions, to some degree (within range of
returns |[r(™ ()| € [2,18]) obey the power law with p ~ 3 for JI" = 1.25 and
Jir =1.5.

Furthermore, weakened collective behaviour of agents results in a relatively short
range of the absolute returns autocorrelations (panel (c)), that for signals generated
by the model with ijm = 0.5 last for 103 time steps. In comparison, non-linear
dependencies for higher values of agent-agent interaction strengths maintain a sig-
nificant level for approximately 6 * 10% time steps. On the other hand, the influence
level between agents does not affect the generated signal’s linear dependencies. As
shown in panel (b) of Figure 6.11, for all considered values of Jiljm, the autocorre-
lation function of returns, initially assumes slightly negative values (lags 7 € [2,4])
but converges to 0 after a few time steps (7 > 5) and does not exceed statistical
significance thresholds (marked as red dotted lines) thereafter.

The range of the non-linear correlations is also visible on the fluctuations function
level (Figure 6.11, panels in section (e)). For weak agent-agent interaction (J/" =
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0.5), the fluctuations function obeys the power law in the very limited range of
scales (s € [20,108]). As the influence of communication among agents increases,
the maximum of s for which scaling is observed rises as well (up to s = 720 and
s = 8100, for Jji* = 0.75 and J/J* = 1.25, respectively).

Like the system under low temperature (i.e., large value of ), for the high levels
of the agent-agent local interaction, the temporary equilibrium periods manifested
by lack of fluctuations appear. This phenomenon is clearly visible in the distortion of
F.(q, s) observed for negative ¢ exponents (bottom panels of the section (e) of Figure
6.11). Interestingly, for large values of interaction strength parameter (Jj7* = 1.5),
the deformation of the fluctuations function is noticeable, not only in the negative
range of ¢ exponents but also in the positive one.

Features of the generated signals discussed above reveal themselves on the mul-
tifractal spectra level as well. As shown in panel (d) of Figure 6.11 and in Table 6.2,
f (@) functions of the signals produced by the model with weak interaction between
agents (J/7* = 0.5 and JJJ* = 0.75) are relatively narrow (Aa = 0.20£0.01 and Ao =
0.19 £ 0.02), and are characterized by left-hand side asymmetry (A, = 0.46 &+ 0.04
and A, = 0.77 £0.07). If a high value of J/* is assumed (e.g., J//* = 1.25), the
singularity spectrum’s right side develops, and as a result the asymmetry factor de-
creases (A, = 0.34 £0.12), and the total width rises to Aar = 0.26 £ 0.05. It should
be noted that signals generated by model with ijm = 1.5 are not fractals, and so
the singularity spectrum for this case was not determined.

Again, in order to verify that measured multifractality of the time series gener-
ated by the model with different values of the agent-agent local interaction strength
parameter is not a spurious effect, singularity spectra for randomly shuffled signals
and Fourier surrogates were determined (left and right inset plots of panel (d), Fig-
ure 6.11, respectively). In both cases, width of the f(«) functions are significantly
smaller than for the original signals and hover between Aa =~ 0.02 and Aa =~ 0.07
for shuffled signals, and between Aa ~ 0.01 and A« =~ 0.10 for the signals modified
according to Fourier surrogate procedure.

Table 6.2: Mean singularity spectrum f(«) properties of the time series generated by ten in-
dependent realizations of the single-asset variant of the model with the following parameters:
B = 16, a. = 30, k. = 0.5, and different values of agent-agent local interaction strength
Jim € 10.5,0.75,1,1.25,1.5].

| Jbr =05 Jim =075 JEr=1.0 Jim=1.25
Aa [020£0.01 0.19£0.02 0.21+£0.02 0.26+0.05

Ay | 0446 £0.04 0.77£0.07 0.71£0.08 0.34+0.12
H | 040+£0.01 041+£0.02 0.42+0.02 0.454+0.03

Findings presented above show that collective behaviour of the agents besides
being controlled by the temperature of the system (8 parameter), can also be am-
plified (weaken) by the agent-agent local interaction strength ijm Worth noting is
that interaction strength Jll]m and parameter [ constitute a pair of complementary
quantities, whose manipulation, leads to similar effects with respect to multifractal
properties of the time series generated by the model.
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Figure 6.11: Mean statistical and multifractal properties of the time series generated by ten
independent realizations of a single-asset model with the following parameters: 8 = 1.6, a. = 30,
ke = 0.5, and different values of agent-agent local interaction strength Jlljm € [0.5,0.75,1,1.25,1.5].
Panel (a): distributions of the absolute returns; panel (b): autocorrelation functions of returns;
panel (c): autocorrelation function of the absolute returns (volatility); panel (d): singularity
spectra f(«) (main plot) and result obtained for signals modified according to Fourier surrogates
method and randomly shuffled series (inset plots on the right- and left-hand side, respectively);
panels in section (e): fluctuation functions of the signals. The red dotted lines in plots (b) and
(c) denote the noise levels. The black dotted lines in section (e) indicate the range of scaling of
F.(q,s) functions.

6.4 Agents strategies and their consequences

In addition to investor collective behaviour, the model incorporates individuals’
possible pursuit of differing strategies. As discussed in the model description (section
5.2), entities can belong to one of two groups of traders: fundamentalists who seek
to join the global minority, and chartists who follow market trends. Mathematically
speaking, these strategies are reflected in the parameter C’l-(m) (t) (here, C’i(m) (t) =
Si(m) (t)), which in the individual signal formula (see equation (5.3)) is multiplied by
the absolute value of magnetization M (™ (t), and scaled by a.. parameter, here called
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global coupling. This section contains a comprehensive investigation of the impact
of global coupling parameter on the system dynamics and hierarchical organization
of time series generated by the single-asset variant of the model.

In general, depending on an agent’s strategy and the system magnetization value,
the signal that a particular individual receives from nei%ghbours can be amplified or
weaken. For instance, assuming that agent ¢ has state Sim) = —1, and is surrounded
by entities having the same position in the market, then the resultant individual
signal is increased by the factor a.|M (™ (t)|, consequently, decreasing the neighbors’
influence and making the agent more likely to trade against individuals in its vicinity.
However, the situation changes when agent ¢ has state SZ-(m) = +1 (assuming that
all neighbours have negative position in the market). In such a scenario, the hgm)
value decreases, and, as a result, the probability that particular spin flips, decreases
as well. In fact, for agents being inside the cluster of individuals having the same
state, as long as a,. does not assume an enormous value, the effect described above
does not significantly affect their investment decisions; however, the input coming
from strategy-related term significantly influences the entities on the boundaries of
the clusters (i.e., those who receive ambiguous signals from neighbours).
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Figure 6.12: Two-dimensional, grayscale projection of an individual agent’s signal histogram
hET'L) time evolution for simulations of the model with parameters § = 1.6, J}/* =1, k. = 0.5, and
different values of global coupling parameter «. € [10, 30, 60, 90].

The global coupling parameter’s influence is clearly visible in individual signal
histograms’ time evolution (Figure 6.12). For small values of parameter «. the
agent-agent local interaction term clearly dominates individual signal hgm). As a re-
sult, agents more willingly follow their neighbours and forms large, relatively stable
clusters of the entities characterized by the same state. On the histogram level, it is
manifested by the polarized distribution of hl(m), which, during the rearrangement
period, assume a more Gaussian-like shape (see panel (a), Figure 6.12). The dom-
inance of the meta-stable configuration of the system is weakening as with global

95



coupling parameter increases. For high values of a. (a. = 60 and a, = 90 - panels
(c) and (d) of Figure 6.12) the system is constantly in the rearrangement phase,
which evinces itself in the blurred hgm) (t) histograms. In such a scenario, the agents
cannot form clusters, which are crucial in the context of the multifractal properties
of the generated time series. In fact, individuals tend to constantly change state in
a non-collective manner.

Naturally, changes in global coupling parameter value are manifested in the sys-
tem’s magnetization and corresponding rates of return (Figure 6.13, panels on the
left- and right-hand side, respectively). For the small value of . the magnetization of
the system changes relatively slowly, and has the trajectory, to some degree, similar
to the price movements observed in financial market. As the global coupling parame-
ter increases, fluctuations of magnetization increases and become more concentrated
around M (t) = 0. On the rates of return level, the growth of a. translates into
a greater number of spikes and less pronounced, shorter volatility clusters. This
effect is a result of the agent’s pursuit of different strategies. When global coupling
parameter assumes enormous value the signal that agents receive from neighbours
is leveled by the term related to the agent’s strategy. In consequence, the individ-
ual signal hl(m) fluctuates closely to 0, and thus agents are trading in more random
manner.
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Figure 6.13: The magnetization (panels of the left-hand side) and corresponding rate of returns
(panels on the right-hand side) generated by the single-asset variant of the model with parameters

B =1.6, ijm =1, k. = 0.5 and different values of the global coupling parameter «.. € [10, 30, 60, 90].

Although qualitative differences in the return’s character are noticeable, the
mean cumulative distribution functions do not vary substantially (Figure 6.14, panel
(a)). For all analysed values of the global coupling parameter, the tails of the
distributions of absolute returns are significantly heavier than those observed for
Gaussian distribution; however, they do not obey the power law in its full range.
The only significant difference is visible for the a, = 10 cumulative distribution
where, for [r™(t)| € [2,6] a peculiar distortion occurs. For the small value of the
global coupling parameter, agents’ investment decisions are primarily driven by the
signals received from neighbours. As a result, the transition between the meta-stable
and rearrangement phase is more volatile than is observed for series generated by
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a model characterised by stronger global coupling. On the magnetization level,
this effect reveals itself in the sharp changes and smaller number of medium sized
fluctuations, which in turn, cause deformation of the returns distribution.
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Figure 6.14: Mean statistical and multifractal properties of the time series generated by ten
independent realizations of the single-asset version of the model with the following parameters
B =16, Jll]m =1, k. = 0.5, and different values of the global coupling a. € [10, 30,60, 90]. Panel
(a): distribution of absolute returns; panel (b): autocorrelation functions of returns; panel (c):
autocorrelation functions of absolute returns (volatility); panel (d): singularity spectra f(a) of
the generated signals (main plot) and result obtained for signals modified according to Fourier
surrogates method and shuffled data (inset plots on the left- and right-hand side, respectively);
panels in section (e): fluctuation functions of the generated signals. The red dotted lines in plots
(b) and (c) denote the noise levels. The black dotted lines in section (e) indicate range of scaling
of the F,(q, s) functions.

Less pronounced clusters of the volatility observed for high values of global cou-
pling parameter a, € [60, 90] are also visible on the level of the absolute returns au-
tocorrelation functions, which maintain statistically significant level for lag 7 ~ 103,
while for o, = 30 and . = 10, they last for around 4 * 10% time steps (Figure 6.14,
panel (c)). Interestingly, the larger value of the global coupling parameter translates
into stronger linear correlations of generated signals for 7 = 1. As shown in panel
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(b) of Figure 6.14, the autocorrelation functions of the returns, for all analysed val-
ues of o, converges to 0 after a few time steps. However, for lag 7 = 1 significant
differences are noticeable. As mentioned previously, for large values of a., agents
tend to frequently change position to opposite, which, in turn reveal itself in the
stronger negative autocorrelation observed for 7 = 1.

Value of the global coupling parameter, affects the range of non-linear corre-
lations of returns produced by the model, that translates into different spans of
scales for which fluctuation functions obey the power law (Figure 6.14, panel (e)).
For low values of a, parameter, the F,(q, s) function displays scale-free properties
for s € [20,10%], while, along with the increase in global coupling parameter the
span of scales for which the multifractal spectrum can be determined decreases to
s € [20,10?]. This effect is related to the length of fluctuation clusters. When pa-
rameter a, is low, agent behaviour is more collective, and the rearrangement /meta-
stable phases are longer, causing fluctuations clusters to span over a longer period
of time. On the other hand, when an individual’s decisions are mostly driven by
the acSi(m) |M™)(t)| component, the agents behaviour is less collective, and thus the
rearrangement /meta-stable periods are shorter and tend to change more frequently.
In turn, volatility clusters are less pronounced, affecting the F,(q, s) function range
of scaling.

The significant differences are also visible in the singularity spectra shapes (Fig-
ure 6.14, panel (d) and Table 6.3). While, for all analysed values of parameter a.,
function f(«) is characterized by strong left-hand side asymmetry (varying from
A, = 0.71 £ 0.08 for a. = 30 up to A, = 0.85 £ 0.21 for a. = 10), the width
of the singularity spectrum gradually growths, along with the a, parameter, from
Aa = 0.17 £ 0.07 for o, = 10 to Aa = 0.31 £ 0.02 for a,. = 90. However, must be
noted that the results obtained for large values of the global coupling parameter are
based on the relatively short range of scales, and hence the free-scale properties of
these signals are not convincing.

Furthermore, in order to verify that the observed multifractality is not a spurious
effect, the singularity spectra for a randomly shuffled signals and Fourier surrogates
were determined (inset plots on right- and left-hand in panel (d) of Figure 6.14,
respectively). In both cases, the calculated f(«) functions’ widths are significantly
lower than for the original signals and vary from Aa = 0.06 to Aa = 0.10 for
shuffled signal, and from Aa = 0.04 to Aa = 0.06 for signals modified according to
the Fourier surrogate procedure.

Table 6.3: Mean singularity spectrum properties of the time series generated by ten independent
realizations of the single-asset variant of the model with the following parameters § = 1.6, JZlJm =1,
ke = 0.5, and different values of the global coupling «. € [10, 30, 60, 90].

| 0c=10 a,=30 «a.=60 a.=90
Aa [ 0.17£0.07 022+£0.03 0.26+0.03 0.31£0.02

A, | 0.85£0.21 0.71£0.08 0.82+£0.14 0.73+£0.11
H | 046+0.04 044+£0.02 0.36£0.01 0.34£0.01

The results presented above confirm that an agent’s ability to follow different
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strategies, depending on the value of the a. parameter, can significantly affect system
dynamics. In general, when the individuals become more independent from their
neighbours, the linear anti-persistence of the generated signals appears, and the
volatility clusters become less pronounced. From the financial market perspective,
it reflects the situation where investors are uncertain about their investment strategy
and, therefore, continuously change the position in the market.

6.5 Transaction volume and threshold mechanism -
how the on-hold state translates into a richer
hierarchical organization of generated signals

The model’s design incorporates another noticeable feature similar to the mechanism
observed in real financial markets, namely, a positive correlation between volatility
and transaction volume. In the model, this positive correlation is used to calculate
threshold ™ (t), which determines whether agents actively participate in trading
or not. This section focuses on the mentioned correlation and different types of
threshold mechanisms, and quantitatively describes how it impacts the multiscale
characteristics of the time series generated by the framework.

In the model, a transaction occurs when an agent changes its state to SZ»(m) = +1,

which is considered as a ’buy’ operation, or to Si(m) = —1, which is considered as
a 'sell” action. Using such definitions of the transactions, the transaction volume V'
in particular time step t is equals the sum of buy Nim) (t) and sell Ngm)(t) opera-

tions (V™ (t) = Nim) (t) + N"™(t)). As the number of stocks and cash possessed
by agents, besides of gradual decline of trading activity, does not significantly af-
fect the multiscale correlations generated by the system (see Section 4.3.1), in the
proposed model agents have unlimited resources, and the market is perfectly liquid.
Practically, this means that individuals are always able to buy or sell an asset.

Figure 6.15 presents examples of the absolute returns signals and correspond-
ing transaction volumes for four sets of the models parameters: default (5 = 1.6,
a. = 30, Jf]m =1, k. = 0.5); high collectivity induced by low market temperature
(6 = 2.0, a, = 30, ijm = 1, k. = 0.5); increased local agent-agent interaction
strength scenario (5 = 1.6, a. = 30, Jf]m = 1.25, k. = 0.5); and strong global
coupling case ( = 1.6, a. = 90, ijm =1, k. = 0.5). As visual inspection reveals,
volatility of generated time series is positively correlated with the number of trans-
actions executed in system. Transaction volume peaks correspond to large returns,
whereas small ones match with the periods of low activity of entities. Increased
collectivity among individuals, caused by high value of § or strong agent-agent in-
teraction do not affect the phenomenon significantly. Decorrelation between returns
and transaction volume, however, is noticeable for signals generated by the model
with high value of the global coupling parameter. In such a scenario, agents behave
more independently; thus, the size of the peaks in transaction volume is not explic-
itly reflected in sizes of returns. A similar weakening of the dependence between
transaction volume and volatility can be also observed for high temperatures (low
S value) and low values of local agent-agent interaction strength parameter.
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Figure 6.15: Examples of volatility and volume time series generated by the model with different
sets of parameters: section (a): 8 = 1.6, a. = 30, ijm =1, k. = 0.5, section (b): S = 2.0,
a. =30, JI" =1, ke = 0.5, section (c): f = 1.6, a. = 30, JI"* = 1.25, k. = 0.5, section (d):
B =16, a.=90, JI" =1, k. = 0.5.

The effect discussed above can be easily quantified by cross-correlation function
Cyy (see equation 2.5). As panel (a) of Figure 6.16 shows, when collectivity among
agents is relatively weak (i.e., large a. value, orange line) and lags 7 > 10, function
Com) (1) vom) (1) @ssumes significantly lower values than are observed for other analysed
sets of parameters. Moreover, the cross-correlation function maintains a statistically
significant level for approximately 2.2 * 103 time steps in the large global coupling
scenario, versus 3.5 10% — 7% 103 for other cases that were considered. Such a result
suggests that the correlation between volume and volatility might have a multiscale
character. However, examination of the multifractal properties of the transaction
volume time series produced by the model (Figure 6.16, panel (c)), shows that such
a signal, in general, is not hierarchically organized. The F,(q,s) function of the
number of transactions executed in the system does not obey the power law in small
fluctuations regime (¢ < 0). For large returns (¢ > 0) and large scale s € [900, 10%],
as denoted by dotted trapeze in panel (c), Fy(q,s) function has the appearance
of power law dependence, however multifractal spectra calculated for this range of
scales and scaling parameters does not assume inverted parabola shape typical for
multifractal structures. As the autocorrelation of transaction volume signal does
not have multifractal character, the dependency between the number of transaction
and volatility is not multiscale as well.

The lack of hierarchical organization of the transaction volume time series in
small scales regime is related to the model’s intermittent on-off character. As the
system transits between meta-stable and rearrangement phases, clusters of large
returns develops, to some degree, in a gradual manner. Changes in transaction
volume are less smooth, and in turn, the range of the observed values is poorer.
For such a signal the hierarchical organization cannot develop. This effect is also
visible on the cumulative distribution function level. As shown in panel (d) of Figure
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Figure 6.16: Cross-correlation between absolute returns and transaction volume signal generated
by the model with different sets of parameter values (panel (a)). Panels (b) and (c) present
the fluctuations function F (g, s) of returns and transaction volume, respectively. Panel (d) dis-
play cumulative distribution functions of returns (black dots) and transaction volume signal (blue
squares). The results presented on the plots (b)-(d) were generated by the model with parameters
8 = 2.0, a, = 30, Jll;” = 1, and k. = 0.5. The black dotted lines in panel (b) denote range
of scaling. The black dotted trapeze in panel (c) presents the range of scales and ¢ having an
appearance of power law relationship.

6.16, the cumulative distribution function of the standardized transaction volume is
curved in range ||V ™ (¢)|| € [0.2,0.9], indicating that the corresponding values of
the standardized number of transactions are underrepresented.

Nevertheless, the correlation between the agent activity and volatility is success-
fully utilized in another element of the model, namely, in the threshold mechanism.
The overall transaction volume is used for determining the threshold £(™, based on
which individuals decide to execute a transaction (i.e., assume state SZ»(m) (t) = £1)
or stay out of the market (i.e., assume on-hold state Si(m) (t) =0).

The construction of the threshold mechanism and its connection with traders’
activity significantly affects system dynamics. When individuals frequently change
their positions in the market, the x(™ value increases and prevents some of the
entities from assuming active position. On the other hand, during quiet periods, the
threshold decreases (entirely disappear, in extreme cases), and, as a result, all agents
in the system assume a non-zero state. Practically speaking, the threshold mecha-
nism does not affect the system in the meta-stable phase but, during rearrangement
periods, it makes agents more likely to assume state Si(m) (t) = 0 and thus, enriches
system dynamics overall. From the financial market perspective, the threshold can
be interpreted as a risk-aversion factor. When investor activity increases, the market
becomes volatile and so some of the traders assume a defensive strategy and prefer
staying out of the market to secure their capital.

Naturally, increase of the k. leads to the growth of the number of individuals who
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are inactive during the rearrangement periods. As shown in Figure 6.17, the size of
the peak in the fraction of agents that assume SZ»(m) (t) = 0 span from Ném) /N = 0.15
for k. = 0.1 up to Ném)/N ~ 0.9 for k. = 2. Worth mentioning is that a further
increase in k. value of leads to system collapse. When the threshold is sufficiently
large, during the turbulent phase, all of individuals in the system become inactive,
and, as magnetization drops to 0, the system never recovers.
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Figure 6.17: Absolute returns and normalized fraction of agents having state SZ-(m) = ( generated
by the model with parameters § = 1.6, Jf}” =1, a. = 30, and different values of the threshold
scaling coefficient k. € [0.5,1,1.5,2].

While the influence of scaling factor x. on the number of agents out of the
market is clearly visible, its impact on the returns generated by the system is not
so obvious. Regardless of k.’s value, volatility clustering and large single peaks in
the returns time series occurs. Despite the lack of qualitative differences between
returns generated by the model with a different value of k., some discrepancies are
visible on the cumulative distribution level. As shown in panel (a) of Figure 6.18
higher values of k. lead to slightly thinner absolute return distribution tails. During
the rearrangement period when the system is volatile, the threshold mechanism
works as a safety switch and reduces the number of agents actively participating
in trading and, as a result, large fluctuations |r(™(¢)| > 10 are less likely to occur.
Quantitatively speaking, in the example series presented in Figure 6.17, the number
of absolute returns that fulfill the inequality |r™(¢)| > 10 decreases from 141 for
k.= 0.5 to 52 for k. = 2 (for k. = 1 136 data points fulfill the inequality, whereas,
for k. = 1.5 this number equals 104).

The slight discrepancies in the distribution of signals produced by the model
with different values of the threshold scaling factor do not translate into the au-
tocorrelation function of returns nor volatility. In the first case, regardless of the
value of rc, C,m(y)(7) converges to 0 for 7 > 3, whereas the absolute returns cor-
relation function maintain substantial level for lags 7 around [3.7 x 103, 3.8 x 10%],
again without significant differences between results obtained for different values of
Ke-
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Figure 6.18: The mean cumulative distribution function (panel (a)), autocorrelation function of
returns (panel (b)) and volatility (panel (c)) for signals generated by ten independent realizations
of the single-asset variant of the model with parameters: § = 1.6, le;n =1, a. = 30 and different
values of the threshold scaling coefficient . € [0.1,0.5,1, 1.5, 2].

The situation changes when the non-linear dependencies are considered. As
shown in panel (a) of Figure 6.19 and Table 6.4, the mean multifractal spectrum
calculated for signals generated by the model with x. = 0.5 is slightly wider than
for other considered values of ..

Few aspects of this result require further discussion. Firstly, introduction of the
additional possible agent state enriches overall system dynamics. The presence of
this new state is essential during rearrangement phases when the spatial organi-
zation of individuals is, at least partially, broken and entities are more likely to
behave in a quasi-random manner. An agent’s ability to assume on-hold position
increases the complexity of the system configuration. Moreover, threshold size is
directly linked to the previous time step’s transaction volume (see equation (5.2)),
which is correlated with volatility. As a result, the threshold mechanism introduces
another medium of correlation propagation, which translates into amplification of
non-linear dependencies of the signals generated by the model. However, it must be
emphasized that an agent’s ability to assume on-hold state, to some degree, cools
down the entire system. Individuals, instead of changing the state, avoid taking
any investment actions and, when a substantial number of the entities apply such a
defensive strategy, system dynamics becomes poorer.

Last but not least, the threshold mechanism influence on the non-linear depen-
dencies of the generated signal is amplified when system temperature is low. In
fact, this impact gradually grows as the [ parameter increases. As shown in Fig-
ure 6.20 the difference between the mean singularity spectrum width (panel (a)) of
returns produced by a two-state variant of model k. = 0 and three state version
with threshold scaling parameter x. = 0.5 is negligible when the system tempera-
ture is relatively high (up to 5~ 1.5). In such a scenario, the additional state does
not significantly enrich the system’s overall dynamics, because the rearrangement
phases are not extremely turbulent. However, for sub-critical values of the inverse
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Figure 6.19: Mean singularity spectra of the time series generated by ten independent executions
of the single-asset variant of the model with two values of the inverse temperature parameter
B = 1.6 (panel (a)) and 8 = 2.0 (panel (b)) and different values of the threshold scaling coefficient
ke € [0.1,0.5,1,1.5,2] (other parameters were set to: Jlljm =1, a. = 30). Inset plots show the

mean width A« of the presented spectra depending on x.’s value.

Table 6.4: Mean singularity spectrum f(«) features of the time series generated by ten in-
dependent realizations of the single-asset variant of the model for two values of inverse tem-
perature parameter § = 1.6 and 8 = 2.0, and different values of threshold scaling coefficient
ke € [0.1,0.5,1,1.5,2] (other parameters were set to: le;” =1, a. = 30).

B=16] Kke=01  Kke=05 Ke =1 Ke=15  Ke=20
Aa [019+0.02 022+0.02 0.15+0.03 0.18+0.02 0.18+0.02
Ay | 0.64£0.16 0.71+0.08 0.56+0.05 0.64+0.04 0.57+0.03

H | 043£0.02 044+0.02 045+0.02 0.45+0.01 0.4540.02
B=20] Ke=01  Kke=0.5 ke = 1 Ke=15  Ke=20
a [026+£005 040+0.05 0.27+0.06 0.26+0.07 0.29+0.07
a

0.23£0.10 0.29+0.11 —-0.06£0.21 0.056+£0.16 0.12+0.02
H 0.45+0.02 0.45+0.02 0.504+0.02 0.51+£0.01 0.48+£0.02

temperature § &~ 2.0, when the reconfiguration of the system is rough, the thresh-
old mechanism’s cooling-down aspect becomes important, as manifested by wider
singularity spectra.

Regarding the influence of the on-hold state inclusion on non-linear dependencies
in the signals produced by the model, another two possible ways of determining the
trading friction were considered. The first, is based on the asymmetrical thresholds,
calculated for positive and negative volume, respectively. In this case, buy and sell
actions occurring in the system were counted and normalized separately, and as a
result, two values of /iin ) were obtained. As shown in Figure 6.20 (blue squares), such
modification does not significantly affect the richness of the time series generated by
the model; however, the notable differences are observed in the singularity spectra
asymmetry. For sub-critical values of § &~ 2.0 singularity spectra obtained for the
asymmetric variant of the threshold mechanism are slightly more asymmetric than
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Figure 6.20: Mean spectrum width A« (panel (a)), asymmetry A, (panel (b)), and Hurst ex-
ponent H (panel (c)) in the dependence of 8 € [0.5,2.5], obtained for ten independent realizations
of the model with parameters Jf}" = 1, a. = 30, and different threshold mechanisms: volume
depended with scaling k. = 0.5 (black dots), volume depended, asymmetric with scaling constant
ke = 0.5 (blue squares), constant with k. = 0.5 (yellow triangles), and two-state version of the
model with k. = 0.0 (orange diamonds). For the variant of the model with constant value of
the threshold (yellow triangles), due to model instability, determination of reliable mean spectrum
properties was not possible, thus the presented results are based on single realization only. The
red zone indicates the range of 8 parameter for which scaling was observed only for positive g
exponents.

spectra observed for threshold mechanism having symmetrical ™).

Moreover, the constant threshold variant was also studied (yellow triangles).
In such a scenario, the value of k™ does not depend on transaction volume, but
maintains the same level over the entire simulation. The dynamics of the signals
generated by the model with such a variation of the threshold mechanism is char-
acterised by full left-hand side asymmetry, and non-linear correlations are weaker,
especially for sub-critical values of §. It must be emphasized that even a small
value of the constant threshold leads to the model instability. When the threshold
is constant, quite frequently all of agents in the system assume an on-hold state and
system collapses®.

The results presented above show that agent’s ability to assume on-hold position
in the market significantly affects system dynamics and non-linear correlations of
returns generated by the model, especially when agents behaviour is highly collective
(8 = 2.0). The difference in hierarchical organization between two-state and three-
state variants of the model, measured by generated time series singularity spectrum
width, reaches 0.12 for § = 2.0. In practice, incorporation of on-hold state allows
modeling of financial time series characterised by wide multifractal spectra, what is
not possible with usage of either Bornholdt’s or Iori’s frameworks.

®Due to instability, the results presented in Figure 6.20 (yellow triangles) are based on the
single, successful realization of the model.
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6.6 Multifractal rolling window analysis of time se-
ries produced by the model

Examination of the multifractal properties of the time series provides valuable in-
sights into the processes that govern the dynamics of the particular system. However,
as long as the singularity spectrum is calculated for the entire signal, at once, aver-
aged information is obtained. In this section, temporal evolution of the multifractal
properties of the time series generated by the model is studied. As in Section 3.5,
the analysis presented below is based on the rolling window technique.

The multifractal features of the financial time series, as shown in Section 3.5
and study [76] are constantly changing, and their dynamic is strongly influenced
by critical market events such as crises and bubbles bursts. Interestingly, similar
phenomena are observed in the time series generated by the model. Figure 6.21
shows the result of the rolling window analysis of signals produced by the model
characterized by relatively high independence of agents: 8 = 1.6 (panels on the left-
hand side) and increased collectivity: § = 2.0 (panels on the right-hand side). The
remaining parameters were fixed at default values a. = 30, le]m = 1.0, and k. = 0.5.
The analysis was performed for the windows containing 40000 data points with a
step equal to 160 returns. Considering the signal produced by the model as hourly
returns, such window corresponds to approximately 20 trading years, whereas a step
is equivalent to approximately one trading month.

In both analysed cases, the singularity spectra have shape of the inverted parabola
typical for the multifractal structures, and the f(a) maxima are located around
a = 0.5. Moreover, as in financial time series, signals produced by the model are
characterized by strong non-linear dependencies of large fluctuations, as manifested
by left-hand side asymmetry of multifractal spectra. The width of function f(«)
varies from Aa = 0.2 to Aa ~ 0.4 for § = 1.6 and from Aa ~ 0.16 to Aa =~ 0.48
for § = 2.0. Such a difference in the richness of the hierarchical organization ob-
served in returns generated by the model with different parameters has is based on
changes in agent’s collective behaviour, as was discussed in previous sections.

Regardless of the system temperature, the sharp changes in A« calculated for
different windows are noticeable. These fluctuations of singularity spectrum width
typically correspond to large rates of return. Such a correlation suggests that vari-
ability of the multifractal spectrum properties might be rooted in the analysed sig-
nal’s distribution changes. However, the fluctuations in f(«)’s width for randomly
shuffled data (blue squares) are significantly smaller (usually two times smaller) than
those observed in the original signal. In fact, since the number of data points in the
particular window is limited (40000 time steps), the variability of the multifractal
spectrum width arises from a combination of the fluctuating level of non-linear cor-
relations in the signal and changes in its distribution, with dominance of the former
factor.

As mentioned above, left-hand asymmetry of the singularity spectra of returns
generated by the model, can be observed in both analysed cases. However, the right
wing of the f(a) function, which reflects the level of the hierarchical organization in
the small fluctuations, is slightly more developed for the higher value of 5. This effect
is related to the system’s ability to generate small returns. In low temperatures (i.e.,
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high value of §), during a meta-stable period, a small number of agents change their
position, and thus even minuscule fluctuations emerge. On the other hand, when
the value of § is low, the number of agents actively participating in trading during
quiet periods is significantly bigger, and, as a result, small returns rarely occur in
the produced signal. Thus, the hierarchical structure in such a case is poorer.

Also worth noting is that, while the non-linear correlations of generated signals
are significantly fluctuating over time, the long-range linear dependencies measured
by the Hurst exponent (see Figure 6.21, section (e), bottom panels) maintain a level
around H = 0.42 for f§ = 1.6 and around H = 0.46 for § = 2.0. The slightly
anti-persistent signal generated by the system is a result of global coupling among
agents (see Section 6.4 for more details).

Naturally, the features of the singularity spectra discussed above change along
with the model parameters. Figure 6.22 presents the results of the rolling window
analysis of signals generated by the model with decreased and increased value of
the global coupling parameter (panels in section (a) - a. = 10, panels in section
(b) - a. = 90) as well as amplified and weakened agent-agent interaction strength
(Ji* = 0.75 and JjJ* = 1.25, panels in sections (c) and (d), respectively). As can
be observed in panels in sections (¢) and (d), when the collectivity among agents is
decreased the changes in Aa and A, are significantly smoother than those existing
for other analysed parameters sets. Moreover, due to the lack of highly pronounced
volatility clusters, spectrum width stabilise around A« = 0.3 for increased global
coupling scenario and leisurely fluctuates in range A« € [0.2,0.4] for the JZ” =0.75
case.

On the other hand, when individual signal hz(m) received by agents is dominated
by information obtained from neighbours (i.e., resulting from decreased value of
global coupling as shown in panel (a) or increased agent-agent interactionas shown
in panel (d)), sharp changes in spectra width and asymmetry can be observed.
Moreover, long periods of small fluctuations present in the signal generated by the
model with a small value of a, parameter result in the temporal monofractality of
the series manifested by narrow and symmetrical singularity spectra (e.g., windows
ending in range ¢t € [5* 103, 10%]). Furthermore, when agent investment decisions
are primarily driven by the behaviour of other individuals in agent’s vicinity (i.e.,
increased agent-agent local interaction as shown in panel (d)), the lack of hierar-
chical organization in small fluctuations emerges (marked by the red areas). As
mentioned in previous sections, this effect is caused by the temporal freeze of the
system configuration, which leads to zero returns. As a result, significant distortions
in the fluctuation functions and, by extension, in the multifractal spectra are then
observable.

Also noticeable are differences in long-range linear dependencies measured by
Hurst exponent H. For a signal generated by the model with global coupling set
to an immense value of (panel (b)), strong anti-persistence is noticeable H ~ 0.31.
This effect is related to the increased dependence of agents’ behaviour on the trading
strategy (see Section 6.4). As a result, the spins are constantly flipping (changing
from +1 to -1 and vice versa); thus, the clear trends manifested by subsequent
positive/negative returns cannot develop. For other analysed parameter sets, the
Hurst exponent fluctuates in a comparable range H € [0.32,0.51].
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Figure 6.21: Multifractal rolling window analysis of the signals generated by the model with
parameters: on the left-hand side: 5 = 1.6, Jlljm =1, a. = 30, k. = 0.5 and on the right-hand
side - f = 1.6, JI" = 1, ac = 30, k. = 0.5. Panels (a) and (b) present the three-dimensional
view on the singularity spectra, where black and blue colors corresponds to left and right sides
of the f(a), respectively. Panels (c) and (d) are projections of the multifractal spectra onto the
time-a plane, with red crosses denoting f(«) maxima displacement. Panels in section (e) and
(f) show the multifractal spectra properties (width A, asymmetry A, and Hurst exponent H,
respectively) as well as analysed signal (panels at the bottom). The t value assigned to each data
point corresponds to the end point within a window.

The multifractal rolling window analysis of the signals produced by the model
shows that it can generate signals similar to those observed in financial data, includ-
ing periods of singularity spectra’s symmetrization and increased width. Moreover,
manipulation of model parameters, allows generation of time series characterised
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Figure 6.22: Time evolution of the multifractal properties of the returns generated by the single-
asset variant of the model with decreased and increased value of the global coupling parameter
(ae = 10 - panels in section (a) and o, = 90 - panels in section (b)) as well as amplified and weaken
agent-agent local interaction strength (Jlljm = 0.75 and le]m = 1.25, panels in sections (c) and (d),
respectively). The red areas indicates the windows for which analysed signal was not fractal for
negative values of the ¢ parameter. The value of ¢ assigned to each data point corresponds to the

end point of a window.

by strong linear anti-persistence or temporal breakdown in scaling properties of the
small fluctuations, which is typical for low liquidity assets (e.g., early years of bitcoin
[83]), in the model represented by a variant with increased agent-agent local inter-
action parameter. From the financial market perspective, these results suggest that
the primary force responsible for the dynamical variety of shapes observed in mul-
tifractal spectra of returns is caused by the continually changing collectivity among

market participants.
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Chapter 7

Multiscale correlations 1n the
two-asset scenario

Key feature of the proposed model is its ability to simulate multiple, coupled finan-
cial instruments. In such a scenario, the entire system can be perceived as a set of
linked subsystems, each representing an asset. Subsystems are connected on both
global and local levels, and intensity of these connections is controlled by Jf]m and
~im, respectively (see equation (5.3) and Figure 5.1).

In this chapter, the influence of Jll]m and -y, values on generated signals’ multi-
scale properties is examined. The following sections contain analysis of the frame-
work’s microscale dynamics in two-asset variant as well as examination of non-linear
autocorrelations and cross-correlations of the signals produced by the model under
differing combinations of cross-asset, agent-agent local interaction le}" and inter-
asset global coupling ~;,, values.

7.1 Dynamics of multi-asset model variant

An investment decision of agent i regarding asset m can be influenced by the state
of its neighbours in subsystem [ and the magnetization of this subsystem scaled by
the 7, parameter. From the financial market perspective, this model construction
reflects a situation when an investor’s decisions are driven not only by the positions
of individuals in their vicinity and the price of the particular asset but also by the
positions of those investors with respect to other assets quoted on the market and
prices of these assets.

Naturally, extension of the model to a multi-asset scenario significantly affects
its dynamics. As an example, consider a two-asset case, where each subsystem has
the same parameters (5 = 1.6, . = 30, k. = 0.5) and connection between them is
symmetrical v = 991 = 0.1 and J? = J2' = 0.01, J}' = JZ? = 0.99. As shown
in Figure 7.1 (section (a)), analogous to the single-asset scenario, the dynamics
observed on the subsystems configuration level is characterized by the metastable
and rearrangement (turbulent) phases. Interestingly, even relatively weak cross-
asset interactions between agents (i.e., a low value of J? = J2') lead to periods of
synchronization in subsystems configurations, especially during the phases of low
activity of agents. In these periods, individual’s investments decisions regarding
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traded assets are almost identical (Figure 7.1, section (a), inner panels).

The similarity between subsystems configurations is also visible during the rear-
rangement phases (Figure 7.1, section (a), panels on the right-hand side); however,
due to decreased collectivity among agents, its level is significantly lower than is
observed in quiet market periods. Furthermore, low values of le]m and vy, values
prevent permanent synchronization of the subsystems. As shown on the left-hand
side panels of section (a) of Figure 7.1, one subsystem may enter a turbulent phase,
while another remains in its metastable phase.

The subsystems’ synchronization and decoupling phases manifest themselves in
the differences and similarities observed at the individual signal histograms level as
well. As shown in section (b) of Figure 7.1, the distributions of hl(-m) during syn-
chronization between assets (middle and right panels) are similar, whereas during
decoupled period assume significantly different shapes - bell-like curve for the asset in
the turbulent regime and polarized one for the stable subsystem. This phenomenon
is even more visible in the time evolution of the individual signal histograms (Figure
7.1, section (c)). As in the single-asset scenario, most of the time, subsystems are in
the metastable phase, which is occasionally interrupted by rearrangement periods,
that can occur simultaneously in both subsystems or can be distinct. As a conse-
quence, the increased volatility clusters in the signals produced by the subsystems
often overlap.

From the practical application perspective, such behaviour of the system is highly
desirable. The financial instruments tend to be coupled within the same basket;
however, the correlations observed on the volatility level are not stable over time.
During crises, most of the financial assets, regardless of their type, are volatile, which
in the model is reflected by the overlapping volatility clusters. On the other hand,
during stable periods, it is not unusual, that asset becomes volatile due to internal
factors, such as disappointing earnings reports. These, in the model, are reflected
by the distinct volatility clusters of fluctuations produced by the subsystems.

Worth noting is that extension of the model to a multi-asset scenario introduces
additional potential values of hgm) that agents can receive, thus, enriching overall
system dynamics. For example, in a system that consists of a single subsystem (i.e.,
single-asset scenario), assuming three-state variant of the model (k. > 0) and non-
zero magnetization, an agent can receive 18 different values of hl(m) (i.e., 9 possible
values received from the neighbours multiplied by two possible values of the global
coupling related term). When the model is extended to the two-assets variant and

Jf]l # Jl-l]’-”, the spectrum of hgm) values increases to 82 (i.e., 41 possible values received
from the neighbours multiplied by two possible values of the global coupling related
term). Such enrichment of model dynamics, as shown in the following paragraphs,
can positively impact the multiscale properties of the time series generated by the

model.
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Figure 7.1: Dynamics of the two-asset variant of the model with parameters: 3 = 1.6,J;; 12 =Ji 2 —

0.01, Jiljl = JZ%? =0.99, a. = 30, k. = 0.5, and 712 = 21 = 0.1. Section (a) shows subsystems
configurations (Asset 1 - upper panels marked with I, Asset 2 - bottom panels, marked with II)
in desynchronization period (panels on the left-hand side), synchronization in a metastable phase
(middle panels) and partial synchronization in the rearrangement phase (panels on the right-hand
side). Section (b) displays individual signal h"(¢) histograms at time steps corresponding to the
snapshots presented in section (a). Section (c) shows time evolution of individual signal histogram
and generated returns time series (Asset 1 - upper panels, Asset 2 - bottom panels). Blue and
black dotted lines in panels (b) indicate values of thresholds for Asset 1 and Asset 2, respectively.
The color dotted lines in section (c¢) corresponds to individual signal histograms and rate of returns
in section (c).
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7.2 Influence of interactions between subsystems on
non-linear self-dependencies of generated sig-
nals

The level of coupling between subsystems, as mentioned previously, can be con-
trolled by two parameters, namely, the cross-asset agent-agent interaction strength
ijm and inter-asset global coupling 7;,,,. These parameters have slightly different in-
fluence on the agent’s behaviour and, by extension, on the characteristics of the time
series produced by the model. To get a sense of the impact of particular parameter,
it is convenient to analyse them separately. Moreover, this analysis is narrowed to
symmetrical cross-asset influence, meaning that: ijm = J{}” and Vi, = Y- In the
two-asset scenario, the character of the relationship between subsystems (symmet-
rical or asymmetrical) does not significantly affect the produced time series. When
the Jlljm and 7, are symmetrical, the generated signal can be perceived as a consen-
sus between two subsystems, whereas, in the asymmetrical case, one asset acts as a
leader is followed by another instrument. It should be noted here, that the situation
is slightly more complicated when more than two assets are considered; this scenario
is discussed in detail in Chapter 8.

Figure 7.2 presents the magnetization and corresponding rates of return gener-
ated by the model with different values of inter-asset global coupling factor ~;, €
[0.05,0.1,0.15,0.2] and other parameters set to 5 = 1.6, Jll]l =1, Jll;“ =0, a. = 30,
and k. = 0.5. As is clearly visible the increased value of v, leads to higher synchro-
nization of the time series generated by the model (i.e., the overlap of more volatility
clusters). However, for high values of the inter-asset global coupling (7, > 0.1),
undesirable effects on the magnetization level are observed. Specifically, the signals
generated by the model, rather than fluctuating around M (¢) = 0, drifts towards
one of the equilibriums (e.g., for 4, = 0.2 it was M (t) ~ £0.1), and, as the simula-
tion continues, rapid transitions between these equilibrium zones occur. This effect
is a result of the increased (decreased) value of the agent’s individual signal.

The most convenient way to understand this phenomenon is to look at it from the
perspective of the hgm) (t) histogram. When the value of 7, is sufficiently large, the
entire histogram is shifted towards higher (or lower) values of the individual signal,
depending on the magnetization of the other subsystem. As a result, the number
of agents having positive (negative) individual signals becomes unbalanced, thereby
possibly leading to positive (negative) magnetization of the system. These periods of
unbalanced magnetization are occasionally broken during the rearrangement phases;
however, the impact of the inter-asset global coupling rapidly pushes it towards one
of the equilibrium zones. On the rates of return level, the biased agent’s individual
signal translates into the presence of pronounced volatility clusters that interlace
with periods of small fluctuations, however these volatility clusters do not have
shape observed in real financial time series.

Naturally, this effect is also noticeable on the multifractal properties level. Figure
7.3 shows the mean fluctuations functions and corresponding multifractal spectra
calculated for time series of length 2.5%10° data points generated by ten independent
simulations. As shown on the left-hand side panels of the figure, the excessive value
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Figure 7.2: Examples of the magnetization and corresponding return time series generated by
two-asset variant of the model with inter-asset global coupling coefficient: (a) 7., = 0.05, (b)
Yim = 0.1; (€) Yim = 0.15, (d) Vi = 0.2, and values of other parameters set to: ijl =1, Jll}” =0,
8 =1.6, a. = 30, and k. = 0.5.

of the inter-asset global coupling parameter (7, € [0.15,0.2]) leads to the distortion
of F,(q,s) observed for positive ¢ exponents. The degree of deformation increases
along with ~;,, and for 7, = 0.2 the function F,(q, s) significantly diverts from the
expected power law characteristic. As mentioned previously, for strong inter-asset
global coupling, generated signals are biased and tend to fluctuate in one of the
equilibrium zones, occasionally switching between them. As the transition between
high and low states of the magnetization is rapid, the volatility clusters assume
rectangle-like shape, which is the main factor leading to the distortions observed
in the fluctuations function. On the other hand, for small values of the inter-asset
global coupling parameter (7, = [0.05,0.1]), this effect is not observed, and the
scaling of function F,(q, s) is convincing and spans a considerable range of scales.

The differences in hierarchical organization are also visible on the multifractal
spectra level. The panel (b) of Figure 7.3 shows the mean singularity spectra de-
termined for 7, = [0.05,0.1,0.15] (due to significant distortion of the fluctuations
function, the case 7, = 0.2 is omitted). For weak inter-asset global coupling,
f(a) functions are relatively broad (Aa = 0.16 £ 0.02 and Aa = 0.18 4+ 0.01 for
v = 0.05 and ~y;,;, = 0.1 respectively) and are characterised by left-hand side asym-
metry (4, = 0.87 £ 0.12 and A, = 0.59 + 0.20 for 7;,,, = 0.05 and 7, = 0.1,
respectively), results similar to those obtained in the single-asset scenario. For
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Yim = 0.15, widths of the singularity spectra are similar to those analysed above
(Aa = 0.30£0.03), however the multifractal spectrum reveals slight right-hand side
asymmetry (A, = —0.20 + 0.32), which is related to poor scaling observed in the
range of positive ¢ values. Properties of obtained singularity spectra (Aa, A, and
H) are also presented in Table 7.1.
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Figure 7.3: Mean fluctuations functions F; (g, s) (panels in section (a)) and corresponding mul-
tifractal spectra (panel in section (b)) of time series produced by ten independent executions of
the multi-asset variant of the model with different values of inter-asset global coupling parameter
~Yim € [0.05,0.1,0.15,0.2] and other coefficients fixed (8 = 1.6, Jf]l =1, le;” = Ji’}” =0, a., = 30,
and k. = 0.5). The dotted black lines in the plots on the left-hand side denote the range of scales
used for singularity spectrum calculations. Due to distortion of the fluctuations function for series
produced by the model with ~;,, = 0.2, the singularity spectrum was not determined. The color
markers in the fluctuation functions plots links to the corresponding singularity spectra presented
on the right-hand side panel.

Table 7.1: Properties of mean singularity spectra determined for signals generated by ten inde-
pendent executions of multi-asset variant of the model with different values of inter-asset global
coupling parameter 7, € [0.05,0.1,0.15] and other coefficients fixed as follows: 8 = 1.6, J/l =1,
JZI}" = JZ}” =0, a, = 30, and k. = 0.5.

| Yim =005 Y =01  ~ =0.15
Aa | 0.16 £0.02 0.18 =0.01 0.20 £ 0.03

Ay | 0.87£0.12 0.59£0.20 —0.20+£0.32
H | 039+£0.01 0.37+0.01 0.36+0.02

The characteristics of the signals produced by the model in which cross-asset
interaction is limited only to the agent-agent interaction differ slightly. Figure 7.4
shows examples of time series generated by the model with different values of the
cross-asset agent-agent interaction strength parameter, which were chosen in such a
way that J};#—Jf}” =1,ie., ijl € [0.99,0.96,0.93,0.9], and Jf]m € [0.01,0.04,0.07,0.1]
with the other parameters set as follows: g = 1.6, a. = 30, k. = 0.5, and ;,,, =
Ymi = 0. Naturally, as ijm increases, higher collectivity between time series emerges,
and the magnetization of the subsystems aligns. It should be noted that, excessive
value of the cross-asset agent-agent local interaction strength leads to the unwanted
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features of the generated time series. That is, as Jlljm rises, the periods when the
subsystems magnetization stabilizes around M (t) ~ 0 extend. This effect is caused
by the significant influence that agent’s neighbours positions in different assets have
on agent’s investment decisions. Thus, an imbalance between supply and demand
appears less likely, as it has to develop in both subsystems simultaneously. Moreover,
the same mechanism is responsible for the fewer large fluctuation clusters observed
in returns signal.
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Figure 7.4: Examples of the magnetizations and corresponding returns time series generated by
the two-asset variant of the model characterized by different values of the cross-asset agent-agent
interaction strength parameter: (a) JI = 0.99, Ji™ = 0.01; (b) J = 0.96, JI* = 0.04; (c)
JZZJI = 0.93, ijm = 0.07; (d) ijl =0.9, lejm = 0.1, and other parameters fixed as follows: 3 = 1.6,
a. = 30, ke = 0.5, and v, = Yy = 0.

The changes in time series characteristics that appear depending on the values
of cross-asset agent-agent interaction strength are also visible on the hierarchical
organization level. Figure 7.5 shows the mean fluctuations functions (panels in
section (a)) and corresponding multifractal spectra (panel (b)) calculated for signals
generated by the model with different sets of lejl and ijm parameters. As is clearly
visible, for small values of J,ff”” € [0.01,0.04] the fluctuation functions obey the power
law over a large range of scales (s € [20,1000] and s € [20,3932] for J* = 0.01
and Jf]m = 0.04, respectively), whereas for the series generated by the model with
JIm =0.07 and J/7* = 0.1 a significant distortion is observed for large s. This effect
is caused by the subsystems synchronization observed for strong cross-asset agent-
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agent interactions, which lead to stabilization of magnetization. In turn, obtained
returns are characterised by a small number of large fluctuations, which are required
to develop the hierarchical organization.

The multifractal spectra also manifest the differences in non-linear autocorrela-
tions of the generated time series. As shown on panel (b) of Figure 7.5, the singu-
larity spectra of signals produced by the model, for almost all analysed parameter
sets (except for the ijm = 0.1 scenario), are characterized by strong left-hand side
asymmetry (which varies from A, = 0.31 £0.36 to A, = 0.74 £0.12 for Jf]’” = 0.07
and Jl} = 0.93 and for JJ* = 0.01 and J}} = 0.99, respectively), whereas width
changes from Aa = 0.27 £ 0.07 for J/* = 0.01 and J}} = 0.99 to Aa = 0.16 £ 0.10
for lejm = 0.07 and Jf]l = 0.93. Interestingly, the singularity spectra obtained for the
time series generated by the model with weak cross-asset agent-agent interactions
are broader than those observed for the single-asset scenario with the same value of 3
parameter (see Figure 6.8, panel (b), blue squares). This amplification of non-linear
self-dependencies in the produced signals could be related to the increase in number
of possible values of the signal coming from the neighbours that was discussed in
the previous section.
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Figure 7.5: Mean fluctuations functions F. (g, s) (panels in section (a)) and corresponding multi-
fractal spectra (panel (b)) of time series produced by ten independent executions of the multi-asset
variant of the model with different values of cross-asset agent-agent local interaction strength pa-
rameters: Jll]l € [0.99,0.96,0.93,0.9], Jlljm = ng € [0.01,0.04,0.07,0.1], and other coefficients set
as follows: 8 = 1.6, a, = 30, k. = 0.5, and v, = 0. The dotted black lines in the plots on
the left-hand side denote the range of scales used for singularity spectrum calculations. Due to
distortion of the fluctuation function for ijl = 0.9 and JZ” = 0.1, the singularity spectrum for
this case was not determined. The color markers in the fluctuations functions plots links to the
corresponding singularity spectra presented on the right-hand side panel.

Besides the distortion of the hierarchical organization, another side effect is ob-
served in signals produced by the model characterized by a large value of the cross-
asset agent-agent local interaction strength parameter. The increased value of ijm
introduces linear autocorrelations in the generated time series. As is noticeable,
the multifractal spectra presented in panel (b) of Figure 7.5 drifts towards lower «
values with an increase in Jf]m The Hurst exponent of these signals indicates slight
anti-persistence that varies from H = 0.41 & 0.05 for J* = 0.07 and J!! = 0.93 to
H = 0.45+£0.01 for ijm = 0.01 and ijl = 0.99. Again, this effect is related to the
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decrease in likelihood that an imbalance occurring between supply and demand in
consecutive time steps develops, as it must develop in both subsystems simultane-
ously. Properties of obtained singularity spectra (A«, A, and H) are also presented
in Table 7.2.

Table 7.2: Mean singularity spectra properties determined for signals generated by ten in-
dependent executions of the multi-asset variant of the model with different values of cross-
asset agent-agent local interaction strength parameter Jfﬁ € [0.99,0.96,0.93,0.9], Jf}” = JZ-’;” €
[0.01,0.04,0.07,0.1], and other coefficients set as follows: 8 = 1.6, . = 30, k. = 0.5, and ~,,, = 0.

1w _ lm _ 1 _ m _ i _ m _
‘ Ji; =0.99,J,7" =0.01  J;. =0.96,J;7" =0.04 J;. =0.93,J;7" = 0.07

Aa 0.27 £ 0.07 0.26 £0.13 0.16 £0.10
Aqy 0.74+£0.12 0.73+0.14 0.31 £0.36
H 0.45£0.01 0.42 £0.04 0.41 £0.05

As the analysis presented in this section shows, both global and local cross-asset
interactions between subsystems can amplify the non-linear autocorrelations of the
time series generated by the model. However, the extreme values of the Jll]m or
vim coefficients lead to substantial distortion in the hierarchical organization of the
produced signals, as the fluctuations functions deformation manifests.

7.3 Impact of cross-asset local and global interac-
tions between agents on multiscale characteris-
tics of produced time series

The crucial question that arises in the context of the analysis presented in pre-
vious section concerns the influence of combined inter-asset global coupling and
cross-asset agent-agent interactions on the multifractality of the signals. Since the
excessive values of any of these parameters lead to the distortion of hierarchical
organization, the ranges of considered values of Ji*, J/} and v, were limited as fol-

lows: JI* € [0.01,0.04], J}! € [0.99,0.96] and 7y, € [0.05,0.1]. As shown in Figure
7.6 (panels on the left-hand side), the fluctuations functions of returns generated by
the model with such parameters obey the power law in a large range of scales (up
to s ~ 103), whereas multifractal spectra (panel (b)) are characterized by left-side
asymmetry (asymmetry coefficient varies from A, = 0.66+0.09 for Jlljm = 0.04, lejl =
0.96, v, = 0.05 to A, = 0.90 £+ 0.14 for Jll]m = 0.04, lejl = 0.96,7,, = 0.1), and are
relatively broad (from Aa = 0.18 £ 0.02 for ijm = 0.04, Jll]l = 0.96, v, = 0.1 to
Aa = 0.23 £ 0.08 for ijm = 0.0l,Jf]l- = 0.99, v, = 0.05). In general, a model
charachterised by relatively high global and local interactions between subsystems
produces time series with the richest hierarchical organization (Jle = 0.99, Jlljm =
0.01, v, = 0.05). Interestingly, the non-linear correlations of signals generated by
the model with stronger global inter-asset coupling (7;,, = 0.1) are slightly weaker
than those observed when ~;,, = 0.05, suggesting that, in fact, the linkage between
assets on a global level combined with local cross-asset interactions between agents

negatively influences the hierarchical organization of the produced time series. The
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reason for such a decrease in the multifractal spectra width could be related to the
fact that both of these factors amplify the synchronization between subsystems con-
figurations; thus, it becomes more stable (especially for large 7;,,, values) and the
overall dynamics of the model becomes poorer.
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Figure 7.6: Mean fluctuations functions F; (g, s) (panels in section (a)) and corresponding multi-
fractal spectra (panel (b)) of the time series generated by ten independent executions of the multi-
asset variant of the model with different values of cross-asset agent-agent local interaction strength
and inter-asset global coupling parameters Jll]l € [0.96,0.99], JZ" € [0.04,0.01], ym € [0.05,0.1].
Other coefficients were set as follows: 5 = 1.6, a. = 30, and x. = 0.5. The dotted black lines
in F,(q,s) plots denote the range of scaling, and the color markers links to the corresponding
singularity spectra presented in panel (b).

Table 7.3: Mean singularity spectra properties determined for signals generated by ten inde-
pendent executions of the multi-asset variant of the model with different values of cross-asset
agent-agent local interaction strength and inter-asset global coupling parameters Jf]l € [0.96,0.99],
lejm € [0.04,0.01], vyn € [0.05,0.1]. Other coefficients were set as follows: 8 = 1.6, a. = 30,
ke = 0.5.

\ Jit = 0.99, J" = 0.01,7,, = 0.05  JIL = 0.99,J1" = 0.01,7,, = 0.1

Ao 0.23 = 0.08 0.194+0.03
Aq 0.73+0.15 0.824+0.11
H 0.43 +0.04 0.38 & 0.02
JZ?; = 0.96, Jﬁ;n = 0.04,v;, = 0.05 J% = 0.96, J,f;n = 0.04,~;,, = 0.1
A 0.194+0.05 0.18 £0.02
A, 0.66 £ 0.09 0.90 +0.14
H 0.42 +0.04 0.36 = 0.02

Nonetheless, global coupling between subsystems positively impacts cross-dependencies
between generated time series. As shown in panel (a) of Figure 7.7, volatility cross-
correlations are stronger for signals produced by the model with a higher value of
Yim (assuming that Jz-lf‘, JZI; are the same) and maintain a statistically significant
level (denoted by the red line) for a longer period of time. The differences between
the range of cross-correlations measured by C,,(7) function are also visible in the
span of scales s, for which the dependencies between produced time series have

multifractal character. The panels in section (b) of Figure 7.7, present mean cross
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fluctuations functions F,,(q, s) for different sets of parameters. As indicated by the
dotted black lines, the range of scales for which F},(q, s) obeys the power law is
slightly wider for signals generated by the model having a greater value of ~;,,, espe-
cially in the small-scales regime. Moreover, as is clearly visible in the middle panel
(marked with orange diamond) and the panel on the right-hand side (marked with
a purple triangle), the scaling of F,,(q, s) is more convincing for series produced by
the model characterised by non-zero inter-asset global coupling.

The slight differences observed in the scaling range do not translate into strength
of the multi-scale correlations. Plots in section (c) of Figure 7.7 present the mean
pl,(s) for three values of ¢ parameter (i.e., ¢ € [2,3,4]) depending on scale s.
The differences in strength of the non-linear cross-correlations for different values of
Yim are negligible, and the primary factor influencing level of the multi-scale cross
dependencies is cross-asset agent-agent interaction, especially, if the middle range of
scales is considered.

Interestingly, for small and large scales (s < 102 and s > 10%, respectively), cross-
correlations are on a similar level, regardless of the parameters of the model. In a
small scales regime for all analysed parameters sets, multi-scale cross-correlations are
weak, which is related to the model’s stochastic character. Even though subsystems
are, in general, synchronized, individuals are allowed to act, to some degree, inde-
pendently, thus introducing desynchronization of the generated time series on small
scales. Naturally, cross-correlations in the range of a small scales can be improved
by decreasing agent’s autonomy (by decreasing system temperature). However, as
shown in section 6.2, increased value of parameter 3, can cause ’freezing’ of the
system, which is highly undesirable effect.

On the other hand, when large scales are examined, almost perfect cross-correlation
is observed, again, regardless of the model parameters. If sufficiently large spans
of the generated time series are considered, differences in synchronization of sub-
systems observed on small scales become negligible, thus high cross-correlation is
noticeable. Worth noting is that similar trajectories of the p? are observed in the
financial markets (e.g. stock markets [112] or cryptocurrencies [200]).

In order to measure the multifractal character of cross-correlations between gen-
erated time series, A(¢) (which measure the slope of function F,,(q,s)) was com-
pared to the mean value of generalized Hurst exponent m = (hs(q) + hy(q))/2.
The smaller is the difference between these measures (i.e., d(q) = A(¢) — h(q)) the
more similar are the fractal structures in the signals, and for perfectly correlated
series d(q) = 0. The most coherent time series are generated by the model with pa-
rameters lejl = 0.99, JZI;” = J[]’-‘l = 0.01 and Yy, = Y = 0.05 (plot marked with the
black dot). However, in this case, the result is burden with a significant error, thus
from the practical applications point of view, the most valuable results are obtained
for the following set of parameters: JZZJZ = 0.96, ijm = J{;‘l = 0.04, vin = You = 0.1.

Worth noting is that the values of inter-asset global coupling and cross-asset
agent-agent local interaction influence the repeatability of the generated signals. As
the statistical errors (denoted by error bars) of multi-scale cross-correlation coeffi-
cient (section (c)) show, time series generated by the model with higher ~;, (or J/J")
parameters are characterized by smaller errors, especially in the range of medium
scales (s € [10%,10%]). This effect is related to the stability of the system. Both
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Figure 7.7: Mean volatility cross-correlation functions (section (a)), cross-fluctuation functions
Fuy(q,z) for q € [2,4] (section (b)), multi-scale cross-correlation coefficients pg, (s) (section (c))

and comparison of scaling exponent A(¢q) and mean generalized Hurst exponent h(q) (section (d))
of the time series generated by ten independent realizations of the multi-asset variant of the model
with different values of the cross-asset agent-agent local interaction strength parameter ijl €

Ji’}’l € 0.01,0.04 and inter-asset global coupling v, = Vi € [0,0.05,0.1], and
The dotted black lines in the plots in the

of the considered parameters can improve the synchronization between subsystems
and thereby reduce the stochastic character of the model.

As the analysis of the two-asset variant of the model shows, the proposed frame-




work is capable of reproducing multi-scale cross-correlations observed in financial
markets. The strength of volatility cross-correlations measured by function C,,(7),
and the value of coefficient pgy(s) depends primarily on the cross-asset agent-agent
local interaction strength and to lesser extent on inter-asset global coupling. Taking
into account that the price of the assets in financial markets are primarily driven
by the transactions made by large, institutional investors (e.g., hedge funds, banks)
suggests that the investment decisions of these market participants mostly depend
on the positions of their competitors and to lesser extent on the price of the traded
asset itself.
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Chapter 8

Modeling of financial market
cross-correlations

The huge advantage of the multi-asset three-state model is that no theoretical limi-
tation regarding the number of simulated assets exist. In turn, it opens a possibility
of modeling tens or even hundreds of coupled instruments and so reflecting the
structures observed in real financial markets. In this chapter, proposed framework
is used for building two artificial indices. The first, consisting of ten instruments
grouped into three sectors is examined using rolling window technique analogous to
analysis presented in Section 3.5. The second, aims at recreating multiscale cross-
correlations structure of DJIA, thus it consists of thirty assets divided into six sectors
and is examined using ¢-dependent MSTs introduced in Section 3.3.

8.1 Ten-assets artificial index

Modeling of multiple, coupled instruments using the multi-asset three-state model
require careful selection of the framework parameters. When more than two instru-
ments are simulated, especially compelling, is the cross-asset agent-agent interac-
tion parameter. In the two-asset scenario, it does not make a significant difference
whether the cross-asset local agent-agent interaction is symmetrical or not. In the
symmetrical case, the subsystems seek a common equilibrium, which is occasionally
broken during rearrangement phases. On the other hand, when the interaction be-
tween agents is not symmetrical, one subsystem acts as a leader, whereas another
'follows’ this leader’s configuration.

The situation is similar when more than two assets are considered; however, if
cross-asset agent-agent interaction is symmetrical, as the number of modeled assets
increases, the subsystems are more likely to remain aligned, and the probability of
desynchronization decreases. Moreover, in such a scenario, a rearrangement phase
occurs less often, as it has to develop in multiple subsystems simultaneously. Lim-
iting cross-asset agent-agent local interaction to an asymmetric variant is sufficient
to avoid permanent system stabilization. Additionally, Artificial index, in which
one or few assets act as the leader for other instruments, reflects the dependencies
observed in financial markets. Different stocks, depending on multiple factors (e.g.,
market capitalization), exert differing influence on other components. For instance,
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ExxonMobil (XOM) is commonly perceived as the indicator for the entire Energy
sector and significantly affects the valuation of other companies belonging to this
basket. Another prominent example is General Electric (GE), which, with respect
to non-linear correlations, seems to be one of the most influential stocks quoted on
the New York Stock Exchange [125].

The second issue in index modeling is related to the excessive number of sub-
systems. Specifically, an increase in asset number dramatically affects the computa-
tional effort and memory footprint of the simulation. However, as shown in Section
3.5, proper selection of the assets representing different sectors allows construction
of a proxy index that accurately mimics the behaviour of the original instrument,
using only a fraction of its components.

Artificial index being considered in this section consists of ten assets that belong
to three different sectors: sector 1: Assets 1-3, sector 2: Assets 4-7 and sector
3: Assets 8-10. Moreover, to reproduce correlations between instruments belonging
to different baskets assets 1 and 10, as well as 3 and 4, are also linked on the
cross-asset agent-agent local interaction and inter-asset global coupling levels (see
equation (5.3)). Lastly, to avoid excessive value of the agent-agent interaction,
which, as shown in Section 6.3 (see Figure 6.11) can cause system 'freeze’, coefficients
were chosen in such a way that sum of the signal received by an agent from the
neighbour is equal to 1 (3, JI™ = 1). In addition, the inter-asset global coupling
parameter was set relatively low (v, € [0.025,0.05]). The cross-asset influence
projection of Jff]m matrix (J) and 4, matrix are presented below. In J'™ matrix,
the diagonal describes the interaction strength within a given subsystem (values
of J;; for given subsystem m), other elements in the column indicate given asset’s
influence on other modeled instruments (on agent-agent interaction level) and the
rows correspond to the influence of other subsystems on the given asset (again, on
agent-agent interaction level). The -, matrix was constructed analogously. The
remaining parameters were set to values f = 1.6, a, = 30, and k. = 0.5, for each
modeled instrument.
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The artificial index simulation consists of 2.5 * 10° time steps; however, the first
5 x 10* data points were considered as a thermalization period and so were omitted
in the further analysis. Figure 8.1 shows the magnetization (panels on the left-hand
side) and the corresponding rates of return (panels on the right-hand side) produced
by each subsystem of the model. The returns of assets belonging to the same sectors
overlap to a considerable degree (e.g., Assets 4 and 5), while those associated with
different baskets appear to fluctuate more independently (e.g., Assets 7 and 8).
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Figure 8.1: Magnetization (left panels) and corresponding rate of returns (right panels) generated
by the particular subsystems of the ten asset variant of the model. The assets were coupled
accordingly to the J'™ and +;,,, matrices presented above

The coupling between assets also reveals itself in the hierarchical organization
of generated returns. As shown in the panels comprising section (a) of Figure 8.2,
the fluctuations functions and their scaling ranges of instruments belonging to the
same sector are similar. The span of the scales for which function F, (g, s) obeys the
power law is wide and varies from approximately s € [20,900] for Asset 8 (sector
3) to approximately s € [20,3000] for Asset 4 (sector 2). Naturally, the similarities
in non-linear self-dependencies are also noticeable on the singularity spectrum level.
Panels in section (b) of Figure 8.2 present obtained f(a) functions, grouped by
sectors. The shapes of the multifractal spectra for highly correlated assets is similar
and characterized by comparable width Aa and asymmetry A, which, depending
on sector varies from Aa ~ 0.31 to Aa ~ 0.24 for Sectors 1 and 2, respectively,
whereas asymmetry coefficient varies from A, ~ 0.56 for Sector 2 to A, ~ 0.75
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for Sector 3. Moreover, as was already shown in Section 7.2, the cross-asset agent-
agent interaction introduces weak negative linear self-dependencies in generated time
series. In this case, mean Hurst exponent for different baskets varies from H = 0.437
for Sector 1 to H = 0.443 for Sector 2 (see Table 8.1 for more details).

Naturally, coupling level between assets is also visible in the cross fluctuations
functions (section (c¢) of Figure 8.2). For assets belonging to the same sector,
F,y(q,s) obeys the power law over considerable range of scales; however, signifi-
cant distortions are observed for small s. For example, returns of Assets 1 and 2
(panel on the right-hand side in section (c) of Figure 8.2), even though they have
overlapping volatility clusters, and both individually have a rich hierarchical orga-
nization, the pair’s cross-fluctuations function is significantly distorted for scales
s € [20,50]. This effect is caused primarily by model’s stochastic character, and
the fact that, even for relatively strong cross-asset agent-agent local interaction and
inter-asset global coupling, agents are, to some degree, independent.

Comparing these results with the ones obtained for real data (see Section 3.5),
another discrepancy stands out. For financial time series, even if the assets belong
to different sectors, they are strongly correlated, especially when large scales are
considered. In the cross fluctuation function, it is reflected by the substantial range
of s for which F},(q, s) obey the power law (see Figure 3.7, panels in section (a)).
In the model, assets that represent different sectors are not cross-correlated in a
multiscale manner. Both of these issues can be overcome by introducing stronger
coupling between subsystems, however in such a scenario, the generated time series
will fully align (see bottom right panel in section (a) of Figure 7.5), which is in
contradiction to the situation observed in real financial markets.

Table 8.1: Spectrum width Ac, asymmetry A,, and Hurst exponent H of ten-assets artificial
index components returns.

Asset: | 1 2 3 | 4 5 6 7 [ 8 9 10

Ao 0.34 0.29 0.29]0.26 024 0.18 0.27 030 0.27 0.27
Aq 0.71 066 068|071 049 037 0.70| 0.83 0.83 0.61
H 043 044 044|042 045 045 045|045 0.45 0.42
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Figure 8.2: Fluctuation functions F;(q, s) (panels in section (a)) and corresponding multifractal
spectra (panels in section (b)) calculated for returns of ten-assets artificial index components.
Panel (c) shows the cross fluctuation functions F, (g, s) for selected pairs of assets. Black dotted
lines in plots in section (a) and (c) denote the range of scaling.

8.2 Variability of multiscale cross-dependencies be-
tween ten-assets artificial index and its compo-
nents

Besides some discrepancies in Fy,(q, s)’s scaling range between real-world financial
time series and returns generated by the model, the framework reflects the dynamic
changes in the multifractal characteristics over time. In this section, the signals
produced in ten-assets artificial index simulation are examined in the context of the
multiscale features’ variability. Analogously to the analysis performed in section 3.5,
the rolling window technique was applied.

Figure 8.3 presents the result of the multifractal rolling window analysis con-
ducted for ten-assets artificial index and components’ fluctuations. Window length
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was set to 40000 data points, and it was moved by 160 time steps. Assuming
that the model generates hourly returns, the window length corresponds to approx-
imately 20 trading years, whereas window step is approximately one trading month.
Additionally, for more illustrative clarity, the multifractal spectra of the individ-
ual components are represented by the average value, calculated for each window
separately.

As shown in panels (a) and (b), the singularity spectra calculated for ten asset
artificial index as well as average f(a) functions of its components reveal significant
changes in the hierarchical organization of generated signals. In both cases, obtained
multifractal spectra are characterised by left-hand side asymmetry; however, the A,
coefficient for ten-assets artificial index assume higher values than it is observed for
an average of the components. This effect is rooted in the stochastic character of the
model. During the metastable periods, most of the agents preserve their positions
over time; however, the form of the probability function p, which determines the spin
of a particular agent in the given subsystem (see equation (5.1)), leaves room for less
collective fluctuations. When these small oscillations are aggregated in the artificial
index, the non-linear correlations are diminished, as manifested by the shrinkage
of the right part of the singularity spectra. A similar effect is observed for large
fluctuations (represented by the left part of the f(«) function). However in this
case, the non-linear correlations are not entirely suppressed, and thus the left part
of the singularity spectra do not disappear, but its width is substantially reduced.
As a result, the multifractal spectra obtained for artificial index are never broader
than the average of its components, which is in conscience with the observation
made for real financial time series. Also worth noting is that the consequences of the
aggregation performed to build the artificial index are also visible on the linear long-
range correlations level. Hurst exponent for the ten-assets artificial index assumes
values closer to H = (0.5 than it is observed for individual components average.

Importantly, the difference in richness of hierarchical organization between ten-
assets artificial index and the average of its components is not constant in time.
The multiscale rolling window analysis of the series generated by the model shows
periods characterized by increased (green polygon) and decreased (red polygon)
discrepancies in multifractal properties, suggesting that components returns exhibit
phases of amplified and weaken cross-correlations, similar to those observed in the
DJIA Proxy Index. To ascertain this, a correlation matrix analysis, analogous to
the procedure presented in Section 3.5, was performed. Here, two different pairs of
scales s and ¢ exponents were considered, namely s = 100,q = 2 and s = 344,q¢ = 4
(panels (b) and (c) of Figure 8.4, respectively). Moreover, the largest eigenvalue of
the correlation matrix built of Pearson coefficients was analysed (panel (a) of Figure
8.4).

The maximum eigenvalue calculated for the correlation matrix composed of Pear-
son coefficients only occasionally and marginally assumes values above the noise
regime, indicating that the linear correlations between the assets are negligible.
Similar results were obtained for correlation matrix built of piy(l()O). In this case,
the maximum eigenvalue has comparable values in periods of increased and decrease
coupling between instruments (green and red areas, respectively). Significant dif-
ferences between these two phases are visible for cross-correlation matrix built of
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Figure 8.3: The multifractal rolling window analysis of the Artificial Index built of ten assets
generated by the model with parameters defined in the previous section. Panels (a) and (b)
presents projection of singularity spectra on a-t plane. The blue and black colors denotes right
and left wing of the multifractal spectra respectively, whereas red crosses indicates the maxima of
f(a). Panel (c) shows the rate of returns of the Artificial Index. Panels (d), (e), (f) contains
obtained spectra width Ac«, asymmetry A, as well as Hurst exponents H. The red circles indicates
averaged multifractal properties of the individual components, whereas the blue squares represents
the results obtained for the Artificial index. The green and red polygons indicate areas of increased
and decreased coupling between the assets.

Py, (344). As shown in panel (c) of Figure 8.4 the maximal eigenvalue for pj, (344)
for windows that end in period ¢ € (9.3 * 10%,1.3 * 10°) (marked by green poly-
gon) assume significantly higher values than are observed for windows that end in
t € (1.5%10°,1.8 x 10°) (marked by red polygon). This analysis confirms that the
signals generated by the model characterized by chosen parameters, for sufficiently
large scales and large fluctuations (¢ € [3,4]) are cross-correlated; however, coupling
between assets is not recreated when smaller scales and fluctuations are considered.
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s =344, ¢ = 4 (panel (c)), respectively. Horizontal red dotted line in plot (a) indicates the noise
regime of the correlation matrix determined according to equation (3.37).

The periods of increased and decreased collectivity of the time series generated by
the model have a stochastic nature, meaning that relatively weak coupling between
particular components allows agents to behave, to some degree, independently from
the information they receive from other subsystems. As a result, at some point of the
simulation sectors desynchronize, which reduces the level of hierarchical organization
of the artificial index. Worth noting is that estimating the time step at which such
desynchronisation or excessive synchronization will occur is not possible. However,
by changing the values of the J'™ and 7, matrices as the simulation progress,
the modeler can, to some extent, control coupling between assets. Nonetheless,
the time series generated by the model with such manual changes in cross-asset
agent-agent interaction strength and inter-asset global coupling are still subject to
stochastic fluctuations; thus, periods of stronger (weaker) cross-correlations may
appear independently from parameters evolution introduced manually.

8.3 Modeling of DJIA non-linear cross-correlations
structure

The intricacy of the financial markets, besides the dynamic changes of the return’s
multifractal properties, reveals itself in the complex structure of the non-linear cor-
relations between the assets. As shown in section 3.3, multiscale interdependencies
between financial instruments can be successfully analysed using complex network
formalism. In the following paragraphs, this technique is applied to the signals
generated by the DJIA-inspired artificial index that consisted of thirty components.

Thanks to the flexibility of the multi-asset three-state model, its ability to gen-
erate signals characterised by non-linear cross-correlations, and lack of theoretical
limitations regarding the number of simulated assets, it is possible to, at least par-
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tially, reflect the real financial market structure and its changes depending on the
analysed scale and magnitude of returns. Naturally, an attempt to mimic financial
market organization can lead to a complicated set of cross-asset agent-agent local
interaction J'™ and inter-asset global coupling 7;,, parameters. Therefore, in this
research, the emphasis was on simplest forms of these matrices, that could lead to
recreating phenomena observed in the financial markets.

Constructed artificial index consisted of 30 subsystems grouped into 5 sectors as
follows: Sector (1): Assets 2-11, (2): Assets 12-16, (3): Assets 17-21, (4): Assets
22-27, (5): Assets 28-30. The first asset in each sector (i.e., 2, 12, 17, 22, 28) act
as a leader which asymmetrically influences other components in the bucket with
J'™ = 0.04 and 43, = 0.05. Moreover, the entire system has a leader (Asset 1)
that is connected with leaders of Sectors 1-4 asymmetrically, again with parameters
J'™ = 0.04 and 7, = 0.05. Moreover, the leader of Sector 5 (Asset 28) is not linked
directly to the central subsystem, but it is connected to the Asset 27. Such choice
of the parameters intends to reflect the relation between Healthcare and Consumer
Goods sectors observed in DJIA (e.g., panel (g) of Figure 3.8), as well as the star-
like layout of the MST graph!. Other parameters were set to the values: 8 = 1.6,
a. = 30, and k. = 0.5 for each subsystem. For the model specified in such a way,
a simulation containing 2.5 * 10° time steps was performed, however first 5 * 10*
data points were removed (thermalization period); thus, the effective length of the
analysed signal was 2 * 10° time steps.

Figure 8.5 shows MSTs built upon generalized cross-correlation coefficients p, (s)
constructed according to the procedure presented in Section 3.3. The analysis covers
three exponents ¢ € 2,3, 4] and three different scales s € [42, 645, 17335] with node
color corresponds to the sector to which given asset belongs and node size indicating
the value of the betweenness coefficient, according to the legend presented at the
bottom of the figure.

For small scales s = 42, regardless of the considered scale, MSTs assume chain-
like shape, and nodes are not grouped by the sector. Such a structure results from
weak correlations between time series produced by the model in a small scales regime,
which on average vary from p2 (42) = 0.07 to p3,(42) = 0.24 (see Table 8.2).

Considering medium scale s = 645, MSTs have a chain-like structure as well;
however, nodes representing companies belonging to the same sector are typically
close to each other. As the graphs have an elongated structure, there are a few
nodes with increased betweenness. Importantly, for small and medium scales, the
node 1, which suppose to be an index leader is marginalised.

Aslarger ¢ exponents are considered, correlations between assets become stronger,
although they depend less on the sector to which particular instrument belongs (see
Table 8.2). This effect is manifested by the lower convergence between J'™ v, ma-
trices and the graph structure. For example, a few nodes that for ¢ = 2, s = 645 and
q = 2,5 = 645 are surrounded by nodes belonging to the same or connected sector,
whereas for ¢ = 4,s = 645 are attached to completely different basket (e.g., node
30 and 19). Stronger cross-correlations between large fluctuations of components
belonging to different sectors, as was shown in Section 3.3, are also observed in real
financial markets.

!The entire J" and 7, matrices are available in Appendix B.
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Figure 8.5: Minimal spanning trees built upon multiscale cross-correlation coefficient p, (s)
between returns of DJIA-inspired artificial index components for scales s € [42,645,17335] and
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contains graphs calculated for different ¢ parameter. Nodes colors indicate the sector to which the
particular asset belongs (black: ’central node’, blue: Sector 1, orange: Sector 2, yellow: Sector 3,
green: Sector 4 and purple: Sector 5). Node size denotes the value of the betweenness coefficient,
according to the legend presented at the bottom of the figure.

The highest consistency between structure defined in J* and 7, matrices and
obtained MSTs is visible for the largest scales (panels (g)-(i) of Figure 8.5). In
this case, clusters of nodes denoting different sectors are clearly visible. Moreover,
Asset 1 assumes a central position in the graph and links different sectors regardless
of the considered size of the fluctuations. Naturally, the importance of this node
measured by its betweenness is the highest for each ¢ parameter - b; &~ 0.75. Minor
discrepancies between the J"™ and 7, matrix structures and obtained MSTs are
noticeable in the composition of cluster. Not all nodes that belong to given sector are
connected to sector leader. Naturally, these discrepancies have roots in the stochastic
character of the model and the fact that time series are not fully synchronized as
the agents, to some degree, behave independently.

In order to quantitatively describe MSTs build upon generalized cross-correlations
coefficients of the generated time series, the node degree distribution and average
path length were determined. Because the simulation consisted of a limited num-
ber of subsystems (30), it was not possible to clearly affirms if the node degree
distribution obeys power law typical for the financial markets; however, seedbeds
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for this type of dependence are visible, especially when larger scales are considered
s € [645,17335].
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Figure 8.6: Cumulative distribution of the node degree of MSTs built upon the multiscale cross-
correlation coefficient p?, (s), determined for three different scales: s = 42 (panel on the left-hand
side), s = 645 (panel in the middle), s = 17335 (panel on the right-hand side) and three different
scaling parameters ¢ = 2 (black circles), ¢ = 3 (blue squares), ¢ = 4 (orange diamonds).

Moreover, changes in the coupling between assets and market organization are
reflected in the average shortest path length L (Table 8.2). For small and medium
scales, the average shortest path length increases along with increase in ¢ parameter,
which is consistent with the results obtained for real financial markets. For the
largest considered scale s = 17335 graphs layouts almost fully align with the J'™
and 7, matrices structure; thus, the average shortest path lengths do not change
significantly with increase in ¢ exponent.

Table 8.2: Average path length L (upper table) of the MSTs built upon non-linear cross-correlation
coefficients pZ, (s) between components of the DJIA-inspired artificial index determined for the
three exponents g € [2,3,4] and the three scales s € [42,645,17335]. The table at the bottom
presents the average value of the generalized cross-correlation coefficient p%,(s) for each scale and
q exponent considered.

L qgq=2 q=3 q=4

s =42 5.04 5.21 5.32
s = 645 5.20 5.34 5.37
s =17335 | 3.72 3.73 3.68

o) | q=2 q=3 q=4
s=42 |007+006 014+008 024+0.11
s=645 | 0394011 045+0.12 0.50+0.13
s=17335 | 0.89+0.03 0.90+0.03 0.90+0.03

The network analysis of the non-linear cross-correlations of the artificial index
inspired by DJIA demonstrates that the proposed model is able to recreate some
of the market’s structure features. Even a relatively simple definition of the depen-
dencies between subsystems that covered five sectors linked by a single asset is able
to sufficiently reflect strong interdependencies between assets belonging to the same
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basket as well as changes of the MSTs structure observed for different ¢ exponents.
Increasing dispersion of the MST along with the rise of ¢ exponent is noticeable in
small and middle scales regime. When large fluctuations are considered, the DJIA-
inspired artificial market structure does not break-down, whereas, in the case of
DJIA components, such disorganization was observed (see Figure 3.8). Neverthe-
less, some discrepancies between the real market structure and one recreated by the
model do not prevent its practical application. Moreover, the proposed framework
is highly adjustable; thus, the various configurations of the market structures could
be reproduced by proper manipulation of the J™ and +,,, matrices as well as other
parameters of the model.
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Chapter 9

Summary

The financial market is an example of a complex system with an enormous number
of dependencies and intricate non-linear correlations between components. Analy-
sis of such systems requires applying sophisticated mathematical tools, whereas its
modeling using a traditional top-down approach seems to be a breakneck task. The
research described in this dissertation, based on the difficulties mentioned above,
can be divided into two blocks. The first focuses on identification and quantification
of financial time series properties, with extra emphasis on non-linear autocorrela-
tions and cross-correlations, including temporal evolution of these features. The
research was conducted for daily returns of five indices that represent major stock
exchanges (DJIA, NASDAQ, DAX, FTSE, and NIKKEI) and individual companies
quoted within DJIA (list of analysed indices and components is available in Ap-
pendix A). The second, part of this dissertation, comprehensively describes usage of
agent-based models inspired by physical phenomena in reproducing not only finan-
cial time series non-linear autocorrelations but also reflecting the cross-dependencies
between assets. In this block, two variations of the Ising Model were discussed (Iori’s
model and Bornholdt’s model), and, based on their pros and cons, the generalized
multi-asset three-state model of a financial market was proposed and then compre-
hensively studied in the context of reproducing complex phenomena observed in real
financial markets.

The financial time series analysis confirmed existence of so-called, stylized facts.
As has been demonstrated, the cumulative distributions of the financial indices and
individual components daily returns, are leptokurtic with an elongated central part
and heavy tails, regardless of the market on which they are quoted. Moreover,
analysis of the correlations of returns and volatility has confirmed the absence of
any significant linear dependencies; however, it also showed that these signals are
characterized by strong, long-range non-linear autocorrelations. Additionally, anal-
ysis of the cross-correlation function of volatility demonstrated that assets could be
strongly coupled. The strongest cross-dependencies, measured by function C,,,, were
observed for indices that, in part, are built upon common components, as the DJIA
and NASDAQ), as well as between companies belonging to the same sector as IBM
and HPQ (see Figure 2.5).

To quantitatively describe non-linear self and inter-dependencies between con-
sidered financial assets, advanced multifractal formalism was introduced. In Chap-
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ter Three, two multiscale analysis methods, namely, MFDFA and MFCCA, were
comprehensively described and applied to financial time series. The singularity
spectra obtained for major instruments are broad and typically reveal
left-hand side asymmetry, which indicates great complexity of the anal-
ysed signal, especially in large fluctuations (see Figure 3.5). Similar properties
of the multifractal spectra were observed for the the DJIA components’ time series;
however, in this case, the non-linear correlations in small fluctuations were stronger,
as manifested by more symmetrical f(«) functions. Such a discrepancy between
indices’ and components’ singularity spectra is rooted in the nature of the latter
instrument. Since indices are constructed of components that may have different
multiscale characteristics, the global hierarchical organization of the index (which is
sum of components) becomes distorted, and the multifractal spectrum then becomes
asymmetric.

Non-trivial multiscale characteristics are also observable on the level of asset
cross-dependencies. The cross-fluctuations functions of analysed financial
instruments obey the power law over a large range of scales. The exception
here is the DJIA-NIKKEI pair, which, as was shown, in the considered period does
not have linear nor non-linear cross-correlations. On the grounds of the obtained
F.y(q, s) functions, generalized cross-correlation coefficients pg, (s) were determined.
The strongest dependencies were observed for the DJIA-NASDAQ pair, as these
instruments have common components. On individual companies level, the highest
cross-correlations were observed for components representing the same sector, such
as HPQ and IBM (see Figure 3.7). Interestingly, the differences in the value of
pgy(s) between assets belonging to the same basket and companies which operates
in distinct business areas disappear along with an increase in scale s or when large
fluctuations are considered. In the former case, the global trends that exist on large
scales play a significant role, whereas the latter has its roots in the higher coupling
between stock shares in volatile market periods (e.g., during bubble crashes).

Additionally, the non-linear cross-correlations were investigated using complex
network formalism. Based on the pf (s) coefficients obtained for 30 components
of the DJIA, minimal spanning trees for three different scales s and three values
of ¢ exponent were built. This analysis showed that, depending on consid-
ered scales and fluctuation sizes, market components correlation struc-
ture is changing (see Figure 3.8). Due to limited number of analysed assets, the
quantitative description of observed graph structure was constricted; however, some
signatures of power law characteristic of node degree distribution and the star-like
structures with General Electric (or United Technologies) as a central node, were
observed, aligning with findings for high frequency data reported in study [125].

Financial market complexity was also captured in the time dimension. For this
purpose, the singularity spectra of the major stock indices and components from
the DJIA were determined in windows of approximately twenty years in length and
moved by a window step of around one trading month. Obtained results showed
that the hierarchical organization of the financial time series is continu-
ally evolving through a variety of shapes. The changes are visible on the level
of singularity spectra width and its asymmetry, and are usually linked to major fi-
nancial market events such as the Black Monday Crash or the bankruptcy of Lehman
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Brothers (see Figure 3.10). However, the intensity of these effects varies depending
on analysed assets. For instance, DAX’s multifractal properties are relatively steady
over the considered period of time, whereas NIKKEI, from the multiscale analysis
perspective, was not significantly affected by Black Monday Crash; however, sub-
stantial changes were observed after the Japanese asset price bubble burst in 1991.
As was demonstrated in subsequent sections of this study, the changes in hierar-
chical organization visible in the index can be linked with periods of higher and
lower degree of correlations among its components. The multifractal rolling window
analysis of the DJIA proxy index and its components confirmed this hypothesis (see
Figures 3.13 and 3.14).

The second, more critical part of this thesis focuses on modeling previously
quantified multiscale features of financial time series using agent-based models. The
first framework considered in the context of its ability to reproduce stylized facts,
including non-linear correlations of returns, was modified Random Field Ising Model
proposed by Gulia Iori. As was demonstrated in Section 4.3.1, this framework
can recreate the vast majority of financial time series properties (see Figure 4.6);
however, these features appear for near-critical parameters of the model, specifically
for interaction probabilities close to the percolation threshold, which translates into
framework instability (see Figure 4.5). Moreover, Iori model is not able to resemble
the vibrant hierarchical organization (Aa > 0.3) often observed in financial time
series.

The second examined framework was the one introduced by Bornholdt. In this
case, the primary modification compared to the classic Ising Model is that agents can
follow one of two different strategies. Practically speaking, this means that individu-
als are divided into two groups: fundamentalists and chartists. As shown in Section
4.3.2, model construction results in the system’s intermittent on-off behaviour man-
ifested by metastable and rearrangement phases. The analysed solution, like the one
proposed by lori, can recreate stylized facts; however, the distributions of generated
do not obey inverse cubic law. On the other hand, the hierarchical organization of
the produced time series is richer than that observed in Iori model; nonetheless, it
was still insufficient to model instruments characterised by rich non-linear correla-
tions (see Figure 4.8). The study of Iori’s and Bornholdt’s models revealed following
limitations of these frameworks in the context of multiscale correlations generation:

e Neither could produce time series characterised by a rich hierarchical organi-
zation (having singularity spectrum width A« > 0.3).
e They are not able to simulate multiple coupled assets.

e In Bornholdt’s model, agents are not allowed to stay out of the market (i.e.,
the model incorporates only two states: buy and sell).

e Jori’s framework simulations for agent-agent interaction probability p close to
the percolation threshold are unstable.

To fill these gaps, a new, multi-asset three-state model of financial market
was proposed. The framework is inspired by the Ising Model and, similarly to the
solution introduced by Bornholdt, incorporates a minority game mechanism that
divides agents into two groups: fundamentalist and chartists. Moreover, the new
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framework allows agents to assume an on-hold state. Another significant improve-
ment of the proposed framework is the ability to simulate multiple coupled assets.
The coupling between instruments is realized on the local and global lev-
els. Agents exchange information with the nearest neighbours about their
position in other assets (local interaction) and are influenced by overall
sentiment of investors regarding these instruments (global interaction).

As shown in Section 6.1, the microscopic dynamics of the single-asset variant of
the model can be described as interlaced phases of metastability, when agents form
large clusters of individuals having the same state, and rearrangements, which are
characterised by the spatial disorganisation and breakdown of the clustered structure
(see Figure 6.1). In this context, the metastable and rearrangement periods have
much in common with phase transitions from ordered to unordered states observed
in physical systems (e.g., phase transition in ferromagnetic materials). Notably, con-
sidered phases directly corresponded to increased and decreased collectivity among
agents, which reveals itself in small and large fluctuations in the generated returns.
Collective behaviour of agents themselves was identified as a primary source of fluc-
tuations clustering observed in produced signals. The obtained result suggests that
the hierarchical organization of the financial time series is related to the market par-
ticipants’ collective behavior and the fact that, besides observing asset valuation,
investors consider other traders’ positions.

In the model, level of collectivity among agents and, by extension, the degree of
hierarchical organization of the generated time series can be controlled several ways.
The first one relies on changing market temperature (i.e., increasing/decreasing 3
parameter, which result in steeper/more steady probability function p, see Figure
6.4), whereas the second is based on modification of agent-agent local interaction
strength Jll]m These two parameters are, to some degree, complementary. Practi-
cally speaking, by increasing or decreasing one or another, similar results can be
obtained. Moreover, as shown by manipulation of § parameter, excessive collec-
tivity among agents leads to another phenomenon having the appearance of phase
transition (see Figure 6.8). Assuming that singularity spectrum width of signal gen-
erated by the model is the measure of system order, then the plunge in A« caused
by temporal freeze of system configuration (i.e., system configuration remains the
same over consecutive time steps) observed for 5 > 2.0 can be perceived as a phase
transition (see Figure 6.8). In the financial markets, such effects are related to the
asset liquidity and are observed in assets characterised by low transaction volume
(e.g., early years of the Bitcoin)

In the context of the non-linear autocorrelations of signals generated by the
model, another element of the framework is noteworthy, namely, agents ability to
assume on-hold position and related threshold mechanism, which positively impacts
the hierarchical organization of generated returns, especially when the collectivity
of the individuals is high (see Figure 6.20). By design, the threshold mechanism
is directly linked to the system’s transaction volume. Thanks to that, when the
market is quiet (i.e., in a meta-stable phase), agents willingly participate in trading;
on the other hand, when the market is volatile (i.e., in a rearrangement phase),
some of the individuals perceive this situation as too hazardous and assume on-
hold position. As a result, signals generated by the single-asset variant of
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the model are characterized by broad singularity spectrum - Aa ~ 0.4.
By introducing an on-hold state, the framework can be applied in modeling of the
financial instruments characterised by rich multifractal structure, which, as was
demonstrated, is not possible using well-known frameworks proposed in [71] or |70].

From the perspective of the hierarchical organization of the time series produced
by the model, not without significance is an agent’s ability to follow different strate-
gies. As shown in Section 6.4, when the individuals become more independent from
their neighbours (i.e. have higher value of «.) the linear anti-persistence of the gen-
erated signals appear, and the volatility clusters become less pronounced, whereas
the range of scaling of the fluctuations functions shrinks (see Figure 6.14). Such
behaviour of agents corresponds to the situation when investors are uncertain about
their investment strategy and therefore frequently change market position.

The multifractal rolling window analysis of the signals produced by the single-
asset variant of the model, presented in Section 6.6, showed that the model can
generate signals that are charaterised by periods of symmetrization as
well as increased width of the singularity spectra (see Figures 6.21 and 6.22).
Moreover, manipulating model parameters, can generate time series characterised
by strong linear antipersistence or temporal breakdown in scaling properties of small
fluctuations (typical of low liquidity assets).

In Chapter Seven, analysis of the model characteristics was extended to two-
asset scenario. As was demonstrated, the model by incorporation of global
and local interactions between assets is able to generate pair of signals
characterised by multiscale cross-correlations. Moreover, it was shown that
the cross-asset agent-agent local interaction is the main factor responsible for non-
linear cross dependencies between produced signals; however, the most convincing
results were obtained for the simulations in which both: local and global interactions
were incorporated (see Figure 7.7). This suggests that the correlations between fi-
nancial instruments primarily come from direct interactions between investors and,
to lesser degree, from asset valuation itself. Since transactions made by large, insti-
tutional investors (e.g., hedge funds, banks) are the primary drivers of asset prices
implies that these market participants, in their investment decision look closely at
positions of their competitors in different instruments and to lesser degree are driven
by financial instrument price.

As was demonstrated in Chapter Eight, new framework can be applied to
building multi-assets artificial indices that reproduce non-linear correla-
tions between many financial instruments (see Figure 8.2). In section 8.2,
based on ten-assets artificial index it was presented that signals generated by the
model, like financial time series, are characterised by phases of increased and de-
creased cross-dependencies (see Figures 8.3). The second artificial index considered
in this thesis was inspired by DJIA and consisted of thirty assets divided into dif-
ferent sectors. In this case, the analysis focused on investigation of the multiscale
cross-correlations captured within complex network formalism. Using ¢-dependent
minimal spanning trees, it was demonstrated that the model can reflect different
market structures on different scales, including star-like and chain-like or-
ganization (see Figure 8.5). Even though the framework does not generate signals
cross-correlated on small scales, it can model real financial market structure ob-
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served for large scales and large returns. As the structure of dependencies between
components of artificial indices can be controlled by Jf]m and 7, matrices, thereby,
further modification of the local and global coupling between modeled
assets is possible. In turn, the framework can be applied to recreating
multiscale cross-dependencies structure observed in various systems.

To sum up, analysis of the multiscale properties of the major indices and of
DJIA components confirmed that financial time series are characterised by non-linear
autocorrelations and cross-correlations. Quantification of these features helped in
modeling them using authorial agent-based model. The proposed Ising-inspired
multi-asset three-state model by allowing agents to stay out of the market and
by incorporating coupling between assets on the local and global levels is able to
accurately reproduce major multiscale characteristics of the financial data as well
as facilitate understanding of the market mechanisms that underlie the hierarchical
organization observed in returns signals.
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Appendix A

List of symbols

List of stock indices and exchanges

Symbol | Name Exchange
DAX Deutscher Aktienindex Frankfurt Stock Exchange
DJIA Dow Jones Industrials Average New Your Stock Exchange
FTSE Financial Times Stock Exchange London Stock Exchange

NASDAQ NASDAQ NASDAQ stock market
NIKKEI Nikkei heikin kabuka Tokyo Stock Exchange
List of analysed DJIA components
Symbol \ Name Sector
AA Alcoa Energy
AAPL Apple Inc. 1T
AIG AIG Finance
AXP American Express Finance
BA Boeing Industrials
C Citigroup Finance
CAT Caterpillar Industrials
CVvX Chevron Corporation Energy
DIS The Walt Disney Company Consumer Goods
GE General Electric Industrials
GT Goodyear Industrials
HON Honeywell Industrials
HPQ Hewlett-Packard Company 1T
IBM International Business Machines IT
INTC Intel IT
JNJ Johnson & Johnson Healthcare
JPM JPMorgan Chase Finance
KO The Coca-Cola Company Consumer Goods
MCD McDonalds Consumer Goods
MMM 3M Industrials
MO Altria Consumer Goods
MRK Merck & Co. Healthcare
NKE Nike Consumer Goods
PFE Pfizer Healthcare
PG Procter & Gamble Consumer Goods
RTX Raytheon Technologies Industrials
(United Technologies Corporation)
TRV The Travelers Companies Finance
WBA Walgreens Boots Alliance Consumer Goods
WMT UnitedHealth Group Healthcare
XOM ExxonMobil Energy
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Appendix B

Parameters of artificial index
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Inter-asset global coupling coefficients matrix
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