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Abstract

Selected systems of different size scales have been studied in view of their applicability
as waveguides for spin waves in various frequency ranges. Localized interface states have
been found within a band of propagative waves on a junction of two ferromagnetic chains
in addition to bound states in the frequency gaps. Total reflection in the whole frequency
range has been found on an interface of two such chains coupled via antiferromagnetic
interactions. The magnetic ground states have been found with the use of a software
for micromagnetic computations for elliptically shaped flat nanoparticles (macrospins) of
permalloy arranged in 1D chains. Ranges of stability /metastability of particular configu-
rations as well as the related magnetic hysteresis loops resulting from the dipolar intera-
particle interactions have been delimited. The frequencies of low lying spin waves as well
as the corresponding spin precession profiles in such chains have been obtained with a
software provided by the Department of Physics and Earth Sciences of the University of
Ferrara. The mechanisms of the configuration switching under a homogeneous external
magnetic field have been shown to be related with softening of the appropriate spin waves.
A possibility of recovery of the stable antiferromagnetic configuration has been predicted
by varying the anisotropy of particles. A number of configurations in the simplest two-spin
model of macrospin chain have been revealed as a function of the macrospins separation
in the chain. An evidence of a discontinuous transformation without, however, a hysteresis

has been found.

Streszczenie

Wybrane uktady magnetyczne mogace stuzy¢ jako falowody dla fal spinowych zostaty
zbadane pod wzgledem konfiguracji rownowagowych i wzbudzen elementarnych. Wykryto
zlokalizowane stany o czesto$ciach w przerwie wzbronionej i - co ciekawe - w pasmie fal
objetosciowych na ztaczach tancuchéw spinowych w zaleznosci od parametréw ich odd-
ziatywan. Stwierdzono brak fali przechodzacej na ztaczu ferromagnetycznych tancuchéw
spinowych sprzezonych oddzialywaniem antyferromagnetycznym. Uzywajac oprogramowa-
nia do obliczen mikromagnetycznych wyznaczono konfiguracje rownowagowe oraz ksz-
talty histerezy magnetycznej w tancuchach ptaskich eliptycznych czastek magnetycznych.
Czestosci i polaryzacje fal spinowych w takich tancuchach zbadano za pomoca opro-
gramowania dostarczonego przez Wydzial Fizyki i Nauk o Ziemi Uniwersytetu w Fer-
rarze. Mechanizm przelagczania konfiguracji okazal sie zwiazany z falami spinowymi o
czestosciach zdazajacych do zera (tzw. "migkkimi” modami). Stwierdzono, ze odzyskanie
konfiguracji antyferromagnetycznej w takich tancuchach jest mozliwe przez zmiane paramet-
row anizotropii. Skonstruowano najprostszy dwuspinowy model makrospinéw, zbadano
jego konfiguracje r6wnowagowe oraz wykryto przejscie, ktore bedac niecigglym nie wykazuje

histerezy, zatem przejawia cechy przejscia drugiego rodzaju.






Introduction

This thesis presents studies of model low-dimensional magnetic systems treated
with analytical, semi analytical, and numerical methods. The systems have been se-
lected to be interesting for applications as guides for spin waves in various frequency
regions starting from single ionic spins interacting via exchange and dipolar forces to
macrospins, i.e. ferromagnetic nanoparticles that, due to their elongated shapes and
the related anisotropy, behave in some analogy with single spins. Whereas the spin
waves (magnons) in magnetic materials occur in the terahertz or higher frequency
regions, the frequencies of magnetic excitations in macrospins can be as low as giga-
hertzs. This makes the latter system interesting for signal transmission in magnetic
devices. The calculations of energies and of the elementary excitations in the simplest
one-dimensional systems involve relatively simple analytical formulae that can be
treated with routine software for symbolic and numerical calculations such as Maple
Waterloo or Wolfram Mathematica. The problem is particularly simple if the sys-
tem exhibits a translational invariance. The excitations then are Bloch waves, whose
frequencies and polarization vectors are obtained by solving the eigenproblem for
a relatively low-dimensional dynamical matrix for every wave vector from the first
Brillouin zone. A difficulty arises at the presence of inhomogeneities such as surfaces
and/or interfaces. A Green function technique proposed by L. Dobrzynski then is
useful especially when the interactions are of a short spatial range. On the other
hand, modelling of the equilibrium structure and dynamics of macrospins involves
numerous degrees of freedom. The number of the degrees of freedom is related with
the size of elementary cells (voxels) the macrospin, treated as a continuous magnet,
should be divided into to ensure that the magnetization in a single voxel is homoge-
neous at all stages of computations. The numerical tools used to determine the static
properties of the macrospins are The Object Oriented MicroMagnetic Framework
(OOMMEF) which is an open source software developed at the Information Technol-
ogy Laboratory of the National Institute of Standards and Technology (ITL/NIST,
USA) whereas the spin wave properties have been studied with the Dynamical Ma-
trix Method (DMM) software provided by the Department of Physics and Earth

Sciences of the University of Ferrara.



Chapter 1. Introduction

The most interesting results obtained in the thesis are

e Finding of interface localized magnon states in the frequency gap and in the
band of bulk waves on an interface between two 1D ferromagnetic chains of

single spins coupled in an antiferromagnetic manner.

e Prediction of singularites of wave transmission at the above interface, in par-
ticular a total wave reflection in the dispersive range of the subchain into which

the wave should be in principle transmitted.

e Design of a chain of flat elliptically shaped macrospins capable of recovering
the antiferromagnetic configuration by means of a homogeneous external field

or anisotropy parameters.

e Systematic analysis of a chain of complexes, called here bi-spins, consisting of
two single spins as the simplest model of macrospins and finding its predictive

power for more developed systems.

e Finding, in the above system, of a distance-controlled transformation of a fer-
romagnetic configuration to an antiferromagnetic one in which a discontinuous

structural change proceeds by way of second order phase transition.

The methods used in the thesis and their physical foundations are outlined in
Chapter 2. Effects of interfaces on the formation of localized states and on the
transmission and reflection of the travelling waves in chains of single spins interact-
ing by exchange and magnetic anisotropy forces is the subject of Chapter 3. Chapter
4 starts with an analysis of properties of a flat elliptically shaped magnetic parti-
cle, or macrospin, under external magnetic field. In the subsequent sections of this
chapter the equilibrium configurations and the selected low-frequency spin waves are
studied in various chains of such particles in view of elucidation of the mechanisms
of transformations and of the related soft modes. This knowledge is exploited in
Chapter 5 to design optimal parameters allowing one to switch the system between
its ferromagnetic and antiferromagntic configuration. The main idea relies on an
interplay of the anisotropy of the adjacent macrospins; the anisotropy is controlled
either by the geometry (shape anisotropy) or by a material anisotropy parameter.
Chapter 6 demonstrates how the properties of a macrospin can be modelled with the
use of a complex of as few as two spins (a bi-spin). The analogies turn out surpris-
ingly close, e.g. the shape anisotropy keeping the spins within the plane of a chain of
such bi-spins. Additionally, the simplicity of the model allows one to easily manip-
ulate the parameters. The most surprising finding is that a variation of the lattice

spacing in such a chain results in a discontinuous transformation which, however,
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shows a mode softening at a single point and no hysteresis or phase equilibrium, i.e.
properties characteristic of second order phase transition. This would be, thus,

a discontinuous second order phase transition. A simple complex of four spins is used
to compare the direct single-spins computations with those employing macrospin al-
gorithms. The results and the perspectives for further research are summarized in
Chapter 7.






Physical bases and mathematical methods

In this chapter we briefly outline foundations of the methods used in the descrip-
tion of the equilibrium states and elementary excitations in systems of magnetic
moments.

We first outline some generalities on the magnetism of matter.

Magnetic materials

Diamagnetic Paramagnetic Magnetic

Ferromagnetic Antiferromagnetic Ferrimagnetic Antiferrimagnetic

Figure 2.1: Types of magnetic materials.

Materials can be classified into those possessing and not possessing permanent
magnetic moments in their structure. The former are called magnetic and the lat-
ter non-magnetic. However, all materials show a magnetization related with mutual
motions of positive and negative charges when subject to an external field. This kind
of magnetization is always opposite to the applied field and the materials exhibiting
but this magnetization fall into the category of diamagnetic. The reaction of the
magnetic materials to an external field is much more versatile depending on the
kind of ordering of the ionic permanent magnetic moments. The state of disorder
of magnetic moments, characteristic of paramagnets, prevents a spontaneous mag-
netization and an applied field produces a coerced or forced magnetization parallel
to the field. A parallel ordering of the microscopic moments defines ferromagnets.
They show a spontaneous magnetization when put into a state, called monodomain
state, in which the magnetic domains point in a one common direction. This is
however usually not the most energetically favorable state because it produces an
external field. Typical domain arrangement reduced energy are shown in Fig. 2.2
Therefore, an additional external field is often needed to make the domains parallel.
However, it was shown by Brown [1] that giving an appropriate shape to a sample
of appropriate size may end up in a monodomain magnet. Paradoxically such mon-
odomain systems are often called macrospins because they contain many individual
ionic spins. Apart from the ferromagnetic order a number of magnetic ordering are
known some of them are presented in Fig. 2.1. Mutually antiparallel order of equal

spins is characteristic of antiferromagnet. Analogous order of ionic spins of different
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spins defines ferrimagntic materials. Numerous kinds of non-colinear ordering are
also known: canted, helical etc. In the present dissertation we deal with ferromag-
netic, antiferromagnetic and ferrimagnetic order of single individual spins typical for

magnetic ions as well as of well-ordered macrospins.

Figure 2.2: Monodomain to domain and closing domain magnetic material.

A system rests in equilibrium if its thermodynamic potential, appropriately de-
fined to the external conditions, shows a minimum with respect to all the degrees of
freedom. If the thermal fluctuations can be neglected the potential is just the poten-
tial energy. In this dissertation we consider systems of magnetic moments of constant
lengths arranged in rigid lattices. Thermal macrospin are not considerate. There-
fore, the relevant degrees of freedom are the spatial orientations of the moments.
When driven out of its equilibrium state the system gets into motion governed by

the equations discussed below.

2.1 General equations of motion for a system of

coupled magnetic moments

We consider a system consisting of magnetic moments fi that may change their
spatial orientations but have fixed lengths. When reported with respect to a Carte-
sian reference frame, common to all the moments, the pseudovector of magnetic

moment reads

i = p’ (sinfcosg, sinfsing, costd) = p*m (2.1)

Each magnetic moment is associated with the corresponding angular momentum

[ =

==y

(2.2)

where v is the gyromagnetic ratio. If the configuration of magnetic moments under

study is in equilibrium the potential energy U, as a function of the angular deviations

(60, 66) = (q1ks g2x) = Gi (2.3)

6
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of particular moments labeled by an index k, exhibits a minimum. Therefore it

can be expressed as a positive definite quadratic form

Z Z Ekk’Qlez’k’ (24)

k k=1
The equations of motion in the Hamilton formalism read

Opir _ oUu

(2.5)

where the p; are the generalized momenta conjugated with the generalized co-
ordinates ¢;;. Because the generalized coordinates are the rotations about the unit
vectors &)11@ =z, (i)gk = (—sinbxz, cos¢yy) by the angles ¢y and d6j, respectively, the
conjugated momenta are the projections of the variations of the angular momenta

onto these unit vectors

S A O 8 5

(no summation over the repeated indlces).

In accordance with @, $o; one finds

Pk = —%smekaek
h 2.7
Dok = T:Sin9k5¢k

With the generalized momenta of eqs. 2.7 and the potential energy of eq. 2.4 the

equations of motion of the system are (a variant of Landau and Lifshitz equations).

. STNUE k! (2 8)
- b9 00 .
= s sinby, %: (Ek’f'gm/ + Ekkf59k/)

where the second derivatives E,?,;, of the potential energy U with respect to the spin
orientation variables form a positive definite matrix called Hessian matrix. Because

of the time invariance the solutions of eq. 2.8 have an oscillatory form

G (t) = . (0) e™™" (2.9)

with a frequency (pulsation) w. The solutions are, therefore, wave-like and in the
cases of spatial periodicity have a form of Bloch waves (see section 2.3). In the next
subsection we discuss the relation between the eigenvalues of the Hessian matrix

and the frequencies of spin waves.
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2.2 Hessian to Magnon

It has been shown by Grimsditch and Montoncello [2] that the Landau- Lifshitz-
Gilbert equations of motion for a system of magnetic moments of constant magni-
tudes, e.g. spins, can be expressed by the matrix ﬁ of second derivatives of the
energy with respect to deviation angles d¢,,, d6,,,n = 1...N , where N is the number
of interacting spins. The equations are given in eq. 2.8 of previous section. The ma-
trix ﬁ is of course symmetric and therefore it has all its eigenvalues Fj real and

the eigenvectors wy can be selected as orthonormal real vectors.

ﬁtﬁk = Epw, k = 1...2N, no summation (2.10)

The eigenvalues Fj are positive, which is a necessary condition for the config-
uration being stable or at least metastable. An instability of the configuration is
marked by one of the eigenvalues Ej, tending to zero. The corresponding eigenvector
indicates the system of the spin’s deviations which costs no energy to the second
order of the Taylor expansion of the energy. In practice it means that this system
of deviations is the beginning of the path by which the spins quit the configuration
in their search for a new, more stable configuration. The instability is, on the other
hand, accompanied by a magnon frequency tending to zero. It is, therefore, inter-
esting to study the relation between the eigenvalues of the Hessian matrix and the
frequencies of the spin excitations in the system.

We can write the Landau-Lifshitz-Gilbert equations of motion in the following

form

<=
PH = —iws, (2.11)

=
where w is the proportional to the frequency (pulsation), and the matrix P

consists of antisymmetric 2 x 2 diagonal blocks:

0 -1 0 0 0
1 0 0 0

P =10 0 -1 0 (2.12)
0 10 0

In fact the matrix ?? is the dynamical matrix for magnons and the eq. 2.11
defines an eigenproblem for a non Hermitean matrix.

We shall discuss how the eigenvectors ¢ , i.e. the vectors of spatial profiles of the
spin motion or polarization vectors of magnons, are related with the eigenvectors

Wy . To check it we expand the vector ¢ in the basis of vectors wy,
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2N
k=1

Inserting the expansion 2.13 into eq. 2.11 we obtain a homogeneous system of

equations, for the coefficients ay

2N
<= g
S (PEc+iwT ) whay = 0. (2.14)
k=1
If we left multiply the eq. 2.14 by iw] we arrive at the eigenproblem

2N
Z Mlka,k = waqy (2.15)
k=1
with the matrix
=iy
V=wmT (2.16)
where
—~ g
My, = il P iy, (2.17)

is a purely imaginary antisymmetric but at the same time Herimitean matrix, L

is the diagonal matrix with the eigenvalues Ej on its diagonal

Lo = S Erm (2.18)

=
We have to find the eigenvectors @ and eigenvalues w of the product W =ML

of two Hermitean matrices

W'Ld=wa. (2.19)

For this purpose it is useful to introduce a transformation

bk = \/Ekak. (220)

which can be abbreviated

- 4
b= L'V (2.21)
Aperd
Substituting eq. 2.21 into eq. 2.19 and multiplying both sides by the matrix L /2
yields:

Rperd /97 ST -
LM TV = DF = wh, (2.22)
<=
The matrix D is antisymmetric, but because it is purely imaginary it is at the

same time Hermitean. Therefore all the eigenvalues w are real as it should be for the
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frequencies in a conservative system. On the other hand, for each eigenvalue w there
exists an opposite one —w. The eigenvectors corresponding to such opposite eigen-
values are mutually complex conjugate. Indeed %)T = —ﬁ = %)* Consequently,
taking a complex conjugate of eq. 2.22 and remembering that the eigenvalues w are

real we obtain

T = Db = w0 = wib* (2.23)
which is equivalent to
Do = —wib* (2.24)

The essential step between the Hessian matrix and the calculus of the frequencies

of the spin excitations lie in the relations 2.17 and 2.18.

2.2.1 The case of soft mode

A special treatment is needed when one of the eigenvalues of eq.2.10, say E; = 0,
i.e. the system is on the verge of its stability. Because the transformation 2.20 does
not define the coefficient a; we have to come back to the generic eigenproblem of
eq. 2.19. We remark that the first column of the matrix ﬁ?eonsis‘cs exclusively of
zeros. Therefore, the solution of eq. 2.19 then is a; = 1, a;, = 0 for k£ # 1 and w = 0.
Bearing in mind the relation 2.13 and the fact that the eigenvectors of the Hessian
matrix are real we conclude that the space profile of the soft mode is identical with
the eigenvector corresponding to the vanishing eigenvalue of the Hessian matrix. The
eigenvector is real, which is a degenerate limit of an ellipse whose long axis becomes
infinitely longer than its short axis. This result facilitates study of soft modes in

magnetic systems

2.3 Bloch waves

Many systems considered here show a spatial periodicity in that the equilibrium

configuration of the relevant degrees of freedom fulfill the relation.

W(F) = @(F+ dm + bn + &p), (2.25)

where @, g, ¢ are the periods in three spatial dimensions and m,n,p are integer
numbers. In the cases considered here the quantities wy () are usually pseudovectors
of magnetization. A very general Bloch’s theorem [3] states that the elementary
excitations in such systems, i.e. the solutions of equations of motion in the absence

of external disturbances, take on the following form called Bloch’s wave

10
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SW(F, 1) = 0u(F)e Wk, (2.26)
where k is a wave vector within the first Brillouin zone, i.e. the Wigner-Seitz unit

cell in the reciprocal space. The prefactor dwy(7) shows the same periodicity as the

original lattice

§u(F) = 6(7 4 d@m + bn + &p), (2.27)
It is clear from eqgs. 2.26 and 2.27, that the actual displacements from equilib-

rium in the unit cell located at the radius vector @m + bn + cp away from the one

corresponding to m =n = p =0 are

SW(F + a@m + bn + &p, t) = Sw(F)e iR (2.28)

In practical calculations it is useful to write the eq. 2.26 in the form

ST, 1) = §u(7)ewH@m+on+a), (2.29)

where the displacements within the unit cell labeled by m = n = p = 0 are

directly given as duwjy(7). The latter quantity is usually called polarization vector

because it is an analogue of the polarization vector in an acoustic or electromagnetic

wave that should be multiplied by the phase factor e~ iwt+ik(@m+bn+) ¢ ohtain the
displacements in other unit cells and in the time instant selected as t = 0.

The excitations of magnetic moments from equilibrium are called spin waves even
though the magnetic moments are macroscopic and not quantum spins. The ap-
pellation is, however, adequate in that the excited magnetic moments effectuate
precession about their equilibrium orientations. When a wave-corpuscular dualism
comes into play, the spin waves are called magnons.

In the macrospin calculations the polarization vectors of the spin waves are rep-
resented by the precession ellipses of the magnetic moments as functions of the
position in the macrospin. The maps or profiles of the parameters characterizing the

ellipses are discussed in Chapters 4 and 5.

2.4 Symmetry of the Bloch waves

The foundations of the Bloch’s theorem lie in the group theory [4]. The space of
all the displacements of the system’s degrees of freedom from equilibrium values is
invariant under the symmetry operations (symmetry elements) of the system’s sym-
metry group. This means that any symmetry operation (symmetry element) applied
to this space transforms it into the same space. The space splits into subspaces each

corresponding to a star k of wave vectors generated from a given wave vector k by the

11
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symmetry elements of the group. This fact, resulting from the translational period-
icity, is sometimes summarized by saying that the wave vector (quasi momentum) is
a "good quantum number”. Further, the subspace corresponding to one arm k of the
star generally splits under the subgroup leaving this arm invariant (so called wave
vector group) into smaller subspaces. The smallest such subspaces, called irreducible,
which cannot be further split, correspond to a given frequency w (energy fw). In
other words every frequency (energy) of elementary excitation corresponds to an
irreducible representation[4] of the symmetry group of the system. The frequencies
of the excitations of different irreducible representations are generally different, and
they may exceptionally coincide (accidental degeneracy). The symmetry analysis is
particularly simple for the wave vector k= 0, i.e. at the Brillouin zone centre and at
the Brillouin zone border. In the former case the displacements in all the unit cells
are identical, and in the latter they are opposite in the adjacent cells.

An important simplification occurs when the symmetry group contains an opera-
tion, say i which when composed with itself produces the identity operation i? = e.
Such are: spatial inversion, mirror reflections and rotations by 180°. Also the spin re-
versal operation, called time reversal operation, shows this property. At the presence
of such an operation every mode of elementary excitation is either pair (symmetric)
or impair (antisymmetric), i.e. either invariant or changing in sign when subjected
to this operation. When considered as depending on some parameters the modes
of different symmetry (different irreducible representation, e.g. symmetric and anti-
symmetric) may cross. In contrast to that the modes of the same symmetry generally
show an anticrossing also called avoided crossing or repulsion. When their frequen-
cies approach they often show a hybridization, i.e. the same type of polarization

displaces from one branch to the other.

2.5 Micromagnetic computations - Dynamical Ma-
trix Method

As explained above the analysis of each system consists of two stages. First an
equilibrium configuration must be determined. It corresponds to a minimum of the
potential energy. If the minimum is global, the configuration is called stable. Local
minima correspond to metastable configurations. If thermal agitation is considered
a thermodynamical potential (free energy) adapted to the experimental conditions
should be used instead of energy. To practically deal with macrospins the continuous
medium approximation is used. The system then is divided into cells (voxels) so
small in size that their magnetization can be treated as homogeneous. The details of

this approach can be found in ref. [5, 6]. In every (meta-) stable configuration each

12
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macrospin exhibits a distribution of elementary spins (voxels). In the present work
the minima of energy are found with the use of the software OOMMF |7, 8]. If global
and local minima coexist in the given external conditions, the result of application
of the OOMMEF program depends on the initial configuration imposed by the user.
The external parameter mostly used in this study is the applied magnetic field.
The second step of the study of the spin dynamics is the calculus of the matrix of
the second derivatives of energy, in other words the Hessian matrix involved in the
equations of motion 2.17. The DMM software involving hybrid of micromagnetic and
analytical methods developed in Ferrara performs this calculus and then provides
the frequencies of the spin waves for every desired wavevector. The following diagram

illustrates the routine way of using the numerical methods.

Matrix elements

Equilibrium magnetic proportional to the
configuration torque acting at each cell
(second derivatives of the total energy) Eigenvalues
OOMME Dynamical L, = frequency @
Primitive cell \_> matrix (PBC) Diagonalization > <
with PBC B Eigenvectors
B-7, )V, =0 N )
Eigenvalue/eigenvector ( ,:,)kk v, = dm, mode profile

problem, based on Hamilton
equations of motion, Yk

Figure 2.3: Schematic diagram of Dynamical Matrix Method.

In the case of flat macrospins considered in Chapter 4 the equilibrium orienta-
tions of the magnetic moments of all the voxels lie in the plane of the macrospin.
In our coordinate system this is the (z,y) plane. The perpendicular z axis is always
considered to point out of the plane of the figure. Because the motion of the mo-
ments involved in the elementary excitations are precessions of the moments around
their equilibrium axes the z component of the precessing magnetic moment is al-
ways shifted by 7/2 with respect to the (z,y) component. This is illustrated in the

following scheme,

Y
o .4
7 X om(r) = @ cos(@r)z+i X109 Y sin( er)
Z stationary @ v v
solution Real Imaginary

Iy

precession

Figure 2.4: Reference system in description and example of complex polarization
vector.

An example of polarization vector of a k = 0 modes in an AF configuration of

13
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oval-shaped flat macrospins is shown in Fig 2.5. The z component of the precession
ellipses is represented with the use of a color code: blue corresponds to negative and
red to positive values whereas green stands for zero. The modes are both symmetric
with respect to an inversion center denoted by the letter A. They are at the same
time antisymmetric with respect to the point B. Of course both points A and B
are inversion centers in equilibrium. One can easily see that the frequencies of both

modes must be different.

009 0000

Figure 2.5: Example of precession profiles (polarization vectors) of two centrosym-
metric (and at the same time centroantisymmetric) modes at k = 0 in chain of
identical flat macrospins in AF configuration.
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Dynamics of 1D magnetic chain

Modern nanotechnology finds nowadays more and more efficient methods of de-
sign and fabrication of well-defined systems of interacting magnetic moments. The
moments may be those of nanoparticles [9] but they may also originate from mag-
netic ions embedded in more or less sophisticated organic matrices [10]. Materials
of this kind, generally called molecular magnets, are the subject of studies of the
Department of Magnetic Research of The Institute of Nuclear Physics. Both kinds
of systems are intensively studied in view of the size reduction of memory storage
devices [11] and other applications, spintronics, quantum computers included. In the
present thesis we present the simplest 1D systems that may be called "composite”.
They consist of distinct regions of different magnetic arrangement and coupling. The
surfaces and interfaces may involve still different magnetic interactions. It has been
recently reported that propagation of spin waves (even though the magnetic mo-
ments are not necessarily spins) or magnons is possible and observable in the kind
of systems [12]. Therefore, in what follows, we study transmission and reflections of
the waves at such inhomogeneities.

Using the Green function technique developed by L. Dobrzynski [13] we predict
the frequencies of magnons localized on selected interfaces of 1D ferromagnetic,
antiferromagnetic, ferrimagnetic, antiferrimagnetic systems. We then find the cou-
pling strengths at which the localized, infinitely lived ("true” [14, 15]) magnetic
waves transform into interface resonances marked by finite life times (”leaky waves”
[14, 15]). An interesting finding is that in some of the systems the localized true
magnons occur for frequencies belonging to bulk radiative bands. To exploit the
propagative properties of the systems we calculate the transmission and reflection
coefficients for given incident magnons. It turns out that the degrees of freedom ex-
cited in the reflection/transmission are orthogonal to those involved in the localized

magnon.
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Chapter 3. Dynamics of 1D magnetic chain

3.1 Model of 1D chain of identical magnetic mo-

ments with exchange interactions

The simples dynamics of any system in equilibrium is the find by the matrix of
second derivatives of the energy or hessian matrix. The values of the coefficients
EZ;, should be calculated from the specific model of interactions of the magnetic
moments. In the 1D case of the exchange interactions limited to the nearest neigh-
bours, with the same exchange constants J throughout the volume considered, the

energy is a sum of the scalar products of the neighbouring moments

U= () (0 = ), (3.1)

Expanding the reorienting normalized moments m} to the second order in the

generalized coordinates

2

oy, 2 2 0Py
k k ; P qik zggaqikqi,k qik9qik ( )

One finds the expansion of energy eq. 3.1

- TS o -
Y (G — @) H' (Grr — @) (3.3)
k
. . sin?0 0 o ' _
with the 2 x 2 matrix H = . The matrix is particularly simple for

0
0 = m/2. The corresponding model is depicted in Figure 3.1.

Z z z

Y

/\ S /\ /\

56,
X X X

Figure 3.1: Linear infinite chain of magnetic moments

The non-zero coefficients are
J (p)?
E99 — E¢¢ - _
kk+1 kk+1 5 (3.4)

B = B = J (1)
Recalling the definition eq. 2.3 one can write down the equations of motion for an

infinitely long chain of identical magnetic moments
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. Jus
5@;:1gi@mmq+5&%l—zww

- 35)
00y, = — 5 (0dk41 + 0gr—1 — 20¢y) ,
For the sake of brevity we define an effective coupling constant
J S
@:—7;. (3.6)
3.1.1 Green function for the infinite chain
The equations of motion 3.5 in expanded form read
0 —-p 0 0 0 0O 0 0 :
o 0 0 0 0 0O 0 0 0p_4
0 —61 1w 261 0 —61 0 0 0 0 59_1
61 0 —251 1w 51 0 0 0 0 0 (5(250
0 0 0o - ‘ 2 0o - 0 0 00 -
B iw .51 B o] _ 0 (37)
0 0 51 0 —261 1w 61 0 0 0 5¢1
0 0 0 0 0 —61 w 261 0 _61 (591
0 0 0 0 51 —251 w 61 0 5@52
0 0 0 0 0 0 0 -5 00y
0 0 0 0 0 0 b1 0 :

Ha=0, (3.8)

where the matrix ? is a band-type.
Because of the translational invariance (all the pairs of rows of the matrix ﬁ are

identical) the solution of this equation of motion is given as a travelling wave

5¢l — woe—iwt+ikal
59l — ,er—iwt-l-ikal

The angular frequency w is related with the propagation vector k through the

(3.9)

dispersion relations

w==225(1— cos (ka)). (3.10)

It is seen that there exist one positive and one negative (opposite) frequency.
Physically both solutions correspond to two modes, each involving a rotation of the
moment around its equilibrium orientations. The rotation in one mode is clockwise

and in the other anticlockwise. Nevertheless, it is worthwhile to keep a negative
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Chapter 3. Dynamics of 1D magnetic chain

frequency because it corresponds to a band of bulk magnon waves useful in further

considerations. The dispersion curves are depicted in the following graph.

4[3 \ | I | 2 | ! | 1 ' | ' | 2 | \ | I

o, =-2P(1- cos(k")

o =2p(1- cos(k))

Frequency (a. u.)

'4B'|'|'|'|"|-|-|-|-
-05 -04 -03 -02 -01 OO0 O1 02 03 04 05

Wave vector (2n/a)

Figure 3.2: The dispersion relations in a chain of ferromagnetically coupled magnetic
moments

The plot is symmetric with respect to omega. A negative value of frequency corre-
sponds to the precession of spins in opposite direction. One can see that the modes
with £ = 0 have w = 0. This is a consequence of the translational invariance of the
system; a rotation of all the moments by the same angle costs no energy. It should
be kept in mind, however, that such a system is in principle unstable according to
the Mermin, Wagner, Berezinsky theorem. This drawback may be easily healed by
adding a magnetic anisotropy term at each site. This would introduce a frequency
gap at w = 0. The effect of the gap will be discussed further.

If we want to study the behaviour of the system at a given frequency we have to
calculate the corresponding wave vectors. Because we have two separate frequency
bands there will be two real wave vectors (one for a wave propagating to the right and
one for the wave propagating to the left) and two imaginary wave vectors (one for a
wave evanescent to the right and one for a wave evanescent to the left). Generally, if
the frequency under study lies in bands of propagative waves, there is as many real
wave vectors as there are the bands this frequency belongs to. For the particular

system of eq. 3.1 this is depicted in Fig. 3.3.
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Figure 3.3: The magnon dispersion relations useful in calculations of the wave vectors
corresponding to a given frequency. The ordinate shows a positive real frequency, the
abscissa shows the wave vector for this frequency (red curve) and the imaginary part
of the wave vector corresponding to the negative branch of the dispersion relation.

The wave vectors are needed in calculation of the response function (Green func-
tion) for this infinite chain. By definition the Green function is the matrix ﬁ inverse

to the matrix ﬁ

G =" (3.11)

Physically, the element ﬁ”/ represents the response of the system at the site [
to a harmonic perturbation applied to the site I’. We have obtained the explicit

expression for the Green function in the general form

< _ <— v
ﬁll’ (w) = A 1Z|1l l + A ZZ‘Ql l (312)
where
PN 1 i 1]
A 1 = 1
23 (zl -2 ) -1 1
- (3.13)
> 1 - 1
Ay = ‘
203 (zz -z ) -1 —i
where
n=er z=eb . (3.14)

The correctness of these equations can be checked by a direct multiplication
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?ﬁfl = 1 . The quantities z; and 25 , related to the wave vectors schematized
in Fig. 3.3 must be such that |z;] < 1 or when |z;] = 1 the corresponding wave
propagate in the direction from the perturbation to the observation of the response.
This ”"bulk” response function is a starting point for obtaining the Green function

of any 1D composite system.

3.1.2 A single interface between two chains - Interface Green

function

Now we consider two different ferromagnetic chains coupled in a ferromagnetic or

/<0 | Bz/] 8, l
ST

)]
S

Figure 3.4: (a) Ferromagnetic chain coupled in a ferromagnetic manner, (b) ferro-
magnetic chain coupled in an antiferromagnetic manner.

antiferromagnetic manner.

P

\;L/

(b)
/’éh"\

s
s

Now the matrix ? of equations of motion consist of semi-infinite segments of the
general form of eq. 3.7 ﬁ , with the intrachain parameters 3; and [, respectively.
Additionally the matrix is modified in the region of interface by the presence of
the interchain coupling parameter ;. It has been shown by L. Dobrzynski that the

Green function ¢ for the interface satisfies a Dyson type equation

(T +%)g=72, (3.15)

where ﬁs is a block diagonal matrix corresponding to elements (eq. 3.11) with
the parameters of sub-chain ”1” in the region [ < 0 and I’ < 0 and the parameters
of sub-chain ”2” in the region [ > 1 and I’ > 1. The remaining elements of ﬁs
vanish. The matrix ?, involving the modifications introduced to the interactions
by the interface, has non-zero elements if its second index lies in the region where the
equations of motion differ from those in the infinite chains. The region, denoted by
W, encompasses in our case only I’ = 0, I’ = 1 because we assume that the interface
spins interact with their nearest neighbours only. Denoting the whole index range

by D we can write
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(I(DD)+ A(DD)) g(DD) =G, (DD), (3.16)

or

g(DD)+ A(DM) g(MD) =G, (DD), (3.17)

in parentheses we indicate the region of indices of nonzero elements. In particular

restricting the first index to M we get

Gs(MD)=g(MD)+A(MM)g(MD)=(I(MM)+ A(MM))g(MD)

(3.18)
=A(MM)g(MD),
where we have defined a relatively small matrix
AMM)=1(MM)+ A(MM), (3.19)
which in our case is a 4 x 4 matrix. Then
g(MD)=A""(MM)G,(MD). (3.20)

When inserted into 3.17 the obtained ¢ (M D) of 3.20 allows one to write the
explicit expression for g(DD):

g(DD) =G, (DD)— A(DM)A™ (MM)G,(MD). (3.21)

3.1.3 Magnons localized at the interface

It is well known that the singularities of the Green function correspond to system’s
eigenstates. According to eq. 3.21 all the singularities of G are also present in g.
They correspond to the bulk states. Additionally, however, new eigenstates may
appear when det A(M M) vanishes. Such solutions with real w represent the states
occurring due to the existence of the interface. An example of the interface magnon
states calculated numerically for the semi-infinite ferromagnetic chains coupled in
the ferromagnetic and antiferromagnetic manner according to Fig. 3.4 are depicted
in Fig 3.5.
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Figure 3.5: The frequencies of localized magnons in ferromagnetic chains coupled in
ferromagnetic manner (8; < 0) and antiferromagnetic manner (8; > 0). The lightly
shaded area is the band of bulk waves in the left part, and intensely shaded are is
the bulk band of the right part.

In the case of two ferromagnetic chains coupled in a ferromagnetic manner, i.e.
for By < 0, B2 < 0, B; < 0, there is only one localized state above the band
of "bulk” waves, i.e. for w > max(4|51],4|82|). (Mind that the bulk waves are
here 1D waves). The mirror reflection symmetry of the graph, w — — w, implies

the existence of a state also below the bands. One can notice that a condition

2B81(B1—+/B1(B1—B2)+B82) ie. the

381+82 ’
interchain coupling must be harder than both intrachain couplings. The polarization

for the existence of the localized state is that 8; <

vectors of these states can be also calculated with the same theory. Because in the
absence of anisotropy and/or external magnetic field the dispersion relations are
gapless (w = 0 at k = 0), there is no possibility of a localized state below the
bulk band. If the same ferromagnetic chains are coupled in an antiferromagnetic
manner, i.e. [; > 0 (the spontaneous magnetizations of both sub-chains must
be mutually opposite to ensure a minimum of energy), the situation is different.
There are, firstly, up to two localized states. The higher of them occurs above both
bulk bands. The condition for its existence is w > max(4|61|,4|PB2|) and B; >

5.8 (B1+/31 51 —52)

— ) . There is, however, another localized state whose

ﬂ%-‘r?ﬁlﬁz-‘r B1(B1—B2) (51_ \/52_1ﬁ2

_51(51%32* B1(B1+82))
B1+82
of B; where the state occurs ”on the background” of the band of the bulk waves

existence condition is 5; > . There exists, therefore, a region
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Chapter 3. Dynamics of 1D magnetic chain

of the "harder” chain. The phenomenon is known in the realm of acoustic waves
as secluded surface wave [16]. An isolated true surface wave has been found by
D.Trzupek and P. Zielinski [17]. The mechanism of such phenomena resides in the
fact that the degrees of freedom involved in the surface excitation involve evanescent
partial waves only. These degrees of freedom are orthogonal to those involved in the

bulk waves of the background.

3.1.4 Local density of states

It is known that the local density of states (LDOS) is proportional to the imaginary
part of the Green function [13],

n=Img(w-+ie), (3.22)

where € denotes and infinitesimal positive quantity. Physically, the LODS amounts
to the energy rate absorbed by the system once excited with an oscillatory forcing.
Generally LDOS vanishes outside the bulk bands and takes finite values inside. The
localized states are marked by Dirac delta peaks. Fig. 3.6 provides examples of LDOS

calculated at the interface of our chains at some characteristic coupling strengths.

p,=-6 B =-35 B,=-25

LDOS
LDOS

I ! 0.4

y r 0o , " . . : -
° s " » o 5 10 15 o 5 " 15

Frequency (a. u.) Frequency (a. u.) Frequency (a. u.)
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B, =10 - B, =20 1B,=35
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0o - - - - - v - 0o - - - + _—— L 1] - - - - —— —
-] L] L L] -] ] L] 15

Frequency (a. u.) Frequency (a. u.) Freguency (a. u.)

Figure 3.6: LDOS polarized d¢ (equal to those polarized in 66) at nodes ”0” (blue
lines) and ”1” (red lines) for the ferromagnetic chains coupled in a ferromagnetic
manner (upper row) and antiferromagnetic manner (lower row). The delta-like peaks
are artificially broaden by taking a non-zero epsilon in eq. 3.9

Looking at the upper row of Fig. 3.6 one notes the localized state represented
by a delta peak outside the bulk band for a strong interchain coupling. The peak
is artificially broadened by a finite value of ¢ . With decreasing coupling strength
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the peak merges into the band of the bulk waves. The density of states within the
bulk band then becomes modified that is characteristic of an interface resonance.
However, in contrast with many mechanical cases [15] we have not found any solution
of the equation A(w) = 0 with a complex w. The question of the existence of a
surface resonance in this case remains, therefore, open. The lower row of Fig. 3.6
depicts analogous behaviour for the antiferromagnetic coupling of ferromagnetic
chains. When the coupling is strong enough two localized states occur above the
bulk bands. For weaker couplings one of the states occurs "on the background” of

one of the bulk bands. We have not found solutions with complex w either.

3.1.4.1 The transmission and reflection of magnons from the interface

A magnonic wave incident on the interface generally transforms partly into a num-
ber of transmitted and partly into a number of reflected waves. In the present case,
due to the existence of two bulk bands at every sub-chain (positive and negative
frequency) one expects two transmitted and two reflected waves. If the frequency
falls into a band of bulk waves, the corresponding transmitted/reflected wave is
propagative, i.e. it has a real wave vector. In the opposite case the transmitted/re-
flected wave is evanescent or, in other words, forms a kind of near fields. A schematic
representation of the transmission/reflection effects in the case of frequency lying
within bulk bands of both sub-chains is depicted in Fig. 3.7.

Numero of spin in chain

Figure 3.7: Schematic representation of the transmission/reflection effects. Arrows
represent incoming, reflected and transmitted propagative waves. The cyan regions
correspond to evanescent partial waves (near fields) that can also arise in this scat-
tering experiment.
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Noteworthy is that if w > 0 the wave fields B_ and C_ are near fields originated

from the existence of the negative frequency bulk band. The amplitudes B,, B_, '}

and C_ relative to the amplitude of the incident wave define the reflection and

transmission coefficients respectively. The calculus of the transmission and reflection

coefficients stems from the boundary conditions. It involves solving the following

system of linear equations

i

QA

(3.23)

The matrix W corresponding to a ferromagnetic interchain coupling and the

vector d are

By e — B+ B,
— s,
Br

By e + By =By

—Br e 4B =By =B e+ By - By

3,
B

- Br s
By e
e (By € — By + )
€ (=B, e + By — B))

In the case of an antiferromagnetic coupling they read

B1 e ik — B1— Br

9 = ,
3

5,

=By e+ B+ 5,

—By e 4 By + B —By e + By + By

By
8,

- B ez
=B cits
e (By e~ — B, — Br)

€ (=B, e 4 B, + B))

U

By etz

“31 etky
ef2 (= By e7 2 + B, — B;)
ez (=B, €72 + B, — B))
—By €M+ B, — B,
By et — B+ B,

=B
(3.24)

B et

—f etz
2 (=By ez + By + By)
2 (=By ez + By + By)
—B1 €M + B, + B,

By el — By — B,
Br
Br

(3.25)

Fig. 3.8(a) represents the frequency dependence of the moduli of the coefficients

in the case of ferromagnetic coupling. Noteworthy is that none of the near fields are

present on both sides except for the region above the bulk band on the transmission

side. As expected the modulus of the reflection coefficient amounts to unity in the

latter cases.
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Figure 3.8: Moduli of amplitude reflection (red) and transmition coefficients (prop-
agative wave - blue and near field - green) as functions of frequency of the incident
wave in case of (a) ferromagnetic coupling and (b) antiferromagnetic coupling

Fig. 3.8b represents analogous results for the ferromagnetic chains coupled in an
antiferromagnetic manner. Interestingly enough there is no transmitted propagative
wave at all. What arises at the transmission side is a near field only. In turn, there
is no near field on the incident side. The amplitude of the reflection coefficient is

equal to 1 for all frequencies.

3.1.5 Partial waves involved in localized states

The condition A, =0 and det(M) = 0 correspond to the localized states whose
frequencies are reported in Fig. 3.5. The eq. 3.23 then becomes homogeneous, and
the amplitudes By and C define the partial waves forming the localized wave. We
have checked that in the case of a ferromagnetic interchain coupling the only lo-
calized state consists of the wave fields proportional to By and C. i.e. the same
that participate in the transmission-reflection, when the frequency is in the band
of propagative waves. The z-parameters of these wave fields are negative so that
the waves are alternating with the distance from the interface. This is analogous
to many mechanical cases. A different behaviour is shown for an antiferromagnetic
coupling visible on the right side of Fig. 3.5. A high-frequency localized state is
visible on the right side of Fig. 3.5. The wave field of the high-frequency localized
state consists of B, and C_, i.e. the same involved in the transmission-reflection.
Now, however, the excitation is dumped alternating on the incidence (harder cou-
pling) side and monotonous on the transmission (weaker coupling) side. It should
be born in mind that C_, corresponds to an evanescent wave in the whole range of
frequencies. The wave fields forming the low-frequency localized state are B_ and
C. The wave field is then monotonous on the incident (harder) side and alternating
on the transmission (weaker) side. There is no localized state in which the wave field

would be monotonous on both sides of the interface. Such states can be expected
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in the presence of a gap at £ = 0. These are the partial waves that are absent
from the transmission- reflection. In particular, by lowering frequency below 43, no

propagative wave C', arises.

3.1.6 Summary of results with exchange interaction only

We have adopted the Green function technique due to L. Dobrzynski to determine
the frequencies of the localized states and the local densities of states in any compos-
ite chain of coupled magnetic moments. (The same techniques allows one to calculate
the polarization vectors of the localized states [18] which is not discussed here). We
have exemplified the method on two ferromagnetic chains coupled in a ferromag-
netic and antiferromagnetic manner. A single localized magnon state, alternating
on both sides of the interface, has been found for a strong enough ferromagnetic in-
terchain coupling. When the coupling is antiferromagnetic two localized states may
arise. The low-frequency one, alternating on the weak coupling side, occurs “on the
background” of the bulk band of the strong coupling part of the system. An incident
wave coming from the strong-coupling side does not produce any propagative trans-
mitted wave. An interesting effect is the non-existence of the transmitted waves in

the case of the ferromagnetic chains coupled in an antiferromagnetic manner.

3.2 Anisotropy

The previous calculations, involving only exchange interactions, concerned in fact
an unstable system in that any rotation of all the spins by the same angle costed no
energy. In reality any magnetic moment in condensed matter is subjected to a local
potential. Minima of the potential define the magnetic anisotropy. The orientations
of the spin that correspond to the minimum define an "easy axis”. We start with the
ferromagnetic chains and assume that the equilibrium orientation of the spins, say
x (Fig. 3.1) corresponds to the minimum of the local potential. The matrix of the
second derivatives of the magnetic energy (see Eq. 2.4) should now be completed
with the local term. A priori there are three types of the local term, i) degenerate
(axisymmetric), ii) perpendicular and iii) twisted. The corresponding matrix in the

three cases reads:

e Degenerate (axisymmetric)

H, 0
E,.—=| ! , (3.26)
0 H

here the energy of the spin increases as a function of the angle of the spin with

the unique axis only;
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e Perpendicular, (non rotated)

H, 0
E,i=| ' , (3.27)
0 H,

here the eigenvectors of the local energy matrix are parallel and perpendicular
to the chain, this means that the energy depends also on the orientation of the

projection of the spin onto the plane perpendicular to the easy axis (and to the
spin);

e Twisted (rotated with respect to chain axes)

H; H,
here the eigenvectors point any directions perpendicular to the spin. In all the

cases the matrix should be positive definite. The effect of the anisotropy on the

dispersion relations in infinite chains is as follows.

H, H
Eani = [ ' ’ ] 5 (328)

3.2.1 Coupling of two chains with anisotropy identical at

each site of each subchain

e Degenerated anisotropy

The matrix of second derivatives of energy density is

H 0
Epi=| . (3.29)
0 H,

Then dispersion relations are given by the following formula:

w=2/(2 B(1 — cos (ka)) — H})*. (3.30)
The polarization vectors of the magnons are the same as in the case without

anisotropy. The dispersion curves are depicted in the following graph:
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Figure 3.9: The dispersion relations in the case of degenerate anisotropy.

The plot is symmetric with respect to w (as without anisotropy), but now it has a
frequency gap (width 2H;). The dispersion curves are shifted by H; = (H;), . The
internal index corresponds to the number of the chain and the outer to the position
in the matrix (Hy); k=1,2.

If we couple two such chains in a ferromagnetic manner we have found one localized

state above the band of bulk waves for w > maz{(4 |6;] + (H1),), (4 |8y + (H2),)}

30 1 1
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-30 .
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Figure 3.10: The bulk bands and localized states frequencies for two ferromagnetic
chains with degenerated anisotropy as a function of coupling constant 5y (left). The
dispersion relations of both subchains (right).
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e Perpendicular anisotropy

In this case the matrix of second derivatives of energy density is as follows

H, 0
Eopi= | . (3.31)
0 H,
(this matrix must be positive definite, i.e. H; > 0 and Hy > 0)
Then the dispersion relations are given by the formula.
w=1/(28 (1 — cos (ka)) — Hy) (28(1 — cos (ka)) — Hy). (3.32)

The polarization vectors of the magnon waves are now dependent on the wave
vector k.

The dispersion curves are depicted in the following graph:
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Figure 3.11: The dispersion relations of spin waves for magnetic chain with perpen-
dicular anisotropy

The plot is also symmetric with respect to w (as without anisotropy), but now
the frequency gap is defined by the geometric mean of both eigenvalues (width:
21/(H1),(Hi),). The width of the bulk band, i.e. the distance between the minimum
and maximum of the dispersion curve increases.

There is one localized state above the band of "bulk” waves for
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w >maz{\[(4 [B] + (Hi),) (4 [81] + (H),), /(4 8] + (Ha),) (4 |8] + (H2),)}

(3.33)
30 ' - !
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Figure 3.12: The bands of bulk waves and frequencies of localized states for two fer-
romagnetic chains with perpendicular anisotropy as a function of coupling constant
Br (left). The dispersion relations of both subchains (right).

e Twisted anisotropy

In this case the matrix of second derivatives of energy density is as follows

H, H
Bui=| ' 7. (3.34)
H; H,
(this matrix must be positive definite)
Then the dispersion relations:
w= \/(26 (1 — cos (ka)) — Hy) (28(1 — cos (ka)) — Hy) — H3. (3.35)

The dispersion curves are depicted in the Fig. 3.13. The plot is symmetric with

respect to w (as without anisotropy), but now it has a frequency gap of the width

2\/ ((Hy),(H,), — H3), once again the geometric mean of the eigenvalues. Here again
the interval between the minimum and maximum increases. When one of the eigen-
values of the anisotropy energy matrix tends to zero, i.e. when (Hy),(Hi),— H3 — 0
the minimum at w = 0 becomes more and more sharp. There is one localized state

above the band of "bulk” waves for

w > maz{y/(4 |61 + (H1)y) (4 181] + (H1)y) — (H)3 /(4 o] + (Ha),) (4 |Bo] + (Ha),) — (Ha)2}
(3.36)
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Figure 3.13: The dispersion relations of spin waves for ferromagnetic chain with
twisted anisotropy.
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Figure 3.14: The bands of bulk waves and frequencies of localized states for two
ferromagnetic chains with twisted anisotropy as a function of coupling constant [,
(left). The dispersion relations of both subchains (right).

3.2.2 Effect of modification of anisotropy in the interface
region

The above examples of the coupled chains assumed a uniform anisotropy in both
subchains independently of the distance from the interface. However, one can ex-

pect that the local energy term can be different at the sites adjacent to the interface
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because the chemical surrounding is different there from the one within each chain.
We expect the appearance of localized states in the gap in the cases where the
anisotropy in the vicinity of the interface is weaker than in the bulk. In the specific
case where both interface spins show an anisotropy different than in the bulk we
determine the frequencies and polarizations of the localized states by finding zeros
of the determinant of a 8 x 8 matrix, whose columns are labelled by the unknowns
of the problem: B, B_,d¢q, 60y, d¢1,001,Cy,C_, where B, and B_ are the ampli-
tudes of waves (evanescent if the frequency is outside the bands of the bulk waves)
propagating into the subchain 1 and C',,C_ are the analogous amplitudes in the
subchain 2. The variables d¢g, 00y and d¢1,00; describe the motion of the inter-
facial moments that cannot be associated with the waves. Below we discuss some
characteristic examples.

Example 1: Two different ferromagnetic chains with anisotropy weaker at the
interface sites

We consider a degenerate anisotropy in both subchains. The anisotropy energy
keeps the moments in the ferromagnetic configuration in both subchains indepen-
dently of their angular displacements. The anisotropy in both subchains is identical
so that the chains differ in the exchange energy only. Thus, the anisotropy energy

term away from the interface is given by the matrix

e o]
Boni = , (3.37)
0 He

and on the sites adjacent to the interface:

S
Eoani = . (3.38)
0 H*

Thus, the matrix of the equations of motion reads

[0 —p w  —H+28 0 - 0 0 0 0 0 0]
B 0 H°—28 iw B 0 0 0 0 0 0 0
0 0 0 B iw —H*+ B+ B; 0 -8 0 0 0 0
ho |00 B 0 Hs— B, — B iw B 0 0 0 0 0
0 0 0 0 0 —B, iw —H?®+ 5+ 1 0 —Br 0 0
0 0 0 0 Bo 0 H* — By — Br iw B 0 0 0

0 0 0 0 0 0 0 B iw —H 428, 0 —f
00 0 0 0 0 Ba 0 He— 283, iw By O

(3.39)

We consider an example with the parameters of the exchange interactions: 5, =
—3, By = —2. The sites in the left subchain are labelled by [ € (—o0, 0) , and in the
right subchain [ € (1, 4 oo). The anisotropy term in the bulk regions H¢ = 6, for
[ # {0, 1} is the same in both subchains whereas it takes a value H* = a, at [ = 0
and [ = 1. We vary this parameter in the range a € (0, 10) .

If the anisotropy term at the interface is equal or greater than that in the bulk
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the only localised states exist above the bulk bands. However, if the anisotropy in
the interface region is weaker, the localized states appear also in the low frequency
gap as a function of the coupling constant ;. In the figure below we depict the

frequencies of the localized states for the parameters

B = -3,
By = =2,
H® =6,
H =5
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Figure 3.15: (a) Frequencies of localized states on interface of two different ferro-
magnetic chains with g, = 3 and (8, = 2 respectively, identical bulk anisotropies
H. = 6 and interface anisotropies H; = 2 as functions of the coupling parameter ;.
(b) Enlarged detail of (a) marked with red ellipse.

The scale on the right allows one to discern the structure of the localized states
in the gap.

The scale on the right allows one to discern the structure of the localized states
in the gap. There are generally three dispersion branches of the localized interface
states. The lowest branch (bottom) occurs in the whole region ; = (—oo, 0). The

corresponding frequency region is = (5.6667, 5.7122). The asymptotic behaviour

) )

of the polarization is such that %0 = o1 in this mode in the limit
06, 06,

B; — — oo. This means that both interface spins remain parallel when rotating

about their axes. Generally the displacements of both spins are

661\ _ [ 9%
06, 0o

The dependence of the parameter d on [ is depicted in fig. 3.16

where d = C'; 29, .
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Figure 3.16: Dependences of ratios C, 25, and C /By on coupling constant 3 for
three dispersion branches of the localized interface states.

Its asymptotic behaviour at 5; — — oo is easily visible. In the limit 3, — 0,
i.e. for the decoupled chains the coefficient d tends to infinity. Bearing in mind that
in the present calculation the value B, has been kept B, = 1 one easily sees that
this symmetric mode becomes a surface wave in the subchain 2, i.e. the one with a
weaker exchange interactions, whereas no motion is observed in the subchain 1.

The quotient %, i.e. the ratio of the amplitudes of the waves propagating in both
subchains as a function of f; is depicted in Fig. 3.16(b).

The result means that the coupling between the chains controls the amplitudes
of the partial evanescent waves penetrating the both subchains.

As it is seen from the Fig. 3.15 there is another localized state (middle) in the
frequency gap provided that the coupling parameter is weak enough, here 5; > —0.5.
In the very limit 8; — —0.5, w = 6 and the angular displacements of both interfacial

moments satisfy the condition
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o _ Yo
80, 80 )’
i.e. the moments rotate in opposite directions (see. Fig. 3.17 )

For weaker couplings the displacements are related by the following formula

01 0o
= C+ZQ+ .
06, 06,

Fig 3.16(c) gives the values of the coefficient C'; 25, as a function of ;.

As one can see the coefficient vanishes at §; = 0, i.e. in the case of decoupled
subchains where the chain 2 rests motionless. This corresponds to a surface state in
subchain 1. Its frequency turns out to be w = 5.7501. The ratio % as a function of
By is shown in Fig. 3.16(d). The behaviour is not monotonous.

The character of the displacements in both modes in the gap are illustrated in
Fig. 3.17.
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Figure 3.17: Schematic of displacements in interfaces modes on both sides of inter-
face.

The mode (top) above the bands of the bulk waves exists in the range of the chain
coupling 5; € (—4.21, — o0). It consists of two partial waves of the length 2a, where
a is the spin separation, enveloped by damped exponential functions.

4]
The motion of the interfacial spins is still related by the formula ( (;bl ) =
1

4]
Cyzop %0 This time, however, zo, < 0, (as usually above the bulk band if its
06y

top corresponds to the wave vector & = 7) and C. > 0. Fig. 3.16(e) shows that
in the limit of a very strong coupling, 5; — — oo the coefficient Czy, tends to
—1, i.e. the motion of the interface spins becomes opposite. The ratio of the am-

plitudes of the interfacial spins C'; / B, shows a behaviour as depicted in Fig. 3.16(f).
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In summary:

The coupling between the chains controls existence of the interface states as well
as the amplitudes of the partial evanescent waves that consitute the localized state.
We can see that at 8; =0 our solutions represent surface excitations. In this limit the
upper mode from Fig. 3.15 corresponds to the surface wave in subchain 1 (stronger
coupling) and the lower mode to the surface wave in the subchain 2. With increasing

coupling 7 one can see the conversion of the surface mode to the interface modes.
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1D systems of magnetic nanoparticles

It is well known that macroscopic magnets are seldom monodomain because a
domain structure reduces the energy of the resulting magnetic field [19]. However,
W.F. Brown [1] stated conditions for so called micrmicromagnetism or nanonmag-
netism. It turns, namely, out that some shapes of a micro- or nanoparticle may
make the material magnetized almost uniformly. Experimental observations and
theoretical predictions indicate that the most favorable shapes for that are those
axially elongated. The spontaneous magnetic moment then is oriented parallel to
the long axis. Thus, such particles show properties of single spins, so that they may
be legitimately called macrospins. In particular, their excitations form equilibrium
configurations resemble magnons. A difference is that the frequencies of magnons in
solid state systems fall in the range of tens and hundreds of Terahertzs, whereas in
the micro or nanomagnets they are placed in the Gigahertzs region. The reason for
that lies in the interactions. Whereas the ordering of single ionic spins in a magnet
are due to exchange forces, the micro or nanomagnets, interact as magnetic dipoles.
The Gigahertz region of excitations make them interesting for telecommunication.

When arranged in a 1D chain perpendicular to their long axes the macrospins are
preferentially ordered in an antiparallel manner, head-tail sequence of neighbouring
macrospins, in analogy to a microscopic antiferromagnet. This can be easily un-
derstood bearing in mind that the most stable configuration of two dipoles is the
head-tail one. We shall call this configuration antiferromagnetic (AF). An exter-
nal magnetic field applied perpendicular to the chain and parallel to the macrospin
axes may transform the configuration into a parallel one, i.e. ferromagnetic (FM).
This resembles a matamagnetic phase transition [20]. It is interesting that, with the
magnetic field switched off, the FM structure of macrospins is locally (marginally)
stable, i.e. it corresponds to a local energy minimum. This is in contrast with single
magnetic dipoles which when parallel, and perpendicular to their position vector,
are in a maximum of energy. Moreover, the return to the most stable AF configura-
tion is rather difficult with the use of external magnetic field. This section will deal

with the behviour of chains of macrospins in magnetic field.

39



Chapter 4. 1D systems of magnetic nanoparticles

4.1 Macrospin

A macrospin is comprised of a large number of spins belonging to a single magnetic
domain. In what follow we consider thin oval shaped nanoparticles, i.e. elliptical
cylinders of a very small height. The system can be practically realized by depositing
elliptic dots of permalloy on a diamagnetic substrate. The size of the ovals are
mostly 66 x 24 x 1 cells, each cell being 5 nm x 5nm x 5nm large. The magnetic
parameters of permalloy are saturation magnetization M;=800 kA /m, exchange
stiffness parameter A = 107! J/m, gyromagnetic ratio y=185 rad GHz/T , and the

damping coefficient is o = 0.5.

Figure 4.1: Schematic magnetization maps in thin cylindric macrospins: (a) uni-
formly magnetized macrospin of length A = 330 nm and width ¢ = 120 nm mag-
netized along the easy axis, (b) hard axis magnetization (c) a pair of macrospins in
antiferromagnetic configuration.

As represented in Fig. 4.1 the easy axis is in the y direction and the z direction is
a hard axis. The reason for that, being in fact a manifestation of a shape anisotropy,
is that in the case of magnetization in z direction a strong demagnetization field
is created. A magnetization in the z direction is even more energy consuming. In
contrast with that, the regions of homonymous magnetic poles is minimal if the
magnetization is parallel to the y axis. Additionally, the elliptical shape minimizes
the demagnetization energy. In practical calculations we adopt a slight deviation
of magnetic field from the very exact y-direction to avoid numerical problems with
symmetric minima versus saddle points. The value of the tilt angle 0.001° ensures the
removal of the artificial problem and at the same time, does not afflict the symmetry

of the magnetic excitations.
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4.1.1 Statics: equilibrium configurations, hysteresis, coer-

cive fields

As stated above the systems under study consist of macrospins, i.e. magnets that
should behave like a single spin. Therefore a starting point is a single macrospin. The
magnetization map of an elliptically shaped thin cylinder under an external magnetic
field is depicted in 4.1. The magnet is treated in a continuous approximation and
divided into cubic pixels 5 nm x 5 nm x 5 nm. The cylinder is one pixel thick.
The adjacent pixels are assumed to interact by exchange forces and all the voxels
by dipolar interactions. Because of the cubic shape the voxels exhibit also higher
multipoles. The configuration corresponding to the minimum of energy is found with
the use of the software OOMMEF. Examples of the equilibrium configuration are
depicted in 4.2 in such a way that every arrow represents the average magnetization
over four voxels. As one can see the magnetization is fairly uniform in all the three
values of the external field. The average magnetic moments are, however deviated
from the y-axis. To visualize the deviations we have applied a colour code. The
deviation to the right are marked red and to the left - blue. In other words the
intensity of the blue colour corresponds to a negative xz-component and red to a
positive x component of the magnetic moment. Noteworthy is that the z component
(perpendicular to the figures plane) is practically zero everywhere as a result of a
strong shape anisotropy. The regions of blue and red are readily symmetric in the

absence of the external field and in the field strictly parallel to the y-axis.
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Figure 4.2: (a) Hysteresis loop for a single macrospin. Magnetization maps for (b)
B =100mT, (c) B=0mT and (d) B, = —41.5mT.
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Being well monodomain the marcospin does not behave entirely like a single spin
in that it shows a hysteresis. This means that there exists a range of magnetic fields
in which a configuration antiparallel to the field, energetically less favorable than the
parallel one, is metastable. Fig 4.2 shows this hysteresis. Negative value of the field
indicates that the field is opposite to the magnetization. The switching fields (critical
fields) are B, = —41.5[mT]. The shape of the hysteresis loop is close to rectangular
but a bit rounded in the vicinity of the critical fields. It is related, at least in part,
with reverse S-shaped region of deviated spins. A region like that can be seen in
Fig. 4.2(d). The most significant effect of the field are the spin deviation regions
in four quadrants of the ellipse. The region increase in intensity with decreasing
and negative external field, i.e. opposite to the average magnetisation. At the same
time the spins located close to the regions of the short and long axes are practically
parallel to y-axis (see Fig. 4.2 (b,c)). We have checked that the employed tilt is small

enough as to not produce other static or dynamic consequences.

4.2 Chain of identical magnetic nanoparticles

Now we construct a chain of the macrosopins. The macrospins are parallel to the

y direction and equidistant in x direction as shown in Fig. 4.3

A

Figure 4.3: Infinite chain of nanoparticles

In a zero magnetic field the macrospins can be all parallel - ferromagnetic con-
figuration or exhibit an alternating antiferromagnertic configuration. Because the
interparticle interactions are dipolar the stable configuration is the antiferromag-

netic one whereas the ferromagnetic is metastable.
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Figure 4.4: Schematic magnetization maps in unit cell for (a) antiferromagnetic and
(b) ferromagnetic configuration chain of macrospin where h=330 nm, S=50 nm,
a1=340 nm, a»,=170 nm

The lattice constant a; of the antiferromagnetic configuration is twice as long as

in the ferromagnetic configuration as. This has been depicted in Fig. 4.4

4.2.1 Statics

The equilibrium configuration of the chain described in the previous section is cal-
culated with the use of the OOMMF program. To study the switching phenomenon
we apply the external magnetic field quasi parallel to the macrospins long axes. The
results are summarized in Fig 4.5. The critical field for the AF — FM switching is
B. =42.05 mT, FM—FM reversal B,=-30 mT. (b) In comparison with the reversal
field for the single macrospin, |B,|=41.5 mT, the analogous field for AF — FM is
higher and for FM—FM is markedly smaller.

The mechanism of the switching is partly depicted in Fig. 4.5. One should notice a
difference in the magnetisation map between the macrospin parallel and antiparallel
to the field close to the critical field. Not only is the antiparallel macrospin marked
by an inverted S-shape but its right side is much more strongly deviated than its left
side as a result of the tilt angle of the magnetic field with respect to the y-direction.
An abrupt reversal ends up in a ferromagnetic configuration. With the decreasing
field the FM configuration persists down to zero and even to negative values until
B, = -30 mT when the system quits its antiparallel magnetization to arrive at a
reverse FM configuration parallel to the field. The hysteresis loop between both FM

configurations is narrower than for the single macrosopin (compare B =-41.5 mT
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for the single macrospin). The evolution of the magnetization map in the chain is
similar to that for a single macrospin. We have studied the dependence of the width

of the hysteresis on the width, or horizontal diameter, of the elliptic macrospins.
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Figure 4.5: (a) Hysteresis loop for infinite chain of macrospins. Magnetization maps
for antiferromagnetic configuration in (b) B=0 mT, (¢) B=42,05 mT and antiferro-
magnetic configuration in (d) B=100 mT, (¢) B=0 mT, (f) B=-30 mT
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Figure 4.6: Half-hysteresis loops (entire loop for the oval’s horizontal diameter 120
nm) for different horizontal diameters 110 nm, 100 nm, 90 nm, 80 nm, 70 nm and
60 nm. The color intensity corresponds to the diameter length.

For the sake of clarity, in the Fig. 4.6, we have reported only halves of the loops
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starting from the FM configuration. The hysteresis becomes wider with decreasing
short axis of the macrospin as it has been depicted in Fig. 4.6. The reason for that

behaviour is that a wider oval produces higher demagnetization field.

4.2.2 Dynamics

We consider small magnetic excitations of the most stable AF configuration of
identical macrospins in the harmonic approximation. Because of the translational
invariance of the chains the excitations are Bloch waves. The waves are characterized
by their frequencies and polarization vectors. The former are eigenvalues and the
latter are eigenvectors of the corresponding dynamic matrix related with the Hessian
matrix of the system by the Landau-Lifshitz-Gilbert equations of motion (see. sec
2.2). The polarization of such magnetic excitations, spin waves or magnons can be
visualized as profiles or maps of the amplitudes of precessing magnetic moments. It is
clear that the number of the modes in systems of macrospins is very large as a result
of a large number of degrees of freedom involved in each macrospin. Therefore we
have to select the lowest-frequency ones, because one of them becomes soft to drive
the instability of a configuration. Secondly, the lowest modes fall into the gigahertz
frequency regions.

It turns out that the profiles obtained are characterized by the number of nodes
(zero amplitude) across the macrospins long axes. Obviously the modes with even
and odd number of nodes differ in symmetry. It should be born in mind that because
of the inversion invariance all the modes are either symmetric or antisymmetric.One
could expect that the lowest modes will be those with the lowest possible number
of nodes. From among all the eigenfrequences we have selected those of minimal
number of nodes. Surprisingly, the lowest mode is not always the uniform (nodeless)
Kittel mode. The lowest modes can be classified as "bulk modes” and "end modes”.
The former involve mainly central parts of the ovals whereas the latter rather distal
upper and lower parts. Fig. 4.7 shows a comparison of an ideal Kittel mode with

symmetric and antisymmetric as well as bulk and end modes.
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Figure 4.7: Illustration of the ideal Kittel mode (a) and the simplest symmetric bulk
(b), symmetric end (c), antisymmetric bulk (d) and antisymmetric end (e) modes

The classification "bulk” and “end” as well as the one based on the number of
nodes is not symmetry protected and can change with the applied magnetic field
as well as across the Brillouin zone. Generally one speaks of hybridization of modes
of the same symmetry. On the other hand the modes of different symmetry do not
hybridize and their dispersion curves cross.

The excitations involve precession of the magnetic moments around their equi-
librium orientations. To illustrate a profile of such an excitation we draw a map of
the maximal value of the z-component of the precessing magnetic moment. Fig. 4.8
exhibits the profiles of the lowest modes in the AF configuration without applied
external field. Because the unit cell comprises two ovals the modes at the Brillouin
zone centre can be classified as acoustic and optic. The mode is called acoustic if
both ovals of the unit cell vibrate in phase. In turn an optical mode is marked by
an antiphase vibrations of both ovals that is reflected by opposite signs of the corre-
sponding regions. All the unit cells vibrate in the same way (in phase) at the centre
of the Brillouin zone (k = 0) whereas at the zone Border (k = 7/a;) the signs of the

vibration on neighbouring unit cells is opposite.
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Figure 4.8: Profiles of precesion intensity in the three lowest modes for acustic and
optical branches in the absesce of external field at (a) k =0 and (b) k = 7/a;

Looking at the optical modes one can remark that the mode EM S has no nodes,
the EM AS has one node whereas the BM has two nodes. The situation is different
for acoustic modes: EM S has two nodes and the one BM none. This corroborates the
observation that the acoustic mode shows a higher frequency than the optical one
at k = 0 in contrast with a usual mechanical (phonon) case. On the Brilloiun zone
border the branches degenerate (see Fig. 4.9) that is reflected in the dynamic mag-
netic profiles for k = 7/a. In what follows we have studied the dispersion relations
of the modes and their dependence on the applied magnetic field.

The effect of magnetic field quasi parallel to the ovals’ long axes is represented in
Figs 4.9.

The results for three values of the field are shown: B=0 mT, the field B =42 mT,
i.e. close to the switching field (coercive field) and a slightly higher B = 42.5 mT
just after the switching to the FM configuration. The field lifts the degeneracy of
the acoustic and optic modes at the zone border. The curves EM S and EM AS
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B=0 mT and (b) AF order at B=42 mT (c) F order at B=42,5 mT.

lie steadily very close. Because their symmetry is different the curves cross at some
points of the Brillouin zone. All the modes at B=0 show a relatively high dispersion,
i.e. a slope responsible for the group velocity. This means that the modes can prop-
agate along the chain at relatively high speed. The slope markedly reduces with the
increasing field to become very weak at the instability point. This is characteristic
of a "memory type” modes. The only mode of significant dispersion at B = 42 mT
is the one EM S. As one can see its frequency at & = 0 is very low. In fact it is
this mode that becomes eventually soft at the instability point. The dependence of
the group speed of the modes on the applied field indicates a possibility of control-
ling the propagativity of the modes that is interesting for applications in magnonic
logical gates [21, 22, 23, 24, 25]. In particular an increasing external field enhances
the memory regime at the expense of the propagative one. Additionally, a non-zero
applied field engenders a stop band across the whole Brillouin zone, i.e. makes the
system magnonic. At the coercive field B = 42 mT one sees two acoustic modes that
both show a BM character because a hybridization. Once the ferromagnetic order
is attained all the modes become acoustic, because the unit cell contains but one

macrospin. The structure being entirely reconstructed there is no continuation of
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the dispersion curves from the AF configuration. Out of the three lowest modes the
higher BM shows a significantly higher dispersion. The two lower weakly dispersive

modes are in fact two interwoven EM A and EM AS modes.

4.2.3 Soft modes and mechanisms of switching

The transformation from the antiferromagnetic configuration is discontinuous. A
signature of that is the lack of a group subgroup relation. Indeed a translation by the
distance between the neighboring ovals is a symmetry element of the FM structure,
which element disappears in the AF structure. However, a new symmetry element
arises, i.e. a composition of the translation with the spin reversal. The kind of tran-
sition reminds what is known as metamagnetic transition [26, 27]. We know that
even a single macrospin remains metastable under a magnetic field oriented antipar-
allel to its magnetization. Analogous statement is valid for the chain of macrospins.
Under an increasing applied magnetic field the energy minimum corresponding to
the magnetic configuration along the field deepens to become the absolute minimum
characteristic of a stable structure. At the same time the initial AF state becomes
metastable. A perturbation or thermal agitation may throw it to the stable one. In
the absence, however, of such factors the AF structure persists until the stationary
point of the AF structure ceases to be a minimum and transforms into a saddle
point. This is marked by the lowest eigenvalue of the Hessian matrix crossing zero
to become negative. At the same time one of the spin wave frequencies tends to
zero. The phenomenon is called mode softening and the spin wave with frequency
tending to zero is called soft. The initial AF structure cannot exist beyond the soft-
ening. The respective value of the magnetic field is, therefore, the critical field or
switching field. We have shown that the corresponding eigenvector of the Hessian
matrix coincides with the precession ellipse of the magnetic moments degenerated
to a straight line. Therefore this eigenvector defines the polarization vector of the
soft spin wave.

Fig 4.10 shows the evolution of selected modes at the Brillouin zone center and
zone border in the AF configuration of the infinite chain of identical elliptic macrospins
under an increasing external magnetic field. Generally, the optical modes show a de-
creasing tendency whereas the acoustic ones visibly harden except for the branch
BM at k = 7/a; in the field range B € (36,42.05) mT which declines downwards as
a result of a hybridization and the consequent anticrossing (level repulsion) of two
modes of the same symmetry.

A hybridization concerns also modes at the zone center. In particular the sym-
metric optical modes interact in such a way that at about B = 36 m'T the lower

branch takes over an amplitude in the centre of the oval from the upper branch.
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Figure 4.10: Frequency vs. applied field curves for acoustic (blue lines) and optical
(red lines) BMs (solid lines), EMs S (dashed lines) and EMs AS (dotted lines): (a)
k=0 and (b) k =7/a;.

The feature of a significant amplitude at the oval center is marked by a solid line in
contrast with dashed line for EM S. The frequencies of the symmetric and antisym-
metric modes EM lie generally close to each other except for the optical modes in
the very vicinity of the instability point. The calculated value of the critical field for
the parameters applied amounts to B, = 42.05 mT. The leading soft mode whose
frequency crosses zero as the first one is a BM at &k = 0. It is interesting that the
polarization of the soft mode depends on intensity of the applied field so that at
weak fields the mode is practically of EM nature and near to the coercive field it
becomes a BM with, however, a significant precession amplitude close to oval’s ends.
The latter property makes the soft mode somewhat similar to the uniform Kittel
mode (compare Fig. 4.11). Every two-oval unit cell behaves in the same way. To
better illustrate the properties of the soft mode the amplitudes of the spin decli-
nation in the three spatial directions x, y and z have been reported in Fig. 4.11
for selected values of the magnetic field. The positive displacements are represented
by the red colour and the negative by the blue one. An intensity scale is always
given. The acoustic vs optical nature of the modes can be readily understood from
this Figure. First one has to remark that all the solutions conserve the time arrow,
i.e. every spin effectuates precession in the same sense about its equilibrium spatial
orientation. The term ”acoustic” concerns the kind of motion that the spins in the
first and the second oval of the unit cell are in phase. Similarly, a mode is called

optical if the motion in both members of the unit cell are shifted in phase by .
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Figure 4.11: Precession amplitude of the profile of soft mode in centre of Brillouin
zone as a function of the applied magnetic field.

The symmetric soft mode changes its nature when increasing the applied field. At
B =0 mT the amplitudes at both ovals within the unit cell are similar. For non-zero
magnetic field precession is mostly pronounced on the ovals magnetized opposite to
the field, whereas the spins on the oval magnetized along the field rest practically

motionless. When looking at the y component one sees a non-zero region close to
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the rounded ends of the ovals. This is a result of an equilibrium deviation of the
spins in these regions from the y orientation. Otherwise the precession takes place in
the plane (x, z). An insight into the z component map one notes that for relatively
weak fields, from B= 0 mT to B=20 mT the spin motion occurs at the ends of the
macrospins only. A faint streak appears along the long axis starts to be visible at B
= 30 m'T. With still increasing field intensity, B = 36 mT the precession overwhelms
the whole macrospin so that the mode becomes more and more comparable to the
Kittel mode. Noteworthy is that the z component diminishes with the increasing
field intensity. The reader should mind the scale difference at B=42.05 mT; the
scale for the z component is 80 times enlarged in comparison with the scale for the x
component. On the other hand the precession close to B = 0 mT is described by quite
a fat ellipse. The behavior reflects a gradual elongation of the precession ellipses;
they approach the limiting shape with the vanishing z semiaxes, i.e. a degeneracy
to a straight line in the plane of the oval. This is at the same time the eigenvector

of the zero eigenvalue of the Hessian matrix.
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Figure 4.12: Behaviour of ellipticity when approaching the coercive field for the
lowest mode in AF configuration.
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The dependence of the ellipticity parameter, i. e. the horizontal /vertical of

mation as represented in Fig.4.12.
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4.2.4 Robustness of the F configuration in chains of identi-

cal nanoparticles

Once the FM configuration is atteined it persists in spite of the fact that one can
reduce the intensity of the magnetic field and even make it negative. At B = 0 mT
the system remains in the metastable FM configuration although the stable one is
the AF. With our assumptions the only way to quit a configuration is to change the
parameter of the system to make the configuration unstable, i.e. to find the point
where the Hessian matrix ceases to be positive definite.

There is, thus, a question of how the AF configuration can be regained starting
from the FM one. A variation of the uniform magnetic field does not work because of
the metastability which persists to negative fields down to a switching value (coercive
field). Even then, however, with the parameters employed in our calculations, the
final configuration is the reversed FM. Of course defects or other perturbations may
drive the system to the most stable configuration, that can be similar to a spin glass.
Various strategies may be invented to provoke a FM— AF transition out of which the
one with an inhomogeneous alternating magnetic field seems theoretically simplest
but difficult to put into practice. What we propose in the subsequent sections is to
make every second macrospin different either in shape or in anisotropy parameters.

In our considerations we assume that the only way to quit a metastable configura-
tion is to vary the system’s parameters so as to make the configuration unstable, i.e.
the Hessian matrix must cease to be positive definite. It happens that in many cases
the instability of a FM configuration under the field opposite to the magnetization
occurs at the field in which the FM configuration parallel to the field is the most
stable state. This make the recovery of the AF state stable at B = 0[mT] is quite a

problem.
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switching in 1D chains of macrospins

As discussed above, there is a problem to recover the most stable AF configuration
of the chain starting from a metastable state FM. A solution is to make every second
oval different that imposes a desired reduction of symmetry. This can be attained
by varying some parameters out of which we first select those related with shape
bearing in mind the shape anisotropy. In particular the reversal is the more difficult
- and the oval is more assimilated to a single spin - the shorter is its horizontal
semiaxis. In the present section we will show two cases of regaining the stable AF

structure.

5.1 Chains of nanoparticles of alternating width

Let us consider a system in which every second nanoparticle is a narrower oval.

The unit cell contains two particles from the beginning as it has been shown in 5.1.

Figure 5.1: Static magnetization maps in elementary cell of a di-particle chain in (a)
parallel (ferrimagnetic) configuration and (b) antiparallel (antiferrimagetic) config-
uration (b). The parameters are h~=330 nm, S=50 nm, a3=280 nm.
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Making the horizontal diameters of the ovals different introduces a dissymmetry
and different switching fields for every diameter. Namely, narrower particles reverse
at higher fields. Following the analogy to microscopic magnets we have denoted the

parallel configuration in 5.1 (a) ferrimagnetic and (b) antiferrimagnetic.

5.1.1 Statics

As a first step we study how the change of diameter of every second nanoparticle
affects the behaviour of the ferrimagnetic configuration in the external magnetic

field.
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Figure 5.2: Hysteresis half-loops with widths of narrower oval 110, 100, 90, 80, 70,
60 nm. The width is marked with the intensity of blue. Red curve correspond to
identical macrospins of diameter 120 nm (see section 4.5)

In Fig. 5.2 the red line corresponds to the half loop of histeresis for identical
ovals with width 120 nm in unit cell. An analogous half loop for the diameter ratio
1/2 is marked with the most intense blue color, the next line exhibit effect of con-
secutive diminishing the diameter of the narrower nanoparticle. The intermediate
cases show the evolution of the hysteresis loop with varying the width of the second
nanoparticle, looking from the left this parameter amounts to 70, 80, 90, 100 and
110 nm respectively. Even a slightest difference in the diameter of the neighbouring

ovals allows the AF structure to be recovered. One can see that the coercive field

56



Chapter 5. Towards reversible ferro - antiferro switching in 1D chains of
macrospins

increases with decreasing oval breadth. It is consistent with the observation of the
single macrospin. The reentrant antiparallel configuration occurs at the field which is
the stronger the lower is the breadth of the narrower component. One can easily see
that the magnetization of the configuration in which two different ovals are ordered
antiparallel to each other does not compensate to zero. That is why we call it anti-
ferrimagnetic (AF to indicate antiparallel arrangement of neighbouring macrospins
irrespectively to their individual magnetization). This is a simple consequence of
the fact that the number of spins in the wider oval is larger. Noteworthy is also
that increase in the diameter difference makes the region of the AF configuration to
grow. The residual magnetization in the AF configuration is visibly oriented along
the applied field. This allows one to conclude that the macrospin that reverses as
the first in the opposite field is the wider one as it can be expected from its lower
coercive field. The observation is corroborated by the magnetization maps obtained
with the program OOMMEF and presented in Fig. 5.1 (b). We shall now study in
more detail the system in which every second nanoparticle is twice as wide as the
neghbouring ones. Their horizontal diameters are 120 and 60 nm respectively. The

entire hysteresis loop is exhibited in Fig. 5.3.
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Figure 5.3: Hysteresis loop for infinite chain of macrospins of alternating horizontal
diameters 120 and 60 nm.

There are in fact two characteristic fields in such a system: B.4r one for the
switching from the FM configuration to the AF state and B.p for the AF — FM
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transition. In the present case the corresponding values are B.4ap=-35 mT and B.p=-
93 mT. The hysteresis loop is symmetric with respect to the reversal of the applied
field. One can easily see that the region of te AF configuration is relatively large. We
shall now analyse the dynamical properties of these transitions following the bold
line of Fig. 5.3 in the direction starting from strong positive field that subsequently

decreases to become negative(i.e. antiparallel to initial magnetization).

5.1.2 Dynamics

The dispersion relations of the three lowest modes localized on wider ovals and
the three lowest modes localized on narrower ovals in the chain of ovals of different
widths at the most characteristic points of the hysteresis loop are collected in Fig.
5.4.
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Figure 5.4: Dispersion relations acoustic (blue lines) and optical (red lines) BMs
(solid lines), EMs S(dashed lines) and EMs AS(doted lines) for FM order at (a)
B=100 mT and (b) B=-35 mT and AF order at (¢) B=-36 mT and (d) B=-93 mT.

The first diagram (Fig. 5.4(a) is made in a strong field B=100 mT where the
FM configuration is well established. The respective dispersion relations in the same
configuration but at the verge of stability, i.e. for B = -35 mT are visible in Fig.
5.4(b). In Fig. 5.4(c) one can see the dispersion relations at B=-36 mT in the AF

configuration just after the transition from the FM configuration. The value B=-
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93 mT is close to the instability of the AF phase before its reversal to the stable
Ferromagnetic configuration. The dispersion relation at this field are given in Fig.
5.4(d) . The negative value of the field indicates a field applied antiparallel to the
initial FM configuration.

The appellation "acoustic” and "optical” modes at the Brillouin zone centre is
not adequate here, because no modes show identical in-phase or out-of-phase dis-
placements on both members of the two-oval unit cell as it is the case for a chain of
identical nanoparticles. Instead, the analogues of the acoustic modes are now con-
centrated at the wider oval and the analogues of the optical ones at the narrower one.
The frequencies of EMs S and AS in FM configuration lie very close at fields far from
the coercive field, so that they are hardly distinguishable in the diagrams. The same
mode are however clearly separated near to the switching field. In contrast to that
in AF configuration EMs S and AS for pseudo-optical branches are well separated
in all the values of the field studied. The pseudo-acoustics EMs branches are very
close to each other also in AF configuration. The branch marked in magenta (Fig
5.4(d) very near the AC BMs represents another symmetric mode. It will be shown
that these modes hybridize close to the reversal field B.g. It is apparent that most of
the modes reported in Fig. 5.4 show a weak dispersion, i.e. a memory regime related
with low group velocity. The only exceptions are the pseudo-acoustic (centred at the
wider oval) mode and the pseudo-optical (centred at the narrowerr oval) mode in
Fig. 5.4 (b, d). In fact the curves become more and more dispersive when the insta-
bility, i.e. the complete eventual softening of the mode at the Brillouin zone centre,
is aproached. This effect is interesting in view of possible applications of such chains
as logical gates. A rule can be stated that the soft modes are at the same time
the most dispersive ones. The gap between the pseudo-acoustic and pseudo-optic
branches is generally weak for strong enough fields and significantly broadens close
to the critical points. The ability of controlling the stop band by means of magnetic
field is a desirable property for spintronics. The soft mode behaviour accompany-
ing the transitions from FM configuration to AF and from AF configuration to the
reversed FM one in the chain of alternating macrospins is depicted in Fig. 5.5.

The figures 5.5 show the dependence of the spin motions in selected modes on
the applied field. The end modes EM S and EM AS lie very close to each other in
a wide range of applied fields except for the very vicinity of the critical field. The
dispersion branches are particularly close to each other at B = 0 mT that results
in a strong hybridization of the modes of the same symmetry. As a consequence the
polarization of the modes changes and the one of the lowest energy becomes BM.
There are two critical fields B.r and B.4r in the system of alternating ovals. Both
of the instabilities are marked by soft modes. The soft mode at the field B.ar = -35
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Figure 5.5: Frequency vs. applied field curves for pseudo-acoustic (blue lines) and
pseudo- optical (red lines) BMs (solid lines), EMs S (dashed lines) and EMs AS
(doted lines), at (a) k =0, and (b) k = 7/as.

mT turns out to be the one pseudoacoustic (localized on the wider oval) BM. This
is consistent with the wider oval reversing at this field. In turn the transition from
the antiferrimagnetic configuration AF to the FM one at B.p = -93 mT is a BM
pseudo-optical one localized at the narrower oval, which reverses at this transition.
A slight deflection of a BM of the pseudo-acoustic branch at k& = 7/a3 close to
the critical field BcF is a result of the proximity, and the consequent hybridization,
of another symmetric mode reported in Fig 5.4(b) in magenta color. We shall now
watch the variations of the precession amplitude profiles of the soft modes with the
applied field.

In Fig. 5.6 we present the evolution of the precession profiles of the lowest pseudo-
optical and pseudo-acoustic modes in the chain of ovals of different widths. Generally
the precession of spins is fairly circular at fields far from the instability, e.g. at B >
100 mT. The semiaxes of the precession ellipses in the z and z directions are equal
as it is seen from the same scale +£2. When approaching the instability one observes
a progressive reduction of the semi axis in favour of that in-plane. E.g. at B = -35
mT the semi major axis in x direction is 40 times longer than the z semi minor axis.
This is an effect of the shape anisotropy: the low-frequency modes are preferentially
polarized in-plane. One can also appreciate a hybridization of branches of the same
symmetry. Namely, at B = 0 mT the lowest mode is of an end-mode character with
only a faint streak at the oval’s center. With the field increased to B = -10 mT the
precession amplitude are significantly different from zero in the whole area of the
oval. With still stronger field the visible motions are present in the central part of

the macrospin only.
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Figure 5.6: Precession amplitude profile for the lowest pseudo-acoustic mode in chain
of ovals of different width at £ = 0 as a function of applied field.

The precession amplitudes in the pseudo-optical mode are gathered in Fig. 5.7 as

functions of the applied magnetic field.
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Figure 5.7: Precession amplitude profile for the lowest pseudo-optical mode in chain
of ovals of different width at £ = 0.

An insight into the evolution of the precession amplitude profile for the lowest

pseudo-optical mode reveals the tendency of the spins to show a prevailing in-plane
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semiaxis of the precession amplitudes (see B = - 93 mT). The y component of the
semiaxis is usually much smaller. As before, the z semiaxis becomes semi minor axis
of the precession ellipses when approaching the instability, e.g. at B = - 93 mT
it decrease by a factor of 20 as compared with B= 100 mT and is about 40 times
smaller than the x component of the semi major axis (mind the scale +4 for x; £0, 1

for z).

5.2 Chain of nanoparticles with different anisotropy

We have seen that making the neighbouring ovals different in their horizontal
diameters eased the transition from the FM to the AF configuration. In fact the
change in shape entailed a change in the shape anisotropy. Here we shall study the
effect of changing the anisotropy itself with the intact shapes as those discussed in
the section 4.2. We shall, namely, make the x-axis of every second oval an easy mag-
netic axis which is feasible with an electric voltage. The corresponding anisotropy
parameter is K;. The anisotropy terms reads in the usual way and is proportional to
the squared sin of the angle between the spin and the easy z axis. In fact making the
r-axis an easy magnetic axis is similar to making the oval wider, although the physi-
cal mechanism and, therefore, the detailed form of the energy function are different.
An advantage of making the anisotropy different is that the ovals are geometrically
identical and the magnetization in the AF configuration is expected to compensate

to zero.

5.2.1 Static

To study the effect of the anisotropy we put our system in the FM configuration
magnetized opposite to a constant external field B= 25 mT and vary the parameter
K. We have checked in previous sections that the configuration is metastable at K
= 0 kJ/m3. Fig. 5.8 demonstrates that at a high enough value of the anisotropy the
FM configuration looses its (metastability) and switches to the AF one.
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Figure 5.8: Magnetization vs. anisotropy parameter K of every second nanoparticles
uned the constant external field B=-25 mT

The instability of the initial FM configuration and its transformation to AF occurs
at the critical K;= 2.1 kJ/m?3.

5.2.2 Dynamics

Fig. 5.9(a) exhibits the dispersion relations of the lowest modes in the FM con-

figuration close to its instability before the transition to the AF configuration.
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Figure 5.9: Dispersion relation for B=-25 mT acoustic (blue lines) and optical (red
lines) BMs (solid lines), EMs S(dashed lines) and EMs AS(doted lines) for (a)FM
order for K;=2 kJ/m? and (b) AF order K;=2.1 kJ/m?

The unit cell contains two different macrospins so the modes may be in principle
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classified as acoustic and optical. It is interesting that this classification turns out
fairly adequate in the present case in contrast to the anisotropy difference imposed
by the ovals widths. Indeed, e.g. Fig. 5.11 shows a well defined acoustic mode.

A trace of the translational invariance in spite of the ovals difference in anisotropy
is a degeneracy of the modes at the Brillouin zone border. Generally the modes
exhibit close frequencies that makes the hybridization of those of identical symmetry
frequent. They show mostly a weak dispersion, or even no dispersion, except for an
acoustic bulk mode that eventually softens at k = 0. Its group velocity is positive.
With the softening of the mode at k = 0 the end of the branch at k = 7/a; also
goes down making the mode degenerated with the soft mode at the zone border also
relatively strongly dispersive with, however, a negative group velocity (see red solid
curve in 5.9(a).

After the discontinuous transformation to the AF structure (Fig. 5.9(b) the de-
generacy at the zone border disappears and all the modes become weakly dispersive.
This is another instance of a variation of the systems’ parameters controlling the
group velocities of modes and the width of the stop band for the spin waves. The
evolution of the lowest modes with increasing anisotropy parameter K; can be seen
in Fig. 5.10. One can remark that all the modes in the AF structure show a decrease
in frequency, although the leading one is an acoustic BM in the Brillouin zone centre.

Remarkable is also a quasi-continuity of optical modes across the transformation.
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Figure 5.10: Frequency vs. anisotropy at B=-25 mT acoustic (blue lines) and optical
(red lines) BMs (solid lines), EMs S(dashed lines) and EMs AS(doted lines) at k = 0.

The transformation from FM configuration to AF one takes place at about K; ~
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2 kJ/m3. The soft mode is an acoustic mode at k& = 0. The dispersion branches of
symmetric and antisymmetric end modes practically coincide in frequency except for
the soft acoustic branch in FM configuration. The optical branch shows a little step-
like change at the FM — AF transition. The frequencies of all the selected modes
decrease with increasing anisotropy parameter K; in the whole studied region. The
evolution of the polarization of the k£ = 0 soft mode as a function of the anisotropy

parameter K is depicted in Fig. 5.11.
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Figure 5.11: Precession amplitude profiles in the lowest acoustic mode at k = 0 for
a chain with alternating anisotropy

One can remark that the precession ellipses are elongated in the (z,y) even at
K1=0 kJ/m?*. The z-component is 30 times longer than the z one there and this
ratio increases when approaching the instability.

The AF configuration of the chain with every second oval endowed with an easy
x-axis can be recovered with a homogeneous magnetic field, when it becomes strong
enough in the direction opposite to the initial FM order. This is illustrated in the
Fig. 5.12
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Figure 5.12: Hysteresis loop, magnetization vs. applied field, for a chain of ovals
where every second oval shows anisotropy with easy x-axis, K= 3.4 kJ/m3.

The resulting AF is however in a relatively narrow range in the studied example.

To enlarge this range one has to increase the anisotropy parameter.
In summary: Making the ovals different, the anisotropy parameter allows one to

recover the AF configuration without residual magnetisation. Surprisingly the zone

centre modes can be exactly classified as acoustic or optical.
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From single spin to macrospin

The macrospins as described in previous sections are systems of numerous single
ionic spins, treated in a continuum approximation, that collectively behave analo-
gously to a single spin. It is interesting to construct the simplest possible systems
of this kind. The motivation for such studies are enhanced by the recent discover-
ies of molecular magnets where the magnetic interactions can be controlled by the
chemical surrounding [28]. Moreover, the model calculations can indicate ranges of
parameters for which interesting/useful phenomena are expected and, by this, stim-
ulate experimental studies. In what follows we study the bevaviour of the spins as a
function of the parameters of their interactions. In sections 6.1 and 6.2 we avail our-
selves of a possibility of considering arbitrary values of the interaction parameters
in systems consisting of few spins. This will allow us to give indications concerning
design of systems of desired functionality. The result will be compared with the spe-
cific case of permalloy where the interaction parameters are well known and dictated
by the properties of material. Because the study depends on free parameters their

units are not indicated.

6.1 Complex of two-spins: bi-spins

As the first example we will consider a complex of two spins.

6.1.1 Single bi-spin

The geometry of such a pair is adapted to the one considered in the case of

macrospins.
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[\ T

Figure 6.1: Geometry of bi-spin system; the simplest model of macrospin.

The spins are supposed to have a constant unit lengths so that their configuration

is described by the polar and azimuthal angles

m; = (sinb;cosp;, sinb;sing;, cosb;) , i = 1,2 (6.1)
The interactions of spins comprise ferromagnetic exchange and dipole forces.

When put into a homogeneous magnetic field H the system has the following total

energy.

. . 1
E=—H -1y — H -1ty — Jiihy - 1y + M?— (1 - 17y — 3 (7 - 17y) (7 - 1712))  (6.2)

r
It is clear that in the absence of the external field the configuration corresponding
to the minimum of energy is that of §; = ¢; = 7/2 | i.e. a head-tail parallel column.
This is in fact the first manifestation of a shape anisotropy. Assuming a magnetic
field parallel to the y axis or H= (0, H,,0) one can calculate the matrix of second

derivatives of the energy (Hessian matrix).

Hy+J + 232 0 —J + 2 0 3¢

& _ 0 Hy+ H, + J + 23 0 —J + 4 36,
g 0 Hy+J+ 4 0 3¢

0 —J + M2 0 Hy+ H, +J+2Y| |60,

(6.3)

The additional parameter H, > 0 corresponds to an anisotropy that makes devi-
ations in z direction more difficult. It will be shown that in the case of a chain of

such bi-spins a shape anisotropy will keep the spins in the (z,y) plane. With H, > 0
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the stability condition reduces to the following 2 x 2 matrix being positive definite

Hy+J+2M 4 M
I y (6.4)
—J M H, 4T 4 2M
or
» Hy+J+2M g4 M2 0 .
€ M? M2 ()
—J M H, 4T 420
and

M2
H,+J+ QF > 0.
One can easily see that the bi-spin is stable at H, = 0 when J > 0. An instability
occurs when the applied field is opposite to the spins, i.e. H, <0 .

We can distinguish two cases.
e A weak exchange

If the exchange parameter is small enough to satisfy the relation

or

The eigenvector corresponding to the zero eigenvalue then is (d¢1,0,d¢9,0) =
(1,0,—1,0) , i.e. both spins go into opposite directions. This kind of motion is
analogous to a one-node mode in a real macrospin. It ensures a proximity of the
head (the north pole of one magnet) of one spin with the tail (the south pole of one
magnet) of the other. This case, dominated by dipolar interactions, is not typical

for macrospins where the exchange interactions are usually strong.
e A strong exchange
When

M2
the exchange interactions prevail. The instability will occur when H,, becomes so

negative that

M? M?
Hy+J+2:—<—J+L3>
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i.e. v
==

or
M2
HC — 3?

Noteworthy is that the critical value of the magnetic field now depends on the
dipolar interactions only. The eigenvector the corresponding to the vanishing eigen-
value in this case is (0¢1,0,0¢2,0) = (1,0,1,0).

The reversal of the bi-spin proceeds so that both spins remain parallel, i.e. the
exchange energy stays in minimum. The kind of reversal is similar to Kittel mode, or
no-node mode, also observed in the oval-section cylinders of permalloy (see section
4.2.3). In what follows we will assume L = 1.

For practical reasons the external magnetic field may be declined from the vertical
y direction. The critical (coercive) field then changes. The following figure presents
the value of the coercive field H. as a function of the tilt angle between the field and
the y axis for the values J = 1, M? = 0.5.
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Figure 6.2: Coercive field H, as a function of the angle of the field with y-axis for

J=1, M?>=0.5.

A decrease in the coercive field is visible for small tilt angles. The narrowest
hysteresis occurs for an angle equal to 45° the curve of Fig. 6.2 has a minimum.

Then a re-increase is seen. This means that the reversal the bi-spin by a field too
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much inclined towards the x axis is more difficult.

We have seen that the shape of the hysteresis loop in permalloy macrospins,
in principle quasi rectangular, has been marked by rounding close to the reversal
points. The same occurs in the present simple model. The following figure gives the
y component of the magnetization at the reversal point with a positive y component
of the field H, > 0.
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Figure 6.3: Projection of the magnetization on the y-axis at the instability point for
J =1, M? = 0.5 as a function of tilt angle of the field with the y-axis. The projection
is negative because we consider a positive y-coordinate of the field applied to bi-spin
oriented in y direction. Irregularity of the curve comes from numerical inaccuracies.

Both above Figures have been obtained in the case of J > M in which case the
spins are constantly parallel. Consequently the exchange energy does not depend on
their angle with the y axis and both figures are the same for every J in the case of

the predominant exchange interactions.

6.1.2 Chain of bi-spins

When arranged in an infinite equidistant chain perpendicular to their axes the
bi-spins are found to have four possible equilibrium configurations depending on the
ratio d = a/L, where a is the distance between the neighbouring bi-spins. We always
assume that the exchange interactions are active within a bi-spin and they do not

exist between different bi-spins independently of the distance.
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Figure 6.4: Four configurations of the chain of bi-spins: (a) AF, (b)FM , (c) ferro-
magnetic horizontal FMh and (d) antiferromagnetic horizontal AFh

One can remark that the freedom in selection of distance between neighbouring
bi-spins leads to equilibrium configuration encountered in the permalloy macrospins
Fig. 6.4 (a,b) as well as horizontal ordering either preserving monodomain character
of macrospin (c¢) or splitting it into two domains (d), where the magnetization of

the bi-spin compensates to zero.

6.1.2.1 Statics at H = 0 with variable distance

When without external field the FM configuration is always metastable in all the
examined cases. The sequence of all the configurations as a function of the distance
ratio d depends on the interplay of the parameters J and M?, but also on the range
of dipolar interactions taken into account in the calculations. It is known that these
interactions decrease inversely proportionally to the third power of distance, but in
real systems they are also screened by the diamagnetism of the magnetic dots and
of the substrate. To illustrate the behavior of the chain of bi-spins we present the
case with parameters J = 1 and M? = 0.5 and the dipolar interactions extending
to the nearest neighbouring bi- spins. The general features are present in this case.

The energies of the configurations are shown in the following figure.
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Figure 6.5: Energies of bi-spin chain for the configurations with H = 0, for J = 1 and
M? = 0.5: AF (orange), FM (green) , FMh (blue), AFh (red). Crosing of line AFh
and FMh is visible in the inset. Critical value of relative distance d., corresponds to
the second order yet discontinuous transition discussed in section 6.1.2.3

For large enough distances the most stable configuration is AF. The metastable
FM configuration looses its stability at d = 1.315 where one of the eigenvalues of
the Hessian matrix vanishes, so that the minimum transforms into a saddle point.
The system drops to the only stable AF configuration. When the lattice constant
decreases to d = 0.961 the FMh becomes the most stable. The energetic reason for
that is clear: the closest dipoles become those which are a apart. Consequently they
take a head-tail configuration, whereas the exchange forces within each bi-spin keep
the spins parallel. The nature of this transition is extremely interesting as the AF
configuration disappears at the same distance as the FMh appear, see Fig. 6.5. This
is characteristic of the second order phase transitions. Yet not only is the transi-
tion discontinuous: each spin reorients by a right angle, but it even does not fulfil
a group-subgroup relation as required by the Landau first necessary condition of
the 2nd order phase transition [29, 30, 31]. This will be discussed below. When the
lattice constant is shorter than d = 0.384 the most stable configuration becomes
AFh. One should remark that the latter configuration becomes stable for increasing

d with range of dipolar interactions. However it is not stable for the first interacting
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neighbours if the exchange interaction constant J is too high. The transition MFh
— AFh is typically discontinuous. The distance d = 0.384 corresponds to the co-
existence point of the configurations (see inset in Fig. 6.5). The AFh configuration
remains metastable up to the distance d = 0.777. On the other hand the metastabil-
ity of the FMh configuration persists down to the shortest distances in the studied

case.

6.1.2.2 Dynamics and transition mechanisms as dependent on bi-spin

separation in the chain

The instability points of the chain of bi-spins are marked by an eigenvalue of the
Hessian tending to zero, or equivalently, by a soft spin wave. Fig. 6.6(a) presents
the dependence of all the eigenvalues of the Hessian matrix on the relative distance
d starting from the lowest values and AFh configuiration. The lowest eigenvalue is
distinguished by blue color. A discontinuous transition at d &~ 0.777 is characterized
by jumps of all the eigenvalues, whereas in the second order transition at d =~
0.9614... the soft mode rebounds in a continuous manner from zero. A continuity of
other modes can also be appreciated. The evolution of the eigenvalues starting from
the highest values of d and the FM configuration is represented in Fig. 6.6(b). The
transition FM—AF at d & 1.315 is discontinuous, whereas the vicinity of the second
order transition at d &~ 0.9614 looks exactly the same as in the previous case.

As explained in section 2.2 the Hessian matrix of the magnetic energy allows one
to compute the frequencies of the spin waves. An example of comparison of both
quantities is given in Fig. 6.7. For our system on the verge of instability of the
AF phase at d =~ 0.9614. The left panel contains the four eigenvalues of Hessian
matrix and the right panel the corresponding frequencies of spin waves. A mode at
k = 0 tends to zero so it is the soft mode. An insight into the precession profiles
allows us to classify the magnons at £ = 0 as one-node or no-node and as quasi
circular precession vs precession elongated in the (z,y) plane. As expected the soft
mode is extremely elongated and show no node within the bi-spin. Additionally the
precessions on neighbouring bi-spins are shifted in phase by 7 (optical). The second
lowest mode is less elongated, the semi-axis ratio is about 1.41, the precession of
both members of the bi-spin is in antiphase (one-node mode) as the precession on
neighbouring bi-spins. Both higher modes show almost circular precession, the same

in neighboring bi-spins (acoustic), the lower without node and the higher one-node.
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Figure 6.6: Eigenvalues of Hessian matrix of energy in stable and metastable phases
of chain of bi-spins as functions of realtive distance d (a) starting from the lowest d
in AFm configuration, (b) starting from highest d in FM configuration. Soft mode
distinguished with blue color. The eigenvalues have been calculated at £ = 0, in the
unit cell corresponding to the AF configuration, i.e. lattice period equal 2a. Therefore
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periodicity a.
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Figure 6.8: The dispersion relations of spin waves (a) in FM configuration, d=1.315,
(b) AF configuration d > 0.9614 and (c) FMh configuration d < 0.9614.

The magnons below the second order transition are represented in the right panel
of Fig. 6.8. At k = 0 the higher mode is almost circular and shows a node, whereas
the lower has no node and is elongated in the (z,y) plane by a factor of 1.46.The

elongation grows with the k vector to become infinite at k = 7/a, i.e. at the zone
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border, where the mode becomes soft. The instability of the FM configuration at
d = 1.315 is driven by a soft mode at the Brillouin zone centre as seen in the upper
left panel of Fig. 6.8. The soft mode is infinitely elongated in the (z,y) plane and
has no node. It is interesting that in spite of the fact that it drives an instability
leading to AF phase it occurs at & = 0, i.e. the neighboring bi-spins precession is
in phase. The higher mode is almost circular and with one node at Brillouin zone

centre.

6.1.2.3 Discontinuous (but) second order phase transition

The transition AF <+ FMh with the changing distance d unifies properties of the
first order phase transition and 2"¢ order phase transition. The energy is continuous.
But the configurations are not in a relation group-subgroup, which is analogous to
strongly reconstructive martensitic phase transition showing usually a deep hystere-
sis [32]. It turns out that at d = d., the energy of the chain does not depend on the
angle of the spins with the x-axis if we deviate the spins of neghbouring bi-spins
by the same amount in opposite directions (Fig. 6.9). It is clear that if this angle
amounts to zero we have FMh structure, and the if reaches 90 deg the structure
becomes AF. The plot of energy as a function of the angle for interactions to the
nearest neighbours is presented in Fig. 6.10 for three different values of the dis-
tance. We have checked that the phenomenon occurs independently of the number

of interacting neighbours taken into account.

Figure 6.9: Angle deviation of bi-spins at the discontinuous second order transition.
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Figure 6.10: Energy of bi-spin chain as a function of angle ¢ of Fig. 6.9 for distances
close to critical distance d..=0.9614.

The plots explain how the minimum at ¢ = 0 disappears and a minimum for
¢ = m/2 appears at the same time. This is reminiscent of the transcendental order
parameter theory given by P. Tolédano [29]. However the Toledano’s theory has
not invoked phase transitions of second order. The soft modes behave typically for
the second order phase transitions as shown in Fig. 6.6. Their frequencies vanish at
the same point. This kind of transition, apparently contradictory to the common
knowledge associating the second order with continuity is worth further studies that
are beyond the scope of the present dissertation.

The studies as dependent on distance d are not current in the existing literature
but some piloting experiments with strain have been already done [33]. The collection
of phenomena described here indicate an interest in designing systems capable of
varying the distance of the macrospins, e.g. by depositing magnetic nanoparticles

on an elastic substrate.

6.1.2.4 Hysteresis loop in magnetic field

In the present section we study the behaviour of the chain of bi-spins in analogy to
the chain of macrospins. Therefore, we settle the value of the relative distance d = 2
where AF configuration is stable at the zero external field H = 0 in concurrency
with the metastable FM configuration Fig. 6.11(a) gives the energy diagram for the
thought experiment in which the external magnetic field parallel to the y axis is
applied to the stable AF configuration. When the field attains the value H = 1.618
the AF configuration looses its stability and drops to the stable FM configuration
magntised parallel to the field. Then we diminish the field. The FM configuration
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persists metastable down to H = —0.9640. As in the case of elliptical macrospins the
stable configuration in these conditions is the FM one aligned along the field. That
is why the initial AF configuration cannot be recovered with varying homogeneous
magnetic field. Fig. 6.11(b) represents the hysteresis loop for the magnetization along
the y axis. With the field being constantly parallel to the y-axis the loop is perfectly

rectangular.
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Figure 6.11: (a) Energies of AF and FM configurations of a chain of bi-spins J =
1.0, M? = 0.5 with relative distance d = 2.0. Arrows indicate the sequence of applied
fields H||y. (b) Hysteresis loop of y-component of magnetization with the same field
sequence.
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6.1.2.5 Spin waves under magnetic field

Having only two spins in the model of macrospin we can draw all four frequencies
of the spin waves as functions of the external field. The behaviour of the frequencies
under increasing magnetic field H starting from the AF configuration is shown in
Fig. 6.13.

The frequency of the soft mode decreases with increasing external field. An insight
into the polarization vectors of the waves shows that for H = 0 the soft mode is an
optical mode with almost circular precession ellipses of all the spins. The precession
in the neighboring bi-spins are shifted in phase by 7 which is here the definition
of the optical mode. With increasing field H the ellipses become more and more
elongated in the (z,y) plane and at the same time the precession radius of the spins
oriented opposite to the external field increases at the expense of the precession
radius of the spins aligned with the field. The second-soft mode (1.0 at H = 1.66
and 2.58 at H = 0) is acoustic, i.e. the spins in neighbouring bi-spins rotate in
phase. In contrast the rotations of the spins within one bi-spin are shifted in phase
by 7 which is analogous to a one node mode. The precession radii of the spins
oriented opposite to the field also increase. The magons starting from H = 0 with
the approximate values w = 1.95 and w = 2.74 are zero-node optical and one-node
acoustic respectively. The frequencies of both modes increase (hardening) as well as
the contribution to the polarization vectors from the bi-spins oriented parallel to the
external field. After the jump to the FM configuration the modes change stepwise

their character and the frequencies.
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Figure 6.12: Frequencies of spin waves as functions of increasing magnetic field H
starting from AF configuration.
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The evolution of the dispersion relations of the spin waves with increasing field
is depicted in Fig. 6.13. It is remarkable that the dispersion curves flatten signif-
icantly with increasing field in AF configuration and become lightly dispersive in

FM configuration.
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Figure 6.13: Dispersion relations in consecutive stages of transition from AF config-
uration to FM configuration. (a) AF configuration H = 0, (b) AF configuration at
verge of stability H = 1.677, (¢) FM configuration just after transition H = 1.678.

The frequencies of the spin waves at the switching between FM configurations are
depicted in Fig. 6.14 as functions of the applied field H. Zone centre modes k = 0
and the zone border k£ = 7/a modes have been shown. Only the soft mode exhibits

a curvature the other being fairy linear.
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Figure 6.14: Zone center & = 0 and zone border kK = 7/a modes frequencies as
functions of applied field at switching between two opposite FM configurations.
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Figure 6.15: Dispersion relations of spin waves in FM configuration at verge of
stability.

The dispersion relations of the spin waves at the verge of stability are given in
Fig.6.15 The soft mode at k = 0 shows no node and a rather strong elongation of the

precession ellipse in the (z,y) plane: the theta component of the soft mode tends to
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zero. The higher mode in Fig.6.15 involves almost circular precession of both spins

in bi-spin but the precession of lower spin is shifted in phase by m, i.e. the mode

shows a node across the bi-spin.

Whereas we are not able to model a shape anisotropy with only two individual

spins in a macrospin we can, however, introduce a material anisotropy in analogy

to section 5.2. As an example we present in Figs. 6.16 the energy diagram and the

hysteresis loop with a term

E, = —K\m? = —K(sinf, cos¢)?

where K; = 0.6.
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Figure 6.16: (a) Energies of AM and FM configuration of a chain of bi-spin. Arrows
indicate evolution of applied field. (b) Hysteresis loop of y component of magneti-

zation with the same field sequence.
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To close the section on the bi-spin model we present in Fig. 6.16 some examples
of hystereses for different distances of the bi-spins. The calculations have been done
with the parameters J = 2, M? = 0,5. As one can see at the largest distances this
simple model reproduces the behaviour of massive macrospins of chapter 4. In partic-
ular the loop is fairly rectangular and the initial AF configuration does not reappear
under the homogeneous applied field. However, with decreasing lattice spacing one
can arrive at a two-part hysteresis loop that drops to the AF configuration either
abruptly (Fig. 6.17(b)) or with an oblique region (Fig. 6.17(c))

The results suggest that the distance of the macrospins may be a relevant pa-
rameter in designing functional systems transmitting spin waves. In particular the
reentrance of the AF configuration may be achieved as a result of the appropriate
interplay of exchange and dipolar interactions, as well as of the macrospin separa-

tion.
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Figure 6.17: Effect of relative distance on shape of hysteresis loop in chain of bi-spins.
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6.2 Single spin versus microspin calculations

In the previous sections we studied complexes of few individual spins as the first
stage of formation of a macrospin in a "bottom up manner”. It is, however, also
interesting to what extent the micromagnetic calculations are able to reproduce the
results obtained with single spins, i.e. if similar systems can be obtained in a "top-
down” strategy. To illustrate this we first considered four individual spins arranged in
the corners of a square of edge a. The spins’ distance a apart are assumed to interact
by both exchange and dipolar forces, whereas those situated on the opposite corners,
i.e. the square’s diagonal apart are only subject to dipolar interactions. Although
it is not sure if such a system can be synthesized chemically we consider it because
it follows a usual assumption made in micromagnetic calculations, namely that the
exchange interactions extend to the nearest neighbours only. The system shows a

very interesting evolution when put in an external field along its diagonal.

(a) (b) (c) (d) (e) (f)

A tYt rtr A7
A A tY rt 27

Figure 6.18: Consecuitive stages of magnetization of four-spin system under magnetic
field along square diagonal.

The consecutive stages of the four spins are depicted in Fig. 6.18. If the field is
strong enough all the spins point exactly along the field. With weakening the field
one arrives at a point where the spins decline from the diagonal. This is a typical
continuous second order transition with a spontaneous symmetry breaking. The new
structure becomes symmetric with respect to the vertical direction when the field
vanishes. Following the evolution of the field to negative values makes the angle
between the field and the spins obtuse. This is energetically unfavorable and ends
up, with increasing the negative value of the field, in a discontinuous transition,
to the structure with an acute angle, which subsequently becomes perfectly aligned
with the field by a continuous transition. The quantitative evolution is shown in Fig.
6.19(a), where the projections of the total magnetization on the x and y axes are
represented separately. The parameters of Fig. 6.19(a) are J=2 and M? = 0.5. It is
interesting that the shape of the graph does not change as long as J > M?, i.e. the
exchange interactions prevail. The only difference is that the scale on the abscissa
changes. In the opposite case, i.e. J < M? the structure at H = 0 is the vortex one
which is beyond the scope of the present dissertation.

In contrast with Fig. 6.19(a) the plots 6.19(b) and 6.19(c) are obtained with the

data corresponding to the permalloy (in Fig. 6.19(b) the exchange interactions were
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reduced by a factor of 10) introduced into a "macrospin” consisting of as few as
four cubic cells. In fact it is the system and its states that are reproduced with the
OOMMEF program in Fig. 6.18. One easily remarks that the curves are identical with
only difference in the abscissa scale.

The result proves that the cubic shaped cells in the OOMMEF program behave
very close to point-like single spins in spite of the fact that they are portions of
a medium in a continuous approximation. This also indicates that the single-spin
calculations can be informative for some continuous systems. On the other hand it
would be interesting to check experimentally the sequence of the transitions on a
real square of permalloy to verify how small (large) should the cells be to follow the

micromagnetic behavior described.
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Figure 6.19: magnetization components M,, M, (blue, red) in (a) four-spin system
of individual single spins J=1, M?=0.5, (b) same geometry for microspin pixels with
interaction parameters corresponding to permalloy,(c) same geometry for microspin
pixels with interaction parameters of permalloy with exchange constant reduced by
factor of 10.
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Summary

The systems studied in this dissertation are assumed to be free of thermal fluctu-
ations. The assumption is valid in low temperatures or when the magnetic moments,
e.g. of macrospins, are sufficiently large. The equilibrium states of the systems un-
der such an assumption correspond to minimum of energy instead of thermodynamic
potentials involving entropy. Another consequence of the absence of fluctuations is
that the solutions of the secular equations show real frequencies and, thus, describe
infinitely lived, oscillating excitations. The complex frequencies mentioned in semi-
infinite systems of Chapter 3 do not contradict this statement because the attenu-
ation there is a result of energy radiation into the semi-infinite medium by a way
of "leaky waves” [14, 15, 34, 35] rather than of dissipation mediated damping. It
is known that from among the elementary excitations studied for signal transmis-
sion the magnetic ones show the lowest damping and the related large attenuation
lengths [36, 37]. The neglect of damping is, therefore, a justified first approximation.

Defects of periodic structures are known to support localized states. This is a result
of the fact that complex wave vectors are forbidden in the infinite systems to avoid
solutions growing to infinity but they are allowed in semi-infinite media provided
that they describe spatially attenuated partial waves. In principle the localized states
occur outside the frequency ranges of bulk waves, because in the opposite case the
energy is radiated into the medium and the secular state transform into resonances
also known as leaky waves. Exceptions are known [17, 16, 38] but rare. However
the phenomenon has been found here on the interface of two ferromagnetic chains
coupled in an antiferromagnetic manner provided that the radiative bands of both
chains are different.

The design of devices capable of transmitting spin waves at a desired speed in
a defined frequency range is routinely effectuated with the use of micromagnetic
computations. We have employed the techniques to study configurations and spin
waves in magnetic particles of a currently available material (permalloy) and of fea-
sible sizes. As the propagative properties change abruptly when switching between
stable-metastable ferromagnetic and antiferromagnetic configurations we have stud-
ied conditions allowing one to recover the initial antiferromagnetic configuration

which is stable in the absence of external field but does not reappear once the ferro-
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magnetic configuration is set with a field of sufficient intensity in a chain of identical
elliptically shaped macrospins. Two ways of achieving this goal have been proposed:
i) making every second ellipse narrower that affects the shape anisotropy and ii)
introducing anisotropy difference as a material parameter. It is not surprising that
a typical classification of modes at & = 0 into acoustic and optical (as is symmetry
protected in the phonon case) does not hold when the shapes of macrospins are
altered but it is remarkable that this classification works perfectly for the particles
of different material anisotropy. The mechanism of FM—AF switching relies on the
softening of a mode. One can remark that the soft mode in this transformation
is acoustic at £ = 0, i.e. analogous to the one driving the FM—FM configuration
change. Thus, the paths the system follows in the space of its parameters in both
transformations begin in the same way. This result comes from the fact that the
shape anisotropy does not allow for any soft mode involving out of plane displace-
ments of the magnetization.

An attempt to construct a system mimicking the behavior of a macrospin has
turned out successful for as few as two single spins in the macrospin. Not only is
this a ”toy” model for macrospin considerations but it is also conceivable in the
realm of molecular magnets where the interactions are controlled by appropriate
ligands. To behave like macrospins the pairs of spins, called here bi-spins, must show
an intraparticle exchange ferromagnetic interactions in addition to the ubiquitous
dipolar interactions that are also assumed between different bi-spins. Under such
assumptions we have availed ourselves of a liberty to vary all the parameters of chains
constructed of the bi-spins. A number of stable/metastable configurations have been
found as functions of the distance of the bi-spins in the chain. The most striking is
a transformation unifying properties of first and second order phase transition with
bi-spin distance as a control parameter. This is in fact an example of ideal switching
that transforms two very different configurations without hysteresis.

The sparsity of degrees of freedom in the chains of bi-spins allows one to watch
the behaviour of all the modes. The rule is that the high frequency modes involve
significant out-of plain semiaxes of the precession ellipses whereas the ellipticity (i.e.
departure from circularity of the precession ellipse) grows with decreasing frequency
so that the semi long axis of the ellipse lies in the plane of the chain. The ellipticity
becomes infinite in the soft mode. This is in agreement with the results obtained
for massive macrospins. We have demonstrated that the soft mode polarization
coincides with the eigenvector of the Hessian matrix associated with the vanishing
eigenvalue. A practical realization of a system with variable distance of macrospins
would involve macrospins deposited on an elastic substrate deformable by an applied
stress.

Using an example of a very small macrospin consisting of four voxels arranged
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in a square we have demonstrated that the voxels behave, in spite of being parts
of a continuum, in a very close way to a square particle constituted by single spins
with ferromagnetic exchange interactions extended to the nearest neighbours. At
this example we have also found that the sequence of configurations under a field
applied parallel to the square diagonal is quite universal provided that the exchange
interactions prevail over the dipolar ones. The system then undergoes one contin-
uous and one discontinuous transition independently of the exchange interaction
parameter. The ratio of the field intensities of both transitions does not depend on

the interaction details.
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