
The Henryk Niewodniczański 

Institute of Nuclear Physics 

Polish Academy of Sciences 
ul. Radzikowskiego 152, 31-342 Kraków 

 

http://www.ifj.edu.pl/publ/hab/ 
 
 

Kraków, August 2017 
 
 
 
 
 

Searches for New Physics effects in 

b! s`−`+ transitions 
 
 
 
 
 

Marcin Chrząszcz 
 

 

 

 

Habilitation disseration 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wydano nakładem Instytutu Fizyki Jadrowej im. Henryka Niewodniczanskiego 

Polskiej Akademii Nauk 

Kraków 2017 

 
Recenzent: prof. dr hab. Mariusz Witek 

ISBN 978-83-63542-84-9 



 



Contents

1 Introduction 1

2 Theoretical description of b→ s`−`+ decays 3
2.1 Introduction to Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Modern challenges of Particle Physics . . . . . . . . . . . . . . . . . . . . . 3
2.3 Flavour sector of the Standard Model . . . . . . . . . . . . . . . . . . . . . 4
2.4 CKM matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Effective Lagrangian formalism in heavy flavour decays . . . . . . . . . . . 6
2.6 Flavour Changing Neutral Current processes . . . . . . . . . . . . . . . . . 9
2.7 Description of the B0→ K∗0µ+µ− decay amplitudes . . . . . . . . . . . . . 10
2.8 Effective Field Theory description of B0→ K∗0µ+µ− . . . . . . . . . . . . 12

2.8.1 Optimized observables in B0→ K∗0µ+µ− . . . . . . . . . . . . . . . 14
2.8.2 Precision on theoretical predictions . . . . . . . . . . . . . . . . . . 15
2.8.3 Charm loop effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Experimental strategies in measuring the b→ s`−`+ processes 19
3.1 Comparison of flavour physics at B-factories and hadron colliders . . . . . 19
3.2 Large Hadron Collider and LHCb detector . . . . . . . . . . . . . . . . . . 20

3.2.1 Vertex Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Ring Imaging Cherenkov detectors . . . . . . . . . . . . . . . . . . 24
3.2.4 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Muon system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.6 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 CMS and ATLAS detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 ATLAS experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Inner detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Calorimeter system . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 The muon system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 CMS experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Inner Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Electromagnetic calorimeter . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 Hadronic calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . 33



CONTENTS

3.5.4 The Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 BaBar experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Silicon Vertex Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.3 Detector of Internally Reflected Cherenkov light . . . . . . . . . . 36
3.6.4 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . 36
3.6.5 Instrumented Flux Return . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Belle experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7.1 Silicon Vertex Detector . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Central Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.3 Aerogel Cherenkov Counter . . . . . . . . . . . . . . . . . . . . . . 38
3.7.4 Time of Flight detector . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.5 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . 39
3.7.6 K0

L and Muon detector . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Belle 2 experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Angular analysis of B0→ K∗0µ+µ− 41
4.1 Trigger requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Stripping and pre-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Vetoes against specific peaking backgrounds . . . . . . . . . . . . . . . . . 43

4.3.1 Charmonia resonances . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Λ0

b→ pK−µ+µ− background . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Misidentified B0→ K∗0µ+µ− and B0→ J/ψK∗0 decay modes . . . . 45
4.3.4 B0

s→ φµ+µ− decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.5 B+→ K+µ+µ− decay with a slow π− . . . . . . . . . . . . . . . . . 46
4.3.6 Other sources of peaking background . . . . . . . . . . . . . . . . . 47

4.4 Multivariate classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Use of sPlot technique on B0→ J/ψK∗0 candidates . . . . . . . . . 47
4.4.2 Input variables for the BDT classifier . . . . . . . . . . . . . . . . . 48
4.4.3 Hadron Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Muon Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.5 k-Folding of the data sample . . . . . . . . . . . . . . . . . . . . . . 51
4.4.6 Optimization of the BDT selection . . . . . . . . . . . . . . . . . . 53

4.5 Acceptance parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Agreement between data and simulation . . . . . . . . . . . . . . . 54
4.5.2 Re-sampling the particle identification variables . . . . . . . . . . . 54
4.5.3 Weighting kinematic distributions of the parent B candidate . . . . 55

4.6 Methods of extracting angular observables . . . . . . . . . . . . . . . . . . 56
4.6.1 The angular basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.2 The differential decay rate . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.3 Interference with other K+π− states . . . . . . . . . . . . . . . . . 60
4.6.4 S-wave interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.5 Optimized observables . . . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS

4.7 Fitting for angular observables . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.1 Angular distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.2 Mass modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.3 Acceptance effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.4 Physical boundaries of the observables . . . . . . . . . . . . . . . . 67
4.7.5 CP-asymmetries Ai and the P (′)

i basis . . . . . . . . . . . . . . . . . 67
4.7.6 Fit validation using EOS toys . . . . . . . . . . . . . . . . . . . . . . 67
4.7.7 Coverage correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.8 Fit validation on data using B0→ J/ψK∗0 . . . . . . . . . . . . . . 68
4.7.9 Constraining the S-wave using the mKπ distribution . . . . . . . . . 69

4.8 Extracting angular observables using the method of moments . . . . . . . . 73
4.8.1 Measurement of S6c observable . . . . . . . . . . . . . . . . . . . . 74
4.8.2 Method of moments in the presence of background . . . . . . . . . 75
4.8.3 Acceptance corrections of the method of moments . . . . . . . . . . 75
4.8.4 Toy studies for the method of moments . . . . . . . . . . . . . . . . 75
4.8.5 Method of moments applied to B0→ J/ψK∗0 . . . . . . . . . . . . 76
4.8.6 Measuring asymmetries with the method of moments . . . . . . . . 76
4.8.7 Expected difference between the likelihood fit and the method of

moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.9 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.11 Comparison with other studies . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Branching ratio and angular analysis of B0→ K+π−µ+µ− in the K∗0,2(1430)0

region 83
5.1 Agreement between data and simulation . . . . . . . . . . . . . . . . . . . 84
5.2 Mass fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Acceptance correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Legendre polynomial parameterisation . . . . . . . . . . . . . . . . 86
5.3.2 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Differential branching fraction measurement . . . . . . . . . . . . . . . . . 88
5.4.1 Acceptance corrected yields . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Pseudoexperiments studies . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.3 Branching fraction results . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Extracting the angular coefficients with the method of moments for B0→
K+π−µ+µ− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Normalised moments and the reduced covariance matrix . . . . . . . . . . 93
5.7 Angular analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Search for long-lived particles decaying into two muons 97
6.1 B+→ K+χ event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Trigger requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Stripping and preselection . . . . . . . . . . . . . . . . . . . . . . . 98



CONTENTS

6.1.3 B-mass signal region . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.4 Multivariate selection . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Strategy of the search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.1 Searching in the mass dimension . . . . . . . . . . . . . . . . . . . . 102

6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 SM charmonium resonances . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 B+ → J/ψK+ with a K+ ↔ µ+ swap . . . . . . . . . . . . . . . . . 104
6.3.3 Hadronic B+ decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.4 B+ → D decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.5 K0

S, Λ0 resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.6 b→ s`−`+ background . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.7 Combinatorial background . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Efficiency determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.1 MC corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.2 χ mass resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 Signal efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5.1 Signal efficiency modelling . . . . . . . . . . . . . . . . . . . . . . . 112
6.5.2 Signal resolution modelling . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.7 Interpretation of the results in the inflaton model . . . . . . . . . . . . . . 113

7 Interpretation of b→ s`−`+ anomalies 115
7.1 Wilson Coefficient fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 CCDMV fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.2 ANSS fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1.3 GAMBIT WC fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.4 Fitting the nonfactoriable corrections . . . . . . . . . . . . . . . . . 119
7.1.5 Fitting the analytic structure of long distance effects . . . . . . . . 121

7.2 Possible New Physics contributions . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusion 125
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



Acknowledgements

Firstly, I would like to express my sincere gratitude to my friend and mentor, Prof. dr hab
Tadeusz Lesiak, for the continuous support of my research, for his patience, motivation,
and immense knowledge. His guidance has helped me during the whole course of my
research and writing of this thesis. I could not have imagined having a better advisor,
mentor and friend.

Secondly, I would like to thank my colleagues who devoted their time to reading and
commenting on this monograph. My special thanks go to prof. dr Andrzej Buras, dr
hab. Pawel Bruckman, prof. dr hab. Mikolaj Misiak, dr Danny van Dyk and dr Jarek
Wiechczynski. Without them the monograph would not be in the shape it is now!

Last but not least, I would like to thank my parents and my fiancee for supporting me
spiritually throughout writing this monograph and my life in general.





Chapter 1

Introduction

The dissertation aims at presenting the current situation in the measurements of electroweak
penguin diagrams dominated decays: b→ s`−`+1. These decays have been a smoking gun
for hunting for New Physics effects over many years, but in the last three years the research
on these phenomena has intensified due to new measurements. Enormous progress has
been made both on the theoretical and the experimental sides to understand the measured
deviations from the current Standard Model predictions, referred to in what follows as
“anomalies”.

The author of this dissertation has been one of the main authors of the angular analysis
of B0→ K∗0µ+µ− decay in the LHCb experiment, which has been widely regarded as one
of the most important results of the flavour physics sector in recent years. He has proposed
a method called “the method of moments” to measure the angular terms of this decay,
which he has later successfully applied in the measurement itself. Moreover, he has been
the driving force behind the two other important analyses in LHCb: the measurement of
the angular distribution and branching ratio of the B0→ K∗0(1430)µ+µ− decay, where
again the method of moments has been used to obtain the angular coefficients, and the
search for the light scalar particle that can be produced in the b→ s transitions and that
decays to a dimuon pair. In this case no signal has been observed and the upper limits on
the branching fraction have been set, later to be used for constraining the inflaton model.

The dissertation is organized as follows: the brief introduction is followed by, the second
chapter devoted to a theoretical description of rare B decays, where the effective field
theory formalism is introduced. Furthermore, the author discusses the current theoretical
problems in calculating the Standard Model predictions for the b→ s`−`+ processes. Last
but not least, the optimised angular observables that are less dependent on the form
factors uncertainness are derived. The third chapter describes the experimental apparatus
used in the b→ s`−`+ measurements. Special focus is put on the sub-detectors that play
an important role in the studies of b→ s`−`+ transitions. Chapters 4, 5, 6 are devoted to
describing the data analyses performed by the author in the LHCb experiment. In Chapter 7
the global analysis of electroweak penguin decays is presented. This kind of global analysis
has become extremely popular in the past few years as it helps to constrain and pin down

1Charge conjugation is implied unless stated differently.
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those New Physics models that are likely to be responsible for the observed anomalies. The
author of this monograph is involved in one of the biggest collaborations performing New
Physics fits, where he is the convenor of the Flavour Working group. Furthermore, the
author presents his own study on separating the long distance effects in the B0→ K∗0µ+µ−

decay. This is the state of the art way of determining those contributions. The chapter
ends with a description of possible New Physics models that can explain the observed
discrepancies.
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Chapter 2

Theoretical description of b→ s`−`+

decays

This chapter describes various theoretical aspects relevant to the B0→ K∗0µ+µ− decays.
Particular attention is paid to the Effective Field Theory (EFT) formalism used to describe
the physics of b→ s`−`+ transitions.

2.1 Introduction to Particle Physics

The current theory describing the interactions between the fundamental particles is the
so-called Standard Model (SM). This model emerged in the 1960-1970s and passed with
flying colours the measurements performed by the LEP, Babar and Belle experiments.
In 2012 the ATLAS and CMS experiments located at the LHC confirmed the discovery
of the last missing piece of the SM: the Higgs boson [1, 2]. Currently the main task in
the experimental Particle Physics is to search for phenomena that are not described by
the SM. This dissertation describes such a search with the use of electroweak penguin
b→ s`−`+ transitions.

2.2 Modern challenges of Particle Physics

Despite its tremendous successes, the SM cannot be the ultimate theory of Particle Physics.
For instance, the SM does not include gravity, which is expected to become relevant to
Particle Physics at the Planck scale (1019 GeV)1. The fact that the Planck scale is much
higher than the Fermi scale (∼ 100 GeV), which is a scale relevant to the SM, is known as
the hierarchy problem [3]. If the particles at the Planck scale interacted with the Higgs
boson, they would increase its mass by the radiative corrections by orders of magnitude,
unless a fine-tuning mechanism was involved [4].

Most importantly, the SM disagrees with some experimental observations:

1There exist alternative theories of gravity, in particular those involving extra-dimensions where the
scale of quantum gravity is significantly lower than the Planck scale.
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1. Matter-antimatter asymmetry: our Universe is almost exclusively composed of matter.
In the widely accepted models of inflation the standard assumption is that in the
beginning the Universe was built equally from matter and anti-matter. If this
assumption is correct, the SM does not offer a mechanism that can quantitatively
explain this observation.

2. Dark matter and dark energy: there is striking experimental evidence that most of
the matter in our Universe consists of particles not present in the SM, which do not
interact electromagnetically or strongly.

3. Neutrino masses: in the SM neutrinos are massless particles; however, neutrino
oscillations prove that they have a small, but non-vanishing mass2. It is worth pointing
out that this situation can be easily accommodated with a minimal modification
of the SM, by adding for example dimension five operators. After this procedure
the new effective theory would no longer be the “original” SM, strictly speaking;
however, the theory community still refers to this theory as the SM.

In the past few decades many theories that are trying to complete the SM, often called
New Physics (NP) or Beyond the SM, have been proposed. Most of these theories predict
the existence of new heavy particles that would solve the experimental and theoretical
problems of the SM. Searching for microscopic evidence of NP has been the quest for the
holy grail of modern Particle Physics experiments.

New particles can be produced directly if their mass is lower than the total energy in
the centre-of-mass of the particle collider (this is mainly done at the LHC by the ATLAS
and CMS experiments), or they can be discovered indirectly via their interaction with
the SM particles (mainly done at the LHC by the LHCb experiment). In the latter case,
it is not necessary to have enough energy in the centre-of-mass to produce these new
particles, since they can interact as virtual particles3, but a large number of decays have
to be available to be able to perform a meaningful search for NP.

2.3 Flavour sector of the Standard Model

The Lagrangian of the SM can be divided into three pieces: a gauge sector, a fermion
sector and a Higgs sector, the latter being responsible for breaking the gauge symmetry.
The gauge sector is defined by a local symmetry group: GSM

local = SU(3)C ×SU(2)L×U(1)Y
and the fermion current:

LSM
gauge =

∑
i=1...3

∑
ψ=QiL...,E

i
R

ψ̄i /Dψ (2.1)

− 1
4

∑
a=1...8

Ga
µνG

a
µν −

1
4

∑
a=1...3

W a
µνW

a
µν −

1
4
BµνBµν ,

2This discovery was awarded Nobel Prize in 2015 [5].
3In this case, the Heisenberg uncertainty allows these particles to be produced.
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where ψ is the fermionic field, Dµ is the gauge derivative, while G, W B are the gluon
and electroweak gauge boson fields. The fermion content of the SM consists of five fields:

Qi
L(3, 2)+1/6, U i

R(3, 1)+2/3, Di
R(3, 1)−1/3, LiR(1, 2)−1/2, Ei

R(1, 1)−1, (2.2)

each appearing with the flavour replicas (i = 1, 2, 3). The local electroweak symmetries of
LSM

gauge are spontaneously broken by the vacuum expectation of the Higgs field, which is a
SU(2)L scalar doublet:

H =
(
φ+

φ0

)
, 〈H〉 =

1√
2

(
0
ν

)
, (2.3)

where ν is determined by the W boson mass:

m2
W =

g2ν2

4
, ν =

√√
2Gf ≈ 246 GeV. (2.4)

The global flavour symmetry of LSM
gauge corresponds to unitary rotations in the flavour space

of the five fermions fields in Eq. 2.2 is U(3)5. This group can be decomposed:

Gflavour = U(3)5 = U(1)5 × Gq × G`, (2.5)

where

Gq = SU(3)QL × SU(3)QR × SU(3)DR , G` = SU(3)LL ⊗ SU(3)ER . (2.6)

In the above two out of five U(1) subgroups can be identified with the total baryon
and lepton numbers which are not broken by the Yukawa sector. The third one can be
associated with the hypercharge, which is broken spontaneously if 〈H〉 6= 0.

The diagonalization of each Yukawa coupling requires two independent unitary matrices:

VL,qYqV
†
R,q = diag(y1, y2, y3),

where q = u, d.
The lepton sector of the SM is invariant under G`, which allows us to freely choose the

two matrices that are necessary to diagonalize Y without any observable consequences.
On the other hand, the quark sector does not possess this nice property. There, we can
freely choose only three out of four matrices necessary to diagonalize both Yd and Yu. We
can choose a basis in which:

Yd = λd, Yu = V †λu, (2.7)

where

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), yq =
mq

ν
. (2.8)

In the above, V is nothing else but the CKM matrix of the SM [6].
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2.4 CKM matrix

The CKM matrix can be seen as a transition matrix between the flavour eigenstates and
the mass eigenstates. It can be parametrised with three rotation angles (θij) and a complex
phase (δ):

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 = R(s12)×R(s13; eiδ)×R(s23) (2.9)

=

 c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ c23c13

s12s23 − c12s23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,
where cij = cos θij, sij = sin θij, R(θij) is a rotation matrix for the i − j family and the
R(s13; eiδ) is given by:

R(s13; eiδ) =

 c13 s13 eiδ

0 1 0
−s13e

iδ 0 c13

 . (2.10)

The CKM matrix shows a strong hierarchical pattern. |Vus| and |Vcd| are close to 0.22.
The elements |Vcb| and |Vts| are of the order of 4× 10−2, whereas |Vub| and |Vtd| are of the
order of 5× 10−3. The Wolfenstein parametrisation is the expression of the CKM matrix
in terms of power expansion of the λ = 0.22 parameter. This parametrisation is extremely
useful as it exhibits the hierarchical structure:

V =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (2.11)

where A, ρ, η are free parameters. As can be seen, the Wolfenstein parametrisation is
more transparent than the standard one. However, if one requires a sufficient level of
accuracy, the terms O(λ4) or higher would need to be taken into account. Therefore, in
the numerical calculations the parametrisation of Eq. 2.10 is presently preferred.

2.5 Effective Lagrangian formalism in heavy flavour
decays

Flavour physics that focuses on the decays of B, D and K mesons has built-in two energy
scales within the SM. The first one is the electroweak scale that is characterized by the
mass of the W boson. The second one is the strong interaction scale (the so-called ΛQCD

related to the hadron formation). The presence of these two scales makes calculations of
the amplitudes very difficult. For instance, large logarithms of the type of log(mW/ΛQCD)
can easily appear, causing the poor convergence of the perturbation theory.
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The idea to simplify the problem is to integrate out the heavy SM fields (W , Z bosons
and t quark) at the electroweak scale and construct an appropriate low-energy effective
field theory (EFT). In this kind of theory, only the light degrees of freedom remain.

An example of such a calculation can be shown for the above-mentioned charge current
interactions. The part of the Lagrangian describing interactions is given by the formula:

Lcc =
g√
2
JµW (x)W+

µ (x) + h.c., (2.12)

where

JµW (x) = Vijū
i
L(x)γµdjL(x) + ējL(x)γµνjL(x), (2.13)

is the weak charged current. After integrating out the W field one gets an amplitude:

iT = i
g2

2

∫
d4xDµν(x,mW )T

[
JµW (x), Jν†W (0)

]
, (2.14)

where only light fields are present. Dµν(x,mW ) is the W propagator which can be expanded
in powers of 1/m2

W :

Dµν(x,mW ) = δ(x)
igµν
m2
W

+ . . . . (2.15)

If we insert Eq. 2.15 into Eq. 2.12, we get at leading order:

Leff
cc = −4GF√

2
gµνJ

µ
W (x)Jν†W (0). (2.16)

The following example shows how at leading order one gets the well known Fermi theory
of weak interactions in the EFT. The visualisation of such an approach is given in Fig. 2.1,
where the W propagator is replaced by an effective vertex.

If one would like to describe a semileptonic decay, one would have to use a product of
two currents: one quark and one leptonic:

Lsemileptonic
eff = −4GF√

2
Vij

[
uiL(x)γµdjL(x)

]
× [νL(x)γµeL(x)] + h.c. (2.17)

The above Lagrangian gives an excellent description of semileptonic decays of B or D
mesons. It is worth mentioning that for the semileptonic processes, such as for example
B → Dµν, the operator is not renormalized by the strong interactions. Thanks to this,
the CKM elements like Vcb can be determined with high theoretical accuracy.

Unfortunately, not always the situation is as simple as in the case of semileptonic
decays. A good example is the four quark interactions and flavour changing neutral currents
processes, where the QCD corrections cannot be neglected. However, the general recipe
for the treatment of the EFT approach remains the same:

7



Figure 2.1: Ilustration of the EFT approach in a weak decay. The W propagator is replaced by
an effective vertex [7].

• Identify the basis of local operators that are compatible with the symmetries of the
system. In practice, one considers the dimension-six operators which correspond to
the leading-order expansion in 1/mW .

• Write down the effective Lagrangian4:

L = −4
GF√

2
VCKM

∑
i

Ci(µ)Oi(µ), (2.18)

where Ci are the so-called Willson Coefficients (WC), which can be interpreted as
effective couplings, Oi are the aforementioned effective operators and the sum runs
over all identified operators. In Eq. 2.18, µ is the renormalization scale which acts as
a seperator between the short and long distance corrections. One evaluates first Ci
at the electroweak scale µ ∼ mW , then using renormalization group equations [8]
the WC are run down to the relevant scale (for example µ = mb).

• Finally we evaluate the matrix elements for the given process (i→ f):

M(i→ f) = 〈f |Heff |i〉 = 4
GF√

2
VCKM

∑
i

Ci(µ)〈f |Oi|i〉, (2.19)

In Eq. 2.19 the NP effect may change the values of the WC. Assuming that the NP
is heavy, it can modify the initial conditions of the WC, but it will not affect the other
two steps. Unfortunately, the hadronic matrix elements are affected by non-perturbative
QCD effects, which are the main part of the theoretical uncertainties. We will discuss this
uncertainty in Sec. 2.8.2.

4Some theorists prefer to work with the effective Hamiltonian instead of the Lagrangian. The Hamilto-
nian is defined in a very similar way: H = 4GF√

2
VCKM

∑
i Ci(µ)Oi(µ).
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2.6 Flavour Changing Neutral Current processes

The basic vertices of neutral currents (c.f Fig. 2.2) in the SM are flavour diagonal, which
forbids the existence of Flavour Changing Neutral Currents (FCNC) at the tree level.
With the help of two charge currents one can construct a loop diagram that will allow
the FCNC process in the SM. The advantage of this process being mediated by a loop
diagram5 is the fact that the NP effects can enter the loop even if the NP scale is heavy.
The box diagrams are represented in the EFT approach via the effective vertices that can
change the flavour.

Figure 2.2: Neutral currents flavour conserving vertices in the SM.

In flavour physics there exist many FCNC processes. The prime examples are:

• K0
L - K0

S mixing and CP violation in the K0
L → ππ.

• Mixing of neutral Bs/d mesons.

• Decays of type: b→ s`−`+ and b→ sγ

Each of the above-mentioned decays is sensitive to NP contributions and has its
own phenomenological applications and theoretical challenges when calculating the SM
prediction [9]. The discussion of all FCNC processes is beyond the scope of this monograph,
so we will focus only on the processes of type: b→ s`−`+. The Lagrangian part responsible
for them can be written using four effective couplings (in the SM):

LFCNC
eff = Lnon−lep

eff − 4
GF√

2
VCKM (C7O7 + C9O9 + C10O10) ,

where the operators6 are:

O7 =
4

16π2
mbb

α

Rσ
µνFµνs

α
L, O9 =

1
2
bαLγ

µsαL`γµ`, O10 =
1
2
bαLγ

µsαL`γµγ5`.

5In the literature also known as box diagrams.
6The right-handed currents have been omitted as they are suppressed in the SM by ms/mb. They can

appear in NP scenarios. In that case, the right-handed operators can be constructed by the qL/R → qR/L
swap.
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From the above-mentioned operators, the WC corresponding to O10 is the cleanest
one. This is because the O10 operator does not mix with any four-quark operators and is
not renormalized by QCD. The canonical example of an observable that is sensitive to
the C10 WC is the Bs/d → µ+µ− decay, which has been measured by the LHCb and CMS
collaborations [10, 11] to be consistent with the SM predictions.

2.7 Description of the B0 → K∗0µ+µ− decay ampli-
tudes

The kinematics of the decay B0→ K∗0µ+µ− can be described by four independent variables:
the invariant mass squared of the two muons (q2), the angle between the directions of flight
of the kaon and the B meson in the rest frame of the K∗0 (cos θk), the angle between the
directions of flight of the µ− and the B meson in the dilepton rest frame (cos θ`) and the
azimuthal angle φ between the two planes defined by the Kπ system and the lepton pair.
The four-differential decay rate for the Kπ system in the P -wave configuration, ignoring
scalar7 contributions, is given by [12]:

d4Γ[B0→ K∗0µ+µ−]
d cos θ` d cos θK dφ dq2

=
9

32π

∑
i

Ji(q2)fi(cos θ`, cos θK , φ) (2.20)

=
9

32π

[
Js1 sin2 θK + J c1 cos2 θK +

Js2 sin2 θK cos 2θ` + J c2 cos2 θK cos 2θ` +

J3 sin2 θK sin2 θ` cos 2φ+ J4 sin 2θK sin 2θ` cosφ +

J5 sin 2θK sin θ` cosφ+ Js6 sin2 θK cos θ` +

J c6 cos2 θK cos θ` + J7 sin 2θK sin θ` sinφ +

+J8 sin 2θK sin 2θ` sinφ+ J9 sin2 θK sin2 θ` sin 2φ
]
.

As can be seen, the angular part is described by spherical harmonic functions.
The twelve coefficients Ji can be calculated using six complex transversity amplitudes:
AL,R⊥ , AL,R‖ , AL,R0 , which are functions of q2. In addition, for the massive lepton case, the
At complex amplitude has to be included. In the non SM case the scalar amplitude As
would have to be taken into account as well. Expressing the above-mentioned observables

7This refers to a scalar configuration of the dimuon system, not to be confused with an S-wave
contribution to the Kπ system as will be discussed later
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in terms of these amplitudes yields:

J1s =
(2 + β2

` )
4

[
|AL⊥|2 + |AL‖ |2 + |AR⊥|2 + |AR‖ |2

]
+

4m2
`

q2
Re

(
AL⊥A

R
⊥
∗

+ AL‖A
R
‖
∗)
,

J1c = |AL0 |2 + |AR0 |2 +
4m2

`

q2

[
|At|2 + 2Re(AL0 A

R
0
∗
)
]

+ β2
` |AS|2,

J2s =
β2
`

4

[
|AL⊥|2 + |AL‖ |2 + |AR⊥|2 + |AR‖ |2

]
,

J2c = −β2
`

[
|AL0 |2 + |AR0 |2

]
,

J3 =
1
2
β2
`

[
|AL⊥|2 − |AL‖ |2 + |AR⊥|2 − |AR‖ |2

]
,

J4 =
1√
2
β2
`

[
Re(AL0A

L
‖
∗

+ AR0 A
R
‖
∗
)
]
,

J5 =
√

2β`
[
Re(AL0A

L
⊥
∗ − AR0 AR⊥

∗
)− m`√

q2
Re(AL‖A

∗
S + AR‖

∗
AS)

]
,

J6s = 2β`
[
Re(AL‖A

L
⊥
∗ − AR‖ AR⊥

∗
)
]

J6c = 4β`
m`√
q2

Re(AL0A
∗
S + AR0

∗
AS),

J7 =
√

2β`
[
Im(AL0A

L
‖
∗ − AR0 AR‖

∗
) +

m`√
q2

Im(AL⊥A
∗
S − AR⊥

∗
AS))

]
,

J8 =
1√
2
β2
`

[
Im(AL0A

L
⊥
∗

+ AR0 A
R
⊥
∗
)
]
,

J9 = β2
`

[
Im(AL‖

∗
AL⊥ + AR‖

∗
AR⊥)

]
,

(2.21)

where the parameter β` is given by

β` = 1− 4m2
`

q2
. (2.22)

It is worth mentioning that:
J6c = 0, (2.23)

for the massless lepton limit or if there is no scalar amplitude (As). As it will be shown,
LHCb is the first experiment that has measured this observable thanks to the method of
moments [13].

Some theorists prefer to use the helicity amplitudes (Hi) instead of the transversity
amplitudes (Aj). The relation between them is straightforward:

A⊥,‖ = (H+1 ∓H−1) /
√

2, A0 = H0.

Not all of the twelve observables (Ji) are independent, as has been shown in [14].
The first relation between them arises when one considers the massless limit of leptons
(m
2
`

q2
→ 0). Under this condition the following relations are satisfied:

J1s = 3J2s, J1c = −J2c. (2.24)
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There exist in total four infinitesimal transformations of the amplitudes that do
not change the physical observables. In order to introduce them, we will first write the
amplitudes in the binomial forms:

n‖ =
(
AL‖
AR∗‖

)
,

n⊥ =
(
AL⊥
−AR∗⊥

)
, (2.25)

n0 =
(
AL0
AR∗0

)
.

In this basis the transformation has the form of 4 rotations:

n
′

i = Uni =
[
eiφL 0
0 e−iφR

] [
cos θ − sin θ
sin θ cos θ

] [
cosh iθ̃ − sinh iθ̃
− sinh iθ̃ cosh iθ̃

]
.

The four angles: θ, θ̃, φL and φR can be varied independently8. The angles θ, θ̃
correspond to the transformation of a helicity +1 final state with a left handed current
into a helicity −1 state with a right handed current. The origin of these symmetries is the
fact that it is impossible to experimentally determine the helicity and handedness of the
current in the same time. Until now we have written down three relations Eq. 2.23 and
2.24. The remaining fourth one is less trivial:

J2c =− 2
(2J2s + J3) (4J2

4 + β2
`J

2
7 ) + (2J2s − J3) (β2

`J
2
5 + 4J2

8 )
16J2

2s − (4J2
3 + β2

`J
2
6s + 4J2

9 )

+ 4
β2
`J6s(J4J5 + J7J8) + J9(β2

`J5J7 − 4J4J8)
16J2

2s − (4J2
3 + β2

`J
2
6s + 4J2

9 )
(2.26)

This relation holds when there is no scalar amplitude present. Further information and
discussion about the inclusion of the scalar amplitudes can be found in [14]. It is worth
pointing out that because of the complexity of Eq. 2.26, it is not used in the experimental
measurements.

2.8 Effective Field Theory description of B0 →
K∗0µ+µ−

Once we have defined the transversity and helicity amplitudes, we should express them in
terms of the Wilson Coefficients to allow for phenomenological analysis of this decay. The
transversity amplitudes read [15]:

8Please note that because of the fact that the left and right-handed amplitudes do not interfere, both
φL and φR can be chosen arbitrary.
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HV = N
√
q2

(
Ceff

9 (q2)V k(q2) +
2mb

q2
Ceff

7 (q2)T k(q2) + i
√
λ

2mb

q2
∆k(q2)

)
(2.27)

HA = N
√
q2C10V

k(q2), (2.28)

where k = +,−, 0 denotes the polarisation of the K∗ meson. The helicity form factors
T k, V k are defined as in [15] and ∆k stands for various non-local corrections, that will be
described in the sequence sections. λ is the standard phase space factor defined as follows:

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ac),

and the normalization factor reads:

N = VtbV
∗

ts

[
G2
Fα

2

3 · 210π5m3
B

λ1/2

]1/2

. (2.29)

Ceff
i are the effective Wilson Coefficients. They include the factorizable9 and perturbative

QCD effects, which is the reason why they are q2 dependent. There exists a different class
of corrections called the non-factorizable corrections mostly related to the quark loops,
which we will discuss in Sec. 2.8.3. The effective coefficients are given as follows [16]:

Ceff
7 =

4π
αs

C7 −
1
3
C3 −

4
9
C4 −

20
3
C5 −

80
9
C6 ,

Ceff
8 =

4π
αs

C8 + C3 −
1
6
C4 + 20C5 −

10
3
C6 ,

Ceff
9 =

4π
αs

C9 + Y (q2) ,

Ceff
10 =

4π
αs

C10 , C ′,eff
7,8,9,10 =

4π
αs

C ′7,8,9,10 , (2.30)

with Y (q2) = h(q2,mc)
(4

3
C1 + C2 + 6C3 + 60C5

)
− 1

2
h(q2,mb)

(
7C3 +

4
3
C4 + 76C5 +

64
3
C6

)
− 1

2
h(q2, 0)

(
C3 +

4
3
C4 + 16C5 +

64
3
C6

)
+

4
3
C3 +

64
9
C5 +

64
27
C6 . (2.31)

The one quark loop function reads:

h(q2,mq) = −4
9

(
ln
m2
q

µ2
− 2

3
− z

)
− 4

9
(2 + z)

√
|z − 1| ×


arctan

1√
z − 1

z > 1

ln
1 +
√

1− z√
z

− iπ

2
z ¬ 1

.

(2.32)
9The factorizable corrections are the ones that can be expressed as a constant times the form factor.
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z is defined as:

z =
4m2

q

q2
. (2.33)

2.8.1 Optimized observables in B0→ K∗0µ+µ−

As has been pointed out by the authors of [17], at the large recoil limit (EK∗ →∞) and
at leading order of αs and 1

mb
the transversity amplitudes can be written as:

AL,R⊥ =
√

2N ′mB(1− ŝ)
[
(C(eff)

9 + C
′(eff)
9) ∓ (C10 + C

′

10) +
2m̂b
ŝ

(C(eff)
7 + C

′(eff)
7)

]
ξ⊥(EK∗) (2.34)

AL,R‖ = −
√

2N ′mB(1− ŝ)
[
(C(eff)

9 − C
′(eff)
9) ∓ (C10 − C

′

10) +
2m̂b
ŝ

(C(eff)
7 − C

′(eff)
7)

]
ξ⊥(EK∗) (2.35)

AL,R0 = −N
′mB(1− ŝ)2

2m̂K∗
√
ŝ

[
(C(eff)

9 − C
′(eff)
9) ∓ (C10 − C

′

10) + 2m̂b(C(eff)
7 − C

′(eff)
7)

]
ξ‖(EK∗), (2.36)

where ξi are the soft form factors, ŝ = q2

m2B
and N ′ is the normalization factor. At first sight,

these expansions have nothing out of the ordinary, besides the reduction of the number of
form factors. However, one can note that in the language of the bilinear forms introduced
in Eq. 2.25 one finds that n⊥,‖ ∝ ξ⊥ and n0 ∝ ξ‖. This property has been used by J.Matias
et. al. [18] to construct the so-called optimized observables:

P1 =
|n⊥|2 − |n‖|2

|n⊥|2 + |n‖|2
=

J3

2J2s
, (2.37)

P2 =
Re(n†⊥ n‖)
|n‖|2 + |n⊥|2

= β`
J6s

8J2s
, (2.38)

P3 =
Im(n†⊥ n‖)
|n‖|2 + |n⊥|2

= − J9

4J2s
, (2.39)

P4 =
Re(n†0 n‖)√
|n‖|2|n0|2

=

√
2J4√

−J2c(2J2s − J3)
, (2.40)

P5 =
Re(n†0 n⊥)√
|n⊥|2|n0|2

=
β`J5√

−2J2c(2J2s + J3)
, (2.41)

P6 =
Im(n†0 n‖)√
|n‖|2|n0|2

= − β`J7√
−2J2c(2J2s − J3)

. (2.42)

As can be seen, the ratios are constructed in a way that the form factors ξ⊥,‖ cancel in the
ratios. Of course, there exist many more of this kind of ratios, but we follow the conventions
established in the literature. In addition, there exists a basis of P ′i observables [19], which are
closely related to the above-defined basis. We will discuss them in more detail in Sec. 4.6.5.
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2.8.2 Precision on theoretical predictions

The results that will be described in this dissertation show clear tensions w.r.t. the SM
predictions. In light of this information, we will discuss the uncertainty of the theoretical
calculations. The first source of theoretical uncertainty comes from neglecting the higher
order perturbation corrections to the WC at the mb scale and accuracy of the matching
procedure. The uncertainty is accessed by varying the EW scale in the range of [mW/2, 2mt],
while running down the WC. The uncertainty is small and is not currently considered to
be a problem. The second uncertainty comes from the knowledge of the hadronic form
factors. The form factors for the decay of B0→ K∗0µ+µ− come from two independent
calculations. In the large recoil regime (small q2) the form factors are known from the
light-cone sum rules [20]. On the other hand, in the low recoil limit (large q2) the form
factors are calculated using the lattice QCD [21–23]. Both of these calculations produce
the dominant error in the theoretical prediction. The lattice and the light-cone sum rule
results have been combined using the simplified series expansion to further reduce the
uncertainty [15]. The fit results are shown in Fig. 2.3. The authors of this calculation have
provided the full correlation matrix for the form factor uncertainties.

Figure 2.3: Example of the combined LCSR and lattice fit to B → K∗ form factors [15]. Lattice
data are marked with red lines, while the LCSR are marked in blue.

The most difficult to estimate in theoretical calculations are the effects of the non-local
matrix elements of the QCD factorization framework. Following [24], the next-to-leading
order corrections to the decay amplitudes (T‖,⊥(q2)) read:

Ta = ξa

(
C(0)
a +

αsCF
4π

C(1)
a

)
+
π2

Nc

fBfK∗, a
MB

Ξa

∑
±

∫ dω

ω
ΦB,±(ω)

∫ 1

0
duΦK∗, a(u)Ta,±(u, ω), . (2.43)

where CF = 4/3, Nc = 3, Ξ⊥ ≡ 1, Ξ‖ ≡ mK∗/E, fB,K∗ are the decay constants and
Ta,±(u, ω) describes the hard scattering term. The functions ξa represent heavy-to-light
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form factors [20, 25], while Φ - light-cone-distribution amplitudes. The function Ta,±(u, ω)
is then expanded as:

Ta,±(u, ω) = T
(0)
a,±(u, ω) +

αsCF
4π

T
(1)
a,±(u, ω), (2.44)

The leading order expansion occurs only through the penguin operators. The amplitudes
modulus were calculated in [25] and are small compared to the leading order terms.

The next-to-leading corrections to the amplitudes T (1)
a,±(u, ω) and C(1)

a from Eq. 2.43
are composed of two terms:

T
(1)
a,± = T

(f)
a,± + T

(nf)
a,± , (2.45)

C(1)
a = C(f)

a + C(nf)
a , (2.46)

The first ones
(
T

(f)
a,±/C

(f)
a

)
, the so-called factorizable corrections, correspond to the expres-

sions of the QCD form factors in terms of ξa.

Figure 2.4: Non-factorizable contributions to the B0→ K∗0µ+µ− decay [24] The circled crosses
correspond to the possible insertions of the virtual photon.

The more challenging is the calculation of the non-factorizable corrections T (nf)
a,± /C

(nf)
a .

They are obtained by computing matrix elements of the four-quark operators and the
chromomagnetic dipole operator shown in Fig. 2.4. The diagrams (a) and (b) correspond
to the correction to the T (nf)

a,± , while the diagrams10 (c) to (d) - to the correction to C(nf)
a .

The numerical results of the non-factorizable corrections have been reported in [24].
In addition, at high q2 the two leptons can be produced from broad charmonium

resonances. The LHCb experiment has measured [26] the resonance contributions to be
substantially more sizeable than anticipated [27] via naive factorisation indicating sizeable
duality violations. Recently, the e+e− → hadrons BESII-data [28] have been used to
determine them in a model independent way [27].

10Please note that the symmetrical diagrams of (c) and (e) are not shown.
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2.8.3 Charm loop effects

Both of the above-mentioned factorisable and non-factorizable corrections at the next-
to-leading power are inaccessible in the framework of the QCD factorization. A special
case of those corrections called the “charm-loops” effect has been studied in [29]. In
this work, the non-factorizable contributions with an additional soft gluon are discussed.
The results of this study can be expressed in terms of two operators: one local and one
non-local in an operator product expansion of the light-cone. The matrix elements of the
local operator reproduce the results of the QCD factorization for the C(nf)

a . On the other
hand, the non-local operator introduces new, non form factor matrix elements, which are
calculated using the light-cone sum rule at q2 = 1 GeV2/c4 � 4m2

c and then extrapolated
to q2 > 1 GeV2/c4 via dispersion relations [30].

Figure 2.5: Charm-loop effect in B0 → K∗0µ+µ− decays; (a)-the leading-order contribution
(factorizable); (b) non-factorizale soft-gluon emission, (c),(d)-hard gluon exchange [29].

As a result of these calculations [29], the charm loops effect was found to influence
C(eff)

9 at 20% level. The dominant contribution being the soft gluon exchange.
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Chapter 3

Experimental strategies in
measuring the b→ s`−`+ processes

This chapter gives a short description of experiments that are currently studying or will
study the b→ s`−`+ processes in the near future. Special attention is put on the LHCb
experiment, where the author has conducted his research.

3.1 Comparison of flavour physics at B-factories and
hadron colliders

At present, heavy flavour physics measurements are performed in two types of colliders.
The first type includes the so-called B-factories where e+e− are collided at the Υ (4S) and
Υ (5S) thresholds1. The relevant B-factories are the Belle [31] and BaBar [32] experiments
and they both finished data taking in 2010 and 2008, respectively. The Belle experiment
is being upgraded and has started to collect data in 2017. The B-factories are considered
to be a very clean environment to study B decays. In the decays of an Υ (4S) meson only
two beauty flavoured particles are produced. Owing to this fact, the level of combinatorial
background2 is heavily suppressed. Furthermore, pile-up events do not occur because of
the small cross sections, which further suppresses the background level. Last but not least,
as we collide e+ with e−, which are elementary particles, the central-mass energy is known.
This can be used as a discriminating variable in the selection or as a constraint in the
analysis of the semileptonic decays.

The second type of the machines are the pp colliders. Currently, a prime example of
the experiment located on such a collider is LHCb. It is worth pointing out that also the
ATLAS [33] and CMS [34] experiments conduct heavy flavour measurements, although
with a small number of final states accessible experimentally. In such a collider, the bb
pairs are produced dominantly in a gluon-gluon fusion and qq̄ annihilation processes [35].
The advantage of such a collider is a huge cross-section for the processes in question.

1Υ (4S) is used for BB production, while Υ (5S) for B0
sB

0
s production

2This type of background arises when the tracks are assigned to wrong a B candidate.
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Unfortunately, the price to pay for the higher cross section is the fact that besides the
bb pairs a large number of particles in the interaction point are created, which increases
significantly the combinatorial background. Moreover, the centre-of-mass energy of the
bb system is not known. All this makes a hadron collider a much harder environment
from the experimental point of view. There are decays which can reach much higher
experimental precision on the hadron collider than the e+e− collider. This group includes
mostly exclusive decays involving a µ+µ− pair in the decay final state. This is because µ+µ−

pairs are produced not very frequently at the hadron collider so the trigger requirements
for them can be much looser w.r.t. the hadronic B decays.

In this chapter a brief description of both the B-factories and pp machines with the
experiments conducting heavy flavour measurements will be given.

3.2 Large Hadron Collider and LHCb detector

The Large Hadron Collider (LHC) [36] is currently the largest accelerator in the world
located at Conseil Européen pour la Recherche Nucléaire (CERN) [37]. It is situated
100 m under ground in a 26.7 km circular tunnel. The LHC accelerator is composed
of two beam pipes where the proton bunches travel in opposite directions in ultra-high
vacuum. There are four experimental caverns in the LHC tunnel and four caverns that
are used for technical maintenance and acceleration chain of the LHC. The first collisions
were recorded in 2010 while the first proton beams were accelerated in 2008. The LHC
uses protons that are firstly accelerated by other accelerators located at CERN. The whole
accelerating chain is illustrated in Fig. 3.1.

Figure 3.1: The layout of the CERN accelerator system [38].

Protons used for collisions are extracted from hydrogen atoms after stripping them out
of electrons. These protons are then accelerated by Linear Accelerator 2 (LINAC2) to an
energy of 50 MeV. The protons are then injected into the Proton Synchrotron Booster [39],
which further increases their energy to 1.4 GeV. Next, the protons are accelerated by
the Proton Synchrotron (PS) [40] and the Super Proton Synchrotron (SPS) [41], which
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both increase their energy up to 25 and 450 GeV, respectively. It is worth noticing that
both the PS and SPS accelerators are also used by several other experiments such as,
CNGS [42], NA62 [43], or test beam facilities [44]. The LHC hosts seven experiments
in total: ATLAS [33], CMS [34], LHCb [45], ALICE [46], TOTEM [47], LHCf [48] and
MoEDAL [49].

The data used in the measurements described in this monograph were collected in 2011
and 2012. During this period the protons were collided with the centre-of-mass energy
equal to 7 and 8 TeV, respectively. Besides the above-mentioned years, LHCb has at its
disposal the data collected in 2010, 2015 and 2016. The first data set is too small for
applications in rare decays. It is worth pointing out that the data sets collected in 2015
and 2016 are with a higher collision energy (13 TeV), which also entails higher bb cross
sections. This datasets are currently being analysed by the author and the results are
expected at the beginning of 2018.

In order to study decays of B mesons at the hadron collider, the key issue is the
ability to effectively reject background. To do so, LHCb lowers its instantaneous luminosity
delivered at its interaction point, compared to the other experiments (ATLAS and CMS),
which is done by defocusing the proton beams. The smaller instantaneous luminosity
(L = 4 × 1032 cm−2 s−1 (Fig. 3.2 and Table 3.1) leads to a decrease in the so-called
pile-up events, which in the end leads to a decrease in combinatorial background. For
comparison, ATLAS and CMS have almost two orders of magnitude higher luminosity
(L = 1× 1034 cm−2 s−1).

Figure 3.2: Instantaneous (a) and integrated (b) luminosity collected in the LHCb detector [50].

Table 3.1: The beam parameters at the LHCb beam crossing point in 2012 data taking.

Quantity Achieved Designed
No. protons in bunch [×1011] 1.49 1.15
Luminosity(at LHCb) [×1032 cm−2 s−1] 4 2
Energy [ TeV] 4 7
No. bunches 1380 2808
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From the beginning the detector has been optimised for studying beauty flavoured
mesons. It covers a pseudorapidity range: 2 < η < 5, which corresponds to the geometric
acceptance (10−250) mrad (10−300) mrad in the vertical (horizontal) plane, respectively.
The unusual pseudorapidity coverage is dictated by the fact that the bb pairs are boosted
in the direction of the higher energy parton, resulting in high correlations between both
b’s directions (cf Fig. 3.3). As a result, LHCb offers an optimum coverage for b flavoured
mesons detection.
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Figure 3.3: Simulated bb production angles at LHCb. Left: forward-backward production fraction
as a function of b quark angles w.r.t. to the beam axis. LHCb acceptance is marked in red. Right:
Distribution of pseudorapidities for bb pairs with the LHCb acceptance marked in red. [51].

The cross section of producing a bb pair for pp collisions at 7 TeV is measured to be
(75.3±5.4±13.0)µ b [52]. Thanks to such a large cross-section, LHCb has already collected
two orders of magnitude more b mesons than the B-factories during their full period of
data taking.

The b flavoured hadrons are reconstructed in the LHCb detector as displaced secondary
vertices (SV) of their decays. The b hadrons fly on average 1 cm, owing to the large boost
of the bb pairs. The superb vertex resolution allows for a very efficient separation of the
SV from the PV. Furthermore, the decay products of the b hadrons have a large impact
parameter (IP) value w.r.t. the PV. Additionally, the SV tracks have on average higher
values of transverse momenta in comparison with the PV tracks.

The LHCb detector consists of several sub-detectors (cf. Fig. 3.4), each designed for
a different purpose. The reconstruction of charged tracks is performed using a Vertex
Locator, a Tracker Turicensis and a magnet. Particle Identification (PID) is achieved
by two Ring Imaging Cherenkov detectors and a Muon system. The energy of neutral
particles is measured by a Scintillating Pad Detector, a Pre-Shower, an Electromagnetic
Calorimeter and a Hadronic Calorimeter.
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Figure 3.4: Schematic side drawing of the LHCb detector [53].

3.2.1 Vertex Locator

The Vertex Locator (VELO) is the detector located closest to the interaction point. Its
purpose is to measure precisely the track position. It is built out of 42 modules of silicon
microstrip sensors (Fig. 3.5), each containing the R-type and the Phi-type sensors. Both
types of the sensors measure the radial and the azimuthal coordinate, respectively.

VELO is the only movable detector in all LHC experiments. During data taking the
modules are located only 8 mm from the beam axis. However, during injection of the
proton beams into the LHC from the SPS, the VELO modules are moved apart (the
so-called open position) to ensure the safety of the detector. In the open position each
module is 3 cm away from the beam axis. After the injection and ramp up of the LHC,
the VELO modules are moved closer to the beam axis (the so-called closed position).

Thanks the VELO apparatus, the LHCb detector offers a superb spatial resolution:
10 µm in the x and y direction and 60 µm in z. This excellent resolution plays a crucial
role in rejecting the combinatorial background. More details about the VELO detector
can be found in [54].
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Figure 3.5: VELO module position. The lower drawings illustrate the closed (left) and open
(right) configuration.

3.2.2 Tracking

The Tracker Turicensis (TT) is located between the magnet and the RICH1 detector as
can be seen in Fig. 3.4. It is built out of four layers of p+ on the n-type silicon, which are
grouped in pairs (TTa and TTb), separated by 30 cm. The silicon strips that have been
used for this detector have a pitch of 200 µm and thickness of (320 − 410) µm. These
dimensions have been optimized to achieve 50 µm hit resolution and occupancy of a few
percent.

The Outer Tracker (OT) is located around 9 m from the interaction point between the
magnet and RICH 2 detectors. It is built out of three stations named T1, T2 and T3. The
technology used in it is drift time gas straw tubes. Each of the OT stations is composed
of eight layers of drift tubes. The layers are tilted by a small angle (5 deg) to reduce the
artificial hit combinatorics. The OT was designed to allow for fast track reconstruction in
the trigger. Futher information about the tracking detectors can be found in [55].

A 4 Tm room temperature electromagnet bands the charge particle tracks. The
curvature is used to determine the charge and the momentum of the particle. The polarity
of the magnet is flipped a couple of times during the data taking period to cancel possible
systematics from the detector asymmetries.

3.2.3 Ring Imaging Cherenkov detectors

The LHCb detector possesses two Ring Imaging Cherenkov (RICH) sub-detectors, marked
as RICH1 and RICH2 in Fig. 3.7. They measure the particle velocity using the so-called
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Figure 3.6: Left: schematic representation of TT (purple), IT (purple) and OT (cyan). Middle:
the layout of the TT last layer. Right: the layout of the IT last layer.

Cherenkov effect. If a relativistic particle travels in a medium with a speed that exceeds
the speed of light in that medium, it emits photons with an angle θC w.r.t. to the
particle direction (the so-called Cherenkov angle). This phenomenon was discovered by
P. Cherenkov in 1934 [56]. The radiation originates from medium excitation caused by
the action of the field of the moving particle. The mass of the particle can be calculated
using the measured velocity and the momentum of the particle (measured by the tracking
detector described in Sec. 3.2.1 and 3.2.2).

The first of the RICH detectors (called RICH1) is situated after the dipole magnet. It
performs particle identification for (2− 60) GeV/c momentum range. It uses a C4F10 and
aerogel radiators as Cherenkov light emitters. The light is then focused using spherical
mirrors onto optical elements. Thanks to this solution the detector elements and electronics
can be located outside the LHCb acceptance.

The second RICH detector (denoted as RICH2) is located futher downstream between
T3 and ECAL. To identify particles it uses a different absorber: CF4. The readout of
both RICH detectors is based on Hybrid Photon Detectors (HPDs) [57], operating in the
wavelength range (200− 600) µm. More information about the RICH system can be found
in [58].

3.2.4 Calorimeters

The LHCb detector is composed of four calorimeters: Scintillating Pad Detector (SPD),
Pre-Shower (PS), Electromagnetic Calorimeter (ECAL) and Hadronic Calorimeter (HCAL).
All of them are constructed in a “sandwich” structure, in which the absorber material
layers are interchanged with the detecting material.
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Figure 3.7: The layout of the RICH detectors

The SPD and PS detectors are the ones that are located closest to the interaction point.
Their purpose is to improve the resolution of electromagnetic showers. They consist of
15 mm lead converters which are sandwiched between two identical planes of rectangular
high-granularity scintillation pads. The SPD task is to distinguish which hits are coming
from charge tracks and which from the neutral particles. The PS is used to reduce the
backgrounds from charged pions thanks to its longitudinal segmentation.

The ECAL is built of 2 mm thick lead plates, which are alternated with 4 mm
scintillating plates. The total thickness of the ECAL corresponds to 25 radiation lengths
(X0). In a similar manner the HCAL is constructed from layers of iron (16 mm) and
scintillating tiles (4 mm). Further information about the calorimeter system can be found
in [59].

3.2.5 Muon system

For the analysis described in this dissertation as well as for the core physics programme of
LHCb the muons play the leading role. Owning to the superb performance of the muon
system, the LHCb collaboration has reached the best results in rare semimuonic B decays
compared to other experiments. The muons also play an important role in CP violation
measurements where they are used in tagging of the B flavour [60].

As in a typical modern detector construction (such as the LHCb experiment), the
muon system is located as the outermost layer w.r.t. the interaction point. In LHCb it
is built of five stations: M1-M5, which are interleaved with 80 cm iron absorbers. The
station itself is used in the trigger process. The modules are constructed from multi-wire
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Figure 3.8: The muon system of the LHCb detector: (a) Side view, (b) station layout with four
regions R1-R4 described in the text.

proportional chambers (MWPCs), with (3− 4) ns time resolution [61].
The LHCb muon system offers outstanding resolution in the x and y coordinates for

charged tracks, which, when combined with the high detection efficiency [61] (above 95%),
makes the LHCb detector an outstanding environment to study the semimuonic decays of
B mesons. For more information about the muon system see [62].

3.2.6 Trigger

Given the high frequency of the collisions at the LHC, the events detected by the detectors
have to be filtered before they can be stored on tape. This is the task of the LHCb trigger
system. It is composed of two parts: First Level Trigger (L0) and High Level Trigger (HLT).
The first one is purely a hardware trigger, which uses information from the calorimeter and
muon systems, reducing the event rate from 11 MHz down to 870 kHz [63]. On the other
hand the HLT is purely a software trigger and is divided into two phases: HLT1 and HLT2.
HLT1 uses only partially reconstructed tracks for the event classification, while HLT2 uses
the fully reconstructed events. They reduce the rate to 3 kHz. After this procedure the
events are stored on tape.

3.3 CMS and ATLAS detectors

As mentioned in Sec. 3.1, also the general purpose detectors like ATLAS and CMS measure
the processes like B0 → K∗0µ+µ−. It is worth mentioning that because of the worse
resolution and lack of particle identification both experiments have not measured the full
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set of angular observables of the above-mentioned decay. It is estimated that with more
accumulated data this measurement will become possible in future.

3.4 ATLAS experiment

A Toroidal LHC ApparatuS (ATLAS) is the largest multi-purpose detector at the LHC
accelerator. The detector has a length of 44 m and height of 25 m and weighs about
7000 tons [64]. A cut-away view of the ATLAS detector is presented in Fig. 3.9. In the most
central region, the detector elements are arranged in concentric cylinders, while the endcap
regions consist of discs of detectors perpendicular to the beam axis. The ATLAS detector
is built of three main subsystems, namely the Inner Detector, the Calorimeter System,
and the Muon Spectrometer. The detector has been designed to have a forward-backward
symmetry w.r.t. the interaction point.

Figure 3.9: Side view of the ATLAS detector.

3.4.1 Inner detector

The Inner Detector is the detector located closest to the interaction point. It is immersed in
a 2 T magnetic field oriented towards the z axis, which is generated by a superconducting
cylindrical coil. It covers a central pseudorapidity region of |η| < 2.5. The Inner Detector
consists of a Pixel Detector, a Semiconductor Tracker and a Transition Radiation Tracker.
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Pixel Detector

The Pixel Detector is part of the detector innermost w.r.t. to the interaction point. It
consists of high granularity silicon pixel sensors that are used for track and vertex recon-
struction. The presence of a strong magnetic field allows also for momentum measurements.
In the barrel part of the inner detector the pixels are arranged as three concentric cylin-
ders of radii 51 mm, 89 mm and 123 mm, respectively. The pixels have an outstanding
resolution of 10 µm

It is worth mentioning that for the Run2 data taking period an additional layer (called
the B-layer) [65] was inserted at a distance of 3.3 cm from the beam pipe. The purpose of
this upgrade was to increase the precision of the reconstruction of secondary vertices, in
which ATLAS had sufficiently poorer performance compared to CMS. This layer also has
a slightly wider pseudorapidity range: |η| < 2.9.

Semiconductor Tracker

Outside of the Pixel Detector there is the Semiconductor Tracker detector with a strip
pitch of 80 µm. Each module consists of two layers of silicon strip detectors that are tilted
by an angle of 40 mrad. In total there are four layers of these detectors in the barrel and
nine in the endcaps. The total resolution of such a detector is 17 µm in the R − φ and
580 µm in the z direction.

Transition Radiation Tracker

The outermost section of the Inner Detector is the Transition Radiation Tracker. It is
composed of straw drift tubes with a diameter of 4 mm filled with a Xe/CO2/O2 gas
mixture. The resolution of each straw is 130 µm in the R−φ plane. Among the straw tubes
there are layers of fibres and foils with different dielectric constants. Passing electrons emit
light that can be absorbed by xenon in the straw tubes, resulting in a higher voltage signal
when transition radiation is present. Because of this, the Transition Radiation Tracker
allows for the separation of energy deposits due to electrons and other charged hadrons.

3.4.2 Calorimeter system

There are two main calorimeters in the ATLAS detector: an Electromagnetic Calorimeter
and a Hadronic calorimeter. The Electromagnetic Calorimeter measures the energy of
photons and electrons via absorption. It also measures partially the energy of hadrons, which
are not fully stopped in the Electromagnetic Calorimeter and therefore can pass through to
the Hadronic Calorimeter. A diagram showing the different parts of the calorimetry system
can be seen in Fig. 3.10. As typical in modern experiments, the ATLAS calorimeters are
sampling devices, where the absorbing material (the absorber) is sandwiched with the
active material that measures the energy of particles produced in the absorber.
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Figure 3.10: Illustration of the ATLAS calorimeter system

Electromagnetic calorimeter

The electromagnetic calorimeter uses liquid argon as active medium and consists of
alternating layers of accordion-shaped kapton electrodes and lead absorber plates. The
calorimeter in the barrel is greater than 22 X0 and covers a pseudorapidty region of
|η| < 1.475. The endcap part covers 1.375 < |η| < 3.2 and is of the thickness of 24 X0.
The calorimeter produces an analogue signal that is sampled every 25 ns.

Hadronic calorimeter

The electromagnetic calorimeter is surrounded by the Hadronic calorimeter system. The
hadronic calorimeter consists of a barrel tile calorimeter (|η| < 1.7) and two liquid argon
sampling endcap calorimeters (1.5 < |η| < 3.2). The scintillation light is collected by the
wavelength shifting fibres and detected using the photomultipliers. This results in a pulse
with a height proportional to the energy and width of 50 ns. The hadronic calorimeters do
not need such a readout time as the electromagnetic ones because they are less sensitive
to pile-up events. Copper and tungsten are used as the absorption material.

3.4.3 The muon system

The muon spectrometer, shown in Fig. 3.11, is the outermost subsystem of ATLAS. It
measures the energy of muons which can escape the calorimeters system. As in the case of
LHCb, the muon system is used in the triggering system for the analysis described in this
monograph. The superconducting air-core toroid magnets bend the muon tracks. Each
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magnet consists of eight coils and produces average magnetic fields of about 0.5 T and 1 T
in the barrel and the endcap regions, respectively. The barrel consists of three layers of
precision chambers covering a pseudorapidity range of |η| < 1.4, while the endcaps cover a
pseudorapidity region up to 2.7.

Figure 3.11: View of the ATLAS muon spectrometer.

3.5 CMS experiment

The Compact Muon Solenoid (CMS) is the second multi-purpose detector at the LHC. It
is a cylindrical, 21.6 m long and 15 m high spectrometer, which weighs about 14000 tons.
Similarly to ATLAS, it is composed of a barrel and two endcaps, as can be seen in Fig. 3.12.
In general, the CMS detector consists of a tracker, an electromagnetic and a hadronic
calorimeter and a muon system.

3.5.1 Inner Tracker

The Inter Tracker is the sub-detector that the particles produced in the collision encounter
first. It is situated in a 3.8 T magnetic field generated by a superconductive solenoid. In
terms of dimensions, the Inner Tracker is 5.8 m long and has a diameter of 2.5 m. This is
the biggest tracking detector in all LHC experiments with a total active silicon area of
about 200 m2. Thanks to such precise apparatus, the vertexing and momentum resolution
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Figure 3.12: Schematic ilustration of the CMS detector.

are much superior compared to those of ATLAS. This is the main reason why heavy flavour
results from CMS supersede the ones from ATLAS. The momentum resolution of the
CMS inner detector is comparable to the LHCb one and is around 1 % for a transverse
momentum range: pT < 100 GeV. Furthermore, it covers a pseudorapidity region of
|η| < 2.5. Unlike the ATLAS inner detector, the CMS detector is built entirely from silicon
and consists of a Pixel Detector and a Silicon Strip Tracker, as can be seen in Fig. 3.13.

Pixel Detector

The Pixel Detector is the innermost component of the Inner Tracker. Its main purpose
is to reconstruct primary and secondary vertices. The pixels used in it have the size of
100× 150µm2. This fine granularity ensures similar resolution in the R− φ plane as well
as in the z direction, making the precise vertex reconstruction possible. The Pixel Detector
consists of 18 million pixels with a total spatial resolution of about 20 µm.

Silicon Strip Tracker

Outside of the Pixel Detector lies the Silicon Strip Tracker. The sensors are p− n silicon
microstrip sensors3. It is composed of 15.000 silicon modules and 9.3 million readout
channels. The entire system operates at the temperature below 10◦C, which increases the

3Both single-sided and double-sided are used.
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Figure 3.13: Schematic ilustration of the CMS inner detector.

radiation hardness of the detector. The sensors and electronics are mounted on a carbon or
graphite fibre frame which ensures the low material budget of the overall detector. There
exist over 20 different geometries of the modules used to build this detector [66]. The
resolution depends on the type of the sensors and is within (15− 45) µm.

3.5.2 Electromagnetic calorimeter

The CMS Electromagnetic Calorimeter is composed of 75848 lead tungstate (PnWO4)
crystals exhibiting an excellent energy resolution. The barrel part of the eletromagnetic
calorimeters covers the pseudorapidity region of |η| < 1.5 and the two endcaps extend
the coverage up to |η| < 3.0. The barrel has the inner radius of 129 cm and is built of 36
identical modules, each composed of 1700 crystals. The endcaps are located 314 cm from
the interacting point and are built of half-discs, each consisting of 3662 crystals.

3.5.3 Hadronic calorimeter

The hadronic calorimeter works together with the above-mentioned electromagnetic
calorimeters to measure the energy of hadronic particles and jets as well the missing
transverse energy. It uses a brass absorber interlaced with plastic scintillation layers. The
unusual choice of brass was dictated by its short interaction length and non magnetic
nature. Altogether the hadronic calorimeter covers the pseudorapidity region of |η| < 5.2.

3.5.4 The Muon System

Muons play an important role in the CMS experiment as its name indicates. They are
the particles that are not stopped by the calorimeters system, making them very easy
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to distinguish and detect. For this purpose, CMS uses its Muon System which is the
outermost detector. It consists of three different types of gaseous detectors. In the barrel
(|η| < 1.2) where one expects a low track multiplicity and small magnetic field, the Drift
Tube Chambers have been used. On the other hand, the endcaps are equipped with the
Cathode Strip Chambers, which can cope with a much higher track multiplicity. Similarly
to the LHCb and ATLAS detectors, CMS also uses its Muon System as the main input
for triggering muon events.

3.6 BaBar experiment

The BaBar experiment is located on the PEP-II accelerator, which operated in the
years 1999-2007. The accelerator collided electrons with positrons mostly at an energy
of 10.58 GeV, which corresponds to the Υ (4S) threshold. It is worth pointing out that
this energy is only 20 MeV above the BB threshold. The PEP-II was an asymmetric
e+e− collider, where the electrons and positrons had an energy of 9.0 GeV and 3.1 GeV,
respectively. The illustration of PEP-II is given in Fig. 3.14. The asymmetric beams caused
the central-mass of the system to have a boost of: βγ = 0.56 in the laboratory frame.

Figure 3.14: Schematic illustration of the PEP-II Linac, which accelerates electrons and positrons,
and the two counter-rotating storage rings.

During its operation the BaBar detector has collected a total of 531.43 fb−1 of e+e−

collisions, including runs at the Υ (2, 3, 4) thresholds.
The BaBar detector was designed as a spectrometer with almost 4π angular acceptance.
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Because of the aforementioned beam energy asymmetry, the detector is also slightly
asymmetric around the interaction point (shifted by 0.37 m). The track momenta of
particles from B decays are usually below 1 GeV/c, so the detector needs to be built from
a small amount of the material to reduce multiple scattering and increase the momentum
resolution. The BaBar spectrometer consists of a Silicon Vertex Tracker, a multi-wire
Drift Chamber, a Ring-Imaging Cherenkov detector, an Electromagnetic Calorimeter, a
superconducting solenoid magnet and an Instrumented Flux Return. The location of all
these subdetectors is shown in Fig. 3.15. We will briefly discuss the function and technology
of the subdetectors.

Figure 3.15: A schematic drawing of the BaBar detector.

3.6.1 Silicon Vertex Tracker

The Silicon Vertex Tracker (SVT) is built of five layers of double-sided silicon strip detectors
around a beryllium beam-pipe. The strips on the inner side are oriented perpendicularly
to the beam axis to provide z-coordinate measurements, while the outer side provides the
φ coordinate. The main purpose of the SVT is to ensure precision measurements of the B
decay vertex. All combined layers have a resolution of (10− 15) µm per track position and
(60− 100) µm for the B vertex position, while the constituent material only contributes
4% of the radiation length.

3.6.2 Drift Chamber

The second detector responsible for tracking is the Drift Chamber (DCH). It provides
the momentum measurement for particles with the transverse momentum greater than
120 MeV/c. The DCH consists of 40 layers of wires in 280 cm long cylinders with a helium-
isobutane gas mixture. Amongst the aforementioned 40 layers, 24 have a small stereo angle
with respect to the beam axis which enables the measurement of the longitudinal positions.
When a charge particle passes through the DCH, it interacts with electrons of the atoms
from the gas mixture, leaving a trail of free electrons, which drift to the wires because of
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the electric field. The total collected charge provides the information of the dE/dx with an
accuracy of 7%. The drift time provides the radial distance with a resolution of 140 µm.

3.6.3 Detector of Internally Reflected Cherenkov light

The Detector of Internally Reflected Cherenkov light (DIRC) provides the particle identifica-
tion using Cherenkov radiation similar to the aforementioned RICH detector (cf. Sec. 3.2.3).
The DIRC ensures acceptance of 94% in the azimuthal angle and 83% coverage in the
polar angle in the centre-of-mass frame while adding only 17% X0 of the material budget.

3.6.4 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (EMC) is an absorption calorimeter designed to detect
electromagnetic showers within the 20 MeV− 4 GeV energy range. It is the first innermost
detector capable of detecting neutral particles. The EMC is the most expensive subdetector
in the BaBar experiment. It consists of 6580 cesium iodide (CsI) salt crystals. When a
photon or an electron with at least a few MeV passes through the crystal, it interacts with
the electric field produced by large atoms (i.e. with high atomic number Z) within the
crystal material. Owing to this phenomenon, the photons create e+e− pairs and produce
electromagnetic showers. At the same time the crystals generate scintillating light which
is contained within the crystal via total internal reflection. The light is collected by the
photo-diods mounted on the back of each crystal.

In total the EMC contains 5760 crystals arranged in 48 rings around the barrel and
820 crystals in the forward endcap arranged in eight azimuthal rings. It covers a total of
90% solid angle acceptance.

3.6.5 Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed to identify the muons to about 600 MeV
energy as well as neutral hadrons, such as K0

L and neutrons. It is located outside the
magnetic field and is responsible for directing the field lines for the return of the magnetic
flux from the solenoid. The IFR consists of a barrel and two end-caps, each segmented
into layers ranging from 2 to 10 cm in thickness for the outermost layers. Among the 19
layers of steel in the barrel (and 18 layers in the end-caps), there are either resistive plate
chambers (RPCs) or limited streamer tubes (LSTs) serving to detect “streamers” from
ionizing particles. An illustration of the IFR is shown in Fig. 3.16.

Thanks to the IFR the muon detection efficiency reaches the value of 83% while keeping
the pion mis-identification at the level of 1.2%.

3.7 Belle experiment

The second B-factory is the Belle experiment located at the KEKB accelerator in Japan.
It took data in the years 1999-2010. Similarly to the PEP-II accelerator, KEKB is an
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Figure 3.16: Schematic view of the IFR detector, specifically depicting the shape and instrumented
layers of the (left) barrel and (right) two end caps.

asymmetric e+e− collider. However, contrary to the PEP-II, the energy of the beams are
8.0 GeV and 3.5 GeV for the electron and positron beams, respectively. Because of this
the boost is also smaller than in PEP-II and is equal to βγ = 0.43. Smaller asymmetries in
the energy of the beams allowed the collider to achieve larger luminosities. For this reason
the Belle experiment has collected a total of 1040 fb−1. In addition, 110 fb−1 have been
collected at the Υ (5S) threshold.

The Belle detector is constructed in a similar manner to the BaBar one. It consists
of a Silicon Vertex Detector, a Central Drift Chamber, an Aerogel Cherenkov Counter, a
Time of Flight detector, an Electromagnetic calorimeter and a K0

L and muon detector.

3.7.1 Silicon Vertex Detector

The Silicon Vertex Detector (SVD) is the detector closest to the interaction point, whose
main purpose is to measure the decay vertices of the heavy flavoured particles and the
momentum of their charged decay products.

The first version of the SVD was located on a 20 mm beryllium pipe, which is a part of
the accelerator. It consisted of three layers located at 30.0 mm, 45.5 mm, 60.5 mm radial
distance from the beam axis, respectively. They were built in double-sided silicon strip
detector technology. The n+ strips are used to measure the z coordinate, while the p+
measure the coordinate on the r − φ.

In 2003 the SVD detector was upgraded. The new setup now consists of four new SVD
layers and a new beryllium beam pipe with 15 mm radius. The four layers are located at
20.0 mm, 43.5 mm, 70 mm and 88.0 mm radius from the beam axis, respectively. With
the new configuration the solid angle coverage has increased to 92% (the old configuration
had 86% solid angle coverage). A schematic drawing of the SVD detector is shown in
Fig. 3.17.

Thanks to the upgrade the detector resolution in the z direction has increased dra-
matically from 36 µm to 27.6 µm, which has a direct impact on the time dependent
measurements.
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Figure 3.17: Schematic illustration of the SVD subdetector in the Belle experiment.

3.7.2 Central Drift Chamber

The main purpose of the Central Drift Chamber (CDC) is the measurement of the
momentum of charged particles. The CDC has the same solid angle coverage as the SVD
detector. The gas mixture used in the chamber is an equal mixture of ethane and helium.
Such a choice was the result of the attempt to minimalise the multi-scattering effects
in the mixture, which is crucial for low momentum track reconstruction. The typical
resolution achieved by the CDC in the z direction is 130 µm, while in the r − φ direction
the resolution is (200− 1400) µm depending on the particle momentum and direction.

The momentum reconstruction is done using the information from the SVD and
CDC simultaneously. The overall extrapolation of the tracks from the two detectors has
reached an amazing efficiency of 98%. Additionally, the CDC can help with the particle
identification by measuring the ionization energy (dE/dx).

3.7.3 Aerogel Cherenkov Counter

The Aerogel Cherenkov Counter (ACC) has been built with the purpose of identifying
the charge tracks with the momentum above 1 GeV/c. The detector uses the Cherenkov
radiation already discussed in Sec. 3.2.3. The trick used in the Belle experiment was to
choose such a refractive index of the medium so that only lighter particles such as pions
could emit light. In the Belle experiment the silica aerogel has been chosen as a diffractor.

The ACC is built out of 960 modules in the barrel and 288 modules in the endcap. Each
module contains five aerogel tiles stacked in aluminium boxes, as shown in Fig. 3.18 [67].
The ACC detector allows for measurement of the particle identification properties up to
4 GeV/c momentum.

3.7.4 Time of Flight detector

The Time of Flight (TOF) detector helps, to identify the particles in the low momentum
range: (1− 2) GeV/c. The principle of the operation of this detector is to use scintillating
counters to measure the speed of the charged particles. Combining this information with
the momentum measurement from the SVD and CDC allows us to measure their mass.
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Figure 3.18: Schematic drawing of the ACC sub-detector in the Belle experiment. The regions
with the same diffraction index are marked.

The counters are grouped in 64 modules located 128 cm from the interaction point. The
time resolution of the TOF detector is 100 ps.

3.7.5 Electromagnetic Calorimeter

The next subdetector counting from the interaction point is the Electromagnetic Calorime-
ter (ECL). Its main purpose is to measure the energy of photons and electrons. NaCsI
crystals are used as active material. The particles interact with the crystals producing
electromagnetic cascades, which in turn generate the scintillation light inside the crys-
tal, which is then measured with photomultipliers. The calorimeter is composed of 6624
crystalsin total, each 30 cm long. The total material budget of the ECL is 16.2 radiation
lengths.

The endcap on the other hand is built of Bi4Ge30O12 which is a more radiation hard
material. The ECL endcap is also used as a beam luminosity monitor.

3.7.6 K0
L and Muon detector

The most outer subdetector of the Belle experiment is the K0
L and Muon (KLM) detector.

Its main purpose is the detection of muons and long lived particles such as K0
L . It consists of

a barrel and two endcaps which together cover the polar angle range: (20 ¬ θ ¬ 155) deg.
It is built of resistive plate chambers interleaved with iron absorption plates. The particles
can be identified by the KLM detector if their momentum exceeds 600 MeV/c.

As mentioned above, the second purpose of the KLM detector is the identification and
energy measurement of the KL mesons. The identification of these measons is done via
reconstruction of the cascades, which gives the information the energy of the particles as
well as their direction.
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3.8 Belle 2 experiment

In 2017 a new B-factory called the SuperKEKB (an upgrade of KEKB) will start colliding
e+e−. In this section we will briefly discuss the Belle 2 detector. It is an upgrade of
the previously described Belle detector. A comparison of the two constructions is shown
in Fig. 3.19. Because of their similarities we will discuss only the major changes.

Figure 3.19: Schematic drawing of the Belle (bottom) and Belle 2 (top) detectors [68].

In order to achieve the physics goal the accelerator has gone through a major upgrade.
The instantaneous luminosity will be increased from 2.1×1034 cm−2s−1 to 8×1035 cm−2s−1

by increasing the current and reducing the beam size. Furthermore, the crossing angle
between the beams has been increased.

Because of the increased luminosity, the beams have changed to be more symmetric in
terms of their energies. The B mesons have lower momenta in the laboratory rest frame:
for this reasons one needs a more precise tracking detector to measure their lifetime with
a precision similar to that achieved by Belle. The SVD has been upgraded with two new
layers of a silicon pixel detector that are put very close to the beam pipe (14 and 22 mm
respectively). Furthermore, the CDC has been extended in the radius and has more cells
near the beam pipe. Additionally, faster electronics have decreased the dead time by an
order of magnitude.

The main difference compared to the Belle detector is the PID system. Instead of the
ACC the Belle 2 detector will be equipped with a Time of Propagation Counter detector in
the barrel and an Aerogel Ring Imaging Cherenkov detector in the endcaps. This system
provides less material in the detector and increases the separation power for identifying
the particles. The ECL and KLM technology has stayed unchanged, except for small
modifications in the readout electronics and the replacement of the degraded CsI crystals.
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Chapter 4

Angular analysis of B0→ K∗0µ+µ−

In this chapter the angular analysis of B0→ K∗0µ+µ− will be presented. The section is
structured as follows: firstly the trigger and selection requirements are presented, followed
by the peaking background studies. Next, a multivariate classifier is discussed and the
methods of extracting the observables are introduced. The section ends with the estimation
of systematics uncertainties and the report of the results. The results of this analysis have
been published in [69].

4.1 Trigger requirements

As described in Sec. 3.2.6, LHCb uses a complicated trigger system in order to save as
many interesting physics events as possible. The B0→ K∗0µ+µ− candidates used in this
analysis are required to pass the trigger requirements listed in Table 4.1. The HLT 2 lines
used here focus on finding a multi-prong decay vertex that is detached from the primary
vertex. At all stages the offline-candidates are required to be triggered on signal (TOS), i.e.
the trigger decision is due solely to the presence of the candidate in the event and not the
underlying event. A brief study was performed but no significant advantage was found by
allowing candidates triggered independently of the signal (TIS), or extra trigger lines in
the updated selection. The trigger lines are taken with the logical or. This means that a
candidate to be considered has to pass at least one of the listed HLT2 lines.

4.2 Stripping and pre-selection

Before the events are made available to be analysed, they have to pass the so-called stripping
selection. The stripping selection is made centrally by the LHCb experiment around twice
a year. The main reason for this is that the LHCb data is stored on tape, so analysing it
would be very time-consuming. Candidates satisfying the stripping requirements are kept
on storage disks and are made available to physicists. These requirements are outlined
in Table 4.2. For the 2012 (2011) data, this corresponds to the stripping version 20
(20r1) [70] and reconstruction version Reco14 [71]. Candidates that have passed the
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Table 4.1: Triggers required for the B0→ K∗0µ+µ− candidate events.

Stage Triggers
L0 L0Muon

HLT 1 Hlt1TrackAllL0 or
Hlt1TrackMuon

HLT 2 Hlt2Topo[2,3,4]BodyBBDT,
Hlt2TopoMu[2,3,4]BodyBBDT,

Hlt2SingleMuon or
Hlt2DiMuonDetached

Table 4.2: Stripping selection criteria in B2XMuMu for Stripping 20 and Stripping 20r1.

Candidate Selection
B meson IP χ2 < 16 (best PV)
B meson 4600 MeV/c2 < M < 7000 MeV/c2

B meson Direction Angle (DIRA) < 14 mrad
B meson flight distance χ2 > 121
B meson vertex χ2/ndf < 8

µ+µ− m(µ+µ−) < 7100 MeV/c2

µ+µ− vertex χ2/ndf < 9
K∗0 m(K+π−) < 6200 MeV/c2

K∗0 vertex χ2/ndf < 9
K∗0 flight distance χ2 > 9

tracks ghost Prob < 0.4
tracks min IP χ2 > 9
muon IsMuon1

muon DLLµπ > −32

GEC SPD Mult. < 600

stripping line are furthermore required to pass the same additional criteria detailed
explicitly in Table 4.33.

Finally, additional requirements are made on the invariant mass mKπ of the Kπ system.
For this analysis, a window of ±100 MeV/c2 around the nominal mass of the K∗(892)0

state is employed. That is:

795.9 MeV/c2 < mKπ < 995.9 MeV/c2. (4.1)

This requirement was choosen to be the same as the one use in the Belle B0→ J/ψK∗0

3In the Table 4.3 the IsMuon requirement is defined as the track that has to have hits in at least three
Muon Stations. The DLLXY is defined as the ratio of probabilities between the X particle hypothesis and
Y particle mass hypothesis. If one writes DLLX this means that the second particle was assumed to be a
pion.
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Table 4.3: Pre-selection requirements applied to stripped candidates. In this table only: θ is the
opening angle from the beam; and θpair is the opening angle between two track pairs. Variables
< X >, < Y >, < Z > denote the mean primary vertex position.

Candidates Selection
Track 0 < θ < 400 mrad

Track Pairs θpair > 1 mrad
µ+µ− IsMuon True

K hasRich4 True
K DLLKπ > -5
π hasRich True
π DLLKπ < 25

PV |X− < X > | < 5 mm
PV |Y− < Y > | < 5 mm
PV |Z− < Z > | < 200 mm

Table 4.4: Estimated yields, and percentage relative to estimated signal yield, of peaking back-
ground events before and after the vetoes detailed in Sec. 4.3 (all for events inside the mKπ

window). The dominant uncertainty contributing to these numbers is in σbb and the estimate of
BR(Λ0

b→ Λ∗(1520)0µ+µ−). The last column is the relevant section of this dissertation.

after preselection, before vetoes after vetoes and selection
Channel Estimated events % signal Estimated events % signal §

Λ0
b→ Λ∗(1520)0µ+µ− (1.0± 0.5)× 103 19± 8 51± 25 1.0± 0.4 4.3.2

Λ0
b→ pK−µ+µ− (1.0± 0.5)× 102 1.9± 0.8 5.7± 2.8 0.11± 0.05 4.3.2
B+→ K+µ+µ− 28± 7 0.55± 0.06 1.6± 0.5 0.031± 0.006 4.3.5
B0
s→ φµ+µ− (3.2± 1.3)× 102 6.2± 2.1 17± 7 0.33± 0.12 4.3.4

signal swaps (3.6± 0.9)× 102 6.9± 0.6 33± 9 0.64± 0.06 4.3.3
B0→ J/ψK∗0 swaps (1.3± 0.4)× 102 2.6± 0.4 2.7± 2.8 0.05± 0.05 4.3.3

B0→ J/ψK∗0 70± 22 1.35± 0.28 59± 19 1.14± 0.26 4.3.1

analysis.

4.3 Vetoes against specific peaking backgrounds

Several sources of specific backgrounds have been considered. The estimated yields of each
background (in 3 fb−1 data sample) are summarised in Table 4.4. The selection and trigger
requirements bias the angular distribution. This obviously would have an impact on the
final result, hence we will correct for it at a later stage of the analysis (see Sec. 4.5).

4.3.1 Charmonia resonances

The charmonia resonances are removed in this analysis by discarding the specific q2 regions.
The bin q2 ∈ [8.0, 11.0] GeV2/c4 (containing the B0→ J/ψK∗0 resonant decay mode), the
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Figure 4.1: Scatter plots of Λ0
b candidate mass (m(π→p)Kµµ) and pion candidate DLLpπ for simu-

lated physics signal (left) and simulated with flat phase space distribution Λ0
b→ Λ∗(1520)0µ+µ−

events (right).

bin q2 ∈ [12.5, 15.0] GeV2/c4 (containing the B0→ ψ(2S)K∗0 resonant decay mode) and
q2 ∈ [0.98, 1.1] GeV2/c4 are removed from the data samples before training the multivariate
classifier.

4.3.2 Λ0
b→ pK−µ+µ− background

The peaking background from the Λ0
b→ pK−µ+µ− (inclusive) decays arise when the p

is reconstructed as either of the hadron candidates. The dominant contribution to the
pK−µ+µ− final state is expected to be from the Λ∗(1520)0→ pK− resonance. The veto
for those decays is done by remaking alternative mass hypotheses and removing events in
the regions of mass and DLLpπ variable, as detailed below.

The simplest case is when p is reconstructed as the “π+” candidate. In this case,
changing the hypothesis of the π track from the pion mass to the proton mass and
remaking the invariant mass, the value of m(π→p)Kµµ, should be consistent with the mass
of Λ0

b . The contribution from these events is removed by vetoing events with m(π→p)Kµµ
around the nominal Λ0

b mass with a proton-like DLLpπ discriminator value. The candidates
are removed if:

(5575 < m(π→p)Kµµ < 5665) MeV/c2 (4.2)
DLLpπ(π) > 0. (4.3)

Fig. 4.1 shows the m(π→p)Kµµ and DLLpπ(π) plane for simulated signal and phase space
Λ0
b→ Λ∗(1520)0µ+µ−.

The second way the Λ0
b→ pK−µ+µ− decays can contribute is when p is reconstructed

as the “K+” candidate and K− is reconstructed as “π−”. In this case, both hadron track
mass hypotheses need to be changed. The resulting invariant mass, m(K→p)(π→K)µµ, should
be consistent with that of Λ0

b . This contribution is removed by a similar requirement on
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Figure 4.2: Scatter plots of Λ0
b candidate mass (m(K→p)(π→K)µµ) vs pion candidate DLLKπ for

simulated physics signal (left) and simulated phase space Λ0
b→ Λ∗(1520)0µ+µ− events (right).

m(K→p)(π→K)µµ and by the fact that the pion candidate has a kaon-like DLLKπ value. That
is:

(5575 < m(K→p)(π→K)µµ < 5665) MeV/c2 (4.4)
DLLKπ(π) > 0. (4.5)

Fig. 4.2 shows the m(K→p)(π→K)µµ and DLLKπ(π) plane for simulated signal and phase
space Λ0

b→ Λ∗(1520)0µ+µ−.

4.3.3 Misidentified B0→ K∗0µ+µ− and B0→ J/ψK∗0 decay modes

Another background that has to be considered is the misidentification of B0→ J/ψK∗0.
Such misidentified candidates can be separated from the correctly identified signal can-
didates if the π− and K+ mass assignments are swapped, and the Kπ invariant mass
(mK↔π) should then be consistent with that of K∗0. Candidates are rejected if the kaon
and pion satisfy:

DLLKπ(K) + 10 < DLLKπ(π) (4.6)
(795 < mK↔π < 995) MeV/c2. (4.7)

In addition, a requirement is imposed on the difference in the hadrons’ DLLKπ variables.

DLLKπ(K)−DLLKπ(π) > 0. (4.8)

This removes the remaining hadron PID swaps. The requirement is usually referred to as
“diagonal” forming a diagonal exclusion in the DLLKπ(K)-DLLKπ(π) plane.

Another way that the B0→ J/ψK∗0 decay contributes to a peaking background, is
when π− (K+) is misidentified as µ− (µ+) and µ− (µ+) is misidentified as π− (K+), which
is the so-called “double-swap”. The candidates where π− and µ− are misidentified can be
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separated from signal candidates, if the π− and µ− mass assignments are swapped, and the
πµ invariant mass m(π→µ)µ should be consistent with that of J/ψ . The equivalent quantity
for the candidates where K+ and µ+ are misidentified, the Kµ invariant mass m(K→µ)µ, is
calculated by swapping the K+ and µ+ mass assignments. The candidates are rejected if

(3036 < m(π→µ)µ < 3156) MeV/c2 (4.9)

and the pion satisfies either the IsMuon criteria or DLLµπ > 5.0; or if

(3036 < m(K→µ)µ < 3156) MeV/c2 (4.10)

and the kaon satisfies either the IsMuon criteria or DLLµπ > 5.0.

4.3.4 B0
s→ φµ+µ− decay

The decay B0
s→ φ(→ K+K−)µ+µ− (hereinafter denoted as B0

s→ φµ+µ−) contributes to
the peaking background if K− is misidentified as π−. If the reconstructed π− is assigned
the nominal mass of K−, the Kπ invariant mass (m(π→K)K) should then be consistent
with that of φ. Similarly, the Kπµµ invariant mass (m(π→K)Kµµ) should then be consistent
with that of B0

s . The candidates are rejected if

(5321 < m(π→K)Kµµ < 5411) MeV/c2 (4.11)

and either:
(1010 < m(π→K)K < 1030) MeV/c2 (4.12)

and the pion satisfies DLLKπ > −10, or

(1030 < m(π→K)K < 1075) MeV/c2 (4.13)

and the pion satisfies DLLKπ > 10. These two vetoes are defined in separate regions of
m(π→K)K to reduce the number of B0→ K∗0µ+µ− decays that are removed.

4.3.5 B+→ K+µ+µ− decay with a slow π−

A background contribution can be formed if π− from elsewhere in the event is added
to a genuine B+ → K+µ+µ− decay to form a four-track final state. Given that the
B+→ K+µ+µ− decays accumulate at the nominal B0 mass, this background can only
contribute to the upper mKπµµ mass sideband. These candidates are typically asymmetric
in cos θK , which is due to a momentum imbalance between the kaon and the pion. This
modifies the cos θK distribution of the candidates in the upper mass sideband, potentially
causing a mis-measurement of the angular observables. The candidates are removed by
requiring mKπµµ > 5380 MeV/c2 and (5220 < mKµµ < 5340) MeV/c2, where mKµµ is the
Kµµ invariant mass.
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4.3.6 Other sources of peaking background

The decay B+→ K∗+µ+µ− contributes to the background when π− from elsewhere in
the event is added to the K∗+→ K+π0 decay (where π0 is not reconstructed) to form a
four-track final state. These candidates cannot be isolated from the B0→ K∗0µ+µ− decays
by imposing requirements on invariant mass distributions or DLL quantities. Therefore, no
veto criteria are imposed to remove the B+→ K∗+µ+µ− backgrounds. The contribution of
this background is expected at the level of 1.5% of the signal yield accross the full mKπµµ

range and 0.5% within the signal mass window.
The B0→ ρ0(→ π+π−)µ+µ− (hereinafter denoted as B0→ ρ0µ+µ−) decay contributes

to the peaking background if π+ is misidentified as K+. The decay proceeds by the same
process as the B0→ K∗0µ+µ− decay; however, it is further suppressed by the ratio of
CKM factors ∣∣∣∣∣VcdVcs

∣∣∣∣∣
2

≈ 0.05 or

∣∣∣∣∣VtdVts
∣∣∣∣∣
2

≈ 0.05 (4.14)

for the resonant and non-resonant decays, respectively. Taking the rate of the π→ K
mis-identification as 10% [72], the contribution of B0→ ρ0µ+µ− decays is calculated to
be � 1% of the signal yield, and is therefore neglected.

4.4 Multivariate classifier

The combinatorial background is reduced using the Toolkit for Multivariate Analysis
(TMVA) software package [73]. The presented selection is based on a boosted decision tree
(BDT) [74] classifier using the AdaBoost algorithm [75]. The Multivariate Analysis (MVA)
needs control samples to be able to distinguish between the signal events and those from
the combinatorial background. The training of the BDT classifier is done using:

• The sPloted [76] B0→ J/ψK∗0 candidates as proxy to the signal events. A description
of the selection of these events is given in Sec. 4.4.1.

• The upper mass sideband of the B0→ K∗0µ+µ− signal candidate invariant mass
(mKπµµ) is used as a sample of combinatorial background. That is the window
mKπµµ ∈ [5350, 7000] MeV/c2. The lower mass sideband is not used because of the
presence of partially reconstructed events.

4.4.1 Use of sPlot technique on B0→ J/ψK∗0 candidates

The sPlot technique [76] is employed to weight the stripped B0→ J/ψK∗0 candidates. This
procedure statistically removes the background contribution so that the B0→ J/ψK∗0

data sample can be considered “pure”. The procedure is used in two areas:

1. For the B0→ J/ψK∗0 candidates that pass the preselection and peaking background
vetoes before the training of the BDT.
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2. For the B0→ J/ψK∗0 candidates that pass the full selection to derive weights to
correct the simulation (see Sec. 4.5.1).

Initially, a fit to the un-weighted B0→ J/ψK∗0 candidates is performed. The model
used is a double Crystal Ball for signal and a first order polynomial for the combinatorial
background component.

4.4.2 Input variables for the BDT classifier

The input variables to the BDT classifiers that have been considered are the ones that
exhibit good data-simulation agreement and good discriminating power. The following sec-
tion will discuss these variables. The variables used can be split into kinematic/topological
based, PID based and isolation based. The kinematic/topological variables are (5 in total):

• the B0 lifetime,

• the Kπµµ vertex quality (χ2),

• the momentum of the B0 meson,

• the transverse momentum of the B0 meson,

• the cosine of the angle between the momentum and the direction , of flight from the
primary to decay vertices (DIRA).

The PID variables are:

• the DLLKπ for the pion and the kaon,

• the DLLµπ for the muon tracks.

Finally, two types of isolation variables are used, one for the hadrons and one for the
muons, which will be described below.

The decision to use the set of variables discussed above was reached by testing many
configurations of training variables, with the five kinematic/topological variables as the
baseline, and by selecting the most performant BDT as given by the Receiver Operating
Characteristic (ROC) curve shown in Fig. 4.3. It must be noted here that although the
artificial neutral network based PID (ProbNN) outperforms the standard DLLs, the decision
made to use the DLLs is due to their better modelling in the simulation.

4.4.3 Hadron Isolation

Hadron isolation variables are based on the isolation used in the B0
s → µ+µ− analysis

performed by the LHCb experiment [10]. The isolation is defined as the number of extra
tracks (i.e. excluding tracks that form a B0→ K∗0µ+µ− candidate), that can form a
vertex with a hadron track. For each of the tracks in the event (excluding tracks forming a
B0→ K∗0µ+µ− candidate) the following quantities (which are depicted in Fig. 4.4) are
taken into account:
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Figure 4.3: ROC curves of BDTs using differents input variables. In black the BDT was trained
with the 5 kinematic variables of the B0 meson and the PID information for the kaon and the
pion. In red (light green) the isolation variables (the so-called BDTiso) of the final state particle
are added to the training. In dark blue the PID information of the muons is added. In pink the
training uses the 5 kinematic variables of the B0 meson and the ProbNN information for the
kaon and the pion and the isolations variables In cyan the ProbNN information of the muons are
added to the BDT training. In green the muon isolation variables are replaced by the BDTiso
isolation variables.

• Minimum distance between the track and the PV (pvdist),

• Minimum distance between the track and the B0→ K∗0µ+µ− vertex (svdist),

• DOCA between the hadron and the track (DOCA),

• Track IP significance,

• Angle between the hadron and the track (β),

• The quantity

fc =
|
−→
P h +

−→
P trk|αh+trk,PV

|
−→
P h +

−→
P trk|αh+trk,PV + PT,h + PT,trk

, (4.15)

where αh+trk,PV is the angle between the hadron and the track candidate, PT,h and
PT,trk are the transverse momentum with respect to the beam line.

The hadron isolation variables are built by counting how many extra tracks satisfy the
following conditions:

• pvdist ∈ [0.5, 40] mm,
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Figure 4.4: A diagram showing the variables used in the hadron isolation variable. Description is
given in Sec. 4.4.3.

• svdist ∈ [−0.15, 30] mm,

• Doca < 0.13 mm,

• Track IP significance > 3,

• β < 0.27,

• fc < 0.6.

This number is stored for each B0→ K∗0µ+µ− candidate and is used as a training variable
for the BDT.

4.4.4 Muon Isolation

Muon isolation variables are also based on isolation used in the B0
s → µ+µ− analysis [10]

but additionally employ a multivariate approach.
For each track in the event, the same quantities as those described in Sec. 4.4.3,

replacing the hadron tracks by the muons ones, are fed into a BDT. The following variables
are also added to the BDT:

• Track IP,

• Track pT,

• Track χ2/ndof.
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For training the MVA we use a simulated signal sample with a phase as well as an inclusive
dimuon background sample corresponding to 12 pb−1 of integrated luminosity. The results
of the training can be seen in Fig. 4.5. The best performance was obtained using a BDT
classifier, which is henceforth referred to as BDTiso.
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Figure 4.5: Comparison of ROC curves from TMVA training for muon isolation. BDT outperforms
other classifiers.

BDTiso is defined for each track in the event (excluding the signal candidate tracks).
Since the BDTiso classifier is trained on a track basis (i.e. each track in an event has a
BDTiso response), the event based isolation is constructed as the number of tracks that
pass a given BDTiso requirement. The BDTiso value is scanned in order to find the most
discriminating requirement.

4.4.5 k-Folding of the data sample

For the training of the classifiers a k -Folding technique was used. This technique has been
introduced to LHCb by the author of this dissertation and first used in this analysis. The
technique employs the full set of the 2011 and 2012 data in an unbiased way and has
been first adapted to be used in Particle Physics by the author of this dissertation. To
cancel any influence of varying running conditions (e.g. different TCK, magnet polarities)
the ordering of the data set was randomised and divided in k = 10 samples of equal size
(both for the full background sample, B =

⋃
iB

i, and for the full sWeighted B0→ J/ψK∗0

sample used as signal proxy, S =
⋃
i S

i).
Ten classifiers are trained5, each using nine signal and nine background samples. More

formally, the ith classifier uses
⋃
j,j 6=iB

j and
⋃
j,j 6=i S

j training samples. The obtained ith

classifier is then applied to the ith signal (Si) and data (Bi) samples that were omitted
from its training, which is illustrated in Fig. 4.6.

Such a training has several advantages compared to standard 50:50 splitting:

5Hence: 10-Folding
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Figure 4.6: A schematic diagram of the 10-Folding technique. The arrows indicate the direction
of the data “flow”. The data is split randomly into 10 sub-datasets (A–J). The MVA for sample
J (MVAJ) is trained and tested on samples A–K, then this response is evaluated on sample J
only. This way, 90% of the dataset is used for every BDT training in an unbiased way.

• The ith and jth classifiers have 8
9 common events, which makes the classifiers response

more similar reducing the systematic error.

• The training samples are increased in size as the 10-Folding technique allows the use
of 90% of the data for training, compared to 50% in the standard case, which also
leads to better optimisation of the classifier.

After training each fold has its own BDT response. All BDTs have similar responses,
as expected/desired, and they are treated on data as a single classifier.

For simulation samples, which were not used for training, the following quantity is
used as a BDT estimator:

BDTMC =
∑10

i=1 BDTFold i

10
, (4.16)

where BDTMC is the response to a simulated event, and BDTFold i is the response to a
simulated event using the ith fold’s classifier.
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4.4.6 Optimization of the BDT selection

The BDT is optimised using samples orthogonal to those used in the subsequent analysis
of the data in order to minimise potential statistical biases present in the analysis sample.
For each BDT requirement, the signal yield in a window mKπµµ ∈ [5230, 5330] MeV/c2 is
estimated by fitting B0→ J/ψK∗0 events and scaling the yield obtained by the ratio of the
total selection efficiency (apart from the BDT requirement) obtained from the simulation,
and the ratio of branching fractions obtained from the PDG, between B0→ K∗0µ+µ− and
B0→ J/ψK∗0:

nSigBDT
µµ = nSigBDT

J/ψ ×
εMC
µµ × B(B0→ K∗0µ+µ−)

εMC
J/ψ × B(B0→ J/ψK∗0)× B(J/ψ → µ+µ−)

.

The background yield is estimated by fitting part of the lower and upper mass sideband
regions of B0 → K∗0µ+µ− events and extrapolating the yield into the signal region
(nBkgBDT

µµ ). The upper mass sideband is defined as mKπµµ ∈ [5500, 7000] MeV/c2 and the
lower mass sideband is mKπµµ ∈ [5000, 5180] MeV/c2. Although the upper mass sideband
does have a slight overlap with the final analysis sample, it helps stabilize the fit in the
two regions. A double exponential is used for the fit to the background sidebands, and two
Gaussian distributions with a common mean and common left side power law tail (double
Crystal Ball) for the fits to B0→ J/ψK∗0.

The figure of merit is defined as nSigBDT
µµ /

√
nSigBDT

µµ + nBkgBDT
µµ was employed. The

tightest requirement out of this cluster at 0.20 is chosen in order to keep background
levels and therefore potential systematic effects under control. In addition, a tighter
value is also preferable for the q2 region [1, 6] GeV/c2, which has a lower signal over the
background ratio. The optimal working point for the BDT at 0.20 gives a signal efficiency
of 85% evaluated on B0→ J/ψK∗0 candidates and a background rejection of 97% in the
B0→ K∗0µ+µ− upper mass sideband. Both efficiencies for the BDT classifier are given for
data for which the full remaining selection was applied.

4.5 Acceptance parametrisation

To correct for the distortion caused by the reconstruction and selection of the signal decay,
Monte Carlo simulated signal events are used. The acceptance can be parametrised using
Legendre polynomials in four dimensions, q2, cos θl, cos θl and φ according to

ε(cos θ`, cos θK , φ, q2) =
∑

k,l,m,n

ck,l,m,nP (cos θ`, k)P (cos θK , l)P (φ,m)P (q2, n). (4.17)

Here P (x,m) are Legendre polynomials in x of order m and −1 ¬ x ¬ 16. The coefficicients
ck,l,m,n are determined from a moment analysis of the B0 → K∗0µ+µ− flat phase space
MC

6The variables φ and q2 are rescaled to match this boundaries.
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ck,l,m,n =
1
N ′

N∑
i=1

wi

[(
2k + 1

2

)(
2l + 1

2

)(2m+ 1
2

)(2n+ 1
2

)
× P (cos θ`, k)P (cos θK , l)P (φ,m)P (q2, n)

]
.

(4.18)

where N is the number of candidates in the MC sample, wi is a per-candidate weight used
to correct for the non-flat distribution of events in q2 and the data-driven corrections for
pT(B0), χ2

Vtx and track multiplicity. The normalisation is given by

N ′ =
N∑
i=1

wi. (4.19)

The factors of (2k + 1)/2 etc. arise from the orthonormality of the Legendre Polynomials:∫ +1

−1
P (x,m)P (x,m′)dx =

2
2m+ 1

δmm′ . (4.20)

The acceptance is modeled using Legendre polynomials of the lowest order that give a
good description of the angular acceptance effect. For q2, Legendre polynomials of order
five are used. For the decay angles polynomials of order four are used for cos θl, order five
for cos θK and order six for the angle φ.

This results in a total of 600 coefficients that are determined using a sample of
1.406 M reconstructed and selected Monte Carlo simulated signal events. The resulting
one-dimensional projections of the efficiency on q2 and the three decay angles are given
in Fig. 4.7. A good agreement is seen for the one-dimensional projections.

4.5.1 Agreement between data and simulation

A good agreement between data and simulated events is important for all analyses of the
decay B0→ K∗0µ+µ− to allow the determination of acceptance effects from simulated
events. Data driven corrections are employed in two steps to improve the agreement of
simulation with data. The PID variables are “re-sampled”, and the remaining differences
are corrected by explicitly weighting distributions. These corrections are applied to all
simulated samples.

4.5.2 Re-sampling the particle identification variables

The selection includes requirements on the DLLKπ, as well as the DLLµπ and DLLpπ
variables. In order to achieve a good agreement between data and MC, these distributions
are “re-sampled”.

All simulation samples are re-sampled. This procedure involves looping over all PID
variables in all simulated events. For a given simulated track in the event the η, nTracks,
and pT of the track are matched to a specific calibration histogram. This histogram is then
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Figure 4.7: One-dimensional projections of the four-dimensional efficiency parametrisation on
q2, cos θl, cos θK , and φ. The solid line for the angular distribution corresponds to the qsq ∈
[0.1, 0.98] GeV2/c4, while the dashed red one to the q2 ∈ [18.0, 19.0] GeV2/c4
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used as a PDF to draw a new PID value. This sampled value is stored as a replacement
for the original PID variable constructed from simulation.

This procedure has the effect of improving the agreement of the PID distributions
between simulation and data. However, it only preserves the correlations of the sampled
variables (i.e. η, nTracks, and pT) and breaks any others. This may have an irreducible effect
on the data-simulation agreement of the BDT response. Fig. 4.8 shows the improvement
before (red) and after (blue) this re-sampling procedure. The comparison is made to selected
B0→ J/ψK∗0 data candidates that are weighted using the sPlot procedure described
in Sec. 4.4.1.

4.5.3 Weighting kinematic distributions of the parent B candi-
date

An event weighting for all MC samples is derived from the distributions of three kinematic
variables that show differences between data and simulation. The event weights are
calculated from comparisons of selected B0→ J/ψK∗0, with offline selected MC2012. The
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Figure 4.8: Validation plots for the re-sampling procedure. Original simulated PID (red) is
re-sampled (blue) and compared to weighted data (black points) for B0 → J/ψK∗0 events.
Distributions shown in linear scale (left) and logarithmic scale (right). The fraction of missing
events amounts to O(10×−4) of the B0→ J/ψK∗0 data events.

offline selected B0 → J/ψK∗0 data candidates are sWeighted Agreement as described
in Sec. 4.4.1.

The distributions from which the weights are derived are: the detector track occupancy
(nTracks); the parent B candidate’s pT and the quality of the Kπµµ vertex (χ2/ndf).
These distributions are chosen carefully so that the effect of the selection which might bias
the distributions is minimal. The weights are derived sequentially because of potential
small correlations between variables, with the (N − 1) weight being applied before deriving
the N th weight. That is, an event weight is derived for nTracks and is then applied before
deriving the weight for pT, the product of the event weights for nTracks and pT is applied
before deriving the weight for χ2/ndf.

4.6 Methods of extracting angular observables

4.6.1 The angular basis

The decay angles are defined differently by experimentalists and theorists. Details on the
differences between the convention chosen by the majority of theory publications [12, 77]
and the experimental convention are given in Ref. [78].

The angular basis used in this paper is illustrated in Fig. 4.9. The angle θ` is defined as
the angle between the direction of the µ+ (µ−) in the dimuon rest frame and the direction
of the dimuon in the B0 (B0) rest frame. The angle θK is defined as the angle between the
direction of the kaon in the K∗0 (K∗0) rest frame and the direction of the K∗0 (K∗0) in
the B0 (B0) rest frame. The angle φ is the angle between the plane containing µ+ and µ−

and the plane containing the kaon and the pion from K∗0. Explicitly, cos θ` and cos θK are
defined as

cos θ` =
(
p̂

(µ+µ−)
µ+

)
·
(
p̂

(B0)
µ+µ−

)
=
(
p̂

(µ+µ−)
µ+

)
·
(
−p̂(µ+µ−)

B0

)
, (4.21)
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µ−

µ+

K+

π−
B0

K∗0
φ

K+ π−

n̂Kπ

�p̂Kπ

µ−

µ+

n̂µ+µ−

(b) φ definition for the B0 decay

π+

K−
K∗0

µ−

µ+

B0

φ

K− π+

n̂Kπ

� p̂Kπ

µ−

µ+

n̂µ−µ+

(c) φ definition for the B0 decay

Figure 4.9: Graphical representation of the angular basis used for the B0 → K∗0µ+µ− and
B0→ K∗0µ+µ− decays in this paper. The notation n̂ab is used to represent the normal to the
plane containing the particles a and b in the B0 (or B0) rest frame. An explicit description of
the angular basis is given in the text.
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cos θK =
(
p̂

(K∗0)
K+

)
·
(
p̂

(B0)
K∗0

)
=
(
p̂

(K∗0)
K+

)
·
(
−p̂(K∗0)

B0

)
(4.22)

for the B0 and

cos θ` =
(
p̂

(µ+µ−)
µ−

)
·
(
p̂

(B0)
µ+µ−

)
=
(
p̂

(µ+µ−)
µ−

)
·
(
−p̂(µ+µ−)

B0

)
, (4.23)

cos θK =
(
p̂

(K∗0)
K−

)
·
(
p̂

(B0)
K∗0

)
=
(
p̂

(K∗0)
K−

)
·
(
−p̂(K∗0)

B0

)
(4.24)

for the B0 decay. The definition of the angle φ is given by

cosφ =
(
p̂

(B0)
µ+ × p̂

(B0)
µ−

)
·
(
p̂

(B0)
K+ × p̂

(B0)
π−

)
, (4.25)

sinφ =
[(
p̂

(B0)
µ+ × p̂

(B0)
µ−

)
×
(
p̂

(B0)
K+ × p̂

(B0)
π−

)]
· p̂(B0)

K∗0 (4.26)

for the B0 and

cosφ =
(
p̂

(B0)
µ− × p̂

(B0)
µ+

)
·
(
p̂

(B0)
K− × p̂

(B0)
π+

)
, (4.27)

sinφ = −
[(
p̂

(B0)
µ− × p̂

(B0)
µ+

)
×
(
p̂

(B0)
K− × p̂

(B0)
π+

)]
· p̂(B0)

K∗0
(4.28)

for the B0 decay. p̂(Y )
X are unit vectors describing the direction of the particle X in the rest

frame of the system Y . In every case the particle momenta are first boosted to the B0 (or
B0) rest frame. In this basis, the angular definition for the B0 decay is a CP transformation
of that for the B0 decay.

4.6.2 The differential decay rate

The four-differential decay rate for the Kπ system in the P -wave configuration and ignoring
scalar7 contributions, is given by

7This refers to the scalar configuration of the dimuon system, not to be confused with the S-wave
contribution to the Kπ system, as will be discussed later.
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d4Γ[B0→ K∗0µ+µ−]
d cos θ` d cos θK dφ dq2

=
9

32π

∑
i

Ji(q2)fi(cos θ`, cos θK , φ) (4.29)

=
9

32π

[
Js1 sin2 θK + J c1 cos2 θK +

Js2 sin2 θK cos 2θ` + J c2 cos2 θK cos 2θ` +

J3 sin2 θK sin2 θ` cos 2φ+ J4 sin 2θK sin 2θ` cosφ +

J5 sin 2θK sin θ` cosφ+ Js6 sin2 θK cos θ` +

J7 sin 2θK sin θ` sinφ+ J8 sin 2θK sin 2θ` sinφ +

J9 sin2 θK sin2 θ` sin 2φ
]
.

Here, the q2 dependent angular observables Ji(q2) were given by Eq. 4.37.
In the limit that the decay is dominated by a vector current, the relation: AL‖,⊥,0 = AR‖,⊥,0

holds and implies J5,6,7 = 0. The angular expression simplifies to the familiar expression
for B0→ J/ψK∗0:

d3Γ[B0→ J/ψK∗0]
d cos θ` d cos θK dφ

=
9

32π

[
2|A0|2 cos2 θK sin2 θ` +

1
2

(
|A‖|2 + A⊥|2

)
sin2 θK(1 + cos2 θ`) +

1
2

(
|A⊥|2 − |A‖|2

)
sin2 θK sin2 θ` cos 2φ +

√
2Re(A0A

∗
‖) sin 2θK sin 2θ` cosφ +

1√
2

Im(A0A
∗
⊥) sin 2θK sin 2θ` sinφ +

Im(A‖A∗⊥) sin2 θK sin2 θ` sin 2φ
]
.

(4.30)

In the limit of q2 � 4m(µ)2 the factor β2
µ → 1 and

dΓ
dq2

= |AL⊥|2 + |AL‖ |2 + |AL0 |2 + (L→ R).

In this limit, J c2 = −J c1 and Js2 = Js1/3. While the differential decay rate in Eq. 4.29 is
defined for the decay of the B0 meson, the decay of the B0 is given in complete analogy by

d4Γ[B0→ K∗0µ+µ−]
d cos θ` d cos θK dφ dq2

=
9

32π

∑
i

J̄i(q2)fi(cos θ`, cos θK , φ). (4.31)
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The identical form of this equation compared to Eq. 4.29 is a consequence of our angular
definition described in Sec. 4.6.1. Following Ref. [12], it is customary to define the CP-
averaged observables Si and CP-violating observables Ai according to

Si =
Ji + J̄i(

dΓ + dΓ̄
)
/dq2

, (4.32)

Ai =
Ji − J̄i(

dΓ + dΓ̄
)
/dq2

. (4.33)

The normalisation condition implies 3
4 (2Ss1 + Sc1) − 1

4 (2Ss2 + Sc2) = 1. In the limit of
massless leptons, the CP-averaged observables are related by Sc2 = −Sc1 and Ss2 = Ss1/3, as
discussed above.

Often, the forward-backward asymmetry AFB, and the longitudinal (transverse) polari-
sation fraction FL (FT ) are referred to in the literature. These quantities are related to
the CP-averaged observables Si according to

AFB =
3
4
Ss6,

FL = Sc1 = −Sc2,
FT = 4Ss2.

4.6.3 Interference with other K+π− states

Eq. 4.29 is valid if the K+π− system is in the P -wave configuration, as is the case for
the K∗0(892) vector meson. If the K+π− system is in the S-wave configuration or in the
configuration with higher angular momentum up to Jmax, the replacements

A(J = 1)L,R0 · Y 0
1 (θK , 0)→

Jmax∑
i=0

AL,R0 (i) · Y 0
i (θK , 0) and (4.34)

A(J = 1)L,R‖,⊥ · Y
0

1 (θK , 0)→
Jmax∑
i=1

AL,R0 (i) · Y −1
i (θK , 0) (4.35)

need to be made, where Y m
l (θK) are spherical harmonics functions. The relevant spherical

harmonics for S, P and D-wave are
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Y 0
0 (θK) =

1
2
√
π
,

Y 0
1 (θK) =

1
2

√
3
π

cos θK ,

Y 0
2 (θK) =

1
4

√
5
π

(3 cos2 θK − 1),

Y −1
1 (θK) =

1
2

√
3

2π
sin θK ,

Y −1
2 (θK) =

1
2

√
15
2π

sin θK cos θK .

4.6.4 S-wave interference

For the decay B0→ J/ψK∗0 the S-wave fraction was determined to be (6.4±0.3±1.0)% in
a mass window of ±70 MeV around the known K∗0 mass using 1 fb−1 of LHCb data [79]. In
this analysis, the S-wave parameters are determined in the full angular analysis. Therefore,
Eq. 4.29 needs to be modified according to

d4Γ
d cos θ` d cos θK dφ dq2

→ d4Γ
d cos θ` d cos θK dφ dq2

+
9

32π

[
J ′
c
1 + J ′′

c
1 cos θK +

J ′
c
2 cos 2θ` + J ′′

c
2 cos θK cos 2θ` +

J ′4 sin 2θ` sin θK cosφ +

J ′5 sin θ` sin θK cosφ +

J ′7 sin θ` sin θK sinφ +

J ′8 sin 2θ` sin θK sinφ
]
.

(4.36)

with
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J ′
c
1 =

1
3
|ALJ=0|2 +

1
3
|ARJ=0|2,

J ′′
c
1 =

2√
3

[
Re(ALJ=0A

L∗
0 ) + (L→ R)

]
,

J ′
c
2 = −

[
1
3
|ALJ=0|2 +

1
3
|ARJ=0|2

]
,

J ′′
c
2 = − 2√

3

[
Re(ALJ=0A

L∗
0 ) + (L→ R)

]
,

J ′4 =

√
2
3

[
Re(ALJ=0A

L∗
‖ ) + (L→ R)

]
,

J ′5 = 2

√
2
3

[
Re(ALJ=0A

L∗
⊥ )− (L→ R)

]
,

J ′7 = 2

√
2
3

[
Im(ALJ=0A

L∗
‖ )− (L→ R)

]
,

J ′8 =

√
2
3

[
Im(ALJ=0A

L∗
⊥ ) + (L→ R)

]
,

(4.37)

and

dΓ
dq2

=
dΓP
dq2

+
dΓS
dq2

= |ALJ=0|2 + |ALJ=1,0|2 + |ALJ=1,‖|2 + |ALJ=1,⊥|2 + (L→ R).
(4.38)

The fraction of longitudinal polarisation is given by

FS = |ALJ=0|2 ·
1

dΓ/dq2
. (4.39)

4.6.5 Optimized observables

The angular observables can be reparametrised so that leading form factor uncertainties
cancel to first order. The authors of Ref. [17] propose the basis consisting of FL (or AFB)
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and the observables P (′)
i that can be calculated from the observables Si according to

P1 = 2
S3

1− FL
,

P2 =
1
2

Ss6
1− FL

=
2
3
AFB

1− FL
,

P3 = − S9

1− FL
,

P ′4 =
S4√

FL(1− FL)
,

P ′5 =
S5√

FL(1− FL)
,

P ′6 =
S7√

FL(1− FL)
,

P ′8 =
S8√

FL(1− FL)
.

The PDF used to fit the angular observables can be reparametrised to use the basis
(FL, P1,2,3, P

′
4,5,6,8). The shapes of the allowed parameter regions are simplified compared

to the basis (FL, AFB, S3,4,5,7,8,9). However, the reparametrisation introduces additional
correlations between the observables since the PDF is no longer linear in the parameters.
In this analysis, the CP-averaged observables Si and the CP-asymmetries Ai will be
considered the nominal observables. However, we aim to provide also less form factor
dependent observables, which can be either fit directly or constructed from the observables
Si and Ai.

We would like to note that theorists use a different convention of the Pi definitions.
For completeness, we give the definition for Pi which are different:

P ′4,theory = 2
S4√

FL(1− FL)
,

P ′6,theory = − S7√
FL(1− FL)

.

4.7 Fitting for angular observables

This method of angular analysis of the decay B0→ K∗0µ+µ− determines the angular
observables Si (or Ai) in bins of q2 using an unbinned maximum likelihood fit of the
reconstructed B0 mass and the decay angles ~Ω = (cos θl, cos θK , φ).

The analysis needs to describe the signal and background components using PDFs
depending on the the angular observables and nuisance parameters. The total PDF is
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given by

Ptot = fsigPsig(~Ω,m) + (1− fsig)Pbkg(~Ω,m). (4.40)

Both signal and background components are assumed to factorise in the decay angles ~Ω
and the reconstructed B0 mass m

Psig(~Ω,m) = Psig(~Ω)× Psig(m), (4.41)

Pbkg(~Ω,m) = Pbkg(~Ω)× Pbkg(m). (4.42)

To determine the angular observables, the negative logarithmic likelihood

− logL = −
∑

events e
logPtot(~Ωe,me|~λphys, ~λnuisance) (4.43)

is minimised with respect to the physics parameters ~λphys and the nuisance parameters
~λnuisance. The minimisation is performed using the Minuit software package [80]. The
uncertainties on the parameters can be either determined using the second derivative matrix
(Hesse) or the −2∆ logL = 1 rule (Minos), which allows asymmetric uncertainties.

4.7.1 Angular distributions

The angular description of the signal component of the PDF is given by the differential
decay rate given by Eq. 4.29. The data are binned in q2, thereby effectively averaging the
observables over the width of the q2 bins. The resulting three-differential decay rate is
given by

1
d(Γ + Γ̄)/dq2

d(Γ + Γ̄)
dcosθl dcosθK dφ

∣∣∣∣∣
P

= 9
32π

[
3
4(1− FL) sin2 θK (4.44)

+ FL cos2 θK + 1
4(1− FL) sin2 θK cos 2θl

− FL cos2 θK cos 2θl + S3 sin2 θK sin2 θl cos 2φ
+ S4 sin 2θK sin 2θl cosφ+ S5 sin 2θK sin θl cosφ
+ 4

3AFB sin2 θK cos θl + S7 sin 2θK sin θl sinφ

+ S8 sin 2θK sin 2θl sinφ+ S9 sin2 θK sin2 θl sin 2φ
]
.

As discussed in Sec. 4.6.4, the inclusion of the S-wave contribution, where the K+π−

system is in a spin 0 configuration, leads to additional angular terms. The PDF needs to
be changed to include both the S-wave and the interference between the S- and P-wave
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resulting in

1
d(Γ + Γ̄)/dq2

d(Γ + Γ̄)
dcosθl dcosθK dφ

∣∣∣∣∣
S+P

= (1− FS)
1

d(Γ + Γ̄)/dq2

d(Γ + Γ̄)
dcosθl dcosθK dφ

∣∣∣∣∣
P

(4.45)

+ 3
16π

[
FS sin2 θl + SS1 sin2 θl cos θK

+ SS2 sin 2θl sin θK cosφ
+ SS3 sin θl sin θK cosφ
+ SS4 sin θl sin θK sinφ

+ SS5 sin 2θl sin θK sinφ
]
.

The background component in the maximum likelihood fit is modelled using Chebyshev
polynomials. The angular parametrisation of the background is assumed to factorise in
the cos θK , cos θl, φ angles. For the angular parametrisation of the background using the
Chebyshev polynomials Ti of second order and lower, the PDF is given by

Pbkg(cos θl, cos θK , φ) =
[ 2∑
i=0

ciTi(cos θl)
]
×

 2∑
j=0

cjTj(cos θK)

× [ 2∑
k=0

ckTk(φ)
]
. (4.46)

The factorization assumption has been checked by scanning the right B side-band
regions (m ∈ [5380, 6000] MeV/c2). It has been observed that the shape of the background
does not change in different m regions.

4.7.2 Mass modeling

The reconstructed B0 mass of the signal is modelled using the sum of two Crystal Ball
functions with common tail parameters for the low mass side. The parameters describing
the signal mass shape are determined from a fit to the control-decay B0→ J/ψK∗0 and
the q2 dependency is accounted for by a q2 dependent scale factor determined from Monte
Carlo simulation. The mass distribution of the background is modelled using an exponential
function. For the fits of the B0 → K∗0µ+µ− signal only τm, the inverse of the exponential
decay constant as well as the signal fraction fsig are floated. The other mass parameters
are taken from the control decay and fixed in the fit of the signal decay.

4.7.3 Acceptance effect

The reconstruction and selection of the signal decay distorts the angular distributions and
needs to be accounted for when determining the angular observables. This acceptance
effect, depending on q2 and the decay angles can be parameterised using multidimensional
polynomials

ε(q2, cos θl, cos θK , φ) =
∑
hijk

chijk × (q2)h × (cos θl)i × (cos θK)j × (φ)k. (4.47)
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The determination of the polynomial coefficients and the resulting angular description
was discussed in Sec. 4.5. This efficiency can be included in the fit in two ways, either by
performing a weighted fit in which the events are weighted by 1/ε, or by including the
effect in the signal PDF.

In the first option, the distributions are effectively unfolded, therefore the original
signal PDF without acceptance can be used. It should be noted that the background
component will be weighted in the same way. The per-event weight is included in the
likelihood as follows

L = −
∑

event e
we × logP(~Ωe,me)

= −
∑

event e

1

ε(q2
e ,
~Ωe)
× logP(~Ωe,me).

Special care needs to be taken for the estimation of the parameter uncertainties, since
weighted fits in general are not guaranteed correct coverage. However, approximate methods
exist. The corrected covariance matrix V ′ for the weighted fit can be calculated according
to

V ′ = V C−1V,

where V is the covariance matrix calculated with the weights we and C the covariance
matrix calculated using the squared weights w2

e [81]. The unfolding using acceptance
weights is the preferred approach to the large q2 bins 1.1 GeV2/c4 < q2 < 6 GeV2/c4

and 15.0 GeV2/c4 < q2 < 19.0 GeV2/c4, since the method can account for a possible
variation of the acceptance with q2. Furthermore, the expected signal yield in these bins is
sufficiently large to reduce a possible fluctuations from the weighting procedure.

The second option requires to include the efficiency in the signal PDF. The main
difficulty with this approach is the correct determination of the norm of the signal
component which will be affected by the acceptance8. The norm Nsig is given by

Nsig =
∫
ε(q2, ~Ω)Psig(~Ω)d~Ω

=
∫
ε(q2, ~Ω)

9
32π

∑
i

Sifi(~Ω)d~Ω

=
9

32π

∑
i

Siξi(q2), (4.48)

with ξi =
∫
ε(q2, ~Ω)fi(~Ω)d~Ω, and where the angular terms fi(~Ω) are defined by Eqs. 4.44

and 4.45. This is the preferred approach to the 2 GeV2/c4 q2 bins, where the acceptance
does not vary significantly over the (narrow) q2 bin.

8Note that the factor ε(q2, ~Ω) in the numerator can be omitted when determining − logL.
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4.7.4 Physical boundaries of the observables

Eqs. 4.44 and 4.45 imply certain boundaries for the angular observables since the PDF is
not allowed to become negative for any combination of angles. If the values of the angular
observables lie close to these constraints, the likelihood function becomes non-Gaussian.
Technically, a large penalty term is added in the fit for every event for which Ptot(~Ωe,me)
becomes negative. It is instructive to explore the particular shape of the allowed parameter
regions by performing parameter scans and using toys to find wether the PDF can become
negative for a certain parameter set. The red points are the SM values for the seven bins
of the 2 GeV2/c4 q2 binning. Particularly striking are the constraints on the combinations
of FL with the other observables, which can be expressed by the following relations

|S3| ¬
1
2

(1− FL), (4.49)

|AFB| ¬
3
4

(1− FL), (4.50)

|S9| ¬
1
2

(1− FL). (4.51)

Owing to the large dependence of the allowed parameter range on FL, the allowed regions
for the parameter combinations not containing FL are integrated over all possible FL
values (we iterate over the full available FL range from zero to one in 40 steps). The other
parameters not shown are either assumed to be zero or equal to one of the seven SM
points of the 2 GeV2/c4 q2 binning. If the studied point is allowed for one of those eight
possibilities it is marked as allowed. The parameter boundaries can affect the coverage
negatively. To ensure correct coverage we therefore rely on the Feldman-Cousins method
described in Sec. 4.7.7.

4.7.5 CP-asymmetries Ai and the P
(′)
i basis

There is significant theoretical interest in the CP-asymmetries Ai defined in Eq. 4.33,
particularly the T-odd asymmetries A7,8,9, where significant effects of new weak phases
could be seen. To determine the angular observables, Eq. 4.44 needs to be modified,
replacing S(s)

3,...,9 by A3,...,9 for the B0 decay and −A3,...,9 for the B0 decay flavour.
The PDF can also be expressed in the P (′)

i basis detailed in Sec. 4.6.5. The varied signal
parameters in this case are FL, P1,2,3 and P ′4,5,6,8. Since P (′)

i are nonlinear combinations of
the angular coefficients Si, the uncertainties are expected to be generally more asymmetric.

4.7.6 Fit validation using EOS toys

The fit is validated using simulated events generated according to an updated theory
calculation based on the EOS package [82]. Pull studies are conducted to ensure that the
fit is unbiased and estimates the uncertainties correctly. The pull of the observable p is
defined as (pfitted − pgenerated)/σ(p)fitted. In the ideal case the pull is distributed according
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to a Gaussian distribution with a mean compatible with 0 and a width compatible with 1.
For low statistics and non-Gaussian PDFs this is not necessarily the case and it can lead
to incorrect coverage. For the toy studies, the P-wave observables Si, the signal fraction
fsig, the parameter τm describing the exponential shape of the combinatorial background,
and six coefficients describing the angular distribution of the combinatorial background as
detailed in Sec. 4.7.1 are floated. The EOS toys do not contain an S-wave component.

Generally the toys behave well; however, there are some observables where sizeable
biases larger than 0.1 are seen. A particularly large deviation from the EOS value is observed
for the first bin for Ss1. This deviation is understood since the fit assumes that the lepton
masses can be neglected, which is not the case close to q2 = 0 GeV2/c4. All other deviations
seen are smaller than 0.20. To ensure correct coverage for the 2 GeV2/c4 binning, the
Feldman-Cousins method will be used for the determination of the confidence intervals.

The corresponding CP-asymmetries Ai have been determined from the EOS toy MC as
well. No CP-asymmetries show significant biases. As discussed in Sec. 4.7.5, this is due to
the SM values being further away from physical parameter boundaries.

4.7.7 Coverage correction

To guarantee correct coverage even for non-Gaussian PDFs, the Feldman-Cousins
method [83] is employed. This method is a specific Neyman construction using likeli-
hood ratios as an ordering principle. The nuisance parameters are included using the
plugin method [84].

Technically, the parameter of interest is scanned at a number of equidistant points. For
every point the likelihood ratio on data, ∆ logLdata = logLdata

fixed− logLdata
floated, is determined,

where the parameter of interest is fixed at the point for logLdata
fixed, but allowed to float

for logLdata
floated. Then Ntoys toys are thrown for the point, determining Ntoys toy likelihood

ratios ∆ logLtoy i = logLtoy
fixed i− logLtoy

floated i. The confidence level of the point under study
is then given by the fraction of toys for which ∆ logLtoy i > ∆ logLdata.

Fig. 4.10 shows the results for a single toy generated with EOS with signal and back-
ground yields corresponding to the 3 fb−1 data sample. The observable S5 is determined in
seven bins of q2. For every bin, 500 toys are generated for 100 equidistant points of the
observable of interest. The resulting coverage-corrected 68.3% confidence interval is given
in red. The blue line denotes the coverage from the likelihood method, the 68.3% confidence
interval from the likelihood is given by the blue vertical line. As is apparent for bins three
and seven, for certain parameter configurations the likelihood method undercovers.

4.7.8 Fit validation on data using B0→ J/ψK∗0

The angular distributions of the tree-level decay B0→ J/ψK∗0 were studied previously by
the BaBar [85], Belle [86] and CDF [87] experiments. Most recently, LHCb has analysed
the decay using 1 fb−1 of the data recorded in 2011 [79]. The decay B0 → J/ψK∗0 is
selected using the full selection for the B0→ K∗0µ+µ− signal decay and requiring that
the invariant mass of the dimuon system is ±60 MeV/c2 around the known J/ψ mass. The
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Figure 4.10: Feldman-Cousins results for the observable S5 using an EOS toy in seven bins of
q2. The Feldman-cousins confidence level is given by the black histogram. The red vertical lines
denote the 68.3% confidence interval from the Feldman-Cousins method. As comparison the blue
line gives the confidence level using the likelihood method. The blue vertical lines give the 68.3%
from the likelihood method.

parameter nCB is fixed to 4.23, determined from a fit in the q2 region [8.0, 11.0] GeV2/c4

where the fit is more stable. In contrast to the fit of the signal decay B0→ K∗0µ+µ−, the
contribution from the B0

s decay B0
s→ J/ψK∗0, which is suppressed by fs/fd|Vcd/Vcs|2, is

modelled in the fit as well. Its angular and mass distribution are assumed to be identical
to B0→ J/ψK∗0, with the mass distribution of the B0

s shifted by ∆m.
The parametrisation described in Sec. 4.5 is used as angular acceptance, included in the

fit as discussed in Sec. 4.7.3. Table 4.5 gives the result of a full angular fit in different bins
of mKπ. For comparison, Table 4.6 gives the angular terms that were previously measured
by LHCb [79]. Since Ref. [79] gives the magnitudes of the amplitudes |A0,‖,⊥,S| and the
strong phases δ‖,⊥,S as results, they are converted to the angular observables according to
Eqs. 4.37. The observables are found to be consistent with the previous measurement of
B0→ J/ψK∗0.

4.7.9 Constraining the S-wave using the mKπ distribution

According to Eq. 4.45, all P -wave parameters are scaled by the factor (1−FS) which is not
known a priori. Neglecting the S-wave in the fit and correcting the P -wave parameters using
FS from the dedicated S-wave analysis, since it partially uses the same data distributions
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Table 4.5: Results of the angular fit of the decay B0→ J/ψK∗0 in different bins of mKπ, using
the full available data set corresponding to 3 fb−1. The angular terms that have been previously
determined in Ref. [79] are given in Tab. 4.6.

mKπ range in MeV/c2

parameter [795.9, 995.9] [825.9, 965.9] [826.0, 861.0] [861.0, 896.0] [896.0, 931.0] [931.0, 966.0]
S1s 0.331± 0.001 0.329± 0.001 0.326± 0.004 0.324± 0.002 0.333± 0.002 0.334± 0.003
S3 −0.000± 0.002 0.000± 0.002 −0.009± 0.006 0.000± 0.003 0.000± 0.003 0.004± 0.006
S4 −0.255± 0.002 −0.255± 0.002 −0.258± 0.007 −0.258± 0.003 −0.254± 0.003 −0.251± 0.006
S5 −0.001± 0.002 −0.002± 0.002 −0.002± 0.007 0.000± 0.003 −0.007± 0.003 0.002± 0.006
Ss6 0.000± 0.002 0.000± 0.002 −0.005± 0.006 −0.000± 0.003 0.001± 0.003 0.004± 0.005
S7 0.001± 0.002 0.001± 0.002 −0.000± 0.007 0.001± 0.003 0.002± 0.003 0.002± 0.006
S8 −0.053± 0.002 −0.052± 0.002 −0.064± 0.007 −0.055± 0.003 −0.051± 0.003 −0.045± 0.006
S9 −0.089± 0.002 −0.089± 0.002 −0.088± 0.007 −0.084± 0.003 −0.094± 0.003 −0.090± 0.006
FS 0.087± 0.003 0.072± 0.003 0.12± 0.01 0.051± 0.005 0.061± 0.005 0.119± 0.009
SS1 −0.234± 0.003 −0.233± 0.004 −0.75± 0.01 −0.363± 0.006 −0.091± 0.006 0.15± 0.01
SS2 0.023± 0.002 0.027± 0.002 0.159± 0.007 0.065± 0.004 −0.006± 0.004 −0.091± 0.007
SS3 0.003± 0.002 0.003± 0.002 −0.004± 0.007 0.003± 0.003 0.004± 0.004 0.009± 0.006
SS4 0.001± 0.002 0.001± 0.002 0.015± 0.007 −0.003± 0.003 0.000± 0.004 0.007± 0.006
SS5 −0.068± 0.002 −0.064± 0.002 0.037± 0.008 −0.031± 0.004 −0.091± 0.004 −0.166± 0.007

Table 4.6: Results of the full angular fit of the decay B0→ J/ψK∗0 in Ref. [79], translated to the
angular observables.

mKπ range in MeV/c2

parameter [825.9, 965.9] [826.0, 861.0] [861.0, 896.0] [896.0, 931.0] [931.0, 966.0]
Ss1 0.321± 0.006 0.321± 0.006 0.321± 0.006 0.321± 0.006 0.321± 0.006
S3 −0.013± 0.010 −0.013± 0.010 −0.013± 0.010 −0.013± 0.010 −0.013± 0.010
S4 −0.250± 0.006 −0.250± 0.006 −0.250± 0.005 −0.250± 0.006 −0.250± 0.006
S5 0 0 0 0 0
Ss6 0 0 0 0 0
S7 0 0 0 0 0
S8 −0.048± 0.007 −0.048± 0.007 −0.048± 0.007 −0.048± 0.007 −0.048± 0.007
S9 −0.084± 0.006 −0.084± 0.006 −0.084± 0.006 −0.084± 0.006 −0.084± 0.006
FS 0.064± 0.010 0.115± 0.021 0.049± 0.008 0.052± 0.011 0.105± 0.016
SS1 - −0.887± 0.082 −0.514± 0.030 −0.216± 0.044 0.035± 0.096
SS2 - 0.192± 0.018 0.100± 0.007 0.022± 0.012 −0.045± 0.021
SS3 - 0 0 0 0
SS4 - 0 0 0 0
SS5 - 0.028± 0.023 −0.034± 0.012 −0.105± 0.015 −0.176± 0.013

(mKπµµ and cos θK). A possibility to circumvent these difficulties is to include the mKπ

projection in a simultaneous fit. Since the P -wave is peaking in mKπ while the S-wave
contribution is relatively flat, this gives an additional constraint on FS and therefore also
allows a better determination of the P -wave observables. Ref. [88] gives details on the
dependence of the decay amplitudes on mKπ. To parameterize the mKπ dependence of the
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P-wave a Breit-Wigner distribution is used

AP (mKπ) =
√
pq ×B′LB(p, p0, d)

(
p

mB

)LB
×B′LK∗ (q, q0, d)

(
q

mKπ

)LK∗
× 1
m2
K∗ −m2

Kπ − imK∗Γ(mKπ)
, (4.52)

where p (q) denotes the K∗0 (K+) momentum in the B0 (K∗0) rest frame, p0 (q0) are
the corresponding quantities at the resonance peak. LB (LK∗) are the orbital angular
momenta and B′LB (B′LK∗ ) the Blatt-Weisskopf functions. For the S-wave component the
LASS parameterisation [89] is used

AS(mKπ) =
√
pq ×B′LB(p, p0, d)

(
p

mB

)LB
×B′LK∗0

(q, q0, d)
(

q

mKπ

)LK∗0
×
( 1

cot δB − i
+ e2iδB 1

cot δR − i

)
, (4.53)

where cot δB = 1
aq

+ 1
2rq and cot δR = (m2

K∗0
−m2

Kπ)/(mK∗0
Γ0(mKπ)). Accounting for the

mKπ dependence, Eq. 4.45, integrated over the three decay angles cos θl, cos θK and φ,
becomes

1
d(Γ + Γ̄)/dq2

d(Γ + Γ̄)
dmKπ

∣∣∣∣∣
S+P

= (1− FS)
9∑
i=1

9
32πξiS

(s,c)
i |A′P (mKπ)|2

+ 3
16π

[
FSξFS |A′S(mKπ)|2

+ (SS1ξS1 + SS2ξS2 + SS3ξS3)< (A′S(mKπ)A∗′P (mKπ))

+ (SS4ξS4 + SS5ξS5)= (A′S(mKπ)A∗′P (mKπ))
]
,

(4.54)

where ξ(S)i denote the angular integrals ξ(S)i =
∫
ε(cos θl, cos θK , φ)f(S)i(cos θl, cos θK , φ)d~Ω

and the amplitudes are appropriately normalized according to

A′P (mKπ) =
AP (mKπ)√∫ 995.9 MeV/c2

795.9 MeV/c2 |AP (mKπ)|2dmKπ

,

A′S(mKπ) =
AS(mKπ)√∫ 995.9 MeV/c2

795.9 MeV/c2 |AS(mKπ)|2dmKπ

.

The simultaneous fit of the angles and the mKπ projection are tested using the control
decay B0 → J/ψK∗0. Fig. 4.11 shows the corresponding projections on the decay angles,
mKπµµ and mKπ. The result is in good agreement with the results in Tab. 4.5 where only
the decay angles are used.
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Figure 4.11: Angular, mKπµµ and mKπ projections after the fit of the full B0 → J/ψK∗0 data
sample. The fit is performed as described in Sec. 4.7.9, simultaneously in the decay angles,
mKπµµ, and mKπ, in the mKπ mass range [795.9, 995.9] MeV/c2. The slight mismodeling of the
reconstructed B0 mass is due to the narrow ±60 MeV/c2 requirement around the known J/ψ mass
which removes away the radiative tails. This, however, does not affect the angular observables
significantly.
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4.8 Extracting angular observables using the method
of moments

Thanks to the orthogonality of the spherical harmonics (and consequently the angular
terms), it is possible to extract the angular observables from a moment analysis [13,90,91].
The angular distribution has the form

d4Γ

dq2d~Ω
=

9
32π

∑
i

Si(q2)fi(~Ω) , (4.55)

which can be averaged over q2 bin:

d3Γ

d~Ω
=

9
32π

∑
i

Sifi(~Ω) , (4.56)

and is normalised so that

∫ d3Γ

d~Ω
d~Ω =

∫ +1

−1

∫ +1

−1

∫ +π

−π

d3Γ
d cos θK d cos θl dφ

d cos θK d cos θl dφ = 1, (4.57)

where ~Ω = (cos θK , cos θl, φ) and

f1s(cos θK , cos θl, φ) = sin2 θK

f3(cos θK , cos θl, φ) = sin2 θK sin2 θl cos 2φ
f4(cos θK , cos θl, φ) = sin 2θK sin 2θl cosφ
f5(cos θK , cos θl, φ) = sin 2θK sin θl cosφ
f6s(cos θK , cos θl, φ) = sin2 θK cos θl
f7(cos θK , cos θl, φ) = sin 2θK sin θl sinφ
f8(cos θK , cos θl, φ) = sin 2θK sin 2θl sinφ
f9(cos θK , cos θl, φ) = sin2 θK sin2 θl sin 2φ

(4.58)

Since the angular functions are orthogonal we have:∫
fi(~Ω)fj(~Ω)d~Ω = αδij, (4.59)

for i = 3 . . . 9 and where α is a normalisation constant. The mean (or expectation value)
of the fi can be used to determine the Si, i.e.

Mi =
∫ d4Γ

dq2 d~Ω
fi(~Ω)d~Ω =


8
25Si=3,4,8,9
2
5Si=5,6,7 .

(4.60)
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Note that the fi for f1s, f2s, f1c and f2c are not orthogonal. The corresponding moments
are the linear combinations of S1s, S2s, S1c and S2c, with

M1s =
2
5

(2− FL) , (4.61)

under the assumption that q2 � 4m(µ)2. Re-arranging gives

FL = 2− 5
2
M1s, (4.62)

Si =
5
2
M5,6,7, (4.63)

Si =
25
8
M3,4,8,9. (4.64)

(4.65)

In the absence of background, the parameters Mi can be estimated as

〈Mi〉 =
1
N

∑
event e

fi(~Ωe), (4.66)

where N is the number of events in the data sample. An estimate for the error can be
evaluated as a normal variance

δ〈Mi〉 =

√√√√ 1
N(N − 1)

∑
event e

(
〈Mi〉 − fi(~Ωe)

)2
. (4.67)

4.8.1 Measurement of S6c observable

In the SM, the term S6c is vanishingly small. It is relevant only in the presence of large
scalar operators and is suppressed by mµ/

√
q2. The method of moments can be used to

determine the S6c coefficient. The corresponding angular term is

f6c(cos θK , cos θl, φ) = cos2 θK cos θl , (4.68)

which appears mixed with S6s when evaluating the raw moments:

M6c =
1
20

(3S6c + 2S6s), (4.69)

M6s =
1
10

(S6c + 4S6s). (4.70)

(4.71)

The solution to this linear system is

S6c = 2(4S6c − S6s), (4.72)
S6s = 2S6c + 3S6s. (4.73)

(4.74)

This allows to determine both S6c and S6s.
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4.8.2 Method of moments in the presence of background

In the presence of background, the moments Mi in the signal mass window will be an
admixture of the moments for pure signal (Mi,sig) and pure background (Mi,bkg). The
mixed moment reads:

Mi,mix =
NsigMi,sig +NbkgMi,bkg

Nsig +Nbkg
, (4.75)

where Nsig and NB are the number of signal and background events in the signal mass
window, respectively. The yields Nsig and Nbkg can be estimated from an extended unbinned
maximum likelihood fit to the K+π−µ+µ− invariant mass and Mi,bkg can be estimated
from the upper mass sideband. The upper mass sideband is chosen to be m(K+π−µ+µ−) >
5350 MeV/c2. It would also be possible to determine Mi,sig by sWeighting the events.

4.8.3 Acceptance corrections of the method of moments

When including the angular acceptance, the measured moments (raw moments) are no
longer proportional to the observables Si. To correct for the acceptance, each event is
weighted according to a weight

we =
1

ε(~Ωe, q2
e)
, (4.76)

where ε(~Ωe, q
2
e) is the efficiency function derived in Sec. 4.5. The corresponding formula to

obtain the raw moments is then

M̂i =
1∑
ewe

∑
event e

wefi( ~Ωe) . (4.77)

The angular acceptance does not need to be treated as constant over the q2 bin and the
full q2 dependence can be accounted for. The absolute normalisation of the weights does
not matter, since it appears in the numerator and denominator of Eq. 4.77, i.e. the weights
can be re-scaled for an arbitrary constant.

An estimate for the uncertainty on the moments can be derived from the weighted
variance

Vij =
∑
ewe

(
∑
ewe)((

∑
ewe)2 −∑ew2

e)

∑
e

we
(
M̂i − fi(~Ωe)

) (
M̂j − fj(~Ωe)

)
. (4.78)

4.8.4 Toy studies for the method of moments

Toy studies for the method of moments were performed in the same way as for the fits for
the angular observables. Signal events were generated using EOS predictions for different
q2 bins. Toy studies were performed in three different configurations:

• pure signal without detector acceptance,
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• mixture of signal and background without detector acceptance,

• mixture of signal and background with detector acceptance.

In all cases the method of moments did not shown any sign of bias, apart for the evident
large bias in the value of FL. This bias, at the level of 0.3 standard deviations in the
(0.1 < q2 < 0.98) GeV2/c4 bin, comes from neglecting lepton mass terms in the angular
distribution and not the method itself.

4.8.5 Method of moments applied to B0→ J/ψK∗0

In order to check our method with data, we use the decay B0→ J/ψK∗0 as a control
channel. The measured angular observables are presented in Tab. 4.7. A good agreement is
observed in the P-wave angular observables between these measurements and the angular
parameters determined in Ref. [79].

Table 4.7: Results of the angular fit of the decay B0→ J/ψK∗0 in different bins of m(K+π−),
using the full available data set corresponding to 3 fb−1. The angular terms that have been
previously determined in Ref. [79] are given in Tab. 4.6.

mKπ range in MeV/c2

parameter [795.9, 995.9] [825.9, 965.9] [826.0, 861.0] [861.0, 896.0] [896.0, 931.0] [931.0, 966.0]
FL 0.558± 0.003 0.558± 0.003 0.566± 0.006 0.561± 0.004 0.549± 0.004 0.562± 0.005
S3 0.000± 0.002 0.001± 0.002 −0.006± 0.006 0.000± 0.004 0.001± 0.003 0.004± 0.006
S4 −0.280± 0.003 −0.282± 0.004 −0.278± 0.007 −0.288± 0.005 −0.279± 0.004 −0.275± 0.006
S5 −0.002± 0.003 −0.002± 0.003 −0.004± 0.007 0.000± 0.005 −0.006± 0.003 0.003± 0.006
Ss6 0.001± 0.003 0.002± 0.003 −0.004± 0.008 0.001± 0.003 0.003± 0.004 0.003± 0.005
S7 0.001± 0.003 0.001± 0.003 −0.003± 0.007 0.001± 0.004 0.001± 0.004 0.007± 0.006
S8 −0.053± 0.003 −0.054± 0.003 −0.072± 0.008 −0.058± 0.004 −0.051± 0.004 −0.047± 0.006
S9 −0.089± 0.003 −0.088± 0.004 −0.089± 0.008 −0.086± 0.004 −0.091± 0.004 −0.086± 0.006
FS 0.080± 0.004 0.068± 0.003 0.100± 0.012 0.053± 0.006 0.061± 0.005 0.108± 0.009
SS1 −0.240± 0.004 −0.245± 0.004 −0.700± 0.01 −0.387± 0.007 −0.109± 0.006 0.160± 0.010
SS2 0.003± 0.003 0.007± 0.003 0.140± 0.008 0.045± 0.004 −0.028± 0.004 −0.108± 0.006
SS3 0.004± 0.003 0.004± 0.003 −0.005± 0.007 0.003± 0.003 0.004± 0.003 0.012± 0.006
SS4 0.001± 0.003 0.001± 0.003 0.014± 0.008 −0.003± 0.003 0.000± 0.004 0.005± 0.006
SS5 −0.065± 0.003 −0.061± 0.003 0.040± 0.008 −0.027± 0.004 −0.091± 0.004 −0.157± 0.007

4.8.6 Measuring asymmetries with the method of moments

The method described here is also used to measure the CP -asymmetries (the Ai). These
observables are defined as the asymmetries of the corresponding Ji for B0 and B0, nor-
malised with respect to the total width Γtot as defined in Eq. 4.33. In order to measure
these observables, the B0 candidates (only) are multiplied by a factor (−1) for the angular
terms fi=4...9 when determining the moments.
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4.8.7 Expected difference between the likelihood fit and the
method of moments

The method of moments estimator is strongly, but not completely, correlated to the
maximum likelihood estimator. This correlation between the two estimators was studied
using the EOS SM toy MC. Example scatter plots for S5 and S7 in one q2 bin are given in
Fig. 4.12. Whilst the distributions are strongly correlated, the spread of the data points is
larger than one might naively expect (approximately 50% of the statistical uncertainty).
This effect is mainly statistical and is largely independent from the level of background
and from the acceptance effects.
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Figure 4.12: An example illustration of the difference between the maximum likelihood and
method of moments, when applied to SM MC.

Small differences between the two estimators are also seen in the data. For a global com-
parison, we calculate the difference between the two estimates of each observable in every
q2 bin, then divide it by the expected difference from toy MC. The resulting distribution
is consistent with having a mean of zero and a width of one, i.e. the moments/likelihood
fit are consistent with each other when accounting for the expected differences between
the two methods.

4.9 Systematic uncertainties

The systematic uncertainties are composed of effects that can distort the mass or angular
distributions of either the signal or background candidates. They are estimates performing
pseudoexperiments.

The main systematic uncertainties are related to:

• Four dimensional acceptance correction.

• Differences between data and MC.

• Peaking backgrounds.
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• Signal mass modelling.

• B0 production asymmetry.

• Detector asymmetry.

The acceptance corrections systematics uncertainty is composed of two parts. First one
is related to the limited MC sample size that is used to calculate the efficiency function.
The systematic is accessed by varying the parameters of the function accordingly to the
calculated covariance matrix of the cijkl parameters (see Sec. 4.5). The second systematic
is related to the choice of the maximum order of the Legendre polynomials. The systematic
due to this choice is assigned by calculating a second acceptance function increasing the
polynomial order by two. Then a high statistics pseudoexperiment is performed using two
functions and the differences in the angular observable are assigned as systematic.

The second systematic is related to the difference between the data and MC simulation.
As described in Sec. 4.5.1, the main differences are corrected in the analysis. Small
differences remain in the pT distributions of the four tracks. The systematic is assigned
via calculating the new acceptance correlation with the additional reweighting of the
pT spectrum and performing a high statistics pseudoexperiment. The differences of the
angular observables between the nominal acceptance and the one with the pT correction
are assigned as systematic.

The signal mass parametrisation has been explained in Sec. 4.7.2. The systematic is
accessed by generating pseudoexperiments with nominal PDF (double Crystal Ball), which
are then fitted with double Gaussian function. The averaged difference between the two
fits is taken as s systematic uncertainty.

The last systematic is related to the B0 production and detector asymmetries. The ef-
fects have been estimated by the LHCb collaboration in [92]. In the same study the detector
asymmetry has been estimated. Both estimations are used as systematic uncertainties.

The systematic uncertainty related to the peaking backgrounds is similarly studied
with the pseudoexperiments. The experiments are constructed by injecting the expected
background events to the signal sample. The averaged differences in the angular observables
are taken as a systematic uncertainty.

As a result it is found that the systematic uncertainties are significantly smaller than
the statistical uncertainties (the largest total systematic being around 0.02, while the
statistical errors are 0.08− 0.10) The dominant systematic uncertainty comes from the
residual difference between data and MC. The systematics uncertainties will be added in
quadrature to the statistic uncertainties for the final result.

4.10 Results

This section contains the results of the angular analysis on data. Because the analysis has
produced over 80 tables with numerical results, we will not give them here in order to save
space. They can be found in the publication [69] and have also been submitted by the
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author to the HepData portal [93]. We will give the results in a graphical representation
only.

A comparison of the values of the CP -averaged and CP -asymmetric angular observables
obtained using the likelihood fit and the method of moments is presented in Figs. 4.13 and
4.14. As mentioned in Sec. 4.8.7, pseudoexperiments have been performed and they have
demostrated that both the method of moments and likelihood fit exhibit an excellent
agreement. The SM predictions for the CP -averaged are taken from Ref. [94]9. There are
currently no predictions for the CP -asymmetric observables but they are expected to be
very small in the SM.
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Figure 4.13: The CP -averaged observables in bins of q2 determined in a maximum likelihood fit
to the data and by the method of moments. The shaded boxes show the SM predictions based
on the prescription of Ref. [94].

4.11 Comparison with other studies

The angular analysis of B0 → K∗0µ+µ− has been also performed by the Belle Col-
laboration [95]. Recently, ATLAS [96] and CMS [97] have presented their preliminary
measurements. Unfortunately, the results form the other three collaborations have a much
larger statistical uncertainty. In spite of this, they seem to point to the same deviations
from the SM as the results from LHCb, as can be seen in Fig. 4.15.

The other experiments could not perform the full angular analysis as LHCb did, because
they had fewer B0→ K∗0µ+µ− decays at their disposal. In this case the collaborations
decided to use the folding technique [98], which integrates out some of the angles when
performing the fit. In this way only a group of observables can be extracted at the same
time and the correlation is lost.

9The authors do not give the predictions for S7,8,9; however, those observables are expected to be
extremely small in the SM.
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Figure 4.14: The CP -averaged observables in bins of q2 determined in a maximum likelihood fit
to the data and by the method of moments. The shaded boxes show the SM predictions based
on the prescription of Ref. [94].
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Chapter 5

Branching ratio and angular analysis
of B0→ K+π−µ+µ− in the K∗0,2(1430)

0

region

In this section the branching ratio and angular analysis of B0 → K+π−µ+µ− in the
K∗0,2(1430)0 resonance region is presented. The analysis is similar to the one described
in Sec. 4. Owing to this fact only differences in the selections will be presented. The results
of this study have been published in [99].

Trigger requirements, selection, multivariate classifier requirements and systematic
determinations are exactly the same as described in Sec. 4. The only difference is the mKπ

region that is selected: in this analysis we have chosen: 1330 MeV/c2 < mKπ < 1530 MeV/c2.
In this mKπ range there are a number of K∗0 states that can be present in this mass
range that are listed in Table 5.1. As one can see, this region contains the S-wave, P-wave
and D-wave states. It has been checked that the same BDT that has been applied to the
B0→ K∗0µ+µ− is equally highly discriminant to K∗0 as to K∗0,2(1430)0.

Table 5.1: Known K∗ states that can contribute to the B0→ K+π−µ+µ− decay over the mKπ

range of interest in this analysis. Adapted from Ref. [100].

JP Mass ( MeV/c2) Full width ( MeV/c2) ΓKπ/Γ (%)
K∗(1410) 1− 1414± 15 232± 21 6.6 ± 1.3
K∗0(1430) 0+ 1425± 50 270± 80 93 ± 10
K∗2(1430) 2+ 1432.4± 1.3 109± 5 49.9 ± 1.2
K∗(1680) 1− 1717± 27 322± 110 38.7 ± 2.5

The differential branching ratio measurement will be performed as a function of q2 in
the five q2 bins. The angular analysis will be performed in a single q2 bin, [1.1, 6.0] GeV2/c4.
The analysis will consist of measuring 40 normalized angular moments, M2 −M41 [101],
corresponding to the [Kπ] system including partial waves up to spin-2 (D-wave).
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5.1 Agreement between data and simulation

Similarly to the aforementioned analysis of B0→ K∗0µ+µ−, a good agreement between
data and simulation is necessary in order to be able to accurately model the distortion
of the angular distributions caused by the trigger, reconstruction and selection. The
acceptance correction, described in detail in Sec. 5.3, is determined from simulated flat
phase space B0→ K+π−µ+µ− candidates. Data driven techniques are used to improve
the agreement between data and simulation (the same way as in Sec. 4.5.2). The PID
distributions in simulation are corrected using a method known as “resampling”. The
procedure has already been described in the previous section and will not be repeated
here. In this case, besides checking the agreement on B0→ J/ψK∗0, an additional check
is made on the B0→ J/ψKπ. As can be seen in Fig. 5.1, also in the second case a good
agreement is observed.
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Figure 5.1: Data-simulation agreement for the PID variables used to veto peaking backgrounds.
The black data points show the distributions for sWeighted B0→ J/ψK∗0 data. The red dashed
histograms show the nominal distribution in B0→ J/ψK∗0 MC. The blue histograms show the
distribution for the resampled B0→ J/ψK∗0 MC.

5.2 Mass fits

In this analysis, the Kπµµ invariant mass distribution is described by a signal model
comprising a double Crystal Ball function with common mean (µ) and tail parameters (α,
n) and a background model comprising of an exponential function, in line with [69].
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In order to help to constrain the invariant mass fit to the B0→ K+π−µ+µ− candidates,
the number of degrees of freedom is reduced by first fitting the high statistics control
mode B0→ J/ψK∗0. For the control mode, an additional component is included to model
the contribution from B0

s→ J/ψK∗0. The signal fit parameters determined from the fit to
B0→ J/ψK∗0 are fixed when performing the fit to B0→ K+π−µ+µ−.

To take into account possible variations in the signal mass lineshape due to the
different region of mKπ and q2 in the fits to B0→ J/ψK∗0 (q2 ∈ [9.22, 9.96] GeV2/c4,
mKπ ∈ [796, 996] MeV/c2) and B0 → K+π−µ+µ− (q2 ∈ [0.1, 8.0] GeV2/c4, mKπ ∈
[1330, 1530] MeV/c2), a single scaling factor, sσ, is applied to both σ1 and σ2 during the
fits to the B0→ K+π−µ+µ− candidates. This factor is determined by first fitting the
mKπµµ distribution in the B0→ K+π−µ+µ− flat phase space MC in the B0→ J/ψK∗0

region. All fit parameters are then fixed except for sσ, which is allowed to float in the
subsequent fits to the mKπµµ distribution in each of the q2 bins in the B0→ K+π−µ+µ−

signal region. The numerical values are given in Tab. 5.2.

q2 [ GeV2/c4 ] Scaling factor
[0.10, 0.98] 0.972 ± 0.004
[1.10, 2.50] 0.981 ± 0.003
[2.50, 4.00] 0.980 ± 0.003
[4.00, 6.00] 0.987 ± 0.002
[6.00, 8.00] 0.981 ± 0.002
[1.10, 6.00] 0.983 ± 0.002
[9.22, 9.96] 0.989 ± 0.004

Table 5.2: Scaling factor sσ in bins of q2 for candidates in mKπ ∈ [1330, 1530] MeV/c2.

In order to cross check the method, the scaling factor is determined both from B0→
K+π−µ+µ− flat phase space MC and from data in the region q2 ∈ [9.22, 9.96] GeV2/c4,
mKπ ∈ [1330, 1530] MeV/c2. The scaling factor determined from MC is 0.989 ± 0.004,
which is in good agreement with the scaling factor determined from data 0.989 ± 0.005.

The invariant mass fits to the B0→ K+π−µ+µ− candidates in each of the q2 bins are
shown in Fig. 5.2. The signal and background yields in each of the q2 bins are given in
Tab 5.3 for the full range of mKπµµ ∈ [5170, 5700].

5.3 Acceptance correction

Similarly to the previous analysis, the triggering, reconstruction and selection of signal
candidates all cause distortions to the distributions of q2, cos θ`, cos θK , φ and mKπ, and
this needs to be corrected for. This effect will be accounted for by reweighting each event
by the inverse of the efficiency:
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Figure 5.2: Example fits to the Kπµµ invariant mass of the B0→ K+π−µ+µ− candidates in q2

bins.

q2 [ GeV2/c4 ] Signal yield Background yield
[0.10, 0.98] 67 ± 10 93 ± 11
[1.10, 2.50] 80 ± 12 160 ± 15
[2.50, 4.00] 75 ± 12 213 ± 17
[4.00, 6.00] 75 ± 13 334 ± 21
[6.00, 8.00] 60 ± 14 476 ± 25
[1.10, 6.00] 229 ± 21 708 ± 31

Table 5.3: Signal and background yields of the B0→ K+π−µ+µ− candidates in q2 bins

w =
1

ε(q2, cos θ`, cos θK , φ,mKπ)
, (5.1)

where ε(q2, cos θ`, cos θK , φ,mKπ) is a five dimensional efficiency parametrisation deter-
mined from the simulated flat phase space events. The main change compared to the
previous measurement of B0→ K∗0µ+µ− is the 5th dimension, which is the mKπ. The
change has to be made as in the wider mKπ window of this analysis the efficiency is no
longer flat.

As the acceptance correction will be used for both the differential branching fraction mea-
surement and the angular analysis, it is calculated from q2 ∈ [0.1, 10.0] GeV2/c4 GeV2/c4

and mKπ ∈ [795, 1530] MeV/c2 in order to encompass the full range of invariant masses
studied.

5.3.1 Legendre polynomial parameterisation

As described in [69], the efficiency is parametrised as the product of Legendre polynomials:
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ε(q2′, cos θ`, cos θK , φ′,m′Kπ) =∑
h,i,j,k,l

ch,i,j,k,l P (q2′, h)P (cos θ`, i)P (cos θK , j)P (φ′, k)P (m′Kπ, l),
(5.2)

where P (x, a) are the Legendre polynomials in x of order a and −1 < x < 1. Owing to
the range of the Legendre polynomials the variables φ ∈ [−π, π], q2 ∈ [0.1, 10.0] GeV2/c4

and mKπ ∈ [0.795, 1.53] GeV/c2 are transformed into the correct ranges [−1, 1]. The
coefficients, ch,i,j,k,l, are determined from the B0→ K+π−µ+µ− flat phase space MC using
the moments method:

ch,i,j,k,l =
1∑
wn

N∑
n=0

wn

(
2h+ 1

2

)(2i+ 1
2

)(2j + 1
2

)(2k + 1
2

)(
2l + 1

2

)
× P (q2′, h)P (cos θ`, i)P (cos θK , j)P (φ′, k)P (m′Kπ, l),

(5.3)

where wn is the per-event weight taking into account both the non-flat phase space
distribution of q2, mKπ and the kinematic event weights. The factors of (2a+ 1)/2 arise
from the orthonormality of the Legendre polynomials,∫ +1

−1
P (x, a)P (x, a′)dx =

2
2a+ 1

δaa′ . (5.4)

The order of polynomial used in each case is determined as the lowest order possible
that gives a good agreement between the parametrisation and the simulated flat phase
space events. These are: nq2 < 7, ncos θ` < 5, ncos θK < 9, nφ < 7, nmKπ < 5. Several
relations are used to reduce the number of coefficients necessary to be determined. Both
cos θ` and φ are assumed to be even and as such only even orders are used. Also, cos θ`
and mKπ are assumed to factorise. Therefore, any term containing both cos θ` and mKπ is
ignored. This reduces the terms along with the number of coefficients to be determined
from 11025 to 1764.

5.3.2 Covariance matrix

The covariance matrix of the legendre coefficients is also determined. The variance of the
coefficients is defined as

s2 =
∑
iwi(xi − x̄)(yi − ȳ)∑

iwi
(5.5)

and the variance on the mean is defined as

u2 =
s2

neff
, (5.6)

where neff is the effective number of events
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neff =
(
∑
iwi)2∑
iw

2
i

. (5.7)

The covariance matrix will be used to determine the systematic uncertainty, which is
due to the limited statistics MC sample used to calculate the legendre coefficients.

5.4 Differential branching fraction measurement

The differential branching fraction for B0→ K+π−µ+µ− candidates in the mKπ range
mKπ ∈ [1330, 1530] MeV/c2 will be measured in five q2 bins. The decay B0→ J/ψK∗0

is used as the normalisation channel with candidates selected in the ranges q2 ∈
[9.22, 9.96] GeV2/c4 and mKπ ∈ [796, 996] MeV/c2.

The partial branching fraction, BR(B0→ K+π−µ+µ−), in a specific q2 bin can be
estimated by comparing the yield of B0→ K+π−µ+µ− candidates in that q2 bin to the
number of B0→ J/ψK∗0 candidates. The partial branching fraction is then given by

BR(B0→ K+π−µ+µ−) = fK∗(892)0 × BR(B0→ J/ψK∗(892)0)× BR(J/ψ→ µ+µ−)

×BR(K∗(892)0→ K+π−)
N
′
Kπµµ

(1− F J/ψK∗0

S )N ′J/ψK∗0
,

where N
′
Kπµµ;k is the number of acceptance corrected B0→ K+π−µ+µ− candidates in bin

k, N
′

J/ψK∗0 is the number of acceptance corrected B0→ J/ψK∗0 candidates in the full
data sample. The number of B0→ J/ψK∗0 candidates is corrected for the S-wave fraction,
F
J/ψK∗0

S . The fraction fK∗(892)0 is used to scale the value of BR(B0→ J/ψK∗(892)0) to the
mKπ range 796 < mKπ < 996 MeV/c2.

5.4.1 Acceptance corrected yields

To avoid making any assumptions about the unknown distributions of theB0→ K+π−µ+µ−

candidates, the event-by-event efficiencies described in Sec. 5.3 are used to correct the
measured yields by calculating the average acceptance weight, where each weight is the
reciprocal of the event-by-event efficiency.

In the case where there are only signal candidates present, the average weight would
simply be calculated as

w =
1
N

N∑
i

wi, (5.8)

where wi is the event-by-event acceptance and N is the number of candidates. An estimate
for the error on the average weight is given by
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δw =

√√√√ 1
N(N − 1)

N∑
i

(wi − w)2. (5.9)

Because of the presence of background, the average weight calculated in the signal
mass window will be an admixture of the average weight for both signal candidates (wsig)
and background candidates (wbkg),

wmix =
Nsigwsig +Nbkgwbkg

Nsig +Nbkg

, (5.10)

where Nsig and Nbkg are the numbers of signal and background events in the signal mass
window, respectively. This can be rearranged to give the average weight for the signal
candidates,

wsig =
(Nsig +Nbkg)wmix −Nbkgwbkg

Nsig

. (5.11)

However, what is needed for bothB0→ K+π−µ+µ− andB0→ J/ψK∗0 is the acceptance
corrected yield wsigNsig. This is given by

wsigNsig = (Nsig +Nbkg)wmix −Nbkgwbkg, (5.12)

where the errors are propagated as

σ2
wsigNsig

= (Nsig+Nbkg)2σ2
wmix

+(−Nbkg)2σ2
wbkg

+(wmix)2σ2
Nsig

+(wmix−wbkg)2σ2
Nbkg

. (5.13)

The signal region is defined as mKπµµ ∈ [5230, 5330] MeV/c2 and the background
region as mKπµµ ∈ [5350, 5700] MeV/c2. For the resonant mode, the background region is
altered to mKπµµ ∈ [5450, 5700] MeV/c2 in order to prevent any potential pollution from
B0→ J/ψK∗0 or B0

s→ J/ψK∗0 candidates.

5.4.2 Pseudoexperiments studies

Toy studies are performed for the extraction of wsigNsig with different numbers of signal
and background candidates. In each toy Nsig, Nbkg are Poisson fluctuated. The nominal
mass models, described in Sec. 5.2, are used to generate signal and background candidates.
The weights for both signal and background are sampled from two gaussian functions with
different means. The pulls for the extraction of wsigNsig are shown in Fig. 5.3. No bias is
observed.

The extracted values of the signal yield Nsig, the average signal weight wsig and the
acceptance corrected yield wsigNsig for both the B0→ J/ψK∗0 and B0→ K+π−µ+µ−

candidates are shown in Tab. 5.4.
The resulting differential branching fraction in the q2 bin is then given by:

dBR(B0→ K+π−µ+µ−)
dq2

=
1

q2
max.;k − q2

min.;k
BR(B0→ K+π−µ+µ−) .
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Figure 5.3: Pull plots for the extraction of Nsig/εsig with different numbers of signal and
background candidates.

bin Nsig wsig wsigNsig

B0→ J/ψK∗0 304491.75 0.88 266650.04 ± 560.23
[0.10, 0.98] 65.18 1.25 81.44 ± 14.04
[1.10, 2.50] 77.34 1.19 92.25 ± 15.61
[2.50, 4.00] 72.49 1.09 79.09 ± 13.43
[4.00, 6.00] 72.66 0.90 65.16 ± 13.45
[6.00, 8.00] 57.91 0.97 56.08 ± 13.22
[1.10, 6.00] 222.24 1.05 232.68 ± 24.59

Table 5.4: The signal yield (Nsig), the average signal weight wsig and the acceptance corrected
yield wsigNsig for both the B0→ J/ψK∗0 and B0→ K+π−µ+µ− candidates.

5.4.3 Branching fraction results

Some external inputs are needed in order to determine the branching fraction, which will
be discussed in this section. The first input is the branching fraction for the normalisation
channel B0→ J/ψK∗0, which is taken from [102],
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Table 5.5: Differential branching fraction of B0 → K+π−µ+µ− in bins of q2 for the range
1330 < mKπ < 1530 MeV/c2. The first uncertainty is statistical, the second is systematic, and the
third is due to the uncertainty on the B0→ J/ψK∗(892)0 and J/ψ→ µ+µ− branching fractions.

q2 [ GeV2/c4] dBR/dq2 × 10−8 [c4/GeV2]
[0.10, 0.98] 1.60 ± 0.28 ± 0.04 ± 0.11
[1.10, 2.50] 1.14 ± 0.19 ± 0.03 ± 0.08
[2.50, 4.00] 0.91 ± 0.16 ± 0.03 ± 0.06
[4.00, 6.00] 0.56 ± 0.12 ± 0.02 ± 0.04
[6.00, 8.00] 0.49 ± 0.11 ± 0.01 ± 0.03
[1.10, 6.00] 0.82 ± 0.09 ± 0.02 ± 0.06

BR(B0→ J/ψK∗0) = (1.19± 0.01± 0.08)× 10−3. (5.14)

The remaining branching fraction is taken from the PDG average,

BR(J/ψ→ µ+µ−) = (5.961± 0.033)%. (5.15)

The value of F J/ψK∗0

S is obtained from Ref. [79] and is adjusted to the mKπ range mKπ ∈
[796, 996] MeV/c2, which leads to:

F
J/ψK∗0

S = 0.084± 0.01. (5.16)

The value of fK∗(892)0 is calculated by integrating the K∗(892)0 lineshape given in Ref. [102]
in the mKπ range 796 < mKπ < 996 MeV/c2,

fK∗(892)0 = 0.894± 0.001. (5.17)

Taking the above numerical values and the results of our analysis, one can calculate
the differential branching fraction, which is shown in Table 5.5 and Fig. 5.4. This is the
first observation of this decay.

5.5 Extracting the angular coefficients with the
method of moments for B0→ K+π−µ+µ−

The angular formalism used in this analysis is described in detail in [101]. The most
relevant information is summarised in the following section. The four-differential decay
rate can be written as:

1
d(Γ + Γ̄)/dq2

d(Γ + Γ̄)
dcosθl dcosθK dφ

=
∑
i

bifi(Ω), (5.18)
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Figure 5.4: Differential branching fraction of B0 → K+π−µ+µ− in bins of q2 for the range
1330 < mKπ < 1530 MeV/c2. The error bars indicate the sums in quadrature of the statistical
and systematic uncertainties.

where fi are spherical harmonics (see [101] for details). The moments bi can be measured
from the data as

bi = f̃i =
Ndata∑
k=1

fi(Ωk), (5.19)

while the corresponding covariance can be measured from the data as

C̃ij =
Ndata∑
k=1

fi(Ωk)fj(Ωk). (5.20)

In the presence of background, f̃i and C̃ij become

f̃i =

Nsig∑
k=1

fi(Ωk)

− x
Nbkgd∑

k=1

fi(Ωk)

 ,
C̃ij =

Nsig∑
k=1

fi(Ωk)fj(Ωk)

+ x2

Nbkgd∑
k=1

fi(Ωk)fj(Ωk)

 ,
(5.21)

where x is the ratio of the number of background events in the signal region over the
number of background events in the background region, N sig

bkgd/N
bkgd
bkgd , and is used for the

background subtraction. Furthermore, in the presence of detector inefficiency, f̃i and C̃ij
become
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f̃i =

Nsig∑
k=1

wkfi(Ωk)

− x
Nbkgd∑

k=1

wkfi(Ωk)

 ,
C̃ij =

Nsig∑
k=1

w2
kfi(Ωk)fj(Ωk)

+ x2

Nbkgd∑
k=1

w2
kfi(Ωk)fj(Ωk)

 ,
(5.22)

where wk is the event-by-event weight that accounts for acceptance effects.
In this analysis the moments, f̃i, and their corresponding covariance matrix, Cij,

will be determined using Eq. 5.22. The ratio x is determined in each q2 bin from
a maximum likelihood fit to the mKπµµ distribution. The signal region is defined as
mKπµµ ∈ [5230, 5330] MeV/c2 and the background region as mKπµµ ∈ [5350, 5700] MeV/c2.
The event-by-event weights are obtained from the acceptance parametrisation described
in Sec. 5.3.

5.6 Normalised moments and the reduced covariance
matrix

In this analysis, f̃1 corresponds to the sum of the weights, so we define the normalized
moments for i ∈ {2, ..., 41} as

Mi =
f̃i

f̃1
. (5.23)

The covariance matrix on the set of normalised moments can be estimated as

C̄ij =
[
C̃ij +

f̃if̃j

f̃ 2
1

C̃11 −
f̃iC̃1j + f̃jC̃1i

f̃1

]
1
f̃ 2

1

, i, j ∈ [2, 41]. (5.24)

The set of 40 normalized moments and the full set of 40× 40 covariance matrix elements
comprise the main results we aim to publish for the angular analysis.

5.7 Angular analysis results

The results for the angular analysis are shown in Tab. 5.6 and Fig. 5.5. The covariance
and correlation matrices for the measured moments are shown in Fig. 5.6. The systematic
uncertainness has been evaluated in the same way as in the previous analysis (see Sec. 6.5).
They have been found to be much below the statistical uncertainty as well.

Unfortunately at this moment no SM predictions exist for the measured observables.
This is mostly due to the lack of knowledge of form factors of the higher K∗0 states. With
development on the theory side, this decay should have sensitivity to the same Wilson
Coefficients as B0→ K∗0µ+µ−.
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Γi Value
Γ2 −0.42 ± 0.13 ± 0.03
Γ3 −0.38 ± 0.15 ± 0.01
Γ4 −0.02 ± 0.14 ± 0.01
Γ5 0.29 ± 0.14 ± 0.02
Γ6 −0.05 ± 0.14 ± 0.04
Γ7 −0.06 ± 0.15 ± 0.03
Γ8 0.04 ± 0.16 ± 0.01
Γ9 0.05 ± 0.16 ± 0.02
Γ10 0.24 ± 0.17 ± 0.02
Γ11 0.06 ± 0.13 ± 0.01
Γ12 −0.01 ± 0.13 ± 0.02
Γ13 −0.08 ± 0.12 ± 0.01
Γ14 0.09 ± 0.13 ± 0.01
Γ15 0.11 ± 0.13 ± 0.00
Γ16 −0.12 ± 0.13 ± 0.01
Γ17 −0.04 ± 0.13 ± 0.01
Γ18 0.03 ± 0.14 ± 0.01
Γ19 0.11 ± 0.11 ± 0.01
Γ20 −0.00 ± 0.11 ± 0.01
Γ21 0.03 ± 0.12 ± 0.01

Γi Value
Γ22 0.21 ± 0.12 ± 0.01
Γ23 0.03 ± 0.12 ± 0.01
Γ24 −0.10 ± 0.10 ± 0.01
Γ25 0.03 ± 0.10 ± 0.01
Γ26 0.08 ± 0.11 ± 0.01
Γ27 0.14 ± 0.11 ± 0.01
Γ28 −0.04 ± 0.11 ± 0.01
Γ29 0.06 ± 0.15 ± 0.04
Γ30 −0.21 ± 0.15 ± 0.04
Γ31 −0.07 ± 0.16 ± 0.01
Γ32 −0.16 ± 0.17 ± 0.02
Γ33 −0.04 ± 0.17 ± 0.02
Γ34 0.15 ± 0.11 ± 0.01
Γ35 −0.13 ± 0.11 ± 0.01
Γ36 0.05 ± 0.11 ± 0.01
Γ37 0.05 ± 0.11 ± 0.01
Γ38 0.06 ± 0.11 ± 0.00
Γ39 −0.08 ± 0.11 ± 0.00
Γ40 0.15 ± 0.11 ± 0.01
Γ41 0.12 ± 0.11 ± 0.01

Table 5.6: Results of the angular analysis. The first uncertainty is statistical and the second one
is systematic.
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Figure 5.5: Results of the angular analysis.
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Figure 5.6: Covariance and correlation matrices for the measured moments.
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Chapter 6

Search for long-lived particles
decaying into two muons

In this chapter a search for a light long-lived particle χ produced in the b→ s transitions
will be presented. The result of this study have been published in [103]. The channel that
the search will be performed in is: B+→ K+χ, where χ decays to two opposite charged
muons. Because of its different topology, when compared to the previously discussed
analysis, the selection had to be adjusted and will be discussed in detail in this chapter.
This kind of long-lived particles makes them perfect candidates of dark matter. A possible
extension of the SM is to add dark matter particles that are gauge singlets. Those particles
would only be able to communicate with known particles via weakly interacting messenger
particles through one of four portals: the vector, axion, Higgs, and neutrino portals.

�
B+ K+

χ

W−

b̄

u

µ+

µ−

s̄

u

t̄

Figure 6.1: Feynman diagram of the decay B+ → K+χ(→ µ+µ−), where χ interacts by mixing
with the Higgs and then decays into a couple of muons.

The Higgs portal is constructed in such a way that the new scalar particle can mix
with the recently discovered Higgs boson. Prime examples of such models are the so-called
inflaton models where a new field was responsible for cooling down the Universe after the
Big Bang [104,105]. These models also help to solve the hierarchy problem and explain
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the baryon asymmetry in the Universe [106,107]. In these models, the inflaton mass and
the lifetime are weakly constrained and the inflaton mass can be below the B meson mass,
thus the decay of B+→ K+χ is a prime candidate to look for such phenomena at LHCb.
In such a scenario the inflaton couples to the t quark in the loop, as shown in Fig. 6.1,
and can also be produced in the b→ s transitions.

Besides the Dark Matter, the SM suffers from other unexplained phenomena. One of
them is the so-called strong-CP problem. If one writes explicitly the QCD part of the SM
Lagrangian, the following Lagrangian term, containing the free parameter θ, is allowed:

L = θ
1

16π2
F a
µνεµνρσF

ρσ. (6.1)

In this equation the θ parameter is responsible for breaking the CP symmetry. Given
the experimental observation one sees that there is fine-tuning of this parameter to be
extremely close to zero. This is known as the strong-CP problem. The solution to this
problem has been proposed by R.Perci and H.Quinn [108] and is based on the introduction
of a new axion pseudoscalar field with an additional U(1) symmetry. Unlike the inflaton
(which mixes with the Higgs), the new field can directly couple to the quarks.

6.1 B+→ K+χ event selection

In this section we will discuss the selection requirements for the B+→ K+χ search. Because
we do not know a priori the mass and lifetime of the new particle χ, the selection has to
be designed in a way that is efficient for the whole possible parameters space.

6.1.1 Trigger requirements

The trigger lines used are listed in Table 6.1. Candidates are required to be TOS in all
stages of the trigger and they should be triggered on the B candidate. The dominant
Hlt2 lines are DiMuonDetached, TopoMu2Body and Hlt2SingleMuon lines. Hlt2 Topo3
lines contribute with a negligible signal efficiency but they increase the combinatorial
background by 4 % and are therefore excluded from the requirement. It is observed that
the trigger efficiency depends on mχ, however muon trigger efficiency is very well simulated
in the MC.

6.1.2 Stripping and preselection

The stripping line used to perform the analysis is the B2KX2MuMuDarkBosonLine. A
summary of the requirements included in the stripping line can be found in Table 6.2.

After the trigger and stripping stages, a loose preselection is applied. These requirements
are listed as well in Table 6.2 and are found to be between 97 and 98 % efficient on the
signal MC after the stripping. In the following efficiency computation these requirements
will be considered together with the stripping efficiency.
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Table 6.1: Trigger requirements. For each level, candidates are required to be TOS in at least
one line.

Level Requirement

L0 L0Muon or L0DiMuon

Hlt1 Hlt1TrackMuon or Hlt1DiMuonLowMass
or Hlt1TrackAllL0

Hlt2 Hlt2SingleMuon or Hlt2DiMuonDetached
or Hlt2TopoMu2BodyBBDT

6.1.3 B-mass signal region

The analysis is performed with the candidates that have the full reconstructed B-meson
invariant mass in a window of 100 MeV/c2 around the B+ mass: [5230, 5330] MeV/c2.
This range corresponds to the selection of almost ±3σ around the B-mass and is blinded
for the full execution of the analysis. The B-mass resolution is shown in Fig. 6.2 for a
MC signal of mχ = 2500 MeV/c2 and τχ = 1 ps, the distribution is fitted with a double
Crystal-Ball function and the total resolution is found to be (18.1± 0.3) MeV/c2.

The upper sideband range is defined as mB ∈ [5450, 5800] MeV/c2 and is used as a
pure combinatorial background sample to train the multivariate selection described below.
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Figure 6.2: Left: Invariant mass distribution of the B+ candidate for a MC signal of
mχ = 2500 MeV/c2 and τχ = 1 ps. The distribution is fitted with a double Crystal
Ball. Right: Normalization channel B+ → J/ψK+; invariant mass fit for candidates with
m(µ+µ−) ∈ [3047, 3147] MeV/c2. A double-sided double Crystal Ball is used to fit the peak while
an exponential function is used for the background.
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Table 6.2: List of requirements made on the B+→ K+χ candidates at the stripping level.

Stripping

Candidate Variable Requirement

B+ M [4800, 5800] MeV/c2

pT > 1000 MeV/c
τ > 0.2 ps

cos θdir > 0
vertex χ2/ndf < 25

IP χ2 < 50

tracks Pghost < 0.3
IP χ2 > 9

χ2
track/ndf < 3

K+ p > 2000 MeV/c
pT > 250 MeV/c

ProbNNK > 0.1

χ cos θdir > 0
χ2

FD (w.r.t. B) > 25
χ2

vtx/ndf < 10

di-µ M < 5000 MeV/c2

pT > 250 MeV/c
doca < 0.2 mm
χ2

doca < 25

µ isMuon True
pT > 100 MeV/c

DLLµ > −5

Preselection

Variable Requirement

χ2
vtx (B+) < 15
χ2

IP (B+) < 25
cos θdir (B+) > 0.999

6.1.4 Multivariate selection

A multivariate selection is applied to further discriminate the signal from the background
events. A k-folding technique is applied, with k = 11, in order to exploit at most the
limited available background data set. The classifier is trained using a background sample
consisting of around 200000 events taken from the right B-mass sideband introduced in the
previous section. The contributions from the vetoed region of the analysis (see Sec. 6.3.1)
are excluded also from the training background sample. Finally, each training background
samples for the 11 folds consists of O(105) events. The classifier that gives the best
performance among the traditional MVA algorithms is found to be the Gradient Boosted
Decision Tree (BDTG). All the classifiers of the 11 folds are found to be statistically
equivalent.

The variables used for the multivariate selection are summarised in Table 6.3. These
variables are designed to pick up the tracks that are close to our signal tracks and that
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can form a vertex with them. For the combinatorial background one expects more such
tracks than for the signal tracks.

Table 6.3: Input variables for the multivariate selection.

Input variables

decay-time (B+) χ2
IP (K+)

pT (B+) χ2
FD (χ)

cos θdir (B+) χ2
IP (µ)

χ2
IP (B+) µ+µ− doca

χ2
vtx (B+) track-iso65 (µ)
MVA-iso (χ)

Three different options are considered as the signal sample for the training of the
classifier: τχ = 1, 10, 100 ps. The goal is to have a performance as uniform as possible in
the considered range of the (mχ, τχ) plane. Fig. 6.3 shows the signal efficiency as a function
of the signal lifetime for the three considered training configurations, all corresponding to
mχ = 2500 MeV/c2. All efficiencies are shown for two fixed background rejection rates, 0.9
and 0.99 respectively.
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Figure 6.3: Signal efficiency for different lifetime of signal samples with mχ = 2500 MeV/c2 (top),
three training configuration are shown corresponding to different signal lifetimes. The efficiencies
correspond to a background rejection of 0.9 (left top) and 0.99 (right top).

Configurations that were trained with a long lifetime signal showed a considerable loss
of efficiency for short lifetime samples, while the configuration trained with the signal
sample with τχ = 1 ps gave the best overall performance and has been chosen for the
multivariate selection.
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6.2 Strategy of the search

This analysis consists in a search for a new particle of unknown mass and lifetime through
the decay B+→ K+χ. This search is performed by scanning the dimuon invariant mass
spectrum looking for an excess of events. Since the lifetime of the new particle can be
long compared to the detector resolution, the dimuon vertex is allowed; however, it is
not required, to be displaced from the B-meson decay vertex. In order to increase the
sensitivity to different lifetimes, three bins of the time of decay of the χ candidate are
considered separately. Afterwards, the information from the three different bins is combined
in a statistical way. The result of this analysis is presented as a 95% confidence level (CL)
upper limit, as a function of the mass and lifetime of the new particle χ. The considered
mass and lifetime range goes between 250 and 4700 MeV/c2 and between 0.1 and 1000 ps,
respectively.

The division in the three bins for the time of decay of the candidate reflects the
following criteria:

• The first bin corresponds to a small time of decay and contains events that can be
identified as prompt decays. It is meant to contain all the irreducible SM B+ →
K+µ+µ− electroweak penguin decays that are the main background of this analysis
(see Sec. 6.3.6). It is characterized by a high signal efficiency but also by a huge
background contamination.

• The second bin contains displaced dimuon decays and is supposed to be most sensitive
to long lifetimes; it has lower reconstruction efficiency compared to the first bin, but
it is affected by a low background contamination; only combinatorial background
can populate this region (see Sec. 6.3.7).

• The third bin contains very displaced dimuon candidates and is chosen so that this
region corresponds to a “zero background” search. This third bin is mainly added in
order to increase the sensitivity to a very long lifetime signal in the event that the
observation is made.

The bins boundaries are optimized using pseudoxperiments to maximize the CLs value.
The obtained values for each bin are:

• 1st bin: t < 1 ps, BDTG> 0.6,

• 2nd bin: t ∈ [1 < t < 10] ps, BDTG > f(m), where f(m) is plotted in Fig. 6.4,

• 3rd bin: t > 10 ps, BDTG > 0.8.

6.2.1 Searching in the mass dimension

The analysis aims at searching for a new particle χ decaying into a pair of opposite charged
muons, that is produced in the decay of: B± → K±χ. The new particle is of unknown
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Figure 6.4: Value of the tightest allowed selection in the second bin as a function of mass. The
points corresponds to masses for which the requirement described in the text was tested with
toys. The BDTGmax-cut2nd bin is then interpolated with a cubic spline. Yellow bands correspond to
vetoed regions in the search.

mass and lifetime, so the search is performed in different regions of those parameters. The
search for the new particle is the dimuon invariant mass in step of 1

2σ(m), where σ(m)
is the local dimuon mass resolution (see Sec. 6.4.2). For each tested mass mtest, a signal
region is defined as

|m−mtest| < 2σ(m) (6.2)

and a background region is the sidebands of the signal region corresponding to

3σ(m) < |m−mtest| < (2x+ 3)σ(m). (6.3)

Therefore, the parameter x is defined as the ratio between the size of the background and
the signal regions.

For each mtest a test statistic is performed: the background plus signal and the back-
ground only hypothesis are compared using the CLs method, where the information from
the three bins is combined into a single likelihood. For each bin the expected number of
signal events is taken from the MC and normalized to the yield of normalization channel:
B+ → K+J/ψ(→ µ+µ−), while the expected number of background events is obtained
directly from the data with a linear fit to the background region (dimuon sidebands).

The choice of the parameter x is driven by the principle of keeping x as large as possible,
but in such a way that the approximation of local linearity is still valid.

The regions around the φ, J/ψ, ψ(2S) and ψ(3770) dimuon resonances are vetoed from
the search (see Sec. 6.3.1). Moreover, if the vetoed region is inside the sideband used to
extrapolate the background yield in the signal region, the opposite sideband to the one
containing the vetod region is enlarged, so that the total sideband size is kept to be x. The
linear approximation of background yield extraction in the above scenario is tested with
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pseudo-experiment studies. It has been found that x = 10 provides the best compromise
between the statistical uncertainty and bias created by the linear approximation. The
largest biases that have been found in the pseudo-experiments were 8 % of the statistical
error.

6.3 Background

This section describes the peaking background considerations. Fake rates of particle
misidentification are measured using data driven methods from the PIDCalib package [109].
The expected background events are reported after the full selection was applied and
computed with the formula

Nchannel = N obs
B+→J/ψK+ ×

εchannel
εB+→J/ψK+

× BR(channel)
BR(B+ → J/ψK+)

, (6.4)

where the decay B → J/ψ(→ µ+µ−)K+ is a normalization channel.

6.3.1 SM charmonium resonances

The decay B+ → φK+ and the charmonium decays B+ → J/ψK+, B+ → ψ(2S)K+,
B+ → ψ(3770)K+ and B+ → ψ(4160)K+, where φ, J/ψ, ψ(2S), ψ(3770) and ψ(4160)
decay into two opposite sign muons, have the same final state of the signal. These candidates
are removed by applying a veto on the µ+µ− mass in the ranges 985 < mµ+µ− < 1055,
2946 < mµ+µ− < 3176, 3586 < mµ+µ− < 3850 and 4103 < mµ+µ− < 4270 MeV/c2. The
upper end of the ψ(2S) veto falls around the ψ(3770) mass, so they are included into a
single vetoed region. Since the expected contribution in the displaced region of the analysis
of the B+ → φK+ and B+ → ψ(4160)K+ decays is negligible and no peaks corresponding
to the φ and ψ(4160) resonances are observed in the combinatorial background in the right
B-mass sideband after the selection, the corresponding vetoes are applied only in the first
proper life time bin of the search. Despite the fact that the ψ(4160) resonance is much
larger than the signal resolution (see Figure 6.9), a significant bias in the background
prediction is observed and therefore a veto is applied.

6.3.2 B+ → J/ψK+ with a K+ ↔ µ+ swap

The decay B+ → J/ψK+ can fall out of the J/ψ veto if the kaon swaps mass hypothesis
with the same-sign muon. This background is rejected by computing the µ−K+ mass under
the µ−µ+ hypothesis, m(Kµ↔µµ), and by requiring the kaon to fail the isMuon flag for
the candidates with a mass m(Kµ↔µµ) within the range 3000 < m(Kµ↔µµ) < 3200 MeV/c2

(cf. Fig. 6.5).
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Figure 6.5: The peaking background from B+ → J/ψK+ with a K+ ↔ µ+ swap is shown before
and after the veto described in Sec. 6.3.2 is applied. The distribution is shown for data in the
right B-mass sideband.

6.3.3 Hadronic B+ decay

Four purely hadronic decays have been investigated as potential sources of peaking
background: B+ → K+K+K−, B+ → K+K−π+, B+ → K+π+π− and B+ → π+π+π−.
These decays can form a source of peaking backgroud when the pions or kaons are mis-
identified as muons. The mis-identification rate and the final number of events expected to
pass the full selection are listed in Table 6.4. The mis-identification rate is computed with
the PIDCalib package, the fraction of events within the B-mass signal region comes from
the MC, and the final expected number of the events follows the formula in Equation 6.4.

The remaining peaking background, such as the 26 ± 4 B+ → K+π+π− expected
events, will not cause problems, because this decay is dominated by wide resonances that
are not dangerous to this study as the linear background extrapolation will be valid. The
decay mode like B+ → K+φ, B+ → K+ω, B+ → K+ρ0 or B+ → π+ρ0 are even more
suppressed and are found to be negligible.

6.3.4 B+ → D decays

The decays B+ → D0π and B+ → D0K, with D0 → K+π−, D0 → K+K− or D0 → π+π−

can be particularly dangerous,which is due to the presence of the displaced secondary
vertex of the D0 meson decay. B+ → D0(→ KK)X and B+ → D0(→ ππ)X are Cabibbo
suppressed and are found to be negligible, while a small contribution of B+ → D0(→ Kπ)π
and B+ → D0(→ Kπ)K is expected in data (see Table 6.5). These backgrounds are
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Table 6.4: Fully hadronic B+ background decays.

Decay Branching ratio Misidentification rate Fraction within Expected number
signal region of events

B+ → K+K+K− (3.40± 0.14)× 10−5 (2.00± 0.05)× 10−4 0.0076 ± 0.0013 0.58 ± 0.14
B+ → K+K−π+ (5.0± 0.7)× 10−6 (1.40± 0.05)× 10−4 0.17 ± 0.01 1.6 ± 0.3
B+ → K+π+π− (5.1± 0.3)× 10−5 (9.40± 0.08)× 10−5 0.758 ± 0.011 26 ± 4
B+ → π+π+π− (1.52± 0.14)× 10−5 (1.5± 0.1)× 10−5 0.57 ± 0.02 2.3 ± 0.4

rejected by the introduction of a more stringent muon PID requirement for candidates
with invariant mass, after the correct mass hypothesis assignment m(µµ↔Kπ), in a window
around the D0 mass. The requirement at ProbNNmu(µ) > 0.4 is sufficient to remove these
sources of background and is applied to events with m(µµ↔Kπ) ∈ [1840, 1890] MeV/c2.

Table 6.5: Potential B decay backgrounds. The last column reports the expected yields before
the introduction of the dedicated requirement described in the text.

Decay Branching ratio Misidentification rate Fraction within Expected number
signal region of events

B+ → D0(K+π−)K+ (1.43± 0.07)× 10−5 (1.80± 0.04)× 10−4 0.148 ± 0.012 3.0 ± 0.5
B+ → D0(K+K−)K+ (1.46± 0.07)× 10−6 (2.60± 0.05)× 10−4 0.013 ± 0.004 0.03 ± 0.01
B+ → D0(π+π−)K+ (5.2± 0.3)× 10−7 (1.20± 0.04)× 10−4 0.76 ± 0.02 0.51 ± 0.08
B+ → D0(K+π−)π+ (1.87± 0.06)× 10−4 (3.50± 0.06)× 10−5 0.26 ± 0.02 15.3 ± 3.0
B+ → D0(K+K−)π+ (1.90± 0.07)× 10−5 (4.00± 0.06)× 10−5 0.062 ± 0.008 0.43 ± 0.08
B+ → D0(π+π−)π+ (6.7± 0.2)× 10−6 (2.40± 0.05)× 10−5 0.62 ± 0.03 1.00 ± 0.18

6.3.5 K0
S, Λ0 resonances

Peaks corresponding to the K0
S → π+π− and Λ0 → pπ are observed in the data sidebands

and removed by a veto around the K0
S and Λ0 mass after the correct mass hypothesis

assignment. Because of a small difference in the mass between a muon and a pion, the
veto around the K0

S mass is reflected as a complete loss of efficiency for the signal with
mχ close to the K0

S mass. For this reason the window [380, 495] MeV/c2 is excluded from
the search.

A big difference between the proton and the muon mass never causes any signal in the
studied mass range to fall into the Λ0 vetoed region.

6.3.6 b→ s`−`+ background

The B+ → K+µ+µ− decay has the same final state of the signal and represents an irre-
ducible source of background. The dimuon pairs are expected to come from a prompt decay
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of the B-meson and, as already mentioned, these events represent the main background in
the first bin of the search.

Besides the dominant B+ → K+µ+µ−, other decays that contain two opposite sign
muons are considered:

• B+ → π+µ+µ−: in this case the pion should be mis-identified as a kaon, but the two
real muons enhance the mis-identification rate. However, the low branching fraction
and stripping efficiency return it negligible.

• B0 → K∗µ+µ− with one missing track from K∗ → Kπ. Here the missing track
reduces the probability for the total invariant mass to be reconstructed within the
B-mass signal region.

The decay modes with the relative rates are listed in Table 6.6. Other possible contributions
from the Bs and Λb decays have been considered but they are always found to be negligible.

Table 6.6: B decays with two opposite sign muons in the final state, thus comprising a possible
source of background. For the B0 → K∗(→ Kπ)µ+µ− decay with one missing track the notation
K∗(→ π) corresponds to a missing kaon and oppositely K∗(→ K) to a missing pion.

Decay Branching ratio Misidentification rate Fraction within Expected number
signal region of events

B+ → π+µ+µ− (2.4± 0.6)× 10−8 0.128 ± 0.0016 0.448 ± 0.003 1.1 ± 0.3
B0 → K∗(→ K)µ+µ− (1.05± 0.1)× 10−6 0.8096 ± 0.0013 0.00016 ± 0.00008 1.1 ± 0.5
B0 → K∗(→ π)µ+µ− (1.05± 0.1)× 10−6 0.0767 ± 0.0004 0.038 ± 0.008 6.5 ± 1.6

6.3.7 Combinatorial background

The combinatorial background is the only source of background that can populate the
displaced region of the analysis. Fig. 6.6 shows the distribution of the decay time of the
dimuon system for the combinatorial background where the events are taken from the
right B-mass sideband. The tail of the distribution extends up to tens of ps. We reject the
events with life time t < −1 ps. The requirement value was chosen in such a way that it
takes into account the time resolution of the detector. This requirement rejects more than
30 % of the combinatorial background in the first bin of the search.

The combinatorial background yield is extrapolated from data with a fit to the right
B-mass sideband, and the expected yields after the selection are listed in Table 6.7 for
each bin of the analysis.
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Figure 6.6: Time of decay distribution for combinatorial background. The events are taken from
the right B-mass sideband.

Table 6.7: Expected number of combinatorial background events after the selection.

Combinatorial background

1st bin 981 ± 50
2nd bin 171 ± 23
3rd bin 2.6 ± 2.4

6.4 Efficiency determination

This section presents the evaluation of the total signal efficiency, used to normalize the
signal to the observed normalization yield with the formula

Nsig = N obs
B+→J/ψK+ ×

εsig
εB+→J/ψK+

× BR(sig)
BR(B+ → J/ψK+)

. (6.5)

6.4.1 MC corrections

Two kinds of corrections are applied to the MC: the correction for the number of tracks
in the event and for particle identification variables, which both are not reproduced
well in the simulation. These MC corrections are applied to all the MC samples after
the stripping, pre-selection and trigger requirements. Fig. 6.7 shows the distribution of
the number of tracks before and after the reweighting of the MC. The normalization
channel B+ → J/ψK+ is used as a reference for data distribution. Fig. 6.8 proves that
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the distribution of the number of tracks is about the same for all the MC signals and the
normalization channel.

The PID identification corrections follow the same strategy as in the previously described
analysis. For details see Sec. 4.5.2.

Figure 6.7: Distributions of the number of tracks for the normalization sample in data and for
one MC signal sample of reference. The distributions are shown before (left) and after (right)
the correction of the MC.

Figure 6.8: Distributions of the number of tracks for the MC normalization sample and for some
MC signal samples.

6.4.2 χ mass resolution

All the reconstructed invariant masses in this analysis are computed using
DecayTreeFitter [110]. In order to improve the dimuon mass resolution, the candi-
dates in the signal region, 5230 < mB+ < 5330 MeV/c2, have the mass of the B+ meson
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Figure 6.9: Mass resolution as a function of mχ before (left) and after (right) scaling to the
resolution on data. MC signal (black) points are interpolated with a cubic spline. The resolution
from data for the J/ψ and ψ(2s) resonances is also shown as blue points. The mass of the B+

meson is constrained to its nominal value [111].

constrained to its world average value in the vertex fit [111]. The dimuon mass resolutions
vary as a function of mχ and the resolution for each simulated sample is found by fitting
the mass spectrum to a double Gaussian function. All the dimuon mass resolutions are
computed after the stripping, pre-selection, trigger, PID, and B-mass signal region require-
ment. The normalization channel is used to cross-check the resolution obtained from the
MC. It has been found that the MC slightly underestimates the resolution, therefore the
resolution from all the MC mχ is scaled by the factor:

σDATAJ/ψ→µ+µ−

σMC
J/ψ→µ+µ−

= 1.167. (6.6)

This kind of procedure has been tested and applied to various analyses in LHCb.
The validity of the obtained scale factor is tested with the resolution of the φ and ψ(2S)
resonances measured on data, as shown in Fig. 6.9.

After the rescaling, the φ resolution is compatible with the interpolation of the mχ

resolution at the corresponding mass, while the ψ(2S) resolution is found to be within
two sigma deviation. This deviation corresponds to 6% of the scale factor. It is assigned as
the uncertainty on the scale factor and added as a source of systematics.

6.4.3 Signal efficiency

The overall signal efficiency, called εsig, is factorized in several components: εacc, acceptance
efficiency for tracks to be within the LHCb acceptance, εreco&strip, reconstruction efficiency
for the signal to pass the stripping and pre-selection requirements, εtrigger, trigger efficiency,
εPID, particle identification efficiency, εB-meson

sig.Reg. , efficiency to lie into the signal region
defined around the B-meson mass, εdimuonsig.Reg., efficiency to lie into the signal region around
each tested dimuon mass, εBDTG, efficiency of the multivariate selection,

εsig = εacc × εreco&strip × εtrigger × εPID × εB-meson
sig.Reg. × εdimuonsig.Reg. × εBDTG. (6.7)
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The total efficiency is always defined by combining the three bins of the search, while
the partial components are calculated with respect to the number of events passing all
the previous requirements. The efficiency εPID includes the PID requirements contained
in the stripping: isMuon and DLLµ > −5 for the muons and ProbNNK > 0.1 for the
kaon. The muon PID efficiency is obtained directly from the MC, while the PID efficiency
of the ProbNNK > 0.1 is computed with PidCalib package. The uncertainty on εPID
is dominated by the muon component limited by the MC size. All the other efficiency
components and corresponding uncertainties are evaluated with the MC. Fig. 6.10 shows
the total signal efficiency for all the MC generated masses.

Figure 6.10: Total signal efficiency as a function of mass for MC samples generated with τχ = 100
ps.

6.5 Systematic uncertainties

Estimation of systematic uncertainties is required for setting upper limits which are
included as nuisance parameters in the search. The following sources of systematics are
considered:

• Uncertainties on the signal efficiency computed on the MC.

• Mismodelling of the signal mass resolution.

• Uncertainty on the normalization branching ratio.

• Mismodelling of the background mass shape.

The relative contributions are listed in Table 6.8 at the end of this section. The impact
of these uncertainties on the excluded limit is found to be minimal, the excluded limit is
increased by only 2 % on average in the considered (mχ, τχ) plane.
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Table 6.8: List of systematic uncertainties.

Source Uncertainty

Signal resolution (1.5 ÷ 2)%
MC size (2 ÷ 6)%

MC lifetime reweighting (0 ÷ +0
−20)%

Background mass shape mismodelling 0.08 × stat. err.
Normalization branching ratio 3 %

6.5.1 Signal efficiency modelling

The signal efficiency is computed based on the available MC samples as described in Sec. 6.4
and a systematic uncertainty must be introduced because of the finite size of the MC
sample. The limited size of the MC especially affects the two extreme lifetime hypotheses
considered in the analysis, τχ = 0.1 ps and 1000 ps, when large weights are assigned
to a very small number of events. For these two extreme configurations the systematic
uncertainty associated to the signal efficiency is found to be around 6 %. In all the
intermediate hypotheses this systematic uncertainty is 2 %. Moreover, the reweighting
procedure overestimates by around 20 % the signal efficiency for very long lifetimes, O(103)
ps. To take this effect into account, an asymmetric systematic uncertainty is added to the
signal samples with τχ > 100 ps.

6.5.2 Signal resolution modelling

The MC signal resolution is scaled to data as explained in Sec. 6.4.2. The systematic
associated to the uncertainty of the mass resolution is given by two contributions: on the
one hand the uncertainty on the resolution as it comes from the fit to the MC samples,
which is obtained by varying the resolution within its uncertainty, and by considering the
difference on the resulting efficiency. On the other hand, the relative error of 6 % assigned
to the scale factor (see Sec. 6.4.2) is found to be the dominant one and results in the
uncertainty on the signal efficiency between 1.5 and 2 %, depending on the signal mass .

6.6 Results

The upper limits are set using the CLs method as described is Sec. 6.2. After unblinding
the analysis, the B-mass signal region is explored. Fig. 6.11 shows the dimuon distribution
for events in the B-signal region in the first and second bin of the analysis. Since no
significant excess from the SM background is found, a 95% CL upper limit is set on the
BR(B+ → K+χ(µ+µ−)).
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Figure 6.11: Dimuon distribution for events in the B-signal region in the first (black) and second
(red) bin of the search. The binning scheme corresponds to one sigma of the mass-dependent
mass-resolution model. No events are observed in the third bin of the analysis.

The upper limits are then set on the branching fraction BR(B+ → K+χ(µ+µ−)) at
95% CL. The result is shown in Figure 6.12 as a function of mχ and τχ.

Figure 6.12: 95 % CL excluded limit in the studied (mχ, τχ) plane.

6.7 Interpretation of the results in the inflaton model

In this section we will give a detailed description of the inflaton model. In the literature
there exists a widely known inclusive formula for the branching fraction [104]:

Br(B → Xsχ) ∼ 10−6

(
1−

m2
χ

m2
b

)(
β

β0

)(
300 MeV/c2

mχ

)
. (6.8)

We propose an interpretation of our results based on [112]. There explicit formulas for
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the K∗ and K case are given:

BR(B+→ K+χ) = 4× 10−7

(
θ

10−3

)2

FK(mχ)
√
λ, (6.9)

BR(B0→ K∗0χ) = 5× 10−7

(
θ

10−3

)2

FK∗(mχ)
√
λ

3
, (6.10)

where Fi are the form factors, and λ is the phase space suppression. The form factors
used in the above equations have been updated to the latest available ones. One finds that
the branching fraction to K and K∗ is of the order of 10 % of the inclusive productions
(Xs). Taking this into account in this calculation, we can draw the exclusion of the
parameters space in the inflaton model (see Fig. 6.13). As can be seen, in some regions of
the parameters space, our results improves on the previous B0 → K∗χ [113] by almost an
order of magnitude.
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Figure 6.13: Exclusion plane
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mξ, θ

2). The blue curve corresponds to the exclusion by B+ → K+χ,
the red one to B0 → K∗0χ. The theoretical constraints of the model and the region excluded by
the CHARM [114] experiment are shown as well.
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Chapter 7

Interpretation of b→ s`−`+ anomalies

In this chapter we will present the interpretation of the observed anomalies in the b→ s`−`+

transitions. We will start by presenting the results of global fits to the WC and long
distance effects. The chapter ends with list of possible NP scenarios that can explain the
cause of the observed deviations from the SM prediction.

7.1 Wilson Coefficient fit

Presently, there are two groups that perform the state of the art global WC fits, including
a complete set of b→ s`−`+ decays. The first group involves B. Capdevila, A. Crivellin,
S. Descotes-Genon, J. Matias and J. Virto [115, 116] and will be denoted as CCDMV
from the first letters of the authors’ names. The second group includes W. Altmannshofer,
C. Niehoff, P. Stangl, D. Straub and, in analogy, will be called ANSS [117]. We will shortly
present the results of both groups.

7.1.1 CCDMV fit

In the CCDMV fit [115] the following experimental results are taken into account:

• Branching ratio measurement of B0→ K∗0µ+µ− done by LHCb with full Run1 data
set [118].

• Angular observables of B0→ K∗0µ+µ− in the Pi basis Sec. 2.8.1 measured by the
LHCb [69], Belle [95], ATLAS [96] and CMS [97] experiments.

• Branching ratio of the B+→ K+µ+µ− decay from LHCb [119].

• Branching ratio and angular observables of B0
s→ φµ+µ− [120].

• Inclusive measurements of B → Xs`` and B → Xsγ [121,122].

• Branching ratio measurement of B0 → K∗0γ [123].
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• Branching ratio of B0
s→ µ+µ− [11].

• The LFU measurements of RK and RK∗ [124,125].

The global fit is performed minimalizing χ2:

χ2(Ck) =
Nobs∑
i,j=1

[
Oexp
i −Oth

i (Ck)
]

(Cexp + Cth)−1
ij

[
Oexp
j −Oth

j (Ck)
]
, (7.1)

where Nobs is the number of observables, Oexp/th
i are the values of the i-th observable

measured by the experiment and calculated by the theory respectively, and Cexp/th are
experimental ant theoretical covariance matrices.

The CCDMV authors performed two types of WC fits. In the first fits only one WC is
allowed to float, while the others are fixed to the SM values. In the second fits two WC are
allowed to float. The results of the fits are shown in Table 7.1. The authors also considered
a subset of observables, which are RK and RK∗ .

All LFUV
1D Hyp. Best fit 1 σ 2 σ PullSM p-value Best fit 1 σ 2 σ PullSM p-value
C9µNP -1.10 [−1.27,−0.92] [−1.43,−0.74] 5.7 72 -1.76 [−2.36,−1.23] [−3.04,−0.76] 3.9 69

C9µNP = −C10µNP -0.61 [−0.73,−0.48] [−0.87,−0.36] 5.2 61 -0.66 [−0.84,−0.48] [−1.04,−0.32] 4.1 78
C9µNP = −C9µ′ -1.01 [−1.18,−0.84] [−1.33,−0.65] 5.4 66 -1.64 [−2.12,−1.05] [−2.52,−0.49] 3.2 31
C9µNP = −3C9eNP -1.06 [-1.23,-0.89] [-1.39,-0.71] 5.8 74 -1.35 [−1.82,−0.95] [−2.38,−0.59] 4.0 71

All LFUV
2D Hyp. Best fit PullSM p-value Best fit PullSM p-value

(CNP
9µ , C

NP
10µ) (-1.17,0.15) 5.5 74 (-1.13,0.40) 3.7 75

(CNP
9µ , C

′
7) (-1.05,0.02) 5.5 73 (-1.75,-0.04) 3.6 66

(CNP
9µ , C9′µ) (-1.09,0.45) 5.6 75 (-2.11,0.83) 3.7 73

(CNP
9µ , C10′µ) (-1.10,-0.19) 5.6 76 (-2.43,-0.54) 3.9 85

(CNP
9µ , C

NP
9e ) (-0.97,0.50) 5.4 72 (-1.09,0.66) 3.5 65

Table 7.1: Results of the CCDMV 1-dim(top) and 2-dim fits. [115]. The “All” column refers to
all the above-mentioned observables used in the fit, while the “LFUV” refers to the fit results
that have been done only using the measurements of RK and RK∗ .

As can be seen, when including all of the observables the authors have observed above
5 σ deviation from the SM prediction of the C9 WC. It is worth mentioning at this point
that some of the observables in the fit suffer from charm-loops effects (see Sec. 2.8.3 for
details), so it is hard to quantify how reliable the obtained significances are. For this reason
the authors have decided to add the fit to the subset of the observables which do not suffer
from these effects and are the cleanest observables from the theoretical point of view1. In
this case the significance is reduced to above 3 σ. Interestingly, the central values of the
fit to the clean observables and all observables converge to the compatible central value
(cf. Fig. 7.1). This might be an indication that indeed the observed anomalies are related
to NP rather than to charm-loop effects.

1The so-called lepton universality measurements.
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Figure 7.1: Results of 2-dim fit of CCDMV for full set of observables (right) and “LFUV” (left).

7.1.2 ANSS fit

Similarly to the CCDMV fit, the ANSS group uses a large number of observables to
elucidate the possible NP contribution precisely:

• Branching ratio measurement of B0→ K∗0µ+µ− done by LHCb [118], CMS [126]
and CDF [127].

• Angular observables of B0→ K∗0µ+µ− in the Si basis 2.7 [69], ATLAS [96] and
CMS [97].

• Branching ratio of the B+→ K+µ+µ− decay from LHCb [119].

• Branching ratio and angular observables of B0
s→ φµ+µ− [120].

• Inclusive measurements of B → Xs`` [121].

• The LFU measurements of RK and RK∗ [124,125].

On the theoretical side, there is also a major difference between the two groups. The
first one exploits the optimized variables Pi, which are calculated with the soft-form factor
approximation, while the ANSS group uses the full form factors. It is worth mentioning
that the ANSS fit is based on a public code flavio [128].

As can be seen in Table 7.2 and Fig. 7.2, the results of the ANSS group fit show over 4σ
deviation from the SM, which is in agreement with the previous CCDMV fit. In addition,
the fits done only to the theoretically clean observables RK and RK∗ are in agreement
with the other observables, as was the case of the previous fit.

Let us stress that despite the fact that in the fits one sees the (4− 5) σ deviations from
the SM, the flavour community did not claim the discovery of NP. This is because the
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Coeff. best fit 1σ 2σ pull
Cµ

9 −1.59 [−2.15, −1.13] [−2.90, −0.73] 4.2σ
Cµ

10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3σ
Ce

9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4σ
Ce

10 −1.30 [−1.68, −0.95] [−2.12, −0.64] 4.4σ
Cµ

9 = −Cµ
10 −0.64 [−0.81, −0.48] [−1.00, −0.32] 4.2σ

Ce
9 = −Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3σ
C ′µ9 −0.00 [−0.26, +0.25] [−0.52, +0.51] 0.0σ
C ′µ10 +0.02 [−0.22, +0.26] [−0.45, +0.49] 0.1σ
C ′ e9 +0.01 [−0.27, +0.31] [−0.55, +0.62] 0.0σ
C ′ e10 −0.03 [−0.28, +0.22] [−0.55, +0.46] 0.1σ

Table 7.2: Puls of the ANSS fit [117].

Figure 7.2: Results of ANSS fit [117].

observed discrepancies can be due to the QCD effects rather than NP. With more collected
data by the LHCb collaboration this matter might be addressed in a more definite way.
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7.1.3 GAMBIT WC fit

The author of this dissertation is a member of the GAMBIT (The Global and Modular
Beyond-the-Standard-Model Inference Tool) collaboration [129], where he is the convenor
of the Flavour Working group [130]. The GAMBIT collaboration is mainly focused on
performing fits parametrising the searches for supersymmetry [131–133]. However, the
FlavBit module in GAMBIT that is responsible for calculating the likelihood based on the
Flavour observables, has the possibility of performing the fits of WC in a manner similar
to the previously presented fits [115,117]. In the results of the GAMBIT fit the following
measurements have been used:

• Angular observables of B0→ K∗0µ+µ− in the Si basis 2.7 [69].

• Branching ratios of Bs/d → µµ [10, 11].

• Inclusive branching ratio of b→ sγ [134].

We have found that our fit, similarly to the previous ones, also prefers the negative
modification of C9 WC, as can be seen in Fig. 7.3.
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Figure 7.3: Results of WC fit using FlavBit [130].

In future, FlavBit will be extended to other observables to reach a similar complexity
as the aforementioned fits.

7.1.4 Fitting the nonfactoriable corrections

As was presented in Sec. 7.1.1 and 7.1.2, the measured deviations from the SM have
generated a lot of discussion on the robustness of the theory predictions. In a natural way,
this leads to the idea of extracting the non factorizable corrections from the LHCb mea-
surements directly. The first attempt has been done by the group led by L. Silvestrini [135]
(called CFFMPSV after the authors’ surnames). The idea behind this parametrisation is
to describe the charm-loop amplitude in a similar way as [136]:
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hλ(q2) =
ε∗µ(λ)
m2
B

∫
d4xeiqx〈K̄∗|T{jµem(x)Hhad

eff (0)}|B̄〉

= h
(0)
λ +

q2

1 GeV2h
(1)
λ +

q4

1 GeV4h
(2)
λ , (7.2)

which are related to the amplitudes calculated by A. Khodjamirian et. al. [29] via:

g̃M1 = − 1
2C1

16m3
B(mB +mK∗)π2√
λ(q2)V (q2)q2

(
h−(q2)− h+(q2)

)
,

g̃M2 = − 1
2C1

16m3
Bπ

2

(mB +mK∗)A1(q2)q2

(
h−(q2) + h+(q2)

)
, (7.3)

g̃M3 =
1

2C1

[
64π2m3

BmK∗
√
q2(mB +mK∗)

λ(q2)A2(q2)q2
h0(q2)

−16m3
Bπ

2(mB +mK∗)(m2
B − q2 −m2

K∗)
λ(q2)A2(q2)q2

(
h−(q2) + h+(q2)

)]
.

The new feature is that the next coefficient to the Taylor expansion is added to account
for possible effects when approaching the charm threshold. Next, the authors use the
measurements presented in Sec. 4 to extract the hiλ coefficients. The results of the fit are
shown in Fig. 7.4.
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Figure 7.4: Results of the fit to the to g̃Mi functions [135].

As can be seen, in order to fit the data correctly one has to have a significantly larger
charm-loop contribution than the one calculated by theoreticians [29]. It is worth pointing
out that it is not surprising that the 18 free parameters added to the fit do improve the fit
quality to experimental data. Furthermore, one has to note that the fit prefers a rather
constant contribution to the g̃Mi , which would have the same effect as if the NP modifying
the WC, which is q2 independent. This kind of approach has not provided the definite
statement about the nature of the observed effects and more development on the theory
and the experimental side is needed.
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7.1.5 Fitting the analytic structure of long distance effects

In the previous Sec. 7.1.4 we have shown the first attempt to extract the long distance
effect by parametrising the local correlator with third order polynomial. Here, we will
present a more robust and model independent parametrisation, conducted by the author
of this monograph with C. Bobeth, D. van Dyk and J. Virto in [137]. We will start from a
generic hadronic transition matrix element [29]:

Hµ(p, q) ≡ i
∫

d4x eiq·x〈K̄∗(p− q, η)|T{Jµe.m.(x), C1O1(0) + C2O2(0)}|B̄(p)〉 , (7.4)

which we decompose into the vector valued correlators Hi:

Hµ(p, k) ≡M2
B η
∗
α

[
Sαµ⊥ H⊥(q2)− Sαµ‖ H‖(q

2)− Sαµ0 H0(q2)
]
, (7.5)

where Sαµλ are the Lorentz structures:

Sαµ⊥ =

√
2MB√
λ

εαµkq ,

Sαµ‖ =
iMB√

2λ

[
λgαµ + 4M2

K∗q
αqµ − 4(q · k) qαkµ

]
,

Sαµ0 = −i 4MK∗(MB +MK∗)
λ
√
q2

[
(q · k) qαqµ − q2 qαkµ

]
.

In the previous approach (Sec. 7.5), the hλ defined in Eq. 7.2 enter the Hi correlators
in the following way:

Hλ
V = −iN

{
Ceff

9 ṼLλ +
m2
B

q2

[2mb

mB

Ceff
7 T̃Lλ − 16π2hλ(q2)

]}
, (7.6)

The correlators Hi are functions of complex plain with branch cuts and poles, while
the CFFMPSV parametrisation does not have any of those properties. We have proposed
a much more adequate parametrisation. In order to explore the properties of the poles
and branch cuts we, transform q2:

z(q2) ≡

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (7.7)

where t+ = 4M2
D and t0 = t+−

√
t+(t+ −M2

ψ(2S)). This transformation maps the cc̄ branch
cut in the q2 plane to the unit circumference |z| = 1, and the entire first Riemann sheet
in the q2 plane to the interior of the unit circle |z| < 1. This has been expired by the
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z-expansion for the form factors [138]. Now the Hµ(p, k) can be Taylor expanded around
z = 0. We propose the following parametrisation:

Hλ(z) =
1− z z∗J/ψ
z − zJ/ψ

1− z z∗ψ(2S)

z − zψ(2S)
Ĥλ(z), (7.8)

where

Hλ(z) = Ĥλ(z) =
[ K∑
k=0

α
(λ)
k zk

]
Fλ(z), (7.9)

and F are the form factors and α
(λ)
k are complex coefficients. We end the expansion after

k = 22. The fit to this model is performed using both theoretical and experimental results.
On the theoretical side we use the calculation results from [29] for Hλ(z) for points

q2 = [−7,−5,−3,−1] GeV2/c4. These calculations are used as observables to constrain
the Hλ(q2)/Fλ(q2). The ratios are later used to constrain the Eq. 7.8.

From the experimental constraints we use the amplitudes of decays: B → K∗ψn, where
ψ1 = J/ψ and ψ2 = ψ(2S). According to the LSZ formula, the decay amplitudes are
defined by the residual of the functions Hλ(q2) pole:

Hλ(q2 →M2
ψn) ∼ fracMψnf

∗
ψnA

ψn
λ M2

B(q2 −M2
ψn) + · · · , (7.10)

where Aψn are transversity amplitudes that have been measured by the Babar [85,139],
Belle [86,102,140] and LHCb [141] experiments. There are three transversity amplitudes,
so we can produce five observables3 in total:

|rψn⊥ |, |r
ψn
‖ |, |r

ψn
0 |, arg{rψn⊥ r

ψn∗
0 }, arg{rψn‖ r

ψn∗
0 }, (7.11)

where

rψnλ ≡ Res
q2→M2

ψn

Hλ(q2)
Fλ(q2)

∼
Mψnf

∗
ψnA

ψn
λ

M2
B Fλ(M2

ψn
)
. (7.12)

The numerical values of these observables are calculated using pseudo-experiments.
A fit is then performed to the above-mentioned experimental and theoretical constraints

using Eq. 7.8. As a result , one obtains the set of α(λ)
k parameters and the correlation

matrix of them. This allows us to calculate the SM prediction for full set of observables in
the B0→ K∗0µ+µ− decay. As can be seen in Fig. 7.5, the results of the calculation show a
clear tension w.r.t. to the measured values described in Chapter 4 of this monograph. It is
worth stressing out that this is the most precise determination of the SM prediction of the
B0→ K∗0µ+µ− decay.

We perform the second fit including the observables from Sec. 4 to determine the value
of C9 WC, using as prior the previously obtained correlator function. Both likelihood
(LLH) and method of moments (MOM) results are being taken into account. Furthermore,

2The value was chosen as the lowest value that provides good fit to the data.
3One phase can be chosen arbitrarily.
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Figure 7.5: Prior and posteriori predictions for P ′5 with the SM prediction and NP fit. The data
points correspond to the ones measured in Chapter 4 of this monograph.

we study two scenarios: the first one does not include the iterresonance bin4, while the
second one does. The results of this fit read:

(LLH) : C9 = 2.51± 0.29 , (7.13)
(LLH2) : C9 = 3.01± 0.25 , (7.14)
(MOM) : C9 = 2.81± 0.37 , (7.15)

(MOM2) : C9 = 3.20± 0.31 , (7.16)

which show a clear tension w.r.t. the SM prediction for C9. This is illustrated in Fig. 7.6.
This fits are in perfect agreement with the other global fits in Sec. 7.1.1 - 7.1.3. It is

worth stressing out that this is the first fit that considers the fundamental structure of
the long distance effects, as was done in the above described fit. Last but not least, this
approach can be extended to other decays of the type b→ s`−`+.

7.2 Possible New Physics contributions

In this section we will give a short overview of possible NP scenarios which could explain
the observed anomalies. There are many models that fit individually or some groups of
anomalies quite well. However, if NP is to be claimed in the flavour physics, it has to
form a consistent pattern and provide a global solution to the anomalies. Because of rich
literature and space limitations of this dissertation, we will just list the most popular
models and give references that the reader can follow if interested.

One of the most popular groups of models is the one postulating the existence of the
leptoquarks [142–151]. This type of models introduces a new kind of particles (called

4This is the bin between the J/ψ and ψ(2S) resonances.
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Figure 7.6: Posteriori distributions for the C9 WC for the fit.The dark and light regions correspond
to 68 % and 99 % probability band.

leptoquarks) that allow the leptons and quarks to interact with each other. Thus the
leptoquarks carry both the lepton and baryon number. An example of a Feynman diagram
with leptoquarks is shown in Fig. 7.7, left side.

The second most popular theory includes the non-universal and flavour changing Z ′

models [152–156]. Those models have a small disadvantage compared to leptoquarks:
they cannot explain the observed anomaly of R(D∗) [122]. A possible Feyman diagram
explaining b→ s`−`+ in this framework is shown in Fig. 7.7, right side.

The review of other models can be found in [157].

Figure 7.7: Example of a leptoquark interaction(left) and Z ′ (right).
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Chapter 8

Conclusion

In this monograph three experimental studies of the b→ s`−`+ transitions performed by
the author have been presented. The angular analysis B0→ K∗0µ+µ− showed a tension
w.r.t. the SM predictions, which is especially profound in the so-called P ′5 observable, that
to a large extend is free from form factor uncertainties. The analysis is one of the golden
channels in LHCb and has generated a huge interest in the flavour physics community.
The second study was dedicated to the measurement of higher moments and branching
fraction of the B0→ K+π−µ+µ− decay in the K∗0,2(1430)0 resonance region. This has been
the first observation of this decay and with advances on the theory side it has the potential
to be a complementary measurement in terms of NP sensitivity to the B0→ K∗0µ+µ−.
The third analysis was a search for a hypothetical new particle called inflaton. In this case
we have managed to exclude most of the inflaton parameters space.

When performing the above-mentioned studies, the author has introduced several novel
experimental techniques such as k-Folding, which has now become a standard in the LHCb
collaboration. Moreover, he has authored a paper proposing the application of the method
of moments to rare decays, later used by him in the measurement. In this way the author
for the first time has measured the angular observable S6c.

The angular distribution of B0→ K∗0µ+µ− together with the other b→ s`−`+ measure-
ments forms a consistent pattern of deviations from the SM. The global analysis has led to
the significance over 5σ. Unfortunately, the SM predictions suffer from QCD corrections
that could not have been taken into account properly while computing the SM predictions
and uncertainties. The future measurements together with improvements on the theory
side will hopefully be able to shed light on whether we are on the brick of discovering NP
or whether nature has played a cruel trick on us with the existence of large charm-loops
effects.
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