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1 INTRODUCTION

The CASTOR (Centauro And Strange Object Research) detector has been initially pro-
posed to study the very forward rapidity region in Pb+Pb collisions at the LHC and
thus to complement the CERN heavy ion physics program developed essentially in the
baryon-free midrapidity region. The CASTOR in the CMS will contribute not only to the
heavy ion program [1], but also to diffractive and low-x physics in pp collisions [2]. The
CMS and TOTEM experiments supplemented by the CASTOR detector will constitute
the largest acceptance system ever built at a hadron collider, having the possibility to
measure the forward energy flow [3].

The preliminary schematic design, the description of the detector performance can be
found in [4] and its integration in the CMS experiment has been presented in [5].

The comprehensive review [6] by E. Gladysz-Dziadus summarizes the physical motiva-
tion, experimental results which inspired the project and simulations showing its sensitiv-
ity to Centauros, strangelets and other exotic phenomena. Simulations of Centauro events
have been done by means of our Centauro generator CNGEN, which has been described
in [7]. The proposed “exotic” physics of the CASTOR calorimeter and the T2 telescope
(being a part of the TOTEM experiment) has been presented by E. Gladysz-Dziadu$ at
the CMS-Heavy Ion Meeting International Workshop on Physics and Techniques for the
LHC and RHIC Experiments, Delphi 2003 [8].

The CASTOR calorimeter prototypes have been constructed and tested with electron
beams at CERN/SPS in 2001, 2002 and in June 2003. The purpose of the last test
was to investigate the viability of different options, rather that to get the precise and
quantitative results. The general view of the CASTOR calorimeter and the photo of the
electromagnetic (EM) prototype are shown in Fig. 1. We have tested four readout units
of the calorimeter, arranged side-by-side in four azimuthal sectors, each consisting of 10
sampling units. Each sampling unit contained a tungsten plate 5 mm thick and three
planes of quartz fibres 640 pm thick !, in J1, J2 and S2 sectors, or alternatively one 1.8
mm thick quartz plate in the sector S1. It gives the filling ratios 37.6 % and 30 % for Q-
plate and Q-fibres options. The calorimeter has 45° orientation relative to the impinging
particles, so the total length of the sector with quartz plates was ~ 0.83 \;,; ~ 23.7 X,.
Different options and technical solutions have been investigated, as shown in Fig. 2.

In particular, we have checked the light transmittance in light guides with two dif-
ferent reflectors: HF-reflecting foil (Dupond + SiOy + TiO;) and a glass reflector (Al +
MgFr). We investigated the response of the calorimeter, by using different types of light-
reading devices, i.e. two different kinds of avalanche photodiodes (APDs): Hamamatsu
58148 (APD1) and Advanced Photonic DUV (APD2) and two different photomultipliers
(PMTs): Hamamatsu R374 and Philips XP2978. With electrons of energies between 20
and 200 GeV, we have studied a linearity of calorimeter response with energy and relative
energy resolution for quartz fibres (Q-F) and quartz plates (Q-P). The calorimeter was
placed on a platform movable with respect to the electron beam in both horizontal and
vertical directions. A telescope of two wire chambers in front of the calorimeter was used
to measure the electron impact point.

The preliminary results of the analysis have been already presented at the CMS meet-
ings [5]. Here a more precise analysis, based on the procedure used in the previous
CASTOR prototype tests and taking into account a beam profile has been applied. We

1600 wm of a quartz core and 40 pum of a silicon cladding
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Figure 1: The CASTOR calorimeter scheme and photo of the EM prototype [5].
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Figure 2: Different options investigated in the beam test in 2003 [5].

found a good linearity of response with energy for the calorimeter with quartz fibres as
well as with quartz plates and a good reflectance of a HF-reflecting foil. Advanced Pho-
tonic APDs seem to be a very realistic option for the light-reading device. Following the
results of the tests the modified version of the CASTOR calorimeter, with APDs instead
of PMTs and HF-reflecting foil instead of the glass mirror is being considered [5].

2 Linearity and energy resolution

To study linearity of a calorimeter response with energy and a relative energy resolution,
the central points C (Fig. 2) in different azimuthal sectors have been exposed to electron
beams of energy 20, 40, 80, 100, 150 and 200 GeV. The results of energy scanning, analysed
for four calorimeter options, are shown in the following figures:

1. Sector S1 - Quartz Plate, glass reflector, Philips PMT, central point C:
Figs. 3, 4, 5.

2. Sector S2 - Quartz Fibres, glass reflector, Philips PMT, central point C:
Figs. 6, 7, 8.

3. Sector J2 - Quartz Fibres, glass reflector, Hamamatsu APD, central point C:
Figs. 9, 10, 11.

4. Sector S1- Quartz Plate, glass reflector, Advanced Photonic APD, central point C:
Figs. 12, 13, 14.



Distributions of signal amplitudes, after introducing the cuts accounting a profile of
the beam, are in most cases symmetric and well fitted by a gaussian function (Figs. 3,
6, 9, 12). Asymmetry of few distributions was partly caused by the wide spread of the
beam in these events.

The calorimeter response turns out to be linear in the explored energy range. The av-
erage signal amplitude ADC , expressed in units of ADC channels, has been satisfactorily
fitted by the following formula:

ADC =a+b* E (1)

where energy E is expressed in GeV.

The fitted values of the parameters are shown in the Table 1.

Relative energy resolution of the calorimeter has been studied by analysis of o/E vs.
E (GeV) plots, which have been fitted by two different expressions [9, 10]:

o/E = po +p1/\/E (2)

0/E=po®p/VE®p/E (3)

where the mark @& means that the terms have been added in quadrature.

Three terms determine the characteristic of the energy resolution. The constant
term py, coming from the gain variation with changing voltage and temperature, lim-
its the resolution at high energies. To the stochastic term p; due to intrinsic shower
fluctuations, photon statistics contributes. The p, term contains the noise contribution
from capacitance and dark current.

Generally, both formulae satisfactorily fit the data (see Table 1). The important
point is that the constant term p, is close to 0 for all options. Also the stochastic term
p1, being less than 38 % for the S1 sector seems to be reasonable, when compared to
p = (36.2 £0.2) %, obtained in [11] for the calorimeter prototype of similar geometry
and technology. The readout by photodiodes leads to p, term, measured to be 1.25 GeV
and 4.5 GeV for Advanced Photonic APD and Hamamatsu APD respectively. It should
be noted that the APDs are very sensitive to both voltage and temperature changes but
in this test there was no their stabilization.

3 Area scanning

The purpose of area scanning was to check the uniformity of the calorimeter response,
generated by electrons hitting points located at different places of the sector area, the
possible “edge” effects, a lateral leakage from the calorimeter and a cross-talk between
neighbouring sectors.

3.1 Area scanning of the sector S2

For the area scanning of the sector S2 (Q-Fibres, glass), connected to a Philips PMT,
central points (A-E) as well as border points (I-O) (see Fig. 2) have been exposed to
electron beam of energy 100 GeV. Distributions of signal amplitudes are shown in Figs.
15 and 16 for central and border points respectively. The distributions are symmetric
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\ S1 - Quartz Plate, glass, Philips PMT
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Figure 4: Linearity in the sector S1: Quartz Plate, Philips PMT, central point C.
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Figure 5: Energy resolution in the sector S1: Quartz Plate, Philips PMT, central point C.
Two fits are shown: o/E = py + p1/VE -black line ; 0/E = py & p1/VE & py/VE - red
dashed line.
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\82 - Quartz Fibres, glass, Philips PMT |
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Figure 7: Linearity in the sector S2: Quartz Fibres, Philips PMT, central point C.

\ S2 - Quartz Fibres, glass, Philips PMT
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Figure 8: Energy resolution in the sector S2: Quartz Fibres, Philips PMT, central point C.
Two fits are shown: o/E = py + p1/VE -black line ; 0/E = py & p1/VE & py/VE - red
dashed line.
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Figure 10: Linearity in the sector J2: Quartz Fibres, Hamamatsu APD, central point C.
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Figure 11: Energy resolution in the sector J2: Quartz Fibres, Hamamatsu APD, central
point C. Two fits are shown: o/E = py+p:/VE -black line ; 0 /E = py ®p1/VE ®p2/VE
- red dashed line.

10



17T 2In31]

[BI9AJS JO SUIBI( UOIPIID 0}

pasodxs ueaq sey ((IJV 21U0j0yJ PaoueApY ‘sse[3 ‘@)e[d z1Ienf)) 7§ 10398 a1} Jo 1) jutod

[RIJUSD OY, "S[PUUeYD DV Ul possardxe ‘sopnjrdwre [RUSIS JO SUOTINGLIISI(]

"So1310UD

1T

Run 108, 20 GeV

400 —
350 -
= htemp
- ntries
300 — Mean 119.8
E RMS 8.211
E c? /ndf 81.05/71
250 — Constant ~ 365.7- 5.2
E Mean 120.3-0.1
200 F— Sigma 7.81- 0.06
150 -
100 F—
50 —
0 E 1 L L
60 80 100 120 140 160 18
Run 109, 80 GeV
500 [—
C htemp
- ntries
r Mean 383.5
A= RMS 18.02
= ¢? / ndf 109.9/90
C Constant 550.8—-6.3
300 }— Mean 384.1- 0.2
- Sigma 16.93— 0.11
200 [—
100 —
ozl L 1 I I I
250 300 350 400 450 500
Run 111, 150 GeV
400~
350 —
= tem
= Entries 6333
300 — Mean 681.1
E RMS 325
E c? /ndf 39.5/30
250 — Constant  359.5- 6.0
E Mean 681.9- 0.4
200 — Sigma 27.28 - 0.32
150 F—
100
50—
B o AP nnnllnnnnflnnnnl L Lo nnfln
%DO 550 600 650 700 750 800 850 900

Run 107, 40 GeV

900

800

700

600

500

400

300

200

100

350

300

250

200

150

100

50

350

E htemp

— |Enties 11910 |

= Mean 205.1

iy RMS 12.51

E c? / ndf 133.7/71

E Constant 844-9.7

= Mean 205.7- 0.1

- Sigma 11.14-0.08
120 140 160 180 200 220 240 260 280 300 320

Run 110, 100 GeV

F htem
= Entries 8392
- Mean 469.7
- RMS 21.59
— c* /'ndf 51.68/41
F Constant 343.6-4.9
- Mean 470.4-0.2
o Sigma 19.07 - 0.20

400 450 500 550

Quartz Fibres, APD2

Energy Scan, S1-C

0 5dc13



\Sl - Quartz Plate, glass, APD2

700
6001~ c?=2.3/3
soof.  a=3252-2.35

b =4.35-0.054

Response
N
o
(=]

300—

200—

100|—
k\ | ‘ | | | ‘ | | | ‘ | | | ‘ | | | ‘ | | | ‘ | | | ‘ | | | ‘

20 40 60 80 100 120 140 160
Energy (GeV)

Figure 13: Linearity in the sector S1: Quartz Plate, APD2, central point C.
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and well described by Gaussian fits for majority of investigated points. Asymmetric
distributions are seen only for points closer than ~ 3 mm from the calorimeter outer edge
or the sector border.

Fig. 17 shows dependence of the average calorimeter response and relative resolution
(o/F) on the distance R from the calorimeter center, for both central and border points.
The upper picture shows coordinates of the points, corrected for the beam impact point
position. It is seen that points E, F, J practically lie at the edge of the calorimetr. The
raise of signal amplitudes as well as of distribution widths with R can be caused by a
lateral spread of a beam. For large R a substantial part of beam electrons is outside of
the calorimeter sector and can fall directly to the light guides. The picture at the right
lower pad shows that the relative energy resolution practically does not depend on the
position of the impact points (with exception of the points E, F, J, located very close to
the calorimeter edge) and it is at the level of ~ 4.6 % for 100 GeV electrons.

3.2 S1-S2 cross talk

10 points (runs 113 - 122), located at distances ~ 2.5-32 mm from the S1 (QP, glass)/S2
(QF, glass) sector border, have been exposed to electron beam of energy 80 GeV. The
simultaneous readout of both sectors have been done by Advanced Photonic APD and
Hamamatsu PMT in 51 and S2 respectively. The upper left pad of Fig. 18 shows the
coordinates of the measured points, in the calorimeter frame, when corrected for the beam
impact point position. The star marks the coordinates of the border point, between S1
and S2 sectors, found from dependence of signal amplitudes on X(Y) coordinates (lower
pads).

Fig. 19 shows that distributions of signal amplitudes in the S2 sector, for points
distanced from the sector border more than ~ 8 mm, are symmertic (Gaussian) and a
leakage to the S sector is negligible. The relative energy resolution o/F is of the order
~ 2.9 % for 80 GeV electrons.

The observed leakage between S7 and S2 sectors is shown in Figs. 20 and 21. De-
pendences of the calorimeter response, leakage fraction and relative energy resolution
o /response on the distance d from the sector border, for S7 (runs 118-121) and S2 sectors
(runs 113 - 117, 122) are shown in Fig. 22. Close to the sector border, both a light
output and energy resolution are a little better for S2-Quartz Fibres sector connected to
Hamamatsu PMT (o/E ~ 2.9 %) than for §1-Quartz Plate sector connected to Advanced
Photonic APD (0/F ~ 4.5 %). At distances exceeding ~ 14 mm a lateral leakage to the
neighbouring sectors is practically negligible.

3.3 Comparison of J1, J2 and S1 sectors

For comparison of the uniformity of calorimeter response, several points located at differ-
ent places of the sectors area have been exposed to electron beam of energy 80 GeV. The
points A-E at the middle of J1, J2 and S1 sectors and points 4-8 at the border part of the
S1 sector (see Fig. 2) have been studied. All sectors have been connected to Hamamatsu
PMT. Distributions of signals are shown in the following figures:

1. J1 - Quartz Fibres, foil, Hamamatsu PMT, Fig. 23;

2. J2 - Quartz Fibres, glass, Hamamatsu PMT, Fig. 24;
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3. S1 - Quartz Plate, glass, Hamamatsu PMT, sector centre, Fig. 25;
4. S1 - Quartz Plate, glass, Hamamatsu PMT, sector border, Fig. 26.

Symmetric and Gaussian distributions of signal amplitudes in the middle of the sectors
and asymmetric distributions close to the sector border (points 4-8) and sometimes (J1
sector) also close to the inner (point A) and outer (point E) calorimeter edge are observed.
The beam profile correction reduces asymmetry. Also some leakage from the S7 to the
neighbouring sector, for border points (4-8), is seen.

Comparison of a light output and a relative energy resolution for all studied options is
shown in Figs. 27 and 28 respectively. Light output is the highest in the S1 (QP - glass)
sector, and it is practically the same for the central and for the border points. It depends
weakly on the position of the impact point: for the S1 a weak decrease, and for the J1
and J2 sectors a weak increase of the calorimeter response with a distance R from the
calorimeter center is observed.

The relative energy resolution is almost independent of the position of the impact
point and it is ~ 1.5-2.5 % for S1 (QP-glass) and J2 (QF-glass) sectors and ~ 3.5-4.0 %
for J2 (QF-foil) to 80 GeV electrons.

4 SUMMARY

1. Comparison the quartz plate with quartz fibres suggests that a calorimeter with a
quartz plate is a promising option, although it needs some further investigation.

e Good linearity of response with energy is observed for both options.
e (Q-plate gives more the light output than equal thickness Q-fibres (Fig. 27).

e Relative energy resolution is not worse for the solution with quartz plates.
At §1-QP as well as J2-QF sectors, both connected to Hamamatsu PMT, we
found the similar energy resolution, ~ 2 %, to 80 GeV electrons (Fig. 28).
Comparing quartz plates to quartz fibres both connected to the Philips PMT
and with using the same glass reflector in the light guides (Figs. 5 and 8,
Table 1), we see that the constant term pgy, that limits performance at high
energies, is less than 1% in both options. The stochastic term p; ~ 36 %
and 45 % for quartz plates and quartz fibres respectively. It means that we
would measure an electromagnetic energy hitting the CASTOR in Pb+Pb
collisions at the LHC (~ 40 TeV according to the HIJING predictions) well
below 0.5 %. Also the exotic objects, whose energy is expected to be higher
than several TeV [4, 6] could be measured with sufficient precision. These
values of the parameter p; are comparable to p; = (36.2 + 0.2) %, obtained
for the calorimeter prototype of similar geometry and technology [11]. On
the other hand, comparison between the CASTOR prototype and the NA52,
H1 and other electromagnetic calorimeters which employ similar quartz fibres
technology, but the geometries are different [9, 10], shows that there is room
for improvement of the stochastic term, what can be profitable in realization
of p + p physics.
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e Some leakage from the S1 (Q-plate) sector to the neighbouring S2 (Q-fiber)
sector, for impact points closer than 20 mm from the sector border, is observed
(Figs. 18, 20, 21, 22).

2. The APDs appear to be a realistic option for the light-reading device, although they
still need more investigation (radiation-hardness and cooling tests).

3. The relative energy resolution is weakly dependent on the position of the impact
point at the sectors containing quartz fibres as well as quartz plates (Fig. 28).

4. The light output is a little higher for the glass reflector, than that for the HF-foil,
with using the Hamamatsu PMT as the light reading device (Fig. 27). However,
the HF-reflecting foil has better reflectance in the region of high quantum efficiency
of APD (A >400 nm) than glass mirror [5], so the option using simultaneously both
a HF-foil and APDs seems to be worth consideration.

These results inspired some modifications in the CASTOR calorimeter design. The
considered modified design, based on the Q-plates, APDs and HF-reflecting foil has been
presented at CMS meetings [5].
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Figure 17: Dependence of the average signal amplitude on the distance R from the
calorimeter center in the sector S2: Quartz Fibres, Philips PMT. Response to 100 GeV
electron beam, hitting the central (A-E) and the border (I-O) points, are shown.
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Figure 18: Calorimeter response vs. X (Y) coordinates, in the sectors: S1 (QP, APD2)
and S2 (QF, Hamamatsu PMT) for several points at distances ~ 2.5-32.0 mm from the
sector border. The upper left pad shows the position of the points in the calorimeter
frame, corrected for the beam impact points. The star marks the coordinates of the
sectors border point, found from dependent@ of signal amplitudes on X(Y) coordinates
(lower plots).
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Figure 22: Comparison of the calorimeter response and the resolution (o/response) in the
sectors: S1 (QP, APD2) (runs 118-121) and S2 (QF, Hamamatsu PMT) (runs 113-117,
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Figure 27: Comparison of calorimeter response produced by 80 GeV electrons in several
points (A-E) of J2 (QF, glass), JI (QF-foil) and S1 (QP-glass) sectors, all connected to
Hamamatsu PMT. Dependence of calorimeter response on the distance from the calorime-

ter centre is shown.
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Figure 28: Comparison of calorimeter resolution to 80 GeV electrons in several points (A-
E) of J2 (QF, glass), J1 (QF-foil) and S1 (QP-glass) sectors, all connected to Hamamatsu
PMT. Dependence of calorimeter resolution on distance from the calorimeter centre is

shown.
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