The Henryk Niewodniczański INSTITUTE OF NUCLEAR PHYSICS Polish Academy of Sciences 152 Radzikowskiego Str., 31-342 Kraków, Poland

www.ifj.edu.pl/reports/2005/

Kraków, February 2005

REPORT No 1958/PN

Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

Urszula Wiącek, Ewa Krynicka

Abstract

Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H_3BO_3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems.

1. Introduction

Czubek's pulsed neutron method [Czubek *et al.*, 1996] of measuring the thermal neutron macroscopic absorption cross-section Σ_a in small samples is based on a combination of a theoretical approach with experimental results. The theory is based on analytical solutions of the thermal neutron diffusion in a two-region geometry. During measurements the sample-moderator system is irradiated by a burst of 14 MeV neutrons which are slowed down in the system and the thermal neutrons escaping from the system are detected. In consecutive measurements the sample of well-defined and fixed dimensions is enveloped in shells of the moderator of variable thickness and covered with a cadmium shield. A scheme of the experimental set-up is given in Fig. 1. The time decay constant λ of the fundamental mode, $\sim e^{-\lambda t}$, of the pulsed thermal neutron flux in the system is measured. The absorption cross-section Σ_a of the material of the inner sample is interpreted from the measurement results and from the calculation of a certain theoretical curve in such two-region system performed under particular assumptions.

Fig.1. Scheme of the pulsed two-region system.

Materials of a very high purity and, thus, of the exactly known absorption of thermal neutrons are required to verify experimentally the method. It is very difficult to fulfil these requirements and the experimental procedure is time consuming. Computer simulations of the experiments can be very helpful or even can substitute the real measurements. The present work is aimed to compare the results of simulations of the pulsed neutron experiment in Czubek's method by the Monte Carlo method with results of the real experiment and to answer whether these simulations can help in interpretation of difficult experimental cases in

Czubek's method. The simulations have been performed in two-region systems in spherical and cylindrical geometry.

There are various large computational transport codes, as MORSE, FLUKA, MCNP, which use the Monte Carlo method. Only MCNP code allows us to simulate and investigate time-dependent neutron fields. The pulsed neutron experiments were earlier simulated for homogeneous media, as polyethylene [Dąbrowska and Drozdowicz, 2000] and for basic rock minerals [Drozdowicz *et al.*, 2003]. Now, the computer simulations have been performed of the pulsed neutron experiments in two-region geometry like that used in Czubek's method.

2. Hydrogenous moderator

Plexiglas is used in Czubek's method as the outer moderator to obtain a sufficient number of thermal neutrons, which create the thermal neutron field in the investigated system. Plexiglas [poly(methyl methacrylate), $(C_5H_8O_2)_n$] contains hydrogen atoms bound in the molecular system. For most elements the energy-dependent scattering cross-section $\sigma_s(E)$ for thermal neutrons is well described by formula of the free gas model, even for bound atoms. Moreover, it can be often assumed with a sufficient accuracy as a constant, $\sigma_s(E) \approx \sigma_{sf}$, where σ_{sf} is the free atom scattering cross-section. However, this is not the case of a hydrogenous medium because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics, characterised with internal energy modes which are comparable with the incident neutron energies. The scattering cross-section $\sigma_s(E)$ and the average cosine of the scattering angle $\mu(E)$ are then strongly dependent on the incident neutron energy and these dependences are different for different compounds. A single general exact relationship, valid for the energy dependence of the microscopic scattering cross-section $\sigma_s^H(E)$ of hydrogen in various chemical bindings, cannot exist. The individual energy dependence $\sigma_s^H(E)$ for a particular molecule should used.

The pulsed neutron experiment has been simulated by the Monte Carlo method using the MCNP code in which a special procedure is present for transport of thermal neutrons through media containing hydrogen. The standard nuclear data libraries containing the hydrogen scattering cross-sections for neutrons in the thermal energy region exist for a few hydrogenous materials, such as: light and heavy water, methane, benzene, zirconium hydride and polyethylene. Structures of these molecules are simple: H₂O, D₂O, CH₄, C₆H₆, ZrH₂, (CH₂)_n, respectively. The Plexiglas macromolecule is more complex. For neutron scattering it contains two types of the hydrogen atoms in the structural formula, considering their neighbourhood. Namely, hydrogen is present in the CH₂ and CH₃ groups. There is no data library for the MCNP code, dedicated especially for hydrogen in Plexiglas.

A procedure which can be adapted to handle by the MCNP the hydrogenous system in Plexiglas is to use the same microscopic data as those for polyethylene, $(CH_2)_n$. This procedure finds the recommendation in comparison of the experimental values of the microscopic scattering cross-sections of hydrogen in Plexiglas obtained by Drozdowicz (1989) and Sibona *et al.* (1991) with those measured in polyethylene by Granada *et al.* (1987). The energy dependence of the total scattering cross-section of hydrogen, $\sigma_s^{H}(E)$, in Plexiglas and polyethylene is similar although non-identical. Moreover, greater differences can exist between the zero- and first-order energy transfer scattering kernels, $\sigma_0(E \rightarrow E')$ and $\sigma_1(E \rightarrow E')$, in Plexiglas and polyethylene, which influence the average cosine of the scattering angle and the transport cross-section. In spite of this it is interesting to compare the λ_{MCNP} values from the MCNP-simulated experiments with the λ_{exp} values measured in real experiments. The results of the comparison are presented in the paper.

3. Simulated pulsed-neutron experiment

As said, the Monte Carlo method was found very helpful for simulations of the pulsed neutron experiments [Dąbrowska and Drozdowicz, 2000; Woźnicka *et al.*, 2000]. The MCNP 4C code [Briesmeister, 2000] has been used here for such simulations.

Neutrons in hydrogenous materials slow down very quickly and they achieve in a short time the Maxwellian energy distribution inside the system. Considering the neutron source, the test was made using once 14 MeV and, second, the Maxwellian distributed thermal neutrons. The results show no influence of the pulsed source type on the determined fundamental decay constant. Therefore, it is possible to use the Maxwellian source in simulations [Dabrowska and Drozdowicz, 2000; Woźnicka et al., 2000], which makes the Monte Carlo calculation significantly faster. Thus, the initial energies of neutrons has been sampled from the Maxwellian source at the room temperature ($E_T = kT = 0.0253$ eV). The thermal neutron source has been isotropic and the neutrons have been uniformly generated inside the sample. The initial position of neutrons has been sampled from the probability density function $p(r) \sim r^2$ for r being inside the entire system. Neutrons have been generated within a 100 µs in width neutron burst. After the neutron burst, the neutron flux in the investigated volume has been scored in 1000 time channels. The width of the channels has been adjusted for each sample individually, depending on the decay rate. The number of histories in the MCNP runs has been chosen for each sample individually to assure the error corresponding to the counting statistics in channels not worse then 0.5%.

After the neutron burst, the flux vanishes in time. Usually it can be recognised as a sum of a number of exponentials and background. We are interested in the decay constant λ of the

fundamental mode, $e^{-\lambda t}$. In order to determine the time decay constant for a given sample, the thermal neutron flux has been scored in time intervals after the source pulse. The decay constant λ of the fundamental mode thermal neutron flux for each sample has been calculated like in a real pulsed experiment [Drozdowicz *et al.*, 1993], including a procedure of the observation of behaviour of the determined value as a function of the delay time.

The relative deviation ε has been defined for comparing the time decay constants from the simulated λ_{MCNP} and real λ_{exp} experiments:

$$\varepsilon \left[\%\right] = \frac{\lambda_{\text{MCNP}} - \lambda_{\text{exp}}}{\lambda_{\text{exp}}} \cdot 100\% \quad . \tag{3.1}$$

Simulations corresponding to the real experiments in spherical [Czubek *et al.*, 1980] and cylindrical [Krynicka *et al.*, 2000a; Krynicka *et al.*, 2001] geometry have been performed. Two kinds of samples have been used: aqueous solutions of boric acid, H₃BO₃, and of potassium chloride, KCl. Their concentrations have been varied to vary the thermal neutron absorption cross-section.

4. Simulations in two-region spherical geometry

The simulations have been performed for the two-region spherical geometry (concentric spheres). The sample of boric acid in light water (H₃BO₃ + H₂O), of the known mass concentration *C* and the resulting known density ρ , has been surrounded by Plexiglas of density $\rho = 1.178$ g/cm³. The radius of the samples has been fixed $R_1 = 5.0$ cm. The range of the outer radius of Plexiglas has been $R_{2g} = (6.5 \div 9.49)$ cm.

The proper selection of MCNP data libraries is an important procedure. Scattering cross--sections for oxygen, boron and carbon have been taken from the ENDF/B-VI.0 standard MCNP data library. For scattering of thermal neutrons on hydrogen the $S(\alpha,\beta)$ model has been used:

- H in H_2O : TMCCS1, lwtr.01t,
- H in H₃BO₃ is treated as in water,
- H in Plexiglas: TMCCS1, poly.01t (which is for H in polyethylene).

Boron is an element characterising with a high absorption of thermal neutrons. The abundance of the contributing isotopes, ¹¹B and ¹⁰B, is very important because their microscopic absorption cross-sections differ extremely. The natural boron isotopic abundance fluctuates slightly [Rosman and Taylor, 1998], which can lead to an uncertainty of the microscopic absorption cross-section σ_{aB} . In this calculations it has been assumed as 20% ¹⁰B and 80% ¹¹B according to Mughabghab *et al.* (1981).

The obtained time decay constants of the neutron flux λ_{MCNP} has been compared with the λ_{exp} values known from experiments [Czubek *et al.*, 1980]. The results are listed in Table 1. The standard deviations $\sigma(\lambda)$ of the λ_{exp} and λ_{MCNP} decay constants have been obtained from the variance.

С	ρ	R_{2g}	λ_{MCNP}	λ_{exp}	ε
			σ(λ)	σ(λ)	
[%]	[g/cm ³]	[cm]	$[s^{-1}]$	$[s^{-1}]$	[%]
1.75	1.00475	6.5	35 226	33 272	5.87
			24	486	
				33 311	5.75
				358	
		7.5	24 468	23 357	4.76
			24	163	
				23 456	4.31
				63	
0.875	1.0017	6.5	24 777	24 776	0.00
			51	112	
				24 771	0.02
				111	
		6.99	22 210	21 286	4.34
			32	192	
				21 291	4.32
				107	
		7.5	19 581	18 893	3.64
			20	84	
				18 801	4.15
				106	
		9.49	12 508	11 819	5.83
			4	182	
				11 829	5.74
				246	

Table 1. Time decay constants λ from the simulated and real experiments in two-region spherical geometry. The H₃BO₃ reference solutions in the inner region.

The average relative deviation ε equals 4.06 %.

The plot λ_{MCNP} vs λ_{exp} is shown in Fig. 2. If the results of the simulations and experiments were in a perfect agreement they would lay on the diagonal.

Fig. 2. Decay constant λ_{MCNP} vs λ_{exp} in two-region spherical geometry with H₃BO₃ reference solutions in the inner region.

5. Simulations in the two-region cylindrical geometry

The second series of simulations has been performed for the two-region cylindrical geometry (coaxial cylinders). The samples of boric acid in light water (H₃BO₃ + H₂O) and potassium chloride in light water (KCl + H₂O) of the known mass concentrations *C* and the resulting densities ρ , have been surrounded by Plexiglas of the variable size ($H_{2g} = 2R_{2g}$, where H_{2g} and R_{2g} are the external height and radius of the cylinder). The Plexiglas density has been equal $\rho = 1.1764$ g/cm³. The size of the samples has been constant ($H_1 = 2R_1 = 6.0$ cm) and the range of the outer cylinder radius has been $R_{2g} = (4.5 \div 7.0)$ cm.

Scattering cross-sections for oxygen, boron, potassium, chlorine and carbon have been taken from the ENDF/B-VI.0 standard MCNP data library. For scattering of thermal neutrons on hydrogen the $S(\alpha,\beta)$ model has been used:

- H in H_2O : TMCCS1, lwtr.01t,
- H in H₃BO₃ is treated as in water,
- H in Plexiglas: TMCCS1, poly.01t (which is for H in polyethylene).

The abundances of ¹⁰B and ¹¹B for the H_3BO_3 material used in experiments were found in independent measurements [Krynicka *et al.*, 2000b]. They are 19.55% ¹⁰B and 80.45% ¹¹B.

The obtained time decay constants of the neutron flux λ_{MCNP} have been compared with the λ_{exp} values known from the experiments [Krynicka *et al.*, 2000a; Krynicka *et al.*, 2001]. The results are listed in Tables 2 and 3. The plot λ_{MCNP} vs λ_{exp} is shown in Fig. 3 and Fig. 4.

Table 2. Time decay constants λ from the

Table 2.	(continued)

simula	simulated and real experiments in two-region						ρ	H_{2g}	λ_{MCNP}	λ_{exp}	3
cylindi	rical geor	metry.	The H ₃ E	BO ₃ refer	rence		•		$\sigma(\lambda)$	$\sigma(\lambda)$	
solutio	ns in the	inner r	egion.			[%]	$[g/cm^3]$	[cm]	$[s^{-1}]$	$[s^{-1}]$	[%]
C	0	H ₂ .	λ_{MCNP}	λ_{exp}	c					22 693	2.15
C	μ	112g	σ(λ)	σ(λ)	c			10.9	21 624	89	2.14
[%]	[g/cm ³]	[cm]	$[s^{-1}]$	$[s^{-1}]$	[%]			10.8	21 624 42	21 170 73	2.14
1.0000	1.0022	10.4	22 620	22 037	2.65					21 083	2.57
			49	122						84	
				22 090	2.40					21 050	2.73
				184						68	0.71
				22 102	2.34					21 054	2.71
				81	• • •	1 2000	1.0020	10.0	25 506	148	2.00
				22 003	2.80	1.2000	1.0029	10.0	23 300 60	23 003	2.00
		10.9	21 125	189	1.04				00	24 875	2.54
		10.0	21 123	20722	1.94					112	2.0 .
			51	20 647	2.32					24 945	2.25
				97	2.32					116	
				20 625	2.42					24 944	2.25
				68						96	
				20 683	2.14			10.4	23 724	23 256	2.01
			10.01	120					48	145	2.45
		11.2	19 817	19 355	2.39					25 157	2.43
			36	65 10.200	260					23 222	2.16
				19 299	2.08					114	2.10
				19 367	2.32					23 208	2.22
				71	2.32					127	
				19 362	2.35			10.8	22 106	21 630	2.20
				91					54	89	
1.1000	1.0025	10.0	24 887	24 386	2.05					21 628	2.21
			70	105						85	1.27
				24 229	2.72					21 808	1.37
				80	2.42					21 724	1 76
				24 297	2.43					88	1.70
				03 24 278	2 51	1.4010	1.0036	9.6	28 843	28 329	1.81
				2 <u>-</u> 278 86	2.31			-	70	120	
		10.4	23 181	22 724	2.01					28 293	1.94
			42	111	_					81	
				22 643	2.38					28 403	1.55
				119						139	0.00
				22 630	2.43					28 223	2.20
				154						149	

Table 2. (continued)

Table 2.	(continued	l)
----------	------------	----

С	ρ	H_{2g}	$\lambda_{MCNP} \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	3	С	ρ	H_{2g}	$\lambda_{MCNP} \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	3
[%]	[g/cm ³]	[cm]	[s ⁻¹]	[s ⁻¹]	[%]	[%]	[g/cm ³]	[cm]	[s ⁻¹]	[s ⁻¹]	[%]
		10.0	26 706	26 177	2.02					34 692	3.56
			65	104						517	
				26 172	2.04					34 684	3.59
				81						371	a 10
				26 036	2.57			9.6	31 420	30 676	2.43
				164	2.25				57	/6	2.14
				20 094	2.35					30 762 145	2.14
		10.4	24 710	24 235	1 06					30 742	2 21
		10.4	24 / 10	102	1.90					101	2.21
			-10	24 251	1 89					30 705	2.33
				198	1.07					104	2.55
				24 269	1.82			10.0	28 856	28 155	2.49
				196					37	109	
				24 144	2.34					28 197	2.34
				136						150	
1.6011	1.0042	9.0	34 448	33 413	3.10					28 147	2.52
			72	255						116	
				33 299	3.45					28 129	2.58
				319	0.07	2 001 1	1.007.6		44.040	85	2.10
				33 356	3.27	2.0014	1.0056	8.2	44 942 70	44 019	2.10
				22 241	2 22				/8	<u> </u>	2 72
				33 341	3.32					45 754	2.12
		96	30 322	29 662	2.23					43 705	2.83
		2.0	75	164	2.25					430	2.05
				29 561	2.57					43 680	2.89
				162						443	
				29 657	2.24			8.6	41 063	39 823	3.11
				140					136	306	
				29 513	2.74					39 792	3.19
		10.0		95						173	• • •
		10.0	27 934	27 216	2.64					39 889	2.94
			51	1/4	2 71					<u> </u>	1.61
				2/ 190	2./1					40 411	1.01
				27 177	2.79			9.0	37 407	36 705	1 91
				154	2.17			7.0	92	120	1.71
				27 190	2.74				22	36 777	1.71
				148						207	
1.8000	1.0049	9.0	35 928	34 696	3.55	· · · · · · · · · · · · · · · · · · ·					•
			56	614							
				34 586	3.88						
				419							

 Table 2. (continued)

 Table 2. (continued)

С	ρ	H_{2g}	$\lambda_{ m MCNP} \ \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	ε	С	ρ	H_{2g}	$\lambda_{MCNP} \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	ε
[%]	[g/cm ³]	[cm]	[s ⁻¹]	[s ⁻¹]	[%]	[%]	[g/cm ³]	[cm]	[s ⁻¹]	[s ⁻¹]	[%]
2.1000	1.0060	8.2	45 963	45 174	1.75					37 910	0.85
			185	44 987	2.17					328	1.04
				206						235	
				45 065	1.99	2.3000	1.0067	8.2	48 179	46 901	2.72
				45 180	1.73				130	47 184	2.11
				262						219	
		8.6	41 904	41 054	2.07					47 142	2.20
			151	451	2.40					338	0.04
				40.920	2.40					4/113	2.26
				41 150	1.83			8.6	43 717	42 572	2.69
				339					141	216	
				40 861	2.55					42 131	3.76
		0.0	27.000	147	1.07					260	
		9.0	37 998	3/523	1.27					42 602	2.62
			47	37 350	1.73					42 652	2 50
				163						290	2.50
				37 512	1.30			9.0	39 445	38 727	1.85
				197	1.00				51	143	
				37 539	1.22					38 572	2.26
2,2000	1 0063	82	47 217	46 202	2.20	2 4000	1.0070	82	/19/037	131	2 54
2.2000	110000	0.2	160	380	2.20	2.4000	1.0070	0.2	100	239	2.34
				46 145	2.32					48 184	1.77
				236						397	
				45 902	2.86					47 785	2.62
				<u> </u>	2 68					469	1 /2
				361	2.00					48 348	1.45
		8.6	42 868	41 413	3.51			8.6	44 456	43 143	3.04
			107	250					134	162	
				41 480	3.35					43 258	2.77
				<u> </u>	3 75					42 371	1 02
				434	5.75					221	4.72
				41 989	2.09					43 212	2.88
				169						285	
		9.0	38 234	37 831	1.07					42 642	4.25
			42	284	0.05					332	2.05
				211	0.95					42 /00	5.95

С	ρ	H_{2g}	$\lambda_{ m MCNP} \ \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	ε
[%]	[g/cm ³]	[cm]	$[s^{-1}]$	[s ⁻¹]	[%]
		9.0	40 035	38 701	3.45
			49	291	
				39 032	2.57
				274	
				38 569	3.80
				520	
				38 923	2.86
				245	
				38 827	3.11
				136	
				38 920	2.86
				342	

 Table 2. (continued)

The average relative deviation ε equals 2.44 %.

Fig. 3. Decay constant $\lambda_{MCNP} vs \lambda_{exp}$ in two-region cylindrical geometry with the H_3BO_3 reference solutions in the inner region.

Table 3. Time decay constants λ from the simulated and real experiments in two-region

simula	simulated and real experiments in two-region						0	H_{2}	λ_{MCNP}	λ_{exp}	c
cylindi	rical geo	ometry	. The K	Cl refer	rence		Р	112g	σ(λ)	σ(λ)	c
solutio	ons in the	inner r	region.			[%]	[g/cm ³]	[cm]	$[s^{-1}]$	$[s^{-1}]$	[%]
С	ρ	H_{2g}	λ_{MCNP} $\sigma(\lambda)$	λ_{exp}	ε					12 574 78	2.27
[%]	[g/cm ³]	[cm]	[s ⁻¹]	[s ⁻¹]	[%]	15.000	1.0974	11.6	16 757 26	16 474 49	1.72
11.500	1.0734	12.8	13 754	13 482	2.02				20	16 453	1.85
			29	23						39	
				13 494	1.93					16 416	2.08
		13.2	13 153	12 887	2.06					16 534	1.35
		10.2	26	42	2.00					85	
				12 872	2.18					16 462	1.79
		12.6	12 602	103	1.64					97	1 35
		15.0	12 002	12 399 60	1.04					94	1.55
				12 352	2.02			12.0	15 866	15 595	1.74
		14.0	10.114	38	1.00				22	67	1.05
		14.0	12 114	11 898	1.82					15 578	1.85
			10	11 885	1.93					15 595	1.74
				51						59	
13.000	1.0836	12.4	14 708	14 423	1.98					15 583	1.82
			20	14 410	2 07			12.4	15 109	14 764	2.34
				46	2.07				27	51	
				14 428	1.94					14 874	1.58
		12.0	14.022	71	1.02					66 14 760	236
		12.8	14 022	13/5/	1.93					84	2.30
			10	13 752	1.96					14 889	1.48
				46				1.0.0		97	1.0.1
				13 725	2.16			12.8	14 399	14 125	1.94
		13.2	13 411	52 13 145	2.02				50	14 104	2.09
		13.2	25	84	2.02					114	,
				13 144	2.03					14 077	2.29
				62	1.01					50	1.67
				13 1/3 62	1.81					53	1.07
		13.6	12 859	12 590	2.14	L	1	I	1		1
			24	39							
				12 598	2.07						
				63							

 Table 3. (continued)

 Table 3. (continued)

С	ρ	H_{2g}	$\lambda_{MCNP} \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	ε	С	ρ	H_{2g}	$\lambda_{ m MCNP} \ \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	в
[%]	[g/cm ³]	[cm]	[s ⁻¹]	[s ⁻¹]	[%]	[%]	[g/cm ³]	[cm]	[s ⁻¹]	$[s^{-1}]$	[%]
18.000	1.01185	10.8	19 622 29	19 370 62	1.30			10.8	20 522 41	20 095 122	2.12
				19 204	2.18					20 176	1.71
		11.2	18 499	18 258	1.32					20 157	1.81
			28	18 254	1.34					20 152	1.84
				53 18 157	1.88			11.2	19 263	89 18 944	1.68
				86 18 225	1.50				21	85 18 924	1.79
		11.6	17 462	10 220	1.00					77	2.01
		11.0	22	53	1.90					18 885	2.01
				17 185 62	1.61					18 893 66	1.96
				17 183 94	1.62			11.6	18 154 30	17 797 102	2.01
				17 160	1.76					17 755 100	2.25
		12.0	16 524	16 225	1.84					17 812	1.92
			22	16 232	1.80					17 859	1.65
				35 16 213	1.92	23.600	1.1593	10.0	24 324	57 23 972	1.47
				76 16 216	1.90				44	59 24 079	1.02
		12.4	15 668	32	2 07					83	1 61
		12.1	13	46	2.07					<u>77</u>	1.01
				48	2.11					23 921 104	1.08
21.000	1.1401	10.4	21 890 42	21 544 84	1.61			10.4	22 663 26	22 259 98	1.81
				21 532 67	1.66					22 334 116	1.47
				21 547	1.59					22 305	1.61
				21 538	1.63					22 249 104	1.86

С	ρ	H_{2g}	$\lambda_{ m MCNP} \ \sigma(\lambda)$	$\lambda_{exp} \sigma(\lambda)$	ε
[%]	[g/cm ³]	[cm]	$[s^{-1}]$	[s ⁻¹]	[%]
		10.8	21 207	20 791	2.00
			29	76	
				20 787	2.02
				76	
				20 774	2.08
				160	
				20 827	1.82
				71	
		11.2	19 900	19 490	2.10
			32	37	
				19 512	1.99
				62	

Table 3. (continued)

The average relative deviation ϵ equals 1.84%.

Fig. 4. Decay constant λ_{MCNP} vs λ_{exp} in two-region cylindrical geometry with the KCl reference solutions in the inner region.

The useful range of the time decay constants λ in Czubek's method covers the interval 12 000 s⁻¹ $\leq \lambda \leq 50 \ 000 \ s^{-1}$. It can be achieved when both reference materials (the aqueous solutions of H₃BO₃ and KCl) are taken into account. The time decay constants $\lambda_{MCNP} vs \lambda_{exp}$ for both materials together are plotted in Fig.5. The average relative deviation ε equals 2.20%.

Fig. 5. Decay constant λ_{MCNP} vs λ_{exp} in two-region cylindrical geometry (H₃BO₃ or KCl reference solutions in the inner region).

6. Conclusions

The performed calculations have allowed us to obtain the routine way of computer simulations of the pulsed neutron experiments in two-region geometry like that used in Czubek's method. The fundamental decay constants λ_{MCNP} of the thermal neutron flux have been compared with the λ_{exp} values measured in real experiments.

A few experiments made in the overlapping intervals of the absorption resulting from the H_3BO_3 and KCl solutions show a very good conformity of the results. In all cases the λ_{MCNP} values are greater than the λ_{exp} values. The maximum relative deviation ε between these values has been equal to 5.87%. The average deviation in the two-region cylindrical geometry has been ca. 2%. The most probable reason of this behaviour comes from the use in the simulations the scattering library of hydrogen in polyethylene recommended for hydrogen in Plexiglas (as there is no separate library for the latter material). An improvement of this library is necessary for more precise quantitative calculations.

References

Briesmeister J. F. (2000) Monte Carlo N-Particle Transport Code System. Version 4C. LA-13709-M, Los Alamos National Laboratory. Czubek J. A., Drozdowicz K., Gabańska B., Igielski A., Krynicka E., Woźnicka U. (1996) Thermal neutron macroscopic absorption cross-section measurement applied for geophysics. Progr. Nucl. Energy 30, 295-303. Czubek J. A., Drozdowicz K., Igielski A., Krynicka-Drozdowicz E., Sobczyński Z., Woźnicka U. (1980) Thermal neutron absorption cross-section for small samples (Experiments in spherical geometry). Rept. INP No. 1119/AP, Institute of Nuclear Physics, Kraków. Dabrowska J., Drozdowicz K. (2000) Monte Carlo simulation of pulsed neutron experiments on samples of variable mass density. Nucl. Instrum. Meth. A 443, 416-421. Drozdowicz K. (1989) Total cross-section of Plexiglass in the thermal neutron region. Ann. Nucl. Energy 16, 275-278. Drozdowicz K., Gabańska B., Krynicka E. (1993) Fitting the decaying experimental curve by sum of exponentials. Rept. INP No. 1635/PM, Institute of Nuclear Physics, Kraków. Drozdowicz K, Krynicka E., Dąbrowska J. (2003) Diffusion cooling of thermal neutrons in basic rock minerals by Monte Carlo simulation of the pulsed neutron experiments. Appl. Radiat. Isot. 58, 727-733. Granada J. R., Dawidowski J., Mayer R. E., Gillette V. H. (1987) Thermal neutron cross-section and transport properties in polyethylene. Nucl. Instrum. Meth. A 261, 573-578. Krynicka E., Drozdowicz K., Gabańska B., Janik W., Dąbrowska J. (2000a) Measurements of the thermal neutron absorption Σ_a of model systems (reference KCl solutions) in two-region geometry. Rept. INP No. 1857/PN, Institute of Nuclear Physics, Kraków. http://www.ifj.edu.pl/reports/2000. Krynicka E., Gabańska B., Woźnicka U., Dąbrowska J., Burda J. (2001) Interpretation problems of Czubek's Σ_a measurements method. Reference experiment on H₃BO₃ solutions. Rept. INP No. 1890/PN, Institute of Nuclear Physics, Kraków. http://www.ifj.edu.pl/reports/2001. Krynicka E., Gabańska B., Woźnicka U., Kosik M. (2000b) Measurements of the thermal neutron absorption Σ_a of boron of unknown isotopic ratio. Rept. INP No. 1860/PN, Institute of Nuclear Physics, Kraków. http://www.ifj.edu.pl/reports/2000.

Mughabghab S. F., Divadeenam M., Holden W. E. (1981) Neutron cross-sections, vol.1. Neutron resonance parameters and thermal cross-sections Part A: Z = 1 - 60. Academic Press, New York.

Rosman K. J. R., Taylor P. D. P. (1998) Isotopic compositions of the elements 1997. Pure & Appl. Chem. **70**, 217-235.

Sibona G., Mayer R. E., Gillette V. H., Bonetto C., Granada J. R. (1991) Thermal neutron cross-sections and diffusion parameters of Plexiglass. Ann. Nucl. Energy **18**, 689-696.

Woźnicka U., Drozdowicz K., Dąbrowska J. (2000)A generalised interpretation of buckling experiments for thermal neutrons.Nucl. Instrum. Meth. A 455, 660-669.