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Chapter 1

Introduction

The simulation of thermo-mechanical-metallurgical (TMM) processes in met-
als requires the modelling of a number of subsequent phenomena occurring
during heating and cooling periods of metal heat treatment. The problem is
solved for the three state variables: temperature, displacement and metallur-
gical volume phase fraction, controlling the thermo-mechanical metallurgical
process. The interaction between the three processes is taken into account
in a consistent way.

The solution of the balance laws governing these processes, with respect
to these state variables, are determined using the finite element method
(FEM). Differential equations describing equilibrium of the metallurgical vol-
ume phase fraction are thus obtained to be used in the finite element method.
We also seek to formulate the solution of the phase transformation fraction as
a state variable rather than an internal variable. Past work in this field have
generally treated the phase transformation evolution as an internal variable
for the stress solutions. We describe a governing differential equation for the
solution of the volume phase fraction in addition formulating the evolution
equations (the time dependent differential equations) for phase transforma-
tions. Both descriptions allow for the addition of a vector of possible volume
phase fractions to be added to the global vector of state variables in the finite
element model of TMM process.

The constitutive laws, which govern the displacement solution and the cou-
plings with the other state variables, take into account both transformation
plasticity and transformation induced plasticity. They are obtained by ex-
tending the conventional thermo-plastic constitutive equations. The simul-
taneous finite element solution in terms of the three state variables is further
found using tangent moduli consistent with this solution algorithm. This is
what is meant by a consistent fully coupled thermo-mechano-metallurgical
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(CTMM) model.

A difficulty encountered when formulating the incremental TMM problem is
that the equations used in material science describing the evolution of solid
phases are mostly given in the form of algebraic equations while the evolution
equations which we need should be expressed in the form of differential equa-
tions because those are more suitable for the incremental numerical analysis
of thermo-mechanical problems where balance equations, the heat conduc-
tion equation for non-rigid body, and constitutive equations are given in
terms of derivatives. Thus the basic postulates and notions for various phase
transformation laws are studied and their final forms of ordinary differential
equations, called evolution equations, are derived. These equations show the
relation between a phase fraction rate ẏi and rates of quantities controlling
phase transformation expressed in terms of constitutive variables L̇, S, θ, and
time t. Various types of phase growth laws reviewed here have got a heuristic
or phenomenological nature. The following phase evolution equations have
been derived in this report on the basis of works by Authors:

evolution law fraction related to

Johnson-Avrami-Mehl [39] [57] ferrite rate of internal stress
for diffusional transformations or pearlite rate of temperature, time
extended Koistinen-Marburger [37] martensite rate of equivalent stress,
for diffusionless transformation rate of temperature
modified by stress and pressure
three-dimensional generalization martensite rate of strain energy,
of thermo-dynamical-statistical [54] rate of temperature

All evolution laws are derived from the basis assumption of the proportion-
ality of a daughter phase increment to the decrement of a generalized trans-
formation driving “force”. Evolution laws reviewed here can be evaluated
accordingly to the cost of identification of material parameters and functions
associated with transformation kinetics.

The coupled and mathematically consistent thermo -mechano -metallurgical
(CTMM) problem is formulated as a variational problem and solved by the
Galerkin type FE technique. The metal heat treatment model formulated
here as a CTMM problem can be seen as being more general than the one pro-
posed by Leblond et al. [43], [44] and the metallurgical transformation model
developed by the Laboratoire de Science et Génie des Matériaux Métalliques
de Nancy (LSG2M) and proposed by Fernandes et al. [21], [22].

The real microstructure is not projected into FE structure and thus the con-
cept of hybrid isobaric finite elements is used to follow the idea of dispersed
particles. In hybrid elements the phase composition of welded material is
represented at material points which in FEM solution is generally taken to
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be the Gauss integration points. The solution of the metallurgical volume
phase fraction is thus also found at the Gauss integration or material points
simultaneously with the displacement and temperature solution.

Consistent tangent moduli (CTM) have been evaluated here for the CTMM
model. Such derivation meets significant complications as five constitutive
equations are involved in the formulation of CTMM problem. Derivations of
tangent moduli appropriate for CTMM are based on own previous work for
example [67].
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Chapter 2

Evolution Differential
Equations for Metallurgical
Phase Transformation

We apply a uniform mathematical approach to all reviewed kinetic laws which
can be derived from the fundamental assumption of proportionality of a
daughter phase increment and variation of a transformation driving ”force”,
which is expressed by variables controlling transformation. The transforma-
tion driving ”force” should be called more correctly as the transformation
driving power. The following quantities: time, temperature, internal stress,
chemical energy, and a potency of material structural defects, are considered
here as variables controlling phase transitions. The growth laws for phase
fraction are expressed usually in the form of algebraic parabolic laws or or-
dinary differential equations, also called evolution equations. Evolution laws
reveal a rate type nature of interactions between constitutive variables and
a transformation products.

2.1 Gibbs Free Energy and Nucleation of the

New Phase

The Gibbs free energy is driving metallurgical reactions in solids and hence,
in this section we are reviewing the expressions for the this energy both for
diffusional and diffusionless transformations.

7



Transformation Type Parent Phase Daughter Phase
diffusional austenite ferrite, pearlite
diffusional/diffusionless austenite bainite
diffusionless austenite martensite

Gibbs Energy for Diffusional Transformation

Diffusional transformations, ferritic and pearlitic, are associated with het-
erogeneous nucleation. Hence, the change of Gibbs free energy driving such
reactions is related to heterogeneous nucleation and has the following four
contributions:

symbol energy name caused by

V nuc
i ∆Gchi

volume free energy creation of volume V nuc
i of the

reduction new phase at θ where this
(chemical energy) phase is stable

Anuc
i γi free energy increase the creation of Anuc

i of an
interface of the parent and
daughter phase

V nuc
i ∆Gσi

strain energy dissipation of mechanical energy
proportional to a volume of the
new phase inclusion

∆Gdi
free energy destruction of a defect and

reducing the activation energy
barrier due to the creation of
the new phase nucleus

The free energy change can be expressed as

∆Gnuc
i = −V nuc

i (∆Gchi
−∆Gσi

) + Anuc
i γi −∆Gdi

, (2.1)

where V nuc
i is the nucleus volume, γi is the interfacial free energy per unit area

and it is also the work that must be done at constant temperature θ to create
a unit area of phases interface. The subscript i assumes here two values: i = 2
for ferritic transformation, and i = 3 for pearlitic reaction. Units of ∆Gnuc

i

are joules per nucleus. Ignoring the variation of γi with interface orientation
and assuming the spherical shape of the new phase nucleus, Eq.(2.1) becomes

∆Gnuc
i = −4

3
πr3(∆Gchi

−∆Gσi
) + 4πr2γi −∆Gdi

, (2.2)

where r is the radius of the spherical nucleus. The rate of homogeneous
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nucleation [57] is given by

Ni = ωiC1i
exp (−∆Gmi

kBθ
) exp (−∆Gi

∗

kBθ
), (2.3)

where ωi is the factor that includes the vibration frequency and the area of
the critical nucleus, C1i

= 1
Ω

is a concentration of nucleation centres, Ω is
the atomic volume, ∆Gmi

is the activation energy for atomic migration per
atom, ∆Gi

∗ is a change of Gibbs free energy for the critical nucleus diameter
r∗i , kB is the Boltzmann constant. The critical value of r can be evaluated
from

r∗ = 2γi

∆Gchi
−∆Gσi

; ∆G∗
i =

16πγ3
i

3(∆Gchi
−∆Gσi )

2 , (2.4)

where ∆G∗
i is the critical value of the free energy ∆Gnuc

i .

The same equation can be written for the case of heterogeneous nucleation
when

(∆G∗
i )

hetero = (∆G∗
i )

homo $(θ), (2.5)

with a factor $(θ) related to the interfacial energies.

The Boltzmann constant is given by kB = R/Na, where Na is the Avogadro
number equal to 6.023× 10+23 and R is the universal gas constant. The rate
of nucleation gives the number of nuclei per cubic meter and per second, and
the unit of Ni is [nuclei m−3s−1].

Gibbs Energy for Diffusionless Transformations

Two phases are produced due to diffusionless transformations: bainite or
more precisely bainitic ferrite, and martensite. Bainite is marked with sub-
script k = 4, and quantities related to martensite are labelled by subscript
k = 5.

The Gibbs free energy associated with the formation of one coherent in-
clusion, which appears due to diffusionless transformation, see [57], [40], is
expressed as:

∆Gnuc
k = Anuc

k γk + V nuc
k (∆Gσk

−∆Gchk
), (2.6)

where Anuc
k γk is the elastic coherency interfacial energy, γk is the austenite-

daughter phase interfacial free energy, ∆Gσk
is the strain energy, ∆Gchk

is
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the volume free energy release, V nuc
k is the nucleus volume, and Anuc

k is the
nucleus surface. The strain energy of the coherent nucleus is more important
than the surface energy because of high shear strain producing relatively
large strains in the austenitic matrix. Moreover, twinning of the nucleus is
also evaluated by shear strain.

A martensitic or bainitic ferrite nucleus is considered as a thin ellipsoidal
disk, with radius a and thickness 2c.

The free energy Eq.(2.6) for the coherent nucleus generated by a simple shear
strain, s, can be written

∆Gnuc
k = 2πa2γk +

4

3
π(

s2

µ
ac2 − a2c ∆Gchk

), (2.7)

where γk is the coherent interfacial energy, µ is the elastic shear modulus of
austenite. The critical nucleus dimensions a∗ and c∗ can be found from

c∗ = 2γk / ∆Gchk
; a∗ = 4γkµs2 / (∆Gchk

)2. (2.8)

Substituting the above into Eq.(2.7) yields the expression for the maximum
value of ∆Gnuc

k

∆G∗
k =

32

3

γ3
k

(∆Gchk
)4

s4

µ2
π. (2.9)

The nucleation barrier to form coherent nuclei can be reduced by the elastic
strain field of dislocation which interacts with the strain field of the marten-
site nucleus and results in the reduction of the total energy of nucleation.
Such interaction modifies the total free energy Eq.(2.6) which, following [72],
can be written by

∆Gnuc
k = Anuc

k γk −∆Gd + V nuc
k (∆Gσk

−∆Gchk
), (2.10)

where ∆Gd is the energy of dislocation interaction reducing the nucleation
energy barrier. Assuming that a complete loop of dislocation is interacting
with the nucleus, the interaction energy is expressed by

∆Gd = 2πac µ b, (2.11)

where b represents a length of the Burgers vector of dislocation. Subtracting
Eq.(2.11) from the RHS of Eq.(2.7) results in the expression of the total
energy of a martensite nucleus

∆Gnuc
k = 2πa2γk +

4

3
π(ac2µ s2 − a2c ∆Gchk

)− 2πac µ b. (2.12)
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The energy ∆Gnuc
k is related to diameter a and thickness c of the ellipsoidal

disk, the simple shear strain s, and the strain field generated by dislocation.

2.2 Kinetics of Diffusional Transformation

The diffusional transformations are nucleation and growth controlled trans-
formations with a velocity of growth rate defined by

v ∼= νDb exp (−∆Gmi

kBθ
)
∆Gchi

Ω

kBθ
, (2.13)

with Debye’s frequency νD and an atomic spanning b.

The rate of a volume fraction growth of i-th phase is

ẏi = β v = β0 exp (−∆Gmi

kBθ
)
∆Gchi

Ω

kBθ
, (2.14)

where β and β0 are empirical parameters of phase transformation.

Evolution Law for Diffusional Transformations

The kinetic equation for two diffusional transformations, ferritic, and pearlitic,
has the form of the parabolic growth law known as the Johnson-Avrami-Mehl
equation [39], [57]

yi = 1− exp(−bi tni), (2.15)

where yi is the volume fraction of i-th phase in the considered microregion
V mic, ni and bi are empirical parameters related to cooling rate and the nu-
cleation rate, t is time equal to zero at the end of the nucleation period.
This equation can be derived from the basic assumption that the daughter
phase increment dyi is proportional to the decrement of transformation driv-
ing force measured by the differential of the Gibbs free energy, d∆Gmic

i where
i = 2 or 3 for ferritic and pearlitic reactions. Therefore, the Johnson-Avrami-
Mehl equation can be expressed in one of the incremental forms shown in
Table(2.1). Identifying the rate of the Gibbs free energy variation, Ġ, as an
explicit function of time

Ġ = ni bi tni−1, (2.16)
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dyi

dG = 1− yi
dyi

1− yi

= dG ẏi

1− yi

= Ġ
where dG = d∆Gmic

i

Table 2.1: Forms of the Johnson-Avrami-Mehl equation.

and substituting to Table(2.1) yields the expression

dyi

1− yi

= ni bi tni−1 dt. (2.17)

The parabolic growth law Eq.(2.15) for ferritic and pearlitic transformations
can be obtained by integrating Eq.(2.17)

ln(1− yi) = −bi tni , (2.18)

and expressing that in the exponential form

1− yi = exp(−bi tni). (2.19)

Eq.(2.15) was originally proposed for the case when the cells of the new phase
were continuously nucleated throughout the transformation at a constant
rate. Example values of parameters n3 and b3 are given in [29] for austenite-
pearlite transformation for 1080 steel. The exponent ni is not related directly
to temperature as long as the nucleation mechanism does not change during
cooling. The growth parameter bi for nucleation as well as growth controlled
transformation is temperature dependent [57] and related to both the rate of
homogeneous nucleation Ni(θ), defined by Eq.(2.3), and the cell growth rate
νi(θ). This is defined by

bi(θ) = 1
3
πNi(θ)νi

3(θ), (2.20)

and is valid until the saturation when growing particles collide. The phase
growth law expressed by Eq.(2.15) assumes the complete transformation of
austenite into the new phase. Such reaction does not proceed instantaneously
and therefore the growth law appropriate for the partial transformation dur-
ing a continuous cooling process is defined by introducing the fictitious frac-
tion [28], [30]

yφ
i ≡ yi

yimax

yγ

= 1− exp[−bi(θ) tni ], (2.21)

12



where yimax is the final fraction of phase i, and yγ is the fraction of austenite
at the beginning of transformation i.

Expressing Eq.(2.21) in the logarithmic form

ln(1− yφ
i ) = −bi(θ) tni , (2.22)

and differentiating this with respect to time t, yields to the following evolution
equation

ẏφ
i − (1− yφ

i )tni

[
dbi

dθ
θ̇ +

bi(θ)ni

t

]
= 0. (2.23)

Modified Kinetics of Diffusional Transformation

The kinetics of isothermal decomposition of austenite is influenced by hydro-
static pressure and stress [2], [15], [20]. The effect of hydrostatic pressure is
observed as a decrease of the temperature A3 of γ → β iron transformation,
a reduction of the eutectoid temperature A1 of the Fe − C diagram, and
shifting the eutectoid transformation point toward lower carbon composition
[25], [32], [48]. Following these modifications of specific temperatures and
the eutectoid point relocation, the TTT and CCT diagrams show a displace-
ment of curves towards longer transformation times and lower temperatures.
Tensile or compressive stresses have the opposite effect on the pearlitic trans-
formation as they accelerate the transformation and result in displacing of
the TTT and CCT curves towards shorter times of transformation [50].

The nucleation and growth rate of pearlite is influenced by the stress [17], [50],
and such effect is modelled by relating material parameter b3 of the Johnson-
Avrami-Mehl model with the nucleation rate N3. The situation with the
exponent n3 is vague because it is either decreasing [50] or increasing [17]
respectively to internal stresses. The influence of internal stress on kinetics
of the pearlitic transformation has been presented in [17]. This concept
consists of shifting of TTT diagrams either towards shorter times for tensile
and compressive stresses or towards longer times for hydrostatic pressure.
The shift D of the TTT diagram is postulated as a function of the second
invariant J ′2 of the Piola Kirchoff stress deviator S, the spherical part of
stress i.e. hydrostatic pressure, and the second invariant IE of plastic Green-
Lagrange strain Epl. This relation can be written as

D = FD(J ′2, p, IE), (2.24)
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where J ′2 = [1
2
S:S]

1
2 , IE = [ 2

3
Epl:Epl]

1
2 , p = 1

3
SKK , and “:” means the full

contraction of the second order tensor. The simple example of FD, shown in
[17], is given by the linear function of J ′2, such that,

D = C J ′2, (2.25)

where C = 8.5 × 10−3 [MPa]−1 for the isothermal transformation at tem-
perature θ = 663◦C.

Postulating the relation between the growth parameter bi and the shift D in
the form

bDi
=

bi

(1−D)ni
, (2.26)

and substituting this into Eq.(2.21), the modified growth law for the partial
transformation becomes

yφ
i ≡ yi

yimax

yγ

= 1− exp(−bDi
tni). (2.27)

The plastic deformation of austenite grains during the pearlitic transforma-
tion, called the transformation induced plasticity, TRIP, acts almost similarly
as tensile and compressive stresses, and results in shifting of the TTT and
CCT curves towards shorter times. The TRIP effect accelerates the phase
transformation [15], [45], [50], [69], [78] by increasing the rate of heteroge-
neous nucleation Ni.

The evolution equation for Eq.(2.27) with Eq.(2.26) and Eq.(2.25) can be
expressed in the following form

ẏφ
i −

(1− yφ
i )tni

(1− CJ ′2)ni

[
dbi

dθ
θ̇ +

bi(θ)niC

1− CJ ′2

dJ ′2
dS

Ṡ +
bi(θ)ni

t

]
= 0, (2.28)

where the relation between rates of the phase fraction, temperature and stress
is written explicitly.

2.3 Kinetics of Diffusional-Diffusionless Bainitic

Transformation

The kinetic equation for the bainitic transformation proposed in [5], [61] is
based on the assumption of the linear relation between an increment of the
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bainitic volume fraction dy4 and volume increment of nucleus dN4. This can
be written as

dy4 = (1− y4)V
mic〈dN4〉; (2.29)

where y4 is a volume fraction of bainite, V mic is the volume of a microregion,
dN4 is an increment of nucleation per unit volume, and angular brackets
〈〉 mean the volume average. Division of both sides of Eq.(2.29) by time
increment dt leads to the rate type form of the bainitic transformation kinetic
law

ẏ4

1− y4

= V mic〈Ṅ4〉. (2.30)

Nucleation of bainite sub-unit starts below the Widmanstatten temperature
Ws. The nucleation rate Ṅ4 is related to quantities measured on two graphs:
the first is a free energy diagram, which consists of free energy curves for
ferrite and austenite versus a carbon content, and the second is the universal
curve representing the minimum free energy change, which is necessary for
displacive nucleation of ferrite at temperature Ws.

The change of maximum nucleation free energy, ∆G4max , is determined from
the free energy diagram following a procedure described in [11], [31]. This
method consists of the estimation of the free energy change as a distance
between two parallel straight lines which are tangents respectively to ferrite
and austenite energy curves. Knowing the content of carbon at a nucleus,
a locus on the austenite free energy curve, and the corresponding tangent
direction can be found. When such direction is known, the parallel line,
which is tangent to the second curve, can be drawn. The location of a
common point of a curve and a tangent line determines carbon content at
the bainitic ferrite.

The magnitude of ∆G4max exceeds value GN measured on the universal curve
of minimum energy at temperature Ws. The nucleation rate is expressed in
terms of ∆G4max , its initial value ∆G0

4max
, and value GN . This can be written

in the form

∆G4max = ∆G0
4max

− y4max

(
∆G0

4max
−GN

)
. (2.31)

The nucleation rate of bainite is defined in [61] by the following expression:

〈Ṅ4〉 = K1 exp

[
−K2

R θ

(
1 +

〈∆G4max〉
r

)]
, (2.32)
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where K1 is a linear function of austenite grain size as has been postulated
in [61], K2 is constant, R is the gas constant, and r is the positive constant
which appears in approximation of GN given by

GN = p Ws − r, (2.33)

with p = 3.6375, and r = 2540 [J mol−1].

Substituting Eq.(2.32) to Eq.(2.30), the evolution equation for bainitic trans-
formation can be expressed as

ẏ4 − (1− y4)V
micK1 exp

[
−K2

R θ

(
1− 〈∆G4max〉

r

)]
= 0. (2.34)

Accounting for the effect of auto-catalysis, when the increase of the bainitic
ferrite fraction is accompanied by the increase in number density of nucleation
sites, the denominator (1− y4) in Eq.(2.34) should be replaced by (1− βy4),
where β is the auto-catalysis factor.

2.4 Kinetics of Martensitic Transformation

Kinetic equations for martensitic transformation can be classified in one of
the following three types:

heuristic laws
relations derived from thermodynamics and statistics
equations derived from thermodynamics of continua

Heuristic Laws

Heuristic laws are represented by the Koistinen-Marburger law [41] and its
modifications proposed in [37], [38] and [75], and issued from identification
techniques to achieve the best coincidence of a transformation model with
experiment. The Koistinen-Marburger law is based on the assumption of the
linear relation between the martensitic fraction increase dy5 and temperature
decrease dθ below the temperature Ms, where martensitic transformation
starts. This can be expressed by

dy5

dθ
= α (1− y5), (2.35)

where for most steels the constant coefficient α = 1.1× 10−2[K−1].
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The Koistinen-Marburger law can be derived following the procedure:

take all terms of Eq.(2.35) with y5 to the left
dy5

1−y5
= α dθ for α > 0

introduce the new variable z = 1− y5

integrate∫ z
1

1
ξ
dξ = α

∫ θ
Ms

dϑ

write the result in the form
ln ξ z

1 = α(θ −Ms) ⇒ ln(1− y5) = −α(Ms − θ)

The last relation reveals the exponential nature of martensitic transformation
kinetics, i.e.

y5 = 1− exp[−α(Ms − θ)]. (2.36)

The simple evolution equation for the martensitic fraction can be obtained
from Eq.(2.35) assuming α constant, and y5(t), θ(t) being functions of time

ẏ5 − (1− y5)αθ̇ = 0, (2.37)

with the initial condition y5(0) = 0 for θ(0) ≤ Ms. However, parameter
α depends on composition of the alloy, crystallography of the martensite
habit planes, cooling rate, internal stress state, and is somehow related to
the transformation driving force ∆Gmic

5 .

The improved Koistinen-Marburger law which accounts for the effect of pres-
sure and stress on transformation temperature has been proposed in [37], [38].
The modification of Ms is a linear function of hydrostatic pressure and the
equivalent stress

∆Ms = A p + B Ŝ, (2.38)

where A and B are material parameters, and Ŝ = (J ′2)
1
2 . Substituting

Eq.(2.38) in Eq.(2.36) results in the extended Koistinen-Marburger law

y5 = 1− exp[−α(Ms − θ + Ap + BŜ)]. (2.39)

Differentiation of the logarithmic form of Eq.(2.39) in respect of time yields
the evolution equation corresponding to the extended Koistinen-Marburger
law

ẏ5 − (1− y5)α(Aṗ + B
∂Ŝ

∂S
Ṡ− θ̇) = 0, (2.40)
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with the initial condition y5(0) = 0 for θ(0) ≤ Ms, p(0) = 0, and Ŝ(0) = 0.

The other proposition of the modified Koistinen-Marburger law is given in
[23], [75] and has the form

y5 = {1− exp[−αG(Ms − θ)− E : S]}, (2.41)

with

αG = kMV mic〈∂∆Gmic
5

∂θ
〉; E = kMV micE∗

c

where

global stress tensor corresponding to the S
macroscopic strain tensor E
difference of the free energy per unit ∆Gmic

5

volume of the microregion

average of
∂∆Gmic

5

∂θ
over the mesodomain 〈·〉

critical value of the macroscopic strain reached E∗
c

when entire microregion transforms to martensite
microregion volume V mic

proportionality factor defined by Magee [46] kM = dn
dG

dG = 〈d∆Gmic
5 〉

number of microregions transforming to martensite n
per unit volume of the parent phase

Martensitic Transformation Law Derived from Thermodynamics
and Statistics

The growth law proposed in [54] is an example of the kinetic equation issued
from thermodynamics and statistical analysis. This kinetic law for marten-
sitic transformation is based on the identification of the fraction y5 with the
probability ρprob and written in the form

y5 ≡ ρprob = 1− exp[−V micNV ], (2.42)

where ρprob measures the probability [14] that at least one nucleation site is
contained in V mic, and NV is a cumulative structural defect potency. Five
different transformation laws are proposed as shown in Tables (2.2) - (2.6)
according to the the structural defect potency.

The cumulative structural defect potency NV is modified by the change of
mechanical energy on habit planes. The mechanical contribution of ∆Gmic

5 is
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1-st thermodynamical-statistical martensitic transformation law
y5 = 1− exp[−V micNV (n)]
NV (n) = N0

V exp(−α n)
n = 2 γ5/∆Gmic

5 d5

∆Gmic
5 = Amic

5 γ5 −∆Gmic
ch5

+ ∆Gmic
σ + ∆Gmic

F

N0
V total number density of defects of all potencies

α constant shape factor
d5 close packed interplanar spacing
γ5 nucleus specific interfacial energy
∆Gmic

5 the total volume free-energy change
∆Gmic

σ strain energy
∆Gmic

F frictional work of interfacial motion

Table 2.2: Transformation law with the cumulative structural defect potency
related to the defect size parameter n

2-nd thermodynamical-statistical martensitic transformation law
y5 = 1− exp[−V micNV (Gσ)]

NV (Gσ) =
∫ Gmax

σ
Gσ

M(G) exp[−αn(G)]dG
Gσ = ∆Gmic

σ

Gmax
σ = ∆Gmax

σ

∆Gmic
σ = Ahab

V mic (∆Gmic
τσ + ∆Gmic

σσ )

∆Gmic
τσ =

∑H
h=1

(
~τh · ~γh

)
= 1

2

∑H
h=1

(
τh
i mh

ijγ
h
j

)

∆Gmic
σσ =

∑H
h=1

(
~σh · ~εh

)
= 1

2

∑H
h=1 σh

i εh
i

mh
ij = cosζh

ij

M(G) linear function of
dN0

V (G)

dG
∆Gmax

σ maximal change of mechanical energy on habit planes
· scalar product
εh
i the normal displacement

γh
i the tangent displacement (shear)

mh
ij directional tensor

ζh
ij angle between the transformation tangent displacement ~γh

and ~τh direction

~σh normal component of true stress vector ~t on habit plane h

~τh tangent component of true stress vector ~t on habit plane h

Table 2.3: Transformation law with the cumulative structural defect potency
modified by the change of mechanical energy on habit planes.
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orientation dependent and requires a decomposition of the true stress vector
in microregion ~t into its normal ~σh and tangential ~τh components on each
habit plane h. The total number of habit planes H is the sum of habit planes
of b.c.c. austenitic crystals in a microregion. Habit planes have the same
area Ahab. The true stress vector corresponding to the Kirchoff stress tensor
tij on a habit plane is defined by

thi =
ρ

ρ0

tij nh
j =

ρ

ρ0

tij cos2ϑh
i (2.43)

where initial and actual density is ρ0 and ρ, directional vectors, which define
the orientation of the h-th habit plane normal, are nh, and ϑh

i is the angle
between stress axis and the normal to the habit plane, where the daughter
phase appears.

When deformation is controlled by stress coupled with phase transformation,
experimental results available for a one-dimensional test [12] show the linear
relation between the martensite fraction y5 and the resulting plastic strain Ēp.
This originally has been used in [54] to propose a kinetic equation suitable for
one-dimensional microregion. Following this proposition we are postulating a
3-D generalization of this 1-D evolution law. That can be obtained by using
the expression for n in Table 2.2 in the equation for NV (Gσ) of Table 2.3
and substituting the resultant relation to Eq.(2.42). This generalized kinetic
equation is written in the form:

y5 =
Ēp

Ē1

= 1− exp[−V micNV (Gσ)], (2.44)

where Ēp = (4
3
IEp)

1
2 is the effective plastic strain, and Ē1 = (4

3
IE)

1
2 is the

effective total strain for the fully martensitic structure of a microregion when
y5 = 1.

Assuming Gσ = Gmin
σ and splitting the integral

∫ Gmax
σ

Gσ
M(G) exp[−αn(G)]dG

in Table 2.3 into two terms:
∫ Gmax

σ

Gmin
σ

...dG =
∫ Gmax

σ
0 ...dG − ∫ Gmin

σ
0 ...dG, the third

expression for the nucleation-site potency NV is obtained. The corresponding
martensitic transformation law and formulas can be seen in Table 2.4.

A simpler transformation model is obtained by postulating the structural
defect potency as a function of Gσ and G that has been shown in Table 2.5.

The next form of the martensitic transformation law is obtained assuming

NV = N (Gσ, θ) = N0
V exp

(
− 2αγ5

∆Gmic
5 d5

)
, (2.45)
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3-rd thermodynamical-statistical martensitic transformation law
y5 = 1− exp[−V mic(Imax − Imin)]

NV = Imax − Imin

Imin(Gmin
σ ) =

∫ Gmin
σ

0 M(G)exp
(

L
D1

)
dG

Imax(Gmax
σ ) =

∫ Gmax
σ

0 M(G)exp
(

L
D2

)
dG

D1 = (Amic
5 γ5 −∆Gmic

ch5
+ ∆Gmic

F )d5

D2 = D1 + Gσd5

L = 2 α γ5

Gmin
σ = ∆Gmin

σ ; Gmax
σ = ∆Gmax

σ

dG = d(∆Gmic
σ )

α 0.84
N0

V 2.0E + 17[m−3]
γ5 0.15 [J/m2]
Amic

5 γ5 + ∆Gmic
F 6.1E + 7 [J/m3]

above values can be found in [14] and [54]

Table 2.4: Transformation law with the cumulative structural defect potency
expressed by NV = Imax − Imin.

4-th thermodynamical-statistical martensitic transformation law
y5 = 1− exp [−V micN0

V (Gσ) exp(G)]
NV = N0

V (Gσ) exp(G)
G = 2αγ5

d5

(
Amic

5 γ5−∆Gmic
ch5

+Gmax
σ +∆Gmic

F

)

Table 2.5: Transformation law with the cumulative structural defect potency
expressed by NV = N0

V (Gσ) exp(G).

5-th thermodynamical-statistical martensitic transformation law
y5 = 1− exp[−V mic NV (Gσ, θ)]

NV (Gσ, θ) = N0
V exp

(
− 2αγ5

∆Gmic
5 d5

)

Gσ = ∆Gmic
σ

Gch = ∆Gmic
ch5

∆Gmic
5 = Amic

5 γ5 + ∆Gmic
F − Gch + Gσ

Table 2.6: Transformation law with the cumulative structural defect potency
expressed by NV = N (Gσ, θ)
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and the corresponding relations are shown in Table 2.6.

The evolution equation that is the most general for all five propositions of
the thermodynamical-statistical martensitic transformation law corresponds
to Table 2.6 and is obtained after the complex differentiation with respect to
time that leads to

ẏ5 − (1− y5)V
mic N0

V exp (−M)
M

∆Gmic
5

(
Ġσ − ∂Gch

∂θ
θ̇

)
= 0, (2.46)

with M = 2αγ5

∆Gmic
5 d5

.

Martensitic Transformation Laws Derived from Thermodynamics

Growth laws developed on the basis of thermodynamics of continua and
micromechanics have been presented in [51] and [74]. Both of them are
based on the following observations:

• a volume average of the differential of the Gibbs free energy, 〈d∆Gmic
5 〉,

together with temperature θ controls the martensitic transformation,

• the macroscopic increment of the daughter phase dy5 is proportional to
the increment of the total driving force.

These notions are used to express the fraction y5 as a function of temperature
θ and external loading stress S, such as y5 = Y1[S̃(S), θ] = Y2(S, θ).

In this section a kinetic law, originally shown in [51] for the case, when the
growth of martensitic fraction is the only reaction, is slightly generalized
to be used for a description of transformation occurring in the presence of
products of diffusional transformations y2, y3, y4 and y5.

The proportional relation between a phase fraction and the driving force is
expressed here in terms of dy5 and dG, and is written in the form:

dy5

〈dG〉 = −kF V mic(1− y5); G ≡ G(S̃, θ) = ∆Gmic
5 (S̃, θ), (2.47)

where S̃ is the total stress related linearly to S, V mic is the microregion
volume average, and kF is a constant given for steel in [51] as kF V mic =
0.0206 m2/N .

Eq.(2.47), as all previously reviewed kinetic equations, is subjected to another
assumption about the exponential form of the function y5 = Y1(S̃, θ). This
becomes obvious due to the following transformations:
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• move all terms with y5 to the left

dy5

1− y5

= −kF V mic〈dG〉, (2.48)

• integrate

ln (1− y5) = kF V mic〈G〉+ C, (2.49)

• express Eq.(2.49) in exponential form

y5 ≡ Y1(S̃, θ) = 1− exp [kF V mic〈G(S̃, θ)〉+ C], (2.50)

with the integration constant C ,

• assume C equal to zero.

Eq.(2.50) reveals the interaction between the martensitic transformation prod-
uct y5, the total stress S̃, and temperature θ.

The required function y5 = Y2(S, θ) is derived by considering chemical and
mechanical components of the total Gibbs free energy. The total driving force
can be represented by a difference of mechanical and chemical components
of the total Gibbs free energy:

∆Gmic
5 = ∆Gmic

σ −∆Gmic
ch (2.51)

when neglecting frictional effects on habit planes ∆Gmic
F and the elastic co-

herency interfacial energy Amic
5 γ5 in the expression for ∆Gmic

5 in Table(2.2).
The strain energy is given by

∆Gmic
σ = S̃ : E∗, (2.52)

where E∗ is the microscopic transformation strain measured in the stress free
state as a difference of strains before and after phase transformation. The
chemical free energy is derived using Eqs.(2.6), (2.7), and is defined by

∆Gmic
ch =

N (t)∑

l=1

V nuc
l ∆Gch5 =

N (t)∑

l=1

a2
l cl∆Gch5 , (2.53)

with the time related number of nuclei in a microregion N (t).
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The total stress S̃ in Eq.(2.52) is a sum

S̃ = S̃act
eq + S̃fur

eq + S, (2.54)

of the following components:

S̃act
eq actually self-equilibrating stress

S̃fur
eq further generated self-equilibrating stress

S loading external stress assumed to be
homogeneous in the mesodomain

The actually self-equilibrating stress reveals the interaction of all actually
transformed microregions with the microregion under consideration. The
further self-equilibrating stress is generated by the interaction of the microre-
gion which undergoes transformation and the surrounding mesodomain. The
load stress is assumed to be homogeneous in the mesodomain.

Substituting Eq.(2.54) in Eq.(2.52) results in

∆Gmic
σ (S) ≡ ∆Gmic

σ (S, S̃act
eq , S̃fur

eq ) = S̃act
eq : E∗ + S̃fur

eq : E∗ + S : E∗. (2.55)

The total differential of ∆Gmic
σ (S, S̃act

eq , S̃fur
eq ) with respect of S̃ components

is given as

d∆Gmic
σ = dS̃act

eq : E∗ + dS̃fur
eq : E∗ + dS : E∗. (2.56)

Substituting Eq.(2.56) in the differential form of Eq.(2.51) and averaging
d∆Gmic

5 over volume gives

〈dG〉 = 〈dS̃act
eq : E∗〉+ 〈dS̃fur

eq : E∗〉+ 〈dS : E∗〉 − 〈d∆Gmic
ch 〉. (2.57)

The volume average of work done by the external stress S on the microscopic
strain E∗ is replaced by the contraction of S and the volume average of E∗,
that is expressed by

〈dS : E∗〉 = dS : 〈E∗〉. (2.58)

This replacement can be done because at the start of transformation, y5 ¿ 1,
the martensitic inclusions are oriented “optimally” in respect to S and when
the transformation develops internal stress increases and martensitic mi-
croregions get less favourable orientation [51]. Substituting Eq.(2.57) and
Eq.(2.58) in Eq.(2.48) and rearranging the resulting equation by shifting the
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first two RHS terms evidently related to the progress of martensitic trans-
formation to the LHS results in


 1

1− y5

+ kF V mic〈dS̃
fur
eq

dy5

: E∗〉+ kF V mic〈dS̃
act
eq

dy5

: E∗〉

 dy5

= kF V mic〈d∆Gmic
ch

dθ
〉dθ − kF V mic〈E∗〉 : dS. (2.59)

Considering y5, temperature θ, and external stress S as time dependent func-
tions, the above kinetic equation can be written as the evolution equation


 1

1− y5

+ kF V mic〈dS̃
fur
eq

dy5

: E∗〉+ kF V mic〈dS̃
act
eq

dy5

: E∗〉

 ẏ5

= kF V mic〈d∆Gmic
ch

dθ
〉θ̇ − kF V mic〈E∗〉 : Ṡ. (2.60)

The simple form of this evolution equation is obtained due to the following
operations and assumptions:

• The third term of LHS of Eq.(2.60) can be expressed by

〈dS̃
act
eq

dy5

: E∗〉 = −p
dF
dy5

〈I : E∗〉 = −2p y5 trE∗, (2.61)

when the stress S̃act
eq is substituted by −(pF(y5)I), and the function

F(y5) is assumed to be the quadratic one i.e. F(y5) = y2
5. The average

final hydrostatic stress at y5 = 1 is p, and I is the unit second order
tensor.

• The second term of RHS of Eq.(2.60) can be replaced by

kF V mic〈E∗〉 : Ṡ = kF V micy
1
n
5 E∗

cr : Ṡ, (2.62)

with E∗
cr being E∗ when y5 = 1 and the entire microregion transforms

to martensite, and the exponent n > 1. This replacement reflects a
decrease of deformation and dE∗

dy5
due to the internal stress increase

during transformation.

• The term with S̃fur
eq in Eq.(2.60) can be neglected because its influence

is indirectly accounted for by evaluation of thermo-elastic stresses. This
assumption follows the Eshelby concept presented in [19] and utilised
previously in [74].
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Therefore the simplified evolution equation for the martensitic transforma-
tion has the form

(
1

1− y5

− 2kF V micp y5 trE∗
)

ẏ5

= kF V mic〈d∆Gmic
ch

dθ
〉θ̇ − kF V micy

1
n
5 E∗

cr : Ṡ. (2.63)

The solution of Eq.(2.60) and/or Eq.(2.63) is the function Y2(S, θ) which
determines the martensitic volume fraction y5 as a function of the external
load stress S and temperature θ.

Parameters of evolution equation Eq.(2.63) have the following values given
in [51]: kF V mic = 0.0206 m2/N , hydrostatic pressure p ∈ [0, 50] MPa, the

first invariant of strain tensor 1
3
trE∗ = 0.04, [kF V mic(d∆Gmic

c

dθ
)] = 0.0484◦C−1,

and the magnitude of components of the microscopic transformation strain,
E∗, are in the range [0.07, 0.29].

2.5 Governing Differential Equation for Phase

Transformation

We have presented metallurgical phase transformation laws as differential
equations. We now propose to write a governing differential equation for
phase transformation leading ultimately to a variational form for the metal-
lurgical volume phase fraction.

In this work we have adopted an averaging principle to describe the rate
of transformation of a phase in a particular volume. We have used a phe-
nomenological approach to arrive at evolution equations to describe phase
transformation at a point. We have also identified two principle behaviours
governing phase transformation that of diffusive mechanism and a displacive
or mechanism in transforming the metallurgical structure.

In arriving at a governing differential equation for this description of metal-
lurgical phase transformation we consider an elemental volume undergoing a
phase transformation such as the one in Fig.2.1

We consider firstly the diffusive mechanism acting to produce such a transfor-
mation at a given rate. If we consider the surfaces of the elemental volume we
have, as indicated by the arrows, a rate of diffusion which we can characterize
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Figure 2.1: Phase transformation rates across and elemental volume

by Fick’s first law [57] of diffusion in one dimension:

JB = −DB
∂CB

∂x
(2.64)

where JB is the rate of diffusion , DB is the intrinsic coefficient of diffusion
of the solute, B and ∂CB

∂x
is the concentration gradient.

For a phase transformation dependent on a diffusional process only the rate
of diffusion of solute into the elemental volume is equal to the rate of phase
change occurring in the elemental volume. The particular part of the rate of

phase change attributable to diffusion only we will represent by
∂yp

∂t
.

So that for a particular phase change of the set of possible phase changes, y,
produced by a rate of diffusion, q, we have

dx dy
∂q

∂z
dz + dx dz

∂q

∂y
dy + dy dz

∂q

∂x
dx =

∂yp

∂t
dV (2.65)

From Fick’s law we have

q = −Dp ∂y

∂x
(2.66)

with Dp describing the diffusivity of the transformation. Substituting into
equation 2.65 we obtain:

[
∂

∂x

(
−Dp ∂y

∂x

)
+

∂

∂y

(
−Dp ∂y

∂y

)
+

∂

∂z

(
−Dp ∂y

∂z

)]
dV =

∂yp

∂t
dV (2.67)
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Figure 2.2: Rates of change of Gibbs free energy across and elemental volume

which for and arbitrary finite non-zero volume gives the governing equation
for phase transformations resulting from a diffusive mechanism

∂yp

∂t
+∇ · (Dp∇y) = 0 (2.68)

where Dp = Dp
ij is a diagonal tensor describing the diffusivity of transforma-

tion in the three directions (x,y,z).

We now consider the elemental volume in Fig. 2.2 undergoing a phase change
induced by a displacive rearranging of the crystal structure such as occur-
ring in the martensitic transformation. It has been shown that the available
Gibbs free energy for such a transformation is accounted for by the change in
free energy of an austenitic structure compared to for example a martensitic
structure and also by the Bain strain produced in rearranging the crystal
structure from fcc to bct. This process is also affected by the applied stress.
We represent the rate of phase change attributable to the displacive trans-

formation as
∂ym

∂t
. Using the Gibbs free energy, as described in Eq. 2.50, we

can write a general relation for such a displacive phase transformation. If
we let Gφ = Ġ be the rate of change of the Gibbs free energy, then we can
write a relation for the volume fraction change within a volume as a result
of changes in the Gibbs free energy happening across the volume. Referring
to Fig. 2.2

dx dy
∂Gφ

∂z
dz + dx dz

∂Gφ

∂y
dy + dy dz

∂Gφ

∂x
dx = −fg

∂ym

∂t
dV (2.69)
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Which can be written simply as

∂ym

∂t
= −fg∇Gφ (2.70)

where fg a proportionality factor which includes a factor reflecting the fact
not all the of the available energy can be used for the transformation from
the Second Law of Thermodynamics.

If we now consider such a volume and postulate that within it there ex-
ists a set of potential functions,Gψ

i (θ,T) each corresponding to a particular
metallurgical phase of the yi phases, such that

Gφ
i = Dm

[
∇Gψ

i (θ, y,T)
]

(2.71)

which we can expand as

Gφ
i = Dm

[
∂Gψ

i

∂θ
∇θ +

∂Gψ
i

∂T
∇T

]
(2.72)

where T is the second Piola-Kirchoff stress tensor. Substituting Eq.2.72 into
Eq.2.70 we obtain

∂ym

∂t
= −fg∇ ·

(
Dm

[
∂Gψ

i

∂θ
∇θ +

∂Gψ
i

∂T
∇T

])
(2.73)

Since Eq.2.73 and Eq.2.68 each account for part of the vector of phase trans-
formations occurring we can combine them to obtain a governing differential
equation for phase transformation

∂y

∂t
+∇ · (Dp∇y) + fg∇ ·

(
Dm

[
∂Gψ

i

∂θ
∇θ +

∂Gψ
i

∂T
∇T

])
= 0 (2.74)

Non-linear solution techniques, as used for the solution of the temperature
and displacement equilibrium, will be necessary to solve for phase transfor-
mation equilibrium. The Galerkin Method can be applied directly to Eq.
2.74 to yield finite element equations for the solution of metallurgical volume
phase fraction equilibrium for boundary value problems.
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Chapter 3

Model of
Thermo-Mechano-Metallurgical
Process

The solution of the fully coupled thermo-mechanical-metallurgical heat treat-
ment problem requires simultaneous solution for the following set of equations

1. heat equation for non-rigid conductor with singular surface and phase
transformation,

2. evolution equations for material phase composition,

3. constitutive equations,

4. momentum balance law.

The result will provide the solution at the state of total equilibrium which is
constructed on the basis of the following equilibriums:

1. displacement equilibrium in a mechanical analysis,

2. temperature equilibrium in a thermal analysis,

3. volume phase fraction equilibrium in a metallurgical phase and trans-
formation analysis.

3.1 Lagrangian Description of Body Motion

The polycrystalline body is idealized by using the concept of a generalized
material point representing a micro-region which is part of a grain deforming
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due to phase transformations without the restraints of the neighboring parts
of body.

The stress inside the micro-region is averaged, and the strain and displace-
ment are measured only at one or more particular points of the bounding
surfaces where continuity conditions must be fulfilled for neighboring regions.
This concept allows one to treat the polycrystalline body motion as a contin-
uum with internal local deformation of particles. It is also assumed that the
shape of a micro-region does not vary significantly during the deformation
process.

Lagrangian analysis is used with the initial position of the generalized particle
X and the time t taken as independent variables. The variables (X0

1 , X
0
2 , X

0
3 )

of X are global and called the Lagrangian or material variables. The inter-
nal deformation of the generalized particle is defined in terms of the local
coordinate system. The local coordinate system can be transformed to the
global one by using the orthogonal transformation matrix shown in [23].

The generalized particle is the smallest microstructural element of the alloy
and can be imagined as the micro-region defined in [23] and [24] and seen to
be like a point of the considered body. The definition of a micro-region and
its deformation are developed from the concept of “free” deformation. This
“free” deformation is defined with respect to phase transformation and means
the deformation to the extent when neither the other micro-region nor the
remaining part of the grain restrains the local deformation. For example, a
micro-region for the martensitic transformation is a block of lathes or a plate
dependent on the form of martensitic precipitation. A group of micro-regions
form a mesodomain and will be represented in FE analysis by a finite element.
The motion, which carries a fixed material element through various spatial

Figure 3.1: Differential surface traction in (a) reference and (b) deformed
configurations

31



positions, can be expressed by the function of motion x = χ(X, t). This
function, expressed in terms of Lagrangian variables, describes the variation
of physical parameters for a given particle during its wandering through
the space. The vector joining the point X and its actual position in the
space x = (X1

1 , X
1
2 , X

1
3 ) is the displacement vector given by u = X − x.

The constitutive variables, i.e. the stress and strain measures, used in the
Lagrangian formulation are the second Piola-Kirchoff stress and the Green-
Lagrange strain which are conjugate in terms of energy according to the Hill
definition.

Referring to Fig. 3.1 the second Piola-Kirchoff or material stress tensor T is
given by:

N ·T = lim
dA→0

(
F−1dP

dA

)
(3.1)

where F−1 is the inverse of the deformation gradient defined as

F =
∂x

∂X
; FiK = xi,K =

∂xi

∂XK

; (3.2)

where X and x = χ(X, t) are the reference and current coordinates respec-
tively.

The Green-Lagrange strain is conjugate to the second Piola-Kirchoff stress
and is defined by

L̃ = 1
2
(uI,J + uJ,I + uK,IuK,J) (3.3)

where the displacement gradient is

uI,J =
∂uI

∂XJ

(3.4)

The large indices I, J,K refer to the reference configuration. The “, ” is the
usual abbreviated notation for differentiation with respect to coordinates.

Material parameters such as Young’s modulus E, Poisson’s ratio ν, yield
limit, hardening parameters, thermal and others parameters of a mesodomain
are evaluated by using a linear mixture rule that in vector form can be written
as

〈E〉 = E : y , 〈ν〉 = ν : y (3.5)

where y is a vector of phase fractions yi present at a mesodomain.
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3.2 Balance Laws for TMM Process

The mathematical model of the TMM process consists of expressing thermal
and mechanical equilibrium, i.e. the balance of internal energy and the bal-
ance of momentum as well as then governing differential equation for phase
equilibrium. These principles have been derived to account for the coupling
of thermal, mechanical and metallurgical effects for a thermo-inelastic body
with solid phase transformations. The balance of momentum for a solid is
given by the following equations:

(TKLxi,L)
,K

+ bi = 0 for X ∈ V
TKLxi,LNK = Ti for X ∈ ∂V

(3.6)

where bi is the body force, Ti is the nominal given stress vector and NK is
the surface normal vector. where bi is the body force, Ti is the nominal stress
vector.

The local balance of internal energy, neglecting any fluid motion in the weld
pool, is given by [63]

ρė +∇ · h = 0 for X ∈ V (3.7)

f ∂V

θ = −(k · ∇θ) ·N for X ∈ ∂V

where ė is the rate of specific internal energy and h represents the heat flux
vectors and N is the normal to the surface on which the flux, f ∂Vθ , occurs.

The rate of specific internal energy can be written as

ė = Cθ̇ +
1

ρ
ηinT : L̇in (3.8)

where C is the specific heat per unit mass for a constant volume and the
second term represents the rate of specific inelastic strain energy dissipated.
The factor ηin is the inelastic heat energy fraction which is less than one as
a consequence of the Second Law of Thermodynamics. If we use the heat
energy per unit volume Cv = ρC then we can write the balance of energy as

Cvθ̇ + ηinT : L̇in +∇ · h = 0 (3.9)

We assume that the flow of heat into the body obeys Fourier’s law so that

h = −k · ∇θ (3.10)
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The diagonal tensor of thermal conductivity k is

kIJ =




k11 0 0
0 k22 0
0 0 k33


 =




kx 0 0
0 ky 0
0 0 kz


 (3.11)

where kx, ky and kz are the conductivities in the x, y and z directions, re-
spectively, in the case of anisotropic thermal conductivity. This conductivity
tensor is usually considered to be isotropic so that instead we have

kIJ = k δIJ (3.12)

where k = k(θ, y) is the conductivity, in general, a function of the given
temperature for each given phase.

We can thus rewrite Eq. 3.9 as

Cvθ̇ − kδIJθ,JI + ηinTIJL̇
in
IJ = 0 (3.13)

Solid phase equilibrium for the volume fractions of metallurgical phases, yi,
is expressed by the following governing equation

ẏI + (DpyI ,JJ +

(
fgD

m

[
∂GIψ

∂θ
θ +

∂GIφ

∂TKL

TKL

])

,JJ

= 0 , X ∈ V (3.14)

with (DpyI,J + fgD
mGψ

I,J)NJ = qp
I , X ∈ ∂V

With the assumption that Dp, fg and Dm are defined for a given temperature,
volume fraction of a particular phase and stress state existing at a material
point, the gradients of these coefficients are zero. Hence we can write eq.3.14
as

ẏI + DpyI ,JJ + fgD
m

(
∂Gψ

I

∂θ
θ +

∂Gψ
I

∂TKL

TKL

)

,JJ

= 0 (3.15)

Balance laws for momentum, internal energy and volume phase fraction
transformation can be expressed in functional forms and then approximated
by the Galerkin type Finite Element Method. A formulation of the functional
forms of the balance laws following [36], [65] follows.

To formulate the weak solution to the CTMM problem we first characterize
two classes of functions: the trial solutions U and the weighting functions V
(or variations), which are defined by

U = {ui, θ, yi | ui, θ, yi ∈ H1} (3.16)
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where ui, θ and yi fulfills boundary conditions for the thermo-mechanical
problem,

V = {υi, ϑ, ϕi} | υi, ϑ, ϕi ∈ H1} (3.17)

where υi, ϑ, ϕi are equal zero at the boundary ∂V , and H1 is the Hilbert space.
We next express the balance laws Eqs.(3.6), (3.13), (2.74), as differential
operators defined by

Φ(u, θ, yI) = (TJKxi,K),J + bI (3.18)

Ψ(u, θ, yI) = Cvθ̇ − kθ,II + ηinTIJL̇
in
IJ (3.19)

Υ(u, θ, yI) = ẏI + DpyI ,JJ + fgD
m

(
∂Gψ

I

∂θ
θ,JJ +

∂Gψ
I

∂TKL

TKL,JJ

)
(3.20)

We apply the Galerkin method to these coupled differential equations. We
multiply each equation by the corresponding weighting function and integrate
over the volume.

∫

V0

(TJKxi,K),JυI + bIυI dV = 0 (3.21)
∫

V0

(
Cvθ̇ − kθ,II + ηinTIJL̇

in
IJ

)
ϑ dV = 0 (3.22)

∫

V0

[
ẏI + DpyI ,JJ + fgD

m

(
∂Gψ

I

∂θ
θ,JJ +

∂Gψ
I

∂TKL

TKL,JJ

)]
ϕI dV = 0 (3.23)

Applying Gauss’s divergence theorem we can decompose part of Eq.3.21

∫

V0

(TJKxi,K),JυI =
∫

∂V0

υIxi,KTJKNJ dP −
∫

V
xi,KTJKυI,J dV (3.24)

For the second Piola-Kirchoff stress the surface tractions are given by

TI = xi,KTJKNJ (3.25)

Combining Eq. 3.24 and Eq. 3.25 with 3.21 we obtain

∫

V0

xi,KTJKυI,J dV =
∫

∂V0

TIυI dP +
∫

V0

bIυIdV (3.26)

Noting that xi = xI − uI gives

xi,K = (δIK − uI,K) (3.27)
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So that we may rewrite Eq. 3.26 as

∫

V0

(δIK − uI,K)TJKυI,J dV =
∫

∂V0

TIυI dP +
∫

V0

bIυIdV (3.28)

which simplifies to

∫

V0

(uI,KTJK − TJI)υI,J dV +
∫

∂V0

TIυI dP +
∫

V0

bIυIdV = 0 (3.29)

We can use Gauss’s theorem to decompose the integral with the divergence
of temperature in the heat equation (Eq. 3.13)

∫

V0

kIJθ,JIϑdV =
∫

∂V0

kIJθ,JNI ϑdP −
∫

V0

kIJ θ,J ϑ,I dV (3.30)

Which gives

∫

V0

[
Cvθ̇ ϑ + kIJθ,J ϑ,I + ηinTIJL̇

in
IJ ϑ

]
dV +

∫

∂V0

f∂V
θ ϑdP = 0 (3.31)

where
∫

∂V0

f∂V
θ ϑdP = −

∫

∂V0

kIJθ,J NIϑdP (3.32)

includes the heat in-flux from the welding arc as well as heat out-fluxes due to
contact conductance, convection and radiation through the external surface
of the body and NI is the surface normal.

We may similarly obtain a BVP from the governing differential equation for
metallurgical phase transformations by applying Gauss’s theorem

∫

V0

[
DpyI ,JJ + fgD

m

(
∂Gψ

I

∂θ
θ,JJ +

∂Gψ
I

∂TKL

TKL,JJ

)]
ϕI dV =

∫

∂V0

[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
ϕINJ dP

−
∫

V0

[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
ϕI,J dV dV

(3.33)

This formulation thus formally yields a quantity describing a flux of phase
transformation across the surface of the body

∫

∂V0

[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
ϕINJ dP =

∫

∂V0

qp
I ϕI dP(3.34)
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which usually in CTMM problems, arising from welding processes, will be
zero. Usually the driving force in welding problems is a heat source and
applied mechanical surface tractions, TI, will also be zero in the absence of
a clamping jig. There are, however, applications in welding for such a flux
of metallurgical phase change. The metallurgical phase change as a result of
the diffusion of interstial elements from an electrode or shielding gas could be
modelled in this way. Hydrogen diffusion producing a metallurgical change
susceptible to fracture could for instance be modelled by such a flux.

Eq. 3.23 can thus be written as

∫

V0

ẏI ϕI −
[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
ϕI,J dV

+
∫

∂V0

qp
I ϕI dP = 0 (3.35)

Stationary conditions for functionals Eq.3.29, Eq.3.31 and Eq.3.35 are the
following variational equations:

∫

V0

(uI,KTJK − TJI) δυI,J dV +
∫

∂V0

TIδυI dP +
∫

V0

bIδυIdV = 0 (3.36)
∫

V0

[
Cvθ̇ δϑ + kIJθ,J δϑ,I + ηinTIJL̇

in
IJ δϑ

]
dV +

∫

∂V0

f∂V
θ δϑdP = 0 (3.37)

∫

V0

ẏI δϕI −
[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
δϕI,J dV

+
∫

∂V0

qp
I δϕI dP = 0 (3.38)

3.3 Singularities and Singular Surfaces in the

Solution of the State Variables

As shown in Fig. 3.2 it is possible that singularities could occur in the solution
of the state variables due to jumps associated with property changes. Such
jumps would actually occur at the level of the grain where grain boundaries
would lead to singular surfaces. These don’t generally lead to observable
jumps in the state variables at the macroscopic level at which the solution
is sought. Grain boundaries are generally neglected in normal single phase
polycrystalline structures as they form part of the average material properties
associated with a given material when properties such as the yield stress or
Young’s modulus are determined.
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Figure 3.2: Schematic of a typical weld showing how the jumps in solution
between grains of different phases can lead to a singular surface in the solution

The situation can be different in the case of a multiphase material as shown
if Fig. 3.2 where there is a coincidence of jumps associated with a phase
change at the boundaries of zones of dominant phases leading in effect to a
singular surface across which the solution is not necessarily continuous. Such
a diskontinuity is observable at the macroscopic level in the real structure and
can be observed in the numerical solution when two sets of material properties
are used to describe a body. This is quite often the case in welding where,
even without considering phase changes, two different properties might be
ascribed to the filler material and base material.

To be precise in formulating the equilibrium equations then, we have to al-
low for these singularities. To do this we treat the zonal boundaries, where
the dominant phase fraction changes from one type to another, as a singular
surface, Γ. We ascribe additional boundary conditions to account for these
singular surfaces and take them into account by specifying that the state
variables and weighting functions must fulfill these additional boundary con-
ditions when applying the Galerkin method.

To evaluate the derivatives when allowing for singularities we use Gâteaux
differentiation. The Gâteaux derivative dG of a function f , operating over a
Banach space, at φ in the direction α is defined as

dG(φ, α) = lim
t→0

f(φ + αt)− f(φ)

t
=

d

dt
f(φ + αt)|t=0 (3.39)
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We can thus obtain derivatives on singular surfaces, in positive and negative
directions normal to the singular surface, using the Gâteux derivative.

Allowing for singular surfaces we can reformulate Eq. 3.6 as

(TKLxi,L)
,K

+ bi = 0 for X ∈ V
TKLxi,LNK = Ti for X ∈ ∂V,

TKLxi,LN+
K = T+

i , TKLxi,LN−
K = T−

i for X ∈ Γ,
(3.40)

Applying Gauss’s theorem as before to Eq. 3.21 but using the Gâteux deriva-
tive and on ∂V ∪ Γ instead of just ∂V we obtain instead of Eq. 3.24:

∫

V0

(TJKxi,K),JυI =
∫

∂V0

υIxi,KTJKNJ dP +
∫

Γ
υIxi,KTJKN+

J dΓ

+
∫

Γ
υIxi,KTJKN−

J dΓ−
∫

V
xi,KTJKυI,J dV (3.41)

So that instead of Eq. 3.29 we obtain
∫

V0

(uI,KTJK − TJI)υI,J dV +
∫

∂V0

TIυI dP +
∫

Γ
T+

I υI dΓ

+
∫

Γ
T−

I υI dΓ +
∫

V0

bIυIdV = 0 (3.42)

which we may write as
∫

V0

(uI,KTJK − TJI)υI,J dV +
∫

∂V0

TIυI dP

+
∫

Γ
〈TI〉υI dΓ +

∫

V0

bIυIdV = 0 (3.43)

where the 〈. . .〉 indicates that the quantity is evaluated in the positive and
negative direction to a singular surface.

We may similarly reformulate Eq. 3.8 to account for singular surfaces

ρė +∇ · h = 0 for X ∈ V

f ∂V

θ = −(k · ∇θ) ·N for X ∈ ∂V (3.44)

f+∂V

θ = −(k · ∇θ+) ·N+ , f−∂V

θ = −(k · ∇θ−) ·N− for X ∈ ∂Γ

Applying Gauss’s theorem as before to Eq. 3.29 but allowing for the diskon-
tinuous temperature field and using Gâteaux derivatives we obtain

∫

V0

kIJθ,JIϑdV =
∫

∂V0

kIJθ,JNI ϑdP +
∫

Γ
kIJθ

+
,JN

+
I ϑdΓ

+
∫

Γ
kIJθ

−
,JN

−
I ϑdΓ−

∫

V0

kIJ θ,J ϑ,I dV (3.45)
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So that instead of Eq. 3.31 we obtain
∫

V0

[
Cvθ̇ ϑ + kIJθ,J ϑ,I + ηinTIJL̇

in
IJ ϑ

]
dV +

∫

∂V0

f∂V
θ ϑdP

+
∫

Γ
fΓ+

θ ϑdΓ +
∫

Γ
fΓ−

θ ϑdΓ = 0 (3.46)

which we may write as
∫

V0

[
Cvθ̇ ϑ + kIJθ,J ϑ,I + ηinTIJL̇

in
IJ ϑ

]
dV +

∫

∂V0

f∂V
θ ϑdP +

∫

Γ
〈fΓ

θ 〉ϑdΓ = 0

(3.47)

Finally we can allow for diskontinuities in the equilibrium of the volume
fraction of phases by reformulating Eq. 3.14

ẏI + DpyI ,JJ + fgD
m

[
∂GIψ

∂θ
θ +

∂GIφ

∂TKL

TKL

]

,JJ

= 0 , X ∈ V

with (DpyI,J + fgD
mGψ

I,J)NJ = qp
I , X ∈ ∂V

(Dpy+
I,J + fgD

mGψ+
I,J )N+

J = qp+
I , (Dpy−I,J + fgD

mGψ−
I,J )N−

J = qp−
I , X ∈ Γ

(3.48)

So that Eq. 3.35 similarly becomes

∫

V0

ẏI ϕI −
[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
ϕI,J dV

+
∫

∂V0

qp
I ϕI dP +

∫

Γ
〈qp

I 〉ϕI dΓ = 0 (3.49)

We can thus arrive at the stationary conditions for the functional forms of
the equilibrium equations which include singular surfaces
∫

V0

(uI,KTJK − TJI) δυI,J dV +
∫

∂V0

TIδυI dP

+
∫

Γ
〈TI〉δυI dΓ +

∫

V0

bIδυIdV = 0 (3.50)
∫

V0

[
Cvθ̇ δϑ + kIJθ,J δϑ,I + ηinTIJL̇

in
IJ δϑ

]
dV

+
∫

∂V0

f∂V
θ δϑdP +

∫

Γ
〈f∂V

θ 〉 δϑdΓ = 0 (3.51)

∫

V0

ẏI δϕI −
[
DpyI ,J + fgD

m

(
∂Gψ

I

∂θ
θ,J +

∂Gψ
I

∂TKL

TKL,J

)]
δϕI,J dV

+
∫

∂V0

qp
I δϕI dP +

∫

Γ
〈qp

I 〉δϕI dΓ = 0 (3.52)
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3.4 Stress-Strain Constitutive Equations and

Tangent Moduli

Deformations of a dispersed particle, i.e. microregion V mic, of an alloy with
multiphase internal structure occur due to phase transformations driven by
variations of temperature and stress, external thermal and mechanical load-
ings and internal energy sources. A microregion deformation is separated into
reversible and permanent parts, and therefore appropriate elastic, thermal
and plastic components of the Green finite strain rate tensor are considered
in the total strain rate evaluation. The total strain rate L̇ can be divided
into five terms

L̇ = L̇el + L̇th + L̇tr + Ėpl + Ėtrip (3.53)

with

L̇el plastic strain rate
L̇th thermal strain rate
L̇tr transformation strain rate
Ėpl deviator of plastic strain rate
Ėtrip deviator of plastic strain rate induced by phase transformation

The acronym trip is formed from the initial letters of the name: TRansforma-
tion Induced Plasticity. The strain rate L̇ can be also split into a spherical
and deviatoric part

L̇ = 1
3
trL̇ 1 + Ė (3.54)

which are defined in terms of the second-order tensor components

trL̇ = L̇KK =
(
L̇el

KK + L̇th
KK + L̇tr

KK

)
,

ĖIJ = L̇IJ − 1
3
δIJ trL̇ = Ėpl

IJ + Ėtrip
IJ + Ėel

IJ .
(3.55)

3.4.1 Elastic Strain and Thermal Dilatation

The spherical part of elastic strain rate trL̇el and the deviator of elastic strain
rate Ėel are related to stress rate Ṫ by Hooke’s law

trṪ = κ
(

trL̇− L̇th
KK − L̇tr

KK

)
+ κ̇

κ
trT,

Ėel
IJ ≡ ĖIJ − Ėpl

IJ − Ėtrip

IJ = 1
µ

(
ṠIJ − µ̇

µ
SIJ

)
,

(3.56)
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with the bulk modulus 〈κ〉 and the shear modulus 〈µ〉 defined by

〈κ〉 =
〈E(θ)〉

1− 2〈ν(θ)〉 ; 〈µ〉 =
〈E(θ)〉

2 (1 + 〈ν(θ)〉) , (3.57)

where the Young’s modulus 〈E〉 and the Poisson’s ratio 〈ν〉 are averaged
accordingly to the linear mixture law

〈E(θ)〉 = Ei(θ)yi; 〈ν(θ)〉 = νi(θ)yi. (3.58)

The spherical part of thermal strain rate trL̇th = L̇th
KK represents the thermal

expansion of different phases and at inhomogeneous microregion is defined
by

trL̇th =
d

dt

(
yi

∫ θ(t)

0
iα

dil

JK(ϑ)δKJdϑ

)
= ẏi

∫ θ(t)

0
iα

dil

JK(ϑ)δKJdϑ +
1

3
iα

dil

KK yi θ̇

(3.59)

with the diagonal tensor iα
dil
JK(θ) representing the temperature dependent

thermal expansion coefficients of phase constituent i.

The transformation strain rate L̇tr is associated with the expansion generated
by the change of parent phase density, ie. austenite density ρaus, into the
daughter phase density ρi, i = 2, ..., 6. The spherical part of this strain rate
is evaluated by

trL̇tr = αtra
i ẏi (3.60)

with the transformation expansion coefficient αtra
i defined by

αtra
i =

ρ0
◦
C

aus − ρi

ρ0◦C
aus

(3.61)

where austenite density ρaus is taken at temperature 0◦C.

3.4.2 Inelastic Strain Decomposition

Classical Plasticity

The plastic strain rates Ėpl are evaluated using the Huber-Mises yield con-
dition and the associated flow rule. The yield surface with the isotropic and
kinematic hardening effects is defined by

f(SKL) = φ(Σ)− 〈κ〉(W pl, θ); (3.62)
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where Σ(S) is the effective stress deviator defined later in this chapter, and
the plastic work is given by

W pl =
∫

SIJ Ėpl
IJ dt, (3.63)

with the hardening function κ. As the function f(SIJ) is a potential for
strain and a plastic strain rate is normal to the yield surface, f(SIJ) = 0, the
following flow law can be written:

Ėpl
IJ = ΛIJ = Λ̇

∂f

∂SIJ

, (3.64)

That can be also expressed in incremental form

∆Epl
IJ = Λ̄

∂f

∂SIJ

, (3.65)

where Λ̄ is the plastic function related to stress, strain, strain rate, tempera-
ture, as well as phase fractions, and it is, as yet, an unknown proportionality
factor or plastic multiplier. The plastic strain increment fulfills the following
conditions for unloading of the generalized particle:

∆Epl
IJ = 0

{
f(SIJ) < 0
f(SIJ) = 0 and ∆EIJ : SIJ < 0

(3.66)

Transformation Plasticity

The multiphase alloy, which is subjected to both internal stress and exter-
nal loading, undergoes plastic deformations for a lower applied stress than
the yield stress. This can happen due to the superposition of external and
internal stresses. Internal stresses are generated mainly during phase trans-
formations because of the variation of fraction specific volumes. The plastic
yielding occurs in the direction of the applied stress.

The constitutive equation for a transformation plasticity is based on the
Levy-Mises perfectly plastic equation, and has been proposed by Greenwood
and Johnson [26] in the following form:

Ėtrip =
5

6

Text

Y

trĖ

J
, (3.67)

where Text is the applied external stress, Y is the yield stress of the weaker
phase of two phases: the daughter and parent. The constitutive equation for
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the transformation induced plasticity shown in [73] can be obtained assuming
J ≈ 1 and trĖ ≈ trĖtr

i

Ėtrip =
5

2

trĖtr
i

Y
Text. (3.68)

where trĖtr
i is the trace of the transformation strain rate for phase i. The

modification of this relation, presented in [15], can be expressed by

Ėtrip

IJ =
3

2

Ėtrip
eq

Seq
ΣIJ , (3.69)

where the equivalent transformation induced plastic strain rate is defined by

Ėtrip

eq =
(

2
3
Ėtrip

IJ Ėtrip

IJ

) 1
2 . (3.70)

Assuming that the softer phase is rigid-ideal plastic, the constitutive equation
for the transformation induced plastic strain rate can be expressed in the
form:

Ėtrip

IJ =
5∑

i

K (1− yi) ẏi ΣIJ , (3.71)

which relates explicitly a portion of plastic strain rate with the phase fraction
yi and its rate ẏi.

This has been experimentally verified in [18] for steel with temperature Ms =

275C, the material constant K = 1.5 × 10−10
[

m2

N

]
, and the austenite yield

limit equal to 170
[

MN
m2

]
.

In the formulation of the TMM problem the volume phase fractions are also
state variables and they are stored in a column vector, y, with the position
in the vector determined by a type of phase evolution. Eq. (3.71) can be
written in the vector form

Ėtrip = K(1− y) : ẏ Σ (3.72)

which is required for a consistent mathematical approach to the solution of
TMM problem by FEM. The unit vector 1 = [1, 1, ..., 1]T contains the same
number of entries as the number of considered phase transformations.

The trace of strain increment related to transformation plasticity is expressed
by

tr∆Ltrip = α : ∆y. (3.73)
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Tangent Moduli and the Solution Algorithm for Determining the
Plastic Strain Rate Multiplier Λ

The algorithmic or consistent tangent moduli is used in forming the finite
element stiffness matrices Kuu,Kuθ,Kθu to ensure quadratic convergence of
the global Newton-Raphson solution scheme. These matrices arise from the
algorithm for the time integration of the plastic strain rate.

A yield criterion for assessment of plastic flow is expressed by

f(S, Hα, Kα) = ‖Σ‖ −
√

2
3
Kα = 0 (3.74)

where two hardening effects are represented by isotropic, Kα, and kinematic,
Hα, hardening parameters. These parameters are related to equivalent plastic
strain Ēpl =

√
2
3
‖Epl‖, equivalent strain rate Ėeq = 1

∆t
( 2

3
∆E : ∆E)1/2, and

temperature θ, that symbolically can be written as Kα = Kα(Ēpl, Ėeq, θ) and
Hα = Hα(Ēpl, Ėeq, θ).

The direction of plastic flow for an associative flow rule (J2) is in the direction
of applied force per unit area acting on a surface through the material point
undergoing deformation.

If nφ
i is a unit vector in the direction of applied surface tractions then we

restrict the solutions of the stress state to ones satisfying

Σpred

ij

Σpred

lk Σpred

lk

nφ
j =

Σpred

‖Σpred‖ · n
φ =

Σ

‖Σ‖ · n
φ. (3.75)

Which implies that the that the corrected stress state, Σ, is associated with
a vector of force per unit area of the same direction as that of the elastic
predicted stress but in general with a different magnitude.

The effective stress defined by

Σ = S− Z (3.76)

appears in the yield criterion rather than the usual deviatoric stress S. The
back stress Z is determined incrementally from the expression

Zn+1 = Zn +
√

2
3
∆Hα

Σ

‖Σ‖ . (3.77)

A predictor-corrector method is used to determine the unknown value of the
plastic strain increment Λ̄ = ∆tΛ̇. This increment is determined at time

45



step n + 1 by using the backward Euler implicit method. Assuming that the
current increment is purely elastic, the starting values of the variables are set
up and hence Λ̇ = 0. These starting values are known as the elastic predicted
ones:

Spred = Sn + 2〈µ〉∆Epred , Σpred = Spred − Zn (3.78)

where the deviatoric part of the strain increment is used without accounting
for the thermal and transformation plastic strains, and given by

∆Epred = Ĵdev :
[
∆L− 〈αthm〉1∆θ − 1

3
tr∆Ltp1

]
(3.79)

The fourth order tensor Ĵdev is an operator converting a second order tensor
to its deviator and is defined by Ĵdev = Ĵ − 1

3
1 ⊗ 1, where Ĵ and 1 are the

fourth and second order unit tensors, respectively.

The formula for the effective stress calculation is determined from Eq.(3.76)
and the additive decomposition of strain rates expressed by Eq.(3.53), and
can be written as

Σ = Σpred − 2〈µ〉∆t
[
Ėpl + Ėtrip

]
−

√
2
3
∆Hα

Σ

‖Σ‖ (3.80)

Substituting this into Eq.(3.74) leads to

∥∥∥Σpred − 2〈µ〉∆tĖtrip − (
√

2
3
∆Hα + 2〈µ〉Λ̄)

Σ

‖Σ‖
∥∥∥−

√
2
3
Kα ≤ 0. (3.81)

The inequality condition is satisfied when the increment of strain is purely
elastic, and the equality must hold for a plastic strain increment.

The plastic corrector algorithm is the following:

1. calculate the derivative:

∂f(Λ̄)

∂Λ̄
= 2

3
K ′

α − γ [2〈µ〉+ 2
3
H ′

α] (3.82)

where

γ =
1

1 + 2〈µ〉∆tEtrip
α

(3.83)

with the transformation induced plastic strain rate, Etrip
α , which will be

derived later and shown as Eq.(3.71).
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2. update Λ̄ applying the Newton-Raphson scheme

Λ̄(k+1) = Λ̄(k) − f(Λ̄)

[
∂f(Λ̄)

∂Λ̄

]−1

(3.84)

3. update the plastic strain using the current value of the plastic strain
increment

Ēpl
n+1 = Ēpl

n +
∫

t

√
2
3
‖Ėpl‖dt = Ēpl

n +
√

2
3
Λ̄ (3.85)

4. update hardening functions: ∆Hα , Kα for the k + 1 iteration of Λ̄,

5. check the relation: f(Λ̄) < TOL, and terminate the procedure when
this condition is fulfilled, otherwise repeat the above sequence of eval-
uations again.

Stress is calculated either by

S
(k+1)
n+1 = Z

(k+1)
n+1 +

√
2
3
Kα

Σ

‖Σ‖ , (3.86)

when the strain increment is plastic or

Sn+1 = Spred (3.87)

when the strain increment is elastic.

The full stress tensor is calculated by adding the deviatoric stress and the
spherical part of stress, ie.

Tn+1 = Sn+1 + 1
3
trTpred 1, (3.88)

where Tpred is the stress predicted for elastic reaction of an alloy.

The tangent modulus ∂T
∂L

at the particular time step (n + 1) is defined by

∂T

∂L
= 〈κ〉1⊗ 1 +

[
∂Z

∂L
+

√
2
3

∂Kα

∂L
⊗ Σ

‖Σ‖ + 2〈µ〉∂∆Etrip

∂L

]

n+1

(3.89)

where the derivative of the back stress expressed in terms of hardening pa-
rameters is

∂Z

∂L

∣∣∣∣∣
n+1

=
Σ

‖Σ‖ ⊗
[

2
3
H ′

αĴdev :
∂Λ̄

∂E
+

√
2
3
Hr

α

1

∆t

∆E

∆Eeq

]

n+1

(3.90)
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and the derivative of the isotropic hardening function is

√
2

3

∂Kα

∂L

∣∣∣∣∣
n+1

=

[
2
3
K ′

αĴdev :
∂Λ̄

∂E
+

√
2
3
Kr

α

1

∆t

∆E

∆Eeq

]

n+1

. (3.91)

The derivative of the transformation induced plastic strain increment in
Eq.(3.89) can be expressed by

2〈µ〉 ∂∆Etrip

∂L

∣∣∣∣∣
n+1

= γ̄Ĵdev :

[
2〈µ〉1− 2〈µ〉∂Λ̄

∂E

−
{

2
3
H ′

α

∂Λ̄

∂E
+

√
2
3
Hr

α

1

∆t

∆E

∆Eeq

}]

n+1

⊗ Σ

‖Σ‖ , (3.92)

where

γ̄ = γ2〈µ〉∆Etrip

α (3.93)

The derivative ∂Λ̄
∂E

occurring in the above expression is still unknown and it
can be obtained by the implicit differentiation technique applied to the yield
condition when assuming that plastic yielding occurs within the increment
∆t and Λ 6= 0, so that

∥∥∥
[
γ(‖Σpred‖ − 2〈µ〉Λ̄)−

√
2
3
∆Hα −

√
2
3
Kα

] Σ

‖Σ‖
∥∥∥ = 0 (3.94)

since Σ
‖Σ‖ 6= 0, and thus

γ‖Σpred‖ − 2γ〈µ〉Λ̄− γ
√

2
3
∆Hα −

√
2
3
Kα = 0. (3.95)

Differentiating this with respect to the deviatoric strain, E, yields an implicit
expression for the derivative ∂Λ̄

∂E
in the following form:

γ
Σpred

‖Σpred‖2〈µ〉 − 2γ〈µ〉∂Λ̄

∂E
− 2

3
K ′

α

∂Λ̄

∂E
−

√
2
3
Kr

α

1

∆t

∆E

∆Eeq

−γ 2
3
H ′

α

∂Λ̄

∂E
− γ

√
2
3
Hr

α

1

∆t

∆E

∆Eeq
= 0 (3.96)

which after rearrangement can be written as

∂Λ̄

∂E
[γ〈µ〉+ 1

3
(K ′

α + γH ′
α)] = 〈µ〉γ Σ

‖Σ‖ −
√

1
6

∆t

∆E

∆Eeq
(Kr

α + γHr
α) (3.97)
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and finally the required derivative is

∂Λ̄

∂E
=

γ〈µ〉 Σ
‖Σ‖ −

√
1
6

1
∆t

∆E
∆Eeq (Kr

α + Hr
α)

γ〈µ〉+ 1
3
(K ′

α + γH ′
α)

(3.98)

Using the derivatives expressed by Eqs. (3.90), (3.91), (3.92) and after group-
ing scalars multiplying (Ĵdev : Σ

‖Σ‖), the final form of the stress-strain tangent
modulus can be written as

∂T

∂L

∣∣∣∣∣
n+1

= 〈κ〉1⊗ 1 + 2Ĵdev{γ̄〈µ〉}n+1

+ 2Ĵdev

[
γ〈µ〉 ( 1

3
[(1− γ̄)H ′

α + K ′
α]− γ̄〈µ〉)

γ〈µ〉+ 1
3
(K ′

α + γH ′
α)

]

n+1

+
Σ

‖Σ‖ ⊗
[
(1− γ)Hr

α

1

∆t

∆E

∆Eeq
+ Kr

α

1

∆t

∆E

∆Eeq

]

n+1

. (3.99)

3.5 FE Approximation of TMM Problem

The parent material and a weldment are polycrystalline bodies represented
by finite elements. Each element can be composed of various phases that are
evaluated at Gaussian integration points or Gauss points). Such elements
are called hybrid finite elements. Hybrid finite element contains various mi-
croregions or phases represented at elemental integration points, ie. nodes of
Gaussian quadrature at elements. This arrangement in the approximation of
material properties is consistent with the micro-mechanical model of the alloy
and provides for the transmission of information about the micro-material
state to the macro-level of finite element method solution.

The Galerkin type FE technique is used to solve the variational problem
where the dispersed particles and a real microstructure is not projected into
FE structure but the phase composition of welded material is represented in
Gauss points where the FE system is integrated.

The approximation of the fully coupled thermo-mechanical problem is based
on Galerkin’s type finite element approximation of balance laws combined
with finite difference method applied to phase evolution laws.

3.5.1 FE Approximation of Virtual Work Balance

The equation of virtual work Eq(3.36) is solved by the Finite Element Method
combined with linearization techniques for Finite Element equations. The
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linearizations are applied after incremental decompositions for strain and
stress given by

t+∆tL̃ = tL̃ + L̃
∆

(3.100)

t+∆tT = tT + T
∆

(3.101)

where t+∆t{L̃,T} and t{L̃,T} corresponds to the actual and the previous
strain-stress state. The increments of strain and stress are L̃

∆
, T

∆
. The

increment of the Green strain L̃
∆

is further decomposed into its linear and
nonlinear components:

L̃
∆

= L̃ + L̃ν (3.102)

where

L̃ = 1
2

[
FT∇(∆u) +∇(∆u)TF

]
;

L̃ν = 1
2
∇(∆u)T(∇∆u). (3.103)

The finite element equation for virtual work, shown in [4], and [36], for the
total Lagrangian formulation at time (n + 1) is obtained from Eq.(3.36) and
expressed by

(
t
0KL(θ) + t

0KnL(θ)
)

∆u(i) = t+∆t
0 Ru − t+∆t

0 F(i−1)
u (3.104)

where t
0KL(θ) and t

0KnL(θ) is the linear and the nonlinear stiffness matrix that
are temperature dependent, ∆u(i) is the vector of displacement increment,
t+∆t
0 Ru is the vector of externally applied nodal point loads, t+∆t

0 F(i−1)
u is the

vector of nodal point forces equivalent to the internal stresses. This equation
is linear in respect of ∆u(i) and the matrices in Eq.(3.104) are taken at four
levels of solution. These matrices are evaluated at two time steps t and
(t + ∆t), and for two iterations i and (i − 1). The linear stiffness matrix is
defined by

t
0KL =

∫

V0

t
0B

T

L CTL
t
0BL dV0 (3.105)

where meaning of matrices t
0BL and CTL comes from the following expression:

(
t
0B

T

L ∆uT
)
CTL

(
t
0BL∆u

)
= L̃T : CTL : L̃. (3.106)
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The matrix CTL is the consistent or algorithmic tangent modulus which has
to be defined for each material model as the

[
∂T
∂L

]
contribution to the global

stiffness matrix, and t
0BL is the linear strain-displacement matrix. The non-

linear stiffness matrix is defined by

t
0KnL =

∫

V0

t
0B

T

nL S[mx] t
0BnL dV0. (3.107)

The nonlinear strain-displacement matrix t
0BnL comes from the substitution

(
t
0B

T

nL ∆uT
)
S[mx]

(
t
0BnL∆u

)
= S : L̃ν , (3.108)

where S[mx] is the matrix representation of 2nd Piola-Kirchoff stress, tS. The
linear and nonlinear stiffness matrices are not modified in the iteration pro-
cess during the step (t + ∆t). They are updated when the iteration process
at (t + ∆t) is completed. The vector of externally applied nodal point loads
is given by

t+∆t
0 Ru =

∫

∂V0

HT

s
t+∆tTdP +

∫

V0

HTt+∆tb dV0 (3.109)

where Hs is the surface interpolation matrix, and H is the volume interpo-
lation matrix. These matrices are formed from the interpolating polynomial
during the process of Gaussian integration. The matrix Hs is evaluated for
two of the 3-coordinates at Gauss points and one at the given surface. The
given nominal stress vector is t+∆tT = {TJ}, and the vector of body forces is
t+∆tb = {bJ}. The vector of nodal point forces equivalent to stresses at time
(t + ∆t) and defined for previous iteration (i− 1) is expressed in the form

t+∆t
0 F(i−1)

u =
∫

V0

t
0BL

t+∆t
0 T(i−1) dV0 (3.110)

3.5.2 FE Approximation of Internal Energy Balance

The variational equation of internal energy balance Eq.(3.8) is solved by
the Galerkin type Finite Element Method. The appropriate finite element
equation for the fully coupled thermo-mechanical problem is given by:

t
0C

t+∆t
0 θ̇(i) +

(
t
0K

k + t
0K

M + t
0K

r + t
0K

ρ
)

∆θ(i)

= t+∆t
0 Rθ

(i−1) − t+∆t
0 R(i−1)

Γ − t+∆t
0 R(i−1)

su − t+∆t
0 R

(i−1)
Σ

− t+∆t
0 F(i−1)

neq − t+∆t
0 Fρ, (3.111)
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where t
0K

k is the stiffness matrix corresponding to conduction, t
0K

M is the
stiffness related to the heat generated by mechanical energy, t

0K
r is the stiff-

ness resulting from entropy radiation, t
0K

ρ and t+∆t
0 Fρ are related to the

dissipation of inelastic energy (Epl : S), and t+∆t
0 F(i−1)

neq is called the matrix of
non-equilibrated heat fluxes generated due to convergence criterion applied
in the iteration technique. The R.H.S. vector of nodal thermal loads, which
correspond to the thermal boundary conditions, is given by

t+∆t
0 R

(i−1)
θ = t+∆t

0 Rk
θ

(i−1)
+ t+∆t

0 Rc
θ
(i−1) + t+∆t

0 Rr
θ
(i−1) (3.112)

where Rk
θ ,R

c
θ,R

r
θ are fluxes due to conduction, convection and radiation phe-

nomena on external surfaces of the body. The terms t+∆t
0 R

(i−1)
Γ and t+∆t

0 R(i−1)
su

are connected with internal heat fluxes generated in the thickest FE region
containing the singular surface ∂Γpt or separate microregions, where ther-
mally activated phase transformations proceed. The correspondence of terms
appearing in Eq.(3.111) has been summarized in Table(3.1).

The FE Eq.(3.111) can be written in the form consistent with the FE virtual
work Eq.(3.104)

t
0C

t+∆t
0 θ̇(i) +

(
t
0K

k + t
0K

M + t
0K

r + t
0K

ρ
)

∆θ(i)

= t+∆t
0 Rθ

(i−1) − t+∆t
0 F

(i−1)
θ , (3.113)

when substituting the matrix of residual fluxes given by

t+∆t
0 F

(i−1)
θ = t+∆t

0 R
(i−1)
Γ + t+∆t

0 R(i−1)
su + t+∆t

0 R
(i−1)
Σ

+ t+∆t
0 F(i−1)

neq + t+∆t
0 Fρ. (3.114)

3.6 Matrices of FE Phase Evolution Equation

3.6.1 Ferritic and Pearlitic Transformations

The general form of evolution law for ferritic and pearlitic diffusional trans-
formations, that has been proposed in [77], can be written in the following
form:

ẏi = Ai (S, θ, yi, t) θ̇ + Bi (S, θ, yi, t) Ṡ +Ri (S, θ, yi, t) , (3.115)
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FE Eq.(3.111) Energy Eq.(3.8) Meaning
t
0C

t+∆t
0 θ̇(i) − ∫

V0
cθ̇ δϑdV “heat energy”

t
0K

k∆θ(i)
∫

V0
kIJθ,I δϑ,JdV heat flux

t
0K

M∆θ(i)
∫

V0
fM

θ δϑdV mechanical energy
t
0K

r∆θ(i)
∫

V0
fr

θ δϑdV entropy radiation
t+∆t
0 Rkcr(i−1)

θ

∫
∂V0

f∂V
θ δϑdP boundary fluxes

t+∆t
0 R(i−1)

Γ

∫
∂Γpt fsu

θ δϑdP surface energy
t+∆t
0 R(i−1)

su

∫
∂Γpt fsu

θ δϑdP energy jump
t+∆t
0 R(i−1)

Σ

∑
J FJθ δϑ |J point heat source

Table 3.1: Correspondence of matrices in FE equation for thermo-mechanical
problem and integrals in the balance of internal energy.

where ẏi is the ferrite or pearlite phase fraction, Ai, Bi, and Ri are material
functions, and subscript i assumes one of two values: 2 or 3. The time
approximation and linearization leads to the linear expression

t+∆tẏi = tAi
t+∆tθ̇ + tBi

t+∆t
0 Ṡ + tRi. (3.116)

The stress rate is obtained from the increment of displacement by using the
strain-displacement transformation and the stress-strain tangent modulus.
The evolution equation expressed in terms of temperature rate and displace-
ment increment can be written as

t+∆tẏi = tAi
t+∆tθ̇ + tB̂i

t+∆tu̇ + tR̂i. (3.117)

where particular forms of tB̂i and tR̂i will be shown after introducing consti-
tutive equations for elastic and inelastic deformations.

The simplest evolution equation for diffusional transformations, without metallurgical-
mechanical coupling, is given by

ẏi = (1− yi)

[
dbi

dθ
θ̇ +

bi(θ)ni

t

]
tni , (3.118)

which, after time approximation, can be written as the following:

t+∆tẏi = tA t+∆tθ̇ + tR, (3.119)

with factors given by

tA = (1− tyi)
ttni

[
dbi

dθ

]
t
,

tR = (1− tyi)
ttni−1 tbi ni,

(3.120)
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where bi and ni are empirical parameters related to cooling rate and the
nucleation rate, t is time equal to zero at the nucleation period.

3.6.2 Bainitic Transformation

The evolution equation for bainitic transformation, shown in [77], can be
written in the following form:

ẏ4 = V micK1

γ
(1− y4) (1− βγy4) exp

[
〈Γ2〉y4 − K2

Rθ

(
1− 〈∆G0

4max
〉

r

)]

〈Γ2〉 =
K2〈∆G0

4max
−GN 〉

r R θ

(3.121)

where V mic is the volume of a microregion, K1 is the parameter related to
austenite grain size, γ = yγ y4max, yγ is the fraction of residual austenite,
β is the auto-catalysis factor, K2 is a constant, R is the ideal gas constant,
∆G0

4max
is the change of maximum nucleation free energy determined from

the free energy diagram, r is the positive constant appearing in approxima-
tion of the value GN that is exceeded by ∆G0

4max
at temperature Ws. Note

that this equation does not contain rates of variables controlling bainitic
transformation. The time approximation and linearization results in the re-
lationship

t+∆tẏ4 =
(
1− ty4

) (
1− A1

ty4

)
A2 exp

[
A3

tθ

(
tG1

ty4 − tG2

)]
(3.122)

where

A1 = βγ; A2 = V micK1

γ
; A3 = K2

r R
;

tG1 =
[
〈∆G0

4max
−GN〉

]
t
;

tG2 = r −
[
〈∆G0

4max
〉
]
t
.

(3.123)

The general form of Eq.(3.122) can be expressed by

t+∆tẏ4 = tA4 exp

(
tF
tθ

)
, (3.124)

where

tA4 ≡ (1− ty4) (1− A1
ty4) A2;

tF ≡ A3 (tG1
ty4 − tG2) .

(3.125)
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3.6.3 Martensitic Transformation

The general form of evolution equation for martensitic transformation shown
in [77] following the proposition [51], can be written as the following kinetic
law:

ẏ6 = A6 (S, θ, y6, t) θ̇ +K6 (S, θ, y6, t)E
∗
cr : Ṡ, (3.126)

where A6 and K6 are material functions, E∗
cr is a value of the macroscopic

transformation strain E∗ when y6 = 1 and stress S is assumed to be homoge-
neous in a microregion representing a group of finite elements. This stress is
balancing the external stress load. The time approximation and linearization
result in the expression

t+∆tẏ6 = tA6
t+∆tθ̇ + tB6

t+∆t
0 Ṡ, (3.127)

with

tB6 = tK E∗
cr. (3.128)

Transformation of stress t+∆t
0 Ṡ to strain rate Ė and velocity u̇ leads to the

following martensitic growth law

t+∆tẏ6 = tA6
t+∆tθ̇ + tB̂6

t+∆tu̇ + tR̂6, (3.129)

where tB̂6 and tR̂6 will be derived later using elastic constitutive equations.

The simplest evolution equation for martensitic fraction is given by

ẏ6 = α (1− y6) θ̇, (3.130)

which after time approximation can be re-written as the following

t+∆tẏ6 = tA6
t+∆tθ̇,

tA6 = α (1− ty6) ,
(3.131)

where α is the constant coefficient that for most steels equals 1.1×10−2[K−1].

Matrices ˆtBi,
tB̂6,

tR̂i, and tR̂6 in Eqs.(3.117) and (3.129) are derived using
elastic constitutive relation Eq.(3.56) expressed in the form:

t+∆t
0 Ṡ(i) = 2µ

(
t+∆t
0 Ė∆(i) − t+∆t

0 in Ė∆(i−1)
)

+
µ̇

µ
t
0S, (3.132)
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where t+∆t
0 in Ė∆(i−1) is the inelastic strain rate defined for the previous iteration

(i− 1).

Substituting the following relation:

t+∆t
0 Ė∆(i) =

(
t
0BL + t

0B
T

nL
t
0BnL

)
t+∆tu̇ (3.133)

into Eq.(3.132) results in the equation

t+∆t
0 Ṡ(i) = B̌ t+∆tu̇− t+∆tŘ+ tŘ (3.134)

where

B̌ = 2µ (t
0BL + t

0B
T
nL

t
0BnL) ;

t+∆tŘ = 2µ t+∆t
0 in Ė∆(i−1);

tŘ = µ̇
µ

t
0S.

(3.135)

Combining Eq.(3.134) with Eq.(3.116) leads to the form of the evolution law
for ferritic-pearlitic transformation

t+∆tẏi = tAi
t+∆tθ̇ + tBi B̌ t+∆tu̇− tBi

t+∆tŘ+ tBi
tŘ+ tRi. (3.136)

Introducing the following symbols:

tB̂ = tBi B̌,
tR̂i = tBi

tŘ+ tRi − tBi
t+∆tŘ,

(3.137)

into Eq.3.136 results in the Eq.(3.117). Substituting Eq.(3.134) in Eq.(3.127)
gives

t+∆tẏ6 = tA6
t+∆tθ̇ + tB6 B̌ t+∆tu̇ + tB6

tŘ − tB6
t+∆tŘ. (3.138)

Denoting

tB̂6 = tB6 B̌,
tR̂6 = tB6

(
tŘ − t+∆tŘ

)
.

(3.139)

results in Eq.(3.129).
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3.7 FE Equation for TMM Problem

The assemblage of FE equations for virtual work Eq.(3.104) and internal
energy Eq.(3.113) together with appropriate phase evolution law yields the
combined global Finite Element equation for thermo-mechano-metallurgical
problem. The global FE equation for thermo-mechanical problem is formu-
lated at first, and afterwards the more complex thermo-mechano-metallurgical
problem will be presented.

3.7.1 Global FE Equation for TM Problem

The displacement increment ∆u and temperature θ are state variables for
the coupled thermo-mechanical problem which is defined by Eqs.(3.104) and
(3.113). The corresponding global FE equation is expressed as the following:

[
0 0
0 t

0C

] [
t+∆tu̇
t+∆tθ̇

](i)

+

[
t
0Kuu

t
0Kuθ

t
0Kθu

t
0Kθθ

] [
∆u
∆θ

](i)

=

[
t+∆tRu
t+∆tRθ

]
−

[
t+∆t
0 Fu
t+∆t
0 Fθ

](i−1)

(3.140)

where t
0Kuu is the stiffness corresponding to mechanical effects, t

0Kuθ is the
matrix which transforms thermal energy into mechanical and matrix t

0Kθu

transform mechanical energy into thermal, the thermal stiffness t
0Kθθ is a

sum of t
0K

k, t
0K

c and t
0K

r. The right hand vectors of Eq.(3.140) are de-
fined by Eqs.(3.109), (3.110), (3.112), (3.114). The stiffness matrices t

0Kuu,
t
0Kθθ,

t
0Kuθ and t

0Kθu are defined by appropriate integrals with kernels ex-
pressed by a combination of unknowns {∆u, θ}, shape functions, and strain-
displacement matrices, as has been shown in [65], [66]. They can be also be
viewed from the perspective of the Newton-Raphson solution process as the
derivatives of vectors Fu, Fθ with respect to the state variable ∆u and θ.
Hence, they can be also expressed as follows:

t
0Kuu = t

0Fu,u;
t
0Kθθ = t

0Fθ,θ;
t
0Kuθ = t

0Fu,θ;
t
0Kθu = t

0Fθ,u, (3.141)

where ’,’ indicates differentiation.
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The balance of internal energy expressed by Eq(3.113) for the temperature
rate approximated by the backward Euler scheme can be written in the form

{
1

∆t
t
0C + t

0K
k + t

0K
c + t

0K
r + t

0K
ρ
}

∆θ(i) = t+∆t
0 Rθ − t+∆t

0 F
(i−1)
θ . (3.142)

Substituting this to Eq.(3.140), the global finite element equation for the
thermo-mechanical system can be rewritten in a more compact form

[
t
0Kuu

t
0Kuθ

t
0Kθu

1
∆t

t
0C + t

0Kθθ

] [
∆u
∆θ

](i)

=

[
t+∆tRu
t+∆tRθ

]
−

[
t+∆t
0 Fu
t+∆t
0 Fθ

](i−1)

(3.143)

where matrix t
0Kθθ is defined by

t
0Kθθ = t

0K
k + t

0K
c + t

0K
r + t

0K
ρ. (3.144)

3.7.2 Global FE Equation for Body with Phase Trans-
formations

Combining Eq.(3.140) together with evolution equation for ferritic and pearlitic
transformations, the following global FE equation is obtained:



−1 tB̂i

tAi

0 0 0
0 0 t

0C







t+∆tẏi
t+∆tu̇
t+∆tθ̇




(i)

+




0 0 0
t
0Kuy

t
0Kuu

t
0Kuθ

t
0Kθy

t
0Kθu

t
0Kθθ







∆yi

∆u
∆θ




(i)

=




t+∆tRyi
t+∆tRu
t+∆tRθ


−




t+∆t
0 Fyi
t+∆t
0 Fu
t+∆t
0 Fθ




(i−1)

(3.145)

where the vector t+∆tRyi
is related to the term Ri of Eq.(3.116), components

of stiffness matrix: t
0Kuu,

t
0Kuθ,

t
0Kθu, and t

0Kθθ, as well as the RHS vec-
tors: t+∆t

0 Fu
(i−1), t+∆t

0 Fθ
(i−1), t+∆t

0 Ru,
t+∆t
0 Rθ, are the same as in Eq.(3.140),

and the subscript i assumes two values: 2 for ferritic, and 3 for pearlitic
transformation.

Approximating the fraction rate, velocity, and temperature rate by backward
finite differences, the system of FE equations can be written in the following
form:




t
0Kyy

t
0Kyu

t
0Kyθ

t
0Kuy

t
0Kuu

t
0Kuθ

t
0Kθy

t
0Kθu

t
0K̂θθ







∆yi

∆u
∆θ




(i)

=




t+∆tRyi
t+∆tRu
t+∆tRθ


−




t+∆t
0 Fyi
t+∆t
0 Fu
t+∆t
0 Fθ




(i−1)

(3.146)
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with τ = 1
∆t

, and stiffness matrices defined as such

t
0Kyy = −τ 1;
t
0Kyu = τ tB̂i;
t
0Kyθ = τ tAi;
t
0Kuy = t

0KΛ;
t
0Kθy = t

0Kmix;
t
0K̂θθ = τ t

0C + t
0Kθθ, (3.147)

where t
0KΛ is related to the plastic function Λ(S,E,

∫
Ėdt, θ, yi) and FE

displa-cement-strain matrices BL, BnL, the stiffness matrix t
0Kmix depends

on the mixture rule used to evaluate material parameters for multiphase
body.

The kinetic law for bainitic transformation, expressed by Eq.(37), reveals
that this phase growth is not related to temperature rate nor to displace-
ment velocity u̇. Therefore the rate of bainitic phase fraction ẏφ

4 is not cou-
pled explicitly with the other two state variables, ∆u, ∆θ, and the thermo-
mechano-metallurgical problem is described by Eq.(37) and Eq.(3.140) or
Eq.(3.143).

The thermo-mechano-metallurgical problem with martensitic transformation
is described by the global FE Eq.(3.146) taken with matrices

t
0Kyu = τ tB̂6;
t
0Kyθ = τ tA6, (3.148)

and R.H.S. vectors evaluated appropriately for this reaction, i.e. t+∆t
0 Fy6 and

t+∆tSy6 . These matrices and vectors are derived corresponding to factors of
equation shown in Table 4 of Part 1.

3.8 Solution of FE Equations

The nonlinear finite element system of equations given either by Eq.(3.143) or
Eq.(3.146) is solved iteratively by the Newton-Raphson scheme. The system
Eq.(3.146) can be rewritten in the form

[K] [U ] = [R]− [F ] (3.149)
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where

[K] =




t
0Kyy

t
0Kyu

t
0Kyθ

t
0Kuy

t
0Kuu

t
0Kuθ

t
0Kθy

t
0Kθu

t
0K̂θθ


 ; (3.150)

[U ] =




∆yj

∆u
∆θ




(i)

; (3.151)

[F ] =




t+∆t
0 Fy
t+∆t
0 Fu
t+∆t
0 Fθ




(i−1)

; (3.152)

[R] =




t+∆tRy
t+∆tRu
t+∆tRθ


 ; (3.153)

The L.H.S. can be defined as the linear function of [U ]

f [U ] = [K] [U ] (3.154)

The Newton-Raphson method provides the approximation [U ]i+1 of the root
[U ]∗ of the equation

f [U ] = 0 (3.155)

computed from the approximation [U ]i using the equation

[U ]i+1 = [U ]i − [K]−1
(
[R]− [F ]i

)
(3.156)

The recombination of the last relation leads to the form

[K]
(
[U ]i+1 − [U ]i

)
= [F ]i − [R] (3.157)

from where the convergence of the method can be evaluated. The matrix
[U ]i+1 converges to the solution [U ]∗ when

(
[U ]i+1 − [U ]i

)
converges to zero

that happens when the vector of nodal thermal and mechanical loads [R]
balances the vector of nodal stress vectors and heat fluxes [F ]i i.e. [F ]i−[R] =
0.
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3.9 Temperature-Displacement-Phase Fraction

Coupling

The global stiffness matrix for the TMM problem consists of terms which
couple each two states of the three variables: temperature, displacement,
and phase fractions. Sub-matrices will be derived here subsequently.

3.9.1 Displacement-Temperature Coupling

The finite element matrix Kuθ coupling the displacement and temperature
in Eq.(3.145) is defined in terms of stress derivatives by

Kuθ =
∫

V0

BT

LCTθ dV0 (3.158)

where the matrix

CTθ =
[ (

∂T
∂θ

)
1

(
∂T
∂θ

)
2
· · ·

(
∂T
∂θ

)
N

]
(3.159)

consists of column vectors
(

∂T
∂θ

)
i
of the dimension 6×1, and N is the number

of nodes in the element.

These column vectors are calculated from the stress-temperature derivatives
which are evaluated using the same procedure as for derivation of ∂T

∂L

∣∣∣
n+1

.

The stress-temperature derivative is expressed by

∂T

∂θ

∣∣∣
n+1

= 〈κ〉,θ
[
tr∆L− αtra : ∆y − 〈αthm〉∆θ

]
n+1

1

−〈κ〉
[
(αtra

,θ : ∆y + ∆t : αtra

{
∂ẏ

∂θ
+

∂ẏ

∂S
:
∂S

∂θ

}

+(αthm
,θ ∆θ + 〈αthm〉)

]
n+1

1

+
∂Z

∂θ

∣∣∣∣∣
n+1

+

[√
2
3
Kα ,θ

Σ

‖Σ‖ + 2〈µ〉∆tĖtrip

,θ

]

n+1

(3.160)

where the derivative of the transformation plasticity strain rate is

∂Ėtrip

∂θ
= K,θ(1− y) : ẏΣ + K(1− y) :

{
∂ẏ

∂θ
+

∂ẏ

∂S
:
∂S

∂θ

}
Σ

+ K(1− y) : ẏ
∂Σ

∂θ
(3.161)
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The other derivatives required for evaluation of ∂T
∂θ

∣∣∣
n+1

are:

∂ẏ

∂θ
+

∂ẏ

∂S
:
∂S

∂θ
=

∂ẏ

∂θ
+

∂ẏ

∂S
: Ĵdev :

∂T

∂θ
(3.162)

∂Σ

∂θ
=

∂Σ

∂S
:

∂S

∂T
:
∂T

∂θ
= Ĵdev :

∂T

∂θ
, (3.163)

∂Z

∂θ

∣∣∣∣∣
n+1

=

[√
2
3

∂Hα

∂θ

Σ

‖Σ‖

]

n+1

. (3.164)

Substituting these expressions to Eq.(3.160) and rearranging in respect to
∂T
∂θ

gives the following:

∂T

∂θ

∣∣∣∣∣
n+1

=
[
Ĵ + 〈κ〉∆tαtra :

∂y

∂S
⊗ 1 : Ĵdev

−2〈µ〉∆tK(1− y) :
∂ẏ

∂S
⊗Σ : Ĵdev + Etrip

α Ĵdev

]−1

n+1
:

{
〈κ〉,θ

[
tr∆L− αtra : ∆y − 〈αthm〉∆θ

]
1− 〈κ〉

[
(αtra

,θ : ∆tẏ

+∆tαtra :
∂ẏ

∂θ
+

(
αthm

,θ ∆θ + 〈αthm〉
) ]

1

+(
√

2
3
Hα,θ +

√
2
3
Kα ,θ)

Σ

‖Σ‖ + 2〈µ〉∆t
[
K,θ(1− y) : ẏΣ

+K(1− y) :
∂ẏ

∂θ
Σ− Etrip

α Ĵdev :
√

2
3
Hα,θ

Σ

‖Σ‖
]}

n+1
(3.165)

3.9.2 Coupling Between Temperature and Inelastic En-
ergy Dissipation

The matrix t
0Kθθ appearing in Eqs.(3.143) and (3.145) contains t

0K
ρ which is

the only undefined term in Eq.(3.144).

The heat flux generated by dissipation of the inelastic strain energy con-
tributes to the variation of the body stiffness, so that the corresponding
stiffness term has the form:

Kρ =
∫

V0

HTF in
θ , θ dV0. (3.166)

and this belongs to the L.H.S of Eq.(3.111). This stiffness contribution is
associated with the corresponding R.H.S. vector of Eq. (3.111)

Fρ =
∫

V0

HTF in
θ , θ θ(i−1) dV0 (3.167)
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where the derivative of the heat flux F in
θ = fθ

(
T : L̇in

)
related to the dissi-

pation of inelastic energy is

∂F in
θ

∂θ
≡ F in

θ , θ = fθ

[
∂T

∂θ
: L̇in +

∂L̇in

∂θ
: T

]
, (3.168)

where HT is the finite element interpolation matrix. The derivative appearing
in the second term of Eq.(3.168) is

∂L̇in

∂θ
=

1

∆t

∂Λ̄

∂θ

Σ

‖Σ‖ +
∂Ėtrip

∂θ
(3.169)

where ∂Λ̄
∂θ

can be found by implicit differentiation of the yield function and
re-ordering:

∂Λ̄

∂θ
=

1

2γ〈µ〉

[
γ,θ‖Σ∗‖+ 2γ

∂Σpred

∂θ
: Σpred − 2Λ̄(γ,θ〈µ〉

+γ〈µ〉,θ)γ,θ
√

2
3
∆Hα − γ

√
2
3
Hα ,θ −√ 2

3
Kα ,θ] (3.170)

The other derivatives are defined as the following:

γ,θ = −
[
1 + 2〈µ〉∆tK(1− y) : ẏ

]−2
2∆tK

[
〈µ〉,θ(1− y) : ẏ

+ 〈µ〉(1− y) : ẏ
,θ

]
(3.171)

∂Σpred

∂θ
= 2〈µ〉,θJdev :

[
∆L− 1

3
∆tαtra : ẏ1− 〈αthm〉∆θ1

]

−2〈µ〉Jdev :
[(
〈αthm〉,θ∆θ + 〈αthm〉

)
+ 1

3
∆t

{
αtra

,θ : ẏ + αtra : ẏ
,θ

}]
1(3.172)

3.9.3 Temperature-Displacement Coupling

The stiffness matrix related to temperature-displacement coupling is defined
by

Kθu =
∫

V0

HT
∂F in

θ

∂L
BL dV0, (3.173)

where the derivative of the corresponding heat flux generated by inelastic
dissipation is

∂F in
θ

∂L
= fθ

[
∂T

∂L
: Lin +

∂L̇in

∂L
: T

]
. (3.174)
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The derivative in the second term is derived from

∂L̇in

∂L
=

1

∆t

[
∂Λ̄

∂L
⊗ Σ

‖Σ‖
∂∆Etrip

∂L

]
, (3.175)

with ∂Λ
∂E

given by Eq.(3.98), and ∂∆Etrip

∂L
determined by Eq.(3.92).

3.9.4 Coupling Between Displacement and Phase Frac-
tions

The finite element stiffness sub-matrix Kuy which couples displacement and
phase fractions is defined by

Kuy =
∫
V0

BT
LCTy dV0,

CTy =
[(

∂T
∂y

)

1

(
∂T
∂y

)

2
· · ·

(
∂T
∂y

)

N

]
.

(3.176)

The coupling between a phase evolution and the stress requires also the
definition of corresponding tangent modulus

∂T

∂y

∣∣∣∣∣
n+1

=
[
J + 2〈µ〉∆tEtrip

α Jdev

]−1
:
{
〈κ,y〉

[
tr∆L−∆tαtra : y

−〈αthm〉∆θ
]
1 + 〈κ〉

[
−∆t(αtra

,y : ẏ + αtra : ẏ
,y
)− 〈αthm

,y 〉∆θ
]
1

+2〈µ〉,y∆tEtrip + 2〈µ〉∆t
∂Etrip

α

∂y
⊗Σ

}
(3.177)

and

∂Etrip
α

∂y
= ẏ

,y
: (1− y)− I : ẏ (3.178)

where the identity matrix for the phase-fraction vector is:

I =




1 0 0 . . . 0
0 1 0 . . . 0

. . .

0 0 0 . . . 1




which size depends on the number of considered phases.
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3.9.5 Coupling Between Temperature and Phase Frac-
tion

The contribution to the global stiffness matrix arising from the coupling of
temperature and phase transformations is defined by

Kθy =
∫

V0

HT
∂F in

θ

∂y
dV0, (3.179)

with the corresponding heat flux derivative expressed by

∂F in
θ

∂y
= fθ

[∂T

∂y
: L̇in +

∂L̇in

∂y
: T

]
. (3.180)

The derivative in the second term of the R.H.S. is written as

∂L̇in

∂y
=

1

∆t

∂Λ̄

∂y

Σ

‖Σ‖ +
∂Ėtrip

∂y
. (3.181)

The derivative ∂Λ̄
∂y

can be found by implicit differentiation of the consistency

condition

γ,y‖Σpred‖+ 2γ
∂Σpred

∂y
: Σpred − 2Λ̄

[
γ,y〈µ〉+ γ〈µ〉,y

]

−2γ〈µ〉∂Λ̄

∂y
− γ,y

√
2
3
∆Hα − γ

√
2
3
Hα ,y −√ 2

3
Kα ,y = 0, (3.182)

and taking ∂Λ̄
∂y

to the L.H.S.

∂Λ̄

∂y
=

1

2γ〈µ〉

[
γ,y‖Σpred‖+ 2γ

∂Σpred

∂y
: Σpred − 2Λ̄(γ,y〈µ〉+ γ〈µ〉,y)

−γ,y
√

2
3
∆Hα − γ

√
2
3
Hα ,y −√ 2

3
Kα ,y

]
(3.183)

The other derivatives in Eq.(3.183) are given by

γ,y = −
[
1 + 2〈µ〉∆tK(1− y) : ẏ

]−2
2∆tK

[
〈µ〉,y(1− y) : ẏ

+〈µ〉
{
(1− y) : ẏ

,y
− I : ẏ

}]
, (3.184)
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∂Σpred

∂y
= 2〈µ〉,yJdev :

[
∆L− 1

3
∆tαtra : ẏ1− 〈αthm〉∆θ1

]

+2〈µ〉Jdev :
[
−

{
〈αthm〉,y∆θ + 〈αthm〉

}

−1

3
∆t

{
αtra

,y : ẏ + αtra : ẏ
,y

}]
1. (3.185)

The derivative in the second term of Eq.(3.181) is expressed by

∂Ėtrip

∂y
= K

[
(1− y) : ẏ

,y
− I : ẏ

]
Σ + K(1− y) : ẏ ×

[(
Ĵdev :

∂T

∂y

)
−√ 2

3
H ′

α

∂Λ̄

∂y

Σ

‖Σ‖

]
(3.186)
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Chapter 4

Numerical Results Illustrating
CTMM Problem

4.1 TMM Benchmark Problem

Results for the theory and the FEM discussed in the first part of this report
are illustrated by a benchmark formulated for a fillet welded joint composed
of sixteen beads (Table 4.1).

In a benchmark, a high density of FEM mesh is required to model the mov-
ing heat source. Backward Euler integration or an implicit method is used
to integrate the temperature rate in the transient heat equation. This inte-
gration scheme unconditionally stable would become unstable when applied
to non-stationary heat source whose motion is described in spatial coordi-
nates. The stability of the transient heat source is further ensured when
applying enough Gauss points to define its shape for each time increment. It
is also recommended that the element spacing in the longitudinal direction
be regular along the welding line. To secure stability of a solution of tran-

Sixteen-beads Benchmark
Number of beads 16
Dimensions of a plate 100 mm x 75 mm x 20 mm
Symmetry in deposition of beads NO
Welding technique MIG
Type of elements brick elements with eight nodes
Total number of elements 10 304
Total number of nodes 12 360

Table 4.1: Charasteristics of the second benchmark
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F arc
θ =

φηV I

2πδ2
arc

exp(−r2/2δ2
arc)

V voltage
I current intensity
δarc deviation from the standard distribution

represents the thermal ’impression’ made by the electrode
η efficiency of the energy transmission via electric arc
φ net fraction of heat input
r horizontal radial distance from the weld center

Table 4.2: The heat flux of the electric arc

sient thermal problem it is sometimes necessary to use larger time steps or
finer mesh. Larger time steps naturally decrease a rate of convergence in the
solution of non-linear equations.

Due to the large size of the combined stiffness matrix resulting from the
three-dimensional mesh, it is was necessary to use the bi-conjugate gradient
iterative method for the solution of this large problem rather than a direct
solution method. The bi-conjugate gradient method is used, instead of the
conjugate gradient or symmetric iterative method, because the stiffness ma-
trix is unsymmetrical due to the convection type terms that result from the
applied thermal boundary conditions.

4.1.1 Initial and Boundary Conditions

Initial Conditions

In order to obtain the reference microstructure, steel plates, parts of welded
joint, were normalized at a range of temperatures from 920 C to 600 C during
8 hours following the procedure recommend by the manufacturer of the steel
and finally air cooled. The main grain size amounts to approximately 10 µm.
In this state the reference microstructure consists of austenite grains (γ-Fe).
The initial temperature of welded plates was equal to the environmental
temperature.

Heat Source and Thermal Interaction Between Welded Joint and
Environment

The heat source produced by an electric arc is assumed to be a normal
Gaussian distribution (shown in Fig.4.1) which spreads over several elements
and contains several Gauss points in the horizontal plane.
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F c
θ = hc (θf − θ∞)

hc = Nuf
kf

lc
θf = θ∞+θw

2

kf = (975.603 + 5.71995 θf )10−8

θw temperature of the wall θ∞ temperature outside of b.l.
hc convection coefficient kf conductivity of b.l.
kf units are W/mm b.l. boundary layer
lc characteristic length

Table 4.3: Heat flux due to convection

The thermal boundary effects include convection, radiation, and conduction
as well as the thermal contact resistance phenomena applied to the base. The
radiation and convection heat fluxes from the upper and vertical surfaces of
the weld joint are shown as temperature functions in Fig.(4.4) and (4.5).

Convection from the welded piece is given by empirical relations, derived in
[35] in terms of non-dimensional constants: Nuf , Grf , Prf , Ref which are
the Nusselt, Grashof, Prandtl and Rayleigh numbers evaluated at tempera-
ture θf .

The heat flux due to convection is defined in Table 4.3.

A specific value of the Nusselt number is related to the Prandtl and the
Grashof numbers. The Grashof number depends on both temperature and
orientation of the external surface of weld piece. A variation of the Grashof
number on the upper surface is shown in Fig.(4.2). The Nusselt numbers for
upper and vertical surfaces are given in Table 4.4.

The heat flux due to radiation is defined in Table 4.5.

In a welding benchmark considered here, a base of welded plate is in contact
with a workbench which acts as a heat sink and thermal contact relations,
shown in [35], are used to estimate the heat flux from the welded piece to
the workbench. The corresponding heat flux F cc

θ is defined in Table 4.6.

Mechanical Boundary Conditions

A welded plate rests upon a surface and is fixed only in one point. Such
fixing is necessary for the description of a plate dilatation, as it eliminates
the effect of a rigid body motion. No effect of friction on the base of welded
plates is considered. Following such assumptions it is possible to observe the
free dilatation of a welded piece in three directions.
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upper surface
Nuf = 0.13(Ref )

1
3 Ref ≤ 2× 108

Nuf = 0.16(Ref )
1
3 Ref > 2× 108

Grf = gβθf l3c
ν2 lc = area divided by perimeter

vertical surfaces

Nuf =


0.825+0.387(Ref )

1
6(

1+ 0.492
Pf

9
16

) 8
27




1
2

Grf = gβθf l3c
ν2 lc = vertical height

Ref = GrfPrf

Prf = 1.13786 (θf )−0.083107 θf ≤ 500
Prf = 0.651978 + 4.7895× 10−5θ 500 < θf ≤ 1200
Prf = 0.705 θf > 1200
β = θa

−1 θa = absolute temperature of air
ν = 8.69754× 10−4(θf )1.71067 ν = viscosity of air

Table 4.4: Expressions for Nusselt numbers for various surfaces and temper-
atures

F r
θ = hr(θ − θenv)

hr = σsεr(θ4 − θ4
sink)

σs Stefan-Bolzman constant εr emmisivity of steel
θsink sink temperature θenv environmental temperature

Table 4.5: Heat flux due to radiation

F cc
θ = hcc(θ − θc)

hcr = h−1
cc

hcc thermal contact conductance A contact area
hcr thermal contact resistance θc temperature of contact surface

Table 4.6: The heat flux of thermal contact
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Figure 4.1: The model of the moving welding arc, i.e. surface heat source

Figure 4.2: The Grashof number on the upper surface
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Figure 4.3: Convection flux from the upper surface

Figure 4.4: Radiation flux
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Figure 4.5: Convection flux from the vertical surfaces

4.1.2 Material Data for Simulation of TMM Process

The aim of the simulation is to determine the residual stersses, strains and
phase fractions of a welded joint after multi-bead welding. The simulation
for the fully coupled TMM process is carried out in one stage. Following
other models of TMM processes proposed by Leblond at. al. [43], [44] or by
Denis at.al. [16], [15], [17] and known as LSG2M-Nancy model a simulation
was carried out in two stages:

• thermo-metallurgical computation performed from an austenitic struc-
ture formed after solidification to a structure at 20 C,

• mechanical computation,

Both above mentioned TMM models are implemented in program SYSWELD
released by SYSTUS International, ESI Group.

Data required to define the study are:

• geometry,

• thermal and mechanical properties,

• metallurgical transformations,

• heat transfer coefficient
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Metallurgical Transformations

The metallurgical transformations are those that occur in the high-temperature
construction steel 15 Mo 3, for which the chemical composition is: 0.12-020%
C, 0.10-0.35% Si, 0.40-0.90% Mn, ≤0.035% P, ≤0.030% S, ≤0.25% Cr, 0.25-
0.35% Mo, ≤0.30% Ni, ≤0.30% others.

Four phases are considered:

• austenite,

• ferrite,

• bainite,

• martensite.

Thermo-mechanical Properties

Material behaviour is modelled taking the following phenomena into account:

• temperature dependent Young modulus,

• plastic deformation associated with isotropic hardening,

• temperature dependent yield stress defined for each phase,

• temperature deendent strain hardening defined for each phase,

• recovery effect of strain hardening for martensite,

• temperature dependent thermal strain (thermal dilatation) defined for
each phase,

The required data are listed in Table 4.7.

Additional Thermo-mechanical Data Available from Tensile Tests

Description of experiments
The testing material was delivered in the form of cold drawing bars of di-
ameter Ø15 mm. Samples of the length 40 mm were cut from the bar. In
order to obtain the reference microstructure bar pieces were normalised at
920 C during 0.5 hour and finally air cooled. After such treatment the main
grain size amounts to approximately 10 µm and the reference microstructure
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Property Table number
thermal strains Table 4.8
Young’s modulus Table 4.9
Poisson’s ratio 0.3
yield stress Table 4.10
strain-hardening for phase-α Table 4.11
strain-hardening for phase-γ Table 4.12

Table 4.7: Thermo-mechanical data required for simulation of TMM process

Thermal strains
Temperature ferrite pearlite bainite martensite austenite
20 0.00 0.00 0.00 0.00 -0.01104
1250 0.0185 0.0185 0.0185 0.0185 0.0173

Table 4.8: Temperature and phase depenedent thermal starins

Temperature
20 100 200 300 400 500 600 700 800 900 1000 1100 1250

Young’s 207 204 200 192 180 163 132 82 52 33 20 11 0.5
moduls

Table 4.9: Temperature dependent Young’s modulus, GPa

Phases Temperature
20 100 200 300 400 500 600 700 800 900 1100 1250

ferrite 317 295 278 264 250 225 175 95 60 50
pearlite 320 310 290 280 260 240 180 100 60
bainite 750 695 655 635 595 533 417 215 75
martensite 1250 1160 1100 1055 990 890 695 360 100
austenite 215 200 175 150 120 95 75 60 45 18 1

Table 4.10: Temperature and phase dependent yield stress, MPa

Temperature Plastic deformations
0.0025 0.005 0.0075 0.010 0.020 0.030 0.040 0.050 0.075 0.1

20 1 2 3 5 52 90 117.5 140 185 220
200 1 2 10 20 62 91 114 135 161 180
300 1 6 17 28 75 107 129 145 186 215
400 11 20 30 40 75 93 105 115 135 150
500 15 25 30 38 55 62 65 67.5 73.7 80
600 2.5 5 7.5 10 14 17 17 17 17 17
650 0.125 0.25 0.37 0.5 1 1.5 2 2.5 3.75 5
1250 0.125 0.25 0.37 0.5 1 1.5 2 2.5 3.75 5

Table 4.11: Temperature and phase dependent strain hardenning for phase-α
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Temperature Plastic deformations
0.00 0.05

200 0.00 145
500 0.00 145
600 0.00 140
700 0.00 129
800 0.00 95
900 0.00 55
1000 0.00 20
1100 0.00 5
1250 0.00 2.5

Table 4.12: Temperature and phase dependent strain hardenning for phase-γ

is composed of equiaxed ferrite grains α-Fe together with inter-crystalline
pearlite lamellae of about 10% volume fraction.

After normalisation twenty cylindrical tensile samples of gauge length of 20
mm and the total length of 40 mm and diameter of 4 mm were machined
from annealed pieces. The tensile tests, with one sample for each temper-
ature, were performed on the computer controlled tensile testing machine
INSTRON-Type 6025 using appropriate high-temperature three-zone fur-
nace. At temperatures higher than 300 C the argon atmosphere was em-
ployed for protection of a sample surface. The transverse velocity was 1
mm/min corresponding to tensile strain rate of ε = 8.3× 10−4s−1.

Results of tensile tests
For each sample the relation between a tensile force and elongation was auto-
matically recorded and following that a relation between the true stress and
the true strain (logarithmic strain) was evaluated. At the end of each mea-
surement test parameters were evaluated according to the European Tensile
Testing Norm EN 10 002.

Thermal Properties

Thermal properties used for the complex thermo-mechano-metallurgical sim-
ulation are the thermal conductivity and heat capacity determined for austen-
ite and other phases and shown in Table 4.14.
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Temp. 0.2% Yield UTS Fracture Elongation Uniform Area
C Strength MPa Stress % Strain Reduction

MPa MPa % %
20 371.1 489.9 976.9 38.3 20.9 69.9
100 349.5 467.1 980.2 26.1 15.8 69.3
200 303.9 531.1 870.9 19.9 10.1 55.6
300 281.5 509.4 819.5 26.9 14.1 55.9
400 238.3 473.9 835.9 29.1 13.6 70.1
500 225.5 371.5 688.5 27.4 10.5 75.4
600 188.7 236.2 435.6 32.2 7.8 72.8
650 99.2 128.8 174.0 85.0 7.1 71.5
700 75.2 93.7 86.0 66.5 6.2 73.6
725 53.6 73.5 55.3 87.5 9.1 63.8
750 48.3 59.1 48.6 61.2 5.4 55.2
775 44.9 57.0 47.1 46.0 7.9 53.2
800 40.3 50.5 35.8 50.5 7.4 38.8
825 40.2 53.3 57.9 22.2 10.1 31.2
850 42.9 60.8 44.3 29.3 10.8 21.7
875 36.5 53.0 48.1 22.6 10.7 22.2
900 32.9 48.5 38.8 21.0 8.1 20.8
925 31.3 43.6 35.2 18.5 7.1 18.1
950 29.4 39.2 26.1 18.2 5.8 18.1
1000 21.4 28.9 14.3 30.4 9.8 22.6

Table 4.13: Mechanical properties of 15Mo3 steel obtained from tensile tests
carried out for the range of temperatures from 20 C to 1000 C

Temperature Conductivity Heat capacity
C W/C J/mm3C

Austenite Other Austenite Other
20 0.052 470
100 0.049 490
200 0.0175 0.0465 530 525
300 0.01825 0.0435 545 565
400 0.01975 0.041 560 615
500 0.021 0.038 570 680
600 0.0225 0.035 580 770
650 0.033 815
700 0.0235 0.032 590 850
800 0.0245 600
900 0.026 620
1000 0.0275 630
1200 0.030 650
1400 0.0325 680

Table 4.14: Thermal conductivity and heat capacity for austenite and other
phases as temperature functions
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4.2 Results the Benchmark Problem with Six-

teen Beads Welding

Volume fractions of bainite, martensite, residual austenite and Von Mises-
equivalent stress as well as the temperature distribution and magnified de-
formed mesh generated on the welded body illustrate results obtained for the
second benchmark problem for welding.

The temperature distribution is shown for a deposition of the final bead (the
weld cap) in Fig. 4.6 and has the characteristic ellipsoid shape as expected.

The initial austenitic structure transforms to one of bainite, martensite and
residual austenite. The bainite volume phase fraction shown in Fig. 4.7
reaches a maximum of 0.79 or 79% of the the volume and is concentrated
in the weld bead. The 16-pass weld results in a much larger heat affected
zone and, disregarding the initial run on phenomenon, there is a quite broad
zone of bainite as a result of the increased size of HAZ. The volume phase
fraction results are approximately symmetric for the two half plates even
though welding is applied as an off-centred heat source for most of the passes.
Martensite forms in bands parallel to the bainite phase as shown in Fig. 4.8
and reaches a maximum of 79%.

The residual Von Mises stress for the 16-pass weld is shown in Fig.4.10. The
interaction between concentrations of bainite and martensite and increased
stress is again visible although not quite as obvious as in the three-pass weld.
Finally the residual deformation magnified 28.4 times the actual deformation
is shown in Fig. 4.11. The characteristic bow-shaped bending of the plate is
visible. This is due to the heat input initially causing an expansion followed
by the contraction of the constrained plastically deformed structure during
cooling.
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Figure 4.6: The temperature distribution at the end of the 16th pass for the
16-pass weld

Figure 4.7: The volume fraction of bainite for the 16-pass weld
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Figure 4.8: The volume fraction of martensite for the 16-pass weld

Figure 4.9: The volume fraction of residual austenite for the 16-pass weld
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Figure 4.10: The residual Von-Mises equivalent stress for the 16-pass weld

Figure 4.11: The residual deformation in the 16-pass weld magnified 28.4
times actual deformation
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Chapter 5

Conclusions

A unified mathematical approach has been applied to several phase growth
laws to derive corresponding evolution equations from the basic postulate
of proportionality of the new phase increment to the change of a physical
quantity controlling the transformation process. Table (5.1) contains a tab-
ulation of basic assumptions for the kinetic laws reviewed. Evolution laws
reveal interactions between transformation kinetics and material constitutive
variables or phase transformation driving forces. These equations are consis-
tent with the rate type balance laws for conservation of virtual and internal
energy. In thermo-mechanical-metallurgical analysis, constitutive variables
are defined as a dispersed material particle. Material parameters and phys-
ical quantities are averaged according to the phase fraction using a linear
mixture rule.

A condensed presentation of the features of nine models is given in Table (5.2)
and Table (5.3) which helps in drawing conclusions on the complexity of evo-
lution equations, measurability of model variables, application, and required
level of model variables. The simplest evolution laws for diffusional and dif-
fusionless transformations expressed by Eq.(2.23) and Eq.(2.37) respectively,
reveal only a relation between ẏ and temperature rate θ̇. Also they provide
comparatively easy identification of material and process characteristics. The
evolution law deduced in [54] from thermodynamics and statistics for uniaxial
loading has been generalized here for the three-dimensional case. This 3-D
generalization, expressed by Table(2.6) together with the law derived from
thermodynamics, and given by Eq.(2.60) or Eq.(2.63), provides the relation
between the rate of martensitic fraction y5 and rates of strain energy ∆Gmic

σ ,
chemical energy ∆Gmic

ch5
, and temperature θ.

However, they account for different scale effects in a dispersed particle. The
strain energy Gσ in Table (2.6) is evaluated on the system of habit planes
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Model Proportionality assumption of
new phase increment driving force decrement

JAM Eq.(2.15) dyi, i = 2, 3 dG; Ġ = ni bi tni−1

JAM Eq.(2.21) dyi, i = 2, 3 dG; Ġ = ni bi tni−1

modified
JAM Eq.(2.28) dyi, i = 2, 3 dG, dS, dθ
RB Eq.(2.29) dy4 〈dN4〉
KM Eq.(2.36) dy5 dθ
extended dy5 dθ, dp,

KM Eq.(2.39) equivalent stress dŜ
OTC Table 2.6 dy5 structural defect potency dNV (Gσ)
OFT Eq.(2.47) dy5 total Gibbs free energy 〈d∆Gmic

5 〉

Table 5.1: Basic assumptions for modelling of diffusional and diffusionless
transformations. The following abbreviations and symbols are used in the
table: JAM: Johnson-Avrami-Mehl, KM: Koistinen-Marburger, OTC: Olson-
Tsuzaki-Cohen, OFT: Oberaigner-Fisher-Tanaka, RB: Rees-Bhadeshia.

Model Level of variables of phase transformation model
microscopic macroscopic

JAM Eq.(2.15) ni, bi, i = 2, 3
JAM Eq.(2.21) Ni(θ) θ, ni, i = 2, 3
modified JAM Eq.(2.28) C, ni, bi(θ), J ′2, θ, i = 2, 3
RB Eq.(2.30) Ṅ4

RB Eq.(2.34) ∆G4max , GN , θ, K1,K2, β, r, R
KM Eq.(2.36) θ, α, Ms

extended KM Eq.(2.39) A, B, α, θ, p, Ŝ
OTC Table 2.6 d5,Amic

5 , ∆Gmic
F θ, α, γ5

N0
V ,Gσ, Gch,

OFT Eq.(2.47) ∆Gmic
ch kF , trE∗, E∗cr, θ, p, Ṫ

Table 5.2: Microscopic and macroscopic variables of phase transformation
models
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Model complexity of measurability of application
equation variables

JAM Eq.(2.15) simple easy 1- to 3-D
JAM Eq.(2.21) simple easy 1- to 3-D
modified JAM Eq.(2.28) complex expensive, hard 1- to 3-D
RB Eq.(2.34) complex expensive, easy 1- to 3-D
extended KM Eq.(2.36) simple expensive, easy 1- to 3-D
KM Eq.(2.39) simple easy 1- to 3-D
OTC Table 2.6 complex generally impossible specific 1-D
OFT Eq.(2.47) complex hard 1- to 3-D

Table 5.3: Evaluation of data acquisition effort, complexity and application of
phase transformation model. Symbol: 1-to 3-D means that a transformation
model can be applied for one-, two- and three-dimensional problems.

while the mechanical contribution of free energy change ∆Gmic
σ (S,Tact

eq ,Tfur
eq )

in Eq.(2.60) is defined as the value averaged for the entire microregion. This
also requires a very small size of a microregion in analysis and can be used
only in the case of micromechanics when the body has the diameter of a few
grains.

The generalized evolution equation for diffusionless-martensitic transforma-
tion is proposed in Eq.(3.126). Coefficients of this equation are identified
for three kinetic laws: Eq.(2.37), Table(2.6), and Eq.(2.63). The generalized
evolution equation for diffusional transformation is proposed in Eq.(3.115)
with coefficients identified for Eq.(2.23) and its modification Eq.(2.28). Con-
stitutive equations for macro-regions are coupled with heat equation and
evolution laws by the mixture rule. This technique facilitates transformation
of micro-structural state variables: phase fractions, isobaric macro-regional
stresses, cooling and nucleation rates, the Gibbs free energy changes, etc. to
the level of global state variables for considered body. Constraints for this
transformation are the mixture rule and the balance of virtual work for hy-
brid elements. The microstructure of alloy is approximated by hybrid finite
elements. Each element is composed of several grains that contain various
phases represented at Gauss points of integration. This hierarchy in approxi-
mation of material properties provides a transmission of micro-material state
variables to the macro-level of finite element method solution of the welding
problem.

We have also presented a form of governing differential equation for metal-
lurgical phase transformation equilibrium in terms volume phase fractions.
This governing differential equation combines the transformations due to
diffusional and diffusionless mechanisms including the effects of temperature
and stress. The Galerkin method is applied to this equation leading to a
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boundary value problem for the phase transformation equilibrium which is
fully coupled with temperature-displacement equilibrium. This differs from
the alternative scheme of producing contributions to the global stiffness ma-
trix directly from the differential equations describing rates of transformation
also presented in this work. In addition we have also addressed the issue of
singularities or jumps in the solution as a result of changes in the material
properties using the concept of singular surfaces in deriving the variational
equations with the Galerkin method.

The treatment of the welding simulation problem takes into account the
interaction of the three state variables : temperature, displacement and met-
allurgical volume phase fraction throughout and leads to a consistent for-
mulation using algorithmic tangent moduli for the solution of the non-linear
equilibrium equations.

Numerical results were presented showing results which include the effects of
metallurgical phase transformations in simulating welding processes. These
show agreement with known behaviours of the real structures simulated.
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