The Henryk Niewodniczański INSTITUTE OF NUCLEAR PHYSICS Polish Academy of Sciences ul. Radzikowskiego, 31-342 Kraków, Poland

www.ifj.edu.pl/publ/reports/2009/

Kraków, December 2008

Report No. 2026/PN

The SOF detectors in pulsed neutron measurements

A. Igielski, B. Gabańska, K. Drozdowicz, W. Janik, A. Kurowski

The work has been partly sponsored by the Polish Ministry of Science and Higher Education under research within the Scientific Network "Neutrons–Emission–Detection" [Decision Nos. 620/E-77/SN-0055/07 and 620/E-77/BWSN-0055/2008]

Abstract

The time decay of the pulsed thermal neutron flux has been measured with quasi-point SOF detectors (scintillator with the optical fiber). The detectors have been placed at three positions in a 12 cm cube of polyethylene. The time decay constants of the fundamental exponential mode of the thermal neutron flux have been determined and compared with results of a reference measurement using ³He neutron detectors at the cube surface and with a theoretical result from the thermal neutron diffusion theory.

1. Introduction

The SOF detector (Scintillator with the Optical Fiber) consists of a small amount of a scintillator tightly connected to the tip of an optical fiber. The other tip is optically coupled with a small photomultiplier. Mori et al. [1, 2] are the authors of the idea of this construction. In our case the scintillator on the tip of the fiber is ZnS(Ag) mixed with LiF enriched with ⁶Li up to 99.9% and transparent adhesive material (with the volume ratio of 1:1:1). Another type of the scintillator, like a plastic one, may be used as well as another type of the thermal neutron converter, e.g. boron. The scintillator and the fiber are covered with a lightproof screen. We use the thermal neutron SOF detector based on a plastic fiber with diameter 2 mm and the lenght 2.1 m. The thickness of the scintillator is about 1.5 mm. The reactions between ⁶Li nuclei and thermal neutrons emit alpha particles and tritons which produce scintillations as a result of interacting with ZnS(Ag). The emission spectrum of ZnS(Ag) has a maximum at 450 nm [2] and well matches the Hamamatsu type R1635 photomultiplier with the bialkali photocatode which diameter is 8 mm. We use a bunch of three SOF detectors connected to one photomultiplier. Details of the construction were described in our Report [3].

It was found [3] that the SOF detector may be successfully used instead of the ³He proportional detector. The experiments, described below, are concentrated on the study how the thermal neutron flux $\varphi(t)$ decays in time in the small sample depends of the position inside the sample's volume. For this three positions of the SOF detectors in the sample are selected.

2. The experimental set-up

The experimental set-up consists of the investigated sample (polyethylene) of the fixed size (cube 12 cm), covered with a cadmium shield. The system is irradiated by bursts of 14 MeV neutrons. The duration of the neutron burst has been equal to 100 μ s and the repetition time has been 1.8 ms. The neutrons slow down in the system and form the thermal neutron field decaying in time. The die-away rate of escaping thermal neutrons is measured with a thermal neutron detector [4, 5]. In the experiment, the time decay constant λ of the fundamental exponential mode, $e^{-\lambda t}$, is found.

The theoretical λ value for the sample is calculated according to the formula:

$$\lambda = \nu \Sigma_a + D_0 B^2 - C B^4 \tag{1}$$

where the neutron parameters for polyethylene of the density $\rho = 0.9057$ g cm⁻³ are [4,6,7]:

 $v\Sigma_a = 6005 \text{ s}^{-1}$ – the thermal neutron absorption rate,

 $D_0 = 25 695 \text{ cm}^2 \text{ s}^{-1}$ - the diffusion constant,

 $C = 1958 \text{ cm}^4 \text{ s}^{-1}$ – the diffusion cooling coefficient,

and B^2 is the geometric buckling which is a parameter depending on the geometrical shape and size of the sample [9].

The decay constant λ , calculated for the 12 cm cube of polyethylene is 10 825 s⁻¹.

First, two detection lines with ³He detectors were used for verification of the experiment (Table 1). A scheme of the arrangement is shown in Fig. 1.

Fig. 1. Experimental set-up with ³He detectors at the fast neutron generator.

The measurements were done with a good counting statistics (about 2 200 000 counts in the defined region of analysis) and acquisition time about 3 hours.

The experiments with a bunch of the three SOF detectors were done with one detection line only. In order to obtain a good counting statistic, a much higher neutron flux has to be used. It caused overloading of the ³He detector so this line was not used. A simplified diagram of the measuring system is shown in Fig 2. The detection line consists of three SOF detectors connected to the photomultiplier, preamplifier, amplifier and HV power supply. Measured pulses were delivered to the input of the multiscaler.

The polyethylene cube was prepared with a hollow to place the SOF detectors in three positions: at the upper surface of the cube (Geometry I), 1 cm below the surface (Geometry

II), and in the centre of the sample (Geometry III).

Fig 2. Three types of geometry in the experiments with the SOF detectors.

The die-away curves of thermal neutrons have been registered in the multiscaler which has had the dwell time equal to 2 μ s. For the SOF detectors the time of the acquisitions were about 6 hours and the counting statistics (in the same region of analysis as while using ³He detectors) was less then 100 000 counts, which results from the small dimensions of the SOF detectors (diameter about 2 mm, the sensitive volume is 46 750 times less then of the helium detector). So, it needs longer measurements for a good assign of the measured time decay constants λ of the thermal neutron flux in polyethylene in each measurement.

3. Results

The values of the measured thermal decay constant λ , by the ³He and SOF detectors, are listed in Tables 1 and 2, where $\sigma(\lambda)$ is the standard deviation of the determined value λ .

No.	$\lambda \ \sigma(\lambda) \ [s^{-1}]$	Lab. code		
1	10 814	m02001		
	31			
	10 898	w02001		
	59			
2	10 745	m02002		
	37			
	10 878	w02002		
	29			

Table 1. Reference time decay constants λ of the thermal neutron flux in the polyethylene sample (measured with the ³He detectors).

The counting statistics in the single measurement with the SOF detectors is insufficient to determine the decay constant with a high accuracy. Therefore, the experiments were repeated a few times for each position of the detector. The final value of the decay constant for each case was achieved as a weighted average of results of individual short measurements, similarly as described in [9]. In Table 3 the experimental results for helium and SOF detectors are compared.

Geometry I			Geometry II			Geometry III		
	λ			λ]	λ	
No	σ(λ)	Lab.	No	σ(λ)	Lab.	No	σ(λ)	Lab.
	$[s^{-1}]$	code		$[s^{-1}]$	code		$[s^{-1}]$	code
1	11 013	02003	1	10 787	02006	1	11 001	02004
	120			87			120	
2	10 701	02014	2	10 823	02007	2	11 089	02005
	96			139			98	
3	10 893	02015	3	10 849	02008	3	10 986	02026
	137			111			95	
4	10 913	02016	4	10 793	02009	4	10 932	02027
	122			108			46	
5	10 855	02017	5	10 938	02010	5	10 974	02028
	113			72			52	
6	10 880	02018	6	10 802	02011	6	10 974	02029
	336			124			79	
7	10 880	02019	7	10 750	02012	7	11 003	02030
	107			72			50	
8	10 773	02020	8	10 827	02013	8	10 965	02031
	152			169			90	
9	10 982	02021				9	10 918	02032
	94						74	
10	10 891	02022						
	111							
11	10 987	02023						
	167							
12	10 944	02024						
	112							

Table 2. Measured time decay constants λ of the thermal neutron flux in the polyethylenesample (SOF detectors).

Geometry	I
----------	---

13

10 725

122

02025

Geometry II

ш \sim

Table 3. Comparison of the obtained time decay constants $\lambda \pm \sigma(\lambda)$ [s ⁻¹] of the thermal
neutron flux in the polyethylene sample.

³ He detectors	Geometry I SOF Detectors at the surface of the sample	Geometry II SOF Detectors 1cm below the top of the sample	Geometry III SOF Detectors at the centre of the sample	Theory
10829	10 865	10 825	10 972	10 825
± 18	± 35	±35	± 22	

Conclusions

It was found that the measured time decay constant λ of the thermal neutron flux in the Geometry I and II is consistent with results of the neutron diffusion theory and measurements with use of the ³He detectors. Let us notice that neutron data employed in the neutron diffusion theory, Eq.(1), are obtained from measurements at the surface of the samples.

In the case of Geometry III, the SOF detectors in the centre of the sample, the decay constant of the thermal neutron flux is a little higher. Probably it is a result of a lower escape of thermal neutrons in the centre (cf. Eq.1) but more precise experiments are required for investigation of this problem.

References

[1] C. Mori, A. Uritani, H. Miyahara, T. Iguchi, S. Shiroya, K. Kobayashi, E. Takada, R.F. Fleming, Y. K. Dewaraja, D. Stuenkel, G.F. Knoll (1999)

Measurement of neutron and γ -ray intensity distributions with an optical fiber-scintillator detector.

Nucl. Instrum. Meth. A 422, 129-132.

[2] G. F. Knoll. (2000) Radiation Detection and Measurement. Wiley, New York.

[3] A. Igielski, W. Janik, A. Kurowski (2006)
Preliminary test of the scintillator with optical fiber (SOF) detector in a pulsed thermal neutron experiument.
Rept. IFJ No.1986/PN, Institute of Nuclear Physics PAN, Kraków, 1-6.
http://www.ifj.edu.pl/publ/reports/2006

[4] E. Krynicka, K. Drozdowicz, U. Woźnicka, U. Wiącek, B. Gabańska (2005) Thermal neutron diffusion cooling in two-region small systems.J. Phys. D: Appl. Phys. 38, 2967-2976.

[5] E. Krynicka, U. Wiącek, K. Drozdowicz, B. Gabańska, G. Tracz (2006) Monte Carlo simulations of the pulsed thermal neutron flux in two-zone systems with Plexiglas – Using the MCNP code with a modified hydrogen-data library. Nucl. Instrum. Meth. **B 251**, 19-26. [6] J.R. Granada, J. Dawidowski, R.E. Mayer, V.H. Gillette (1987) Thermal neutron cross section and transport properties of polyethylene. Nucl. Instrum. Meth. **A 261**, 19-26.

[7] K. Drozdowicz, V.H. Gillette (1999)The thermal diffusion cooling coefficient in polyethylene.Annals of Nucl. Energy 26, 1159-1166.

[8] K.H. Beckurts, K. Wirtz (1964) Neutron Physics. Springer, Berlin.

[9] K. Drozdowicz, B. Gabańska, A. Igielski, E. Krynicka, U. Woźnicka (1993) Methodology of measurement of thermal neutron time decay constant in Canberra 35+ MCA System.

Rept. IFJ No.1651/AP, Institute of Nuclear Physics, Kraków, 1-32.