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Abstract 
 
The European Transport Solver (ETS) is developed in the frame of Project 3 of EFDA 
Integrated Tokamak Modeling Task Force. Several numerical methods are implemented in the 
ETS. This paper presents a method of verification of implemented numerical schemes for the 
case of solutions which take into account existence of the transport barrier in the tokamak 
plasma. A manufactured solution method for generation of exact solutions is developed for 
this case. The exact solutions are compared with the numerical ones for a simple transport 
model. Numerical tests demonstrate that numerical procedures: solvers 3 and 7 can reproduce 
analytic solutions with a discontinouity quite well. 
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1. Introduction 

The Institute of Plasma Physics and Laser Microfusion (IPPLM), under Contract of 

Association between the EURATOM (the European Atomic Energy Community) and the 

IPPLM, coordinates the work on controlled thermonuclear fusion research carried on in 

Polish science centers. These works concern plasma physics and technology for Magnetic 

Confinement Fusion (MCF) toroidal thermonuclear devices (tokamaks and stellarators). 

These works included about twenty tasks provided by different research units. In the field of 

plasma diagnostics the Department of Radiation Transport Physics in the Institute of Nuclear 

Physics is involved in the development of diamond detectors to detect escaping fast alpha 

particles and other ions and also method of activative fissionable samples (utilizing the 

delayed neutron measurement). The department of Radiation Transport Physics (Laboratory 

54) participates also in the Integrated Tokamak Modelling Task Force (ITM-TF) Project 3 for 

development of the European Transport Solver which is devoted to provide the complete 

simulation of the discharge in a tokamak like ITER including the core, the edge and the scrap-

off layer. 

2. Physics 

Fusion energy research began in early 1950s and was developed in two main paths: inertial 
confinement fusion and magnetic confinement fusion. By the mid fifties, Lawson identified 
the product of plasma density and of energy confinement time, En , as a critical parameter 
for the thermonuclear reactor [1]. Power balance in his analysis showed that fuel density, n, 
and plasma energy confinement time, E , was a function of plasma temperature, T. For 
parabolic density and temperature profiles the ignition requirement on the peak value is: 

 
21105ˆˆ ETn  3mskeV  ,                                                                                                    (1) 

 

where  and n̂ T̂  are the peak of ions density and temperature in the plasma and E  is the 

energy confinement time. 
A measure of the success in approaching reactor condition is given by the ratio Q, of the 
thermonuclear power produce  to the heating power  supplied, that is: TNPP HP

 

H

TNP

P

P
Q                                                                                                                                    (2) 

 
In the case of commercial thermonuclear power plant Q  has to be bigger then 15. At ignition, 

where  is reduced to zero where no external heating is required,  [2]. HP Q
Since the early 1950s forward, there have been two major approaches to fusion energy: 
internal confinement fusion and magnetic confinement fusion. In the magnetic confinement 
fusion approach, a magnetic bottle is formed which confines hot plasma for a long periods of 
time approaching steady-state conditions. Nowadays, after almost sixty years of study, 
stellarators and tokamaks seem to be the most promising devices for plasma confinement in 
toroidal configuration.   
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The tokamak is a toroidal plasma confinement system where plasma is confined by                 
a magnetic field. The principal field is the toroidal field  but it alone is unable to confine 

plasma. In order to have an equilibrium in which the plasma pressure is balanced by the 
magnetic forces it is necessary to have additionally a poloidal magnetic field pB .  

In a tokamak this field is produced mainly by the current pI  flowing in the toroidal direction 

[2]. A combination of the toroidal and poloidal fields gives rise to magnetic field lines which 
have a helical trajectory around the torus as shown in Fig. 1. In a stellarator the poloidal field 
is supplied by external coils [3]. The tokamaks rely on a toroidal plasma current for the 
generation of the poloidal field. Generally, the toroidal current  in a tokamak is generated 

inductively by means of a transformer, in which plasma acts as a secondary winding coil. This 
immediately leads to major limitations of tokamak operation: the finite flux swing of the 
transformer in a combination with the finite resistivity of plasma results in a finite pulse 
length during which plasma is contained inside tokamak. This has motivated a development 
of alternative ways for the generation of the toroidal plasma current . Neoclassical, 

collisional transport [4] in a high pressure toroidal plasma (H-mode) together with gradient of 
the toroidal magnetic field  generates a finite parallel plasma current flowing in poloidal 

direction. This current is known as the bootstrap current and is entirely self generated by the 
plasma [5]. As we can foresee now, the fully non-inductive, steady state operation of ITER 
and future tokamak fusion reactors will have to rely on the bootstrap current for supplying the 
major part of the plasma current.   
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Fig. 2. Tokamak temperature profiles for H-mode 
(red curve) and for L-mode (black curve). 

Fig. 1. Toroidal magnetic field  and poloidal 

magnetic field  due to toroidal current [6]. 
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The H-mode (“high” confinement mode) has been first time observed in tokamak ASDEX [7]. 
It is characterized by an improvement of the energy confinement time by a factor two 
compared to the standard L-mode, these modes are illustrated in Fig. 2. Detailed physics 
studies of the H-mode over next decades helped to provide a fundamental understanding of 
plasma behavior in a tokamak. Transport of energy and particles in tokamak plasma is mostly 
caused by turbulence originated from micro-instabilities. Under certain conditions these 
instabilities together with stabilizing effect of the Magnetohydrodynamics (MHD) lead to 
internal transport barriers (ITBs) formation, an area characterized by steep gradients of 
plasma profiles in the core (Fig. 2) [8]. Now thirty years later, the H-mode with a solid 
experimental base is very robust and has been chosen as the baseline operating mode for 



ITER [9]. Therefore robust and accurate methods of modeling of the plasma transport barrier 
dynamics are essential for understanding the tokamak behavior. Predictive modeling of 
plasma transport requires a good physical model of plasma transport as well as a good 
numerical procedure that would be able to cope with strong nonlinearity of the problem and 
irregularity of plasma profile.  
 
3. The Integrated Tokamak Modelling Task Force 
 
The Integrated Tokamak Modelling Task Force (ITM-TF) was created in 2003 to coordinate 
development of a coherent set of European simulation tools to be benchmarked on existing 
tokamak experiments, with the ultimate aim of providing a validated simulation package for 
ITER exploitation. The ITM-TF is divided into four Integrated Modelling Projects (IMPs) 
focused on the following areas of physics: plasma equilibrium and MHD, transport code and 
whole discharge evolution, transport and micro-instabilities, and finally, heating, current drive 
(H&CD) and fast particles. Their work programmes reflect some of the needs expressed by 
ITER, most of which require an Integrated Modelling platform [6]:  

 IMP12: MHD equilibrium, stability and disruptions;  
 IMP3: Transport Code and Discharge Evolution; 
 MP4: Transport Processes and Micro stability;  
 IMP5: Heating, Current Drive, and Fast Particle Physics;  
 ISIP: Infrastructure and Software Integration Project 

A central ITM-TF project is the development of the European Transport Solver (ETS) [10]. 
This is motivated by the fact that none of the existing transport codes such as: ASTRA, 
JETTO, CRONOS or TRANSP, did not meet all of the ITM requirements, namely 
modularity, flexibility and standarized interfaces. A schematic view of the ETS workflow is 
show in Fig. 3.  
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Fig. 3. Simplified version of one of the planned physic workflows. 
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4. The European Transport Solver 
 

The European Transport Solver (ETS) is a new 1-D core transport code being developed by 
members of Integrated Modelling Project 3 (Transport Code and Discharge Evolution) of the 
European Fusion Development Agreement (EFDA) Task Force on Integrated Tokamak 
Modelling [6, 10]. Its objective is to develop a tokamak transport code able to complete 
simulation of the discharge in a tokamak like ITER including the core, the edge and the 
scrape-off layer. Such simulator should adopt a modular approach, where standing alone 
physics and numeric modules are communicating to each other via standardized interfaces 
linked with the ITM agree data structure. The schematic view of the ETS is shown in Fig. 4. 
This construction should allow on easy incorporating or replacing various physics modules of 
different levels of completeness and complexity, necessary for preparing and analyzing future 
fusion reactors, with the highest degree of flexibility and reliability.  
In terms of the physics, the ETS is designed to solve the standard set of one-dimensional 
time-dependent equations which describe the evolution of the core plasma [11], including 
several ion species (impurities), plasma current, ion densities, ion and electron temperatures 
and ion toroidal velocity [12]. All equations are written in the standard generic form for an 
unknown function Y: 

  
     
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and with boundary conditions 
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where  bnd ,  bndu   and  bndw   are coefficients required by the solver, ρ is the 

normalized radius of the tokamak core ( 10   ), h is time step and the coefficients of the 

equation, ,,..., ga  depend on a particular function Y, where  tY ,)1(   is taken at the previous 

time step. One can expect that in different situations, different numeric methods will be more 
suitable. This is the reason why several numerical methods have been implemented as 
subroutines into the ETS. The coupling between equations is included in the coefficients and 
is resolved by running an iteration after each time step. The European Transport Solver will 
be able to treat several ion components, ultimately including all impurity species and ability 
to use stiff transport models within a reasonable CPU time [10, 12, 13].  
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Fig. 4. Modular structure of the ETS. The sources and the transport coefficients are calculated 
externally, and there is also a separation between the physics and the numerics.  
   
The solver itself is designed with a modular approach enabling the separation of the numerics  
from the physics, thereby facilitating the testing/usage of the numerical schemes that best suit 
a particular scenario. The ETS workflows are designed to be completely modular allowing the 
exchange of any component by any other of the same class. Internally the ETS is also 
modular separating the physic part and the numerical part. Communication between physic 
modules and the ETS is organized by generic physic interfaces such as TRANSPORT and 
SOURCE. The aim of this interfaces is to pass physical parameters into the form of explicit 
(independent on the variables used in transport equations) and implicit terms (proportional to 
the density, temperature and etc.). The role of the generic numeric interface is to communicate 
numerical coefficients derived by the physics part with the numeric part of the ETS. Since 
different numerical solvers are used with ETS, the interface in the numeric part translate 
generalized coefficient to internal coefficient used by the particular solver. In some cases the 
physical variable used by numerical solver is different from the one in physic equation. For 
instance the solution for the total number of particle, )(N , within a certain flux surface is 
stead of density of particle, )(n , at this flux surface can be the output of numeric solver. In 
this case, a translation back to the quantity required by physics part is done [13, 14]. 
 
5. ETS testing 
 
The first group of tests deal with a reduce set of transport equations in a simplified cylindrical 
geometry treaded by a strongly non-linear stiff transport model which describes tokamak 
transport driven by plasma micro-turbulences. Suppression of the turbulence manifests itself 
by a dramatic reduction of the transport in some plasma regions. Such change of the transport 
leads to strong gradients of the plasma profiles. In our model the manufactured method of 
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analytical solution generation was developed for discontinuous model of diffusion 
coefficients depending on e-folding length as the Internal Transport Barrier (ITB) simple 
approximation. The goal of verification was to check the numerical methods used in the ETS 
and extend the method of verification to a continuous model of the diffusion coefficient [15]. 
The tests were performed in order to check whether the numerical procedure implemented in 
the ETS can reproduce position of the transport barrier and its dynamics given by analytical 
solutions. The ETS physics model contain standard 1-D core transport equations. One of them 
is the time dependent ion diffusion equation: 
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here is magnetic field at the reference position, 

                                                                         (5)

0B   /VV  (Vw  is plasma volume), 

,expiS  an impiS ,  are explicit and implicit parts of the ion particle sources, the total ion flux is d 

defined as:  
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In order to verify if the analytical solutions can be reproduced correctly by the numerical 

i , iV  is ion pinch velocity.

solvers implemented into the ETS, equation (5) was rewritten in cylindrical geometry: 

1
2  , under assumptions that 00 B  (no compression), 0pinch

iV  (no particle pinch) 

0  (no implicit source), and , impiS V . In this way equati s simplified to the 

follo : 
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here the function  can be interpreted as a profile of plasma density or temperature,         

t a
 simple transport model was adopted. In this model the diffusion 
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iD  is the diffusion coefficient, and Q is the source term. The function in  depends on time       

nd normalized radius ρ.  
For the ETS testing needs a
coefficients changes abruptly when the temperature e-folding length, TddrLT ln/ , 

approaches to the critical value Lcr [16], which represents the Internal Transp ) 
position and is taken arbitrary. For some value of the e-folding length the diffusion coefficient 
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The value of   for which the diffusion coefficient is discontinuous is denoted as cr . This 

simplified formulation of the problem should allow for deeper understanding of the difficulty 
in solving the stiff transport problem. The obtained numerical solutions were compared with  
analytical ones.  
The generation of solutions by using the manufactured solution method is based on inversion 
of the problem. We assume that the solution is given by a function sufficiently smooth and 
also the coefficients of the equation are defined as some smooth functions. Then, using the 
assumed form of the solution and coefficients we can calculate the source term from the 
considered equation (6). Due to discontinuity of the first derivative of the solution we 
introduce a smooth function  f  which corresponds to the flux function: 

 





n

Df                       (8) 

 
The derivative of the solution with respect to ρ is discontinuous at ρcr. It follows from the 
transport model (7) that ρcr  satisfies the following inequalities: 
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  (9) 

 
If the function f is monotonically increasing, the solution of equation (9) exists for ρcr in some 
interval ( min.cr , max.cr ). The analytical solution corresponding to function f is defined in 

terms of function F given by: 
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                                                                                                                 (10)                         
  
Equation (8) leads to the solution with continuous flux and discontinuous gradient given by: 
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where for 1  function     ntn ,  is time independent and represents the boundary 

condition, for the source Q defined as:  
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whereas for cr  : 
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and for cr  : 
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.03 Q                                                                                                                                                            (15b) 

 
This solution satisfies the boundary condition at ρ=0 under the assumption that f(0,t)=0. In 
the above form of the solution the boundary condition at ρ=1 corresponds to the assumption 
that the value of the solution at ρ=1 is given. It is easy to replace this boundary condition by 
the condition imposed on value Ln of the e-folding length at ρ=1, using the following relation: 

 

2

)1(
)1(

D

fL
n n                                                                                                                          (16) 

 
For f constant in time the function n defined by (10a) and (10b) satisfies the stationary 
diffusion equation with Q given by Q1. Let us consider the stationary diffusion equation with 
Q = S as an example. In this case min.cr  and  max.cr  can be expressed by the formula: 

 

crcrcr LL
S

nD
 22

min.

)1(4
1                                                                                         (17a) 

 

1

2

2

1

22
max.

)1(4
1

D

D
L

D

D
L

S

nD
crcrcr 








 .                                                                     (17b) 

 
6. Numerical results 
 
Nowadays several numeric procedures called “solvers” were implemented into the ETS. They 
are labeled by numbers 1, 2, 3, 6 and 7. Each solver has to be tested for a different set of 
transport models and sources. This paper presents some of the most important tests. 
 

6.1. Constant stationary source  
 
In this case a simple radially constant source was taken: SQ  . For this type of source the 

analytic flux 2/Sf  .          Equation (6) was solved with the help of solvers 1, 2, 3 and 7, 
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at initial condition given by the analytical function: ,8.0crL  ,5.02 D  ,11 D  4S  and 

three different boundary conditions at the edge: 
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for a different time steps, Mt /  (where 10t umber of iteration), using N 

radial mesh points. The diffe ween the cal solution and the analytical function 

is expressed as the relative error given by:
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 where ncal stands for the numerical 

an

to Fig.19. All results are presented using arbitrary units (a.u). The solution (a.u.) can be 
interpretated as the plasma concentration n or temperature T profile.  
 

n

solution and n  is the analytical solution. The most interes
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ting results are presented in Fig.5 
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ig. 5. Analytical solutio

     

F ns (red curves) and numerical solution (black curve) (a), their derivatives (b) 
and relative error (c) obtained for solver 1, boundary condition type 1 ( 1, bndin ) and N = 200. 
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Analytical solutions should represent numeric ones after infinite number of the time steps.
The aim is to find the most accurate time step 

 
  and number N of the radial points after each 

numeric solution approach to the analytic one as close as possible. Derivatives of the 
analytical solution obtained for two different v lues of the diffusion coefficient 1D  and 2D  
(red curves) indicate the bifurcation area, where the ITB is located.  In this area the numerical 
solver has to make a choice between two different iD  values. In the cases of solve  (Fig.  

the numerical solution was obtained for a very small time step s10 4  and radial points 
number N = 200. There was no solution for N = 1000. In Fig. 5a the numerical solution 
approaches to the analytic one obtained for D1. The relative er 5c) decreases for 
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r 1  5)

ror (Fig. 
   

 
  

      

0,0 0,2 0,4 0,6 0,8 1,0
1,0

1,5

2,0

2,5

D
1

D
2

 ncal: = 10-3[s], M = 104 

                = 10-2[s], M = 103 

                = 10-1[s], M = 102

                = 1 [s], M = 10

  nan: D
1
, D

2

 

S
ol

ut
io

n 
(a

.u
.)

Normalized radius

(a)

      

0,0 0,2 0,4 0,6 0,8 1,0
-4

-3

-2

-1

0

D
1

D
2

 num.deriv.:

         = 10-3[s], M = 104

          = 10-2[s], M = 103,

           = 10-1[s], M = 102,
          = 1 [s], M = 10

 analitical deriv.: D
1
, D

2
   

 

D
er

iv
at

iv
e 

of
 t

he
 s

ol
ut

io
n 

(a
.u

.)

Normalized radius

(b)

 
 

                                  

 

0,0 0,2 0,4 0,6 0,8 1,0
0,0

5,0x10-3

1,0x10-2

1,5x10-2

2,0x10-2

2,5x10-2

 E
rr

or

Normalized radius

(c)

 
 

cal solutions (black curves) (a), their derivatives 
 obtained for solver 3, boundary condition type 1 ( ) and N = 200. 

Fig. 6. Analytical solutions (red curves) and numeri
b) and relative error (c)( 1, bndin

 
 

 12



    

0,0 0,2 0,4 0,6 0,8 1,0
1,0

1,5

2,0

2,5

D
1

D
2

 ncal: = 10-3[s], M = 104,

          = 10-2[s], M = 103, 

                = 10-1[s], M = 102

 ncal: = 1 [s], M = 10

 nan: D
1
, D

2
      

 

 

S
ol

ut
io

n 
(a

.u
.)

Normalized radius 

(a)

   

0,0 0,2 0,4 0,6 0,8 1,0
-4

-3

-2

-1

0

D
2

D
1

 

 num. deriv.:

                  = 10-3[s], M = 104,

                   = 10-2[s], M = 103,  

                  = 10-1[s], M = 102

 num. deriv.:
 = 1 [s], M = 10

 analitical deriv.: D
1
, D

2
        D

er
iv

at
iv

e 
of

 t
he

 s
ol

ut
io

n 
(a

.u
.)

Normalized radius

(b)

  
 
 

                              

0,0 0,2 0,4 0,6 0,8 1,0
0,0

5,0x10-3

1,0x10-2

1,5x10-2

2,0x10-2

2,5x10-2

 n: =10-3, M=104 

=10-2, M=103

=10-1, M=102

 n: =1[s], M=10         

 E
rr

or

Normalized radius

(c)

 
 
Fig. 7. Analytical solutions (red curves) and numerical solutions (black and blue curves) (a), their 
derivatives (b) and relative error (c) obtained for solver 3, boundary condition type 1 ( ) and 

N = 1000. 

1, bndin

 
Results presented in Fig. 6 and Fig. 7 were obtained with the help of solver 3 using the 
boundary condition type 1. The numerical solution represented by the blue curve (Fig. 7a), 
being significantly differ from the rest of the numerical solutions, was obtained for the biggest 
time step 1 s and N = 1000 radial points. In this case the relative error is slightly higher 
then those obtained for N = 200. 
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Fig. 8. Analytical solutions (red curves) and numerical solutions (black curves) (a), their derivatives 
(b) and relative error (c) obtained for solver 7, boundary condition type 1 ( ) and N = 200. 1, bndin
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Fig. 9. Analytical solutions (red curves) and numerical solution (black curve) (a), their derivatives (b) 
and relative error (c) obtained for solver 7, boundary condition type 1 ( 1, bndin ) and N = 1000. 
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The results presented in Fig. 8 and Fig. 9 were obtained with the help of solver 7 and 
boundary condition type 1, radial points: N = 200 and N = 1000. In this case the numerical 
solutions found for a different time step   seems to be close to each other. The relative error 
(Fig. 8c, 9c) decreases for )( 1Dcr   but much slower than for solver 3 (Fig. 6c, 7c).   
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Fig. 10. Analytical solutions (red curves) and numerical solution (black curve) (a), their derivatives (b) 
and relative error (c) obtained for solver 1, boundary conditions type 3 ( 25.0niL ) and N = 200. 

 

The results presented in Fig. 10 were obtained for a very small time step s.              
No solutions was obtained for a higher time step. This case is very similar to the previous case 
(Fig. 5) obtained for the same solver 1 but for a different boundary condition (type 1). 

410
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Fig. 11. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 3, boundary conditions type 3 
( ) and N = 200.    25.0niL
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Fig. 12. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 3, boundary conditions type 3 
( ) and N = 1000. 25.0niL
 

 16



The results presented in Fig. 11 and Fig. 12 were obtained with the help of solver 3 and 
boundary condition type 3. The numerical solutions for N = 1000 radial points and time step 

1  s (Fig. 12a) present a smaller error then this for N = 200 (Fig. 11a). 
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Fig. 13. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 7, boundary conditions type 3 
( ) and N = 200. 25.0niL
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Fig. 14. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 7, boundary conditions type 3 
( ) and N = 1000. 25.0niL
 
The results presented results in Fig. 13 and Fig. 14 were obtained with the help of solver 7 
and boundary condition type 3.  
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Fig. 15. Analytical solutions (red curves) and numerical solution (black curve) (a), their derivatives (b) 
and relative error (c) obtained for solver 1, boundary conditions type 5 ( ,25.0genv   

) and N = 200. 

,1genu

0genw

 
The results presented in Fig. 15 were obtained with the help of solver 1 and boundary 
condition type 5. The numerical solution was obtained only for a very small time step 

 s and N = 200 radial points, but no solutions was obtained for a higher time step 410   
or higher N. This situation is typical for solver 1 which was tested for different boundary 
conditions (Fig. 5 and Fig. 10). 
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Fig. 16. Analytical solutions (red curves) and numerical solution (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 3, boundary conditions type 5 
(   ) and N = 200. ,25.0genv ,1genu 0genw
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Fig. 17. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 3, boundary conditions type 5 
(   ) and N = 1000. ,25.0genv ,1genu 0genw
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Numerical solutions obtained for N = 1000 radial points (Fig. 17) present a better match to the 
analytical solution then those obtained for only N = 200 radial points (Fig. 16).  
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Fig. 18. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 7, boundary conditions type 5 
(   ) and N = 200. ,25.0genv ,1genu 0genw

 
 
 
 
 
 
 
 
 
 
 

 21



    

0,0 0,2 0,4 0,6 0,8 1,0
1,0

1,5

2,0

2,5

 

 

D
2

D
1

S
ol

ut
io

n 
(a

.u
.)

Normalized radius 

 ncal:  = 10-3[s], M = 104,

         = 10-2[s], M = 103

 ncal: = 10-1[s], M = 102

 ncal: = 1 [s], M = 10

 nan: D
1
, D

2

(a)

   

0,0 0,2 0,4 0,6 0,8 1,0

-4

-3

-2

-1

0

 num. deriv.:

                   = 10-3[s], M = 104,

                   = 10-2[s], M = 103

 num. deriv.:

                  = 10-1[s], M = 102

 num.deriv.:
                   = 1 [s], M = 10

 analitical deriv.: D
1
, D

2

 D
1

D
2

D
er

iv
at

iv
es

 o
f 

th
e 

so
lu

tio
n 

(a
.u

.)

Normalized radius

(b)

 
 

                                

0,0 0,2 0,4 0,6 0,8 1,0
0,0

2,0x10-2

4,0x10-2

6,0x10-2

8,0x10-2

 E
rr

or

Normalized radius

 n: =10-1, M=102 ws. D
1

 n:  =1, M=10 ws. D
2

 n: =10-3, M=104 ws. D
1

(c)

 
 
Fig. 19. Analytical solutions (red curves) and numerical solutions (black, blue and green curves) (a), 
their derivatives (b) and relative error (c) obtained for solver 7, boundary conditions type 5 
(   ) and N = 1000. ,25.0genv ,1genu 0genw

 
Numerical solutions obtained with the help of solver 7 and boundary conditions type 1, 3 and 
5  present bigger differences from the analytical solutions then those obtained with the help   
of solver 3. This difference is specially very well visible for  icr D  

410

. In the case of 

solvers 3 and 7 it was possible to obtain a set of different numerical solutions passing through 
bifurcation area. A good convergence especially in case of solver 3 was possible to obtain by 
delicate time step selection. Solvers 3 and 7 are much more flexible then solver 1 where the 
only possible solution was obtained for a very small time step  s and small numbers N 
of the radial points. In the case of solver 2 the numerical computations provided for different 
time steps and different numbers of the radial points gave no results. 



 
6.2. Radially varying source 

 
Second test was provided for a radially varing source . For this type of source 

the flux function  f  is defined as: 

)1( 2 SQ

 4/2/ 3  Sf . Equation (6) was solved with the help 

of solver 3 and initial condition given by the analytical function: ,8.0crL   ,5.02 D 11 D

8

 

and boundary condition type 1. The calculation results obtained for  and  are 
plotted in Fig. 20a where numerical solutions remain close to the analytical one. In order to 
show the difference between the analytical and numerical solutions only the parts of curves 
close to the critical radius are presented in Fig. 20b. The difference between the numerical 

6 SS
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solution and the analytical function used as its initial condition is presented in Fig. 20c. The 
relative error rapidly decreases when cr 

8 1,0

. 
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Fig. 20. Numerical solutions (a), their derivatives compare with the analytical one (b) and relative 

error (c) obtained for:  s, M = 105 and N = 200. 410
 
The numerical solution converges to the analytical solution for critical radius equal to 0.763 
(S = 8) and 0.834 (S = 6) as can be seen after studying the derivatives of the numerical 
solution in comparison with the derivatives of the analytical solutions at the critical radius 
defined by the numerical solution.  

 
 
6.3. Time dependent source 

 
Third test was provided for a time dependent source: tSQ  0 . For this type of source the 

flux function:   ,2/0  tSf   where ,30 S

2

 t = 10 s and  The equation (6) 

was solved with the help of solvers 3 and 7 and initial condition given by the analytical 
function:    and boundary condition type 1. Computations was 

provided for a time step: s, where 

.s 1.0 1

10

,8.0 ,5.02 D D

/ Mt
crL 11 

10  t s and N = 500 radial points. In this 

case the critical radius is time dependent and will have to be evaluated for each time step. 
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Fig. 21. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 

the first time step s, critical radius: 210   .952.0s10 2   cr  
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Fig. 22. Analytical and numerical solutions  (a), their derivatives (b) and relative error (c) obtained for 

the tenth time step s, critical radius: 110   .949.0s10 1  cr  
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Fig. 23. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 
the last time step 10 s, critical radius:   .886.0s 10 cr  

 
The results presented  in Fig. 21, 22, 23 were obtained with the help of solver 3. It can be seen 
that even for the first time step s (Fig. 21) the numerical solution differs significantly 
from the analytical one. For further time steps this difference has tendency to rise as it is 
visible in Fig. 22c and Fig. 23c where the errors are presented. Results obtained for the last 
time step 

210

10 s (Fig. 23) show the highest differences between numerical and analytical 
solutions. Presented errors have tendency to rapidly decrease for   cr .  
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Fig. 24. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 

the first time step s, critical radius: 210   .952.0s10 2   cr  
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Fig. 25. Analytical and numerical solutions  (a), their derivatives (b) and relative error (c) obtained for 

the tenth time step s, where critical radius: 110   .949.0s10 1  cr  
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Fig. 26. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 
the last time step 10 s, critical radius:   .886.0s 10 cr  

 
The results presented in Fig. 24, 25, 26 were obtained with the help of solver 7. Numerical 
solution differ significantly from the analytical one. This difference is rapidly raising close to 
the critical radius  cr  and decreasing for   cr . The errors found for solver 3 and 

solver 7 have tendency to rise for high time step. It is difficult to analyze the full time 
dependent problem for a solution of the form (10) due to the ambiguity in  cr . Here          

a correct value of the critical radius was estimated from the derivatives of the analytical 
solutions. Presumably this is the reason why the errors are so big in this case. 
The derivative of the solution with respect to   is discontinuous at cr . The ambiguity of 

critical value comes from the fact that we have two different values of the e-folding length 
depending on the side from which numerical procedure approaches the discontinuity. 
According to transport model (7) and flux function (8) the critical radius satisfies the 
following inequalities:  
 

1DDi    for   
1)/( D

L

nD

n cr

ii

i 
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


   

                                                                                                                                                                 
and                                                                                                                                          (18) 
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The right side of inequalities (18) represents the e-folding length divided by diffusion 
coefficient , below are presented some of the results obtained with the help of this 
inequality. 

1D

 

       

0,0 0,2 0,4 0,6 0,8 1,0
1,0

1,2

1,4

1,6

1,8

 ncal

 nan

 

 

S
ol

ut
io

n
 (

a.
u.

)

Normalized radius

(a)

     

0,80 0,85 0,90 0,95 1,00

-3

-2

-1

0

1

 numeric deriv.
 analitical deriv.

 

D
er

iv
at

e
 o

f 
th

e
 s

ol
u

tio
n 

(a
.u

.)

Normalized radius

(b)

 
   

                                   

0,0 0,2 0,4 0,6 0,8 1,0
0,0

2,0x10-4

4,0x10-4

6,0x10-4

8,0x10-4

1,0x10-3

 E
rr

or

Normalized radius

(c)

                                                        
 
Fig. 27. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 

solver 3 and the first time step s, critical radius: 210   .952.0s10 2   cr  
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Fig. 28. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 

solver 3 and the tenth time step s, critical radius: 110   .949.0s10 1  cr  
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Fig. 29. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 
solver 3 and the last time step 10 s, critical radius:   .886.0s 10 cr  
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Fig. 30. Analytical and numerical solutions (a), their derivatives (b) and relative error (c)obtained for 

solver 7 and the first time step s, critical radius: 210   .952.0s10 2   cr  
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Fig. 31. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 

solver 7 and the tenth time step s, critical radius: 110   .949.0s10 1  cr  
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Fig. 32. Analytical and numerical solutions (a), their derivatives (b) and relative error (c) obtained for 
solver 7 and the last time step 10 s, critical radius:   .886.0s 10 cr  

 
For this stiff transport formulation (inequality (18)), the results presented in Fig. 27 to Fig. 32 
show higher differences between numerical and analytical solutions than in previous cases 
(Fig. 21 to Fig. 26). This is very well visible if we compare the derivatives of these solutions. 
When the numerical solver approached to cr  then the diffusion coefficient changed from 

 to  and then again returned to the  value. This last change happened 

exactly in the point where the critical radius calculating from analytic solution is located.   
The numerical tests demonstrate here that for the time dependent source solvers 3 and 7 can 
not reproduce the analytical solution with discontinuous derivative but it is important to say 
that no solutions were obtained for solvers 1 and 2. 

11 D 5.02 D 1D

 
6.4. Smooth diffusion function 

 
Stiff transport model can be replaced by a more realistic physical models, where the diffusion 
coefficient takes a smooth function form. Many models of such functions where  
exist in literature, for example [17]:  

21 DD 

 

 m
cr

i
uu

D
DD




/1
1

2 ,       where   /nu .                                                                (19) 

 
The diffusion coefficient is dependent on the derivative  /nucr  and the m parameter, 

specifying a particular model. For the test needs a simple radially constant source was taken: 
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SQ   for this type of source the analytic flux 2/Sf  , where 10S , and the diffusion 

coefficients: , . Equation (6) was solved with the help of solver 3 and 

boundary condition type 1. Numerical computation was provided for the time step s 
and for different sets of the radial points number N. Presented results were obtained for the 
derivative  which was assumed arbitrary. The analytical solution was obtained with the 

help of equation (6), which for steady state solution 
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The solution of equation (20) is represented by derivatives:  /nu . By solving the 

integral  we can find the concentration or the temperature profile. Some of the 

results obtained for different m are presented below, where the flux is defined according to 
equation (8). 
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Fig. 33. Numerical solutions (a), their derivatives (b), diffusion coefficient (c) and flux (d) obtained 
for solver 3 and m = 2, critical radius .48.0cr  
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Fig. 34. Numerical solutions (a), their derivatives (b), diffusion coefficient (c) and flux (d) obtained 
for solver 3 and m = 4, critical radius .48.0cr  

 
The numerical results obtained for m = 2 and different sets of the radial points N  (Fig. 33) are 
slightly different from the analytic solution. This difference is very well visible especially in 
the area where the Internal Transport Barrier (ITB) seems to appear ( 48.0cr ). The 

numeric derivatives of the solutions do not fit analytic ones in the area close to cr  (Fig. 33b). 

Numeric fluxes (Fig. 33d) for bigger N are shifted into higher radius value. For higher power 
m = 4 (Fig. 34) numerical solutions become more sensitive to the radial points number N. In 
this case numerical flux function maxima (Fig. 34d) have more spike shape and are more 
shifted to the right than it was observed in the previous case. For both presented cases it is 
possible to find such a number N of the radial points which reproduces most accurately the 
analytic solution. Numerical calculations were also provided with the help of solver 7 but in 
this case no solutions were obtained.  
 

6.5. GLF23 diffusion model 
 
For further tests, GLF23 model [18, 19] was used. The diffusion coefficient is defined as 

 where: ani DDD  2
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The diffusion coefficient, where  and 21 DD   /nu , is dependent on the critical 

derivative  /nucr  specifying a particular model. The GLF23 model is characterized by  

very narrow oscillations of numerical solution presented even for a very small time step (Fig. 
35). They can be removed by decreasing time step (Fig. 36), but in this case computations 
become more time consuming. This problem can be avoided by using one of the methods 
further described in literature [18, 19]. First method base on adding additional diffusion on the 
l.h.s and subtraction source on the r.h.s of equation (6). The additional source has to be taken 
for the previous time step. In this way equation (6) turns into following form: 
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For the test needs a simple radially constant source was taken: ,SQ   the analytic flux 

,2/Sf   where ,10S  and the diffusion coefficients: ,1.02 D    The 

critical derivative was assumed arbitrary: 

,11 D .10SD

.4cru  For this set of parameters .88.0cr  
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Fig. 35. Numerical solutions (a), their derivatives (b) and relative error (c) obtained for N = 200 radial 

points and s. 410
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Fig. 36. Numerical solutions (a), their derivatives (b) and relative error (c)  obtained for N = 100 radial 

points, s. 510
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Fig. 37. Numerical solutions (a), their derivatives (b) and relative error (c) obtained for N = 100 radial 

points, s and after adding additional diffusion 210 .10SD  
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In Fig. 35 numerical solutions obtained for equation (6) are presented, here numerical 
oscillations  are presented even for a very small time step  s. They were removed by 
adding additional diffusion  (Fig. 37) and solving equation (22). Oscillations remove 

method presented by equation (22) allow to increasing time step (Fig. 37) and decreasing 
computation time. Presented numeric solutions are charged by smaller error which started to 
raise in response of increasing time step. Equation (22) was solved with the help of solver 3 
which was adjusted for the test needs by including an additional source inside solver 
procedure, no solution was found for solver 7. 

410
sD

 
7. Conclusions 
 
The existence of the transport barriers is very important for improvement of plasma 
performance. For the ETS testing needs this phenomen was simplified to a model in which the 
constant diffusion coefficient changes abruptly when the e–folding length approaches to the 
critical value. Five solvers are currently implemented in the ETS: solver 1 (”standard” 
RITM), solver 2 (”integral” RITM), solver 3 (”PROGONKA” block Thomas) and solver 6 
and 7. A series of test cases, aimed to quantify solutions of different kinds of solvers, has been 
carried out. The presented group deals with a reduced set of transport equations in                   
a simplified cylindrical geometry where the constant transport coefficient changes abruptly 
when the scale length reduces below the critical value. These strongly non-linear stiff 
transport modules are believed to describe tokamak transport driven by plasma micro-
turbulences. The code was run using present framework. Four solvers, 1, 2, 3 and 7, have 
been tested separately at the presence of three different boundary conditions: type 1 (value), 
type 3 (scale length) and type 5 (generic). The calculations have been done for a different time 
steps and iterations numbers. The steady state solutions were compared with the analytical 
ones. Provided tests reveal that solver 3 deal with this problem with smallest errors then other 
solvers do, but for the time dependent problem solvers 3 and 7 are not able to reproduce 
analytic solution. 
This solvers “malfunction” can be explained by the fact that in the case where the transport 
coefficient changes strongly through the volume, a large numerical error arises. In the case 
when the barrier position is not known in advance, as it is in the time dependent problem,        
a large number of iterations M is needed to achieve convergence with the analytic solution.   
A further verification of the ETS will include about twenty various tests to assess the 
numerical properties and to find the actual limits of the solver applicability. In addition to the 
numerical reliability, a physical credibility of each solver will be tested.  
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