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Abstract

The purpose of this dissertation is to analyze selected production mecha-

nisms of quarkonia with positive charge parity. In particular, the quark-

antiquark bound states such as ηc(1S), ηc(2S), χc0(1P) as well as a spin-

less bound state of the bottom quark and anti-bottom quark χb0(1P)

were considered. The amplitude of the processes was formulated in the

k⊥-factorization approach using a newly developed model by means of

the light cone wave functions of bound states. Namely, the wave func-

tions on the light cone were used to construct the appropriate transition

form factors γ∗γ∗ → ηc and γ∗γ∗ → χQ and then adapted to the pro-

cesses involving protons. In addition, the processes of producing a char-

monium pairs χc0χc0, χc1χc1, χc2χc2 with additional gluon emission in

three different configurations were discussed. Another mechanism taken

under investigation in the thesis is the exclusive production of ηc(1S)

and χc0(1P) in proton-proton collisions using the model proposed by the

Durham group with applied newly developed reaction vertex.

Streszczenie

Celem niniejszej rozprawy jest analiza wybranych mechanizmów pro-

dukcji kwarkonii o dodatniej parzystości  ladunkowej. W szczególności

rozważaniom zosta ly poddane bezspinowe stany zwia̧zane kwarku powab-

nego i antykwarku antypowabnego takie jak ηc(1S), ηc(2S) χc0(1P), a

także bezspinowy stan zwia̧zany kwarku dolnego i antykwarku antydol-

nego χb0. Amplituda procesów zosta la sformu lowana w podej́sciu k⊥-

faktoryzacji z wykorzystaniem nowo opracowanego modelu za pomoca̧

funkcji falowych stanów zwia̧zanych na stożku świetlnym. Mianowicie,

funkcje falowe na stożku świetlnym pos luży ly do skonstruowania odp-

wiednich form faktorów przej́scia γ∗γ∗ → ηc, γ
∗γ∗ → χQ, a nastȩpnie za-

adoptowane do procesów z udzia lem protonów. Ponadto dyskusji zosta l

poddany proces produkcji pary kwarkonii powabnych χc0χc0, χc1χc1,

χc2χc2 z dodatkowa̧ emisja̧ gluonu w trzech różnych konfiguracjach. Jed-

nym z rozważanych aspektów jest rȯwnież proces ekskluzywnej produkcji

ηc(1S) oraz χc0(1P) w zderzeniach proton-proton przy pomocy modelu

zaproponowa-nego przez grupȩ z Durham z zastosowaniem nowo opra-

cowanej amplitudy przej́scia.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics constitutes our best understanding of

observed particles and their interactions in the framework of Quantum Field Theory.

The SM involves the theory of electro-weak interactions and Quantum-Chromo-

Dynamics (QCD), which is the quantum field theory of strong interaction. The

unified electro-weak quantum field theory combines a description of phenomena in-

duced by the photon and electrically charged fermions, Quantum-Electro-Dynamics

(QED), and the weak interactions, which are mediated by the W± and Z bosons.

The Standard Model is a gauge theory with the invariance under local transfor-

mations of the gauge group SU(3)c × SU(2) × U(1). A diagonal subgroup of the

electro-weak gauge group SU(2) × U(1) is the U(1)EM group, which is associated

with a massless spin-1 particle - the photon, which is exchanged in the electromag-

netic processes.

Apart from flavor quantum numbers such as charm, strangeness, or isospin for

light quarks, the fundamental spin-1
2

matter particles – the quarks – also carry color.

The local gauge symmetry SU(3)c has a non-Abelian character, which besides re-

quiring an exchange of a gauge particle with spin 1 (the gluon) also enforces the

gluons to interact between themselves. The main property that arises directly from

the self-interaction of gluons is asymptotic freedom. Historically, Quarkonia played

a leading role in the confirmation of asymptotic freedom phenomenon. In the anal-

ogy to positronium, a heavy quark-antiquark bound state is named quarkonium,

for instance, charmonium (charm-anticharm) or bottomonium (bottom-antibottom)

states. In fact, at a short distance, the strong interaction force was observed to

be weak [1, 2]. Today the effective color charge squared αs is determined mainly

from the description of hard processes involving the production of jets. The the
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smallness of the strong coupling constant at a short distance allows to present com-

plicated QCD formulas in the form of perturbative series in αs(µR), where µR is

a renormalization scale, which must be much larger than the intrinsic QCD scale

ΛQCD ∼ 250 MeV.

Physical states, including mesons and baryons, are experimentally observed to

be colorless, which imposes that all hadrons have to be SU(3)c singlets. This phe-

nomenon stands for the intricate dynamics of QCD at a large distance and is known

as color confinement.

The quarkonium production processes are one of the main research tools for in-

vestigation Quantum Chromodynamic properties in high-energy particle collisions.

They do offer an opportunity to describe both the production dynamics as well as

their bound structure in terms of QCD degrees of freedom – quarks and gluons. De-

spite decades of studies on quarkonium physics there is still wide group of problems

to concern oneself with. The strong interest in the subject at present is reflected

in the fact that recently there appeared a new review of charmonium prospects at

high luminosity project at CERN [3] as well as a review dedicated new theoretical

developments of inclusive quarkonia production [4]. Still new approaches are un-

der consideration including the light front formalism which we set out to further

develop in our work or formalisms based on effective field theory methods, such as

pNRQCD [5].

⋆ ⋆ ⋆

Various analyses of quarkonia, excited states of quarkonia or associated produc-

tion with another particle are some of the crucial points to understand the per-

turbative and non-perturbative nature of QCD. The main aim of the thesis was to

study mechanisms of quarkonia production induced by gluons, but in the course

of our studies we were also led to investigate the analogous virtual-photon induced

processes.

One of the points was to develop a coherent approach starting from form factors

using the smallest amount of arbitrary parameters to apply them into hadroproduc-

tion in k⊥-factorization approach. Furthermore, to find out if the structure of the

QQ̄ system wave function has an impact on the transition form factors or differential

distributions related to quarkonium production.

2



This thesis is organized in the following order. In subsequent sections, we will in-

troduce essential properties of the discussed quarkonia and briefly comment on phe-

nomenological concepts of calculating relevant cross-sections in a proton-proton col-

lision.

In Chapter 2, we focus on χcJχcJ pairs production in collinear approach in high-

energy proton-proton collision with real gluon mini jet production. We discuss

emissions in the central rapidity region in between χcJχcJ pair as well external

emissions.

In Chapter 3, we put under investigation space-like γ∗γ∗ transition form factors.

We present the salient properties of the light-cone wave functions of QQ̄ bound

states. We consider (in a spectroscopic notation explained below) the (1S), (2S),

and (1P) states in the case of cc̄ while in the case of bb̄ system we restrict ourselves to

the (1P) system. We introduce step by step the construction of the transition form

factor γ∗γ∗ → Q, where Q denotes a quarkonium state of even charge parity. We

derive a master formula that expresses the relevant γ∗γ∗ → Q amplitudes in terms

of the relevant “radial” light-cone wave functions. We analyze related observables

such as the radiative decay rate or the so-called decay constant. Additionally, we

investigate symmetry properties of those form factors and illustrate the behavior of

normalized the symmetry quantities |FTT (Q2, 0)/FTT (0, 0)|.
In Chapter 4, we consider prompt hadroproduction of ηc(1S), ηc(2S) and χc0(1P)

χb0(1P) in k⊥-factorization approach. We start with deriving the matrix element

in the k⊥-factorization approach and give some general comments on unintegrated

gluon distributions function in a proton. In particular, we investigate the asymmetric

kinematic region 2 < y < 4.5 in the center of the mass system (c.m.s.), which

corresponds to acceptance of the LHCb experiment. We then move on to applying

form factors to the matrix element. Subsequently, we present predicted distributions

in meson transverse momentum, rapidity, transverse momentum of the fusing gluons,

as well as the fraction of the longitudinal momentum of the colliding protons carried

by a parton.

In Chapter 5, we again take advantage of the prepared g∗g∗ → Q vertex within

the adopted color singlet model, which we employ to central exclusive production

(CEP) in a proton-proton collision. The central exclusive process provides a unique

environment where we can test our vertex. We begin with an introduction to the

process kinematics and amplitude formulation in the framework of the Durham

model. Relevant pieces of this model are off-diagonal gluon densities which we

3
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build with the help of various approaches. We analyze several differential cross-

sections including transferred momentum squared, rapidity of ηc(1S) and χc0(1P)

with incorporated skewness correction, and the distribution in the relative azimuthal

angle of outgoing protons. We illustrate the projection on transverse momentum

of the produced meson. We estimate the absorptive correction to the Born level

cross-section.

In Chapter 6, we summarize the performed analysis with essential conclusions

and outlook.

⋆ ⋆ ⋆

The presented thesis is based on the following original articles:

• I. Babiarz, W. Schäfer, A. Szczurek, Associated production of χc pairs with a

gluon in the collinear-factorization approach,

Phys. Rev. D99 (2019)7, 074014 [6]

• I. Babiarz, V.P. Goncalves, R. Pasechnik, W. Schäfer, A. Szczurek,

γ∗γ∗ → ηc(1S, 2S) transition form factors for spacelike photons,

Phys. Rev. D100 (2019), 054018 [7]

• I. Babiarz, R. Pasechnik, W. Schäfer, A. Szczurek, Prompt hadroproduction of

ηc(1S, 2S) in the kT -factorization approach,

JHEP 02 (2020), 037 [8]

• I. Babiarz, R. Pasechnik, W. Schäfer, A. Szczurek, Hadroproduction of scalar

P -wave quarkonia in the light-front kT -factorization approach,

JHEP 06 (2020), 101 [9]

• I. Babiarz, R. Pasechnik, W. Schäfer, A. Szczurek, Central exclusive produc-

tion of scalar and pseudoscalar charmonia in the light-front kT -factorization

approach, Phys. Rev. D102 (2020), 114028 [10]

The research results were also presented at the following conferences:

• I. Babiarz, W. Schäfer, A. Szczurek, Production of χc meson pairs with ad-

ditional emission 15th International Workshop on Meson Physics (MESON

2018), 7-12 June 2018. Kraków, Poland [11]
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1. INTRODUCTION

1.1 Charmonium and Bottomonium Spectra

Similarly to atoms, charmonia and bottomonia are observed also in excited states of

higher energy. The interest of this work is mainly centered around the charmonium

ground state ηc(1S), the excited state ηc(2S) and the family of χcJ(1P ) with total

angular momentum J = 0, 1, 2. We also paid attention to the spinless χb0 meson.

In the nonrelativistic picture of quark-antiquark cc̄ or bb̄ pairs, the bound state is

characterized by total angular momentum J composed of the relative orbital angular

momentum L and the spin S of the pair [19]. It is convenient to introduce a scheme

(nr + 1)(2S+1)LJ , which encodes characteristic quantum numbers of particles. More-

over, nr number is recognized as radial excitation number, whereas L = 0, 1, 2, . . . ,

as in atomic physics, are labeled by L = S, P,D, . . . and determine together with

the intrinsic parity of quarks, parity of each state to be P = (−1)L+1. Therefore,

corresponding quarkonium states are commonly denoted as S − waves, P − waves

or D − waves.

The two body quark-antiquark (sc = ±1/2, sc̄ = ±1/2) system could appear in

the form of spin singlet (2S + 1 = 1),1 S0 or spin triplet (2S + 1 = 3), 3S1 states.

Another convenient quantum number to label quarkonium states is by the eigen-

value of the charge conjugation operator. The charge conjugation is an exact sym-

metry of strong and electromagnetic interactions, but is violated in the weak interac-

tions. For the spin-1/2 fermion-antifermion pair, C = (−1)L+S, hence we can recog-

nise the C-even or C-odd quarkonia states. Note that there are some constraints on

the allowed values of JPC for systems composed out of quark and antiquark. Several

combinations such as 0−−, 0+ − or 1− + apparently would not found in this scheme.

In the case, when particle system has such a set of quantum numbers , we often call

them an exotic state, as they cannot be quark-antiquark “quarkonia”.

Especially in the main text, we will refer to pseudoscalar ηc (spin: 0 and P -

parity: -1, C-parity: +1) and scalar χc0 or χb0 (spin: 0 and P -parity: +1, C-parity:

+1) mesons.

In Tab. 1.1 we reveal characteristic properties of the quarkonium bound state,

including mass, full decay width and fraction of a radiative decay rate to full width.

In addition, we summarize quantum numbers and information about isospin I (all

of the quarkonia are I = 0) and G-parity of multiplets, where eigenvalues of the

G-parity operator are determined by (−1)(L+S+I).
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Table 1.1: Properties and quantum numbers of considered quarkonia [20].

M
es

on
n

am
e

(n
r

+
1)

(2
S
+
1
) L

J

J
P
C

(I
G

)

M
as

s
(M

eV
)

Γ
(M

eV
)

Γ
γ
γ
/Γ

×
10

−
4

ηc (1S) 11S0 0−+(0+) 2983.9 ± 0.4 32.0 ± 0.7 (1.61 ± 0.12)
ηc (2S) 21S0 0−+(0+) 3637.5 ± 1.1 11.3+3.2

−2.9 (1.9 ± 1.3)
χc0 (1P ) 13P0 0++(0+) 3414.71 ± 0.30 10.8 ± 0.6 (2.04 ± 0.09)
χc1 (1P ) 13P1 1++(0+) 3510.67 ± 0.05 0.84 ± 0.04 < 6.3 × 10−2

χc2 (1P ) 13P2 2++(0+) 3556.17 ± 0.07 1.97 ± 0.09 (2.85 ± 0.10)

χb0 (1P ) 13P0 0++(0+) 9859.44±0.42
±0.31 undetermined undetermined

Conventionally masses of the DD̄ (for charmonia) and BB̄ (for bottomonia) are

refered to as an open flavour threshold. Heavy QQ̄ systems, which are placed below

the threshold can decay to lighter QQ̄ states e.g. via radiative transitions, or as the

lightest quarkonia decay via the annihilation of the quark-antiquark pair.

All of the analysed mesons in the thesis have masses below the open flavour

thresholds, see Figs. 1.1, 1.2.

The overview of Quarkonium levels, their decay channels, and decay rates, to-

gether with a more detailed discussion, is included in Ref. [21] and references therein.

For illustration, Fig. 1.1 depicts the currently observed and possible cc̄ state in spec-

troscopic level scheme. The solid black lines correspond to the states confirmed

experimentally, while cc̄ bound systems indicated by the dashed lines need further

verification. The dotted lines mark open charm thresholds. Fig. 1.2 reveals spectra

of mesons contained bb̄ quarks. The arrows indicate the most dominant hadronic

transitions.

States above the open flavor thresholds are under much discussion recently and

are expected to be understood as meson-meson molecules, multiquark systems (e.g.

tetraquarks) or other exotic phenomena, see e.g. [22]. The potential model alone

cannot work in this domain, as one has to take into account the coupling of QQ̄

states to the meson-meson continua.

A potential toponium state contributes less than one percent to tt̄ pair produc-

tion in a proton-proton collision at Large Hadron Collider (LHC) [23] and has a

7



1. INTRODUCTION

substantial decay rate. It is often pointed out that the top quarks decay faster than

the bound state is created. However, searching for top-meson via two gluon fusion

near the open threshold is still an ongoing problem.

In this work, we will focus on charmonium systems, including ηc, η
′
c, χc0 and

bottomonium system χb0. All mentioned mesons are spinless and characterized by

an even value of charge parity.
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1.2 Phenomenological models of heavy quarkonia production

1.2 Phenomenological models of heavy quarkonia

production

Since the announcement of the first discovery of a charmonium state (the J/ψ) in

1974 [1, 24] physicists have put much effort to develop a theory, which describes

the charmonium production in hadron collisions. In the beginning, two major ap-

proaches were proposed, the color-singlet model and the color evaporation model.

In the color evaporation model (CEM), it is assumed that invariant mass M

of the cc̄ or bb̄ pair is produced between DD̄ or BB̄ threshold 2mc < M < 2mD,

2mb < M < 2mB for charmonium and bottomonium states, respectively. Then the

QQ̄ pair hadronizes [25, 26, 27] into Q meson accompanied by randomly emitted

soft particles. The general expression for CEM production can be written as

dσQ(P )

d3P
= FQ

∫ 2mD

2mc

dM
dσ̂cc̄(M,P )

dMd3P
, or

dσQ(P )

d3P
= FQ

∫ 2mB

2mb

dM
dσ̂bb̄(M,P )

dMd3P
,

(1.1)

where σ̂QQ̄ can be calculated perturbatively as a function of mQ, mD,B and αs(mQ),

and FQ is phenomenological parameter, which corresponds to QQ̄ fraction that re-

sults in Q meson production. It is assumed that the hadronization factor FQ is

independent on the kinematics of the process. The conclusion drawn from the CEM

is that the hadronization factors for quarkonia fulfill relations for instance

FQ = FJ/ψ
σ(Q)

σ(J/ψ)
. (1.2)

Besides the simple and intuitive picture of the CEM, this approach suffers from

disagreement with experimental data for the ratio Ψ′ to J/ψ, which depends on

their transverse momenta [28, 29]. However, an intensively discussed approach is

the so-called improved color evaporation model (ICEM) introduced in Ref. [27].

The color-singlet model (CSM) is based on the assumption that QQ̄ state is

a nonrelativistic bound state interacting through confining potential. The relative

momentum of the QQ̄ pair in the rest frame of the bound state then has to be small

in comparison to the heavy quark mass mQ. It is assumed that the short-distance

part of the amplitude is not affected by changes in the small relative momentum of

the QQ̄ pair. Therefore the amplitude is constructed under the assumption that the

QQ̄ length scale in the production amplitude is point-like on the scale correspond-

ing to the quarkonium wave function. Thus, the only occurring phenomenological
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parameters in this approach are radial wave function Rηc(0) at the origin or the first

derivative R′(0)χc/χb
for χc and χb multiplets. The radial part of the wave function

at r = 0 can be found by solving Schrödinger equation with the particular potential

model of QQ̄ interaction (see Appendix A) as well as from their relation to the

radiative decay constant.

In the color-singlet model all non-perturbative effects are stored in the wave

function factor Ψ
(k)
Q (0), while the second part of the amplitude σ̂QQ̄ is calculated

with the help of perturbative Quantum Chromo-Dynamic in αs expansion. The

general scheme of the cross-section is the following

σQ =

∫
dσ̂QQ̄ |Ψ(k)

Q (0)|2 , (1.3)

where Ψ
(k)
Q (0) is connected to the first term of the amplitude, which does not vanish

in Taylor expansion around relative momentum of the quarks in the meson (see

App. A).

Ψn0(0) =
1√
4π
Rn0(0) , Ψ′

n1(0) =

√
3

4π
R′
n1(0) . (1.4)

Therefore, CSM provides an intuitive illustration of the perturbative production

of heavy quarkonium. The main objection regarding this approach is that in the

collinear factorization does not describe experimental data collected by the CDF

group at the Tevatron.

Quarkonium states consist not only of valence pure QQ̄ bound state. It could

exist in states which sub-cluster of quarks in color-octet configuration. This idea can

be depicted in the superposition of gluons and quarks Fock states of the meson Q

|Q⟩ = ψQQ̄|QQ̄⟩ + ψQQ̄g|QQ̄g⟩ + ψQQ̄qq̄|QQ̄qq̄⟩ + · · · . (1.5)

In CSM, only the first Fock state is taken into account to construct quarkonium

with specific quantum numbers.

In the Color-Octet model (COM) also higher component of the Fock state ex-

pansion contribute. The COM is in a similar spirit as the color evaporation model,

namely the heavy quark pair can be produced not only with exact quantum num-

bers as physically observed meson state, but different produced states can evolve

into the observed quarkonium after emission of a soft gluon. The COM is based

on an effective field theory with special scaling rules or so-called power counting in

12



1.2 Phenomenological models of heavy quarkonia production

which non-relativistic QQ̄ system is factorized. Three scales can be specified: mass

scale (mQ), momentum scale (mQv) and energy scale (mQv
2) with the preserved

separation between them

(mQ)2 ≫ (mQv)2 ≫ (mQv
2)2 . (1.6)

The quark mass defines a scale at which perturbative expansion in αs is applicable,

αs ≪ 1. Because mQ ≫ ΛQCD processes occurring at the scale mQ can be calculated

perturbatively. The momentum scale corresponds to the size of the quarkonium

state and allows to distinguish the long-distance evolution region into meson. Here,

v stands for the bound state relative momentum, which typically for cc̄ is v2 ∼ 0.3

and for bb̄ is v2 ∼ 0.1.

The application of the NRQCD scheme to quarkonium production, for example

for the case of P − wave quarkonia, is formulated in the following way [30]:

σχQJ
=

∫ (
dσ̂

QQ̄(3P
[1]
J )

(2J + 1)⟨OχQ0(3P
[1]
0 )⟩

+ dσ̂
QQ̄(3S

[8]
1 )

(2J + 1)⟨OχQ0(3S
[8]
1 )⟩

)
. (1.7)

This factorization formula, which represents the leading order in the NRQCD power

counting scheme, contains two terms. Firstly, we have the color singlet piece, where

the QQ̄ system is produced with the physical quantum numbers of the relevant χQJ

state. Here OχQ0(3P
[1]
0 ) stands for color singlet operator, which can be related to the

the first derivative of the radial wave function at the origin

⟨OχQ0(3P
[1]
0 )⟩ =

3Nc

2π
|R′

χQ0
(0)|2 . (1.8)

If we took this term into account alone, we would reproduce the non-relativistic

color-singlet model.

Besides the color singlet piece, there is a color octet term, where the leading

order in NRQCD counting the QQ̄ pair is produced in the hard process with the 3S
[8]
1

quantum numbers. During the nonperturbative evolution of the QQ̄ system after

its production, it transforms, say by emission of soft gluons, into the color-singlet
3PJ state. The operator matrix element quantify the strength of this transition

OχQ0(3S
[8]
1 ). The latter has a priori no simple relation to the wave function of the

bound state, and practical phenomenology has to be fitted.
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The NRQCD approach is potentially very powerful in making order-by-order

improvable predictions as an effective field theory. In fact, it has many successes in

describing quarkonium transitions and decays. However, for quarkonium production,

its weak point is the proliferation of fit parameters (the operator matrix elements)

with increasing order of the NRQCD expansion.

This is the reason why we stick to a color singlet formulation. However, we do

not stop at the nonrelativistic expressions used in the “classic” color singlet model.

We also utilize the kT factorization, which is known to at least partially cure many

quantitative problems of the collinear approach.
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Chapter 2

Charmonium Pair Production
with Real Gluon Emission

2.1 Introduction

Much attention has been drawn to charmonium pair production, for a few years. So

far, J/ψ pairs have become accessible experimentally at large rates, but the origin

of the pair production process is still mysterious. Indeed, two J/ψ mesons can be

produced in either in the SPS (single parton scattering) mode as well as in the DPS

(double parton scattering) mode [31, 32]. The sketch of χcJ pair production at LHC

energies is depicted in Fig. 2.1. In fact, many properties of DPS processes can be

mimicked by single parton scattering with large rapidity separation.

SPS DPS

Figure 2.1: The sketch of single parton scattering (SPS) on l.h.s. and double parton
scattering (DPS) r.h.s.

At energies accessible at the LHC, the preferred mechanisms are those where

gluons carry small x. This feature implies a higher probability to observe more than
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one hard process in the same proton-proton collision. In Ref. [33] it was shown

that SPS and DPS cross-sections are about the same order of magnitude. In the

kinematic acceptance of the LHCb experiment [34, 35] the SPS mechanism of J/ψ’s

pair results in a good description of the collected data. However, if the rapidity

distance between J/ψ’s from the pair is large that is in practice |∆y| > 2, the single

parton scattering model at leading order [36, 37] underestimates the experimental

data collected by CMS [38] and ATLAS [39] at the Large Hadron Collider.

Another interesting mechanism in proton-proton collision, which may lead to

J/ψJ/ψ pair production is a tetraquark T4c(6900) decay [40]. The tetraquark is

assumed to be composed of ccc̄c̄ and mainly produced via two gluon fusion in SPS

(gg → T4c) as well as DPS (gggg → T4c, ggqq̄ → T4c) processes.

Moreover, one may expect a significant contribution from χcJ radiative decay to

J/ψ mode. Previously in the literature J/ψ pair production was discussed in the

kT -factorization framework in pp and PbPb collisions [36, 37, 41] within a perturba-

tive nonrelativistic quantum chromodynamics (NRQCD) model. Relatively recent

studies on quarkonium pair production in the color-evaporation model have been

performed [42].

Relevant processes for the first-order correction to χcJ -pair production can be

illustrated by the Feynman diagrams in Fig. 2.2. At high gluon-gluon c.m.-energies,

the additional gluon jet may be emitted in three distinct, well-separated kinematical

regions. Firstly it can be emitted in the central rapidity region between two χcJ

(Fig. 2.2a), or as a “leading” jet carrying a large fraction of the energy/momentum

of one of the incoming gluons, see diagram Fig. 2.2 b,c).

In this section we will discuss how to calculate the diagrams of Fig. 2.2 using the

vertices of the Lipatov effective action [43, 44, 45] of high-energy QCD. In section 2.2

we will discuss parton level cross sections for the 2 → 3 process gg → gχcχc,

and in section 2.3 we calculate hadron-level cross sections using the collinear gluon

distributions.

Let us discuss the kinematics of the processes of interest. At high c.m.-energies√
s we can neglect the masses of incoming protons so that their four-momenta in

the pp-c.m. frame can be written as

P1,µ =

√
s

2
n+
µ , P2,µ =

√
s

2
n−
µ , (2.1)
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p1,J1,J1z

pg, λg

(a)

Cρ

p2,J2,J2z

qa, λa

qb, λb

t1

t2

(b) (c)

t2

pg, λg

qa, λa

qb, λb

pg, λg

p1,J1,J1z

p2,J2,J2z

Abb′
µ′ν′

qa, λa

qb, λb

t1

p1,J1,J1z

p2,J2,J2z

Aaa′
µ′ν′

Figure 2.2: Real gluon emission in three particular processes gg → gχcJ1χcJ2.

p1,J1,J1z

p2,J2,J2z

qa, λa p1,J1,J1z

p2,J2,J2z

qa, λaqa, λa

qb, λb

p1,J1,J1z

p2,J2,J2z

Aab
µν

qb, λb qb, λb

= +

Figure 2.3: Exact form of the blob vertex from Fig. 2.2 (b),(c).

with the light-like basis vectors (see Appendix D for more details on the notation)

n±
µ =

1√
2

(1, 0, 0,±1) . (2.2)

In our approximation, the incoming gluons are collinear to the protons, i.e.

qaµ = q+a n
+
µ = x1P1µ, qbµ = q−b n

−
µ = x2P2µ, (2.3)

The c.m.-energy squared of the gluon-gluon process is

(qa + qb)
2 = (x1P1 + x2P2)

2 = x1x2s . (2.4)

We are interested in a situation in which the final state gluon is emitted at a large

rapidity distance to the next (χc) final state particle. In this case, the vertical gluon

lines in the diagrams of Fig. 2.2 have to bridge a large distance in rapidity. The

exchange of so-called reggeized gluons describes these gluon exchanges within the

Lipatov effective action approach. The vertices for the couplings of reggeized gluons

to other fields can be found in a convenient form in Ref. [44]. We adapt them to

the slightly different conventions regarding light-cone vectors n±
µ used by us. Each

propagator of a reggeized gluon with four-momentum q gets a factor

Dµν(q) =
n−
µn

+
ν

q2
. (2.5)

17



2. CHARMONIUM PAIR PRODUCTION WITH REAL GLUON
EMISSION

Here the vector n+
µ multiplies the “upper” vertex, and n−

ν the “lower” vertex con-

nected by the propagator.

The central blob in diagram 2.2 a involves the ”Lipatov effective vertex” [45],

expressed by the equation

Γµρν(q1, q2) = n−
µn

+
ν Cρ(q1, q2) ,

Cρ(q1, q2) = (q+1 +
q21
q−2

)n+
ρ − (q−2 +

q22
q+1

)n−
ρ + (q2 − q1)

⊥
ρ , (2.6)

in the BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach, where q1, q2 are four mo-

menta of gluons incoming into the vertex. In terms of light-cone components, the

gluon momenta are parametrized as

q1µ = q+1 n
+
µ + q⊥1µ, q2µ = q−2 n

−
µ + q⊥2µ with q21 = −q⃗1⊥2, q22 = −q⃗2⊥2, . (2.7)

It is important that within the range of validity of the Lipatov action approach,

the momentum flow is such that there is always a dominant flow of (+)-momentum

from “above” and (−)-momentum from “below” into a vertex.

In this way, the important conditions (“Ward identities”)

qµ1Γµρν(q1, q2) = 0, qν2Γµρν(q1, q2) = 0, (q1 + q2)
ρΓµρν = 0, (2.8)

can be easily seen to be fulfilled. They are closely related to the gauge invariance of

the approach.

In the two remaining diagrams 2.2 b,c, the blob vertex corresponds to amplitude

comprised of t and u channels of χcJχcJ production (see Fig. 2.3). Notice that

the gluon exchanged within in this blob (the vertical gluon lines in Fig. 2.3) are

not assumed by us to be reggeized gluons. In our calculation, we use for them the

covariant Feynman gauge, so that the corresponding amplitude can be written as:

Aabµν(qa, qb; p1, p2) = V aa′

µµ′ (J1, Jz1; qa, p1 − qa)
−gµ′ν′δa′b′

t̂
V bb′

ν′ν (J1, Jz1; p2 − qb, qb)

+ V bb′

νν′ (J1, Jz1; qb, p1 − qb)
−gµ′ν′δa′b′

û
V aa′

µ′µ (J1, Jz1; p1 − qa, qa) ,

(2.9)

where V aa′

µµ′ (J1, Jz1; qa, p1 − qa) is the g∗g∗ → χcJ vertex. These vertices were previ-

ously derived in the color singlet approximation of NRQCD in ref. [33], and can be

written as

V ab
µν (J, Jz; q1, q2) = −i4παsδab

2R′(0)√
πNcM3

χc

√
3Tµν(J, Jz; q1, q2) . (2.10)

18



2.1 Introduction

where the first derivative of radial wave function at origin can be found by the

relation (see e.g. [46])

Γ(χc0 → γγ) =
27e4cα

2
em

m4
c

|R′(0)|2. (2.11)

In our numerical calculations, the value |R′(0)|2 = 0.042 GeV5 is used.

For completeness, let us write down the explicit expressions from Ref. [33] for all

possible spin states of the χcJ family:

1. scalar, J = 0, Jz = 0:

Tµν(0, 0; q1, q2) =
1√
3

M2

(2q1 · q2)2
{
gµν

(
6(q1 · q2) − q21 − q22 +

(q22 − q21)2

M2

)
+ q1µq2ν 2

(q21 + q22
M2

− 1
)

+ q2µq1ν 2
(q21 + q22

M2
− 3
)

+ q1µq1ν
4q22
M2

+ q2µq2ν
4q21
M2

}
(2.12)

2. axial vector, J = 1, Jz = ±1, 0:

Tµν(1, Jz; q1, q2) =
i√
2M

1

(q1 · q2)
{

(q21 − q22)ϵµναβ(q1 + q2)
αϵβ(P, Jz)

+
q21 + q22
(q1 · q2)

(aµq1ν − aνq2µ) + 2(aνq1µ − aµq2ν)
}

(2.13)

with

aµ = ϵµραβq
ρ
1q
α
2 ϵ

β(P, Jz) . (2.14)

3. tensor, J = 2, Jz = ±2,±1, 0:

Tµν(2, Jz; q1, q2) =
−M2

(2q1 · q2)2
{
− gµν(q2 − q1)

α(q2 − q1)
βϵαβ(P, Jz)

+ 4(q1 · q2)ϵµν(P, Jz)
+ 2(q2 − q1)

αϵαν(P, Jz)q2µ − 2(q2 − q1)
αϵαµ(P, Jz)q1ν

}
,

(2.15)

Above P = q1 + q2 is the four-momentum of the bound state, and ϵµ(P, Jz) is the

polarization vector of the J = 1 state, while the J = 2 state has a polarization

tensor

ϵµν(P, Jz) =
∑
m1,m2

⟨2, Jz|1,m1, 1,m2⟩ϵµ(P,m1)ϵν(P,m2) . (2.16)
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All the tensors Tµν(J, Jz, q1, q2) fulfill the QED-like gauge invariance conditions

qµ1Tµν(J, Jz, q1, q2) = 0, qν2Tµν(J, Jz, q1, q2) = 0 . (2.17)

In eq. 2.9 Mandelstam variables t̂ and û are

t̂ = (qa − p1)
2 , û = (qa − p2)

2 . (2.18)

To construct the full amplitude of Feynman diagrams 2.2a-c), we also need the

couplings of the reggeized gluon to the leading upper and lower gluon jets. They

are described as follows

n−ρ Γµνρ(qa, p1) = 2q+a gµν + n−
µ (p1 − 2qa)ν + (qa − 2p1)µn

−
ν − (p1 − qa)

2

q+a
n−
µn

−
ν ,

n+ρΓµνρ(qb, p2) = 2q−b gµν + n+
µ (p2 − 2qb)ν + (qb − 2p2)µn

+
ν − (p2 − qb)

2

q−b
n+
µn

+
ν .

(2.19)

The last step is to construct proper scattering amplitude, thus the amplitude for

the first diagram in Fig. 2.2 reads

A(gg → χcJgχcJ) = igsfa′b′c′ε
µ(λa, qa)V

aa′

µµ′ (J1, J1z; qa, p1 − qa)n
−µ′

× 1

t1
Cρ(qa − p1, qb− p2)ε

∗
ρ(λg, pg)

1

t2
εν(λb, qb)V

bb′

ν′ν (J, Jz; qb, p2 − qb)n
+ν . (2.20)

For the next two processes with leading upper and leading lower gluon the ampli-

tudes are as follow

A(gg → gχcJχcJ) = igsfa′b′c′ε
µ(λa, qa)Γµνρ(qa, pg)n

−ρεν∗(λg, pg)

× 1

t1
n+µ′Ab

′b
µ′ν′(pg − qa, qb; p1, p2)(gg → χcχc)ε

ν′(λb, qb) , (2.21)

A(gg → χcχcg) = igsfa′b′c′n
−ν′εµ

′
(λa, qa)A

aa′

µ′ν′(qa, pg − qa; p1, p2)(gg → χcχc)

× 1

t2
εµ(λb, qb)Γµνρ(qb, pg)n

+ρεν∗(λg, pg) , (2.22)

where εµ(λ, q) is polarization vector of the gluon. Because of the gauge invariance

of the approach, explicit expressions for gluon polarization vectors are not needed.

When averaging/summing over gluon polarizations, we can use the relation:∑
λ

ϵ∗µ(λ, p)ϵν(λ, p) = −gµν . (2.23)
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2.2 Parton level observables

This section is devoted to the first order perturbative correction to the inclusive

χcJ -pair production in gluon-gluon collisions 1 which contains real contribution

(dσ(1)(gg → χcJχcJgX)) as well as virtual corrections (dσ(1)(gg → χcJχcJX)). In

general, the inclusive cross section for these reactions can be written in the form

dσ(gg → χcJχcJX) = dσ(0)(gg → χcJχcJX)

+ dσ(1)(gg → χcJχcJX) + dσ(1)(gg → χcJχcJgX) , (2.24)

and ’X’ indicates that in the final state, extra particles besides the χcJχcJ -pair can

be produced. In order to go deeper in our analysis, it is worth dividing the problem

into different processes, firstly the one where gluon in the final state is produced in

between two χc’s, and secondly, the processes where the gluon is found to be beyond

the χc’s pair in rapidity.

We first want to focus on the most interesting reaction in this context, the central

gluon production. The real gluon emission at large rapidity distance among χcJ ’s

is expected to enhance the cross-section, while the virtual correction decreases the

result. The parton level cross-section in terms of transverse momentum of the χc’s

mesons p⃗1(2)⊥ and gluon rapidity yg can be written in the form

dσ =
1

256π5ŝ2
|A(gg → χcJ g χcJ)|2dygd2p⃗1⊥d2p⃗2⊥ . (2.25)

Now, when squaring the amplitude, we will have to evaluate∑
λ=±1

Cρ(q1, q2)ϵ
ρ(λ, pg)ϵ

τ (λ, pg)Cτ (q1, q2) = −Cρ(q1, q2)Cρ(q1, q2) , (2.26)

where we used Eq.2.23. Using the fact that the final state gluon is on-shell, p2g =

(q1 + q2)
2 = 0, we can obtain 2q1+q2− = (q⃗1⊥ + q⃗2⊥)2. Then it is straightforward to

show that the square of the Lipatov-vertex becomes

−Cρ(q1, q2)Cρ(q1, q2) = 4
q⃗1⊥

2q⃗2⊥
2

(q⃗1⊥ + q⃗2⊥)2
. (2.27)

1We refer to the process as “parton level”, although there are mesons in the final state.
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Now, it is useful to write the squared amplitude A(gg → χcJ g χcJ) in an easier to

handle impact factor representation.

|A(gg → χcJ g χcJ)|2 =
Nc

N2
c − 1

16παsI1(p⃗1⊥)
ŝ2

(p⃗1⊥ + p⃗1⊥)2
I2(p⃗2⊥) (2.28)

=
16π3ŝ2

N2
c − 1

I1(p⃗1⊥)
CAαs

π2(p⃗1⊥ + p⃗1⊥)2
I2(p⃗2⊥) , (2.29)

Here, we have expressed the result in terms of the transverse momenta of final state

mesons, recall that q⃗1⊥ = −p⃗1⊥, q⃗2⊥ = −p⃗2⊥. We see that the real part of the BFKL

kernel for the central gluon production [45] appears

Kr =
CAαs

π2(p⃗1⊥ + p⃗1⊥)2
. (2.30)

The impact factors are defined in terms of the gg∗ → χcJ vertices as

I1(q⃗1⊥) =
1

q⃗1⊥
2

1

2qa+

1

2

∑
λ,Jz

|εµ(λa, qa)V
aa′

µµ′ (J1, J1z; qa, p1 − qa)n
−µ′|2 ,

I2(q⃗2⊥) =
1

q⃗2⊥
2

1

2qb−

1

2

∑
λ,Jz

|εµ(λa, qb)V
aa′

µ′µ (J1, J1z; qb, p2 − qb)n
+µ′ |2 , (2.31)

Notice that an infrared singularity appears in the case of back-to-back situation,

p⃗g⊥ = −(p⃗1⊥+p⃗2⊥) =⇒ 0. Thereafter integration over gluon rapidity yg in Eq. (2.25)

leads to

dσ(gg → χcJ g χcJ) =
Y

16π2(N2
c − 1)

I1(p⃗1⊥)

Kr(p⃗1⊥,−p⃗2⊥)I2(p⃗2⊥)d2p⃗1⊥d
2p⃗2⊥ , (2.32)

here note that Y is proportional to log(ŝ/M2
χcJ

), the difference between the rapidities

of outgoing mesons.1 In fact it is needed to count all leading order contribution to

the cross section. Hence, virtual correction to the Born-level 2 → 2 cross section

in Balitsky-Fadin-Kuraev-Lipatov (BFKL) formalism is written with the help of a

reggeized gluon, which effectively leads to the replacement of the gluon propagator

1

q2
→ 1

q2
exp[ω(q⃗⊥)Y ] , (2.33)

1One therefore also refers to this as a leading-log(ŝ) approximation.
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and the gluon Regge trajectory reads [47]

ω(q⃗⊥) = −αsNc

4π2

∫
d2Q⃗⊥

q⃗2⊥

Q⃗2
⊥(Q⃗⊥ − q⃗⊥)2

. (2.34)

This exchanged quasi particle can be interpreted as reggeized gluon with spin j =

1 + ω(q⃗⊥). Then the cross section for 2 → 2 involving the virtual correction at first

order in αsY is

dσ(gg → χcJχcJ) = dσ(0)(gg → χcJχcJ) +
Y

16π2(N2
c − 1)

I1(p⃗1⊥)

× δ(2)(p⃗1⊥ + p⃗2⊥)2ω(p⃗1⊥)I2(p⃗2⊥)d2p⃗1⊥d
2p⃗2⊥ . (2.35)

To sum up all contribution to gluon-gluon scattering to two charmonia one can write

BFKL kernel

KBFKL(p⃗1⊥,−p⃗2⊥) =
αsNc

π2

( 1

(q⃗1⊥ + q⃗2⊥)2

− δ(2)(q⃗1⊥ + q⃗2⊥)
1

2

∫
d2Q⃗⊥

q⃗21⊥

Q⃗2
⊥(Q⃗⊥ − q⃗1⊥)2

)
, (2.36)

hence

dσ(gg → χcJχcJX) = dσ(0)(gg → χcJχcJX) +
Y

16π2(N2
c − 1)

× I1(p⃗1⊥)KBFKL(p⃗1⊥,−p⃗2⊥)I2(p⃗2⊥)d2p⃗1⊥d
2p⃗2⊥. (2.37)

We see that the inclusive cross section with to the leading-logŝ accuracy corresponds

exactly to one iteration of the kernel of the BFKL equation. Note that BFKL kernel

in Eq. (2.36) has infrared singularities. In this case in our numerical calculation

at the parton level with initial state parton distributions, we cannot absorb IR

divergences. Nevertheless, both singularities in virtual and real term in BFKL kernel

will cancel out in inclusive cross section with soft gluon radiation. In our case, we

will not perform a full NLO calculation, but rather estimate the contribution from

the emission of a “minijet”. It means that we put a lower cut-off on the transverse

momentum of the gluon pcutg⊥ = 1 GeV, thus pg⊥ = |q⃗1⊥ + q⃗2⊥| > 1 GeV. This puts

our calculation outside of the infrared singularity into a safe region. In addition,

to provide applicability of the effective Lipatov vertex, we put a requirement on the

central gluon in the final state is produced in a rapidity distance from meson at least
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Figure 2.4: Differential cross section at the parton level for the reaction, where extra
real gluon is produced in between two χc0’s.

yveto = 1, thus |yχc − yg| > 1. In the following we show observables of the parton-

level process. Our numerical results were obtained at an energy W =
√
ŝ = 50 GeV

in the c.m.-system of the two gluons.

Let us now turn to the processes shown by the second (b) and the third (c)

diagram of the Fig. 2.2. Here, we are dealing with sub-processes where one of the

fusing gluon is off-shell g∗g → χcJχcJ . In a complete NLO treatment, one would

associate with the process a factorization scale µF , below which the off-shellness of

incoming partons in the g∗g → χcJχcJ sub-process can be neglected. As a result the

cross-section at the parton level schematically is written as follows

dσ =
2CAαs
π

∫ µ2F dq21⊥
q21⊥

∫ 1

0

dz1
z1
dσ(2 → 2)

+
2CAαs
π

∫
µ2F

d2q⃗1⊥
πq21⊥

∫ 1

0

dz1
z1
dσ(2 → 2; q1⊥) . (2.38)

Here one can identify unintegrated gluon distribution factorised with incoming way

z dn(z, q⃗⊥)

dz d log q2⊥
=

2CAαs
π

, (2.39)

with strong coupling αs, Casimir factor CA and longitudinal fraction carried by

gluon z. Then a genuine Next-to-Leading-Order contribution originates from the

reaction with q⊥ ≫ µF . In the first term in Eq. (2.39), the virtuality of the gluon
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in the pair production process can be neglected, and the dq21⊥/q
2
1⊥ integration gives

rise to the familiar collinear logarithm ∝ log(µ2
F ). A soft divergence will cancel

after the full splitting function emerged by adding the relevant virtual correction.

Here again, we avoid these subtleties, by just estimating the contribution to the cross

section from the production of an additional mini-jet carrying transverse momentum

pg⊥ > 1 GeV. For illustration in Fig. 2.4, we show differential distribution rapidity

of χc0’s and gluon originating from 2 → 3 reaction as well as χc0 pair from 2 → 2

process. In both processes χc0’s mesons are produced in the backward and forward

direction, albeit the distribution from gg → χc0gχc0 is a bit wider. In the left panel

of Fig 2.4 one can notice that after application of veto to the rapidity of the centrally

produced real gluon, the distribution becomes narrower in comparison to the right

panel.

2.3 Observables in hadron collisions

The considered cases of χcJ pairs are restricted to be produced with identical spin

configuration such as χc0 + χc0 + g, χc1 + χc1 + g, χc2 + χc2 + g. The inclusive cross

section for the 2 → 3 processes is written in the form

dσ = x1g(x1, µ
2)x2g(x2, µ

2)
1

2!

1

256π5ŝ2
|A(2 → 3)|2

× dy1dy2dygd
2p⃗1⊥d

2p⃗2⊥d
2p⃗g⊥δ

(2)(p⃗1⊥ + p⃗2⊥ + p⃗g⊥) , (2.40)

where the statistical factor for identical particles 1/2! is included and the fraction

of carried longitudinal momenta of the gluon are

x1 =
1√
s

[
m1⊥e

y1 +m2⊥e
y2 + pg⊥e

yg
]
, (2.41)

x2 =
1√
s

[
m1⊥e

−y1 +m2⊥e
−y2 + pg⊥e

−yg
]
, (2.42)

with transverse mass of the produced meson m1(2)⊥ =
√
M2 + p21(2)⊥ and y1(2) are

rapidities of mesons.

Similarly to the Mueller-Navelet dijets production [48] with rapidity separation

one would think of the cross section enhancement due to ressummation. However,

it is worth to analyze each real gluon contribution separately.
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Figure 2.5: Differential distribution in transverse momentum of χc0(left panel),
χc1(middle panel), χc2 (right panel).

In Fig. 2.5, we compare the distribution in meson transverses momenta pT for

several processes from pp → χcJχcJ with black solid line, which gives the largest

cross-section for each χcJ production, from pp → χcJgχcJ denoted by the dash-

dotted red line. Blue curves are for external and internal meson in the final state of

the process pp→ χcJχcJg. The slowly descending dotted curve represents centrally

produced meson, this scheme is for χc0 (left panel), χc1 (middle panel) as well χc2

(right panel). One can notice that results for inclusive χc1 production are slightly
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different from χc0 and χc2, which might be caused by a strong dependence on fusion

gluons transverse momenta[49].
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Figure 2.6: Differential distribution in transverse momenta of extra gluon, in the
left panel for centrally produced gluon and in the right panel for externally produced
gluon.

In Fig. 2.6, we present differential distribution for real gluon emission in two

areas in the final state. As previously gluon(-mini jet) produced in between two

mesons yields less steep plot (left panel) in contrast to external production (right

panel).

Finally, in Fig. 2.7 differential distributions in rapidity are presented for 2 → 3

processes and compared to 2 → 2 inclusive process (black thick line). Considered

2 → 2 processes lead to χcJ productions in midrapidities region, while in 2 → 3

mechanisms one χcJ is emitted in forward or backward direction and the second

χcJ is generated exactly on the opposite side or centrally. Note that in χcJ rapidity

range |yχcJ
| > 3 contributions from 2 → 3 mechanisms are not negligible. Gluon

mini-jets in Fig. 2.7 are marked by the dotted curves for each 2 → 3 mechanism.

Another significant variable in the context of process with large rapidity separa-

tion is ∆y defined as

∆y = yχcJ
− yg , (2.43)

which informs about the distance in rapidity between gluon and one of the produced

χcJ . In Fig. 2.8, one can observe that peaks arise at |∆y| ∼ 2 for the case, where
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Figure 2.7: Differential distributions in rapidity of gluon and χcJ ’s for pp→ χcJχcJ ,
pp → g[χcJχcJ ], pp → [χcJχcJ ]g and pp → χcJ g χcJ . In the upper-left panel plots
for χc0, in the upper-right corner for χc1 and the lower-central panel for χc2.

gluon is produced near the meson. The second group of peaks appears at the region

|∆y| ∼ 6, which corresponds to the distance between gluon and furthermost χcJ .

In the numerical results the Martin-Stirling-Thorne-Watt (MSTW) 2008 next-

to-leading-order (NLO) parton distribution functions [50] is applied and the factor-

ization scale is set equal to ŝ.
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Figure 2.8: Distribution in the rapidity distance between gluon and one χcJ from the
pair.

2.4 Remarks on results and perspectives

The main goal of this study was to estimate real gluon contribution associated with

charmonium pair production in proton-proton collisions as well as at the level of

parton-parton scattering. One of the most interesting results are distributions in

the rapidity of the χcJ and the gluon in different configurations. In the rapidity

range |y| > 3 processes with external gluon emission pp → g[χcJχcJ ] come into the

picture. Nevertheless, leading-order sub-processes could suppress mesons originating
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from 2 → 3 processes at the mid-rapidity region.

Not all possible diagrams haven been taken into account, though. For exam-

ple the ”box”-type diagrams (as in [36]) of χcJχcJ production mechanism were not

taken under consideration since, in the limit within increasing center-of-mass energy

ŝ of two scattered gluons, they quickly become negligible [33]. However, for more

accurate predictions, ”box” type contributions could emerge importantly. In the

considered mechanisms (see Fig. 2.2, 2.3) due to gluon exchanges the Feynman am-

plitude is proportional to ŝ as a result one can expect that χcJχcJ pair is produced

with large rapidity separation. In this work, only χcJ ’s pair with identical spin were

analyzed. It is found that the leading order processes (2 → 2) in the collinear fac-

torization approach give smaller distributions in rapidity and transverse momentum

of the meson in contrast to results obtained from the kT -factorization framework.

The subsequently added real emission part of the next-to-leading order contribution

leads to an enhancement of the cross-section, but it is still not entirely satisfactory.

In general, we expect in the case of χc1 pair production, next-to-next-to-leading

order correction may play a significant role, but this issue will be studied elsewhere.

Note that the crucial ingredient of our approach is radial wave function at the

origin for P -wave quarkonia R′
χc

(0), which strongly depends on the model. Further

discussion on this aspect will be found in the following sections.

30



Chapter 3

Transition Form Factors in the
Light-Cone Wave Function
Approach

Much progress has been made in our understanding of the partonic structure of

hadrons during the last decades, thanks to data collected in ep and pp experiments

[51]. A supplementary source of knowledge about meson internal structure can be

found through meson - photon transition form factors as well as electromagnetic

form factors. In general, meson production via photon fusion has been studied

at e+e− colliders [52]. The main motivation for such studies is the expectation

that the measurements of the cross-sections at large virtualities of the photon will

imply constraints on the probability amplitudes for finding partons in the minimal

Fock-state in the mesons [53, 54, 55, 56, 57]. Another interesting role of meson-

photon transition form factors is their appearance in the context of light-by-light

scattering in hadronic processes as a contribution to the muon anomalous magnetic

moment (see Fig. 5.57a in Ref. [58]).

3.1 Light-cone wave functions of 1S and 2S cc̄

bound states

The light-cone wave functions incorporate all essential information about the bound

state of quark and antiquark. In the last few years, there has been increasing

interest in calculating heavy quarkonia wave function in the light-cone regime, see

for instance [59, 60, 61]. In our approach the charmonium meson is assumed to
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be constructed of a charm quark and antiquark, i.e. with the assumption that the

dominant contribution comes from the cc̄ term in the Fock-state expansion

|ηc;P+, P⃗⊥⟩ =
∑
i,j,λ,λ̄

δij√
Nc

∫
dzd2k⃗⊥

z(1 − z)16π3
Ψλ,λ̄(z, k⃗⊥)

× |ciλ(zP+, k⃗⊥ + zP⃗⊥) c̄j
λ̄
((1 − z)P+,−k⃗⊥ + (1 − z)P⃗⊥)⟩ + . . . , (3.1)

where the transverse momenta of c-quark and c̄-antiquark are respectively k⃗⊥ + zP⃗⊥

and −k⃗⊥ + (1− z)P⃗⊥. Therefore the sum effectively gives the transverse momentum

of the ηc meson. The fractions z and (1− z) of the P+ momentum of the considered

meson are carried by c and c̄ partons, while the light-cone helicities λ, λ̄ take values

±1. Including the fact that quarkonia properties are well described by nonrelativistic

potential models, the pure cc̄ Fock state probability of ηc(1S, 2S) is close to one (see

[62, 63]). More sophisticated studies have been performed within the assumption of

the meson wave function, which composition encodes also the uū, dd̄, ss̄ Fock states

[64]. Those predictions are similar as for the pure cc̄ state. Thus our approximation

seems to be reasonable. The rest frame wave functions for the pseudoscalar meson

can be introduce in the helpful notation

Ψτ τ̄ (k⃗) =
∑
Lz ,Sz

YL,Lz

( k⃗
k

)〈1

2

1

2
τ τ̄

∣∣∣∣SSz〉〈LSLzSz∣∣∣∣JJz〉unl(k)

k
, (3.2)

where unl(k) is the Fourier-Bessel transform of the radial wave function, and n is

the radial quantum number, see Appendix A for more details. For J = 0 and the

spin-singlet combination (S = 0, L = 0), we obtain

Ψτ τ̄ (k⃗) =
1√
2
ξτ†Q Ô iσ2 ξ

τ̄∗
Q̄

un0(k)

k

1√
4π

, (3.3)

where the operator Ô is equal to the 2×2 unit matrix, 1. The wave function can be

easily divided into a spin-orbit term, which depends on helicities of quark/antiquark

as well the radial part. The radial part is characterised by L and n quantum num-

bers, which for ηc(1S) are L = 0, n = 0 and for ηc(2S) are L = 0, n = 1. The

canonical bispinors for c and c̄ in Eq. (3.3) are represented by ξτQ, ξ
τ̄∗
Q̄

respectively.

The rest frame wave function is normalized as follows:∫
d3k⃗

∑
τ τ̄

|Ψτ τ̄ (k⃗)|2 = 1 , (3.4)
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so that the radial wave function un0 fulfills:∫ ∞

0

dk u2n0(k) = 1 . (3.5)

The non-relativistic wave functions unl(k) have been obtained by solving the Schrödinger

equation in the rest frame of the quark-antiquark system and subsequently trans-

formed from the r-dependent configuration space to the momentum space, see Ap-

pendix A. Different potential models from the literature have been applied and tested

for ηc (1S) and its radial excitation ηc (2S), such as the Buchmüller-Tye, Cornell,

logarithmic, oscillator and power-like potentials. The different choices of potential

models give similar results, see Fig. 3.1. The wave functions differ somewhat in the

peak position and more substantially in the large-momentum tail. The left panel

of Fig. 3.1 represents results for ηc(1S), while the right panel for ηc(2S). The next
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Figure 3.1: Radial momentum wave function in the rest frame of quark-antiquark
for ηc (1S) and ηc (2S).

step towards to light-cone wave function (LCWF) is to transform components of

Eq. (3.3) via the Melosh procedure [65, 66]. In general the LCWF can be written

in terms of light-cone helicities λλ̄ for the QQ̄ system:

Ψλλ̄(z, k⃗⊥) = χλ†Q O′ iσ2 χ
λ̄∗
Q̄ ϕ(z, k⃗⊥) . (3.6)

The relation between light-cone spinors and the canonical ones reads

ξQ = R̂(z, k⃗⊥)χQ , ξ∗Q̄ = R̂∗(1 − z,−k⃗⊥)χ∗
Q̄ , (3.7)
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while R̂(z, k⃗⊥) is the unitary matrix

R̂(z, k⃗⊥) =
mQ + zM − iσ⃗ · (n⃗× k⃗)√

(mQ + zM)2 + k⃗2⊥

=
mQ + zM − iσ⃗ · (n⃗× k⃗)√

zM(M + 2mQ)
. (3.8)

Here, it is convenient to introduce the vector n⃗ = (0, 0, 1), thus the vector product

n⃗ × k⃗ = (−ky, kx, 0). The invariant mass of the QQ̄ system is denoted by M and

expressed by the following equation:

M2 =
k⃗2⊥ +m2

Q

z(1 − z)
, (3.9)

hence the second equality in Eq. (3.8). Notice also that the momentum k⃗ in the rest

frame of quarkonium system is parameterized by the following prescription

k⃗ = (k⃗⊥, kz) =

(
k⃗⊥,

1

2
(2z − 1)M

)
. (3.10)

Moreover, there exists the relation

k = |⃗k| =
1

2

√
M2 − 4m2

Q . (3.11)

In the spin-orbit part of the WF given by Eq. (3.6) the operator Ô is transformed

through R̂ and R̂∗ matrices:

Ô′ = R̂†(z, k⃗⊥) Ô iσ2 R̂
∗(1 − z,−k⃗⊥) (iσ2)

−1 , (3.12)

using the property of Pauli-matrices: iσ2 σ⃗
∗ (iσ2)

−1 = −σ⃗, the transformed operator

Ô′ can be rewritten in the simple form:

Ô′ = R̂†(z, k⃗⊥) Ô R̂(1 − z,−k⃗⊥) . (3.13)

Applying the exact form of R̂† and R̂, one can obtain the general form of the

transformed Ô′ operator independent of the spin-orbit system is:

Ô′ =
1√

z(1 − z)

1

M(M + 2mQ)

{
(m2

Q +mQM + z(1 − z)M2)Ô

−σ⃗ · (n⃗× k⃗) Ô σ⃗ · (n⃗× k⃗)

+(M + 2mQ)
i

2

(
Ôσ⃗ · (n⃗× k⃗) + σ⃗ · (n⃗× k⃗)Ô

)
+(2z − 1)M

i

2

(
Ôσ⃗ · (n⃗× k⃗) − σ⃗ · (n⃗× k⃗)Ô

)}
. (3.14)
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In the case of ηc (1S, 2S) meson, where the Ô = 1, Eq. (3.14) is reduced to

Ô′ =
1√

z(1 − z)

1

M

(
1mQ + iσ⃗ · (n⃗× k⃗)

)
, (3.15)

where z and (1− z) are the meson’s light-cone plus-momentum fractions carried by

quark and antiquark. Furthermore, the radial part of the wave function needs to be

translated to light-cone variables and it is indicated by

ϕ(z, k⃗⊥) =

√
J√

4π

u(k)

k
, (3.16)

with the transformation jacobian from k⃗-space to the LC integration measure of

two-body phase space

d3k⃗ = J
dzd2k⃗⊥

16π3z(1 − z)
. (3.17)

Explicit calculation gives
√
J = 2

√
Mπ3, and thus

ϕ(z, k⃗⊥) = π
√
M
unl(k)

k
. (3.18)

Finally, one can insert Eqs. (3.7), (3.15),(3.18) to Eq. (3.6) and obtain

Ψλλ̄(z, k⃗⊥) =

(
Ψ++(z, k⃗⊥) Ψ+−(z, k⃗⊥)

Ψ−+(z, k⃗⊥) Ψ−−(z, k⃗⊥)

)

=
1√

z(1 − z)

(
−kx + iky mQ

−mQ −kx − iky

)
ψ(z, k⃗⊥) . (3.19)

Note that in Eq. (3.6) radial part is multiplied by Pauli matrix σ2, which was crucial

to obtain the matrix above. In order to present the result in readily usable form, in

the referred below radial part of the LCWF are absorbed the jacobian terms as well

as (1/M) and 1/
√

2 factors:

ψ(z, k⃗⊥) =
ϕ(z, k⃗⊥)√

2M
=

π√
2M

u0n(k)

k
. (3.20)

Those ψ(z, k⃗⊥) functions are found in Fig. 3.2 for ηc(1S) and ηc(2S). For complete-
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Figure 3.2: The helicity independent part of the light-cone wave function in (z, k⃗⊥)
phase space (see Eq. (3.20)). For illustration there is shown result obtained for the
Cornell potential model.

ness, let us take a look at normalization of all those functions:

1 =

∫ 1

0

dz

z(1 − z)

∫
d2k⃗⊥
16π3

∑
λ,λ̄

|Ψλ,λ̄(z, k⃗⊥)|2

=

∫ 1

0

dz

z(1 − z)

∫
d2k⃗⊥
16π3

|ϕ(z, k⃗⊥)|2

=

∫ 1

0

dz

z(1 − z)

∫
d2k⃗⊥
16π3

2M2|ψ(z, k⃗⊥)|2 . (3.21)

Note that the normalization condition for ψ(z, k⃗⊥) has a different form for P -wave

charmonia system, due to the different spin-orbit operator.

3.2 1P light-cone wave functions for cc̄ and bb̄ bound

states

In order to obtain the light-cone wave function for the 1P state it is convenient to

recall the form of Eq. (3.3) with the specific set of quantum numbers, n = 0, L = 1,

(nr + 1) 2S+1LJ :

Ψτ τ̄ (k⃗) =
1√
2
ξτ†Q Ô iσ2 ξ

τ̄∗
Q̄

u01(k)

k

1√
4π

, (3.22)

36



3.2 1P light-cone wave functions for cc̄ and bb̄ bound states

where the operator Ô for P-wave states has the form:

Ô =
σ⃗ · k⃗
k

. (3.23)

The spatial part of the wave function for spinless mesons χc0 and χb0 are again

obtained for several potential models from Schrödinger equation (see Appendix A).

The radial wave function unl in the momentum rest-frame k is presented in Fig. 3.3.

For χc0 as well as for χb0, the wave function has a negative sign. It is worth noticing

that the mass of the b-quark in each presented potential model has a greater value

than for c-quark, which implies the fact that the wave function unl for χb0 has a

longer tail in k. This feature has consequences in the transformation to the light-

cone base.
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Figure 3.3: The relativistic wave functions unl(k) obtained as a solution of the
Schrödinger equation for several potential models for cc̄ (left panel) and bb̄ (right
panel) bound states.

Although there is a dependency exact the same as Eq. (3.18) and normalization of

Ψτ τ̄ (k⃗) is conserved, there is still needed ψ(z, k⃗⊥). The normalization of ψ(z, k⃗⊥) can

be found after the transformation of the operator Ô through the Melosh procedure

using the general Eq. (3.14) and including Eq. (3.23). After simple but somewhat

tedious manipulations one can get:

Ô′ =
1√

z(1 − z)

1

2k
{σ⃗ · k⃗⊥ + (2z − 1)mQσ⃗ · n⃗} , (3.24)
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Figure 3.4: The example of the light-cone wave function founded for the Cornell
potential model, χc0-left panel and χb0-right panel.

and as before n⃗ = (0, 0, 1), mQ is referred to as the constituent quark mass and

depends on the potential model.

Combining all transformations into the light-cone helicity dependent wave func-

tion of QQ̄ system, we obtain:

Ψλλ̄(z, k⃗⊥) =
−1√
z(1 − z)

(
kx − iky mQ(1 − 2z)

mQ(1 − 2z) −kx − iky

)
ψ(z, k⃗⊥) , (3.25)

and

ψ(z, k⃗⊥) =
ϕ(z, k⃗⊥)

2
√

2k
=

ϕ(z, k⃗⊥)
√

2
√
M2 − 4m2

Q

. (3.26)

In the last equality the relation from Eq. (3.11) is used.

3.3 Transition form factor and helicity amplitude

There are several methods to compute directly produced heavy quarkonia. In our

approach it is required that QQ̄ pair is produced in the color singlet state. As

a result only the t − channel and u − channel quark exchange diagrams shown in

Fig.3.5 contribute to the scattering amplitude (diagrams A and B). Diagram C

with an s− channel gluon necessarily has a color octet QQ̄ system in the final state

and thus will drop out of our calculation.
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3.3 Transition form factor and helicity amplitude

n+
µ

q1

q2

pQ̄, (1− z)
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ūλ

vλ̄

n+
µ

q1
pA

q2

pQ̄, (1− z)

pQ, z

A

n−
ν

ūλ

vλ̄
pB

C

Figure 3.5: Feynman diagrams for the g∗g∗ → QQ̄ amplitude.

The general form of the gluon helicity amplitude1 involving diagrams A and

B from Fig. 3.5 (diagram C does not contribute in the color-singlet configuration)

reads:

n+
µn

−
ν A

λλ̄
µν

(
g∗(q1)g

∗(q2) → Qλ(z, p⃗⊥Q) Q̄λ̄(1 − z, p⃗⊥Q̄)
)

= ūλ(pQ) n̂+ p̂A +mQ

p2A −m2
Q

n̂− vλ̄(pQ̄) + ūλ(pQ)n̂− p̂B +mQ

p2B −m2
Q

n̂+ vλ̄ (pQ̄), (3.27)

where p̂ ≡ pµγµ is the standard Feynman contraction, while n̂− = n−
µ γ

µ ≡ γ+,

n̂+ = n+
µ γ

µ ≡ γ− . For further calculation the Dirac spinors u(p) and v(p) are taken

in the form as in A3 in Ref. [67], see Appendix B. The momenta of outgoing quark

and antiquark in the light-cone base reads:

pQ = zq+1 n
+
µ +

p⃗ 2
Q +m2

Q

2zq+1
n−
µ + pQ⊥µ , (3.28)

pQ̄ = (1 − z)q+1 n
+
µ +

p2
Q̄

+m2
Q

2(1 − z)q+1
n−
µ + pQ̄⊥µ , (3.29)

1We omit coupling constant and color factors, see Eqs. ??, 3.59.
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or with the help of the bound state momentum P⃗⊥ = q⃗1⊥ + q⃗2⊥, the momentum

of the internal motion k⃗⊥ and the fraction of the longitudinal momentum z

p⃗Q⊥ = k⃗⊥ + z(q⃗1⊥ + q⃗2⊥) , (3.30)

p⃗Q̄⊥ = −k⃗⊥ + (1 − z)(q⃗1⊥ + q⃗2⊥) . (3.31)

From the kinematic situation presented in Fig. 3.5 one can reads

q1 = q+1 n
+
µ + q1⊥µ −→ q21 = −q⃗ 2

1⊥ , (3.32)

q2 = q+2 n
−
µ + q2⊥µ −→ q22 = −q⃗ 2

2⊥ , (3.33)

and the momenta of the exchanged quark for diagram A and B

pA = q1 − pQ̄ = zq+1 n
+
µ −

p2
Q̄

+m2
Q

2(1 − z)q+1
n−
µ + q⃗1⊥µ − p⃗Q̄⊥µ , (3.34)

pB = pQ − q1 = −(1 − z) q+1 n
+
µ +

p2Q +m2
Q

2zq+1
n−
µ + p⃗Q⊥µ − q⃗1⊥µ . (3.35)

Therefore one can get the denominators of Eq. (3.27)

p2A −m2
Q = − 2z

2(1 − z)
(p2Q̄⊥ +m2

Q) − (q⃗1⊥ − p⃗Q̄⊥)2 −m2
Q

=
−1

(1 − z)

(
(p⃗Q⊥ − (1 − z)q⃗1⊥)2 + (z(1 − z)q⃗1⊥

2 +m2
Q)
)

=
−1

(1 − z)

(
l⃗A

2 + ε2
)
, (3.36)

p2B −m2
Q = −2

(1 − z)(p⃗Q⊥
2 +m2

Q)

2z
− (p⃗Q⊥ − q⃗1⊥)2 −m2

Q

= −1

z

(
(p⃗Q⊥ − zq⃗1⊥)2 +

(
z(1 − z)q⃗1⊥

2 +m2
Q

))
= −1

z
(⃗lB

2 + ε2) , (3.37)

(3.38)

here l⃗A, l⃗B and ε2 are :

l⃗A = p⃗Q̄ − (1 − z)q⃗1⊥ = −k⃗ + (1 − z)q⃗2⊥ , (3.39)

l⃗B = p⃗Q⊥ − zq⃗1⊥ = k⃗⊥ + zq⃗2⊥ , (3.40)

ε2 = z(1 − z)q⃗1⊥
2 +m2

Q . (3.41)
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3.3 Transition form factor and helicity amplitude

After having expressed the denominators of quark propagators in a concise form,

let us turn to the numerators: the spinor and gamma-matrix algebra. Here we can

use a convenient trick, which allows us to reduce our amplitude to some simple on–

shell spinor bilinears. This trick is most easily demonstrated for diagram A. Here we

have the virtual quark propagating with four-momentum pA. Evidently it is off-shell,

p2A ̸= m2
Q, see Eq. (3.38). Let us have a look at its light-cone decomposition

pAµ = pA+n
+
µ + pA−n

−
µ + p⊥Aµ = pA+n

+
µ +

p2A + p⃗2A⊥
2pA+

n−
µ + p⊥Aµ . (3.42)

We can add and subtract a piece ∝ m2
Q/(2pA+) in the minus-component, so that

pAµ = pA+n
+
µ +

m2
Q + p⃗2A⊥
2pA+

n−
µ + p⊥Aµ︸ ︷︷ ︸

on−shell

+
p2A −m2

Q

2pA+
n−
µ

= posAµ +
p2A −m2

Q

2pA+
n−
µ , (3.43)

where posAµ is an on-shell momentum, (posA )2 = m2
Q. Now, the crucial point is that for

an on-shell momentum, we can write

p̂osA +mQ =
∑
σ

uσ(posA )ūσ(posA ) , (3.44)

so that the quark propagator becomes

p̂A +mQ

p2A −m2
Q

=

∑
σ uσ(posA )ūσ(posA )

p2A −m2
Q

+
1

2pA+
n̂− . (3.45)

Now, in diagram A, the quark propagator is sandwiched between the matrices n̂−

and n̂+:

n̂− p̂A +mQ

p2A −m2
Q

n̂+ = n̂−
∑

σ uσ(posA )ūσ(posA )

p2A −m2
Q

n̂+ +
1

2pA+
n̂−n̂−n̂+︸ ︷︷ ︸

=0

, (3.46)

where the second term vanishes because n̂−n̂− = n− ·n− = 0. It therefore turns out

that in our diagrams, we can replace the quark/antiquark propagators by the spinor

polarization sums. Subsequently in Eq. (3.27), there is made use of the polarization

sum:

p̂A +mQ −→
∑
σ

uσ(pA)ūσ(pA) , (3.47)

p̂B +mQ = −(−p̂B −mQ) −→ −
∑
σ̄

vσ̄(−pB)v̄σ̄(−pB) , (3.48)
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where the summation is over the polarization σ̄ and σ. Thus the spinor product in

the form ūn̂+v, ūn̂−u, v̄n̂−v for diagram A is:

ūλ(pQ)n̂−(p̂A +mQ)n̂+vλ̄(pQ̄) =
∑
σ

[ūλ(pQ)n̂−uσ(pA)][ūσ(pA)n̂+vλ̄(pQ̄)]

=
∑
σ

[
2δλσ

√
zq+1 zq

+
1

]
·
[
ūσ(z, k⃗ − (1 − z)q⃗2 + zq⃗1)n̂

+vλ̄(1 − z,−k⃗ + (1 − z)(q⃗1 + q⃗2))

]
, (3.49)

and for diagram B:

ūλ(pQ)n̂+(p̂B +mQ)n̂−vλ̄(pQ̄) = −
∑
σ̄

[ūλ(pQ)n̂+vσ̄(−pB)][v̄σ̄(−pB)n̂−vλ̄(pQ̄)]

= −
∑
σ̄

[
ūλ(z, k⃗ + z(q⃗1 + q⃗2))n̂

+vλ̄(1 − z,−k⃗ − zq⃗2 + (1 − z)q⃗1)

]
·
[
2δσ̄λ̄

√
(1 − z)q+1 (1 − z)q+1

]
. (3.50)

Going further with spinor product ūλn̂
+vλ̄, it is convenient to express via auxiliary

vectors l⃗A and l⃗B: from Eq. (3.49)

ūλ(z,−l⃗A + zq⃗1) n̂
+ vλ̄(1 − z, l⃗A + (1 − z)q⃗1) , (3.51)

as well as from Eq. (3.50)

ūλ(z, l⃗B + zq⃗1) n̂
+ vλ̄(1 − z,−l⃗B + (1 − z)q⃗1) . (3.52)

In the case of the state, where the helicities satisfy λ = λ̄

n+
µn

−
ν A

λλ̄|λ=λ̄ =
mQ

√
2
(
e⃗(−λ) · q⃗1

)
q+1
√
z(1 − z)

{
− 2z(1 − z)q+1

l⃗A 2 + ε2
+

2z(1 − z)q+1

l⃗B 2 + ε2

}
, (3.53)

there is employed notation a(−λ) =
√

2 e⃗(−λ) · a⃗ , the vector e⃗ (λ) = −1/
√

2(λex +

iey).

In order to consider the situation, where λ = −λ̄ for diagram A one can obtain

ūλ(pQ)n̂+ p̂A +mQ

p2A −m2
Q

n̂− vλ̄ (pQ̄) =

= 2
√
z(1 − z)

(
−m2

Q − l⃗A
2 + z(1 − z)q⃗1

2 − (1 − 2z)⃗lA · q⃗1

− iλ
[⃗
lA , q⃗1

]){ 1

l⃗A 2 + ε2

}
, (3.54)
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3.3 Transition form factor and helicity amplitude

or for diagram B

ūλ(pQ) n̂− p̂B +mQ

p2B −m2
Q

n̂+ vλ̄(pQ̄) =

=
1

q+1
√
z(1 − z)

(
−m2

Q + (⃗lB + zq⃗1) · (−l⃗B + (1 − z)q⃗1)

+ iλ
[⃗
lB + zq⃗1 , −l⃗B + (1 − z)q⃗1

]){
− 2z(1 − z)q+1

l⃗B 2 + ε2

}
= 2
√
z(1 − z)

(
−m2

Q − l⃗B
2 + z(1 − z)q⃗1

2 + (1 − 2z)⃗lB · q⃗1

+ iλ
[⃗
lB , q⃗1

]){
− 1

l⃗B 2 + ε2

}
. (3.55)

Notice that previously it was indicated ε2 = z(1 − z)q21 + m2
Q, thus the part of the

amplitude, for λ = −λ̄, takes the form:

n+µn−νAλλ̄
µν |λ=−λ̄ = −2

√
z(1 − z)

(
2z(1 − z)q21

(
1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

)
+

(1 − 2z)⃗lA · q⃗1 + iλ[⃗lA, q1]

l⃗A 2 + ε2
+

(1 − 2z)⃗lB · q⃗1 + iλ[⃗lB, q1]

l⃗B 2 + ε2

)
. (3.56)

Finally, the full matrix element reads

n+µn−νMµν = N

∫
dzd2k⃗⊥

z(1 − z)16π3

∑
λλ̄

Ψ∗
λλ̄n

+µn−νAλλ̄
µν . (3.57)

Here N encodes information about color factors and coupling constant. For the two

photons fusion

Nγ∗γ∗→QQ̄ =
4παeme

2
Q Tr1color√
Nc

, (3.58)

where eQ is the electric charge of the considered quark. For the two gluon fusion,

one can apply

Ng∗g∗→QQ̄ =
4παsTr[tatb]√

Nc

, (3.59)

here Nc is the color factor. The convoluted amplitude with the bound state wave

function can be presented in a universal form and used with the specific wave func-

tion Ψ∗
λλ̄

depending on the produced QQ̄ state. The subscripts (±) below stand for
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quark/antiquark helicities (±1/2):∫
dzd2k⃗⊥

z(1 − z)16π3

∑
λλ̄

Ψ∗
λλ̄n

+µn−νAλλ̄
µν = (−2)

∫
dz d2k⃗⊥√
z(1 − z)16π3

×
{
−mQ

[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

]
×
(√

2(e⃗⊥(−)q⃗1⊥)Ψ∗
++(z, k⃗⊥) +

√
2(e⃗⊥(+)q⃗1⊥)Ψ∗

−−(z, k⃗⊥)
)

+
(

2z(1 − z)q⃗1⊥
2 + (1 − 2z)(k⃗⊥ · q⃗1⊥)

)[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

]
×
(

Ψ∗
+−(z, k⃗⊥) + Ψ∗

−+(z, k⃗⊥)
)

−(1 − 2z)(q⃗1⊥ · q⃗2⊥)
[ 1 − z

l⃗A 2 + ε2
+

z

l⃗B 2 + ε2

](
Ψ∗

+−(z, k⃗⊥) + Ψ∗
−+(z, k⃗⊥)

)
+i[⃗k⊥, q⃗1⊥]

[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

](
Ψ∗

+−(z, k⃗⊥) − Ψ∗
−+(z, k⃗⊥)

)
+i[q⃗1⊥, q⃗2⊥]

[ 1 − z

l⃗A 2 + ε2
+

z

l⃗B 2 + ε2

](
Ψ∗

+−(z, k⃗⊥) − Ψ∗
−+(z, k⃗⊥)

)}
. (3.60)

In our approach, it is assumed that the mass of the heavy quark, charm, or bottom,

mQ is large enough to satisfy perturbation theory and even in the limit of vanishing

gluon/photon virtualities is applicable for our result.

3.4 Spacelike transition form factors for S-wave

quarkonia

During the last years, the transition form factors have been extracted from e+e−

collisions in the single-tag mode for π0, η, and η′ by CLEO, BaBar, Belle, and L3

Collaborations. Only one of the leptons in the final state of the single-tag event is

measured, which imposes that one of the exchanged photons is almost real, while the

other is off-shell. From the theoretical side, so far transition form factors have been

studied within different approaches for instance lattice QCD [68, 69], perturbative

QCD [70, 62], non-relativistic QCD[71, 72], QCD sum rules [73] and also from Bethe-

Salpeter or Dyson-Schwinger equations[74]. Moreover, in the case of one real and

one virtual photon, some studies in the light-cone quark model exist [64, 75].

The transition form factor F (Q2
1, Q

2
2) has a well known strict relation with the
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two-photon helicity amplitude for spin-parity quantum numbers JPC = 0−+ [76]:

Mµν(γ
∗(q1)γ

∗(q2) → ηc) = 4παem (−i)εµναβqα1 qβ2 F (Q2
1, Q

2
2) . (3.61)

It can be also given by the projection on the photon polarization

n+µn−νMµν(γ
∗(q1)γ

∗(q2) → ηc) = 4παem (−i)[q⃗1⊥, q⃗2⊥]F (Q2
1, Q

2
2) , (3.62)

and the vector product [q⃗1⊥, q⃗2⊥] = q1xq2y − q1yq2x. Here the spacelike photons have

virtualities Q2
i = −q2i ≥ 0, i = 1, 2.

Our master formula - Eq. (3.60) - is presented in an easy to handle form, and one

can notice that only a few combinations of the conjugated helicity wave functions

Ψ∗
λλ̄

(z, k⃗⊥) appear. Then it is a straightforward step to insert the results for the

pseudoscalar meson (see Eq. (3.19)) and read off:

√
2
(

(e⃗⊥(−) · q⃗1⊥)Ψ∗
++(z, k⃗⊥) + (e⃗⊥(+) · q⃗1⊥)Ψ∗

−−(z, k⃗⊥)
)

=
i2[⃗k⊥, q⃗1⊥]√
z(1 − z)

ψ(z, k⃗⊥) ,(
Ψ∗

+−(z, k⃗⊥) − Ψ∗
−+(z, k⃗⊥)

)
=

2mQ√
z(1 − z)

ψ(z, k⃗⊥) ,(
Ψ∗

+−(z, k⃗⊥) + Ψ∗
−+(z, k⃗⊥)

)
= 0 .

(3.63)

Hence the terms with
(

Ψ∗
+−(z, k⃗⊥) + Ψ∗

−+(z, k⃗⊥)
)

are automatically canceled out,

and we remain with

n+µn−νMµν(γ
∗(q1)γ

∗(q2) → ηc) = 4παeme
2
c

Tr1color√
Nc

(−2)

∫
dzd2k⃗⊥√

z(1 − z)16π3{[ 1

l⃗A 2 + µ2
− 1

l⃗B 2 + µ2

][
i[⃗k⊥, q⃗1⊥]

(
Ψ∗

+−(z, k⃗⊥) − Ψ∗
−+(z, k⃗⊥)

)
−
√

2mQ

(
(e⃗⊥(−)q⃗1⊥)Ψ∗

++(z, k⃗⊥) + (e⃗⊥(+)q⃗1⊥)Ψ∗
−−(z, k⃗⊥)

)]
+
[ 1 − z

l⃗A 2 + µ2
+

z

l⃗B 2 + µ2

]
i[q⃗1⊥, q⃗2⊥]

(
Ψ∗

+−(z, k⃗⊥) − Ψ∗
−+(z, k⃗⊥)

)}
.

(3.64)

After summation, the pieces proportional to [⃗k⊥, q⃗1⊥] cancel, and only the term with
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cross product i[q⃗1⊥, q⃗2⊥] is left

n+µn−νMµν(γ
∗(q1)γ

∗(q2) → ηc) = 4παeme
2
c

Tr1color√
Nc

(−2)

∫
dzd2k⃗⊥√

z(1 − z)16π3
ψ(z, k⃗⊥)

×
{
i2mQ[q⃗1⊥, q⃗2⊥]

[ 1 − z

l⃗A 2 + µ2
+

z

l⃗B 2 + µ2

]}
. (3.65)

By comparing Eq. (3.65) with Eq. (3.62) we find an expression of the form factor in

terms of the light-cone wave function:

F (Q2
1, Q

2
2) = e2c

√
Nc 4mQ ·

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)

×
{ 1 − z

(k⃗⊥ − (1 − z)q⃗2⊥)2 + z(1 − z)q⃗1⊥
2 +m2

Q

+
z

(k⃗⊥ + zq⃗2⊥)2 + z(1 − z)q⃗1⊥
2 +m2

Q

}
, (3.66)

here ec stands for is the electric charge of the c-quark/antiquark and it is taken as

ec = 2/3. Let us recall that the invariants Q2
1 and Q2

2 are expressed as

Q2
1 = q⃗1⊥

2, Q2
2 = q⃗2⊥

2 . (3.67)

Notice that the integrand on the r.h.s. of Eq. (3.66) is not manifestly a function of

q⃗1⊥
2 and q⃗2⊥

2 alone. However, after integrating over the azimuthal angle of k⃗⊥ this

will clearly be the case. We can put the dependence on q⃗1⊥
2, q⃗2⊥

2 in evidence by

performing the azimuthal integration analytically, using∫ 2π

0

dϕ

2π

1

A+B cosϕ
=

1√
A2 −B2

, (3.68)

so that finally the γ∗γ∗ → ηc transition form factor reads

F (Q2
1, Q

2
2) = e2c

√
Nc 4mc ·

∫
dzk⊥dk⊥
z(1 − z)8π2

ψ(z, k⃗⊥){
1 − z√

(k⃗2⊥ −m2
c − z(1 − z)q⃗1⊥

2 − (1 − z)2q⃗2⊥
2)2 + 4k⃗2⊥(m2

c + z(1 − z)q⃗1⊥
2)

+
z√

(k⃗2⊥ −m2
c − z(1 − z)q⃗1⊥

2 − z2q⃗2⊥
2)2 + 4k⃗2⊥(m2

c + z(1 − z)q⃗1⊥
2)

}
.

(3.69)
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Figure 3.6: The transition form factor for ηc(1S)-left panel and ηc(2S)-right panel
in terms of virtualities of the photons Q1 , Q2. For illustration there is shown the
result obtained from the Buchmüller-Tye potential model.

The formula we have just derived (Eq. (3.69)) can be employed for ηc(1S) as well

as ηc(2S) with corresponding light-cone wave function ψ(z, k⃗⊥). If the proper cor-

rections for flavor structure and quark masses/charges are made, it holds for any

pseudoscalar quark-antiquark meson.

It is not easy to observe directly from Eq. (3.69) whether our form factor obeys

Bose-symmetry under an exchange of the photon virtualities Q2
1, Q

2
2. This feature

is clearly seen in Fig. 3.6 for ηc(1S)-left panel and for ηc(2S)-right panel. The wave

function obtained from the Buchmüller-Tye potential model with corresponding

quark mass for the model was applied in the result presented in Fig. 3.6. However,

the whole set of the wave functions, obtained as was discussed in the previous

sections, have been tested. The form factors received with other wave functions

from the set give similar shapes, but they differ in peak height, where Q2
1 = Q2

2 = 0.

Therefore, a noteworthy feature of our form factor is its value at the so-called on-shell

point (that means Q1 = Q2 = 0). This leads to reduced form of Eq. (3.69):

F (0, 0) = e2c
√
Nc 4mc ·

∫
dzd2k⃗⊥

z(1 − z)16π3

ψ(z, k⃗⊥)

k⃗2⊥ +m2
c

. (3.70)

Moreover, F (0, 0) is linked with γγ decay width as follows

Γ(ηc → γγ) =
π

4
α2
emM

3
ηc |F (0, 0)|2 , (3.71)
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which can be treated as a check of our normalization condition. The value of the

transition form factor at the on-shell point for each light-cone wave function obtained

from a specific potential model as well as the mass quark used in the model, can

be found in Tab. 3.1 for ηc (1S) and Tab. 3.2 (2S). Furthermore in The Review

of Particle Physics [77] one can find ηc → γγ decay width and using Eq. (3.71)

extract F (0, 0), which in Tab. 3.1 for ηc (1S) and Tab. 3.2 for ηc (2S) is referred to

as experimental value. Our results are listed in Tab. 3.1 for ηc(1S) are below the

experimental values. We observe that the value of F (0, 0) from power-like potential

model has the closest value to the experimental one. In the case of the ηc(2S), our

results are in the range of experimental value, but at the same time, the experimental

error bar is quite large.

Table 3.1: The transition form factor at the on-shell point |F (0, 0)| for ηc(1S).

potential type mc [GeV] |F (0, 0)| [GeV−1] Γγγ [keV]
harmonic oscillator 1.4 0.051 2.89
logarithmic 1.5 0.052 2.95
power-like 1.334 0.059 3.87
Cornell 1.84 0.039 1.69
Buchmüller-Tye 1.48 0.052 2.95
experiment - 0.067 ± 0.003 [77] 5.1 ± 0.4 [77]

Table 3.2: The transition form factor at the on-shell point |F (0, 0)| for ηc(2S).

potential type mc [GeV] |F (0, 0)| [GeV−1] Γγγ [keV]
harmonic oscillator 1.4 0.03492 2.454
logarithmic 1.5 0.02403 1.162
power-like 1.334 0.02775 1.549
Cornell 1.84 0.02159 0.938
Buchmüller-Tye 1.48 0.02687 1.453
experiment [77] - 0.03266 ± 0.01209 2.147 ± 1.589

The ηc transition form factor was first investigated by the L3 Collaboration at

the Large Electron Positron Collider (LEP), however only with a poor statistics

data sample [78]. More recently, in 2010 the BABAR Collaboration at the PEP-II

asymmetric-energy storage rings at the Stanford Linear Accelerator Center (SLAC)
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has published data for the normalized transition form factor |F (Q2
1, 0)/F (0, 0)| in

terms of photon virtuality Q2
1. In the single tag mode, they considered ηc in the

two-photon production reaction, e+e− → ηc, where one of the outgoing electrons is

measured, while the other electron is scattered at a small angle. The tagged electron

emits a highly off-shell photon and the momentum transfer squared of the untagged

electron is practically zero, −q22 ∼ 0 [79]. Moreover, they had measured no-tag mode

to gain the normalization of the form factor. Therefore it was a great opportunity

to compare our calculations with existing BABAR data, see left panel of Fig. 3.7.

0 10 20 30 40 50

)2 (GeV2Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

,0
)/

F
(0

,0
)

2
F

(Q

 = 1.4 GeV 
c

oscillator, m

 = 1.5 GeV 
c

logarithmic, m

 = 1.334 GeV 
c

power­like,  m

 = 1.84 GeV 
c

 Cornell, m

 = 1.48 GeV  
c

Buchmuller­Tye, m

BABAR data 2009

(1S)
c

η

0 10 20 30 40 50

)2 (GeV2Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

,0
)/

F
(0

,0
)

2
F

(Q

 = 1.4 GeV 
c

oscillator, m

 = 1.5 GeV 
c

logarithmic, m

 = 1.334 GeV 
c

power­like,  m

 = 1.84 GeV 
c

 Cornell, m

 = 1.48 GeV  
c

Buchmuller­Tye, m

(2S)
c

η

Figure 3.7: The normalized transition form factor F (Q2, 0)/F (0, 0) for one on-shell
photon as a function of virtuality of the second photon. The normalization factors
F (0, 0) can be found in Tab. 3.1 and Tab. 3.1, respectively for ηc(1S) and ηc(2S).
The experimental data for ηc comes from the BABAR Collaboration [79].

The findings of our study within the light-cone wave function approach for several

potential models are rather promising. We emphasized here that the agreement

with the data depends not only on the model of the light-cone wave function but, in

particular, on the quark mass. The form factor for oscillator and power-like models

seem to give the best description of the data, while the corresponding c-quark masses

are mc = 1.4 GeV and mc = 1.334 GeV. In the right panel of Fig. 3.7, we present

predictions for ηc(2S) normalized form factor.

In order to study a few more properties of our transition form factor, it is use-

ful to introduce the asymmetry parameter ω and an average value of the photons

virtualities Q̄2:

ω =
Q2

1 −Q2
2

Q2
1 +Q2

2

, Q̄2 =
Q2

1 +Q2
2

2
. (3.72)
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From Fig. 3.8 one can clearly see that the F (ω, Q̄2) is practically independent of

the parameter ω. For comparison, we mention that in the case of the transition

form factor for the light meson, as γ∗γ∗ → π0 a rather strong dependence on ω is

observed [80, 81]. It could be an interesting research area for experiments such as

Belle2 to study this subject.
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Figure 3.8: The transition form factor for ηc(1S)-left panel and ηc(2S)-right panel
in terms of asymmetry parameter ω and average value of two virtualities of the
photons Q̄2. As an example there is shown the result obtained from the Buchmüller-
Tye potential model.

3.4.1 Transition form factor in the nonrelativistic limit

In the beginning, it is worthwhile to go back to the form factor at the on-shell

point and rewrite this result as an integral over the three-momentum k⃗ introduced
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3.4.1 Transition form factor in the nonrelativistic limit

in Eq. (3.10), involving the radial wave function un0(k) for the S-wave

F (0, 0) = e2c
√
Nc 4mc ·

∫
dzd2k⃗⊥

z(1 − z)16π3

ψ(z, k⃗⊥)

k⃗2⊥ +m2
c

= e2c
√
Nc4mc

∫
4d3k⃗

Mcc̄16π3

ψ(z, k⃗⊥)

k⃗2⊥ +m2
c

= e2c
√

2Nc
mc

π

∫ ∞

0

dk k uLn(k)√
M3

cc̄(k2 +m2
c)

∫ 1

−1

d cos θ

1 − β2 cos2 θ

= e2c
√

2Nc
2mc

π

∫ ∞

0

dk k un0(k)√
M3

cc̄(k2 +m2
c)

1

2β
log

(
1 + β

1 − β

)
. (3.73)

Here in the polar coordinates k⃗2⊥ = k2 sin2 θ, thus k⃗2⊥+m2
c = (k2+m2

c)(1−β2 cos2 θ),

while β is defined as

β =
k√

k2 +m2
c

, (3.74)

the velocity v/c of the quark in the QQ̄ c.m.s.-frame. A complementary analysis

for the relativistic corrections to the radiative decay rates exist in the literature, see

e.g., Ref. [82] and references therein. A difference of our results compared to the

approach of Ebert et al. [82] lies in the fact that in our calculation, the invariant

mass MQQ̄ is running with k, while in [82] it is taken to be constant. In the non-

relativistic limit, k2/m2
c ≪ 1, β ≪ 1, the mass Mcc̄ reaches Mcc̄ = 2mc. If one

suppresses the binding energy, one can further identify 2mc = Mηc . We now use

lim
β→0

1

2β
log

(
1 + β

1 − β

)
= 1 , (3.75)

so that in the nonrelativistic limit, Eq. (3.73) reduces to

F (0, 0) = e2c
√

2Nc
2mc

π

∫ ∞

0

dk k un0(k)√
M3

ηcm
2
c

=
e2c
√

2Nc

π

4√
M5

ηc

∫ ∞

0

dk k un0(k)

= 4e2c

√
Nc

πM5
ηc

Rn0(0) . (3.76)

here Rn0(0) is the value of the radial wave function Rn0(r) = un0(r)/r at the origin

r = 0 (for more details see Appendix A). In the above derivation we have used the
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relation ∫ ∞

0

k dk un0(k) =

√
π

2
Rn0(0) . (3.77)

Inserting the result of Eq. (3.76) into Eq. (3.71), this finally leads to the well known

expression for the γγ-width (see e.g. Table 2.2 in Ref. [46])

Γ(ηc → γγ) =
4α2

eme
4
cNc

M2
ηc

|Rn0(0)|2 . (3.78)

In fact, there is an ambiguity in the way how to calculate the decay rate (Eq.3.78)

which is related to the fact that in the NR limit Mηc = 2mc. This means that

within the accuracy of the approximation one can either calculate the width using the

physical meson massMηc or with the help of the quark massMηc = 2mc. Therefore in

Tabs. 3.3, 3.4 we have summarized our results of both methods, for ηc(1S) and ηc(2S),

respectively. As one can observe for different potential models, the spread of the

results is quite wide. In the case of ηc(1S) only the value obtained for the harmonic-

oscillator potential could be regarded as being in the range of the measured value

Γ(ηc(1S) → γγ) = 5.1± 0.4 keV. In the case of excited ηc all our findings in the NR

limit are far way from the experimental value, Γ(ηc(2S) → γγ) = 2.147 ± 1.589 keV

[77].

Table 3.3: The radial wave function at the origin |R00(0)| and radiative decay width
Γ(ηc(1S) → γγ) for ηc(1S).

potential type |R00(0)|[GeV3/2] Γηc(1S)→γγ [keV] Γηc(1S)→γγ [keV]
M = Mηc(1S) M = 2mc

harmonic oscillator 0.6044 5.1848 5.8815
logarithmic 0.8919 11.290 11.157
power-like 0.7620 8.2412 10.297
Cornell 1.2065 20.660 13.568
Buchmüller-Tye 0.8899 11.240 11.409
experiment [77] 5.1 ± 0.4 5.1 ± 0.4

In the NR limit, which is obtained after expanding the amplitude in a Taylor

series around k⃗⊥ = 0 and z = 1/2 in Eq. (3.69), the transition form factor emerges

in the NRQCD-limit as,

F (Q2
1, Q

2
2) = e2c

√
Nc

4√
πMηc

1

Q2
1 +Q2

2 +M2
ηc

|Rn0(0)| . (3.79)
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Table 3.4: The radial wave function at the origin |R10(0)| and radiative decay width
Γ(ηc(2S) → γγ) for ηc(2S).

potential type |R10(0)|[GeV3/2] Γηc(2S)→γγ [keV] Γηc(2S)→γγ [keV]
M = Mηc(2S) M = 2mc

harmonic oscillator 0.7402 5.2284 8.8214
logarithmic 0.6372 3.8745 5.6946
power-like 0.5699 3.0993 5.7594
Cornell 0.9633 8.8550 8.6493
Buchmüller-Tye 0.7185 4.9263 7.4374
experiment [77] 2.147 ± 1.589 2.147 ± 1.589

In Fig. 3.9 we present the ratio of two form factors, namely the form factor obtained

through light-cone wave function for the Buchmüller-Tye (B-T) potential model and

the form factor in the NRQCD-limit. In order to calculate the NRQCD form factor

we have employed |R00(0)| = 0.8899 GeV3/2, Mηc(1S) = (2983.9±0.4) MeV for ηc(1S)

and |R10(0)| = 0.7185 GeV3/2, Mηc(2S) = (3637.5 ± 1.1) MeV for ηc(2S). The values

of the radial wave function at the origin |Rn0(0)| are taken from Tabs. 3.3, 3.2 for

the Buchmüller-Tye potential model.
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Figure 3.9: Ratio of the form factor constructed from light-cone wave function
for the Buchmüller-Tye potential model and NRQCD form factor with |R00(0)| =
0.8899 GeV3/2 for ηc(1S) and |R10(0)| = 0.7185 GeV3/2 for ηc(2S), see Tabs. 3.3, 3.2.
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3.4.2 Transition form factor and distribution amplitude

In the last two decades, physicists have investigated several properties of the ηc.

For instance in 2001 the CLEO Collaboration published results for two-body B

decays, B → ηcK in both neutral and charged modes [83]. By comparing the rates

of the decays ηc with J/Ψ, they extracted the ηc decay constant in the so-called

factorization approximation, fηc = 335 ± 75 MeV. So far the decay constant was

estimated within several methods including Light Front Quark Model (LFQM)[75,

64] as well as Lattice QCD [84].

Let us turn to the description in the light-cone wave function approach. The

relation between the distribution amplitude (DA) φ(z, µ) and the ηc light-cone wave

function ψ(z, k⊥) is

fηcφ(z, µ2) =
1

z(1 − z)

√
Ncmc

4π2

∫ µ2

dk2⊥ψ(z, k⊥) . (3.80)

Taking into account the normalization of the DA,
∫ 1

0
dzφ(z, µ2

0) = 1, and then

integrating over the momentum fraction z, the decay constant can be found as

fηc =

√
Ncmc

4π2

∫ 1

0

dz

z(1 − z)

∫ µ2

dk2⊥ψ(z, k⊥) . (3.81)

Subsequently replacing fηc on the left hand side of Eq. (3.80) with Eq. (3.81) one

can obtain

φ(z, µ2) =
N

z(1 − z)

∫ µ2

dk2⊥ψ(z, k⊥) , (3.82)

where the distribution amplitude is a function of momentum fraction z. The addi-

tional normalization constant is equal N = 1/
( ∫

dz
z(1−z)

∫
dk2⊥ψ(z, k⊥)

)
. In Fig. 3.10

we illustrate the distribution amplitudes at the hard scale µ0 = 3 GeV for our set

of the wave functions in the left panel for ηc(1S) and in the right panel for ηc(2S).

In the case of ηc(2S) one can observe characteristic dip at the momentum fraction

z = 1/2, which is also observed in the light-cone wave function ψ(z, k⃗⊥) in Fig. 3.2.

The received values of the so-called decay constant fηc within light-cone approach

are listed in Tab. 3.5 for ηc(1S) and in Tab. 3.6 ηc(2S). For completeness, in Tab. 3.5,

there are cited results known from the literature. In the case of ηc(1S), the difference

between the CLEO Collaboration result and our predictions is not significant. Nev-

ertheless, predictions from Lattice QCD [84] and light front quark model [75, 64],

where the Γγγ comes in as a parameter, differ from each other. The evolution with

54



3.4.2 Transition form factor and distribution amplitude

0 0.2 0.4 0.6 0.8 1

z

0.5

1

1.5

2

2.5

)
2 0

µ
(z

,
ϕ

(1S)
c

η

Buchmuller­Tye
Cornell
Oscillator
Logarithmic
Power­like

0 0.2 0.4 0.6 0.8 1

z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

)
2 0

µ
(z

,
ϕ

(2S)
c

η

Buchmuller­Tye
Cornell
Oscillator
Logarithmic
Power­like

Figure 3.10: Distribution amplitudes at factorization scale µ0 = 3 GeV for ηc(1S)-
left panel and ηc(2S)-right panel.

Table 3.5: Decay width and decay constant fηc for ηc(1S).

potential type mc [GeV] Γγγ [keV] fηc [GeV]
harmonic oscillator 1.4 2.89 0.2757
logarithmic 1.5 2.95 0.3373
power-like 1.334 3.87 0.3074
Cornell 1.84 1.69 0.3726
Buchmüller-Tye 1.48 2.95 0.3276
RYU, CHOI, and JI, set I [75] 1.80 1.55 0.326
RYU, CHOI, and JI, set II [75] 1.30 4.88 0.335
Geng, Lih, LFQM [64] 1.29 5.3±0.5 0.2305+0.0522

−0.0610

Geng, Lih, LFQM [64] 1.29 7.2±2.1 0.3036+0.1152
−0.1164

Davies et al., Lattice QCD [84] - 7.2 ± 2.1 0.3947 ± 0.0024
experiment - 5.1 ± 0.4 [77] 0.335 ± 0.075 [83]

the hard scale is included by the standard methods for light pseudoscalar mesons

like π0,η or η′, see e.g. a recent NLO study [85]. The evolution of φ(z, µ2) with the

hard scale µ can be performed by making use of the Gegenbauer C
3/2
n polynomials:

φ(z, µ2) = 6z(1 − z)
(

1 + a2(µ
2)C

3/2
2 (2z − 1) + ...

)
. (3.83)
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Table 3.6: Decay width and decay constant fηc for ηc(2S).

potential type mc [GeV] Γγγ [keV] fηc [GeV]
harmonic oscillator 1.4 2.454 0.2530
logarithmic 1.5 1.162 0.1970
power-like 1.334 1.549 0.1851
Cornell 1.84 0.938 0.2490
Buchmüller-Tye 1.48 1.453 0.2149
experiment [77] - 2.147 ± 1.589 -

Table 3.7: Extracted coefficients an(µ0), for the Buchmüller-Tye potential.

n an(µ0) ηc(1S) an(µ0) ηc(2S)
2 -0.284 -0.0765
4 0.0635 -0.1627
6 -0.008157 0.128
8 -0.000619 -0.049
10 0.000216 0.0088

The Gegenbauer coefficients can be extracted by means of

an(µ0) =
2(2n+ 3)

3(n+ 1)(n+ 2)
·
∫ 1

0

dzφ(z, µ0)C
3/2
n (2z − 1) . (3.84)

Their evolution with the hard scale is described as follows

an(µ) = an(µ0) ·
[
αs(µ)
αs(µ0)

]γn/β0
, (3.85)

with the anomalous dimensions γn, which can be found for example in Ref. [67]

γn = CF

(
1 − 2

(n+ 1)(2 + n)
+ 4

n+1∑
m=2

1

m

)
, β0 =

11

3
Nc −

2

3
Nf . (3.86)

In the limit of large Q2
i in the hard matrix element Eq. (3.66), it is allowed to

neglect the k⃗⊥ dependence. Hence, only the light-cone wave function ψ(z, k⃗⊥) is left

under the k⃗⊥ integral. Subsequently, the transition form factor is written in terms

of the distribution amplitude φ(z, µ2
0) as follows

F (Q2
1, Q

2
2) = e2c fηc ·

∫ 1

0

dz
{ (1 − z)φ(z, µ2

0)

(1 − z)2Q2
1 + z(1 − z)Q2

2 +m2
c

+
z φ(z, µ2

0)

z2Q2
1 + z(1 − z)Q2

2 +m2
c

}
. (3.87)
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3.4.2 Transition form factor and distribution amplitude

In addition, from Ref. [67], one would learn about an asymptotic value, which

Q2F (Q2, 0) is going to reach at large Q2. In the case of the asymptotic distri-

bution amplitude φ(z, µ2
0) = 6z(1 − z), one can show that Q2F (Q2, 0) −→ 8

3
fηc .

However, we do not observe our results approaching the limit determined by the

value 8
3
fηc neither for ηc(1S)-left panel nor ηc(2S)-right panel of Fig. 3.11. As an

example, the Buchmüller-Tye potential model is taken under consideration. The

horizontal line shown in Fig. 3.11 is the limit line obtained for this model, according

to Tabs. 3.5, 3.6. For completeness, we compare three results, the first one directly

from our full light-cone approach - red dashed curve, the second is obtained from

the collinear form factor Eq. (3.87) - black dashed-dotted curve and the third one

has incorporated the hard scale evolution with the scale µ0 = 3 GeV - blue solid line.

The difference between these three results appears at low Q2 and the effect of hard-

scale evolution is rather negligible in the region of interest. Note that in Fig. 3.11

even for large Q2, say in the left panel Q2 → 400 GeV, and Q2 → 1000 GeV in the

right panel the predicted asymptotic limit is not approached, even with inclusion of

the evolution effects.
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Figure 3.11: The plot of Q2F (Q2, 0) in terms of photon virtuality Q2. The horizontal
line is put as a reference for asymptotic value and it is calculated for the Buchmüller-
Tye potential model.
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3.5 Spacelike transition form factors for scalar P-

wave quarkonia

The photon-photon fusion amplitude for the P-wave state can be considered in

terms of two form factors - transverse FTT and longitudinal FLL. These form factors

correspond to the polarizations of the fusing photons, where the quantization axis

is taken along the γ∗γ∗ collision axis in the γ∗γ∗ c.m.s. frame. In covariant form,

follwoing the standard procedure explained in [76], we can write

Mµν(γ
∗(q1)γ

∗(q2) → χQ0(P )) =

4παem

(
− δ⊥µν(q1, q2)FTT (q21, q

2
2) + eLµ(q1)e

L
ν (q2)FLL(q21, q

2
2)
)
, (3.88)

here the projector on transverse polarization states is:

−δ⊥µν(q1, q2) = −gµν +
1

X

(
(q1 · q2)(q1µq2ν + q1νq2µ) − q21q2µq2ν − q22q1µq1ν

)
, (3.89)

and X = (q1 · q2)2 − q21q
2
2. The longitudinal polarization states of virtual photons

read:

eLµ(q1) =

√
−q21
X

(
q2µ −

q1 · q2
q21

q1µ

)
, eLν (q2) =

√
−q22
X

(
q1ν −

q1 · q2
q22

q2ν

)
. (3.90)

Now, we need to take into account also n+/− vector projections onto the amplitude,

to this end we derive:

−n+µn−νδ⊥µν = −1 +
(q1 · q2)
X

q+1 q
−
2 =

1

X

(
q21q

2
2 + (q⃗1⊥ · q⃗2⊥)(q1 · q2)

)
, (3.91)

and

eLµ(q1)e
L
ν (q2)n

+µn−ν =

√
q21q

2
2

X
q+1 q

−
2 =

√
q21q

2
2

X

(
(q1 · q2) + (q⃗1⊥ · q⃗2⊥)

)
. (3.92)

Hence the general form of the amplitude with the coefficients (q⃗1⊥ · q⃗2⊥) and q21q
2
2

put in evidence, reads:

n+µn−νMµν = 4παem

[
(q⃗1⊥ · q⃗2⊥)

[(q1 · q2)
X

FTT (q21, q
2
2) +

|q⃗1⊥||q⃗2⊥|
X

FLL(q21, q
2
2)
]

+ |q⃗1⊥||q⃗2⊥|
[ |q⃗1⊥||q⃗2⊥|

X
FTT (q21, q

2
2) +

(q1 · q2)
X

FLL(q21, q
2
2)
]]
. (3.93)
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3.5 Spacelike transition form factors for scalar P-wave quarkonia

Here we used
√
q21q

2
2 = |q⃗1⊥||q⃗2⊥|. Note also

(q1 · q2) =
1

2

(
M2

χ + q⃗1⊥
2 + q⃗2⊥

2
)

and X =
M4

χ

4

(
1 +

2(q⃗1⊥
2 + q⃗2⊥

2)

M2
χ

+
(q⃗1⊥

2 − q⃗2⊥
2)2

M4
χ

)
, (3.94)

do not depend on the azimuthal angles of q⃗1⊥ and q⃗2⊥. Coming back to our mas-

ter formula given by Eq. (3.60) and inserting result for P-wave helicity amplitude

Ψ∗
λλ̄

(z, k⃗⊥) Eq. (3.25), one can get

√
2
(
(e⃗⊥(−) · q⃗1⊥)Ψ∗

++(z, k⃗⊥) + (e⃗⊥(+) · q⃗1⊥)Ψ∗
−−(z, k⃗⊥)

)
=

2(q⃗1⊥k⃗⊥)√
z(1 − z)

ψ(z, k⃗⊥) ,

Ψ∗
+−(z, k⃗⊥) + Ψ∗

−+(z, k⃗⊥) =
2mQ(1 − 2z)√

z(1 − z)
ψ(z, k⃗⊥) ,

Ψ∗
+−(z, k⃗⊥) − Ψ∗

−+(z, k⃗⊥) = 0 .
(3.95)

Hence, the master formula Eq. (3.60) is reduced to∫
dzd2k⃗⊥

z(1 − z)16π3

∑
λλ̄

Ψ∗
λλ̄n

+µn−νAλλ̄
µν = (−4mQ)

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)

×
{

2z(1 − z)(1 − 2z)q⃗1⊥
2
[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

]
− 4z(1 − z)(k⃗⊥q⃗1⊥)

[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

]
− (1 − 2z)2(q⃗1⊥q⃗2⊥)

[ 1 − z

l⃗A 2 + ε2
+

z

l⃗B 2 + ε2

]}
. (3.96)

In order to extract the form factors FTT and FLL it is convenient to group them in

a similar fashion as in Eq. (3.93):∫
dzd2k⃗⊥

z(1 − z)16π3

∑
λλ̄

Ψ∗
λλ̄n

+µn−νAλλ̄
µν = 4mQ

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)

×
{
|q⃗1⊥||q⃗2⊥|

[
|q⃗1⊥||q⃗2⊥|
q⃗2⊥

2 2z(1 − z)(2z − 1)
[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

]]

+ (q⃗1⊥ · q⃗2⊥)

[[ 1 − z

l⃗A 2 + ε2
+

z

l⃗B 2 + ε2

]
+ 4z(1 − z)

[ q⃗2⊥ · l⃗A
l⃗A 2 + ε2

− q⃗2⊥ · l⃗B
l⃗B 2 + ε2

]]}
. (3.97)
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Now we introduce a convenient notation∫
dzd2k⃗⊥

z(1 − z)16π3

∑
λλ̄

Ψ∗
λλ̄n

+µn−νAλλ̄
µν = |q⃗1⊥||q⃗2⊥|F1 + (q⃗1⊥ · q⃗2⊥)F2 . (3.98)

These form factors F1 and F2 have the integral form written as

F1(q⃗1⊥
2, q⃗2⊥

2) = |q⃗1⊥||q⃗2⊥|
4mQ

q⃗2⊥
2

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)

× 2z(1 − z)(2z − 1)
[ 1

l⃗A 2 + ε2
− 1

l⃗B 2 + ε2

]
,

F2(q⃗1⊥
2, q⃗2⊥

2) = 4mQ

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)

[ 1 − z

l⃗A 2 + ε2
+

z

l⃗B 2 + ε2

]
+

4mQ

q⃗2⊥
2

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)4z(1 − z)

[ q⃗2⊥ · l⃗A
l⃗A 2 + ε2

− q⃗2⊥ · l⃗B
l⃗B 2 + ε2

]
.

(3.99)

Let us now relate form factors F1, F2 to the ones for definite photon polarizations.

To this end, comparing Eq. (3.98) with Eq. (3.93) we find the relation(
F1

F2

)
=

1

e2Q
√
NcX

(
|q⃗1⊥||q⃗2⊥| (q1 · q2)
(q1 · q2) |q⃗1⊥||q⃗2⊥|

) (
FTT
FLL

)
, (3.100)

or, in its inverse form(
FTT
FLL

)
= e2Q

√
Nc

(
−|q⃗1⊥||q⃗2⊥| (q1 · q2)

(q1 · q2) −|q⃗1⊥||q⃗2⊥|

) (
F1

F2

)
.

(3.101)

These equations are applicable for P-wave spinless QQ̄ systems such as χc0 or χb0.

Our findings for these form factors are illustrated in Figs. 3.12 and 3.13 for

χc0 and χb0, respectively. In the case of χc0 as well as χb0 the transverse part of

the transition form factor is numerically larger. However, as we will see in the

next chapter also the longitudinal part plays a significant role. The relative sign

between FTT and FLL is negative, therefore in Figs. 3.12, 3.13 we are present the

absolute values of these contributions. Although the two-dimensional plots we show

are only for the Buchmüller-Tye potential model, the remaining models give rise to

similar shapes. The main difference is in the position of the maximum, which for

FTT (Q2
1, Q

2
2) is at the on-shell point.
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Figure 3.12: Transverse part of the transition form factor |FTT (Q2
1, Q

2
2)| (left panel)

and longitudinal part of the transition form factor |FLL(Q2
1, Q

2
1)| (right panel) as a

function of the photons virtualities Q2
1, Q

2
2 from χc0 light-cone wave function obtained

through the Buchmüller-Tye potential model.

Figure 3.13: Transverse part of the transition form factor |FTT (Q2
1, Q

2
2)| (left panel)

and longitudinal part of the transition form factor |FLL(Q2
1, Q

2
1)| (right panel) as a

function of the photons virtualities Q2
1, Q

2
2 from χb0 light-cone wave function obtained

through the Buchmüller-Tye potential model.
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At the on-shell point, where Q2
1 = Q2

2 = 0, the auxiliary form factor F1(0, 0)

as well as the longitudinal form factor |FLL(0, 0)| are vanishing, thus the transverse

form factor reads

FTT (0, 0) =
M2

χ

2
F2(0, 0) , (3.102)

here Mχ is a mass of the scalar meson. The radiative decay width for χQ state is

linked with transverse form factor according to

Γ(χQ0 → γγ)LO =
πα2

em

Mχ

|FTT (0, 0)|2 , (3.103)

Γ(χQ0 → γγ)LO in the remaining part of this section is called Leading Order (LO)

formula. Also the first QCD radiative correction is known [82], and can be accounted

for by multiplying the radiative decay width by the expression shown below in the

bracket:

Γ(χQ0 → γγ)NLO = Γ(χQ0 → γγ)LO

[
1 +

αs
π

(π2

3
− 28

9

)]
, (3.104)

here we have used αs = 0.26 for χc0 and αs = 0.18 for χb0 (see Ref. [82]). Γ(χQ0 →
γγ)NLO is labeled as the Next-to-Leading Order expression in the following part

of this section. In order to extract the “experimental” value of |FTT (0, 0)| for χc0,

one can take the experimentally measured value of the decay rate Γ(χc0 → γγ)

from Ref. [77] and put it into the left side of Eq. (3.104) and then combine it with

Eq. (3.103). This value in Tab. 3.8 and Tab. 3.9 is indicated by ”⋆”. In the practical

calculation we have taken MχQ0
= 2mQ and the decay rate in Tabs. 3.8, 3.10 for

each potential model is obtained with the corresponding c-quark/b-quark mass. For

comparison, in Tabs. 3.9, 3.11 the dependence of the quark mass on the model

is abandoned, and the value according to the Particle Data Group review [77],

mc = 1.27 GeV and mb = 4.18 GeV respectively for c-quark and b-quark has been

used.

The normalized form factor FTT (Q2, 0)/FTT (0, 0) in the left panel of Fig. 3.14

is obtained in terms of the wave function for five specific potential models with

their corresponding quark mass, whereas in the right panel with mc = 1.27 GeV and

mb = 4.18 GeV for χc0 and χb0, respectively [77]. The normalization factors FTT (0, 0)

can be found in Tabs. 3.8, 3.10 for the left panel and in Tabs. 3.9, 3.11 for the right

panel. The spread of results obtained with specific quark mass for each potential

62



3.5 Spacelike transition form factors for scalar P-wave quarkonia

Table 3.8: The transition form factor at the on-shell point |FTT (0, 0)| and the decay
rate Γ(χc0 → γγ) at Leading Order and Next-to-Leading Order for five distinguished
potentials models. ”*” is explained in the text.

potential type mc |F (0, 0)| Γ(χc0 → γγ)LO Γ(χc0 → γγ)NLO
[GeV] [GeV] [keV] [keV]

harmonic oscillator 1.4 0.18 1.56 1.58
logarithmic 1.5 0.14 0.91 0.93
powerlike 1.334 0.16 1.32 1.34
Cornell 1.84 0.10 0.44 0.46
Buchmülller-Tye 1.48 0.14 0.96 0.98
experiment [77] 1.27 0.21⋆ 2.20 ± 0.16

Table 3.9: The transition form factor at the on-shell point |FTT (0, 0)| and the decay
rate Γ(χc0 → γγ) at Leading Order and Next-to-Leading Order for five distinguished
potentials models. Here, the dependence quark mass on the model is neglected. The
calculation is performed with mc = 1.27 GeV for each potential model.

potential type |FTT (0, 0)| Γ(χc0 → γγ)LO Γ(χc0 → γγ)NLO
[GeV] [keV] [keV]

harmonic oscillator 0.21 2.06 2.09
logarithmic 0.18 1.54 1.56
power-law 0.18 1.54 1.56
Cornell 0.17 1.41 1.43
Buchmülller-Tye 0.18 1.54 1.56
experiment [77] 0.21⋆ 2.20 ± 0.16

model (see the left panel of Fig. 3.14) is broader, while this effect almost disappears

when quark mass is determined to the value given by the Particle Data Group [77].

Now, it is possible to compare our results derived for ηc with those obtained for

χc0. We wish to present the results in terms of the previously introduced asymmetry

parameter ω and the average value of photons virtuality Q̄2, see Eq. (3.72). For

illustration, in Fig. 3.15 we show the form factors FTT and FLL for the Buchmüller-

Tye potential model. In the case of χc0 meson, we do not observe a scaling effect in

ω as it is the case for ηc.
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Table 3.10: The transition form factor at the on-shell point |FTT (0, 0)| and the decay
rate Γ(χb0 → γγ) at Leading Order and Next-to-Leading Order for five distinguished
potentials models.

potential type mb |FTT (0, 0)| Γ(χb0 → γγ)LO Γ(χb0 → γγ)NLO
[GeV] [GeV] [keV] [keV]

harmonic oscillator 4.2 0.053 0.047 0.048
logarithmic 5.0 0.032 0.017 0.017
power-law 4.721 0.033 0.018 0.019
Cornell 5.17 0.028 0.014 0.014
Buchmülller-Tye 4.87 0.031 0.017 0.017

Table 3.11: The transition form factor at the on-shell point |FTT (0, 0)| and the decay
rate Γ(χc0 → γγ) at Leading Order and Next-to-Leading Order for five distinguished
potentials models. Here, the dependence quark mass on the model is neglected. The
calculation is performed with mb = 4.18 GeV for each potential model.

potential type |FTT (0, 0)| Γ(χb0 → γγ)LO Γ(χb0 → γγ)NLO
[GeV] [keV] [keV]

harmonic oscillator 0.053 0.048 0.049
logarithmic 0.045 0.034 0.035
power-law 0.042 0.030 0.030
Cornell 0.043 0.031 0.031
Buchmülller-Tye 0.042 0.030 0.030
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Figure 3.14: The normalized form factor FTT (Q2, 0)/FTT (0, 0) as a function of the
photon virtuality Q2. In the left panel starting from the blue top set of lines for
χb0, then below green set of lines for χc0 and marked by red line ηc(1S) is shown for
comparison.

Figure 3.15: Transverse form factor FTT (left panel) and longitudinal FLL (right
panel) as a function of asymmetry parameter ω and Q̄2 average of the photons
virtualities for the Buchmüller-Tye potential model.

65



3. TRANSITION FORM FACTORS IN THE LIGHT-CONE WAVE
FUNCTION APPROACH

3.5.1 Form factor in the nonrelativistic limit

Now let us consider the transition form factor γ∗γ∗ → χQ0 in the nonrelativistic

(NR) limit, where k/mQ ≪ 1 and k/
√
k2 +m2

Q ≪ 1. Here, k is the momentum

related to the internal motion of the quark in the QQ̄ system. For the purpose of

the NR limit, one should make a Taylor expansion around z = 1/2 and k⃗⊥ = 0, thus

z =
1

2
+ ζ , 1 − z =

1

2
− ζ . (3.105)

Then, in zeroth order the form factors F1, F2 disappear. It is easy to show that to

the first order in ζ and k⃗⊥

1

l⃗2A + ε2
− 1

l⃗2B + ε2
=

2

µ4

(
ζq⃗2⊥

2 + (k⃗⊥ · q⃗2⊥)
)
, (3.106)

with

µ2 =
1

4

(
q⃗1⊥

2 + q⃗2⊥
2 + 4m2

c

)
. (3.107)

In the NR limit, we are allowed to substitute 2mQ → Mχ, and the two form

factors take the following form

F1(q⃗1⊥
2, q⃗2⊥

2) =
|q⃗1⊥||q⃗2⊥|

µ4

4

Mχ

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥) ζ2M2

χ ,

F2(q⃗1⊥
2, q⃗2⊥

2) =
2

µ4

1

Mχ

∫
dzd2k⃗⊥

z(1 − z)16π3
ψ(z, k⃗⊥)

(
k⃗2⊥M

2
χ + 4ζ2M2

χµ
2
)
.

(3.108)

Consequently, replacing ζMχ = kz, we obtain

dzd2k⃗⊥
z(1 − z)16π3

ψ(z, k⃗⊥) → 1

4π2
√
Mχ

1

2
√

2
d3k

unl(k)

k2
. (3.109)

Making use of the relation (an exact derivation is provided in Appendix A, we also

omit an irrelevant global phase factor i.).∫ ∞

0

dk k2unl(k) = 3

√
π

2
R′
nl(0) , (3.110)
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one can notice that both F1 and F2 form factors are proportional to the first deriva-

tive of the radial wave function at the origin R′
nl(0):

F1(q⃗1⊥
2, q⃗2⊥

2) =
8√
π

R′
nl(0)

M3/2

2|q⃗1⊥||q⃗2⊥|
[M2

χ + q⃗1⊥
2 + q⃗2⊥

2]2
, (3.111)

F2(q⃗1⊥
2, q⃗2⊥

2) =
8√
π

R′
nl(0)

M3/2

3M2
χ + q⃗1⊥

2 + q⃗2⊥
2

[M2
χ + q⃗1⊥

2 + q⃗2⊥
2]2

. (3.112)

Therefore combining with the proper prefactors as in Eq. (3.100), our amplitude is

given by:

n+µn−νMµν = 4παem
8√
π

R′
01(0)

M3/2

1

[M2
χ + q⃗1⊥

2 + q⃗2⊥
2]2

×
(

2q⃗1⊥
2q⃗2⊥

2 + (q⃗1⊥q⃗2⊥)(3M2
χ + q⃗1⊥

2 + q⃗2⊥
2)
)
. (3.113)

The same structure of the amplitude can be recognized in the results of Refs. [86,

87]. Notice that in Ref.[86] only the square of the matrix element is given. After

accounting for different notation, our result for the squared amplitude completely

agrees with [86]. In order to explore a relativistic correction inscribed in our light-

cone form factor in Fig. 3.16 and Fig. 3.17 are presented ratios of our form factors

and those obtained in non-relativistic limit. Although at small Q2
i the difference is

only about a few percent, with increasing virtuality the difference is growing up to

20%.

In the nonrelativistic limit, there is a known relation of the radiative decay width

and the first derivative of the radial wave function R′
01(0) for the P-wave scalar meson

[82], as written in Eq. (3.114a). In particular in this limit M → 2mQ, thus one can

get Eq. (3.114b)

Γ(χQ0 → γγ) =
9 · 24α2

eme
4
QNc

M4
|R′

01(0)|2 , (3.114a)

Γ(χQ0 → γγ) =
9α2

eme
4
QNc

m4
Q

|R′
01(0)|2 . (3.114b)

Here M is the invariant mass of the QQ̄ system. Below in Tab. 3.12 as well as

in Tab. 3.13 we have summarized the values of the first derivative of the radial

wave function R′
01(0) obtained from the expression in Eq. (3.110). Then in the two

last columns in Tabs. 3.12, 3.13 we have adopted Eqs. (3.114) and also the Next-

to-Leading correction Eq. (3.104). We have used two ways to choose the value of
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3.5.1 Form factor in the nonrelativistic limit

the mass of the meson, firstly Mχc0 = (3414.71 ± 0.30) MeV or Mχb0
= (9859 ±

0.42 ± 0.31) MeV - Eq. (3.114a) and secondly calculated from the c-quark/b-quark

mass corresponding to the potential models Eq. (3.114b). Note that our results

for the radiative decay width in Tab. 3.12 for M = Mχc0 are around the value

received by Particle Data Group [77]. Moreover, the extracted R′
01(0) (⋆) from the

experimental value of the Γ(χc0 → γγ)NLO by making use of Eqs. (3.114a), (3.104),

is in agreement with two of our results (harmonic oscillator and the Buchmüller-Tye)

and in the neighborhood of the rest of the potential models results.
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Table 3.12: The radiative decay width at Next-to-Leading Order Γ(χb0 → γγ)NLO
and the first derivative of the radial wave function |R′

01(0)|, which is obtained with
the help of the nonrelativistic wave function uL=1,n=0(k). ”⋆” is explained in the text.

potential type mc |R′
01(0)| Γ(χc0 → γγ)NLO Γ(χc0 → γγ)NLO

[GeV] [GeV5/2] [keV] [keV]
M = Mχc0 M = 2mc

harmonic oscillator 1.4 0.27 2.42 5.54
logarithmic 1.5 0.24 1.85 3.11
powerlike 1.334 0.22 1.62 4.34
Cornell 1.84 0.32 2.51 3.38
Buchmüller-Tye 1.48 0.25 2.15 3.81
experiment [77] - 0.25 ± 0.01⋆ 2.20 ± 0.16 -

Table 3.13: The radiative decay width at Next-to-Leading Order Γ(χb0 → γγ)NLO
and the first derivative of the radial wave function R′

01(0), which is obtained with
the help of the nonrelativistic wave function un=0,L=1(k).

potential type mb R′
01(0) Γ(χb0 → γγ)NLO Γ(χb0 → γγ)NLO

[GeV] [GeV5/2] [keV] [keV]
M = Mχb0

M = 2mb

Harmonic oscillator 4.2 1.07 0.035 0.066
Logarithmic 5.0 1.22 0.045 0.043
Powerlike 4.721 0.98 0.029 0.035
Cornell 5.17 1.37 0.057 0.047
Buchmüller-Tye 4.87 1.13 0.038 0.041
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Chapter 4

Prompt Quarkonium Production
in hadron collisions

The quarkonium production reactions in hadronic collisions at the Large Hadron

Collider (LHC) continue to attract a lot of interest [4, 3]. In general, one distin-

guishes several classes of production mechanisms. The final state charmonia could

appear as decay products of the hadron with bottom quarks content. This con-

tribution is called non-prompt production. At the high energies of the LHC, the

non-prompt production is a substantial contribution. However, it is experimentally

distinguishable from the so-called prompt production, where the charm quarks were

produced in a hard process. These are the processes of primary interest to us in this

thesis. Within the subset of prompt production processes, one further distinguishes

between direct production and feed-down from higher charmonium resonances. It

would be a daunting task to do justice to review all theoretical works on quarkonium

production in hadronic collisions.

We recall that one of the experiments discovering the J/ψ was a hadronic one,

studying proton-Beryllium collisions at the Brookhaven Alternating-Gradient Syn-

chrotron (AGS) [61]. There has thus been a focus on charmonium production mech-

anisms early on. The role of ηc production as a type of Drell-Yan process for gluons

that can serve as a probe to measure the gluon distribution, has been stressed al-

ready in the early papers [88, 89]. Indeed, the dominant production mechanism for

C-even quarkonia is through the gg → M gluon fusion 2 → 1 process. In the stan-

dard collinear-factorization approach, one must go to next-to-leading order (NLO)

in αs approximation to calculate the transverse momentum distribution of a given
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quarkonium state and include 2 → 2 processes like gg →Mg [90]. Recent theoreti-

cal studies of prompt quarkonium production in collinear factorization are found in

[91, 92].

4.1 Matrix elements in kT -factorization approach

We now turn to the description of the gluon-fusion production mechanism within the

kT -factorization approach. Here the off-shell fusing gluons carry nonzero transverse

momenta, which allows us to calculate the transverse momentum distribution of

mesons already in the lowest order of perturbation theory. The inclusive cross-

section for the 2 → 1 gluon-gluon fusion mode is obtained from

dσ =

∫
dx1
x1

∫
d2q⃗1⊥

πq⃗1⊥
2F(x1, q⃗1⊥

2, µ2
F )

×
∫
dx2
x2

∫
d2q⃗2⊥

πq⃗2⊥
2F(x2, q⃗2⊥

2, µ2
F )

1

2x1x2s
|M|2 dΦ(2 → 1). (4.1)

The unintegrated gluon distributions in the kT -factorization approach F(x, k⃗2⊥, µ
2
F )

are normalized such that the collinear glue is calculated from

xg(x, µ2
F ) =

∫ µ2F dk⃗2⊥

k⃗2⊥
F(x, k⃗2⊥, µ

2
F ) . (4.2)

For brevity, from now on, we no longer show the dependence on the factorization

scale µ2
F explicitly. We denote the four-momentum of the considered final state

meson by p and parametrize it on a light-cone basis as

p = [p+, p−, p⃗⊥] =

[
mT√

2
ey,

mT√
2
e−y, p⃗⊥

]
. (4.3)

Here we have introduced the transverse mass

mT =
√
p⃗⊥ 2 +M2, (4.4)

where M is the mass of the considered meson, and y is its rapidity in the pp center-

of-mass-frame (c.m.-frame). The g∗g∗ →M element of the phase-space is

dΦ(2 → 1) = (2π)4δ(4)(q1 + q2 − p)
d4p

(2π)3
δ(p2 −M2) . (4.5)
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4.2 Unintegrated gluon distributions

The kT -factorization framework requires off-shell initial-state gluons, q2i = −q⃗⊥i2,
and their four momenta are written as:

q1 = [q1+, 0, q⃗1⊥] , q2 = [0, q2−, q⃗2⊥] , (4.6)

√
s is the pp c.m.s.-energy, thus

q1+ = x1

√
s

2
, q2− = x2

√
s

2
. (4.7)

As a result the phase-space element is

dΦ(2 → 1) =
2π

s
δ(x1 −

mT√
s
ey)δ(x2 −

mT√
s
e−y)

× δ(2)(q⃗1⊥ + q⃗2⊥ − p⃗⊥) dy d2p⃗⊥ . (4.8)

Therefore the formula for the inclusive cross section reads

dσ

dyd2p⃗⊥
=

∫
d2q⃗1⊥

πq⃗1⊥
2F(x1, q⃗1⊥

2)

×
∫

d2q⃗2⊥

πq⃗2⊥
2F(x2, q⃗2⊥

2) δ(2)(q⃗1⊥ + q⃗2⊥ − p⃗⊥)
π

(x1x2s)2
|M|2 , (4.9)

where the momentum fractions of gluons are fixed as x1,2 = mT exp(±y)/
√
s. The

off-shell matrix element is written in terms of the Feynman amplitude as:

Mab =
qµ1⊥q

ν
2⊥

|q⃗1⊥||q⃗2⊥|
Mab

µν =
q1+q2−

|q⃗1⊥||q⃗2⊥|
n+µn−νMab

µν =
x1x2s

2|q⃗1⊥||q⃗2⊥|
n+µn−νMab

µν , (4.10)

here the color-indices ab are restored. In the BFKL formalism involving the reggeized

gluons [43] one could derive the Feynman rules for off-shell gluons with effective

polarization vectors n+
µn

−
ν . The translation to qµ1⊥, q

ν
2⊥ is more convenient in com-

parison to on-shell or collinear approaches. Note that the covariant matrix element

satisfies the gauge-invariance restriction, qµ1M
ab
µν = qν2M

ab
µν = 0.

4.2 Unintegrated gluon distributions

In the context of the kT -factorization approach a major role belongs to the uninte-

grated gluon distributions (UGDs) F(x, k⃗2⊥, µ
2
F ). Their important property is that
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integrating over k⃗⊥ reproduces the collinear parton distribution functions (PDFs)

for gluons

xg(x, µ2
F ) =

∫ µ2F dk⃗2⊥

k⃗2⊥
F(x, k⃗2⊥, µ

2
F ) , (4.11)

where µ2
F is the factorization scale of the hard process, k⃗⊥ is the transverse momen-

tum of the incoming gluon and x is the momentum fraction carried by the gluon. In

particular some effects of the gluons’ virtualities or transverse momenta may occur

in the cross section. As mentioned above, the clue of the k⊥-factorization approach

is that the phase space of the produced system is fully general. For example, in the

γ∗g∗ → QQ̄ process, the final state quarks are not required to be in the back-to-back

kinematics, but are aaimuthally decorrelated [93, 94]. In contrast, in the collinear

approach one has to include γ∗g → QQ̄g processes in order to achieve an azimuthal

decorrelation. One can thus say that in the k⊥-factorization framework at the re-

spective Leading Order (LO), higher order contributions of the collinear approach

are effectively encoded in the unintegrated gluon distribution, see Fig. 4.1. This fea-

ture has been further investigated in the litaerature in processes at small x, where

it is most important [95, 96]. In the literature there are available several numerical

packages devoted to UGDs such as the CASCADE Monte Carlo [97] or packages

from the library TMDLib [98] which supply unintegrated gluon distributions that

have been fitted to various hard processes. The study of evolution equations is not

the matter of the current thesis, we are rather interested in their implications on

numerical results. Nevertheless, the brief overview of different concepts of the gluon

distribution construction is worth mentioning.

4.2.1 Kimber-Martin-Ryskin, Martin-Ryskin-Watt

The unintegrated parton distributions developed by Kimber-Martin-Ryskin (KMR)

were introduced to calculate hard sub-processes such as Q1Q̄2 → MV where MV =

γ∗,W, Z or g1g2 → H [99, 100, 101]. Further development of the KMR proce-

dure was its application also in inclusive jet production [102]. As mentioned above,

the collinear approach assumes that the transverse momenta of the incoming glu-

ons/quarks are negligible. As a result, the transverse momentum of the on-shell

produced system (meson) is zero at the Born level. Therefore to generate p⊥ dis-

tributions in the collinear factorization, it is necessary to consider additional gluon
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radiation. The KMR approach starts with the premise that the transverse momen-

tum of the involved off-shell parton is entirely created in the last step of the evolu-

tion ladder. The KMR group takes into account both the leading logarithms from

Dokshitzer-Gribov-Lipatov-Altarelli- Parisi (DGLAP) ln(Q2) and Balitsky-Fadin-

Kuraev-Lipatov (BFKL) ln(1/x) resummations, which effectively contains a part of

the next-to-leading ln(1/x). The definition of unintegrated gluon densities makes

use of the conventional collinear gluon densities xg(x, k2⊥) [102]

fg(x, k
2
⊥, µ

2
F ) =

∂

∂ log(k2
⊥)

[
xg(x, k2⊥)Tg(k

2
⊥, µ

2
F )
]

= Tg(k
2
⊥, µ

2)
αs(k

2
⊥)

2π

∑
a

∫ 1

x

dz Pga(z)xa(x/z, k2⊥) , (4.12)

where a = q or a = g. The minimum scale µ0, for which DGLAP evolution of

the collinear parton distribution is valid, can be placed around 1 GeV. Thus, the

conventional applicability range of the above definition is k⊥ > µ0. Additionally, for

the case where k⊥ < µ0 the gluon density is defined to be constant at a fixed µ scale

1

k2⊥
fg(x, k

2
⊥, µ

2)
∣∣∣
k⊥<µ0

=
1

µ2
0

xg(x, µ2
0)Tg(µ

2
0, µ

2) . (4.13)

The Sudakov form factor Tg(k
2
⊥, µ

2
F ) can be interpreted as an evolution probability

without gluon/quark emission. In fact, the Sudakov form factor is simply resumma-

tion to all orders of virtual contributions to the DGLAP evolution equation

Tg(k
2
⊥, µ

2
F ) = exp

[
−
∫ µ2

k2⊥

dκ2⊥
κ2⊥

αs(κ
2
⊥)

2π

×
[
NF

∫ 1

0

Pqg(z)dz +

∫ 1−∆

0

zPgg(z)dz
]]
. (4.14)

Here the infrared cutoff is defined as ∆ ≡ k⊥/(µF + k⊥). An active number of

quark/antiquark flavors is donated by NF . The factorization scale µF is specified

by the kinematics at the top part of the evolution chain [102]. The splitting kernels

Pqg(z), Pgg(z) with splitting fraction z are regulated through the angular ordering

constraints to the last step of evolution. The explicit formula for unintegrated gluon
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Figure 4.1: The first order correction to the Born level amplitude - left panel. The
k⊥ improvement with factorized structure function F(x, k⃗2⊥) / A(x, k⃗2⊥, q̄

2) - right
panel. The plot originates from [95].

distribution reads

fg(x, k
2
⊥, µ

2
F ) = Tg(k

2
⊥, µ

2
F )
αs(k

2
⊥)

2π

∫ 1

x

dz

[∑
q

Pgq(z)
x

z
q
(x
z
, k2⊥

)
+ Pgg(z)

x

z
g
(x
z
, k2⊥

)
Θ
( µF
µF + k⊥

− z
)]

, (4.15)

with the gluon’s Sudakov form factor and corresponding splitting functions. At the

Next-to-Leading Order (NLO) accuracy, mentioned splitting kernels are supplied

with ’LO+NLO’ equations as well as involved PDFs have to be at NLO.

4.2.2 The CCFM unintegrated gluon density

The Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equation is regarded as

a unified evolution method due to the resummation of logarithms type log(1/z) as

well as log(1/(1 − z)). The emission angle determines the ordering in the gluonic

chain at the initial state ϑn ≫ ϑn−1 ≫ · · · . The rapidities of gluons in the center

of mass frame can be found by yi = −1/2 ln(ϑn). A different applications of CCFM

evolution can be found in the literature [103, 104]. In our numerical results we have

used the unintegrated gluon distribution implemented in the Monte Carlo generator

Cascade [98, 97], see Tab. 4.1. A concise form of the CCFM evolution equation is

q̄2
d

dq̄2
xA(x, k⊥, q̄)

∆S(q̄, Q0)
=

∫
dz

∫
dϕ

2π

P̃ (z, q̄/z, k⊥)

∆S(q̄, Q0)
x′A(x′, k′⊥, q̄/z) . (4.16)
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Here the function xA(x, k⊥, q̄) is related to the unintegrated glue in our convention

by

xA(x, k⊥, q̄) =
F(x, k2⊥, µ

2)

k2⊥
. (4.17)

The Sudakov form factor is represented by

∆S(q̄, Q0) = exp

[
−
∫ q̄2

Q2
0

dq2

q2

∫ 1−Q0/q

0

dz
CAαs(q

2(1 − z)2)

π(1 − z)

]
. (4.18)

The UGDs xA(x, k⊥, q̄) are given as functions of the momentum fraction x, the

transverse momentum of the exchanged gluon k⊥ and the scale q̄, which corresponds

to maximum angle ϑn allowed for the emission. The collinear cut-off kcut⊥ = Q0

regulates the region, where z ∼ 1. Finally, we have the color factor CA = 3. The

splitting functions are given by

P̃ (z, q̄/z, k⊥) =
CAαs(q

2
i (1 − zi)

2)

π

( 1

1 − zi
− 1 +

zi(1 − zi)

2

)
+
CAαs(k

2
⊥i)

π

( 1

zi
− 1 +

zi(1 − zi)

2

)
∆NS(zi, q

2
i , k

2
⊥i) , (4.19)

with the splitting variable z = x/x′ and k′⊥, the so-called Non-Sudakov form factor

is written in the form

∆NS = exp
[
− CAαs(k

2
⊥i)

π

∫
dq2

q2
Θ(k⊥i − q)

∫ 1

0

dz′

z′
Θ(q − z′q⊥i)

]
. (4.20)

The UGD sets JH 2013 set1/set2 [98] were determined from the combined HERA

Table 4.1: Distinguished Jung-Hautman CFFM unintegrated gluon distribution in
Monte Carlo generator Cascade.

UGD set ΛQCD kcut⊥ Q0

set A 0.25 1.3 1.3
JH 2013 set1 0.2 2.2 2.2
JH 2013 set2 0.2 2.2 2.2

F2(x,Q
2) data and using the full splitting function as well 2-loop αs.
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4.2.3 Kutak’s small-x model

The unintegrated gluon distributions developed by Kutak [105] are based on the

Balitsky-Kovchegov (BK) equation with linear and non-linear terms [106]. The

linear approximation is a unified BFKL and Dokshitzer–Gribov–Lipatov–Altarelli–

Parisi (DGLAP) evolution equation and includes a term, which allows a contribution

of gluons radiated by quarks and antiquarks. The first line with αs in Eq. (4.21)

originates from the BFKL evolution equation. The crucial term in the BFKL kernel

responsible for the sub-leading BFKL effects is the so-called consistency constraint

Θ(k2/z − l2). The second contribution corresponds to DGLAP effects containing

splitting functions Pgg(z). The Σ(x, k2) indicates the singlet quark momentum dis-

tribution. Finally, the last term reflects a non-linear screening contribution with the

expected gluon density concentrated in the impact parameter plane within a radius

R. This contribution is based on the Balitsky–Kovchegov equation[107, 108].

f(x, k2) = f 0(x, k2)

+
αs(k

2)Nc

π

∫ 1

x

dz

z

∫ ∞

k20

dl2

l2

[
l2f(x

z
, l2)Θ(k

2

z
− l2) − k2f(x

z
, k2)

|l2 − k2| +
k2f(x

z
, k2)

|4l4 + k4| 12

]

+
αs(k

2)

2πk2

∫ 1

x

dz

[(
Pgg(z) − 2Nc

z

)∫ k2

k20

dl2f

(
x

z
, l2

)
+ zPgq(z)Σ

(
x

z
, k2

)]

+
2α2

s(k
2)

R2

[(∫ ∞

k2

dl2

l2
f(x, l2)

)2

+ f(x, k2)

∫ ∞

k2

dl2

l2
ln
( l2
k2

)
f(x, l2)

]
. (4.21)

As an input it was used

f 0(x, k2) =
αs(k

2)

k2

∫ 1

x

Pgg(z)
x

z
g
(x
z
, k20

)
, (4.22)

xg(x, k20 = 1) = 0.994(1 + 82.1x)18.6 . (4.23)

which is the parametrization needed to describe structure function F2(x,Q
2
0), see

Fig. 4.2. The proposed method combines the effects of saturation and coherence

with a dependence on the hard scale µ of the process. It is also possible to switch

off the non-linear gluon fusion term, to obtain a gluon distribution which does not

account for stauration effects.

The clue of the construction introducing the hard scale dependence is that the

application of the Sudakov form factor does not change the integrated distribution
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Figure 4.2: The proton structure
function F2(x,Q

2) from Kutak-
Sapeta fits to HERA data as a
function of x in the range of
1.5 GeV2 to 400 GeV2 [109].

Eq. (4.21). Effectively, both integrated gluon densities derived from F(x, k2) as well

as F(x, k2, µ2) are the same.

f(x, k2, µ2) = Θ(µ2 − k2)Tg(µ
2, k2)

xg(x, µ2)

xg(x, µ2)
f(x, k2) +Θ(k2 − µ2)f(x, k2) , (4.24)

xg(x, µ2) =

∫ µ2

dk2f(x, k2) , (4.25)

xghs(x, µ
2) =

∫ µ2

dk2Tg(µ
2, k2)f(x, k2) . (4.26)

The Sudakov form factor is defined in analogy to the KMR approach

Tg(µ
2, k2) = exp

[
−
∫ µ2

k2

dk′2

k′2
αs(k

′2)

2π

∑
a′

∫ 1−∆

0

dz′Pa′a(z
′)

]
, (4.27)

with the splitting function Pa′a(z) for specific transition being zPgg(z) or NFPqg(z)

and ∆ = µ/(µ + k). The influence of the Sudakov form factor on the gluon distri-

bution appears only in the shape of the UGD.

In our convention the unintegrated gluon distribution reads

f(x, k2, µ2) =
F(x, k2, µ2)

k2
. (4.28)

In further calculations always F(x, k2, µ2) is used.
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4.3 Prompt hadroproduction of ηc(1S) and ηc(2S)

in proton-proton collisions

Recently, new measurements of the prompt ηc production in pp collisions were re-

leased by the LHCb Collaboration at
√
s = 7 TeV,

√
s = 8 TeV and

√
s = 13 TeV

center-of-mass energies, see [110, 111]. These data led to an increased interest in

the properties of ηc production in different approaches [112, 90, 113, 114]. The

experimental method allows to measure the ηc transverse momentum distribution

in the range p⊥ > 6.5 GeV and within the rapidity acceptance 2.0 < yc.m.s. < 4.5.

In our analysis, the production of ηc(1S) and ηc(2S) [7] are discussed also at lower

transverse momenta. This low transverse momentum domain is a region where the

effects of non-linear evolution of Unintegrated-Gluon-Distribution (UGD) could be

manifested. Our adopted Color-Singlet model within the light-cone wave function

approach of the QQ̄ state could address some questions, which previously had not

been considered.

We recall that at the lowest order, the matrix element for the γ∗γ∗ → ηc is

proportional to transition form factor Fγγ(Q
2
1, Q

2
2). The same situation appears for

g∗g∗ → ηc. Moreover, one can notice that the two form factors are related by

Fg∗g∗→ηc(Q
2
1, Q

2
2) =

1

e4c
√
Nc

Fγγ→ηc(Q
2
1, Q

2
2), (4.29)

where Q2
i = q⃗⊥i

2 and Fγγ→ηc(Q
2
1, Q

2
2) is defined in Chapter 3, see Eq. (3.66). The

covariant form of the matrix element with proper coupling and color factors is written

as:

Mab
µν = (−i)4παs εµναβqα1 qβ2

Tr[tatb]√
Nc

Fg∗g∗→ηc(q⃗1⊥
2, q⃗2⊥

2) . (4.30)

Contracting with n+µn−ν and averaging over colors the formula introduced in Eq. (4.9)

for the differential cross-section reads

dσ

dyd2p⃗⊥
=

∫
d2q⃗1⊥

πq⃗1⊥
4F(x1, q⃗1⊥

2)

∫
d2q⃗2⊥

πq⃗2⊥
4F(x2, q⃗2⊥

2)δ(2)(q⃗1⊥ + q⃗2⊥ − p⃗⊥)

× π3α2
s

Nc(N2
c − 1)

|[q⃗1⊥, q⃗2⊥]Fg∗g∗→ηc(q⃗1⊥
2, q⃗2⊥

2)|2. (4.31)

The vector product can be written as

[q⃗1⊥, q⃗2⊥] = qx1q
y
2 − qy1q

x
2 = |q⃗1⊥| |q⃗2⊥| sin(ϕ1 − ϕ2) , (4.32)
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where the parametrization of the transverse momenta q⃗1⊥ and q⃗2⊥ is q⃗i⊥ = (qxi , q
y
i ) =

|q⃗i⊥|(cosϕi, sinϕi). In further numerical calculations, the renormalization scale and

strong coupling are taken in the form

α2
s ⇒ αs(max{mT , q⃗1⊥})αs(max{mT , q⃗2⊥}) . (4.33)

Effectively, the renormalization scale depends on three variables, the transverse mass

mT and the transverse momenta of the fusing partons q⃗1⊥, q⃗2⊥.

4.3.1 Normalization of the form factors and their implica-
tions

In Chapter 3, we have explained that the crucial parameter for the inclusive cross-

section in the Color-Singlet approach within the NRQCD framework is the radial

wave function at the origin. To be precise, there enters the radial wave function

|Rn0(0)| for pseudoscalar states and the first derivative of the radial wave function

at the origin |R′
n1(0)| for the P -wave scalar mesons. Within the light-cone form

factor approach besides its behavior at the origin, also the shape of the WF has

an influence. The key point is now to control the model uncertainty, thus finding

the proper normalization of the form factor. The natural choice is to normalize the

form factor at the on-shell point, where it is directly related to the decay width.

At this point, we meet an ambiguity of the decay width selection. Up to now, the

only observed radiative decay is pure photon-photon decay. It would also seem to

be acceptable to adopt gluonic width Γ(ηc → gg) relating it to the total meson

width Γηc . Indeed, at the leading order in perturbation theory, the relation between

Γ(ηc → gg) and Γ(ηc → γγ) can be found through their vertices being proportional:

ΓLO(ηc → gg) =
N2
c − 1

4N2
c

1

e4c

( αs
αem

)2
ΓLO(ηc → γγ) , (4.34)

and ΓLO(ηc → γγ) was introduced in Eq. (3.71). At next-to-leading order, the

respective formulas for the widths read (see e.g. [115, 116])

ΓNLO(ηc → γγ) = ΓLO(ηc → γγ)
(

1 − 20 − π2

3

αs
π

)
,

ΓNLO(ηc → gg) = ΓLO(ηc → gg)
(

1 + 4.8
αs
π

)
, (4.35)

here the parameter αs(mc) = 0.26 is used [82]. These two ways of |F (0, 0)| in-

terpretation give slightly different results. In Tabs. 4.2, 4.3 the values of |F (0, 0)|
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obtained through the hadronic decay rate and the radiative decay rate respectively,

are summarized. In addition in Tab. 4.3 we show the values obtained in the lead-

ing order (LO) approximation. The result for ηc(1S) at LO can be also found in

Tab. 3.1. Although, the ηc(2S) situation is not clear due to large error bars, the

situation in the case of ηc(1S) it is not entirely satisfactory. This is indeed a well-

known issue and could hint at an insufficiency of the potential model approach to the

pseudoscalar charmonia. A wide range of possible solutions have been considered,

including a mixing with light hadron states [117], an admixture with a pseudoscalar

glueball [118], or nonperturbative instanton induced potential effects in the hadronic

decay [119].

Table 4.2: Hadronic decay widths Γηc as well as |F (0, 0)| obtained from Γηc at the
next-to-leading order approximation (see Eq. (4.35)).

Γηc (MeV) [77] From ΓNLO(ηc → gg), Eq.(4.35)
|F (0, 0)|gg[GeV−1]

ηc(1S) 31.9±0.7 0.119±0.001
ηc(2S) 11.3±3.2±2.9 0.053±0.010

Table 4.3: The radiative decay widths Γ(ηc → γγ) as well as |F (0, 0)| obtained from
Γηc→γγ using leading order (LO) and next-to-leading order (NLO) approximation
(see Eq. (3.71, 4.35)).

experiment from LO Eq.(3.71) from NLO Eq.(4.35)
Γ(ηc → γγ)(keV) [77] |F (0, 0)|[GeV−1] |F (0, 0)|γγ[GeV−1]

ηc(1S) 5.0 ±0.4 0.067±0.003 0.079±0.003
ηc(2S) 1.9 ±1.3 ·10−4 · Γηc(2S) 0.033±0.012 0.038±0.014

4.3.2 The small-x behavior of Unintegrated Gluon Distri-
butions

The k⊥-factorization approach is especially appropriate when small fractions x of the

proton momentum carried by gluons are considered. Our analysis below is focused

on the kinematic range of the LHCb experiment 2.0 < yηc < 4.5, which determines

x1 ∼ 10−2 while the second gluon carries typically x2 ∼ 10−5. The typical hard scale

82



4.3.2 The small-x behavior of Unintegrated Gluon Distributions

)2 (GeV2k

1 10
210

3
10

)
­2

 (
G

e
V

)
2 F

µ,
2

(x
,k

 F 
2

1
/k

0

1

2

3

4

5

6

7

8

9

10

2=100GeV2
F

µ  ­5x = 10

KMR MMHT2014NLO

JH 2013 set2

Kutak non­linear

Kutak linear

)2 (GeV2k

1 10
210

3
10

)
2 F

µ,
2

(x
,k

 F

0

10

20

30

40

50

60

2 = 100 GeV2
F

µ  
(­5)

x = 10

KMR MMHT 2014NLO

JH 2013 set2

Kutak non­linear

Kutak linear

Figure 4.3: Unintegrated Gluon Distributions at the typical scale for pp→ ηc(1S)

µF of the process pp → ηc in LHCb kinematics can reach 100 GeV2. In order to

make our results more universal several unintegrated gluon distributions have been

examined. The Kutak UGD parameterization is restricted to the region, where

x < 10−2.

In Fig. 4.3, we depict different UGDs shapes as a function of k⃗2⊥ at a suitably

small value of x = 10−5. The behavior at small gluon transverse momentum k2⊥ of

each used UGDs is exposed in the left panel. The plot of the dimensionless function

F(x, k2⊥, µ
2
F ) (right panel) renders the large k⊥ tails of the UGDs more visible. At

the first glance in Fig. 4.3, the KMR glue (blue dashed curve) and Kutak’s one

(green dotted curve) have similar behavior. Nevertheless, the construction method

is different, but both of them are based on integrated gluons distributions, which

well describe certain dijet production cross-sections at the LHC. Due to the fact

that the Kutak non-linear and linear UGDs have been defined in a specific range of

x only, in the practical calculation, the mixture of Kutak’s and KMR UGD is used.

The KMR glue in our case is built from the collinear gluon from the MMHT20014nlo

fit [120], through the next-to leading order Watt procedure.

Another unintegrated gluon was developed by Jung and Hautmann, which is

characterized by enhancement at low k2⊥, while with increasing value of gluon trans-

verse momenta, the distribution becomes flattened.

In the following Fig. 4.4, we present the projections on transverse momenta
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of the fusing gluons in the process pp → ηc (1S). In the high energy approxima-

tion adopted by us, the gluons’ virtualities coincide with their transverse momenta

squared. Moreover, the requirement on the transverse momenta of produced mesons

provides relatively large values of q1⊥ and q2⊥ relevant to the perturbative regime.

The two-dimensional plots in Fig. 4.5 clearly depict the kinematical region of

interest. Indeed, an interesting kinematic configuration appears, where one of the
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Figure 4.4: The projections on q1T ≡ q1⊥ or q2T ≡ q2⊥ gluon transverse momenta
(left panel). Projections on log10(x1) and log10(x2) (right panel). The LHCb kine-
matics is considered at

√
s = 8 TeV within discussed unintegrated gluon distributions.

fusing gluons always carries a large value x1 and has small q1⊥, while at the same

time the second gluon carries always small x2 and has larger transverse momentum

q2⊥.

Therefore, the gluon characterized by the low value of x transfers the major part

of ηc transverse momentum, p⊥ηc .

4.3.3 Predicted differential distributions

We now present the results of a thorough numerical analysis of promptly produced

ηc(1S, 2S) performed in the k⊥-factorization framework.

We focus on the hard process of off-shell gluon-gluon fusion into a color-singlet cc̄

pair which then turns into a ηc meson. The feed down production via the radiative

decay hc → ηcγ, as well other possible higher resonances, are not considered.
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Figure 4.5: Two dimensional projections on q1T × log10(x1) and q2T × log10(x2). As
an example the KMR from MMHT2014nlo was used.

The k⊥-factorization approach is based on an off-shell matrix element, which

depends directly on the gluon virtualities. These off-shell matrix-elements, or ver-

tices, are constructed from light-cone wave functions for several parametrizations of

cc̄ interaction potentials. The decay width at NLO (see Tab. 4.3) establishes the

normalization of the form factor F (0, 0). We make use of the fact that in the lowest

order of perturbation theory, the space-like transition form factor for g∗g∗ → ηc is

equivalent to the γ∗γ∗ → ηc form factor up to color factors.

In the further results presented below, the light-cone wave function for the so-

called power-law potential model was applied. This is motivated by the fact that

the parametrization of the power-law potential of the cc̄ interaction gives the best

description of the half off-shell form factor, see Fig. 3.7.

To begin with, Fig. 4.6 summarizes the total cross-section of prompt ηc (1S) pro-

duction as a function of pp c.m.s.-energy collected by the LHCb experimental group

indicated by the black dots from 2015 and the black square from 2020. Rhombuses

and crosses denote our integrated cross-sections with normalized form factor at the

on-shell point and with released normalization, filled and blanked, respectively. The

data suggest a faster than linear dependence on c.m.s.-energy, while our calculated

cross-sections rather keep a linear tendency.

In Fig. 4.6, we show only results using the KMR UGD. However, other UGDs
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Figure 4.6: The total cross section of the promptly produced ηc (1S) within the LHCb
kinematic regime.

have been examined by us, and the conclusion is the same.

In Fig. 4.7, our calculations of differential distributions in transverse momentum

of the ηc (1S) are compared with experimental data points. In the top panels, our

predictions are shown with the data published by the LHCb experimental group in

2015 [110] at
√
s = 7 TeV(left panel) and

√
s = 8 TeV(right panel) for the prompt

production of ηc (1S) in proton-proton collisions. At the same time, the lower panel

displays our predictions with the recent LHCb data [111] at
√
s = 13 TeV. Four dif-

ferent sets of unintegrated gluon distributions are adopted, which makes our results

quite comprehensive.

At
√
s = 7 TeV and

√
s = 8 TeV, all UGDs attain a reasonable description of

the data. However, in particular at large ηc transverse momenta our calculations

seem to undershoot the data. Substantially below the data are results obtained at√
s = 13 TeV. This feature is independent of the choice of UGD and also observed

in Fig. 4.6.

In the range 6.5 GeV < p⊥ < 14 GeV, one can observe that KMR+Kutak-

linear and KMR overlap as well as do KMR+Kutak-non-linear and JH2013 set2.

The significant disparity between different UGDs is noticeable at low pT ≡ p⊥.

One suspicion could be that this effect corresponds to gluon saturation and non-

linear evolution. Although, the most valuable range to investigate saturation effect

(pT < 6 GeV) seems unattainable using the ηc → pp̄ decay to measure the ηc meson.
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An attractive channel to study this problem could be the γγ final state. Therefore,

further simulations of the signal and background are desirable.

Since the experimental results are provided in rather broad p⊥ bins, one may

prefer a histogram representation of the results. Fig. 4.8 reveals the results for

the KMR and Jung-Hautmann distributions in equivalent bins. The agreement

between theoretical and experimental results in a few intervals seems to be sufficient.

However, the wide histogram bins could generate greater uncertainty. For instance,
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Figure 4.7: Differential cross-section in transverse momentum of ηc (1S) at
√
s =

7 TeV (left-top panel),
√
s = 8 TeV(right-top panel) and

√
s = 13 TeV(low panel)

within 2.0 < yηc < 4.5 compared to LHCb data. The power-law potential model
normalized to decay width is used with each UGD.
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Figure 4.8: Differential cross-section found in bins. For illustration results for two
UGD sets are compared to LHCb data at

√
s = 7 TeV (left panel),

√
s = 8 TeV (right

panel) and
√
s = 13 TeV (low panel). The calculation was performed within LCWF

for the power-law potential model of cc̄ interaction. Form factor normalization at
the on-shell point is fixed to F (0, 0) = 0.079 GeV−1.

one can compare top panels in Fig. 4.8.

Another Fig. 4.9 displays predicted distributions in transverse momentum of

ηc(2S) at three energies in the center of mass system
√
s = 7 TeV,

√
s = 8 TeV and

√
s = 13 TeV. Presented results were performed with restrictions on ηc(2S) rapidity

2.0 < yηc(2S) < 4.5 and as a factorization scale in unintegrated gluon distribution

transverse mass m⊥ =
√
M2

ηc + p2⊥ ηc
was taken.

88



4.3.3 Predicted differential distributions

Similarly as in ηc(1S) production process the on-shell point of the form factor, for

the power-law potential model, is normalized to radiative decay width (see Tab. 4.3).

The difference between examined UGDs appears up to pT ηc ∼ 8 GeV. With increas-

ing transverse momentum, as in the case of ηc(1S), the dispersion among Kutak’s

and KMR or JH gluon distributions become small.

Now turn to the point of the light-cone wave function and the corresponding

potential model of cc̄ interaction applied in the computation. In order to understand
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Figure 4.9: Differential cross-section in transverse momentum of ηc (2S) at
√
s =

7 TeV(left-top panel),
√
s = 8 TeV(right-top panel) and

√
s = 13 TeV(low panel)

within 2.0 < yηc < 4.5. The power-law potential model normalized to decay width is
used with each UGD.
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the influence of the particular model on the distribution shape, see Fig. 4.10. There

we have fixed the normalization for all models of considered form factors to the

radiative decay width.

The right panel of Fig. 4.10 gives a glimpse of the difference between the poten-

tial models used in the final results, the power-law potential model, Buchmüller-Tye

(B-T) model, and others. The first observation is that the effects of the normalized

harmonic oscillator (HO) form factor and the power-law form factor are indistin-

guishable. The same feature applies to the results for the B-T and the logarithmic

model.

In the case of ηc(2S) production (the left panel of Fig. 4.10), the spread of the

results is a bit changed. Fig. 4.11 brings to light the pure effect of the form factor

without any extra normalization.
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Figure 4.10: Differential distributions in transverse momentum of ηc(1S) (left panel)
and ηc(2S) (right panel) at

√
s = 7 GeV. The light-cone wave functions for different

potential models were applied in the form factor and the form factor was normalized
to the radiative decay width.

A slight difference is drawn between the obtained distributions, can be regarded

as the uncertainty of the potential model choice. Notice that the results obtained

with not normalized form factor follows the undershoot of the experimental data. On

the other hand, from the Tab. 3.1 and Tab. 3.2 it is known that the decay widths from

phenomenological potential models of cc̄ interaction are below of the experimental

value. Moreover, the experimental decay rate is known with some precision and
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4.3.3 Predicted differential distributions

various values have been obtained [121, 77]. From this analysis the conclusion arises

that the off-shell form factor could be more adequate at large qT of the fusing gluon.

We get slightly different results than Baranov et. al in the kT -factorisation approach

within NRQCD formalism including Color-Octet contribution [122].

As a supplement Fig. 4.12 shows the results obtained with the Non-Relativistic

form factor. Selected examples of the radial wave functions at the origin R10(0) =

0.762 GeV3/2 and R10(0) = 0.699 GeV3/2 correspond, to the power-law potential

model (see Tab. 3.4) and radiative decay width at next-to-leading order. The change

of the radial wave function at the origin results in a few percent increments of the

cross-section independently on the gluon distribution used. The blue curves, which

go along with R10(0) extracted from the experiment, are below the red lines. One

can also notice in Fig. 4.13 that our findings for the off-shell form factor normalized

to F (0, 0) value extracted from the experiment gives a better description than the

NRQCD form factor with proper radial wave function at origin. An interesting

aspect of the distributions appears when the gluon virtualities are neglected in the

hard matrix element. Fig. 4.14 reveals the so-called point-like coupling, where only

the form factor at the on-shell point is taken into account (red dashed-dotted line).

This kind of form factor leads to strongly flattened distributions and dramatically

overshoots the experimental data. Finally, the difference between the normalized
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Figure 4.11: Differential cross-section for transverse momenta of ηc(1S) (left panel)
and ηc(2S) (right panel) at

√
s = 7 GeV. The light-cone wave functions for different

potential models without an extra normalization.
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Figure 4.12: Results for NRQCD form
factor with R00(0) = 0.762 GeV3/2,
which corresponds to the power-
law potential model and R00(0) =
0.699 GeV3/2, which is related to the
radiative decay width ηc(1S) → γγ.

Figure 4.13: Results for NRQCD form
factor with R00(0) = 0.699 GeV3/2 re-
lated to radiative decay width ηc(1S) →
γγ and the form factor for the power-law
potential model normalized to the radia-
tive decay width.

form factor from light-cone wave functions and relaxed normalization is exposed by

the two blue lines in Fig. 4.14.

Up to now, we have explored the kinematic range of the LHCb experiment at

the LHC. The following Fig. 4.15 illustrates momentum fractions x of gluons in the

rapidity range −2.5 < yηc < 2.5 relevant, say, for the ATLAS detector. Although

the presented projections have some numerical fluctuations, the symmetry in x1 and

x2 is clear as well as q1T ≡ q1⊥ and q2T ≡ q2⊥. There is no sharp distinction between

the KMR and JH gluons. However, Fig. 4.16 shows by the red curves (solid and

dashed) that the small difference occurs only in specified pT intervals within the

ATLAS rapidity range.

4.4 Prompt hadroproduction of χc0(1P) and χb0(1P)

proton-proton collisions

Production of P-wave charmonia states has a rich history. The most commonly

used approaches, Color-Singlet Model [123] or the later developed Non-Relativistic

QCD (NRQCD), faced various problems within Next-to-Leading Order corrections
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Figure 4.14: Differential distribution for normalized form factor and with relaxed
normalization as well as point like coupling.

in collinear approximation [124, 125]. The higher correction in the standard collinear

method results in an eventual negative cross-section at high energy at a small fac-

torization scale[124]. Notably, this feature affects differential p⊥ distributions. This

effect seems to be related to the constant behavior of the NLO and NNLO cross-

sections, which become more singular with the successive corrections.

The major improvement has been attained in the k⊥-factorization framework

[126, 86], which encodes the off-shell amplitude of gg → χcJ process with convoluted

off-shell incoming gluons distributions. In the collinear approach, the t-channel

gluon exchange is allowed at O(α3
s), while kT -factorization offers to take into account

transverse momenta of the incoming partons. Studies on χcJ production within the

NRQCD approach have been performed, including Color-Octet contribution within

corresponding Long Distance Matrix Elements (LDME) [127]. This approach is

somewhat hampered by the fact that the LDMEs have to be fitted to experimental

data. Consequently their values rather strongly depend on the unintegrated gluon

distributions and the datasets used for the fit.

In our alternative method to the NRQCD method, with CO contribution effec-

tively incorporates relativistic correction in terms of the light-cone wave function of

the cc̄ P -wave state.

In general, the matrix element of the gluon fusion to χQ can be formulated in
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terms of the FTT and FLL form-factors:

Mab
µν = (−i)4παs

Tr[tatb]√
Nc

(
− δ⊥µν(q1, q2)

FTT (q21, q
2
2)

e2Q
√
Nc

+ eLµ(q1)e
L
ν (q2)

FLL(q21, q
2
2)

e2Q
√
Nc

)
,

(4.36)

with projection on transverse δ⊥µν and longitudinal eLµe
L
ν gluon polarization, see

Eqs. (3.89, 3.90). The matrix element decomposition into transverse and longi-

tudinal polarizations gives the prominent signal that off-shell gluons fusion receives

contributions from transverse and longitudinally polarized gluons as well. Note that

incoming longitudinally polarized partons are absent in the approaches based on

on-shell partons.

At the same time, at on-shell point only FTT is related to the first derivative of

the radial wave function R′
01(0):

FTT (0, 0) = e2Q
√
Nc

12√
π

R′
01(0)√
M3

χQ

, (4.37)

with an electric charge of the quark eQ and mass MχQ
of the considered χQ. There-

fore an extra normalization to the radiative decay width is found to be without

merit. The hadroproduction factorization formula for the process pp → χQ0X in

gluon-gluon fusion mode is obtained as:

dσ

dyd2p⃗⊥
=

∫
d2q⃗1⊥
πq⃗ 4

1⊥
F(x1, q⃗

2
1⊥, µ

2
F )

∫
d2q⃗2⊥
πq⃗ 4

2⊥
F(x2, q⃗

2
2⊥, µ

2
F )

× δ(2)(p⃗⊥ − q⃗1⊥ − q⃗2⊥)
π

4(N2
c − 1)2

∑
a,b

|n+
µn

−
ν M

ab
µν |2 , (4.38)

the factorization scale is set up to µ2
F = m2

T . Subsequently, Eq. (4.38) can be altered

to a more easy to handle form by restoring indices

dσ

dyd2p⃗⊥
=

∫
d2q⃗1⊥
πq⃗ 4

1⊥
F(x1, q⃗

2
1⊥, µ

2
F )

∫
d2q⃗2⊥
πq⃗ 4

2⊥
F(x2, q⃗

2
2⊥, µ

2
F )

× δ(2)(p⃗⊥ − q⃗1⊥ − q⃗2⊥)
π3α2

s

Nc(N2
c − 1)

|τTT + τLL|2 . (4.39)

In practical calculation the squared strong coupling constant is replaced as

α2
s → αs(max{m2

T , q⃗1⊥
2})αs(max{m2

T , q⃗2⊥
2}). (4.40)
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Transverse τTT and longitudinal τLL parts of the reduced amplitude read

τTT = |q⃗1⊥||q⃗2⊥|F1,TT (q⃗1⊥, q⃗2⊥) + (q⃗1⊥ · q⃗2⊥)F2,TT (q⃗1⊥, q⃗2⊥) , (4.41)

τLL = |q⃗1⊥||q⃗2⊥|F1,LL(q⃗1⊥, q⃗2⊥) + (q⃗1⊥ · q⃗2⊥)F2,LL(q⃗1⊥, q⃗2⊥) , (4.42)

with

F1,TT =
|q⃗1⊥||q⃗2⊥|

X

(
1

2

(
M2

χ + q⃗1⊥
2 + q⃗2⊥

2
)
F2 − |q⃗1⊥||q⃗2⊥|F1

)
, (4.43)

F2,TT =
M2

χ + q⃗1⊥
2 + q⃗2⊥

2

2X

(
1

2

(
M2

χ + q⃗1⊥
2 + q⃗2⊥

2
)
F2 − |q⃗1⊥||q⃗2⊥|F1

)
,(4.44)

F1,LL =
M2

χ + q⃗1⊥
2 + q⃗2⊥

2

2X

(
1

2

(
M2

χ + q⃗1⊥
2 + q⃗2⊥

2
)
F1 − |q⃗1⊥||q⃗2⊥|F2

)
,(4.45)

F2,LL =
|q⃗1⊥||q⃗2⊥|

X

(
1

2

(
M2

χ + q⃗1⊥
2 + q⃗2⊥

2
)
F1 − |q⃗1⊥||q⃗2⊥|F2

)
, (4.46)

and auxiliary form factors F1, F2 are defined in Eq. (3.99) via light-cone wave func-

tions. Here X is a function of χQ mass and gluon transverse momenta, see Eq. (3.94).

Besides, the amplitude can be decomposed to transverse and longitudinal part

Eq. (4.42), untangling TT and LL components and simplifies to the form factors

F1 , F2. These form factors are translated into numerical grids and then interpolated

inside the matrix element.

4.4.1 Numerical analysis

The following subsection is focused on several aspects of the differential cross-

sections in the relevant range of χc and χb rapidities. In particular, we used√
s = 13 TeV, which is the currently achieved center of mass-energy in proton-

proton collisions at the LHC. The KMR from MMHT2014nlo unintegrated gluon

distribution functions (UGDF) is chosen as a representative example.

We begin with the differential distribution in transverse momentum of χc and

χb shown in Fig. 4.17 with our form factors built from the light-cone wave functions

for five cc̄ interaction potential models. The disparity between results for each type

of potential is almost undistinguished, except the region where pT < 5 GeV, see top

inlays of the plots in Fig. 4.17. Here the quark mass corresponds to the potential

model in the light-cone form factor. For clarity, see Tabs. 3.8, 3.10. An interesting
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Figure 4.17: Differential distribution in transverse momentum of χc0(left column)
and χb0(right column) for five distinguished potential models. In the upper row -
light-cone form factor with corresponding c-quark/b-quark mass to the specific model,
the lower row with neglected dependence of the model quark mass.
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behavior occurs when in the light-cone form factors, the quark mass is imposed to

be constituent mass established by Particle Data Group [77], mc = 1.27 GeV, mb =

4.18 GeV. Namely, the discrepancy is evident when p⊥ is greater than 5 GeV, see

lower panels of Fig. 4.17. However, the effect is more substantial in the case of χc0

production.

As mentioned above, the difference between results for each type of potential is

rather small except for the harmonic oscillator. Therefore in further computations,

light-cone form factors obtained from the Buchmüller-Tye potential model were

employed. Similarly to ηc hadroproduction, one can note the significant difference

between the application of Jung-Hautmann and KMR gluon distributions only at

low pT < 5GeV. Fig. 4.18 also exposes the uncertainty ensued from different quark

masses, mc = 1.27 GeV (left panel) or mb = 4.18 GeV (right panel) PDG value - the

blue dashed line and mc = 1.48 GeV (left panel) or mb = 4.87 GeV (right panel) the

B-T value - the blue dashed-dotted.
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Figure 4.18: Distribution in transverse momentum of the χc0 (left panel) and
χb0(right panel) for Buchmüller-Tye potential model with KMR MMHT2014nlo and
JH2013 set2 UGDs.

We now move to the comparison of results with our form factors to the NRQCD

method. Here, Fig. 4.19 allows us to clearly see the gap among results with the

NRQCD form factors and the B-T form factors. To get a proper outlook of the

NRQCD recipe, R′
01(0) values are directly related to the B-T potential model, see

Tabs. 3.12, 3.13.
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Figure 4.19: Comparison of differential distribution in transverse momentum (top
row) and rapidity (low row) of χc0 and χb0 obtained in three ways through form
factors based on the B-T potential with corresponding quark mass - black solid curve
or with PDG quark mass - blue dashed curve as well as with NRQCD form factors.
In the case of χc0 production (left panel), the NRQCD form factors used R′

01(0) =
0.25 GeV5/2 and χb0 (right panel) the form factors with R′

01(0) = 1.13 GeV5/2.

99



4. PROMPT QUARKONIUM PRODUCTION IN HADRON
COLLISIONS

The most striking results from our analysis arise from the involvement of gluon

longitudinal polarizations besides the standard transverse ones. In this context,

Fig. 4.20 gives an example of the size of the transverse and longitudinal contribu-

tions, for χc0 (left column) and χb0 (right column). The major part of the cross-

section is provided by the transverse contribution. However, the participation of

longitudinally polarized gluons leads to reducing distributions in certain regions.

This fact finds explanation in form factors relations. Namely, FLL and FTT have

always a negative interference.
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Figure 4.20: Differential cross-sections in transverse momentum and rapidity with
decomposition to transverse and longitudinal contribution. In the whole range of the
χc0 or χb0 rapidity.
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4.4.1 Numerical analysis

The point of the linearly polarised gluons inside unpolarized hadrons in the con-

text of the C − even quarkonia production was raised in Ref. [128]. They employed

a nonrelativistic color-singlet model (NRQCD) in the transverse momentum (TMD)

factorization framework. This method provides also linearly polarized gluon through

a nonperturbative distribution. This property affects the transverse momentum dis-

tribution, when two linearly polarised gluons fuse into the pseudoscalar or scalar

meson.
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Figure 4.21: Comparison of transverse and longitudinal contribution to correspond-
ing NRQCD components.

In Fig. 4.19 we compare results with light-cone form factors and NRQCD form

factors, where R′
01(0) is obtained from integration of the u(k) wave-function for the

B-T potential model (see Appendix A). This method of calculating R′
01(0) gives a

reasonably good agreement with the radiative decay width. However, a supplement

picture to our analysis could be another way of computing the first derivative of

the radial wave function, namely, from the transition form factor at on-shell point

FTT (0, 0). In Fig. 4.21 we compare each component of distribution from light-cone

transitions with the corresponding non-relativistic parts. The transverse form factor

is linearly related to R′
01(0) by Eq. (4.37), and one of the proportionality factors is the

mass of the scalar meson into the appropriate power, here we use Mχc = 3.414 GeV

or Mχb
= 9.859 GeV. Hence, the relevant values are R′

01(0) = 0.169 GeV5/2 for χc0

and R′
01(0) = 0.736 GeV5/2 for χb0, obtained for the B-T potential model. The ratio

of the two compared results exposes the pT regions, where light-cone form factors

could play a key role, see the bottom inlays in Fig. 4.21. The findings for the sum
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of TT +LL yield a little variation between these two methods. However, separately

the NRQCD longitudinal contribution differs the most from the light-cone one.
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Figure 4.22: Differential cross-section as a function of transverse momentum of the
produced meson predicted for the ATLAS and the LHCb rapidity acceptance.
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Figure 4.23: The projection on transverse momenta of the incoming gluons |q⃗1⊥| ≡
q1T and |q⃗2⊥| ≡ q2T within specific cuts on rapidity of the produced meson, χc0 (left
panel) and χb0 (right panel).

The particular features of the proposed method based on light-cone form factors

have been discussed in details. Therefore, let us now turn to predictions devoted
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to specific experiments at the center of mass energy
√
s = 13 TeV. Fig. 4.22 shows

the differential cross-section in pT of χc0 (left panel) and χb0 (right panel) mesons in

our light-cone model within appropriate kinematics cuts on rapidity relevant for the

ATLAS and the LHCb experiments at the LHC. In Fig. 4.23 we put into evidence

how the LHCb asymmetric cuts on the meson rapidity influence the transverse

momenta of the fusing gluons q1⊥ and q2⊥.

4.5 Remarks and conclusions

Let us recapitulate the results for three mesons, the pseudoscalar ηc(1S), as well

as the scalars: χc0(1P) and χb0(1P). The cross section of ηc(1S) production in pp

collision is about one order of the magnitude greater than for χc0. Moreover, the

branching ratios to pp̄ are: Br(χc0 → pp̄) = (2.21 ± 0.08) × 10−4 and Br(ηc →
pp̄) = (1.44± 0.14)× 10−3, which can lead to difficulties in observation of χc0 in this

particular channel. The more preferable channel could be γγ channel. However, this

issue requires further Monte-Carlo studies which are beyond the scope of this thesis.

Fig. 4.24 on the r.h.s. illustrates the rapidity distribution of three mesons in the pT

range pT < 50 GeV. The pattern of χc0(1P) and ηc(1S) distribution is similar while

χb0(1P) differs at mid rapidity. This is the property of the vertex of gluon-gluon

fusion into cc̄ or bb̄ color-singlet bound state.
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√
s = 13 TeV with KMR MMHT2014nlo.
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Chapter 5

Central Exclusive Production of
C-even Charmonia: the case of
ηc(1S) and χc0(1P)

The Large Hadron Collider (LHC) facility at CERN (Conseil Européen pour la

Recherche Nucléaire) opened a new era of high-energy physics research. Besides the

Higgs boson discovery, this laboratory confirmed a major group of phenomena pre-

dicted by the Standard Model and beyond. While the Higgs-boson was eventually

discovered in inclusive inelastic processes, as a possibility to observe the searched-for

boson, a unique class of events characterized by a clean final state was proposed.

The idea is based on the assumption that it should be possible to excite the vacuum

into a real Higgs boson in exclusive proton-proton or proton-antiproton interaction

if the Higgs field is responsible for filling the vacuum [129]. Indeed, in exclusive

processes interacting hadrons or ions avoid a breakup, while the underlying produc-

tion mechanism involves photons or gluons. The massive boson production has been

discussed in detail in The FP420 R&D Project research program [130].

So far, exclusive meson production at the LHC has been studied in pp, pPb,

and PbPb collisions. Moreover, this type of experiments have also been analyzed

at Tevatron in pp̄ collisions, at RHIC in AuAu and pAu collisions. The majority of

exclusive reaction measurements have been devoted to light meson such as ρ0(770)

[131, 132] or two pion systems π0π0, π+π− [133, 134] at low invariant masses of the

produced system [135].

Center of mass energies available at theLHC allowed to study heavy meson pro-

duction such as J/ψ, ψ(2S), χcJ family and Υ in proton-proton collisions [136, 137].
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An attractive feature of the heavy particle production is the naturally provided hard

scale which allows perturbative quantum chromodynamics methods to be applied.

Central exclusive processes (CEP) in hadronic collision due to the specific final state

require a proper theory. The sketch of the reaction is the following

h1h2 → h1 ◦X ◦ h2 .

Due to to rapidity gap (donated by ”◦”) between two intact hadron/ions(h1, h2),

this type of processes could be regarded as double diffractive processes with the

exchange of a colorless “particle” called Pomeron (IP). Notice that also exchange of

a photon can lead to the same phenomenon of a large rapidity gap. An important

selection rule in central exclusive processes is the conservation of charge conjugation

parity (C-parity). For example, as the Pomeron has even C-parity, the diffractive

production of the C-odd vector mesons like ρ0, ϕ, J/ψ involves the photon-Pomeron

fusion. As a side remark we mention that recent analyses of elastic pp scattering

claim the existence of an Odderon [138, 139] that is a C-odd hadronic exchange that

does not vanish with increasing energy.

The hard diffractive procceses are often described through the Ingelman-Schlein

model [140] which is based on the evolution of Pomeron structure functions (or

parton distributions in the Pomeron), corrected with a gap survival factor. Heavy

flavour mesons production with structure functions obtained by the H1 Collabo-

ration at DESY-HERA have been discussed for instance in Ref. [141]. Intensively

studied dijet production in single Pomeron exchange has been already computed

within the k⊥-factorization framework, see Ref. [17]. However, the modeled struc-

ture functions suffer from factorization breaking [142]. These authors emphasize

that the main source of factorization breaking is the presence of the possible in-

teraction with spectator partons originating from the proton-proton collision. In

Ref. [142], the authors derived a formalism of Single-Diffractive dijet production in

dipole representation claiming that spectator interactions included at the amplitude

level.

How the multiparton scattering or re-scattering affects the rapidity gap in ex-

clusive reactions is however still under discussion. A good example to study the

possible sources of the gap filling are Jet gap Jet process, also called dijets events

with large rapidity separation, due to specific kinematic regime, see Ref. [16, 143].

An alternative formalism has been proposed by the Durham group, which fo-

cused on the first development of the perturbative theory of a “Born term” for these
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types of reactions, further named the Durham model. In our investigations pre-

sented below, the salient features of the Durham model scheme are kept with some

modifications.

5.1 Amplitude and kinematics of CEP reaction

The exclusivity of the process requires that the produced system is in a color-singlet

state, while any additional gluon emission present in inclusive reactions is forbidden.

The Born-term of the Durham model contains a hard scale dependent amplitude

describing two gluon fusion to the heavy meson as well relatively soft gluon exchange

called also the screening gluon [144]. The presence of a screening gluon, see Fig. 5.1,

serves to fulfill the vacuum number condition in the crossed channel.

χc0(0
+)/ηc(0

−)

Foff
1

p1 p′1

Q0⊥
q1⊥

q2⊥

t1

Foff
2

p2

p′2
t2

Figure 5.1: Generic diagram for the central exclusive production via gluon fusion.

Following the notation and derivation in Ref. [87] the CEP amplitude reads

MCEP =
s

2
π21

2

δc1c2
N2
c − 1

∫
d2Q⃗0⊥ Vc1c2

Foff
g (x1, x

′, Q⃗2
0⊥, q⃗1⊥

2, µ2, t1)F
off
g (x2, x

′, Q⃗2
0⊥, q⃗2⊥

2, µ2, t2)

Q⃗2
0⊥q⃗1⊥

2q⃗2⊥
2

, (5.1)

including momenta of the active gluons q1, q2 and the screening one Q0. Above,

V denotes the two gluon fusion vertex into heavy meson, χc0 or ηc. Note that in
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the formula there appears an additional factor (1/2) due to a convention of light-

cone base vectors, which differs from the one used in the previous chapters, but

corresponds to the one used by Pasechnik, Teryaev and Szczurek [87, 145, 146].

Namely, here we use the light-like basis vectors, which satisfy n+n− = 2. The total

cross section for 2 → 3 reaction can be evaluated using the general formula

σ =
1

2s

∫
|MCEP |2(2π)4δ4(p1 + p2 − p′1 − p′2 − pV )

×
( 1

2(2π)3

)3
(dy′1d

2p⃗1⊥
′)(dy′2d

2p⃗2⊥
′)(dyd2p⃗V⊥) , (5.2)

which can be simplified to

σ =
1

2s

1

28π4s

∫
|MCEP |2dt1dt2dydϕ , (5.3)

as in Ref. [147], where t1 = (p1 − p′1)
2, t2 = (p2 − p′2)

2 and relative azimuthal angle

between scattered outgoing protons ϕ is within the range (0, 2π). The two gluon

fusion vertex into χc0 via two gluon involves the light-cone form factors GTT and

GLL:

Vabµν(g
∗g∗ → χc0) = 4παs

Tr[tatb]√
Nc

2Tµν =
4παs√
Nc

δabTµν , (5.4)

Tµν = −δ⊥µν(q1, q2)GTT(q21, q
2
2) + eLµ(q1)e

L
ν (q2)GLL(q21, q

2
2) , (5.5)

here the form factorsGTT(q21, q
2
2) = FTT(q21, q

2
2)/(e2c

√
Nc), GLL(q21, q

2
2) = FLL(q21, q

2
2)/(e2c

√
Nc)

are counterparts of photon-photon fusion form factors.

For the pseudoscalar meson, we use

Vabµν(g
∗g∗ → ηc) = (−i)4παsϵµναβqαqβ

δab

2
√
Nc

2Fg∗g∗→ηc(q⃗1⊥
2, q⃗2⊥

2) , (5.6)

where Fg∗g∗→ηc(q⃗1⊥
2, q⃗2⊥

2) = Fγ∗γ∗→ηc(q⃗1⊥
2, q⃗2⊥

2)/(e2c
√
Nc). In particular for the ηc

there exists only a transversal form factor. Hence we can identify Fg∗g∗→ηc(q⃗1⊥
2, q⃗2⊥

2) =

FTT (g∗(q1)g
∗(q2) → ηc).
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5.1.1 Off-diagonal gluon concept

The forward limit provides small t1,2 → 0 responsible for Q⃗2
⊥ ≃ q⃗⊥1,2

2 ≡ Q2
⊥. In this

limit, the generalized UGDs (sometimes named unintegrated GPDs) in Eq. (5.1) are

simplified and are considered as functions of only one transverse momentum, i.e.

Foff
g (x1, x

′, Q⃗2
0⊥, q⃗1⊥

2, µ2, t1) → Foff
g (x1, x

′, Q2
⊥, µ

2, t1) . (5.7)

The Khoze-Martin-Ryskin (KMR) prescription for the off-diagonal UGD involves

the square root of a Sudakov form factor Tg(q
2
⊥, µ

2) and its well known form is [148]

Foff
g,KMR(x, x′, Q2

⊥, µ
2; t) = Rg

d

dlnq2⊥

[
xg(x, q2⊥)

√
Tg(q2⊥, µ

2)
]
q2⊥=Q2

⊥

F (t) , (5.8)

with gluon virtualities q2⊥ used as the momentum scale squared in the collinear gluon

density xg(x, q2⊥). The nucleon form factor F (t) is often parameterized in one of the

following two ways

F (t) = exp
(bt

2

)
, b = 4 GeV−2 or F (t) =

4m2
p − 2.79t

(4m2
p − t)(1 − t/0.71)2

, (5.9)

the first being a Fourier transform of a Gaussian QCD elastic profile factor, while

the second corresponds to the isoscalar nucleon form factor [149] with the proton

mass mp, respectively. The Sudakov form factor is taken from the typical formula:

Tg(q
2
⊥, µ

2) = exp
[
−
∫ µ2

q2⊥

dk⃗2⊥

k⃗2⊥

αs(k
2
⊥)

2π

∫ 1−∆

0

[
zPgg(z) +

∑
q

Pqg(z)
]
dz
]
, (5.10)

here the hard scale is taken as µ2 = M2
V + q2⊥ and ∆ = k⊥/(k⊥ + µ). Considering

the involved longitudinal momentum fractions, the central diffractive production is

dominated by the region x′ ≪ x1,2 ≪ 1. Therefore we compute the skewedness

correction Rg in Eq. (5.8) taking advantage of a method offered and derived for the

collinear off-diagonal gluon distributions [150]:

Rg =
22λ+3

√
π

Γ(λ+ 5/2)

Γ(λ+ 4)
, λ =

d

dln(1/x)

[
ln
(
xg(x, q2⊥)

)]
. (5.11)

Regarding the slightly off-forward case, where t1,2 ̸= 0, there is an ambiguity in the

choice of Q⊥ in the off-diagonal KMR gluon in Eq. (5.8). Different prescriptions have

been proposed in the literature. In our computation, we use the so-called ”minimum
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prescription” proposed by the Durham group. Namely, in Eq. (5.8) we substitute

Q2
⊥ with minimum of an active gluon transverse momentum q⊥ and the screening

gluon transverse momentum Q⊥:

Q2
⊥ → min(Q2

0⊥, q
2
⊥) . (5.12)

Additionally, we have introduced an option in Eq. (5.8) further called BPSS:

Q2
⊥ →

√
Q2

0⊥q
2
⊥ , (5.13)

which is a geometrical average of gluon momenta.

In a similar fashion the off-diagonal gluon labeled CDHI [151] was proposed by

Cudell et al., which we used in the modified form defined as:

Foff
g,CDHI(x, x

′, Q⊥, µ
2; t) = Rg

[ ∂

∂ log Q̄2

√
Tg(Q̄2, µ2)xg(x, Q̄2)

]
· 2Q2

0⊥q
2
⊥

Q4
0⊥ + q4⊥

· F (t) ,

(5.14)

with arithmetic average Q̄2 = (Q2
0⊥ + q2⊥)/2 employed also in the Sudakov form

factor.

An alternative group of methods to compute off-diagonal gluon distribution is

represented by the models which account for the gluon saturation effects. The

saturation-based UGD is inspired by diagonal gluon model derived by Golec-Biernat

and Wüsthoff (GBW) [152]. To achieve the off-diagonal domain, we use the extrapo-

lating prescription proposed in Ref. [87] (further referred to as the PST prescription):

Foff
GBW =

√
Q2

0⊥f
GBW(x′, Q2

0⊥)q2⊥f
GBW(x, q2⊥)

√
Tg(q2⊥, µ

2)F (t) , (5.15)

fGBW(x, q2⊥) =
3σ0

4π2αs
R2

0 q
2
⊥ exp[R2

0 q
2
⊥] , (5.16)

here fGBW is the diagonal GBW UGD, and x′ = |Q⃗2
⊥|/

√
s, R0 = (x/x0)

λ/2. Precisely,

we used the GBW model with the fitted parameters obtained by Golec-Biernat

and Sapeta [153]: σ0 = 29.12 mb, λ = 0.277, x0/10−4 = 0.41, with αs(q
2
⊥) =

min(0.82, 4π
9 log(Q2/Λ2

QCD)
) and Q2 = max(q2⊥, 0.22 GeV2), Λ2

QCD = 0.04 GeV2.

To vary our results, we also applied the model based on the color dipole cross

section fitted by Rezaeian and Schmidt [154]. While the GBW model corresponds

to the eikonal unitarization, the Rezaeian-Schmidt cross section is motivated by the
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5.2 Differential distributions and total cross sections: numerical results

BFKL equation and its nonlinear generalizations as proposed by Iancu et al. in

Ref. [155]. Therefore, the computed UGD fRS
g (x, |q⃗⊥|) takes the form

Foff
RS =

√
Q2

0⊥f
RS(x′, |Q⊥|)q2⊥fRS(x, |q⊥|)

√
Tg(q2⊥, µ

2)F (t) , (5.17)

fRSg (x, |q⃗⊥|) = |q⃗⊥|2
σ0
αs

Nc

8π2

∫ ∞

0

rdr J0(|q⃗⊥|r)
(

1 − σ(x, r)

σ0

)
. (5.18)

As an example, we have applied the first set of parameters from Table I in Ref. [154].

5.2 Differential distributions and total cross sec-

tions: numerical results

CEP processes at high energies involve parton distributions characterized by rela-

tively low Q2 and very small fractions of longitudinal momenta. Therefore, in order

to achieve relevant off-diagonal constructions and adequate results, it is necessary to

discuss the available options of parton distribution functions (PDFs). For this pur-

pose, we have examined three sets of parton distribution functions that is JR14NLO

[156](Q2
min = 0.8 GeV2), GJR08NLO (Q2

min = 0.5 GeV2) [157], GRV94NLO [158]

(Q2
min = 0.4 GeV2). Fig. 5.2 reveals the shapes of diagonal gluon distribution func-

tions at a typical longitudinal momentum fraction and illustrates the available initial

evolution scale Q2
min.

There is a significant difference in the range of scales available in the PDFs pub-

lished in the literature. In particular, we dropped the popular Durham or CTEQ

PDFs due to the fact that they need a relatively large initial evolution scale. These

models are somewhat difficult to apply in the context of gluon-induced CEP reac-

tions.

Regarding integrated cross-section computed over full phase-space, we collated

results in Tab. 5.1 and Tab. 5.2 for χc0 and ηc, respectively. The calculations have

been performed at
√
s = 13 TeV. In addition, in the case of the KMR skewed gluon

procedure we present results with and without the skewedness correction factor Rg

(see Eq. (5.11)). The noticeable increment is obtained in the cross-section including

Rg, which is usually assumed to be a constant value (Rg ∼ 1.3). The dynamic

behavior of the effective skewedness correction is illustrated in Fig. 5.3. In the

so-called KMR skewed gluon as an input we used the JR14NLO, GJR08NLO or

GRV94NLO gluon distribution, while in the PST prescription we avail of the GBW
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Figure 5.2: Collinear diagonal
gluon distributions as a func-
tion of hard scale Q2 with typ-
ical momentum fractions: x =
10−4 top plot and x = 10−2 bot-
tom plot.
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or RS model. The total cross-section for χc0 is around 1µb, still before applying any

absorptive correction, which is estimated to be about 0.13 − 0.2 below. In the case

of ηc production, the cross-section is on average three order of magnitude smaller in

comparison to χc0. Moreover, the spread of the results in the case of ηc was collected

in Tab. 5.2 is much broader than for the χc0 in Tab. 5.1.

The distribution in rapidities of χc0 and ηc is revealed in Fig. 5.3. To present the

effect of including the Rg(x,Q
2
⊥) correction, as a representative example we chose

F
off
CDHI(Eq. (5.14)) and F

off
KMR(Eq. (5.8) with minimum prescription Eq. (5.12)). After

the application of the Shuvaev correction Rg(x,Q
2
⊥) (see Eq. 5.11), we observe an

increase of the cross-section by a factor of 3-4 in the case of χc0 as well as ηc,

independently on the choice of the off-diagonal gluon.

The transverse momentum distributions are found in Fig. 5.4. The characteristic

pattern with a dip in the transverse momentum distribution for the CEP χc0 vertex

can be observed in the left panel. One can also notice that these two distributions

differ in the position of the maximum: for the ηc it is around 1 GeV, while for the

χc0 ∼ 0.5 GeV.

In Fig. 5.5, we reveal the distribution in relative azimuthal angle between the

outgoing scattered protons. The computations have been performed at
√
s = 13 TeV

with the help of GJR08NLO using F
off
KMR (see Eq. (5.8)) one time within the Durham
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Table 5.1: Total cross section for χc0 at
√
s = 13 TeV with Rg = 1.0 and Rg

according to Eq. (5.11). The light-cone form factor for the gg → χc0 coupling was
obtained through the Buchmüller-Tye potential. No gap survival factor is included
here.

KMR skewed gluon σtot [nb] σtot [nb]
0.8 GeV2 ≤ Q2

min, JR14NLO Rg = 1.0 Rg(x,Q
2
⊥)

CDHI, Q2
⊥ = (Q2

0⊥ + q2⊥)/2. 0.42 · 103 1.1 · 103

KMR, Q2
⊥ =

√
Q2

0⊥ · q2⊥ 0.36 · 103 0.94 · 103

KMR, Q2
⊥ = min(Q2

0⊥, q
2
⊥) 0.20 · 103 0.52 · 103

KMR skewed gluon σtot [nb] σtot [nb]
0.5 GeV2 ≤ Q2

min, GJR08NLO Rg = 1.0 Rg(x,Q
2
⊥)

CDHI, Q2
⊥ = (Q2

0⊥ + q2⊥)/2. 0.46 · 103 1.57 · 103

KMR, Q2
⊥ =

√
Q2

0⊥ · q2⊥ 0.64 · 103 2.1 · 103

KMR, Q2
⊥ = min(Q2

0⊥, q
2
⊥) 0.34 · 103 1.1 · 103

KMR skewed gluon σtot [nb] σtot [nb]
0.4 GeV2 ≤ Q2

min, GRV94NLO Rg = 1.0 Rg(x,Q
2
⊥)

CDHI, Q2
⊥ = (Q2

0⊥ + q2⊥)/2. 1.88 · 103 9.02 · 103

KMR, Q2
⊥ =

√
Q2

0⊥ · q2⊥ 3.03 · 103 13.4 · 103

KMR, Q2
⊥ = min(Q2

0⊥, q
2
⊥), 0.4GeV2 ≤ Q2

min 1.4 · 103 6.1 · 103

KMR, Q2
⊥ = min(Q2

0⊥, q
2
⊥), 0.8GeV2 ≤ Q2

min 0.75 · 103 3.9 · 103

PST skewed gluon σtot [nb] -
PST prescription, GBW 0.44 · 103 -
PST prescription, RS 0.52 · 103 -
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Figure 5.3: Distribution in χc0 (left plot) and ηc (right plot) rapidity with exposition
of dynamic behavior of the skewedness correction Rg, see the bottom inlays.

(GeV)
T

p

0 0.5 1 1.5 2 2.5 3 3.5

 (
n

b
/G

e
V

)
T

/d
p

σ
d

­810

­710

­610

­510

­410

­310

­210

­110

1

10

210

310

 = 13 TeV  GJR08 NLOs, 
c

χ

)2

T
(x,Q

g
),R2

iT
,q2

T
 = min(Q2

iT
KMR,Q

 = 1 
g

), R2

iT
,q2

T
 = min(Q2

iT
KMR,Q

)2

T
(x,Q

g
)/2, R2

iT
+q2

T
 = (Q2

iT
CDHI, Q

 = 1
g

)/2, R2

iT
+q2

T
 = (Q2

iT
CDHI,Q

(GeV)
T

p

0 0.5 1 1.5 2 2.5 3 3.5

 (
n

b
/G

e
V

)
T

/d
p

σ
d

­810

­710

­610

­510

­410

­310

­210

­110

1

10

210

310

 = 13 TeV, GJR08NLO s 
c

η

)2

iT
(x,Q

g
),R2

iT
,q2

T
 = min(Q2

iT
KMR,Q

 = 1
g

), R2

iT
,q2

T
 = min(Q2

iT
KMR,Q

)2

iT
(x,Q

g
)/2, R2

iT
+q2

T
 = (Q2

i T
CDHI, Q

 = 1
g

)/2, R2

i T
+q2

T
 = (Q2

i T
CDHI,Q

Figure 5.4: Distribution in χc0 (left plot) and ηc (right plot) transverse momentum.

114



5.2 Differential distributions and total cross sections: numerical results

Table 5.2: Total cross section for ηc at
√
s = 13 TeV with Rg = 1.0 and Rg according

to Eq. (5.11). The light-cone form factor for the gg → ηc(1S) coupling was obtained
through the power-law potential.

KMR skewed gluon σtot [nb] σtot [nb]
0.8GeV2 ≤ Q2

min, JR14NLO Rg = 1.0 Rg(x,Q
2
⊥)

CDHI, Q2
⊥ = (Q2

0⊥ + q2⊥)/2. 1.1 2.4

KMR, Q2
⊥ =

√
Q2

0⊥ · q2⊥ 0.39 1.2
KMR, Q2

⊥ = min(Q2
0⊥, q

2
⊥) 0.13 0.25

KMR skewed gluon σtot [nb] σtot [nb]
0.5GeV2 ≤ Q2

min, GJR08NLO Rg = 1.0 Rg(x,Q
2
⊥)

CDHI, Q2
⊥ = (Q2

0⊥ + q2⊥)/2. 2.2 5.6

KMR, Q2
⊥ =

√
Q2

0⊥ · q2⊥ 0.52 2.1
KMR, Q2

⊥ = min(Q2
0⊥, q

2
⊥), 0.5GeV2 ≤ Q2

min 0.44 1.3
KMR, Q2

⊥ = min(Q2
0⊥, q

2
⊥), 0.8GeV2 ≤ Q2

min 0.22 0.45
KMR skewed gluon σtot [nb] σtot [nb]
0.4GeV2 ≤ Q2

min, GRV94NLO Rg = 1.0 Rg(x,Q
2
⊥)

CDHI, Q2
⊥ = (Q2

0⊥ + q2⊥)/2. 1.2 · 102 7.8 · 103

KMR, Q2
⊥ =

√
Q2

0⊥ · q2⊥ 2.2 1.3 · 103

KMR, Q2
⊥ = min(Q2

0⊥, q
2
⊥), 0.4GeV2 ≤ Q2

min 2.8 1.0 · 101

KMR, Q2
⊥ = min(Q2

0⊥, q
2
⊥), 0.8GeV2 ≤ Q2

min 1.25 2.9

PST skewed gluon σtot [nb] -
PST, GBW 1.9 -
PST, RS 4.1

minimum option (Eq. (5.12), KMR-min) and another time employing the BPSS op-

tion Eq. (5.13) and using F
off
CDHI (see Eq. (5.14)). The results for χc0 and ηc are

completely different. We found one maximum in the middle of the χc0 distribution,

which can be related to the back-to-back kinematic situation, whereas in ηc distribu-

tion, two maxima can be found. The exact positions of the maxima clearly depend

on the choice of the skewed gluon. In this context, experimental verification of the

model would be appreciated. Moreover, in the pp → pηcp process, the distribution

at ϕ = {0◦, 180◦, 360◦} vanishes.

Supplemental figures to our analysis are distributions in four-momenta squared

transferred in the proton lines. In Fig. 5.6, we present two dimensional distributions

founded for the KMR off-diagonal gluon with the Durham minimum prescription

(Q2
⊥ = min(q2⊥, Q

2
0⊥)) in the left histogram and in the right histogram the KMR
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Figure 5.5: Distribution in relative angle ϕ of out-going intact protons at
√
s =

13 TeV including skewedness corrections. In the left panel for the reaction pp →
p χc0 p, while in the right panel for pp → pηcp. No absorption corrections are in-
cluded.

off-diagonal gluon with the BPSS prescription
(
Q2

⊥ =
√
q2⊥, Q

2
0⊥
)

for χc0. The left

histogram in Fig. 5.7 represents result for the CDHI off-diagonal gluon and the right

the two-dimensional plot presents distribution for the PST off-diagonal prescription

with GBW diagonal gluon distribution as an input. The shapes of the obtained

results are discernible stable under the change of the off-diagonal model. For clarity,

no absorption corrections are considered here.

In Fig. 5.8 and Fig. 5.9, we illustrate similar results for ηc CEP process. The only

result obtained from the BPSS prescription has different shape than another variant

of skewed gluons. Note that χc0 histograms differ in the pattern in comparison to

ηc.
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Figure 5.6: Distribution in t1 × t2 for the Durham minimum prescription (left
plot) and the BPSS geometrical average prescription (right plot) calculated with the
GJR08NLO gluon distribution function for χc0 for

√
s = 13 TeV. No absorption

corrections are included.

Figure 5.7: Distribution in t1 × t2 for the CDHI prescriptions (left plot) calculated
with the GJR08NLO gluon distribution function and for the PST off-diagonal UGD
computed with the diagonal GBW UGD (right plot) for χc0 for

√
s = 13 TeV. No

absorption corrections are included.
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and the BPSS geometric average prescription (right plot) with the GJR08NLO gluon
distribution function for ηc CEP for

√
s = 13 TeV. No absorption corrections are

included.
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corrections are included.
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5.2.1 Absorptive correction

5.2.1 Absorptive correction

Central exclusive processes involved hadrons or ions are exposed to absorptive cor-

rections, also known as survival probability or re-scattering effects. The majority of

reactions, which populate the gaps or change the shape of the exclusive distribution,

originate from the spectator partons of the colliding hadron/ions [159]. This issue

is still under consideration and challenges perturbative QCD physics. The wealthy

literature exists with a variety of approaches. Some theoretical groups relate the

gap survival probability to the influence of the multiparton interactions on the final

state [160, 16]. Within this approach it was possible to investigate dependence of

the gap survival factors on different kinematic variables. If the rapidity gap sur-

vival probability is only a constant factor dependent on the c.m.s. energy. Another

concept is based on soft multi-IP exchanges [161, 162, 163]. While another way to

incorporate absorptive effect is to compute absorptive corrections dynamically at

the scattering amplitude level in the dipole picture [145, 146, 142] or the Born term

with absorptive correction in the amplitude [164, 165].

To estimate the effect of absorptive corrections, it is convenient to introduce

quantum-mechanical picture at the amplitude level, where absorption has simple

interpretation.

Y

IP

IP

V (p1, p2)
−~p1⊥

−~p2⊥

Y − y

y

Φ(p1)

Φ(p2)

IP

IP
IP

~p1⊥

~p2⊥

Figure 5.10: The scheme of the absorption to Born level amplitude with specific
kinematics.

Regarding the so-called elastic re-scattering case the amplitude takes the form

A(Y, y, p⃗1⊥, p⃗2⊥) = A(0)(Y, y, p⃗1⊥, p⃗2⊥) − δA(Y, y, p⃗1⊥, p⃗2⊥) , (5.19)
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where p⃗1⊥, p⃗2⊥ are the transverse momenta of outgoing protons, see 5.10 and the

rapidity difference between the incoming proton beams is Y = log(s/m2
p) at c.m.s.-

energy
√
s and the cm-rapidity of the produced meson χc0, J

PC = 0++ or ηc, J
PC =

0−+ is denoted as y.

The Born term of the amplitude (Eq. 5.19) in a double-Regge scheme can be

formulated as follows

A(0)(Y, y, p⃗1⊥, p⃗2⊥) = isΦ1(p⃗1⊥)RIP(Y − y, p⃗1⊥
2)

× V (p⃗1⊥, p⃗2⊥)RIP(y, p⃗2⊥
2) Φ2(p⃗2⊥) , (5.20)

where V (p⃗1⊥, p⃗2⊥) is the IPIP → Q vertex and RIP(y, p⃗2⊥) stands for the Pomeron

Regge-propagator and for definiteness, we assume that

Φ1,2(p⃗1,2⊥) = Φ1,2(0) exp
(
− 1

2
BD p⃗,2⊥

2
)
, (5.21)

without loss of further generality we can take Φ1,2(0) = 1. The absorptive correction

term is found as

δA(Y, y, p⃗1⊥, p⃗2⊥) =

∫
d2k⃗⊥

2(2π)2
T (s, k⃗⊥)A(0)(Y, y, p⃗1⊥ + k⃗⊥, p⃗2⊥ − k⃗⊥) , (5.22)

with the elastic ansatz T (s, k⃗⊥) = σpptot(s) exp
(
− 1

2
Bel(s)k⃗

2
⊥

)
. As an elastic pp→ pp

integrated cross-section we adopt σpptot = (110.6 ± 3.4) mb and the nuclear slope is

taken to be Bel = (20.36± 0.19) GeV−2, which are values founded experimentally in

Ref. [166] at
√
s = 13 TeV. The IPIP fusion vertex to Q, in the case spinless meson

Q, can be expanded in Fourier series:

V (p⃗1⊥, p⃗2⊥) = V0(p⃗1⊥
2, p⃗2⊥

2) +
∑
n≥1

(
V +
n (p⃗1⊥

2, p⃗2⊥
2) cos(nϕ)

+ V −
n (p⃗1⊥

2, p⃗2⊥
2) sin(nϕ)

)
. (5.23)

Note that for the scalar meson 0++ all terms containing sin(nϕ) do vanish, while

for the pseudoscalar 0+− terms with cos(nϕ) and V0 do not contribute. Let us keep

only the first terms up to n = 1. Therefore, a useful first ansatz could be:

scalar 0++ : V +(p⃗1⊥, p⃗2⊥) = V0 + V +
1 (p⃗1⊥ · p⃗2⊥)

= V0

(
1 + τBD(p⃗1⊥ · p⃗2⊥)

)
with τ ≡ V +

1

BDV0
(5.24)
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5.2.1 Absorptive correction

pseudoscalar 0+− : V −(p⃗1⊥, p⃗2⊥) = V −
1 · [p⃗1⊥, p⃗2⊥] . (5.25)

To simplify the problem further, let us focus on the central rapidity region, in

particular at the fixed point for meson rapidity y = 0 and recapitulate the normal-

ization of our amplitude

dσ =
1

256π5s2
|A(Y, y, p⃗1⊥, p⃗2⊥)|2dyd2p⃗1⊥d2p⃗2⊥d2p⃗⊥ δ(2)(p⃗⊥ + p⃗1⊥ + p⃗2⊥) . (5.26)

Subsequently, with the help of the vertices in Eq. (5.25), the differential distribution

in transverse momentum of the mesons at the Born level can be parameterized as

follows

dσ0+
Born

dydp2⊥

∣∣∣
y=0

=
exp[−1

2
BDp

2
⊥]V 2

0

512π3BD

{
1 − τ(1 − 1

2
BDp

2
⊥) (5.27)

+
τ 2

2

(
1 − 1

2
BDp

2
⊥ +

1

8
B2
Dp

4
⊥

)}
dσ0−

Born

dydp2⊥

∣∣∣
y=0

=
(V −

1 )2

512π3

p2⊥
4B2

D

exp[−1
2
BDp

2
⊥] . (5.28)

The calculation of the absorption correction needs some loop integral evaluation

δA(Y, 0, p⃗1⊥, p⃗2⊥) =

∫
d2k⃗⊥

2(2π)2
T (s, k⃗⊥) exp

(
− 1

2
BD(p⃗1⊥ + k⃗⊥)2

)
× exp

(
− 1

2
BD(p⃗2⊥ − k⃗⊥)2

)
V (p⃗1⊥ + k⃗⊥, p⃗2⊥ − k⃗⊥)

= exp
(
− 1

2
BD(p⃗1⊥

2 + p⃗2⊥
2)
)
×
∫

d2k⃗⊥
2(2π)2

exp
(
− 1

2
(Bel(s) + 2BD)k⃗2⊥

)
× exp

(
−BDk⃗⊥ · (p⃗1⊥ − p⃗2⊥)

)
σpptot(s)V (p⃗1⊥ + k⃗⊥, p⃗2⊥ − k⃗⊥) . (5.29)

The following dimensionless quantities control the strength of absorptive corrections

and are collected in Tab. 5.3 Tab. 5.4 for χc0 and ηc, respectively:

gabs =
σpptot(s)

4π(Bel(s) + 2BD)
and β =

BD

Bel(s) + 2BD

. (5.30)

Finally, the absorptive corrections are obtained through formulas below

δA0+(Y, 0, p⃗1⊥, p⃗2⊥) = gabsV0 exp
(
− 1

2
BD(p⃗1⊥

2 + p⃗2⊥
2)
)

exp
(1

2
βBD(p⃗1⊥ − p⃗2⊥)2

)
×
{

1 + β(1 + β)τBD(p⃗1⊥
2 + p⃗2⊥

2) + (p⃗1⊥ · p⃗2⊥)τBD

(
1 − 2β(1 + β)

)}
, (5.31)
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Table 5.3: V0 and τ at midrapidity of χc0, for several prescriptions for off-diagonal
UGDs.

χc0 V +
0 τ BD gabs β σtot|y=0 σabs

tot |y=0 S2
y=0

[
√

nb/GeV2] [GeV−2] [nb] [nb]
KMR −2167 −0.11 4.5 0.77 0.15 29 3.7 0.13
BPSS −3118 −0.135 4.5 0.77 0.15 61 8.0 0.13
CDHI −2985 −0.135 4.5 0.76 0.15 42 7.5 0.18
GBW −2062 −0.31 5.7 0.71 0.18 17 3.7 0.21
RS −2381 −0.28 5.9 0.70 0.18 21 4.5 0.21

Table 5.4: An example of V1 values at midrapidity of ηc in the CEP process, for
several prescriptions for off-diagonal UGDs.

ηc V −
1 BD gabs β σtot|y=0 σabs

tot |y=0 S2
y=0

[
√

nb/GeV4] [GeV−2] [nb] [nb]
KMR 1015. 4.7 0.76 0.16 1.3 × 10−1 3.0 × 10−2 0.29
BPSS 1490. 7.0 0.66 0.20 5.8 × 10−2 2.2 × 10−2 0.38
CDHI 651. 3.5 0.81 0.13 1.8 × 10−1 4.0 × 10−2 0.22
GBW 194. 3.4 0.83 0.12 1.8 × 10−2 3.9 × 10−3 0.21
RS 400. 3.2 0.84 0.12 9.0 × 10−3 1.9 × 10−3 0.21

δA0−(Y, 0, p⃗1⊥, p⃗2⊥) = (1 − β)gabsV
−
1 exp

(
− 1

2
BD(p⃗1⊥

2 + p⃗2⊥
2)
)

× exp
(1

2
βBD(p⃗1⊥ − p⃗2⊥)2

)
× [p⃗1⊥, p⃗2⊥](1 − β)

(
1 − βBD(p⃗1⊥ · p⃗2⊥)

)
. (5.32)

In Tab. 5.3 and Tab. 5.4 we show the fitted parameters to our Born level cross-section

V0, V1, BD and on this base we construct amplitude with incorporated absorption

δA0+ or δA0−. Further the gap survival probability is defined as

S2 ≡
dσ/dy

∣∣∣
y=0

dσBorn/dy
∣∣∣
y=0

. (5.33)

We observe that the gap survival probability in the case of χc(0) is placed in the

range 13%−21%, whereas for ηc we found 21%−38%, depending on the off-diagonal

gluon treatment.

In this analysis, we focus only on the elastic re-scattering effect. The com-

monly used multichannel models encoded eventual diffractively initiated interme-
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5.3 Remarks and outlook

diate states are designed for purely soft diffraction. In the process, which we put

under consideration, we faced semi-hard gluon exchanges, see Fig. 5.1.

5.3 Remarks and outlook

Now, we can assemble our results obtained from inclusive prompt production in

proton-proton collision with centrally exclusively produced χc0 (1P) and ηc (1S). Due

to the fact that ηc is a pseudoscalar meson, we expect that exclusive production is

suppressed according to JPCz selection rule in the strictly forward limit.

In Fig. 5.11, we reveal the rapidity differential cross sections for the previously

discussed off-diagonal gluons inspired by the dipole approach and the ones based

on the Durham model. The findings for χc (on the l.h.s.) and ηc (on the r.h.s)

CEP are contrasted to inclusively produced mesons obtained in the k⊥-factorization

approach. In the ηc case, we observe that distribution obtained through the PST

prescription, which encodes dipole gluon model (GBW or RS), has a similar pattern

as inclusive production.
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Figure 5.11: Comparison of the distribution from inclusive prompt and exclusive
central reaction without absorption correction. The gap survival probability is not
incorporated.

A measurement of the cross-section of pp → p ηc p would be of great value to

check our approach. Here we did not consider other possible ”almost exclusive”
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channels of production such as γIP → J/ψ → ηcγ with an unregistered soft photon

in the final state. Rough order of magnitude estimates suggests that this process is

small. A more substantial contribution could come from the γγ → ηc process in pp

collisions.

It would be interesting to evaluate signal to background ratio in the context of

future experiments. Recently, Lebiedowicz et al. [167] have computed the pp →
pppp̄ continuum production. Moreover, the STAR research group at the Relativistic

Heavy Ion Collider has found the first evidence [134] of exclusively produced pp̄

pairs. The reaction involving photons pp → ppγγ in the final state could be more

noteworthy in the context of measuring exclusively produced ηc.
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Chapter 6

Summary and Outlook

The physics behind the production of quarkonia is still regarded to have many open

problems. Therefore, we put under investigation several charmonium and bottomo-

nium production mechanisms induced by gluons or photons. We have specified

the reactions and kinematic regions, where the discussed mechanisms could make a

significant contribution.

In the beginning, we have studied the additional gluon emission associated to

χcJχcJ pair production. For instance, this process is relevant in the context of

J/ψJ/ψ pair production as one of feed down mechanisms. However, an extra gluon

emission as a leading jet is also one of the proposed processes to be observed at

the LHC and is interesting by itself. We have found that in the collinear approach

at leading order the gg → χcJχcJ process results in smaller cross-sections than the

ones obtained from the k⊥-factorization approach. We expect that the inclusion of

two real gluon contributions in collinear approximation will lead to enhancement

of the distributions, especially in the case of χc1χc1 production. Another conclu-

sion arising from this analysis, which affects our further research plans, is that in

the applied color singlet approximation of the NRQCD model the results crucially

depend on the radial part of the wave functions or their derivatives at the origin.

These phenomenological parameters can be obtained in two ways: either through

their relation to radiative decay rate or through phenomenological potential models

of QQ̄ interactions suited to describe the meson mass spectra.

In the k⊥-factorization approach a crucial element are the so-called off-shell ma-

trix elements, What now, if we decompose matrix elements into transition form

factors and investigate the situation, where the whole structure of the wave func-

tion takes part in the composition of these form factors? In particular, we have
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6. SUMMARY AND OUTLOOK

paid attention to space-like transition form factors induced by photons and their

relation to gluon-gluon-meson transition form factors at the lowest perturbative or-

der. We have derived a master formula for the transition form factors in terms of

light-cone wave function of the pseudoscalar mesons ηc(1S), ηc(2S) as well scalar

χc0, χb0. Additionally, in the case of ηc, we have studied the relation to the so-called

decay constant fηc and distributions amplitudes. We have found that all considered

potential models’ results agree with the experimental value within the error range.

We have performed a thorough analysis of the form factors with our adopted

color singlet approach and compared our results with a computation in the strict

non-relativistic limit.

For each potential model of QQ̄ interaction, we have computed values of the

transverse form factor at the on-shell point FTT (0, 0), the radiative decay rate and

the corresponding radial part of the wave at the origin or their first derivative.

We have compared the normalized light-cone transition γ∗γ → ηc (1S) form factor

FTT (Q2, 0)/FTT (0, 0) with current BABAR data with a rather satisfactory agree-

ment for the power-like and oscillator potential model. We have presented the

predicted shapes of the FTT (Q2, 0)/FTT (0, 0) for χc0 and χb0. Our results differ in

shapes according to the applied potential model. We have noticed that a crucial pa-

rameter in the light-cone form factor is the employed quark mass. We have collected

three results: for ηc, χc0 and χb0. The normalized form factor FTT (Q2, 0)/FTT (0, 0)

in the case of χb0 turned out to have almost linear behaviour as a Q2 function. This

feature can be related to the non-relativistic nature of the bb̄ bound state.

In addition, we have analyzed the distribution amplitudes in the case of ηc(1S)

and ηc(2S). We have observed the expected symmetry under exchange z ↔ (1 − z)

and have studied the dependence of the DA on the light-cone wave function. We

have found that the so-called Brodsky-Lepage limit of Q2F (Q2, 0) is unattainable

in our approach at virtualities Q2 ∼ 400 GeV2.

We have then proposed to apply our light-cone form factors to hadron-hadron

scattering in k⊥-factorization approach. We have examined four sets of unintegrated

gluon distribution functions: KMR/KMRW MMHT2014NLO, JH2013 set2, as well

as K.Kutak’s solutions of linear and non-linear small-x evolution equations. In

particular, we have taken under investigation the asymmetric “forward” kinematical

region 2.5 < yQ < 4 and pT > 6.5 GeV of the produced meson. We have shown that

the fusing gluons are well separated in the carried proton longitudinal momentum

fraction x1 and x2. In the case of the ηc(1S) prompt hadronic production, we have
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found relatively good agreement with experimental data at
√
s = 7 TeV and

√
s =

8 TeV center of mass energy. However, at
√
s = 13 TeV our predictions undershoot

the data.

In chapter 5, we have investigated the central exclusive production mechanism of

charmonium in which our adopted color-singlet vertex could find another justified

application. We have found that the exclusively produced ηc(1S) is dramatically

suppressed in comparison to inclusive production. We have also estimated and

discussed the effect of the absorptive corrections, which we found to be about 13%−
21% for χc0 production and 21% − 38% in the case of ηc(1S) production.

Our master formula 3.60 derived in this thesis is presented in an universal form

and can be treated as a tool to investigate heavy QQ̄ bound states. It is in fact

valid for C-even states of any spin. In this thesis, we have considered transitions

γ∗γ∗ into scalar and pseudoscalar mesons. Our master formula can likewise be used

to obtain the three, respectively five independent form factors for spin-1 and spin-2

mesons.

In our approach, we have applied the light-cone wave function constructed on

the basis of solutions of the Schrödinger equation. We have used the Terentev pre-

scription to transition to the light-cone wave functions. Nevertheless, the light-cone

wave function can also be directly found as a solution of a light-cone Hamiltonian

[168] or deriving an effective Hamiltonian problem [169] using renormalization group

methods. It would be interesting to study the impact of these recent developments

in the future.

It would be an intriguing perspective in the context of the Belle II experiment

to search the transition form factors in terms of the photon virtualities Q2
1 , Q

2
2. It

would be interesting to study also the transition form factors of the light mesons

such as η or ρ.
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Appendix A

The radial part of the wave

function as a solution

of the Schrödinger equation

A.1 Radial WF in configuration and momentum

space

Here we briefly summarize some main facts about the potential model description

of Quarkonia. Some more details can be found in the appendix of Ref. [170]).

The Schrödinger equation is solved in the bound state rest frame.

We assume that the potential is central, i.e. it only depends on the distance

r = |r⃗| between quark and antiquark:( p⃗2
2µ

+ V (r)
)
|E, nlm⟩ = E|E, nlm⟩ . (A.1)

Here µ = mQ/2 is the reduced mass, mQ is the mass of the quark, and we denote by n

the principal quantum number, and l,m the standard angular momentum quantum

numbers. The wave function (WF) in configuration space decomposes into a radial
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and angular momentum part:

⟨r⃗|E, nlm⟩ = Ψnlm(r⃗) = Rnl(r)Ylm(r̂) =
unl(r)

r
Ylm(r̂), (A.2)

with r̂ = r⃗/r and the well-known spherical harmonics Ylm(r̂), see for example a

textbook on quantum mechanics, like [171].

After the standard separation of angular and radial variables, the Schrödinger

equation for the radial WF reads

∂2unl(r)

∂r2
=
(
Veff(r) − ε

)
unl(r) , (A.3)

with

Veff(r) = mQV (r) +
l(l + 1)

r2
, ε = mQE . (A.4)

The WF is normalized as ∫
d3r⃗
∣∣∣Ψnlm(r⃗)

∣∣∣2 = 1, (A.5)

so that ∫ ∞

0

r2drR2
nl(r) =

∫ ∞

0

dru2nl(r) = 1. (A.6)

The momentum space wave function can also be decomposed into “radial” and

angular part

⟨p⃗|E, nlm⟩ = Ψnlm(p⃗) = ϕnl(p)Ylm(p̂) =
unl(p)

p
Ylm(p̂). (A.7)

It can be obtained by the Fourier-transform

Ψnlm(p⃗) =

∫
d3r⃗ ⟨p⃗|r⃗⟩⟨r⃗|E, nlm⟩ =

∫
d3r⃗

(2π)3/2
exp(−ip⃗r⃗) Ψnlm(r⃗). (A.8)

and is normalized as ∫
d3p⃗
∣∣∣Ψnlm(p⃗)

∣∣∣2 = 1, (A.9)
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A.1 Radial WF in configuration and momentum space

Let us calculate the Fourier-transform, to obtain ϕnl in terms of Rnl. To this end,

we use the decomposition

exp(−ip⃗r⃗) =
∑
l

il(2l + 1)jl(pr)Pl(p̂r̂)

= 4π
∑
l

l∑
m=−l

iljl(pr)Ylm(p̂)Y ∗
lm(r̂).

(A.10)

Then we get

ϕnl(p) =
4πil

(2π)3/2

∫ ∞

0

r2drjl(pr)Rnl(r) = il
√

2

π

∫ ∞

0

r2drjl(pr)Rnl(r) , (A.11)

or, equivalently

unl(p) = il
√

2

π

∫ ∞

0

dr prjl(pr)unl(r) . (A.12)

In our calculations we often need the radial wave function at the origin (for s-wave

states), or its first derivative at the origin (for p-wave states). Let us express the

radial WF at the origin (or its derivative) as an integral over the momentum-space

WF. The inverse relation to Eq. (A.11) is

Rnl(r) = il
√

2

π

∫ ∞

0

p2dpjl(pr)ϕnl(p). (A.13)

For the S − wave state, l = 0, we obtain then, using

j0(x) =
sinx

x
, j0(0) = 1 , (A.14)

the expression for the radial WF at the origin

Rn0(0) =

√
2

π

∫ ∞

0

p2dp ϕn0(p) =

√
2

π

∫ ∞

0

pdp un0(p). (A.15)

For the derivative of the radial WF at the origin, we get

∂Rnl(r)

∂r
= il

√
2

π

∫ ∞

0

p3dpj′l(pr)ϕnl(p). (A.16)

For the P −wave, the derivative of the radial WF at the origin is nonvanishing and

can be written as:

∂Rn1(r)

∂r

∣∣∣
r=0

= i

√
2

π

1

3

∫ ∞

0

dpp3ϕn1(p) = i

√
2

π

1

3

∫ ∞

0

dpp2un1(p) . (A.17)
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A.2 Models for the QQ̄-potential

Here, several models for the interaction QQ̄ potential, V (r) chosen for our analysis

are described.

• Harmonic oscillator1:

V (r) =
1

4
mQ ω

2 r2 , (A.18)

where for charmonia it was taken ω = 0.42 GeV, mc = 1.4 GeV, and bottomo-

nia ω = 0.396 GeV, mb = 4.2 GeV . An analytic solution of the the Schrödinger

equation (A.3) has straightforward form for the 1S state

u(r) =
2a3/2

π1/4
r exp

[
−1

2
a2 r2

]
, (A.19)

here a =
√

(mQ/2)ω and for the 1P state

u(r) = r a

√
2

3

2a3/2

π1/4
r exp

[
−1

2
a2r2

]
, (A.20)

which is a Gaussian-like shape of the wave function.

• Cornell potential [172, 173, 174]:

V (r) = −k
r

+
r

a2
, k = 0.52 , a = 2.34 GeV−1 , (A.21)

the charm and the beauty quark mass is fixed respectively to mc = 1.84 GeV

and mb = 5.17 GeV.

• Logarithmic potential [175]:

V (r) = −0.6635 GeV + (0.733 GeV) log(r · 1 GeV) , (A.22)

with mc = 1.5 GeV and mb = 5.0 GeV.

• Effective power-law potential [176, 177]:

V (r) = −6.41 GeV + (6.08 GeV) (r · 1 GeV)0.106 , (A.23)

adopted mc = 1.334 GeV [178].

1Here we correct typo in Ref. [7].
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• Buchmüller-Tye (BT) potential [179]:

V (r) =

{
k
r
− 8π

27
v(λr)
r

, r ≥ 0.01 fm

−16π
25

1
r lnw(r)

(
1 + 2

(
γE + 53

75

)
1

lnw(r)
− 462

625
ln lnw(r)
lnw(r)

)
, r < 0.01 fm ,

(A.24)

where the Euler constant is γE = 0.5772, while the function v(x) is known

numerically from Ref. [179]. The remaining constants are taken as

w(r) =
1

λ2MS r
2
, λMS = 0.509 GeV , k = 0.153 GeV2 , λ = 0.406 GeV .

(A.25)

Here, the charm quark mass is taken as mc = 1.48 GeV and the beauty quark

mass mb = 4.87 GeV. The characteristic feature of BT potential is that at

r around 0 has behaviour as Coulomb potential, whereas a string-like shape

occurs at large r. Moreover, the main difference between the Cornell and the

B-T potentials appears at small r.
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Appendix B

Canonical and light-cone spinors,

the Melosh transformation

B.1 Particle spinors

The positive energy solutions of the free Dirac equations are the spinors (or four-

spinors) u(p, σ):

(p̂−m)u(p, σ) = 0 , (B.1)

where p̂ = pµγµ. The four-momentum pµ fulfills the mass-shell condition

pµp
µ = E2 − p⃗2 = m2 , (B.2)

and σ is a polarization label. The γ-matrices fulfill

{γµ, γν} = γµγν + γνγµ = 2gµν . (B.3)

An explicit representation of the 4 × 4 matrices γµ is

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (B.4)

with the 2 × 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.5)
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B. CANONICAL AND LIGHT-CONE SPINORS, THE MELOSH
TRANSFORMATION

One often uses spinors of the form

u(p, σ) =
√
E +m

 ξσ
σ⃗p⃗

E +m
ξσ

 , (B.6)

Here ξσ is a two-component Pauli-spinor. The polarization label σ take values ±1,

and its significance is the following: in the rest frame of the particle, i.e. for p⃗ = 0,

the z-projection of the canonical spin operator is Sz = σ/2.

Different choices of spinors are in use, and can make calculations more trans-

parent. For example in high energy physics it is common to use spinors which are

not eigenstates of the canonical spin operator, but of the so-called helicity operator

σ⃗p⃗/|p⃗|. Here we use still another form, which in somesense interpolates between

canonical spin states and helicity states. These are the light-cone spinors, which

form was given by Lepage and Brodsky in [67]. They read explicitly:

uLC(p, λ) =
1√√
2p+

(√
2p+ + βm+ α⃗ · p⃗⊥

)
ũλ . (B.7)

Here λ/2 is the light-cone helicity, and

β = γ0 , α⃗ = βγ⃗ . (B.8)

The momentum-independent basis spinors ũλ, λ = ±1, read

ũ+1 =
1√
2


1
0
1
0

 , ũ−1 =
1√
2


0
1
0
−1

 , (B.9)

which can be summarized as

ũλ =

(
χλ

σ⃗n⃗ χλ

)
. (B.10)

Where χλ are two–component spinors. From the general theory of the Lorentz-

group one can show, that spinors ξσ and χλ are related by a (momentum-dependent)

rotation, the so-called Melosh–Wigner transform. We can give the explicit form of

the 2 × 2 rotation matrix simply by comparing canonical and light-cone spinors.
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B.2 Antiparticle spinors

We start by writing out Eq. B.22 as

uLC(p, λ) =
1√

2
√

2p+

(√
2p+ +m σ⃗p⃗⊥
σ⃗p⃗⊥

√
2p+ −m

)(
χλ
σ⃗n⃗χλ

)

=
1√

2
√

2p+

(√2p+ +m+ (σ⃗p⃗⊥)(σ⃗n⃗)
)
χλ(

σ⃗p⃗⊥ + (
√

2p+ −m)σ⃗n⃗
)
χλ

 . (B.11)

Let us now introduce the matrix

R̂(p+, p⃗⊥) ≡
√

2p+ +m+ (σ⃗p⃗⊥)(σ⃗n⃗)√
2
√

2p+(E +m)
=

√
2p+ +m+ (σ⃗p⃗⊥)(σ⃗n⃗)√

(
√

2p+ +m)2 + p⃗2⊥

, (B.12)

and, using that (σ⃗p⃗⊥)(σ⃗n⃗) = −(σ⃗n⃗)(σ⃗p⃗⊥) one can immediately see, that R̂(p+, p⃗⊥)

is unitary

R̂(p+, p⃗⊥)R̂†(p+, p⃗⊥) = 1 . (B.13)

One also easily convinces oneself, that

σ⃗p⃗

E +m
R̂(p+, p⃗⊥) =

σ⃗p⃗⊥ + (
√

2p+ −m)σ⃗n⃗√
2
√

2p+(E +m)
, (B.14)

so that we can write

uLC(p, λ) =
√
E +m

(
R̂(p+, p⃗⊥)χλ
σ⃗p⃗

E+m
R̂(p+, p⃗⊥)χλ

)
, (B.15)

Thus, the light-cone spinors χλ are related to canonical spinors ξσ by

ξσ =
[
R̂(p+, p⃗⊥)

]
σλ
χλ . (B.16)

B.2 Antiparticle spinors

The antiparticle spinors (negative energy solutions fulfill

(−p̂−m)v(p, σ) = (p̂+m)v(p, σ) = 0 . (B.17)
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B. CANONICAL AND LIGHT-CONE SPINORS, THE MELOSH
TRANSFORMATION

They are related to the particle spinors by the charge conjugation operation C:

v(p, σ) = CūT (p, σ) . (B.18)

The operator C can be written as

C = η iγ2γ0 , (B.19)

where η is an arbitrary phase, so that

v(p, σ) = η iγ2u
∗(p, σ) . (B.20)

We follow Brodsky and Lepage and choose the phase η = −1. Then, applying the

charge conjugation to spinors (B.6), the canonical antiparticle spinors are obtained

as:

v(p, σ) =
√
E +m

(
(−iσ2) σ⃗∗p⃗

E+m
ξ∗σ

iσ2ξ
∗
σ

)
=

√
E +m

(
σ⃗p⃗

E+m
iσ2ξ

∗
σ

iσ2ξ
∗
σ

)
. (B.21)

Here we did use the identity σ2σ⃗
∗σ2 = −σ⃗. The light-cone Brodsky-Lepage antipar-

ticle spinors are

vLC(p, λ̄) =
1√√
2p+

(√
2p+ − βm+ α⃗ · p⃗⊥

)
ṽλ̄ , (B.22)

with ṽλ̄ = −iγ2ũ∗λ̄:

ṽλ̄ =

(
(σ⃗n⃗) iσ2χ

∗
λ̄

iσ2χ
∗
λ̄

)
. (B.23)

We can write the antiparticle spinor more explicitly:

vLC(p, λ̄) =
1√

2
√

2p+

(√
2p+ −m σ⃗p⃗⊥
σ⃗p⃗⊥

√
2p+ +m

)(
(σ⃗n⃗) iσ2χ

∗
λ̄

iσ2χ
∗
λ̄

)

=
1√

2
√

2p+

 (
(
√

2p+ −m)σ⃗n⃗+ σ⃗p⃗
)
iσ2χ

∗
λ̄(

(σ⃗p⃗)(σ⃗n⃗) +
√

2p+ +m
)
iσ2χ

∗
λ̄

 . (B.24)

From here, we can read off the Melosh-transform for the antiparticle spinor as

iσ2ξ
∗
σ̄ = R̂(p+, p⃗⊥)iσ2χ

∗
λ̄ ⇐⇒ ξ∗σ̄ = (−iσ2)R̂(p+, p⃗⊥)iσ2χ

∗
λ̄ = R∗(p+, p⃗⊥)χ∗

λ̄ ,(B.25)

which shows, that the antiparticle spinor transforms with the complex-conjugate

Melosh transform.

138



B.3 Normalization and polarization sum of spinors

B.3 Normalization and polarization sum of spinors

Spinors are normalized in the following way 1 :

ū(p, λ′)γµu(p, λ) = 2pµ δλ′λ , v̄(p, λ̄′)γµv(p, λ̄) = 2pµ δλ̄′λ̄ , (B.26)

This normalization implies, using the Dirac equation:

ū(p, λ′)u(p, λ) = 2mδλ′λ , v̄(p, λ̄′)v(p, λ̄) = −2mδλ̄′λ̄ . (B.27)

We furthermore have the polarization sums∑
λ

u(p, λ)ū(p, λ) = p̂+m,
∑
λ̄

v(p, λ̄)v̄(p, λ̄) = p̂−m. (B.28)

B.4 Kinematics for the two-body bound state

Here we briefly derive some relations used in the main text concerning the momenta

of Q and Q̄ in the bound state. Let the invariant mass of the QQ̄ system be M ,

then we have in the c.m.-frame of the pair:

Pµ = pQµ + pQ̄µ = (M, 0⃗) =
[M√

2
,
M√

2
,0
]
. (B.29)

Because for quarkonia, quark and antiquark are of equal mass mQ, their four-

momenta are

pQµ =
(M

2
, p⃗
)
, pQ̄µ =

(M
2
,−p⃗

)
. (B.30)

From the on-shell condition p2Q = m2
Q we derive

|p⃗| = 1
2

√
M2 − 4m2

Q =
M

2
β , with β =

√
1 −

4m2
Q

M2
. (B.31)

The z-component of p⃗ is

pz = |p⃗| cos θ =
M

2
β cos θ . (B.32)

1we skip the label LC, the normalization condition applies equally for LC and canonical spinors
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B. CANONICAL AND LIGHT-CONE SPINORS, THE MELOSH
TRANSFORMATION

The light-cone plus momentum of the quark is

pQ+ =
1√
2

M

2
(1 + β cos θ) , (B.33)

and the frame-independent light-cone momentum fraction is

z =
pQ+

P+

= 1
2
(1 + β cos θ) ⇐⇒ β cos θ = 2z − 1 , (B.34)

and therefore

pz =
M

2
(2z − 1) . (B.35)

This gives the form of the three-momentum used in the Terentev substitution:

p⃗ = (p⃗⊥, (z − 1
2
)M) . (B.36)

We stress again, that M is the invariant mass of the QQ̄-system, which is not equal

to the bound-state mass. In terms of LC variables z, p⃗⊥ it can be calculated from

M2 =
p⃗2⊥ +m2

z(1 − z)
. (B.37)

B.5 Parametrization of the Melosh transform

We wish to briefly bring the Melosh transform into the form used in the main text.

From Eq. (B.33), we find

pQ+ =
1√
2
zM , (B.38)

and hence

R(z, p⃗⊥) ≡ R(pQ+, p⃗⊥) =
m+ zM − iσ⃗ · (n⃗× p⃗)√

(m+ zM)2 + p⃗2⊥
. (B.39)

Here we used the property of Pauli-matrices

(σ⃗ · a⃗)(σ⃗ · b⃗) = a⃗ · b⃗+ iσ⃗ · (⃗a× b⃗) . (B.40)
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Appendix C

Distribution amplitude

The distribution amplitude (DA) of a meson gives us a probability amplitude to find

a meson in a state composed out of two collinear partons, a quark and antiquark.

They share the light-cone momentum of the meson in fractions z, 1 − z. From the

point of view of the light-front approach, the DA is a sort of projection of the

LC-WF, where the transverse momentum of (anti-)quarks is integrated out.

Let us briefly explain, how the DA can be calculated from the lowest Fock-state

LC-WF of a meson. We will restrict ourselves to the case of a pseudoscalar meson.

An operator definition of the (leading-twist) DA of the pseudoscalar meson,

described by the state vector |M(P )⟩ is:

fM φ(z) =

∫
dx−
2π

exp
[
− i(2z − 1)

x−P+

2

]
⟨0|ψ̄

(x
2

)
γ+γ5ψ

(
− x

2

)
|M(P )⟩

∣∣∣
x+=x⃗⊥=0

(C.1)

Here the constraint x+ = 0, x⃗⊥ = 0⃗⊥ means that the quark and antiquark are

separated along the lightcone, i.e. x = (0, x−, 0⃗⊥). The dimensionful constant fM

is the so-called meson decay constant, which is related to the matrix element of the

axial vector current as

fMPµ = ⟨0|Aµ(0)|M(P )⟩ , withAµ(0) = ψ̄(0)γµγ5ψ(0) . (C.2)

Integrating Eq. (C.1) over z, and comparing to the plus-component of Eq. (C.2), we

obtain the normalization of the DA:∫ 1

0

dz φ(z) = 1 . (C.3)
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C. DISTRIBUTION AMPLITUDE

In the LF quantization approach, fields at x+ = 0 are free and can be expanded into

plane waves. The quark field operator can then be written as

ψ(x)
∣∣∣
x+=0

=

∫
dk+d

2k⃗⊥
k+16π3

θ(k+)
∑
λ

(
b(k, λ)u(k, λ)e−ik·x + d†(k, λ)v(k, λ)eik·x

)∣∣∣
x+=0

(C.4)

Here u(k, λ), v(k, λ) are the spinors introduced in section App. B and b, d† are the an-

nihilation/creation operators which allow us to build the Fock-states. For example,

the Fock state of a single quark Q is given by

|Qλ(k+, k⃗⊥)⟩ = b†(k, λ)|0⟩ . (C.5)

All states are canonically normalized, i. e.

⟨Qλ′(k
′
+, k⃗

′
⊥)|Qλ(k+, k⃗⊥)⟩ = 2k+(2π)3δ(k′+ − k+)δ(2)(k⃗⊥ − k⃗′⊥) . (C.6)

Now, the operator

Â+(x)
∣∣∣
x+=x⃗⊥=0

≡ ψ̄
(x

2

)
γ+γ5ψ

(
− x

2

)∣∣∣
x+=x⃗⊥=0

, (C.7)

is a bilinear form in creation annihilation operators b†, d, . . . . For our application,

we only need the part containing quark and antiquark annihilation operators, which

will have nonvanishing matrix elements between vacuum and meson state:

Â+(x)
∣∣∣
x+=x⃗⊥=0

=

∫
dk′+d

2k⃗′⊥
k′+16π3

dk+d
2k⃗⊥

k+16π3

(
d(k′, λ′)b(k, λ) exp(−i(k+ − k′+)

x−
2

)

× v̄(k′, λ′)γ+γ5u(k, λ) + . . .
)
. (C.8)

We now only need the expansion of the meson state – without loss of generality, we

can choose P⃗⊥ = 0:

|M ;P+, 0⃗⊥⟩ =
∑
i,j,σσ̄

δij√
Nc

∫
dud2l⃗

u(1 − u)16π3
Ψσ,σ̄(u, l⃗)

× |Qiσ(uP+, l⃗)Q̄
j
σ̄((1 − u)P+,−l⃗)⟩ . (C.9)

Then, sandwiching the operator of Eq. (C.8) between vacuum and the meson state

and integrating over∫
dud2l⃗

u(1 − u)16π3

dk′+d
2k⃗′⊥

k′+16π3

dk+d
2k⃗⊥

k+16π3∑
λ,λ̄...

⟨0|d(k′, λ′)b(k, λ)|Qiσ(uP+, l⃗)Q̄
j
σ̄((1 − u)P+,−l⃗)⟩

× v̄(k′, λ′)γ+γ5u(k, λ)Ψσ,σ̄(u, l⃗) 2δ(k+ − k′+ + (1 − 2z)P+) (C.10)
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The spinor matrix element is very simple:

v̄(k′, λ′)γ+γ5u(k, λ) = 2
√
k+k′+ λδλ′,−λ , (C.11)

and after some algebra using standard rules of second quantization and renaming

integration variables, we obtain in the end:

fMφ(z) = 2
√
Nc

∫
d2k⃗⊥√

z(1 − z)16π3

(
Ψ+−(z, k⃗⊥) − Ψ−+(z, k⃗⊥)

)
. (C.12)

Inserting the combination of helicity-dependent WFs from Eq. (3.19), we obtain

fMϕ(z) =
mc

√
Nc

4π3

1

z(1 − z)

∫
d2k⃗⊥ ψ(z, k⃗⊥) . (C.13)

The meson decay constant is just the integral over z of the rhs:

fM =
mc

√
Nc

4π3

∫ 1

0

dz

z(1 − z)

∫
d2k⃗⊥ ψ(z, k⃗⊥) . (C.14)
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Appendix D

Light-cone variables and

Lorentz-transformations

In this appendix, we wish to collect some useful facts about Lorentz-transformations

acting on four momenta in the light-cone representation. They have been implic-

itly used in many formulas in the main text, and may help the reader to better

understand the frame-invariance of the light-cone approach to bound states.

For the purpose of this appendix, let us write the standard parametrization of

four-vectors as

aµ = (a0, a⃗) = (a0, ax, ay, az) , (D.1)

while we denote the four-vector in terms of light-cone components as

aµ = [a+, a−, a⃗⊥] = [a+, a−, ax, ay] , (D.2)

with a± = (a0 ± az)/
√

2. The Lorentz-invariant product of four-vectors is

a · b = a0b0 − a⃗ · b⃗ = a+b− + a−b+ − a⃗⊥ · b⃗⊥ . (D.3)

We also often use the notation (below n⃗ = (0, 0, 1)):

[⃗a⊥, b⃗⊥] ≡ (⃗a⊥ × b⃗⊥) · n⃗ = axby − aybx . (D.4)

Notice, that this antisymmetric product can also be written in terms of the totally

antisymmetric Levi-Civita symbol εµναβ as

εµναβn
µ
+n

ν
−a

αbβ = [⃗a⊥, b⃗⊥] . (D.5)
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D. LIGHT-CONE VARIABLES AND
LORENTZ-TRANSFORMATIONS

D.1 Longitudinal boosts

The longitudinal boosts (boosts along the z-axis) act in a very simple way on light-

cone coordinates:

L(η) ◦ [a+, a−, a⃗⊥] = [eηa+, e
−ηa−, a⃗⊥] . (D.6)

The boost parameter η has a straightforward interpretation. Namely the rapidity

y = 1
2

log(a+/a−) transforms as

y 7→ y + η . (D.7)

D.2 Transverse boosts

Transverse boosts play a special role in the light-cone formalism, as they belong to

the so called kinematical subgroup of the Lorentz-group. They depend on two boost

parameters, collected in a transverse vector v⃗⊥, and act like

B(v⃗⊥) ◦ [a+, a−, a⃗⊥] = [a+, a
′
−, a⃗⊥ + a+v⃗⊥] . (D.8)

The explicit form of the a′− component is not important for us. It is fixed by the

Lorentz-invariance of the inner product:

2a+a− − a⃗⊥
2 = 2a+a

′
− − (⃗a⊥ + a+v⃗⊥)2 , (D.9)

thus

a− 7→ a′− = a− + a⃗⊥ · v⃗⊥ + 1
2
a+v⃗⊥

2 . (D.10)

As an example, let us apply the transverse boost to a two-particle QQ̄ system. Let

us discuss a frame in which the bound QQ̄ system has a vanishing total transverse

momentum. The four-momenta of quark and antiquark are

pQµ = [zP+, pQ−, k⃗⊥] ,

pQ̄µ = [(1 − z)P+, pQ̄−,−k⃗⊥] , (D.11)

and

Pµ = pQµ + pQ̄µ = [P+, P−,0] . (D.12)
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D.2 Transverse boosts

If we want to boost Pµ, so that it’s transverse momentum becomes P⃗⊥, ie.

[P+, P−,0] 7→ [P+, P
′
−, P⃗⊥] , (D.13)

we should use the boost parameter v⃗⊥ = P⃗⊥/P+. Then, the transverse momentum

of the quark transforms as

p⃗Q⊥ = k⃗⊥ 7→ k⃗⊥ + zP+
P⃗⊥

P+

= k⃗⊥ + zP⃗⊥ , (D.14)

while for the antiquark:

p⃗Q̄⊥ = −k⃗⊥ 7→ −k⃗⊥ + (1 − z)P⃗⊥ . (D.15)

From these transformation rules, one can see, that the combination

(1 − z)p⃗Q⊥ − zp⃗Q̄⊥ , (D.16)

is invariant under longitudinal and transverse boost. It is therefore frame-independent,

as any frame can be reached by a combination of longitudinal and transverse boosts.
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Magiera, and W. Przygoda, p. 04011. doi: 10.1051/epjconf/201919904011.

[12] I. Babiarz et al. “The γ∗γ∗ → ηc(1S, 2S) transition form factor from Quarko-

nium wave functions”. In: Frascati Phys. Ser. 69 (2019). Ed. by G. Corcella

et al., pp. 96–101.

[13] I. Babiarz et al. “The γ∗γ∗ → ηc(1S, 2S) transition form factors for two space-

like photons”. In: PoS EPS-HEP2019 (2020), p. 467. doi: 10.22323/1.364.

0467.

150

https://doi.org/10.1103/PhysRevD.100.054018
https://doi.org/10.1103/PhysRevD.100.054018
https://arxiv.org/abs/1908.07802
https://doi.org/10.1007/JHEP02(2020)037
https://arxiv.org/abs/1911.03403
https://doi.org/10.1007/JHEP06(2020)101
https://doi.org/10.1007/JHEP06(2020)101
https://arxiv.org/abs/2002.09352
https://doi.org/10.1103/PhysRevD.102.114028
https://arxiv.org/abs/2008.05462
https://arxiv.org/abs/2008.05462
https://doi.org/10.1051/epjconf/201919904011
https://doi.org/10.22323/1.364.0467
https://doi.org/10.22323/1.364.0467


REFERENCES

[14] I. Babiarz, W. Schäfer, and A. Szczurek. “Production of ηc(1S, 2S) in e+e−

and pp collisions”. In: PoS ICHEP2020 (2021), p. 449. doi: 10.22323/1.

390.0449. arXiv: 2012.09721 [hep-ph].

[15] I. Babiarz et al. “Central exclusive production of ηc and χc0 in the light-front

k⊥-factorization approach”. In: 28th International Workshop on Deep Inelas-

tic Scattering and Related Subjects. July 2021. arXiv: 2107.14482 [hep-ph].

[16] I. Babiarz, R. Staszewski, and A. Szczurek. “Multi-parton interactions and

rapidity gap survival probability in jet–gap–jet processes”. In: Phys. Lett. B

771 (2017), pp. 532–538. doi: 10.1016/j.physletb.2017.05.095. arXiv:

1704.00546 [hep-ph].

[17] M.  Luszczak et al. “Single-diffractive production of dijets within the kt-

factorization approach”. In: Phys. Rev. D 96.5 (2017), p. 054018. doi: 10.

1103/PhysRevD.96.054018. arXiv: 1705.02241 [hep-ph].

[18] Rafa l Maciu la et al. “Production asymmetry of ντ neutrinos and ντ antineu-

trinos from a fixed target experiment SHiP”. In: JHEP 01 (2020), p. 116.

doi: 10.1007/JHEP01(2020)116. arXiv: 1910.01402 [hep-ph].

[19] M.B. Voloshin. “Charmonium”. In: Progress in Particle and Nuclear Physics

61.2 (2008), pp. 455–511. issn: 0146-6410. doi: https://doi.org/10.1016/

j.ppnp.2008.02.001. url: https://www.sciencedirect.com/science/

article/pii/S0146641008000239.

[20] P. A. Zyla et al. “Review of Particle Physics”. In: PTEP 2020.8 (2020),

p. 083C01. doi: 10.1093/ptep/ptaa104.

151

https://doi.org/10.22323/1.390.0449
https://doi.org/10.22323/1.390.0449
https://arxiv.org/abs/2012.09721
https://arxiv.org/abs/2107.14482
https://doi.org/10.1016/j.physletb.2017.05.095
https://arxiv.org/abs/1704.00546
https://doi.org/10.1103/PhysRevD.96.054018
https://doi.org/10.1103/PhysRevD.96.054018
https://arxiv.org/abs/1705.02241
https://doi.org/10.1007/JHEP01(2020)116
https://arxiv.org/abs/1910.01402
https://doi.org/https://doi.org/10.1016/j.ppnp.2008.02.001
https://doi.org/https://doi.org/10.1016/j.ppnp.2008.02.001
https://www.sciencedirect.com/science/article/pii/S0146641008000239
https://www.sciencedirect.com/science/article/pii/S0146641008000239
https://doi.org/10.1093/ptep/ptaa104


REFERENCES

[21] E. Eichten et al. “Quarkonia and their transitions”. In: Rev. Mod. Phys. 80

(2008), pp. 1161–1193. doi: 10.1103/RevModPhys.80.1161. arXiv: hep-

ph/0701208.

[22] Nora Brambilla et al. “The XY Z states: experimental and theoretical status

and perspectives”. In: Phys. Rept. 873 (2020), pp. 1–154. doi: 10.1016/j.

physrep.2020.05.001. arXiv: 1907.07583 [hep-ex].

[23] B. Fuks et al. “Signatures of toponium formation in LHC run 2 data”. In:

Phys. Rev. D 104.3 (2021), p. 034023. doi: 10.1103/PhysRevD.104.034023.

arXiv: 2102.11281 [hep-ph].

[24] J. -E. Augustin et al. “Discovery of a Narrow Resonance in e+e− Annihila-

tion”. In: Phys. Rev. Lett. 33 (23 Dec. 1974), pp. 1406–1408. doi: 10.1103/

PhysRevLett.33.1406. url: https://link.aps.org/doi/10.1103/

PhysRevLett.33.1406.

[25] H. Fritzsch. “Producing Heavy Quark Flavors in Hadronic Collisions: A Test

of Quantum Chromodynamics”. In: Phys. Lett. B 67 (1977), pp. 217–221.

doi: 10.1016/0370-2693(77)90108-3.

[26] F. Halzen. “Cvc for Gluons and Hadroproduction of Quark Flavors”. In: Phys.

Lett. B 69 (1977), pp. 105–108. doi: 10.1016/0370-2693(77)90144-7.

[27] Y.-Q. Ma and R. Vogt. “Quarkonium Production in an Improved Color Evap-

oration Model”. In: Phys. Rev. D 94.11 (2016), p. 114029. doi: 10.1103/

PhysRevD.94.114029. arXiv: 1609.06042 [hep-ph].

152

https://doi.org/10.1103/RevModPhys.80.1161
https://arxiv.org/abs/hep-ph/0701208
https://arxiv.org/abs/hep-ph/0701208
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://arxiv.org/abs/1907.07583
https://doi.org/10.1103/PhysRevD.104.034023
https://arxiv.org/abs/2102.11281
https://doi.org/10.1103/PhysRevLett.33.1406
https://doi.org/10.1103/PhysRevLett.33.1406
https://link.aps.org/doi/10.1103/PhysRevLett.33.1406
https://link.aps.org/doi/10.1103/PhysRevLett.33.1406
https://doi.org/10.1016/0370-2693(77)90108-3
https://doi.org/10.1016/0370-2693(77)90144-7
https://doi.org/10.1103/PhysRevD.94.114029
https://doi.org/10.1103/PhysRevD.94.114029
https://arxiv.org/abs/1609.06042


REFERENCES

[28] A. Adare et al. “Ground and excited charmonium state production in p + p

collisions at
√
s = 200 GeV”. In: Phys. Rev. D 85 (2012), p. 092004. doi:

10.1103/PhysRevD.85.092004. arXiv: 1105.1966 [hep-ex].

[29] R. Aaij et al. “Measurement of ψ(2S) meson production in pp collisions at

√
s=7 TeV”. In: Eur. Phys. J. C 72 (2012). [Erratum: Eur.Phys.J.C 80,

49 (2020)], p. 2100. doi: 10 . 1140 / epjc / s10052 - 012 - 2100 - 4. arXiv:

1204.1258 [hep-ex].

[30] Geoffrey T. Bodwin, Eric Braaten, and G. Peter Lepage. “Rigorous QCD

analysis of inclusive annihilation and production of heavy quarkonium”. In:

Phys. Rev. D 51 (1995). [Erratum: Phys.Rev.D 55, 5853 (1997)], pp. 1125–

1171. doi: 10.1103/PhysRevD.55.5853. arXiv: hep-ph/9407339.

[31] C. H. Kom, A. Kulesza, and W. J. Stirling. “Pair Production of J/psi as a

Probe of Double Parton Scattering at LHCb”. In: Phys. Rev. Lett. 107 (2011),

p. 082002. doi: 10.1103/PhysRevLett.107.082002. arXiv: 1105.4186

[hep-ph].

[32] Ch. Borschensky and A. Kulesza. “Double parton scattering in pair pro-

duction of J/ψ mesons at the LHC revisited”. In: Phys. Rev. D 95.3 (2017),

p. 034029. doi: 10.1103/PhysRevD.95.034029. arXiv: 1610.00666 [hep-ph].
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