
Instytut Fizyki Jadrowej
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Abstract

In this thesis, we explore the factorization of hadronic processes in heavy-ion collision
at high energy with a focus on accounting for transverse momentum. This exploration
is separated into three stages : the study of nuclear Transverse Momentum Depen-
dant PDFs (nTMD), the presentation of a method to calculate gauge invariant off-shell
amplitudes, and the study of jet evolution in Quark-Gluon Plasma (QGP), following
Blaizot-Dominguez-Iancu-Mehtar-Tani (BDIM) equations.
In the first part, a set of nTMD has been obtained using the Parton Branching (PB)
method (which solves the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tion, keeping track of the transverse momentum during the evolution). It was the first
lead (Pb) Transverse Momentum Dependant PDF (TMD) set obtained through this
method. This set has been tested with the Monte-Carlo (MC) generator KaTie to re-
produce CMS data for Drell-Yann Z-boson production (where kT -factorization holds).
It worked surprisingly well considering that the (off-shell) matrix elements were only cal-
culated at tree level. This was also the occasion to test, in this context, nuclear effects
and different factorization formulas (high energy, hybrid, collinear).

The method used to obtain the off-shell matrix elements is the focus of the next part.
The auxiliary parton method is based on embedding the considered off-shell process into
a larger one, on-shell, to guarantee gauge invariance and to benefit from our knowledge
of on-shell amplitudes. Originally, it was developed for tree-level calculation only. In
this thesis, one of the first steps to generalize the auxiliary parton method at loop-level
has been done through the calculation of the one-loop amplitude for one off-shell-gluon
and an arbitrary number of plus helicity gluons. Also, some of the difficulties related to
the application of this method to other one-loop amplitudes were studied.

The last topic concerns the evolution of jet fragmentation functions (describing the
energy and transverse momentum component of its constituents) in a dense medium,
through the BDIM equation. These equations describe the jet energy loss through jet
broadening and medium-induced splitting, accounting for gluons only and considering
the medium static. We first developed several methods to solve the integrated BDIM
before accounting for transverse momentum in branching. Finally, we have generalized
the BDIM to account for quarks.
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Streszczenie

W niniejszej rozprawie badamy faktoryzacje procesów hadronowych w wysokoener-
getycznych zderzeniach hadronów, ze szczególnym uwzglednieniem pedu poprzecznego.
Praca jest podzielona na trzy etapy : badanie nTMDs, przedstawienie metody otrzymy-
wania amplitud poza pow laka masy amplitud niezmienniczych ze wzgledu na cechowanie
oraz badanie ewolucji dżetów w QGP, zgodnie z równaniami BDIM.
W pierwszej cześci otrzymano rozk lady nTMD metoda PB. By l to pierwszy zestaw
rozk ladów partonowych (Pb) TMD uzyskany ta metoda. Ten rozk lad partonów zosta l
użyty z generatorem MC KaTie w celu opisu danych CMS na produkcje bozonów Z
Drell-Yann (gdzie zachodzi faktoryzacja kT ). Dzia la lo to zaskakujaco dobrze, biorac pod
uwage, że elementy macierzowe poza pow loka masy by ly obliczane tylko na poziomie
drzewiastym. By la to również okazja do oszacowania efektów jadrowych i różnych
wzorów faktoryzacji (faktoryzacja wysokoenergetyczna, hybrydowa, kolinearna).

Technika obliczeń elementów macierzowych poza pow laka masy jest tematem kole-
jnego rozdzia lu. Metoda partonów pomocniczych opiera sie na wprowadzeniu rozważanego
procesu poza pow loka masy w wiekszym procesie na pow loce masy, aby zagwarantować
niezmienność cechowania i skorzystać z szerokiwj wiedzy o amplitudach na pow loce
masy. Pierwotnie ta metoda zosta la opracowana do obliczeń na poziomie drzewiastym.
W przedstawionej pracy jeden z pierwszych kroków w celu uogólnienia metody partonów
pomocniczych na poziomie petli zosta l wykonany przez obliczenie amplitudy jedno pet-
lowej dla jednego gluonu poza pow loka masy i dowolnej liczby gluonów o dodatniej
skretności. Analizowano również możliwość zastosowania tej metody do otrzymania in-
nych amplitud jednopetlowych.

Ostatni temat dotyczy ewolucji funkcji fragmentacji dżetu (opisujacych rozk lad en-
ergii i pedu poprzecznego jego sk ladowej) w gestym ośrodku, z wykorzystaniem równania
BDIM. Równania te opisuja utrate energii dżetu przez oddzia lywanie dżetu z plazma oraz
rozszczepienie wywo lane przez ośrodek, biorac pod uwage tylko gluony oraz zak ladajac
że plazma jest statyczna. W pierwszym kroku opracowalísmy kilka metod rozwiazy-
wania równania BDIM, zanim rozważylísmy ped poprzeczny w funkacjach rozszczepień.
Na etapie końcowym uogólnilísmy równanie BDIM, aby uwzglednić wk lad kwarków do
ewolucji.
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Chapter 1

Introduction

The Standard Model (SM), as formulated in the 70s, has been successfully used to
describe 3 (out of 4) fundamental interactions : the electromagnetism, the weak interac-
tion, and the strong interaction (the two first can be even merged into the electroweak
interaction). While it leads to precise predictions, it has some failures : it doesn’t
explain baryon asymmetry (imbalance between matter and anti-matter), it can’t fully
incorporate the theory of gravitation, there is no candidate to dark matter within the
SM and it doesn’t account for the neutrino masses (among other considerations). Then,
it seems natural to look beyond the standard model physics. But this needs a great
understanding of the interaction it describes, meaning high precision predictions. This
is particularly true in high energy collisions that we have access to at Large Hadron
Collider (LHC) CERN where we need a precise understanding of the strong interaction
and the related sector of the standard model : Quantum Chromodynamics (QCD). This
complex branch of the Standard Model is the focus of the work presented here.
This introductory chapter intends to bring the basics of QCD needed to position the
works presented in further chapters.

Remark : In the present discussion, we consider natural units i.e h̄ = c = 1.
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1.1 QCD basics

QCD describes the physics of quarks and gluons. Those are constituents of what we
call hadrons (such as protons or neutrons, among others). The quarks are charged spin
1
2 fermions, carrying a fraction of the elementary charge (charge of the electron) equal
to either +2

3 (up type quarks) or −1
3 (down type quark) and antiquarks carry opposite

charge. There is a total of Nf = 6 flavors of quarks arranged in 3 generations, as shown
in Fig. 1.1 (modified from [14]), each generation gathering a down type and an up type
quark of same mass scale. The 1st generation of quarks (up and down), the lightest,
are present in ordinary matter (forming protons and neutrons for instance) while the
other generations form unstable particles which decay to hadrons made of 1st generation
quarks.

Figure 1.1: The six flavors of quarks (modified from [14]).

Gluons are spin 1 gauge bosons of the strong interaction (they are massless and
electrically neutral). Actually, the strong interaction happens between what we call
color charges (hence the name “chromodynamics”). They are named this way because
adding the 3 different color charges (so-called red, blue, and green) nullifies the color
charge (like for the primary colors in additive mixing), leaving a colorless state (white
in the same terminology). There are also 3 anti-colors, that have the same behavior
(adding all three leaves a null color charge) and that also cancel their equivalent color
charge (for instance, red and anti-red nullify each other).
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1.2 QCD Lagrangian

To be precise, QCD is a Quantum Field Theory (QFT), a non-abelian gauge theory
(SU(3) Yang-Mills theory) that is described by the following Lagrangian density [15] :

LQCD =
∑

f

ψ̄f
i (x)

[
iγµDµ −mf

]
ij
ψf
j (x) − F a

µνF
aµν ,

with : Dµ = ∂µ − igst
aAa

µ

Fµν =
i

gs

[
Dµ, Dν

]
= ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν ,

(1.1)

where ψf
q (ψ̄f

q ) are the (anti-)quark Dirac fields (of flavor f , mass mf and color i), Aa
µ

is the gluon field (of color index a in the adjoint representation), Fµν is the gluon field

strength tensor, Dµ is the covariant derivative, fabc are the structure constants of SU(3)
and ta its generators, gs the coupling constant of QCD and γµ are the Dirac gamma
matrices that satisfy the anti-commutation relation :

{γµ, γµ} = 2ηµν , (1.2)

where ηµν is the metric tensor for which we will adopt the “mainly -” convention ηµν =
diag(1,−1,−1,−1). To see more easily the interactions encoded in the Lagrangian in
Eq. (1.1), let’s expand it :

LQCD =
∑

f

ψ̄f
i (x)

[
i(/∂ − igst

a /Aa) −mf

]
ij
ψf
j (x)

− 1

4

(
∂µA

a
ν − ∂νA

a
µ

) (
∂µA

a
ν − ∂νA

a
µ

)

+ gsf
abc(∂µA

a
ν)Ab,µAc,ν − g2s

4
fabcfadeAb,µAc,νAd

µA
e
ν ,

(1.3)

where we adopted the notation, for any tensor Oµ, /O = γµOµ. From this formulation,
we see the following interactions :

• the quark-antiquark gluon vertex, coming from the 2nd term in the bracket in
the 1st line. It describes quark-antiquark annihilation (or creation) similar to the
electron-positron photon vertex in Quantum Electrodynamics (QED).

• the triple and quadruple gluon vertices in the 3rd line. This implies that, contrary
to the photon, the gluon self-interacts.

To be complete, we need to add some terms to the Lagrangian Eq. (1.1). This Lagrangian
is invariant under local gauge transformations [16] :

∀i, f, ψf
j (x) → U(x)ψf

j (x)

∀i, f, ψ̄f
j (x) → ψ̄f

j (x)U−1(x)

taAa
µ → U(x)taAa

µU
−1(x) +

i

gs
(∂µU(x))U−1(x) ,

with U(x) = eigst
a
θ
a
(x)and θ an arbitrary real function.

(1.4)
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Also, this leads to an indetermination of the gluon propagator (as the term in the
second line of Eq. (1.3) cannot be inverted to obtain it). This comes from the fact that
Aa

µ is not uniquely defined. To solve this problem, we need a gauge fixing term in the
Lagrangian [17] :

Lgauge−fixing = −1

ξ
(∂µAa

µ)2. (1.5)

By fixing ξ, we fix the gauge. Usual choices are :

• ξ = 1, the Feynman gauge,

• ξ = 0, the Lorentz gauge,

• ξ → ∞, the unitarity gauge.

Due to the self-interaction of the gluon field, such gauge fixing (that is covariant) has to
be accompanied by the inclusion (in a gauge invariant way) of some unphysical particles
to compensate for unphysical propagation modes of the gluons. These particles are the
Faddeev-Popov ghosts [18] (and anti-ghosts), described by the anticommuting Lorentz
scalar fields ca and c̄a. They are added to the Lagrangian through the term :

Lghost = (∂µc̄
a)
(
δac∂µ + gsf

abcAb
µ

)
cc. (1.6)

Actually, the inclusion of the ghost fields can be avoided using a non-covariant gauge
condition (at the price of the Lorentz invariance). Axial gauge is such a gauge :

nµAa
µ = 0 , (1.7)

with an arbitrary (non-zero) 4-vector nµ. Then, the gauge fixing term reads :

Laxial = − 1

2ξ
(nµAa

µ)2. (1.8)

The specific choice of nµ set light-like (n2 = 0), is named light cone gauge.
This Lagrangian (and then QCD) can be approached in several ways. Lattice QCD
solve QCD by formulating it on a discretized Euclidian space characterized by a lattice
(a grid) of points in spacetime. In the limit where the lattice is infinitely large while it
is at the same time infinitely fine (continuum limit), QCD is recovered. If this method
is applicable to calculate non-perturbative effects, it is very heavy computationally. Ef-
fective theories, based on the Lagrangian symmetries or specific regimes are often used.
For instance, chiral perturbation theory expands, at low energy, the spontaneous chiral
symmetry breaking appearing in QCD to light quarks (u, d and s), while it is an exact
symmetry only for massless quarks. Heavy quark effective theory, on the contrary, set
the mass of the quarks (heavy quarks) to infinity. Other approaches are possible but
we will now focus on probably the most successful approach so far : perturbative QCD
(pQCD). But to justify this approach, we first need to verify if a perturbative approach
to QCD is possible.
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1.3 QCD running constant

When working in perturbative theory, one has to be careful regarding the parameters
used to proceed with the perturbative expansion. For instance, it is usual to define :

αs =
g2s
4π

, (1.9)

which is also named the coupling constant. This constant determines the coupling be-
tween quark and gluon (i.e the color charge coupling). Then it might be possible to
determine it experimentally (since we do not observe free quarks, it is not as direct as
in QED). If we perform a perturbative expansion of QCD in powers of this constant we
might end up with calculations leading to many infinities. Indeed, we will be tempted
to obtain it by matching fixed-order theoretical calculations to experimental data that
are actually sensitive to the full expansion. It is still useful to write the Lagrangian
as in Eq. (1.1), with what we call bare parameters and fields. To work with physically
measurable (and then finite) quantities, it is necessary to perform what is called a renor-
malization of the parameters and the fields. However, this renormalization comes with
a renormalization scale, µR on which depend the renormalized quantities. Of course,
any observable must be independent of the choice of µR, which condition is set by the
renormalization group equation. For an observable |O|2, it reads :

µR
dO

dµR
= µR

(
µR

∂

∂µR
+

dαs

dµR

∂

∂αs
+

dm

dµR

∂

∂m

)
O = 0 . (1.10)

This leads to the definition of the beta function and the anomalous dimension as :

β(αs) ≡ −µR
∂αs

∂µ2R
, γ(αs) ≡ −µR

m

∂m

∂µ2R
. (1.11)

β(αs) is calculable perturbatively and, at Next to Leading Order (NLO), it is evaluated
as [19, 20] :

β(αs) =
1

12π
(11Nc − 2Nf )α2

s. (1.12)

It follows that the so-called running constant of QCD verifies :

αs(Q
2) =

αs(µ
2
R)

1 + αs(µ
2
R)

12π (3Nc − 2Nf ) log Q
2

µ
2
R

. (1.13)

More on the determination of the running constant and the function β and γ is summa-
rized in [21]. With Nc = 3 and Nf = 6 , we see that αS(Q2) decreases with increasing

Q2 leading to an important concept in QCD : asymptotic freedom. At high energy (Q2),
which is equivalent to short distances, the running constant becomes small and strong
interaction becomes very weak. This means that, at short distances, a group of quarks
and gluons can be considered free (for the strong interaction, quarks might interact elec-
tromagnetically). On the other hand, at low energy (i.e. at long distance), the running
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constant increases, to a point where it is no more small enough to perform perturbative
theory. This is another important feature of QCD : color confinement. Indeed, at low
energy, color charges are strongly coupled to form colorless states called hadrons (im-
plying that we cannot observe free quarks or gluons). We characterize this limit by the
scale µ2 = ΛQCD that separates the perturbative regime from the non-perturbative one.
It can be written as :

Λ(QCD) = µ2Rexp

[
−12π

(3Nc − 2Nf )αs(µ
2
R)

]
. (1.14)

It turns out ΛQCD is of the order of 0.2GeV (it depends on the number of active quark
flavors, i.e on the quarks that can be produced during the considered process). Fig. 1.2
(taken from [22]) shows the perfect agreement between the running coupling as obtained
with β(αs) expanded at 4th order to experimental data.

αs(MZ
2) = 0.1179 ± 0.0009

August 2021

α s
(Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)
HERA jets (NNLO)

Heavy Quarkonia (NNLO)
e+e- jets/shapes (NNLO+res)

pp/p-p (jets NLO)
EW precision fit (N3LO)

pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 1.2: The running constant of QCD (from [22]).
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1.4 Quark model

One of the strengths of QCD, as a theory, has been to predict some particles (not
elementary), hadrons, before they were discovered experimentally. This was the case
for instance with the Ω− baryon, predicted, among others, by Murray Gell-Mann in
1961 (through his eightfold way [23]) and discovered experimentally 3 years later [24].
Gell-Mann was awarded a Nobel prize in 1969 for his work on elementary particle clas-
sification.
Based on the properties of QCD and its constraints, one can build hadrons in several
ways and produce what we call the quark model. Due to color confinement, the main idea
is to build colorless groups of quarks whose states follow the rules of quantum mechanics
(especially the Pauli principle). We won’t specify all the details of the quark model and
all the quantum numbers used to classify hadrons in this model but just give a simple
approach to it.
The first idea to construct a hadron (a colorless state) is to add 2 partons, one carrying
a color and the other its anti-colors. Such particles are called mesons1 and due to the
rules of quantum dynamics, there are limited ways to build them, that are presented in
Fig. 1.4 (taken from [22]) when accounting only for the 2 first generations of quarks (u,
d, c, s).
The other main possibility is to gather 3 partons carrying the 3 colors (or the 3 anti-
colors), those are named baryon, and they are the main constituents of matter. The dif-
ferent baryons obtainable from the 2 first generations of quarks are presented in Fig. 1.3
(taken from [22]).

More complex mixes can be constructed, and are actually observed2. They are called
“exotic hadrons” (such as tetraquarks or pentaquarks) but, describing such states with
pure QCD is out of our range nowadays. For these particles, we have adopted some
effective field theories [26].
The picture of hadrons described as just a few quarks, the valence quarks (that give the
hadron its quantum numbers), has to be refined. A first step is to consider these quarks
as bound states, interacting through gluon exchange (maintaining them in the hadron,
as a colorless entity). However, this is not enough to describe properly an interacting
hadron.

1.5 Parton model

The parton model was proposed by Richard Feynman in 1969 [27] to describe hadrons
when doing calculations involving them (at high energy). In this context, the content
of hadrons is described by its point-like constituents : the partons (which are quarks
and gluons). Then, the idea is that an interaction with a hadron is actually depicted as
an interaction with one of its constituents. If we consider a lepton-hadron collision, say

1
To be exact, Mesons are hadronic particles composed of an equal number of quark and antiquark

(leading to a null baryon number).
2
As for instance Z(4430)

−
, a tetra quark made of c̄cdū [25]

7



Figure 1.3: udsc spin 1
2 (a) and spin 3

2 (b)
Baryons (from [22]).

Z

Figure 1.4: udsc pseudoscalar (spin 0, odd
parity) in (a) and vector (spin 1, odd par-
ity) Mesons in (b) (from [22]).

electron-proton (ep), this can be viewed as the exchange of a photon between the electron
and a quark inside the proton (as a charge constituent of the proton). In this interaction,
the other partons inside the proton are only spectators. Indeed, the time scale of the
interaction between the photon and the struck quark is much shorter than the time scale
of interaction between the partons hence the quark interacting with the photon is viewed
as a free quark. Then, a hadron can be characterized by its constituent partons through
what we call a Parton Distribution Function (PDF) fi/h(x) that describe, at glsLO in
alphas, the probability, in a collision, that the interaction is done with the parton of type
i carrying the energy fraction (of the hadron) x. This PDF can then be accessed through
the experiment. If the hadron was interacting through only its valence quarks, the PDF
of a baryon (say a proton) would be a Dirac delta functions centered in 1

3 (each quark

carrying 1
3 of the energy of the hadron)3. When we consider 3 bound quarks (interacting

with each other through gluon exchange), then the picture is much more realistic with
a broadened distribution peaked around x = 1

3 . Still, this does not correspond to what

3
for a single quark, the PDF would trivially be Dirac delta function centered in 1.
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is observed, which is shown in Fig. 1.5 (from [28]).
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Figure 1.5: PDF of the different partons (valence quarks, sea quarks, and gluons) in the
proton (from [28]).

Indeed, at low-x, the quark PDF of the proton behaves differently with an important
contribution from what we call sea quarks. The sea quarks are pairs of quark-antiquark
that are constantly created (from gluons) and annihilated (into gluons) inside the hadron
(and that do not contribute to its quantum numbers). These different models for the
quark PDF of the proton are summarized in Fig. 1.64. This figure comes from Chap.9
of [5] devoted to partons.

The PDFs reflect the complex structure of the hadron that I remember being com-
pared by Ignazio Scimemi (in one first seminar I attended during my Ph.D.) to Paëlla
(with grains of rice, and other ingredients, playing the role of the quarks while the sauce
plays the role of the gluons). The representation of the proton structure is depicted in
Fig. 1.7 (credited to D. Dominguez from CERN).

1.6 Factorization

In the previous section, we introduced the PDF of a specific parton in a hadron as
the probability for a probe hitting a hadron to strike this specific parton (characterized
by its type and the fraction of energy of the hadron it carries). If the PDFs describe

4
In this figure, the structure-function F2 appears instead of the PDF, but this function is directly

related to the quark PDF as we will see in Chap. 2.
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Figure 1.6: Structure function for different models of proton (from [5]).

the structure of hadrons, they also permit to calculate hadronic process (through the
calculation of its cross-section). Indeed, when calculating a hadronic cross-section, we
separate the partonic collision (which is calculable perturbatively) from the description
of the hadron given by PDFs (that contains non-perturbative effects). The PDFs encode
color confinement (where the running constant is large). Then, the cross-section of a
hadronic collision is the incoherent sum over the different partons constituting the hadron
of the convolution of the corresponding PDF and partonic cross-section. This can be
written as :

dσab =
∑

i,j

ˆ
dxidxj fi/a(xi)fj/b(xj)dσ̂ij(xi, xj) (1.15)

where σ̂ denotes a partonic cross-section. This is a simplified picture of what we call
factorization, stating that calculations in hadronic collisions can be split between the non-
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Figure 1.7: Artist’s view of the proton structure (credited to D. Dominguez from CERN).

perturbative part (corresponding to long-distance interaction, involving PDFs and called
soft part) and a fully perturbative part (with the partonic cross-section, corresponding to
short distance interaction, called the hard part). An important feature of factorization
is the fact that the PDFs describing a hadron are universal (in the sense of being process
independent). Then, the idea is to obtain them through experiments5 and to apply them
to evaluate, for instance, the glsqcd background of some specific processes. On the other
hand, the hard cross-section dσ̂ij→c(xi, xj) is perfectly calculable perturbatively from the
square of the corresponding amplitudes as we will see in Chap. 3. Actually, factorization
theorems (that demonstrate the application of factorization), have only been proven for
a few classes of processes (that we will list in Chap. 2).
In the basic picture of Eq. (1.15), some pieces are missing. In particular, PDFs not only
depend on the energy fraction x but also on the energy scale µ2 of the collision (the
energy at which the partons are probed inside the hadron). Hopefully, this dependence
on the scale µ2 is calculable in perturbation theory and leads to what we call evolution
equations. We might also precise the final state parton in the hard collision, denoted
by X. Taking all this into account leads to the following description of a + b → X
process [16] :

dσab→X =
∑

i,j

ˆ
dxidxj fi/a(xi, µ

2)fj/b(xj , µ
2)dσ̂ij(xi, xj , µ

2). (1.16)

In this scheme (and in the one of Eq. (1.15)), we characterize the partons with the
fraction of the hadron energy they carry. This means that we see them as going all in
the direction of the hadron, each carrying a fraction of its momentum, hence we call this
scheme collinear factorization.

5
It is also possible to obtain them through lattice QCD but this is extremely calculation heavy and

the present results are still far from matching all the results obtained through experiments.
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In the following, we will be interested in some peculiar kinematic region where this
factorization fails. Indeed, we will study the limit where the center of mass energy

√
s

of the process is much larger than any other scale. In this case, the initial partons follow
the high energy kinematics :

ki = xipa + k⊥,i , and kj = xjpb + k⊥,j , (1.17)

where pa,b are the momenta of the hadrons a and b, and k⊥ denotes an intrinsic transverse
momentum. It can be shown (see Chap. 2) that in the high energy limit, pa,b can be
considered light-like and that xi,j → 0 (hence, we refer to the physics in this limit
to as “small-x” physics). Then, the transverse momentum k⊥ (often note kT ) is not
negligible. This dependence has then to be taken into account in both the PDF (that
are then transverse momentum dependent) but also in the hard the following way :

dσab→X

ˆ
d2k⊥,i

π

d2k⊥,j

π
dxidxj Fi/a(xi,k⊥,i, µ

2)×

×Fj/b(xj ,k⊥,j , µ
2)dσ̂i∗j∗→X(xi,k⊥,i, xj ,k⊥,j , µ

2).

(1.18)

We call this factorization scheme either kT -factorization or high-energy factorization [29,
30]. Note that this implies the calculation of off-shell amplitudes (amplitudes with 1 or
2 off-shell legs, denoted by ∗). Calculated with the usual method, those amplitudes are
not gauge invariant but we will present in Chap. 3 a method to calculate them in a gauge
invariant way.

1.7 Conciliate calculations and experimental data

The factorization theorems seen in the previous section give an intuitive vision of hadronic
collisions. That being said, we are still far from a representation of what happens in a
detector. There are several other phenomena to consider to produce results comparable
to data and pretend to phenomenology. Still, this idea of factorization can be kept due
to the difference in the time scale of these phenomena.

A complete description is depicted in Fig. 1.8 (from [31]). We already described
two elements in this picture. First, the PDFs (the 2 green blobs in the beam axis)
that separate the interacting partons from the spectators’ ones (which are staying in
the beam axis). Secondly, the hard collision described by the amplitudes (in red) left
us with free partons. One may note that the partons interacting in the hard process
emit radiation before interacting. We have not mentioned it for simplicity, but this is
taken into account in the PDFs (evolving the initial parton from the soft scale in the
hadron to the hard scale of the collision through radiations). Back to our free partons,
we saw that color confinement does not allow them6 and this leads to complex phenom-
ena that eventually will leave us with hadrons. First, the partons (especially if they are
energetic) will initiate a parton shower creating a large number of partons following the

6
Except in quark-gluon plasma, that will be discussed later.
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Figure 1.8: Representation of a collision event (from [31]).

QCD rules (with quarks emitting gluons and gluon creating quark-antiquark pairs). If
the initial parton is energetic enough, the parton in the shower will be collimated in a
cone around the momentum of the initial parton. These partons define what we call
a jet. This “showering” can be calculated perturbatively and is based on the splitting
functions that rule QCD (and describe the emission probabilities).

Then, on a larger time scale, the partons created in the parton shower will recombine
into hadrons. This phenomenon is called hadronization and it is not yet well understood
(it is a non-perturbative process). So far, to make calculations, we use phenomenological
models (such as the cluster model [32, 33] and the string model [34, 35]). Hadronization
can be characterized by what we call fragmentation functions. They describe the prob-
ability of observing a hadron from a given parton and they factorize from PDFs and
the hard cross-section. Also, the produced hadrons are not necessarily stable and will
then decay into stable ones. This hadronization (light green blobs) and hadron decay
(dark green round blobs) happen for partons coming from the final state shower but also
for spectators and for partons coming from the initial state shower (governed by PDF
evolution).
That being said, we still need to take into account gluon emission (in yellow) and sec-
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ondary interactions (in purple).
Taking all these phenomena into account eventually leads to what we actually see in a
detector, which is shown in Fig. 1.9 (from [36]).

Figure 1.9: Collision vent in the CMS detector (from [36]).

Experimentally, we mainly have access to the charge (from trajectories) and the
energy (through energy deposit) of a detected particle (hadron). Also, we are interested
in the signature of final state partons of the hard process, then, it is more convenient to
study jets (in their hadronized form) than a single hadron. This leads to a whole new
physic of these jets that we will introduce in Chap. 4.
However, in the present work, we won’t describe a full event as pictured in Fig. 1.8.
Instead, we will consider the factorization formula Eq. (1.18) and add to it a factor
describing the evolution of jet (initiated by a final state parton of the hard process) in
the QGP. Indeed, we will study nuclear effects in heavy-ion collisions (say lead) within
kT -factorization. We will first study those effects on TMDs (or so-called nTMDs) and
this will conclude Chap. 2. However, it also affects the final state parton shower. In fact,
in a heavy-ion collision, a QGP is formed and, when traversing it, a jet will be quenched
(through medium-induced radiations and multiple scattering), hence the importance
of studying jet evolution in QGP in heavy-ion collisions. This leads to the following
factorization formula :
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Heavy-ion, high energy factorization

dσab→cX =
∑

i,j

ˆ
d2k⊥,i

π

d2k⊥,j

π

d2q⊥,c

π
dxidxjdxc×

×Fi/a(xi,k⊥,i, µ
2)Fj/b(xj ,k⊥,j , µ

2)×
×dσ̂i∗j∗→cX (xi,k⊥,i, xj ,k⊥,j , µ

2)Dc(xc,q⊥,c, tc) ,

(1.19)

where Dc are the in-medium jet fragmentation functions7 that describe the evolution
of a jet c (meaning initiated by a parton c) in the QGP. Getting these fragmentation
functions (in some specific frame) and studying them will be the focus of Chap. 4. Then,
by the end of Chap. 4, we will have at our disposition nTMDs, off-shell amplitudes and
fragmentation functions which, all together, can describe heavy-ion collisions at small-x.

7
Be careful with this term, not to be confused with fragmentation functions describing hadronization.

15



Chapter 2

Parton Distribution Function

In this chapter, we will study Parton Distribution Functions (PDF). As seen in the
introduction, they are needed to provide predictions for hadronic collisions and describe
the structure of hadrons.

The first two sections (Sec. 2.1 and 2.2) will present the main steps to define properly
PDFs in the context of collinear factorization. This will lead to the famous DGLAP
evolution equations1. Sec. 2.3 will present Transverse Momentum Dependant PDFs
(TMD) first through the BFKL equation (where it is actually a question of unintegrated
PDF), and the CCFM equation afterward. This will lead to the determination of different
factorization schemes : kT -factorization and hybrid factorization. We will see that the
BFKL equation actually violates unitarity at high energy because it doesn’t account for
saturation. This phenomenon and the corrections to BFKL that take it into account
are the subjects of Sec. 2.4. Then, in Sec. 2.5, the parton branching method, used to
calculate these TMDs, will be presented. Finally, in Sec. 2.6, results of this method
to produce nTMDs for lead will be presented and studied in the context of Z boson
production in pPb collisions at the LHC.
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2.1 Deep Inelastic Scattering

We saw briefly in the introduction that, in order to describe a collision involving hadrons,
we invoke factorization theorems that decompose the collision into PDFs (the soft part)
and a partonic cross-section (the hard part). To introduce these PDFs, we will first
study the simplest process probing hadrons : Deep Inelastic Scattering (DIS)2. What
we call DIS is the collision between hadron (say a proton p) and a lepton pair (say an
electron e−) written as follows :

e−(p) + p+(P ) → e−(p′) +X(PX) (2.1)

where the letters in parenthesis label 4-momenta. In this process, a virtual photon (γ∗

with 4-momentum q) is exchanged between the electron and the hadron. The virtual pho-
ton probes the constituents of the hadron if its wavelength λ is small enough compared
to the radius of the hadron rh, i.e if λ≪ rh

3. Also, if its energy Q ∼ 1
λ
4 is much greater

than the hadron mass, i.e if Q2 = −(p′ − p)2 ≫ m2
h (hence the term deep) and if the

invariant mass is much greater than the mass of the hadron, i.e if m2
X = (P + q)2 ≫ m2

h

(hence the term inelastic) then the hadron breaks, leaving, at the end of the process,
new hadrons represented by X. This process and its kinematics are depicted in Fig. 2.1.
With the conditions described just before, we consider that the photon interacts with
one quark in the hadron.

p+ : P µ = (m, 0), σ

e− : pµ = (E, p), λ

e− : p′µ = (E ′, p′), λ′

γ∗ : qµ = (E − E ′, p− p′)

X

Figure 2.1: e−p+ deep inelastic scattering.

Experimentally, this corresponds to bombarding a fixed target with an electron beam
and detecting the scattered electron.
To study this process (ep DIS), we need to parametrize its kinematics. We introduce

2
This introduction, done through Sec. 2.1 and Sec. 2.2 follows the presentation done in Sec. 2 of [6]

3
On the contrary case, the photon will see the hadron has a point-like particle leading to an elastic

scattering described by QED.
4
Actually, Q is defined by Q

2
= −q

2
> 0 and Q

2
is called the virtuality of the photon
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the following invariants :

xBj ≡
Q2

2P · q , y ≡ P · q
P · p, ν ≡ P · q

mp
, s = (P + p)2 , (2.2)

where xBj is called the Bjorken-x variable, mp is the mass of the proton and s the
center-of-mass energy squared of the ep scattering. From these definitions, we see that
high energy (large s) is equivalent to small-x (small-xBj for the moment) by noting :

xBj ∼
Q2

ys
, for s≫ mp. (2.3)

In the rest frame of the proton, we have :

Pµ = (E, p⃗), pµ = (E, p⃗), p′µ = (E′, p⃗′), qµ = (E − E′, p⃗− p⃗′) , (2.4)

which leads to (in this frame) y = E−E
′

E being the fraction of the energy transferred from
the electron to the proton and ν = E−E′ the part of the electron’s energy transferred to
the proton. We also have Q2 = 4EE′ sin2 θ

2 with θ the electron scattering angle (between
p⃗ and p⃗′).
However, it will be convenient also to work in the Infinite Momentum Frame (IMF)5 of
the proton, where it is relativistic. In this frame, we have :

Pµ ≈ (P +
m2

p

2P
, 0, 0, P ), qµ = (q0, q1, q2, 0) , (2.5)

with P ≫ mp. Then, in this frame xBj = Q
2

2P ·q ≈ Q
2

2Pq
0 . Also, q0 is inverse proportional

to the time scale of the interaction, leading to :

tDIS ≈ 1

q0
≈ 2xBjP

Q2 . (2.6)

On the other hand, the typical time for interaction between partons inside the proton
is given by the scale of the non-perturbative QCD interactions ∼ mp ∼ λQCD in the

proton rest frame. In the IMF, it is boosted by a factor P
mp

leading to :

tpartons ≈
1

mp

P

mp
. (2.7)

With Q2 ≫ m2
p and xBj ≤ 1, it is clear that :

tDIS ≪ tpartons , (2.8)

which justifies the assumption that, during the time of the interaction between the
photon and the hit quark, the partons do not interact with each other6.

5
It is also sometimes called Bjorken frame.

6
Also, accounting for interaction(s) between the struck parton and the spectator partons is known as

higher twist corrections. Those corrections are suppressed by powers of
m

2
p

Q
2 .
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For the next expressions, we will go back to the rest frame of the proton (to write things
in terms of E and E′). The amplitude of the DIS process can be written, taking the
covariant gauge for the photon, as :

iMσ,λ,λ
′(X) =

ie2

q2
ūλ′(p′)γµ uλ(p)⟨X|Jµ(0)|P, σ⟩ , (2.9)

where λ and λ′ are the polarizations of the electron (before and after the collision re-
spectively) while σ is the polarization of the proton. |P, σ⟩ denotes the initial state of
the proton and |X⟩ the final state of the many hadrons X while Jµ(x) is the quark
electromagnetic current, defined as :

Jµ(x) =
∑

f

ef q̄
f (x)γµqf (x) , (2.10)

with ef the electric charge of the quark of flavor f (in unit of the electron charge e)

and qf (x) is the quark field operator. Then, to obtain the total DIS cross-section, one
has to square the amplitude in Eq. (2.9), integrate over the final-state phase-space, sum
over the final-state quantum numbers, average over the initial-state quantum numbers,
divide by the flux factor and implement (4-)momentum conservation (through Dirac
delta function). This leads to (see [37]) :

σep =

ˆ
d3p′

(2π)32E2E′
1

4

∑

σ,λ,λ
′

∑

X

|Mσ,λ,λ
′(X)|2(2π)4δ4(P + q − PX). (2.11)

An interesting feature of Eq. (2.11) is that it can be written as the product of a leptonic
tensor Lµν on one side, describing the emission of the photon by the electron, and
a hadronic tensor Wµν describing the interaction between the virtual photon and the
hadron. It reads :

dσ

d3p′
=

α2
EM

EE′Q4LµνW
µν , (2.12)

with :

Lµν =
1

2

∑

λ=±1

∑

λ
′
=±1

ūλ′(p′)γµ uλ(p)
[
ūλ′(p′)γν uλ(p)

]∗

= 2
(
pµp

′
ν + pνp

′
µ − p · qηµν +meηµν

)
,

(2.13)

and :

Wµν =
1

8πmp

∑

σ=±1

∑

X

⟨P, σ|Jµ(0)|X⟩⟨X|Jν(0)|P, σ⟩(2π)4δ4(P + q − PX)

=
1

8πmp

ˆ
d4xeiq·x

∑

σ=±1

⟨P, σ|Jµ(x)Jν(0)|P, σ⟩.
(2.14)
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Lµν

Wµν

µ ν

Figure 2.2: Diagrammatic representation of DIS cross-section with separation of the
contribution to the leptonic tensor Lµν (in red) and to the hadronic tensor Wµν (in
blue).

This hadronic tensor characterizes all the strong interaction dynamics in DIS and
consequently contains some non-perturbative effects, making it hard to calculate. Still,
we can go further in its structure, first by imposing the conservation of the electromag-
netic current :

qµW
µν = 0, and qνW

µν = 0. (2.15)

This condition can be satisfied only in 2 inequivalent ways (with the 4-momenta appear-
ing in the hadronic part, i.e P and q) leading to the following decomposition :

Wµν = −W1(xBj , Q
2)

(
ηµν − qµqν

q2

)

+
W2(xBj , Q

2)

m2
p

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
.

(2.16)

The dependence of the function W1 and W2 is completely general (Q2 and xBj are the 2
independent invariants in the hadronic part of the problem). One can show (see Chap. 8
in [5]) that the differential ep cross-section can be written as :

dσep

dE′dΩ
=

α2
EM

4E2 sin4 θ
2

[
W2(xBj , Q

2) cos2
θ

2
+ 2W1(xBj , Q

2) sin2 θ

2

]
. (2.17)

Then, the functions W1 and W2 can be studied experimentally through only the electron
scattering angle θ. Also, W1 and W2 have the dimension of inverse of mass so it is more
convenient to work with the following dimensionless functions :

F1(xBj , Q
2) ≡ mpW1(xBj , Q

2)

F2(xBj , Q
2) ≡ νW2(xBj , Q

2) =
Q2

2mpxBj
W2(xBj , Q

2).
(2.18)
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X
P

k′, h′

k, h

q

Figure 2.3: Virtual photon-proton scattering.

F1 and F2 are called the structure functions7 and they describe all the QCD physics in
DIS.
To go further, we abandon the full picture of DIS to focus on virtual photon-proton (γ∗p)
scattering (as shown in Fig. 2.3) and also, we write momenta in light cone coordinates
(see details in App. A.1), such as :

Pµ ≈ (P+, 0, 0⊥), kµ =

(
k+,

k2⊥
k+

, k⊥

)
, k′µ =

(
k′+,

k′2⊥
k′+

, k′⊥

)
, (2.19)

where kµ (k′µ) is the momentum of the stuck quark before (after) interacting with the
photon and h (h′) its helicity. We have P+ ≈ 2P very large and k+ large. Also, to write
kµ and k′µ, we consider the quark to be massless (since mq is negligible compared to the

hard scale of the process Q2 and also to k+). We also introduce the Feynman-x variable
as the fraction of + momentum of the proton carried by the quark :

x ≡ k+

P+ . (2.20)

For the virtual photon, to write its momentum within the Light Cone Perturbation
Theory (LCPT) formalism (where particles are on-shell), we translate its virtuality in
terms of imaginary mass :

qµ =

(
q+,

q⃗2⊥ −Q2

q+
, q⃗⊥

)
. (2.21)

For the following discussion, we also need to parametrize the kinematics of all partons
in X. We will also assume them to be massless. Then, for a final state X with n + 1

7
W1 and W2 are usually called structure functions too and the distinction with F1 and F2 is sometimes

underlined by the adjective “dimensionless”. Anyway, in the present manuscript, “structure functions”
will refer only to F1 and F2.
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partons (n ∈ N), we will write ki the momentum of the parton i, with :

∀i ∈ J1, nK, kµi =

(
xiP

+,
k2i,⊥
xiP

+ , ki,⊥

)
, (2.22)

where ∀a, b ∈ Z, Ja, bK = [a, b] ∩ Z i.e it is the set of integers between a and b.
Now, we can define the light cone wave function of the state X (described as
the Fock state of the n spectator partons and the struck quark of the proton) as

ψf
n({xi, ki,⊥};x, k⊥;h). We do not explicitly write the partons helicity and flavor for

simplicity since they are summed over as soon as the light cone wave function is squared.
Now, an important step to rewrite the hadronic tensor Wµν with ψf

n is to determine the
phase space represented by the sum over the X states in Eq. (2.14) :

∑

X

=

ˆ
dk′+

k′+
d2k′⊥

2(2π)3
1

Sn

∑

h
′
=±1

n∏

i=1

dxi
xi

d2ki,⊥
2(2π)3

, (2.23)

with the integral on k′+ performed over [0, P+], the integral on xi over [0, 1] and the
integrals over 2k′⊥ and ki,⊥ over R+. We can then rewrite Eq. (2.14) as :

Wµν =
1

8mp

∑

σ=±1

∑

f,n

ˆ
dk′+

k′+
d2k′⊥
(2π)3

1

Sn

∑

h,h
′
,h

′′

n∏

i=1

dxi
xi

d2ki,⊥
2(2π)3

× e2f
P+

k+
ψf
n({xi, ki,⊥};x, k⊥;h)

[
P+

k+
ψf
n({xi, ki,⊥};x, k⊥;h′′)

]∗

× ūh′(k′)γµ uh(k)
[
ūh′(k′)γν uh′′(k)

]∗
(2π)4δ4


P + q − k′ −

n∑

j=1

kj


 .

(2.24)

Playing with kinematics and some assumptions (that we have massless quarks and that
Q2 is the only hard scale with ∀i, Q2 ≫ k⊥, ki,⊥), we can rewrite the + component of
the Dirac delta function in Eq. (2.24) as :

1

k′+
δ4


P− + q− − k′− −

n∑

j=1

k−j


 ≈ xBj

Q2 δ(x− xBj) , (2.25)

giving another interpretation of the Bjorken-x variable as the fraction of the light cone
momentum of the proton carried by the struck quark.
Studying the transverse components ofWµν from Eq. (2.24), and using the decomposition
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of Eq. (2.16), one may show two things.

W1(xBj , Q
2) =

1

8mp

∑

f,n

e2f

ˆ
dk+d2k⊥

1

Sn

∑

h

n∏

i=1

dxi
xi

d2ki,⊥
(2π)3

×
∣∣∣ψf

n({xi, ki,⊥};x, k⊥;h)
∣∣∣
2
δ(xBj − x)

× δ


P+ + q+ − k′+ −

n∑

j=1

k+j


 δ2


k⊥ +

n∑

j=1

kj,⊥


 .

(2.26)

Then, that W1 and W2 are linked by what is called the Callan-Gross relation [38] :

νW2(xBj , Q
2) = 2mpxBjW1(xBj , Q

2) , (2.27)

which translates into the structure functions :

F2(xBj , Q
2) = 2xBjF1(xBj , Q

2). (2.28)

This shows that, in fact, the QCD dynamics in DIS can be reduced to one function of
the Bjorken-x variable and of the hard scale Q2.

2.2 Collinear Parton Distribution Function

In this section, we will define the PDFs and relate them to the structure functions F1

and F2 defined in the previous section to show that factorization holds in DIS. Then we
will explore the behavior of these PDFs leading us to the so-called DGLAP evolution
equations. Basically, all the work to factorize the DIS process has been done in the
previous section, we now need to identify the PDF. Let’s first define ff/p, the distribution
function of quarks of flavor f in the proton (p) in terms of the light cone wave function

ψf
n
8 :

ff/p(x, µ
2
R) =

∑

n

1

x

ˆ
d2k⊥

2(2π)3
1

Sn

∑

h=±1

n∏

i=1

dxi
xi

d2ki,⊥
(2π)3

×
∣∣∣ψf

n({xi, ki,⊥};x, k⊥;h)
∣∣∣
2

× (2π)3δ2


k⊥ +

n∑

j=1

kj,⊥


 δ

(
1 − x−

n∑

l=1

xl

)
,

(2.29)

where µ2R is the renormalization scale, that appears as a UV cutoff in the transverse
momentum integrals. We see that it can be interpreted as the sum of the probabilities
of having a state with n spectators partons with an observed quark of flavor f (with the

8
See App. A.1 for more details.
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corresponding phase-space integrals and imposing momentum conservation) in a proton.
Overall, this distribution represents the probability to find (during an interaction with a
proton) a quark of flavor f carrying a fraction x of the proton’s longitudinal momentum
while µ2R is directly related to the energy of the probe in DIS (Q2). When it is not
explicit enough, this type of distribution is called collinear PDF, stressing the fact that,
in this picture, the partons in a hadron are seen as all following the same direction (the
direction of the hadron) and then carry a fraction of the longitudinal momentum of the
hadron x (that can be interpreted as a fraction of energy). In the same way, we can
define the gluon distribution function fg/p :

fg/p(x, µ
2
R) =

∑

n

1

x

ˆ
d2k⊥

2(2π)3
1

Sn

∑

h=±1

n∏

i=1

dxi
xi

d2ki,⊥
(2π)3

×
∣∣ψn({xi, ki,⊥};x, k⊥;h)

∣∣2

× (2π)3δ2


k⊥ +

n∑

j=1

kj,⊥


 δ2

(
1 − x−

n∑

l=1

xl

)
,

(2.30)

where ψn is this time the light cone wave function of the proton with an observed gluon
and n spectators partons. A diagrammatic representation of both quark and gluon PDFs
is shown in Fig. 2.4 where the blob represents the squared light-cone wave function (and
the solid line the separation between the “normal” and the complex conjugate part).

xBj, k⊥ xBj, k⊥

Figure 2.4: Diagrammatic representation of the quark (left) PDF and the gluon PDF
(right).

We see, using the expression for ff/p that Eq. (2.26), becomes :

W1(xBj , Q
2) =

1

mp

∑

f

e2fff/p(xBj , Q
2) , (2.31)

which implies, from the definition of the structure functions in Eq. (2.18) and with the
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Callan-Gross relation in Eq. (2.28), that :

F1(xBj , Q
2) =

1

2

∑

f

e2fff/p(xBj , Q
2) ,

F2(xBj , Q
2) =

∑

f

e2fxBjff/p(xBj , Q
2).

(2.32)

Reassembling all the elements presented in these 2 first sections, one can show that the
total cross-section of the virtual photon-proton scattering can be factorized between the
PDFs describing the proton structure on one side and the partonic cross-section (virtual
photon-quark scattering) on the other side as :

σγ
∗
p

tot (xBj , Q
2) =

∑

f

ˆ 1

0

dz

z
zff/p(z,Q

2)σ̂γ
∗
q(f)

(xBj

z
,Q2

)
. (2.33)

This result is a cornerstone of pQCD as it permits us to do prediction for hadronic
collisions, in DIS, by separating the perturbative part (the partonic cross section, or hard
part, involving short distance interaction) and the non-perturbative part (represented
by the PDF, the soft part, describing long-distance interactions). Also, the PDF can
be seen as a description of how the state of many non-interacting partons is produced
“from” a fast-moving hadron before interacting with a probe. Hence, PDFs only depend
on the QCD dynamics of the hadron itself and are then universal. This means that, if we
can determine for a specific process, we can use them for any process where factorization
(actually, collinear factorization) holds, giving to pQCD an important predictive power.
The goal of the presented developments was to give insights into how factorization arises
in hadronic collisions with a diagrammatic approach. Factorization theorems have been
proved to all orders (see [39–42] with an interesting overview in [43]) on several processes :

• inclusive Deep Inelastic Scattering (DIS),

• Semi-Inclusive Deep Inelastic Scattering (SIDIS),

• Drell-Yann (DY) in pp or pp̄ collisions.

SIDIS are DIS processes where we observe one of the final state hadrons, it can be
schematized as c + b → c + X (where a, b and c are hadrons). DY processes consist of
the collision of 2 hadrons through the annihilation of a quark-antiquark pair into a virtual
photon or a Z boson (which decays into a lepton pair). It can be schematized a + b →
Z/γ∗ → l− + l+. Formal demonstration of these factorization theorems is based on the
characterization of the Infra-Red (IR) divergences of the Feynman diagrams (involving
pinch surfaces and Landau equation), which is out of the range of this discussion. Still,
we will note that these demonstrations also need a gauge invariant definition of the PDFs
of a hadron h :

ff/h(x) =

ˆ
dξ−

4π
e−xP

+
ξ
−
⟨P |ψ̄(0+, 0−, 0⊥)Un(0; ξ−)γ+ψ(0+, ξ−, 0⊥)|P ⟩,

fg/h(x) =

ˆ
dξ−

2π
e−xP

+
ξ
−
⟨P |F+j

a Un
ab(0; ξ−)F+j

a (0+, ξ−, 0⊥)|P ⟩ ,
(2.34)
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σ̂ij

i

j

X

Figure 2.5: Collinear factorization.

with ψ a Dirac field, F the gluon field strength tensor. The gauge invariance is guar-
anteed by the inclusion of gauge links, the Wilson lines U defined, for a path C, by :

UC(x; y) = Pe−
´
C dzµA

µ
(z) , (2.35)

with the path order operator P. This Wilson line permits the parallel transport from x
to y along the path C. Expanding the exponential leads to the physical interpretation
of a Wilson line as the resummation of all possible radiation of the gluon field A along
the path.

In the following, the collinear factorization will refer to the factorization of a process
using PDFs (dependent only on the momentum fraction x and some factorization scale
µF ) to describe partons coming from hadrons. It may even be used as an ansatz for
processes where factorization has not (yet) been proved. In the case of the collision of 2
hadrons a and b (what we will be interested in), it reads :

Collinear Factorization

dσab→X(Pa, Pb) =
∑

i,j

ˆ
dxidxj fi/a(xi, µ

2
F )fj/b(xj , µ

2
F )dσ̂ij→X(xiPa, xjPb, µ

2
R) ,

(2.36)

where i and j stand for either quark flavors or gluon and X represent final state (spec-
tators are not denoted). This factorization is schematized in Fig. 2.5. One may notice
the two scales appearing in Eq. (2.36), µF , the factorization scale, which is actually the
renormalization scale of the PDF, and µR the renormalization scale of the running con-
stant (on which depends the perturbative expansion of the partonic cross-section σ̂ij).

Usually, both scales are set equal to the hard scale of the process : µ2F = µ2R = µ2 = Q2.
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a

k′ − k, λk′, h′

k, h

Figure 2.6: 1st order real correction to the quark PDF.

We saw that PDFs encode the non-perturbative part of a hadronic process. Still, the
dependence on the scale µ2F = Q2 is perturbative when Q is larger than the soft scale,
i.e the QCD scale ΛQCD. This dependence can then be evaluated through corrections
to the PDF that we will describe diagrammatically. Looking, for instance, at the real
corrections to the light cone wave function, one can relate the wave function with n− 1
spectators (line 1 in Fig. 2.6) with the one with n spectators (line 2 in Fig. 2.6) by
applying light-cone QCD rules (see App. A.1) to describe the emission of the gluon in
between.

Then, the obtained relation has to be squared to include it in the quark PDF defini-
tion of Eq. (2.29). Assuming the quark to be massless and that the transverse momenta
are strongly ordered, i.e :

Q2 ≫ k2⊥ ≫ k2n−1,⊥ ≫ · · · ≫ k21,⊥ ∼ ΛQCD , (2.37)

one can write an integral relation between ff/h(x,Q2) and ff/h(x′, k2⊥) that can be
expressed as a differential integral equation (more details on this derivation are given in
App. A.2). If you account for all corrections (all diagrams), for both quarks and gluons
(including diagrams relating the quark wave function to the gluon one and vice versa),
you may arrive at the system of equations :

DGLAP Evolution Equations

Q2 ∂

∂Q2

(
fS(x,Q2)

fg(x,Q2)

)
=
αs(Q

2)

2π

ˆ 1

x

dz

z

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)(
fS(x/z,Q2)

fg(x/z,Q2)

)

Q2∂fNS(x,Q2)

∂Q2 =
αs(Q

2)

2π

ˆ 1

x

dz

z
Pqq(z)fNS(x/z,Q2).

(2.38)
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These equations are the DGLAP equations. Gribov and Lipatov derived an equivalent
equation in QED in 1972 [44] while this QCD version was derived independently by
Altarelli and Parisi [45] and by Dokshitzer [46] (both in 1977). For simplicity, we have
omitted the mention of the hadron in the PDF index. fS and fNS refer respectively to
the flavor singlet PDF (related to sea quarks) and the flavor non-singlet PDF (related
to valence quarks), defined by :

fS(x,Q2) =
∑

f

[
ff (x,Q2) + ff̄ (x,Q2)

]
,

fNS(x,Q2) =
∑

f

[
ff (x,Q2) − ff̄ (x,Q2)

]
.

(2.39)

The functions P are called Altarelli–Parisi splitting functions. Pij represent the proba-

bility that a parton j emit a collinear parton i with the momentum fraction z =
p
+
j

p
+
i

. At

Leading Order (LO), we have :

Pqq(z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
,

Pqg(z) = CF
1 + (1 − z)2

z
,

Pgq(z) = Nf

[
z2 + (1 − z)2

]
,

Pgg(z) = 2Nc

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]
+

11Nc − 2Nf

6
δ(1 − z) ,

(2.40)

where the “+” prescription is adopted for regularization purpose, with [47] :

ˆ 1

x

dz

(1 − z)+
f(z) =

ˆ 1

x

dz

1 − z
[f(z) − f(1)] + f(1) ln (1 − x) , (2.41)

and :

CF =
N2

c − 1

2Nc
. (2.42)

The calculation of the splitting functions is described in App. A.2.

The DGLAP evolution equations are actually renormalization equations for the PDFs
(involving that observables, in an all-order calculation, do not depend on the scale choice
of Q2). These equations give us a way to evolve the PDFs from an initial scale Q2

0

to any other scale Q2 > ΛQCD (such that the perturbative approach holds). If we

take Q2
0 = ΛQCD and Q2 our hard scale, then, the DGLAP equations describe how

the parton interacting in a hadronic collision evolves from the soft scale (inside the
hadron) to the hard scale of the collision. This evolution is explained (perturbatively)
by successive emission of partons (corresponding to the real corrections to the light-
cone wave functions, while the virtual corrections are the splitting function corrections).
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Then, the DGLAP equations can be pictured as what we call a ladder diagram (see
Fig. 2.7), with n partons emitted (in this diagram, the solid line are undefined partons).
Each rung j implies a contribution of the form :

αs(Q
2)

ˆ
dk2j,⊥
k2j,⊥

ˆ
dxj
xj

· · · , (2.43)

with the dots representing some function describing the vertex j. In the approximation
of Eq. (2.37), i.e with strong transverse momenta ordering, the nested integral (coming
from the integration over all n rungs) results in :

αn
s (Q2)

ˆ Q
2

Q
2
0

dk2n,⊥
k2n,⊥

ˆ k
2
n,⊥

Q
2
0

dk2n−1,⊥
k2n−1,⊥

· · ·
ˆ k

2
2,⊥

Q
2
0

dk21,⊥
k21,⊥

=

(
αs(Q

2) ln
Q2

ΛQCD

)n

. (2.44)

We call then the regime presented in Eq. (2.37) the Leading Logarithmic Approximation

(LLA) in Q2, due to the ressummation parameter being αs(Q
2) ln Q

2

Λ
2
QCD

. This regime is

viable when Q2 is large and x not too small (such that the integrals in x in Eq. (2.43)
are not dominating), i.e when :

αs(Q
2) ln

1

x
≪ αs(Q

2) ln
Q2

Λ2
QCD

∼ 1. (2.45)

The DGLAP equations can also be studied in the regime where x are also strongly
ordered, i.e when :

x≪ xn ≪ · · · ≪ x1 ≪ x0. (2.46)

In this regime, the resummation parameter is αs(Q
2) ln Q

2

Λ
2
QCD

ln 1
x hence it is called Dou-

ble Logarithmic Approximation (DLA), and it is valid for :

αs(Q
2) ln

1

x
, αs(Q

2) ln
Q2

Λ2
QCD

≪ αs(Q
2) ln

Q2

Λ2
QCD

ln
1

x
∼ 1. (2.47)

In this approximation, i.e the small-x limit of the DGLAP equation, we notice that the
splitting functions Pgg and Pqg dominate (due to the term 1

z ), which means that the
gluons dominate. In this region, the DGLAP evolution equations simplify to :

Q2∂fg(x,Q2)

∂Q2 =
αs(Q

2)

2π

ˆ 1

x

dz

z

2Nc

z
fg(x/z,Q2) , (2.48)

which can be differentiated into (after the change of variable z → x
x
′ ...) :

∂xfg(x,Q2)

∂ ln(Q2/Λ2
QCD)∂ ln(1/x)

=
αs(Q

2)Nc

π
xfg(x,Q2). (2.49)
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xn, kn,⊥

xn−1, kn−1,⊥

...

...

x, k⊥

Figure 2.7: Ladder diagram describing DGLAP evolution.

The DLA of DGLAP can be represented by a ladder with only gluons, such as in Fig. 2.8.
It is usual to solve the DGLAP equation in moment space (using the Mellin transform,

more about it and the DGLAP in moment space can be found in App. A.3). Using this
method in the present limit (DLA), one can show (see [6] Sec. 2.4.6) :

xfg(x,Q2) ∼ exp


2

√√√√ Nc

πβ2

ln(Q2/ΛQCD)

ln(Q2
0/ΛQCD

ln
1

x


 . (2.50)

This solution predicts the growth of the gluon PDF at low-x (as observed in Fig. 1.5).
Also, since the virtuality Q of the photon corresponds to its transverse resolution (∆x⊥),
we can picture the DGLAP evolution as illustrated in Fig. 2.9 (from [6]), where the
photon probes more partons of smaller transverse size when its energy increases.

2.3 Transverse Momentum Dependant PDF

In this section, we will discuss several distributions describing the parton content of
hadrons, taking into account their transverse momentum. This will lead us to the uPDFs
that follow the BFKL equation on one side and to the TMDs that follow the CCFM
equation on the other side.
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x1, k1,⊥, k
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1
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+
i+1

xi−1, ki−1,⊥, k
+
i−1

xn, kn,⊥, k+n

xn−1, kn−1,⊥, k
+
n−1

...

...

x, k⊥, k+

Figure 2.8: Ladder diagram describing DLA DGLAP evolution.

Figure 2.9: Illustration of the DGLAP evolution equation (from [6]).

2.3.1 Unintegrated PDF and BFKL

To study high-energy physics, we need to consider the small-x limit without the
strong transverse momentum ordering, i.e the limit in which we resum the parameter
αs(Q

2) ln 1
x , valid when :

αs(Q
2) ln

Q2

Λ2
QCD

ln
1

x
, αs(Q

2) ln
Q2

Λ2
QCD

≪ αs(Q
2) ln

1

x
∼ 1 , (2.51)

i.e. valid when the integrals in x ∈ Eq. (2.43) dominate. What is particular in this limit
is that, since there is no ordering in transverse momentum, we need to integrate the
transverse momenta (for each emission) over their full range which implies the use of
unintegrated PDFs (denoted uPDFs) Fi/a(x, k2⊥). In the DLA limit, such distributions
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integrate into the collinear PDFs through the relation :

fi/a(x, µ2F ) =

ˆ µ
2
F

dk2⊥Fi/a(x, k2⊥). (2.52)

These uPDFs can be understood as the probability to hit a parton i of longitudinal
transverse momentum x and transverse momentum k⊥. Since gluon dominates at small-
x9, we will only consider the gluon uPDF Fg/a.
It is still possible to evaluate the dependence in x of the gluon uPDF through the emission
of gluons. While there is no ordering in k⊥, the ordering in the transverse momentum
fraction x impose ordering in the + and − component, such as :

k+1 ≫ k+2 ≫ · · · ≫ k+n ,

k−1 ≪ k−2 ≪ · · · ≪ k−n ,

k1,⊥ ∼ k2,⊥ ∼ · · · ∼ kn,⊥ ,

(2.53)

these conditions are referred as multi-Regge kinematics and they also imply rapidity
ordering :

y1 ≫ y2 ≫ · · · ≫ yn , (2.54)

where the rapidity is defined as y = 1
2 ln k

+

k
− . In this conditions, the gluon uPDF follow

the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [48–50] :

BFKL Evolution Equation

∂Fg/a(x, k2⊥)

∂ ln(1/x)
=
αsNc

π2

ˆ
d2q⊥
q2⊥

(
q2⊥Fg/a(x, q2⊥) − k2⊥Fg/a(x, k2⊥)

|q2⊥ − k2⊥|

+
k2⊥Fg/a(x, k2⊥)√

4q4⊥ + k4⊥

)
,

(2.55)

which evolves the gluon uPDF from a value x0 to a smaller x10 and can be schematized
as a ladder diagram, as shown in Fig. 2.10.

In this ladder, appear Reggeized gluons (double corkscrew lines) and Lipatov vertices
(large solid circles). The Reggeized gluons represent the sum of exchanges of any number
of gluons, in any order, as shown in Fig. 2.11. All these gluon exchanges contribute at
some power of αs ln s ∼ αs ln 1

x , hence have to be resumed at low-x. The Lipatov vertex
arises from no ordering of the transverse momentum and summation the real corrections
coming from any part of the ladder, as shown in Fig. 2.12.

The expression for the Reggeized gluon propagator and the Lipatov vertex will be
given later, in Sec. 3.2.1.

9
Because of the form of the splitting functions (which doesn’t depend on the transverse momentum

ordering).
10
since the equation holds at small-x...
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...
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Figure 2.10: Ladder diagram describing BFKL evolution.

= + + + · · ·

Figure 2.11: The Reggeized gluon.

At fixed running constant αs and in the saddle point approximation[51], an analytic
solution of the BFKL can be found [50]. It reads :

Fg/a(x, k2⊥) ≃
(
x

x0

)−λ (k2⊥)
3
2

√
56Ncαsζ(3) ln(x0/x)

exp

[
− π ln2(k2⊥/k

2
0,⊥)

56Ncαsζ(3) ln(x0/x)

]

∼
(
x

x0

)−λ

,

(2.56)

with λ = Ncαs
π 4 ln 2 and ζ the Riemann Zeta function. We observe then that the gluon

density increases as x decreases (as the inverse power of x). This stiff growth is actually

a problem, it violates unitary. Indeed, it lead to cross-section behaving like σtot ∼ sλ,
which contradicts the Froissart-Martin bound [52, 53] that states, for any QCD cross-
section :

σtot ≲ ln s11. (2.57)

11
The symbol ≲ expresses here the fact that, for simplicity, we have dropped a constant term
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= + +

+ +

Figure 2.12: Lipatov vertex.

Also, Eq. (2.56) clearly demonstrates a diffusion behavior in transverse momentum, as a
Gaussian in ln k2⊥ of width proportional to ln(x0/x). This behavior directly comes from
the no-ordering in transverse momentum, which can assimilate the BFKL evolution to a
random walk in k⊥. The problem is then that partons can diffuse to transverse momen-
tum k⊥ < ΛQCD (infrared region) where pQCD fails [54, 55] limiting the applicability
of BFKL equation. This issue can be avoided by setting a lower cutoff k⊥,min.

Figure 2.13: Illustration of the BFKL evolution equation (from [6]).

The typical transverse size x⊥ is the same for every emitted parton ∼ 1/k⊥ (due to
no k⊥ ordering). Then we can visualize the BFKL equation as the growth of the number
of partons (correlated to xFg/a) of the same size when x decreases. This description is
illustrated in Fig. 2.13 from [6], and shows that at small-x, the wave functions of the
partons may overlap which brings us to the idea of saturation (see Sec. 2.4).

The uPDF derived from the BFKL equation can be used in a factorization approach,
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the High Energy Factorization or kT -factorization [29, 30] :

dσab→X(Pa, Pb) =
∑

i,j

ˆ
dxi
xi

dxj
xj

ˆ
dki,⊥dkj,⊥ Fi/a(xi, ki,⊥)

×Fj/b(xj , kj,⊥)dσ̂i∗j∗→X(xiPa, xjPb, ki,⊥, kj,⊥).

(2.58)

This factorization has been proven for heavy quark production and holds for s≫ Q. The
partonic cross-section in this case has 2 off-shell legs (the calculation of the amplitudes
needed to calculate it will be the goal of Chap. 3).

2.3.2 TMDs and CCFM

The BFKL equation resums the singularities coming from the term in 1
z (dominating at

small-x) in the splitting function. It is possible to resum in the same time the singularities
coming from the 1

1−z terms (due to soft gluon emission) through coherent emission, i.e
for angular ordering :

θ1 < θ2 < · · · < θn. (2.59)

This region is described by the Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equa-
tion [56–58] which resums both αs ln 1

x and αs ln 1
1−x terms. This equation describes

the scale evolution of the gluon TMD Ag(x, k2⊥, µ
2), both dependent on k⊥ and a scale

µ (contrary to the uPDF Fi/a(x, k⊥)), as a solution of this equation.

Remark : Here, we should precise that the term “TMD” was originally
used in the context of TMD factorization [59, 60], valid for low transverse
momentum k2⊥ ≪ Q2 and where the parton distributions follow the Collins-
Soper-Sterman (CSS) evolution equations [61, 62]. This approach is espe-
cially useful to study observables sensitive to the initial parton transverse
momentum (such as the transverse-momentum imbalance or transverse spin
asymmetry in DY process...). Now, the term is also used in the context of
small-x physics, and we will use it in this sense.

The CCFM equation can be written in a form comparable to DGLAP :

CCFM Evolution Equation

q̄2
d

dq̄2
xAg(x, k2⊥, q̄

2)

∆s(q̄
2, Q2

0)
=

ˆ
dz

dϕ

2π

P̃gg

(
z,
( q̄
z

)2
, k2⊥

)

∆s(q̄
2, Q2

0)
x′Ag

(
x′, k′2⊥,

( q̄
z

)2)
, (2.60)

with k′⊥ =
∣∣k⊥ + 1−z

z q
∣∣ (where q is at azimuthal angle ϕ), z = x

x
′ and q̄ = |q|

1−z is the

rescaled transverse momentum. The Ag/a(x, k2⊥, µ
2) describe the probability to find a

gluon in hadron a carrying the longitudinal momentum fraction x at scale µ2 and having
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a transverse momentum k⊥. The Sudakov form factor is defined as :

∆s(q̄
2, Q2

0) = exp


−
ˆ q̄

2

Q
2
0

dq̄′2

q̄′2

ˆ 1−Q0
q̄

0
dz
ᾱ
(
q̄′2(1 − z)2

)

1 − z


 , (2.61)

with ᾱ = Ncαs
2π . The modifiedd splitting function P̃gg reads :

P̃gg

(
z,
( q̄
z

)2
, k2⊥

)
=
ᾱ
(
q̄′2(1 − z)2

)

1 − z
+
αs(k

2
⊥)

z
∆NS

(
z,
( q̄
z

)2
, k2⊥

)
, (2.62)

in which the so-called non-Sudakov factor appears :

∆NS

(
z, q̄2, k2⊥

)
= exp

(
−αs(k

2
⊥)

ˆ 1−Q0
q̄

0

dz′

z′

ˆ
dq̄′2

q̄′2
θ(k2⊥ − q̄′2)θ(q̄′2 − z′2q̄2)

)
. (2.63)

The Sudakov form factor resums contribution from large z region while the non-Sudakov
form factor resums small z contributions.

The CCFM equation is equivalent to DGLAP (for gluon only) at large x while it
reduces to BFKL at small-x. This evolution can be schematized as a ladder diagram
(see Fig. 2.14).
The rescaled transverse momentum is related to the emission angle by :

q̄i+1

q̄i
=
θi+1

θi
. (2.64)

Then, the angular ordering θi < θi+1 implies :

q̄i+1 > ziq̄i. (2.65)

In this equation, we regain the transverse momentum ordering at large z (like in
DGLAP) while we also see the random walk at z → 0 (like in BFKL).

Like with the uPDFs (see Eq. (2.58)) it is possible to use the TMDs to redefine
kT -factorization :

kT -factorization

dσab→X(Pa, Pb) =
∑

i,j

ˆ
dxi
xi

dxj
xj

ˆ
dki,⊥dkj,⊥ Ai/a(xi, ki,⊥, µ

2
F )

×Aj/b(xj , kj,⊥, µ
2
F )dσ̂i∗j∗→X(xiPa, xjPb, ki,⊥, kj,⊥, µ

2
R).

(2.66)

We will be particularly interested in this factorization scheme in the following.
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k1,⊥, z1

qi, θi
ki,⊥, zi

k⊥, x

qn, θn

...

...

Figure 2.14: Ladder diagram describing CCFM evolution equation, showing the angular
ordering of Eq. (2.59).

When there is an asymmetry in the initial state configuration, which reflects, by
momentum conservation, on final states (that is the case for forward jets), it is actually
suitable to use what we will refer to as hybrid factorization [63–67] :

Hybrid Factorization

dσab→X(Pa, Pb) =
∑

i,j

ˆ
dxi
xi

dxj
xj

ˆ
dki,⊥dkj,⊥ fi/a(xi, µ

2
F )

×Aj/b(xj , kj,⊥, µ
2
F )dσ̂ij∗→X(xiPa, xjPb, kj,⊥, µ

2
R).

(2.67)

where the initial state asymmetry is characterized by xi ∼ 1 and xj ≪ 1 and dσ̂ij∗

is calculable from amplitudes with one off-shell leg. This approach is used to describe
forward jet hadroproduction, where the transverse momentum of parton i is negligible.

2.4 Saturation

We saw in Sec. 2.3.1 that the BFKL equation violates unitarity at small-x. Actually,
when the gluon density becomes too high, the wave functions of the gluons overlap and
then gluons can recombine (and not only split). When these recombinations are no more
negligible compared to the splittings, we say that the gluons saturates.
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The recombination implies corrections to the BFKL equation quadratic in the gluon
PDF Fg/a. This has first been implemented by considering recombination of BFKL
ladders, which led to the Gribov-Levin-Ryskin (GLR) equation [68]. Another approach
to saturation, in DIS, consists in boosting the frame of the struck parton such that the
virtual photon appears as a dipole (a created pair, see illustration in Fig. 2.15).

⇒ ⇒

x1, z1, k1

x0, 1− z1, q − k1

q

Figure 2.15: Illustration of the dipole model.

Considering single dipole scattering leads to the BFKL equation written in terms of
the dipole amplitude N :

∂N
∂ ln(1/x)

=
αsNc

2π2σ0

ˆ
d2z⊥

r2⊥
r21,⊥r

2
2,⊥

[N1 + N2 −N ] , (2.68)

with :

N = N (x1,⊥ − x0,⊥, (x1,⊥ + x0,⊥)/2, x),

N1 = N (x1,⊥ − z⊥, (x1,⊥ + z⊥)/2, x),

N2 = N (z⊥ − x0,⊥, (x0,⊥ + z⊥)/2, x),

(2.69)

σ0 is the born level dipole cross-section and :

N (r⊥, x) =
4παs

3

ˆ
d2k⊥
k4⊥

Fg/a(x, k2⊥)
(

1 − eik⊥·r⊥
)

= 2π

ˆ +∞

0
db2N (r⊥, b

2, x).

(2.70)

Considering multiple dipole scattering introduces a quadratic term which, in the large
Nc limit, leads to the Balitsky-Kovchegov (BK) equation [69–71] :

∂N
∂ ln(1/x)

=
αsNc

2π2σ0

ˆ
d2z⊥

r2⊥
r21,⊥r

2
2,⊥

[N1 + N2 −N −N1N2] . (2.71)

This equation introduces a saturation scale Qs(x) at which saturation effects become
important. Incorporating sub-leading Nc correction would lead us to the Color-Glass
Condensate (CGC) domain [72] and the Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov and Kovner (JIMWLK) equation [73–75] that we won’t introduce here.

We have now a wide picture of the parton distribution function evolution in the
perturbative regime, in the (ln 1

X , lnQ
2) plane, as summarized in Fig. 2.16 (from [76]).

39



CCFM

Figure 2.16: Evolution equations in the ln 1
x , lnQ2 plane (from [76]).

2.5 The Parton Branching method

One method to obtain the TMDs Ai/a is the so-called parton-branching method [77–80].
This method is based on an iterative resolution of the DGLAP equations where on each
step the transverse momentum is tracked. But before going into this iterative solution,

we first introduce a higher cutoff zM on the integral over z such that 1−zM ∼ ΛQCD

Q
2 . This

cutoff translates the fact that emissions with a momentum fraction too close to 1 cannot
be resolved (when the resolution scale in the transverse distance between radiations is
finite). When accounting for resolvable radiation only, it is possible to show12, that the

12
See the demonstration in [77].
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DGLAP equation write :

∂fi(x, µ
2
F )

∂ lnµ2F
=
∑

j

[ ˆ zM

x

dz

z
P

(Re)
ij (z, µ2F )fj(x/z, µ

2
F )

−
ˆ zM

0
dzP

(Re)
ji (z, µ2F )fj(x/z, µ

2
F )

]
+ O(1 − zM ) ,

(2.72)

where P
(Re)
ji represents the real emission contribution to the splitting function Pji. Note

that the running coupling has been absorbed in the splitting function to make it more
convenient to generalize at any order. We write :

Pji(z, µ
2) =

∑

n∈N

(
αs(µ

2)

2π

)n

P
(n−1)
ji (z) , (2.73)

and an equivalent decomposition for P
(Re)
ji . Note that the functions P

(0)
ji (z) corresponds

to the splitting functions in Eq. (2.40). At LO, we have :

P (Re,0)
qq (z) = CF [1 − z] ,

P (Re,0)
qg (z) = CF

1 + (1 − z)2

z
,

P (Re,0)
gq (z) = Nf

[
z2 + (1 − z)2

]
,

P (Re,0)
gg (z) = 2Nc

[
1

1 − z
+

1 − z

z
+ z(1 − z) − 1

]
.

(2.74)

The evolution equation in Eq. (2.72) can be solved using an iterative MC procedure by
introducing the Sudakov form factor ∆i(zM , µ

2, µ20) defined as :

∆i(zM , µ
2, µ20) = exp


−

∑

j

ˆ µ
2

µ
2
0

dµ′2

µ′2

ˆ zM

0
dzzP

(Re)
ji (z, µ′2)


 . (2.75)

∆a(zM , µ
2, µ20) represents the probability that a parton i evolves from scale µ20 to scale

µ2 without resolvable emission (no branching). Note that this Sudakov form factors
is equivalent, when the pole in z = 1 in the splitting function dominates, to the one
appearing in the CCFM equation (see Eq. (2.61)) with an upper cutoff on the integral
over z set by hand and a different choice of scale for the running constant. With this
Sudakov form factor, we can rewrite Eq. (2.72) as :

∂fi(x, µ
2)

∂ lnµ2F
=
∑

j

ˆ zM

x

dz

z
P

(Re)
ij (z, µ2)fj(x/z, µ

2)

+
1

∆i(µ
2)

∂∆i(µ
2)

∂µ2
fj(x, µ

2).

(2.76)
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We have dropped zM and µ20 from the Sudakov form factor argument for simplicity (since
it doesn’t change). Integrating this equation leads (using ∆a(µ20, µ

2
0) = 0) to :

fi(x, µ
2) =∆i(µ

2)fi(x, µ
2
0)

+
∑

j

ˆ µ
2

µ
2
0

dµ′2

µ′2
∆i(µ

2)

∆i(µ
′2)

ˆ zM

0

dz

z
P

(Re)
ij (z, µ′2)fj(x/z, µ

′2) ,
(2.77)

which is a Fredholm-type integral equation that can be solved by iteration. Indeed, in
Eq. (2.77), one can use the expression of fi(x, µ

2) (i.e the right-hand side of the equation)
and use it to express fj(x/z, µ

′2) under the integral (2nd term of the right-hand side of
the equation). This can be done again and again, leading to :

fi(x, µ
2) =∆i(µ

2)fi(x, µ
2
0)

+
∑

i1

ˆ µ
2

µ
2
0

dµ21

µ21

∆i(µ
2)

∆i(µ
2
1)

ˆ zM

x

dz1
z1
P

(Re)
ij (z1, µ

2
1)∆i1

(µ21)fj(x/z1, µ
2
0)

+
∑

i1,i2

ˆ µ
2

µ
2
0

dµ21

µ21

∆i(µ
2)

∆i(µ
2
1)

ˆ µ
2
1

µ
2
0

dµ′21
µ′21

∆i1
(µ21)

∆i1
(µ22)

∆i1
(µ22)

×
ˆ zM

x

dz1
z1
P

(Re)
ii1

(z1, µ
2
1)

ˆ zM

x

dz2
z2
P

(Re)
i1i2

(z2, µ
2
2)∆i2

(µ22)fk(x/(z1z2), µ
2
0)

...

+
∑

i1,i2,··· ,in

ˆ µ
2
1

µ
2
0

dµ21

µ21

∆i(µ
2)

∆i(µ
2
1)

ˆ µ
2
2

µ
2
0

dµ22

µ22

∆i1
(µ21)

∆i1
(µ22)

ˆ µ
2
2

µ
2
0

dµ22

µ22

∆i2
(µ21)

∆i2
(µ22)

· · ·

×
ˆ zM

x

dz1
z1
P

(Re)
ii1

(z1, µ
2
1)

ˆ zM

x

dz2
z2
P

(Re)
i1i2

(z2, µ
2
2) · · ·

× ∆in
(µ2n)fk

(
x∏n
i=1 zi

, µ20

)

...

(2.78)

This way, it is possible to determine fi(x, µ
2) from fi(x, µ

2
0) at any order in this iterative

procedure, i.e it is possible to evolve fi from the scale µ20 to the scale µ2. In the previous
sum, it is interesting to note that the first term corresponds to the evolution between µ20
and µ2 without branching, the second is with one branching, and so on.

This equation (Eq. (2.77)) can be solved with a MC approach that reduces the
problem to generating the splitting variables zi and the scales µi. The scale for the
i+ 1th branching µi+1 is obtained solving :

r0

ˆ µ

µi

d∆i(zM , µ
2, µ20) =

ˆ µi+1

µi

d∆i(zM , µ
2, µ20) , (2.79)
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with r0 ∈ [0, 1] a random number. This equation reflects the definition of the Sudakov
form factor (Eq. (2.75)). In the same way, the splitting variables zi are obtained by
solving : ˆ zi+1

zmin

dz′P (Re)
ij (z′, µ2i+1) = r1

ˆ zM

zmin

dz′P (Re)
ij (z′, µ2i+1) , (2.80)

with r1 ∈ [0, 1] a random number and zmin the lowest kinematics allowed. Then, the
iterative procedure to solve Eq. (2.77) can be schematized as is in Fig. 2.17.

P (zi+1)zi+1 =
x
xi
, µi+1

xi, µi

x, µx, µ

xi, µi xi, µi

P (zi+1)

P (zi+2)

zi+1 =
xi+1

xi
, µi+1

zi+2 =
x

xi+1
, µi+2

+ · · ·

Figure 2.17: Illustration of the iteration solution : a parton can evolve from scale µi to
scale µ without branching (left), with one (middle), two (right), or more branching.

So far, it is a method to solve DGLAP equations, i.e to evolve collinear PDFs.
Actually, in the MC approach, it is possible to keep track of the kinematics in each
vertex, especially of the transverse momentum. We consider the branching in Fig. 2.18.
Then, the transverse momentum qk can be associated with the scale µ through the
angular ordering13 relation [81–83] :

µ =
|qk|

1 − z
. (2.81)

So, the transverse momentum of the evolved parton k⊥, after n emissions, is the
opposite of the sum of the transverse momenta of the emitted partons, i.e :

k⊥ = −
∑

k

qk. (2.82)

This angular ordering permits to construct the TMDs Ai(x, k⊥, µ
2) in a consistent

way14 [84], that integrates into fi :

ˆ
d2k⊥
π

Ai(x, k⊥, µ
2) = fi(x, µ

2). (2.83)

13
This relation implies that the emissions angles are ordered.

14
It can be shown that Ai does not depend on zM , as long as it is large enough (with this ordering).
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qt,kz = xi

xj

k

xjp
+, k⊥,j

xip
+, k⊥,i i

j

Figure 2.18: Branching j → i+ k.

The evolution of the TMDs is then implied by Eq. (2.77) and reads :

Parton Branching Evolution Equation

Ai(x, k⊥, µ
2) =∆i(µ

2)Ai(x, k⊥, µ
2
0)

+
∑

j

ˆ
dq′2

πq′2
∆i(µ

2)

∆i(q
′2)

Θ(µ2 − q′2)Θ(q′2 − µ20)

×
ˆ zM

x

dz

z
P

(Re)
ij (z, q′2)Aj(x/z, k⊥ + (1 − z)q′, q′2).

(2.84)
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Similar to PDF, this equation can also be solved by iteration :

Ai(x, k⊥, µ
2) =∆i(µ

2)Ai(x, k⊥, µ
2
0)

+
∑

j

ˆ
dq21

πq21
Θ(µ2 − q21)Θ(q21 − µ20)

∆i(µ
2)

∆i(q
2
1)

×
ˆ zM

x

dz1
z1
P

(Re)
ij (z1, q

2
1)∆j(q

2
1)Aj(x/z1, k⊥ + (1 − z1)q1, q

2
1)

+
∑

jk

ˆ
dq21

πq21
Θ(q21 − q22)Θ(q22 − µ20)

∆i(µ
2)

∆i(q
2
1)

×
ˆ

dq22

πq22
Θ(µ2 − q′2)Θ(q′2 − µ20)

∆j(q
2
1)

∆j(q
2
2)

∆i(q
2
2)

×
ˆ zM

x

dz1
z1
P

(Re)
ij (z1, q

2
1)

ˆ zM

x

dz2
z2
P

(Re)
jk (z2, q

2
2)∆j(d

2
2)

×Aj(x/(z1z2), k⊥ + (1 − z1)q1 + (1 − z2)q2, q
2
2)

+ · · ·

(2.85)

Again, given a TMD at some initial scale Ai(x, k⊥, µ
2
0), we can evolve it at any scale

with this method (usually, the initial scale is taken low).
As shown in [79], it is possible to rewrite the evolution equations of both fi and Ai as
the convolution of an evolution kernel K and a starting distribution (at scale µ0 :

Ai(x, k⊥, µ
2) =

ˆ
dx′A0,j(x

′, k0,⊥, µ
2
0)

1

x′
Kji

(
x

x′
, k0,⊥, k⊥, µ

2
0, µ

2

)
,

fi(x, µ
2) =

ˆ
dx′f0,j(x

′, µ20)
1

x′
Kint

ji

(
x

x′
, µ20, µ

2

)
.

(2.86)

In a recent work [85], this method has been extended with the use of transverse momen-
tum dependent splitting functions.

2.6 Nuclear PB-TMD phenomenology

This section aims to present TMDs obtained (by collaborators) for lead nucleus from the
PB method just presented (here with NLO splitting functions)15. We will study them,
and test them to reproduce Z boson production Compact Muon Solenoid (CMS) data
for pPb collision. The results presented here have been published in [1].

2.6.1 Application of the Parton Branching method

We have seen in the previous section (Sec. 2.5) that we can use the PB method to obtain
a TMD at any (perturbative) scale, evolving a TMD from a fixed scale µ0. We then

15
It was the first application of the PB method on nTMD.
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need a starting TMD. Actually, we use a known collinear PDF at scale µ0 (f0,i(x, µ
2
0))

on top of which we add an independent (in the sense factorized) transverse momentum
dependence. We take this dependence Gaussian (reproducing the diffusive behavior we
saw in the BFKL solutions Eq. (2.56)), leading to :

A0,i(x, k0,⊥, µ
2
0) = f0,i(x, µ

2
0) · e

−|k20,⊥|

σ
2 , (2.87)

with σ0 = q20/2 and q0 = 0.5GeV. This initial distribution is then convoluted with the
evolution kernel K (as in the first line of Eq. (2.86)) on fixed values of x, k⊥, and µ, to
fill a 3-dimensional grid (of size 50x50x50). The points on the grid are logarithmically
spaced in the range 0.01 < k⊥ < 14.10−3GeV, µ0 < µ < 14.10−3GeV (different values of
µ0 will be used) and 10−6 < x < 1.

2.6.2 Nuclear PDF used

To initiate our PB method, we need a starting PDF. In practice, to obtain a PDF, one
uses a phenomenological model with parameters that are fitted to data at a given scale
and then evolves it through the DGLAP evolution equation. Many groups work on data
analysis to provide PDFs with increasing precision such as MMHT [86, 87], NNPDF[88],
CTEQ-TEA [89], HERAPDF [28, 90] or MSTW [91]. Their approaches may differ from
the data used, the phenomenological model fitted, the evaluation of the uncertainties,
or the treatment of heavy flavors, but they are all based on DGLAP evolution using the
same renormalization scale.
Since we aim at studying pPb collision in Sec. 2.6.4, we need both proton and lead start-
ing PDFs (we will mention the latter as nuclear Parton Distribution Function (nPDF)).
For the proton, PDFs from HERAPDF2.0 [28] will be used while for the lead, we will
compare results using the 2 following sets ;

• nCTEQ15 [92] nPDFs,

• EPPS16 [93] nPDFs.

Also, in Sec. 2.6.4, we will compare results obtained not only using kT -factorization but
also hybrid and collinear factorization. Then, the PDF used in the latter cases will be
the one used to initiate the parton branching method (see above).

An important difference between these 2 nPDFs is that, in nCTEQ15, they
parametrize the nPDF at initial scale in the same fashion as the proton PDF (like
in [94]) with (for a parton i from a proton in the nucleus A) :

xfi/A(x, µ20) = c0x
c1(1 − x)c2ec3x(1 + ec4x)c5 , (2.88)

where {ci}i∈J0,5K ∈ R are the parameters that are fitted. On the other end, in EPPS16,
they do not parametrize directly the nPDF but instead, they parametrize the nuclear
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Figure 2.19: EPPS16 fit of the nuclear modification Ri/A(x, µ20) (from [93]).

modification factor :

fi/A(x, µ2) = Ri/A(x, µ2)fi/p(x, µ
2)

Ri/A(x, µ20) =





a0 + a1(x− xa)2 , for x ≤ xa ,

b0 + b1x
α + b2x

2α + b3x
3α , for xa ≤ x ≤ xe ,

c0 + (c1 − c2x)(1 − x)β , for xe ≤ x ≤ 1 ,

(2.89)

where the free proton PDF fi/p(x, µ
2) is taken as CT14NLO [95]. This parameterization

allows the description of observed nuclear effects such as shadowing at small-x (due to
multiple scattering inside the nucleus), anti-shadowing (explained through sum rules) in
the intermediate region characterized by xa and EMC effect (named after the group that
observed it : European Muon Collaboration), characterized by xe, the EMC minimum
(all these effects are not yet completely understood, for a review, see [96]). This nuclear
modification, fitted at µ20 = m2

c = (1.3)2GeV (where mc is the mass of the charm quark),
is presented in Fig. 2.19 (from [93]), stressing the different nuclear effects observed.

This nuclear modification can be obtained also with nCTEQ15 results doing the ratio
of the nCTEQ15 nPDF to a toy model of nPDF constructed from a proton PDF the
following way :

fi/Afree
(x, µ2) =

Z

A
fi/p(x, µ

2) +
A− Z

A
fi/n(x, µ2) , (2.90)

where fi/n is obtained from fi/p assuming isospin symmetry. fi/Afree
is then the PDF of a

nucleus without nuclear effects, where the nucleon (protons and neutrons) are free. The
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Figure 2.20: Comparison of the nuclear modification Ri/A(x, µ20) obtained in nCTEQ15

(red) and EPPS16 (blue) for g, uV , ū, dV , d̄ and s̄ distributions, at µ2 = 10GeV
(from [93]).

comparison between nCTEQ15 and EPPS16 lead PDFs, in terms of nuclear modification,
is shown in Fig. 2.20 (from [93], s̄ represent the sea quarks).

There is a relatively good agreement between the 2 approaches, but this is not really
discriminant since the uncertainties are high. We can observe different tendencies of the
central value of the valence quarks (uV and dV ) and antiquark (ū and d̄) distributions
at low-x. Also, if the uncertainties are larger in the EPPS16 case, it is mainly because
of the broader data used.
On its side, the proton PDF set, HERAPDF2.0, that we will also use was parametrized
the following way :

xfi/p(x, µ
2
0) = c0x

c1(1 − x)c2(1 + c3x+ c4x
2) , (2.91)

with some specific choice of the parameters depending on the parton i (see Eq. (26-31)
in [90]). The resulting distributions are shown in Fig. 1.5 (used in the introduction).

2.6.3 Obtaining nuclear TMDs

The PDFs presented in the previous section were used to produce the TMDs16 (and espe-
cially nuclear TMDs or nTMDs) that we present in this section. But before discussing
the obtained TMDs, we first define 2 sets (for each initial distribution). Set2 corre-
sponds straightforwardly to Eq. (2.84) where the scale of αs (hidden inside the splitting
functions) is taken as the transverse momentum of the radiations (q; this choice implies
angular ordering). In Set1 however, the scale of the running constant is set to µ, which
implies transverse momentum ordering. Another difference comes from the choice of

16
Actually to produce starting distribution, needed in Eq. (2.87)
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initial scale µ0 for those sets. Set1 starts its evolution at µ20 = 1.9GeV2 while Set2

starts at µ20 = 1.4GeV2.
We derive 3 sets of PB nTMDs from the nPDF presented in the previous section :

• PB-nCTEQ15FullNuc 208 82 based on the starting nCTEQ15 nPDFs,

• PB-EPPS16nlo CT14nl Pb208 based on the starting EPPS16 nPDFs,

• PB-NLO ptoPb208, that uses the free nucleon model presented in Eq. (2.90),

we will also use PB-TMDNLO-HERAI+II-2018-aspt to describe the proton (obtained
in [80]). All these TMDs sets are included in TMDlib [97] and can be studied through
TMDplotter (a graphics showing the TMDs distributions in x or k⊥ can be produced
thanks to this online tool).
Let’s first have a look at the x distribution of these TMDs. The valence quark (“up-val”
and “down-val”), sea quark (“sea”), and gluon (divided by 20 for readability) distribu-
tions of the listed above TMDs, for both Set1 and Set2 are presented in Fig. 2.21.

First, we can see that the number of neutrons and protons in lead (126 and 82
respectively for Pb208) is reflected in the valence quarks distribution (comparing from
the free proton TMD in the rightmost column). We also already see that Set1 and Set2

do not integrate into the same PDF. Let’s investigate this by comparing nCTEQ15 nPDF
to the 2 sets of nTMDs obtained using it as initial distribution (for the x dependence).
As shown in Fig. 2.22, for the up quark distribution, Set1 TMD perfectly integrates
into the initial PDF while Set2 do not. This was predictable since nCTEQ15 nPDF is
evolved with DGLAP equation and the version of the PB method used for Set1, i.e with
µ2 as the scale of the running constant, is completely equivalent to DGLAP (at NLO).
Then, we might keep in mind that, while Set2 is suitable to a consistent definition of
TMDs, it doesn’t reproduce PDFs once integrated over k⊥.

If we compare the integrated distributions of the different sets (see Fig. 2.23 for the
gluon distributions and Fig. 2.24 for the up quark distributions), then we see that PB-
nCTEQ15FullNuc 208 82 and PB-EPPS16nlo CT14nl Pb208 are relatively close, except
for low scale and transverse momentum where they have different behavior at low-x.
Comparing them with PB-NLO ptoPb208 shows the importance of nuclear effects on
TMDs. It is interesting to see how the choice of the scale of the running coupling
(define by the choice of set) affects these nuclear effects (in the sense that it offers
a different description). For instance, if we look at the gluon distribution at k⊥ =
1GeV, µ = 10GeV, for Set1, PB-NLO ptoPb208 and PB-nCTEQ15FullNuc 208 82 are
comparable at mid to large x (say in [0.03, 1]) while for Set2 it is nearly the contrary.
As suggested in [80], while they do not integrate to known PDFs, Set2 TMDs might be
more appropriate for phenomenology (something that we will test in the next section).
When we look at the up quark distribution at low k⊥, comparing, for instance, PB-
nCTEQ15FullNuc 208 82 Set2 with the free nucleon model, we can observe, as in the
PDF case, the shadowing region at low-x, an anti-shadowing region at intermediate x
(around 0.025) and the EMC region.

49



3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-nCTEQ15FullNuc_208_82-set1, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-nCTEQ15FullNuc_208_82-set1, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-nCTEQ15FullNuc_208_82-set2, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-nCTEQ15FullNuc_208_82-set2, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-EPPS16nlo_CT14nlo_Pb208-set1, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-EPPS16nlo_CT14nlo_Pb208-set1, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-EPPS16nlo_CT14nlo_Pb208-set2, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-EPPS16nlo_CT14nlo_Pb208-set2, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO_ptoPb208-set1, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO_ptoPb208-set1, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO_ptoPb208-set2, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO_ptoPb208-set2, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO-HERAI+II-2018-set1, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO-HERAI+II-2018-set1, 

3−10 2−10 1−10
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1)µ
xf

(x
,

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO-HERAI+II-2018-set2, 

 0.05×gluon 
up-val
down-val
sea

T
M

D
pl

ot
te

r 
2.

2.
4

 from 0.1 up to 1000 GeV
t

 = 10 GeV, kµPB-NLO-HERAI+II-2018-set2, 

Figure 2.21: x distribution of valence quarks (blue for uV and purple for dV ), sea quarks
(orange) and gluons (red, distribution divided by 20), at µ = 10GeV obtained by inte-
gration over k⊥ of the TMD PB-nCTEQ15FullNuc 208 82 (1st line), PB-EPPS16nlo -
CT14nl Pb208 (2nd line), PB-NLO ptoPb208 (3rd line) and PB-TMDNLO-HERAI+II-
2018-aspt (last line), for Set1 on the 1st column and Set2 on the 2nd.

Of course, the gluon distributions for the free parton (PB-TMDNLO-HERAI+II-2018-
aspt) and for the model of lead composed of free nucleons (PB-NLO ptoPb208) are the
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Figure 2.22: x distribution of the up quark at µ = 10GeV (left) and µ = 100GeV (right)
from the nCTEQ15 (purple) and the integration over k⊥ of PB-nCTEQ15FullNuc 208 82
Set1 (red) and Set2 (blue).

same since the gluon distribution in the proton and in the neutron (obtained by isospin
symmetry, which only affects u and d quarks) are the same.

Comparing now the transverse momentum distributions (at fixed x and scale µ), as
shown in Fig. 2.25 for gluons and Fig. 2.26 for up quarks, we note that PB-nCTEQ15-
FullNuc 208 82 and PB-EPPS16nlo CT14nl Pb208 have the same behavior at large k⊥
which differs from the one of the proton and of the lead with free nucleons. The later (PB-
NLO ptoPb208 and PB-TMDNLO-HERAI+II-2018-aspt) often show a similar shape
(for the u distribution, they are again equal for the gluon distribution).

Finally, Fig. 2.27 shows the uncertainties for the up quark at x = 0.01 for 2 scales :
µ = 10GeV and µ = 100GeV (with a linear scale for better readability). Those uncer-
tainties are of the order of 10% for the shown distributions. For other flavors they are of
the same order (around 10 − 15%). We observe a limited reduction of the uncertainties
with the scale, especially at large k⊥. Concerning the gluon TMDs, the uncertainties
are much larger, of the order of 50% at low k⊥.

While not necessarily well constrained (especially concerning the gluon distributions),
we will see in the next section that these TMDs can precisely describe data and highlight
nuclear effects (comparing results from nTMDs to our free nucleons model).

2.6.4 Z boson production in pPb collisions at the LHC

In this section, we present predictions for the inclusive Z boson production in pPb at
the LHC through the DY process :

pPb → (Z/γ∗) → ℓℓ̄ , (2.92)
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Figure 2.23: x distribution of gluons, for Set1 (1st line) and Set2 (2nd line) at k⊥ =
1GeV, µ = 10GeV (left) and k⊥ = 10GeV, µ = 100GeV (right) from PB-nCTEQ15-
FullNuc 208 82 (red), PB-EPPS16nlo CT14nl Pb208 (purple), PB-NLO ptoPb208 (or-
ange), PB-TMDNLO-HERAI+II-2018-aspt (orange).

where the intermediate vector boson decays into either an electron or a muon pair
(denoted by ℓℓ̄). We will compare our predictions to CMS data (presented in [98]) with
the following fiducial region :

•
√
s = 5.02TeV,

• pℓT > 20GeV,

• |ηℓlab| < 2.4,

• 60 < mℓℓ < 120GeV.
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Figure 2.24: x distribution of up quarks, for Set1 (1st line) and Set2 (2nd line)
at k⊥ = 1GeV, µ = 10GeV (left) and k⊥ = 10GeV, µ = 100GeV (right) from
PB-nCTEQ15FullNuc 208 82 (red), PB-EPPS16nlo CT14nl Pb208 (purple), PB-NLO -
ptoPb208 (orange), PB-TMDNLO-HERAI+II-2018-aspt (orange).

where
√
s is the center of mass energy, pℓT the transverse momentum of the lepton,

ηℓlab its rapidity (in the lab frame) and mℓℓ the mass of the lepton pair. To perform our
calculations, we used the TMDs and PDFs presented in the previous sections (Sec. 2.6.2
and Sec. 2.6.3) and LO off-shell matrix elements calculated by the MC event generator
KaTie [99] (which also performs the phase-space integration). We have applied kT -
factorization (and also, for comparison purposes, hybrid and collinear factorization) with
the factorization and renormalization scales set to the mass of the Z boson : µR = µF =
µ = mZ . We present our predictions in terms of the Z boson center of mass rapidity y∗

53



4−10

3−10

2−10

1−10

1

10

210)µ, t
xA

(x
,k

 = 10 GeVµgluon, x = 0.01, 

PB-nCTEQ15FullNuc_208_82-set1
PB-EPPS16nlo_CT14nlo_Pb208-set1
PB-NLO_ptoPb208-set1
PB-NLO-HERAI+II-2018-set1

T
M

D
pl

ot
te

r 
2.

2.
4

 = 10 GeVµgluon, x = 0.01, 

1−10 1 10 210
 [GeV]tk

0.5

1

1.5

4−10

3−10

2−10

1−10

1

10

210)µ, t
xA

(x
,k

 = 100 GeVµgluon, x = 0.1, 

PB-nCTEQ15FullNuc_208_82-set1
PB-EPPS16nlo_CT14nlo_Pb208-set1
PB-NLO_ptoPb208-set1
PB-NLO-HERAI+II-2018-set1

T
M

D
pl

ot
te

r 
2.

2.
4

 = 100 GeVµgluon, x = 0.1, 

1−10 1 10 210
 [GeV]tk

0.5

1

1.5

4−10

3−10

2−10

1−10

1

10

210)µ, t
xA

(x
,k

 = 10 GeVµgluon, x = 0.01, 

PB-nCTEQ15FullNuc_208_82-set2
PB-EPPS16nlo_CT14nlo_Pb208-set2
PB-NLO_ptoPb208-set2
PB-NLO-HERAI+II-2018-set2

T
M

D
pl

ot
te

r 
2.

2.
4

 = 10 GeVµgluon, x = 0.01, 

1−10 1 10 210
 [GeV]tk

0.5

1

1.5

4−10

3−10

2−10

1−10

1

10

210)µ, t
xA

(x
,k

 = 100 GeVµgluon, x = 0.1, 

PB-nCTEQ15FullNuc_208_82-set2
PB-EPPS16nlo_CT14nlo_Pb208-set2
PB-NLO_ptoPb208-set2
PB-NLO-HERAI+II-2018-set2

T
M

D
pl

ot
te

r 
2.

2.
4

 = 100 GeVµgluon, x = 0.1, 

1−10 1 10 210
 [GeV]tk

0.5

1

1.5

Figure 2.25: k⊥ distribution of gluon, for Set1 (1st line) and Set2 (2nd line) at x = 0.01,
µ = 10GeV (left) and x = 0.1GeV, µ = 100GeV (right) from PB-nCTEQ15FullNuc -
208 82 (red), PB-EPPS16nlo CT14nl Pb208 (purple), PB-NLO ptoPb208 (orange), PB-
TMDNLO-HERAI+II-2018-aspt (orange).

and transverse momentum pt distributions of the differential cross section (meaning, we
present dσ

dy
∗ and dσ

dpt
).

We stated that Set2 TMDs were more suitable to reproduce data and we verify it
on Fig. 2.28 where are shown predictions for the different set used (here nCTEQ15
and EPPS16 for lead and HERAPDF for the proton17), comparing results obtained

17
In this section, for readability, we name PB TMDs simply by the name of the PDFs used to initiate

them (if there is no ambiguity between the PDF and the TMD). We will then use nCTEQ15 instead of PB-
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Figure 2.26: k⊥ distribution of up quarks, for Set1 (1st line) and Set2 (2nd line) at
x = 0.01, µ = 10GeV (left) and x = 0.1GeV, µ = 100GeV (right) from PB-nCTEQ15-
FullNuc 208 82 (red), PB-EPPS16nlo CT14nl Pb208 (purple), PB-NLO ptoPb208 (or-
ange), PB-TMDNLO-HERAI+II-2018-aspt (orange).

in kT -factorization with Set1 and Set2 TMDs and in collinear factorization (with the
corresponding PDFs).

The observations we can do are general for both nCTEQ15 and EPP16 sets. First,
results with Set2 show a very good agreement with CMS data (we will refine the com-
parison with the calculation of the uncertainties in the following), for both y∗ and pt

nCTEQ15FullNuc 208 82, EPPS16 instead of PB-EPPS16nlo CT14nl Pb208 and HERAPDF instead of
PB-TMDNLO-HERAI+II-2018-aspt.
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Figure 2.27: k⊥ distribution of the up quark with the uncertainties of PB-nCTEQ15-
FullNuc 208 82 Set2 nTMD at x = 0.01 and µ = 10GeV (left), µ = 100GeV (right).

distributions while Set1 exhibit behavior comparable to the collinear case (for the y∗

distribution), underestimating the differential cross-section at low and negative rapidity
(this underestimate is also visible in the pt distribution). The similarity of the collinear
and Set1 results is not surprising considering that Set1 PB TMDs integrate to the cor-
responding PDFs. Also, the asymmetry of the collision (pPb) reflects on the rapidity
distribution. The CMS points are, by the way, surprisingly symmetric but we observe
that the high asymmetry of the y∗ distribution predicted by both collinear factoriza-
tion and Set1 TMD is softened in Set2 results. Concerning the pt distribution, that
collinear factorization cannot describe, we see again that Set2 nTMD describes the data
well where Set1 fails. Also, the shape obtained for both sets is the same if we impose a
higher low pt cut. Based on these observations, we will continue our study accounting
only for Set2 TMDs.
If we compare results for the different sets used, as in Fig. 2.29, we observe that all
nTMDs lead to similar results, in good agreement with CMS data. You may notice in
this figure that the TMD set PB-gluon D c ncteq1568CL Pb (which is based on a nPDF
improved from nCTEQ15 and EPPS16 by including data for heavy-flavor production in
pPb collision), leads to better constraints on the gluon PDF (the resulting nPDF is pre-
sented in [100]). This being said, the results obtained with this TMD are very close to
those obtained with PB-nCTEQ15FullNuc 208 82 and we won’t study it in detail here.

Looking carefully, we observe that nCTEQ15 and EPPS16 TMDs lead to slightly
different behavior in mid-negative rapidity y∗ and in the low-pt regions, results using
EPPS16 are closer to the data points. Also, we saw in Sec. 2.6.2 that nCTEQ15 PDF
were better constrained, and hence, we will focus on these distributions in the following
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Figure 2.28: Comparison of y∗ (left) and pt (right) distributions using Set2 (solid line),
Set1 (dashed line) or collinear factorization (dotted line) for PB-nCTEQ15FullNuc -
208 82 (1st line) and PB-EPPS16nlo CT14nl Pb208 (2nd line) with CMS data (black
dots).
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(the PDF and the corresponding TMD).
Another interesting point of Fig. 2.29 is that it brings out the nuclear effect when compar-
ing results with, say nCTEQ15, to those of the free nucleus model (PB-NLO ptoPb208).
This effect is clearly visible in the y∗ distribution, at mid-rapidity, where the differential
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cross section is greatly enhanced by nuclear effects. This enhancement is also visible in
the pt distribution but less localized and less visible (still important for pt ∼ 3GeV).
The uncertainties, coming from the TMDs, on such predictions are directly related to
the precision of the fit of the initial PDFs (at their initial scale). Indeed, to evaluate
these uncertainties, we do the same calculation using what we call error PDFs or error
TMDs. Each error PDF corresponds to the PDF obtained by varying one of the fitted
parameters by the precision of the fit. Then, 2 PDFs are produced for each parameter
used. In the case of nCTEQ15, we vary the parameters ci (see Eq. (2.88)) by the error
±δci), leading to the error PDF :

f±ci ≡ fci→ci±δci
. (2.93)

Thereby, the error made on the calculation of an observable O, ∆O, is determined by
adding quadratic errors as follows [92] :

∆O =
1

2

√∑

i

(
O(f+ci ) −O(f−ci )

)2
. (2.94)

For the Z boson production in pPb collision, the uncertainties (for nCTEQ15) are shown
in Fig. 2.30.
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Figure 2.30: Uncertainties of y∗ (left) and pt (right) distributions for PB-nCTEQ15-
FullNuc 208 82.

These uncertainties are larger than the difference between the results obtained from
the different nTMDs, justifying our focus on nCTEQ15-based results. Also, they are
small enough to clearly identify the nuclear effect and discriminating results from nTMDs
and from the free nucleons model, and quantitatively smaller than the experimental
errors. Overall, it underlines the importance of nuclear modification even if it is still
secondary at the current experimental precision.
The approximations due to missing orders can also be evaluated. We know that our
results in pQCD, for any observable, should be independent of the renormalization scale
µ. Also, this is only true for the full-order calculation, hence, looking at the dependence
of our results on µ tells us about the higher-order corrections. It is usual to vary this scale
by a factor of 2 (multiplying and dividing it by 2) to estimate these corrections. However,
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the higher order corrections in our case would come from emissions of additional partons
and depend on the transverse momentum of the Z boson. At pt = 0 no real emission
is possible while those emissions become significant when pt growths (giving more angle
for branching). Therefore, we introduce the scale µ2 = m2

Z + p2t (suggested by angular
ordering) and we vary only the transverse momentum part (by a factor of 2). More
on this scale variation choice can be found in [101]. The results of the proposed scale
variation are presented in Fig. 2.31 where we observe that these variations are of the
order of the uncertainties (presented in Fig. 2.30) in the y∗ distribution but are much
smaller in the pt distribution.
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in dotted line) with CMS data (black dots).

Also, we mentioned that angular ordering suggests the choice of scale µ2 = m2
Z + p2t

while in the presented result, we have used µ = mZ . Actually, this is justified by the
very small difference between the two choices, much under the uncertainties and scale
variation bands, as shown in Fig. 2.32.
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To study the importance of the factorization scheme, hence of the k⊥ dependence
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of the initial parton of the hard process in the final cross-section, we have produced
results within hybrid and collinear factorization to compare to those of kT -factorization.
For the hybrid factorization, we tested both possible configurations : lead described by
TMD and proton by PDF and vice versa. The results are presented in Fig. 2.33 where ∗
denotes the hadrons described by a TMD (the notation suggests the off-shellness of the
corresponding parton).
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Figure 2.33: Comparison of y∗ (left) and pt (right) distributions for PB-nCTEQ15-
FullNuc 208 82 for different factorization schemes (kT in solid line, hybrid in dashed line
and collinear in dotted line) with CMS data (black dots).

We see then that both hybrid factorizations fail to describe the pt distribution (over-
estimating the low-pt region while underestimating the high-pt region). But something
interesting happens for the rapidity distribution. We see that it is enough to take into
account only the transverse momentum of the parton coming from the lead (in the
hard process) to describe the y∗ distribution. For this purpose, the intrinsic transverse
momentum of the parton coming from the proton is negligible. On the other hand,
treating only the proton with TMDs leads to a rapidity distribution comparable to the
one obtained in the collinear case.
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2.7 Chapter summary

Throughout this chapter, we have studied different parton distribution functions, objects
that both describe the structure of hadrons and that are crucial to pQCD predictions.
Indeed, these distributions encode the non-perturbative physics of long-distance QCD
that keeps partons in colorless bound states (i.e color confinement). Hopefully, these
PDFs are universal, meaning that we can obtain them from experiments on a specific
process and use them to predict other processes. This is possible when factorization
theorems apply i.e when it is possible to separate long-distance effects (soft part) from
short-distance ones (hard part). We saw how the factorization appears in the case of
DIS processes (in Sec. 2.1) leading us to collinear factorization, where the partons are
described only by the fraction x of the hadron momentum they carry. In this case, the
“collinear” PDFs depend on x but also on a renormalization scale µ (that we relate to
the energy scale at which the hadron is probed). Hopefully, the dependence of the PDFs
on the scale can be calculated perturbatively (in the range µ > ΛQCD) which leads us to
the DGLAP equations, that govern this scale dependence. We then introduced uPDFs
(dependent on x and on an intrinsic transverse momentum k⊥) in some kinematics region
that PDFs cannot describe. The x dependence of these uPDFs is governed by the BFKL
equations. Both the regions described by DGLAP and BFKL can be unified with the
introduction of TMDs (dependent on x, k⊥ and µ) which evolution is governed by the
CCFM equation. This led us to a way of applying DGLAP equation in the kinematics
region of application of CCFM (to evolve TMDs) called the PB method.

In the meantime, we defined two factorization schemes : kT -factorization and hybrid
factorization and had an overview of BK equation which expands BFKL equation ac-
counting for saturation (where recombination of gluons is no more negligible).
Finally, we used the Parton Branching method to produce nuclear nTMDs (TMDs for the
lead nucleus) and tested them (with success) through prediction of Z boson production at
LHC against CMS data. These TMDs (PB-nCTEQ15FullNuc 208 82, PB-EPPS16nlo -
CT14nl Pb208 and PB-gluon D c ncteq1568CL Pb) are available in the TMDlib [97]
library.
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Chapter 3

Amplitudes

This chapter is devoted to amplitudes in QCD, meaning amplitudes describing partonic
processes. In Sec. 3.1, will describe some general features of amplitudes, beginning with
their classical construction from Feynman diagrams. Then we will present tools used to
simplify their calculation such as color ordering and the spinor-helicity formalism which
lead to modern approaches to amplitudes, based on their properties. After reviewing
some recursive techniques and properties of QCD amplitudes inherited from supersym-
metry, we will focus on loop-amplitudes and the related loop-integrand calculations.
After this review on on-shell amplitudes, in Sec. 3.2, we will then describe how to calcu-
late off-shell amplitudes (i.e amplitudes with one or two off-shell legs, useful in hybrid
and kT -factorization). The first way to do it is based on Lipatov’s high energy effective
action, an effective theory that describes reggeons (as appearing in the BFKL equa-
tion). While we won’t make calculations within Lipatov’s high-energy effective action,
we present a short overview of this theory as we want to use some of the resulting am-
plitudes for comparison purposes.
Afterward, we will present an alternative method to calculate off-shell amplitudes, the
auxiliary parton method. This method is based on the explicit reconstruction of the
gauge invariance of off-shell amplitudes calculated in a naive way (indeed, calculating
an amplitude with off-shell leg by simply applying Feynman rules will lead, in general,
to non gauge invariant results). Finally, in Sec. 3.3, we will try to apply this method at
NLO to see if it breaks and we will actually provide expressions for g∗g+ . . . g+, which
exhibits the correct behavior. We will also apply it on g∗gg, in particular on g∗g−g+,
and observe that the method breaks when dealing with dimensional regularization. This
breaking has recently been understood and solved [102], which we will review shortly
before summarizing the chapter.
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3.1 On-shell amplitudes

The hard cross section σ̂X→Y describes, once integrated over the phase-space considered
for Y, the probability to go from a a state X (a set of particles, at t→ −∞) to a state Y
(at t→ +∞). This differential cross section is calculated from the probability amplitude
AX→Y (also called matrix element) as :

σ̂X→Y = |AX→Y |2 ,
with AX→Y = ⟨ψY |S − 1∥ψX ⟩ ,

(3.1)

with ψX (ψY) the wave function of the initial (final) state and S the scattering matrix
(often referred to as the S-matrix), which describes the evolution from X (at t→ −∞) to
Y (at t→ +∞) according to the considered QFT. The subtraction of the identity matrix
permits the elimination of the non-interacting part in S. If these states are partons, this
amplitude follows from the QCD Lagrangian (see Eq. (1.1)).

3.1.1 Feynman diagrams

As seen in the introduction, the QCD Lagrangian encodes free propagator (through
kinematics terms) and vertices (through interaction terms). Then, calculating a scat-
tering amplitude (probability amplitude for a scattering process) consists in calculating
all possible configurations of propagators and vertices to go from the initial state to
the final state. Each possibility is pictured by what is called a Feynman diagram. The
building blocks of these diagrams are obtained by inverting the corresponding terms in
the Lagrangian, which lead to the Feynman rules described in App. B.1. These rules
permit to translate the Feynman diagrams into amplitudes expressions (actually, into
the considered diagram contribution to the amplitude, all possible diagrams have then
to be summed).
However, the number of configuration for going from an initial state X to a final state Y,
using these building blocks, is infinite. Hopefully, they can be ordered by power of the
coupling constant αs (determined basically by the number and type of vertices). Hence,
since this coupling constant is evaluated at the hard scale of the collision, it is small
enough and this decomposition is actually a perturbative expansion of the amplitude (in
αs) :

AX→Y =

+∞∑

i=imin

Ai
X→Y , with ∀i, Ai

X→Y = O
(
αi
s

)
, (3.2)

imin depending on the process considered and actually on the number of particles n of
the process1. Considering the simplest Feynman diagrams with an increasing number of
particles leads to imin = n− 2. Then i = imin corresponds to the LO amplitude, called
tree level amplitude, i = imin+1 to the 1st order correction, and so forth. Also, when
considering a specific process (say qq → gg), going from the tree-level diagrams to its
first correction in perturbation theory (i.e to diagrams with one more power of αs) need

1
i.e n = ni + nf sums the number of particles in the initial and the final state
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the inclusion of two other 3-partons vertices (or a 4-gluon vertex). With fixed initial and
final states, this implies the creation of a loop in the diagram, hence we call corrections to
the tree-level amplitude, loop-level amplitudes. It is actually usual to denote amplitudes
by their number of loops (instead of their power in αs, as in Eq. (3.2)) :

AX→Y =

+∞∑

l=0

A(l)
X→Y . (3.3)

With the tree level amplitude usually noted A(0) = Atree. An example of the diagrams
appearing at the first orders in perturbation theory of Agg→gg is presented in Fig. 3.1.

= + +

+ + + + . . .

+ + + + . . .

+ . . .

Agg→gg +

Figure 3.1: Diagrams from the first terms of the perturbative series of Agg→gg. The 1st
line corresponds to tree-level diagrams, the 2nd line to (one) loop diagrams, and the 3rd
to 2-loops diagrams.

And here we can foresee the problems rising when calculating amplitudes with Feyn-
man rules : the number of diagrams quickly grows with both the number of loops l and
the number of external particles n. As an example, the number of tree-level diagrams
contributing to gg → g . . . g, with n overall gluons is given in table. 3.1 [103].

n 4 5 6 7 8 9 10

# of diagrams 4 25 220 2485 34 300 559 405 10 525 900

Table 3.1: Number of tree-level diagrams for n gluons amplitudes.

However, this apparent complexity leads to remarkably simple expressions (even in a
non-Abelian gauge theory as QCD) when using proper variables. In the next sections, we
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will present some used techniques to simplify amplitude calculation. These sections are
based on [104–106], and are far from being exhaustive on the subject (a more complete
review on on-shell scattering amplitudes can be found in [107, 108]). Also, the study
of on-shell amplitudes and their properties (attempting to calculate them avoiding the
direct calculation of the S-matrix implied by the Lagrangian formulation) is still an im-
portant subject of research, especially in QCD, where high-order amplitudes are needed
to constrain theoretical errors.

In the following, for a process p1p2 → p3 . . . pn (where pi are partons i.e simply g, q
or q̄), we will adopt the notation :

A
(
1p1 , 2p2 . . . npn

)
≡ Ap1p2→p3...pn

(
{ki, li; ai}i∈J1;nK

)
. (3.4)

where li and ai are respectively the polarization and the adjoint color index when pi is
a gluon and the helicity and the fundamental color index when pi is a quark. Actually,
we will even drop the index pi for gluons. When we need to specify helicities and
polarizations, we write them explicitly in superscript.

Remark : We consider, by convention, all momenta outgoing.

3.1.2 Color ordering

In QCD, it is possible to arrange amplitudes according to their color structure, decom-
posing them into simpler gauge-invariant pieces that are free from the corresponding
color factors [109–112]. These pieces are called color-ordered amplitudes or partial am-
plitudes and we will present how they are defined in this section, but first, we need to
recall properties of QCD color factors.

QCD is a non-abelian gauge theory based on the SU(Nc) group symmetry (associated
to color charge), with Nc the number of color charges. Actually, for QCD, Nc is fixed to 3,
but it can be interesting to keep explicit the dependence of Nc (which makes it possible to
simplify expressions in the “large Nc limit”, i.e considering leading color contributions).
Hence, the color factors appearing in QCD amplitudes are the Lie Algebra structure

constants fabc (appearing in 3 and 4 gluons vertices) and the generators (ta) j̄i (appearing
in gluon-quark-antiquark vertices). The indices a, b, c correspond to gluons color in
adjoint representation (a ∈ J1, N2

c −1K) while the indices i corresponds to a quark color in
fundamental representation (i ∈ J1, NcK), an equivalently, j̄ correspond to an antiquark
anticolor in fundamental representation (j̄ ∈ J1, NcK). Also the SU(Nc) generators

in fundamental representation (ta) j̄i are traceless hermitian Nc × Nc matrices that are
normalized using :

Tr(tatb) = δab. (3.5)

Actually, the standard way of normalizing SU(Nc) generators is : Tr(tatb) = δ
ab

2 , but

this leads to proliferation of
√

2 factors in the partial amplitudes, avoided using Eq. (3.5).

66



In this convention, the Casimir operator reads :

∑

a

tata = CF1 leading to CF =
N2

c − 1

Nc
, (3.6)

where the 2nd equality is obtained by taking the trace of the 1st one. Then, the color
structure constants are defined by :

[ta, tb] = i
√

2fabctc. (3.7)

Then, the first step to rearrange amplitudes according to their color structure is to write
the color structure functions in terms of the generators. Following from the definition
Eq. (3.7), we have :

fabc = − i√
2

[Tr(tatbtc) − Tr(tatctb)]. (3.8)

This leads, at the amplitude level to numerous terms containing products of traces over

(products of) generators and also generators strings of the form (ta1ta2 . . . tan) j̄i (if quarks
are present). All these terms can be rearranged using the SU(Nc) Fierz identity :

∑

a

(ta)
j̄1
i1

(ta)
j̄2
i2

= δ
j̄2
i1
δ
j̄1
i2

− 1

Nc
δ
j̄1
i1
δ
j̄2
i2
. (3.9)

This equation reflects the fact that the generators ta form a complete set of hermitian
matrices, with the 2nd term in the r.h.s. of the equation expressing their tracelessness.
Also, Eq. (3.8) and Eq. (3.9) can be represented diagrammatically, as shown in Fig. 3.2.

= −

= − 1
Nc

j̄1 j̄1 j̄1i2 i2 i2

j̄2 j̄2 j̄2i1 i1 i1

a a a

c c c

b b b

Figure 3.2: Diagrammatic representation of the equations leading to color ordering
(Eq. (3.8) and Eq. (3.9)).
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Applying these two equations to a QCD amplitude (i.e transforming structure func-
tions into generator traces, expressed with explicit indices2 and applying the Fierz
identity) leads to the amplitude color decomposition. This color decomposition can
be schematized diagrammatically [113, 114], as shown in Fig. 3.3 for gggg tree-level
amplitude (actually for one diagram contributing to this amplitude, but the other one
follow the same decomposition).

= −

−+

1 1 1

1 1

4 4 4

44

33 3

33

2 2 2

22

1432

1234 1324

1423

= ± permutations

1 2

34

Figure 3.3: Diagrammatic representation of the color decomposition of a Feynman di-
agram contributing to gggg. The numbers on top of the diagrams represent cyclic
ordering.

More generally, for the tree-level gluon amplitudes, the color factor always reduces
to single traces. For gg . . . g (with n gluons) Atree

n , the color decomposition reads [109–
111] :

Atree
n (1, 2, . . . , n) = gn−2

s

∑

σ∈Sn/Zn

Tr

[
n∏

k=1

taσ(k)

]
Atree

n (σ(1), σ(2), . . . , σ(n)) . (3.10)

where Atree
n are the partial amplitudes (denoted by a capital A). Sn/Zn is the set of

cyclically inequivalent permutations3 (such that each traces in the sum are distinct),
then the partial amplitudes appearing in Eq. (3.10) have each a particular leg ordering

2
Which means writing Tr(t

a
t
b
t
c
) = (t

a
)ii1(t

b
)i1i2(t

c
)i2i.

3
With Sn the set of permutation over a set of size n while Zn is the subset of cyclic permutations in

Sn.
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(simplifying the amplitude calculation). This is a feature of partial amplitudes that led
to the name color-ordered amplitudes. Besides, this ordering implies that only planar
diagrams contribute to partial amplitudes. Note that the − 1

Nc
term in the Fierz identity

do not contribute. (Eq. (3.9)). This term would contribute only if a “photon” could
couple to the gluon (an U(1) auxiliary gauge field, that would need a readjustment of its
coupling to be the photon of QED). An interesting feature of partial amplitude is that,
at tree level and leading color (leading order in Nc), cross section can be expressed as
incoherent sum of partial amplitudes square. Indeed, one can see by applying the Fierz
identity on the color-summed cross-section leads to :

dσtree ∝
∑

{ai}

∣∣∣Atree
n (1q̄, 2q, 3, . . . , n)

∣∣∣
2

∝ Nn
c


 ∑

σ∈Sn−2

∣∣∣Atree
n (1q̄, 2q, σ(3), . . . , σ(n))

∣∣∣
2

+ O
(

1

N2
c

)
 .

(3.11)

An equivalent decomposition exists for q̄qg . . . g, which reads :

Atree
n (1q̄, 2q, 3, . . . , n) = gn−2

s

∑

σ∈Sn−2

(
n∏

k=3

taσ(k)

)j̄1

i2

Atree
n (1q̄, 2q, σ(3), . . . , σ(n)) . (3.12)

In this case, instead of single traces of SU(Nc) generators, we have generator strings
(which are no more equivalent by cyclic permutation, hence the sum is over all the
permutations of the gluons Sn−2). One can similarly obtain color decomposition for
loop-level amplitudes. The method stays the same but the results involve more terms.
In the case of gluon amplitudes, we have [112] :

gg · · · g loop color decomposition

A(1)
n (1, 2, . . . , n) = gns

[ ∑

σ∈Sn/Z

Nc Tr

(
n∏

k=1

taσ(k)

)
An;1 (σ(1), σ(2), . . . , σ(n))

+

⌊n
2
⌋+1∑

c=2

∑

σ∈Sn/Sn;c

Tr

(
c−1∏

k=1

taσ(k)

)
Tr




n∏

k
′
=c

t
a
σ(k

′
)




×An;c (σ(1), σ(2), . . . , σ(n))

]
,

(3.13)

where An;c are the partial amplitudes and Sn;c is the subset of permutations (in Sn)
that leaves invariant the corresponding double trace. Due to the factor Nc, An;1 is
called the leading-color partial amplitude (which are color while An;c, for c > 1, are
the subleading-color partial amplitudes. An important feature of these specific partial
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amplitudes is that they can all be generated from An;1, following the identity :

An;c(1, 2, . . . , c− 1; c, c+ 1, . . . , n) = (−1)n
∑

σ∈Sn;αc,βc

An;1(σ(1), σ(2), . . . , σ(n)) (3.14)

where αc = tJ1, c − 1K (reverse-ordered set) with t reversing the set order, βc = Jc, nK
(ordered set) and Sn;αc,βc

is the subset of permutations of {1, 2, . . . , n} which fixes 1 and

preserves the cyclic order in both αc and in βc
4. Overall, the previous decompositions

imply that the calculation of tree and one-loop gluonic amplitudes and of tree amplitudes
with a quark pair and any number of gluons reduces to the calculation of a single partial
amplitude, with fixed leg order (hence planar). Of course, we actually need to calculate
it for the different helicity (and polarization) configurations, but the number of diagrams
is already well reduced compared to a direct calculation.
The case of q̄qg . . . g amplitude at loop order is slightly more complicated. Still, a color
decomposition can be described, in a general fashion as [115] :

q̄qg · · · g loop color decomposition

A(1)
n (1q̄, 2q, 3, . . . , n) = gns

n−1∑

c=1

∑

σ∈Sn/Sn;c

Cn;c(1q̄, 2q, σ(3), σ(4), . . . , σ(n))

×An;c(1q̄, 2q, σ(3), . . . , σ(n)) ,

(3.15)

with Cn;c the color structures that are in this specific case :

Cn;1(1q̄, 2q, 3, . . . , n) =

(
n∏

k=3

taσ(k)

)j̄1

i2

Cn;2(1q̄, 2q, 3; 4, . . . , n) = 0

Cn;c(1q̄, 2q, 3, . . . , c+ 1; c+ 2, . . . , n) = Tr

(
c+1∏

k=3

taσ(k)

)(
n∏

k=c+2

taσ(k)

)j̄1

i2

,

Cn;n−1(1q̄, 2q, 3, . . . , n) = Tr

(
n∏

k=3

taσ(k)

)
δ
j̄1
i2
.

(3.16)

where, in the third line, 3 ≤ c ≤ n − 2. Again, Sn;c is the set of permutations that
keeps the color factor in front of An;c (i.e Cn;c) invariant. In this case, it is possible to

4
As an example, let’s consider n = 5 and c = 3, then α3 = {2, 1} and β3 = {3, 4, 5}. In this case,

S4;α3,β3
contains :

(1, 2, 3, 4, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 3, 2, 4, 5), (1, 4, 2, 5, 3), (1, 5, 2, 3, 4),

(1, 3, 4, 2, 5), (1, 4, 5, 2, 3), (1, 5, 3, 2, 4), (1, 3, 4, 5, 2), (1, 4, 5, 3, 2), (1, 5, 3, 4, 2).
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construct both leading and subleading partial amplitudes from common gauge-invariant
pieces called primitive amplitudes (which are color-ordered and gauge invariant). These
primitive amplitudes decompose partial amplitudes considering the quark line5 direction
which can be either L (“Left”) or R (“Right”) (compared to the loop6). The correspond-
ing primitive amplitudes when the quark line participates to the loop are denoted AL

and AR. In the case where the quark line does not participate to the loop, we define
the primitive amplitudes AL,[J ] and AR,[J ] where J ∈ {0, 12 , 1} denotes the spin of the
particle in the loop. Actually, these two amplitudes are not independent and are related
by reflection (of the gluon legs) as :

AR,[J ]
n (1q̄, 3, 4, . . . 2q, . . . , n− 1, n) = (−1)nAL,[J ]

n (1q̄, n, n− 1, . . . 2q, . . . , 4, 3) . (3.17)

It can then be shown [115] that the leading-color partial amplitude takes the form :

An;1(1q̄, 2q, 3, . . . , n) =AL
n(1q̄, 2q, 3, . . . , n) − 1

N2
c

AR
n;1(1q̄, 2q, 3, . . . , n)

+
nf
Nc
A

L,[ 12 ]
n (1q̄, 2q, 3, . . . , n) +

ns
Nc
AL,[0]

n (1q̄, 2q, 3, . . . , n) ,

(3.18)

where nf is the number of fermions circulating in the loop (the number of flavors of mass-
less quarks considered) and ns the number of complex massless scalars. The subleading-
color partial amplitudes can also be determined from primitive amplitudes, following an
identity similar to the one for gluon amplitudes :

An;c(1q̄, 2q, 3, . . . , c+ 1; c+ 2, c+ 3, . . . , n) =

(−1)c−1
∑

σ∈Sn;αc,βc

[
AL,[1]

n (σ(1q̄), σ(2q), σ(3), . . . , σ(n))

− nf
Nc
A

R,[ 12 ]
n (σ(1q̄), σ(2q), σ(3), . . . , σ(n))

− ns
Nc
AR,[0]

n (σ(1q̄), σ(2q), σ(3), . . . , σ(n))

]
,

(3.19)

where actually, αc and βc are defined slightly differently than in the gluonic case. Indeed,
here, αc = tJ3, c + 1K, βc = {1, 2, c + 2, c + 3, . . . , n}7. So, again, the amplitude is fully
determined by a limited number of gauge invariant, color-ordered (hence planar) pieces :

5
By quark line, we mean the quark line linking the external quark to the external antiquark.

6
We won’t enter into the full details of this distinction, described in [115], focusing on result relevant

for the following.
7
As an example, let’s consider n = 5 and c = 3, then α3 = {4, 3} and β3 = {1, 2, 5}. In this case,

S4;α3,β3
contains :

(1, 2, 5, 4, 3), (1, 2, 4, 5, 3), (1, 2, 4, 3, 5), (1, 4, 2, 5, 3), (1, 4, 2, 3, 5), (1, 4, 3, 2, 5),

(1, 2, 5, 3, 4), (1, 2, 3, 5, 4), (1, 2, 3, 4, 5), (1, 3, 2, 5, 4), (1, 3, 2, 4, 5), (1, 3, 4, 2, 5).
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the primitive amplitudes.
We should mention that the calculation of the partial (and primitive) amplitudes does
not follow the classical Feynman rules (presented in App. B.1) but rather color-ordered
Feynman rules (presented in App. B.2). These rules are obtained by expanding the
structure functions in traces of generators and using the Fierz identity on the classical
Feynman rules while selecting a specific color factor.

Also, while we will use the decompositions presented above, we should mention that
different color ordering exist. Actually, the color bases used are not unique. If we
consider for instance the trace-basis appearing in the color decomposition of tree level
gluonic amplitudes (see Eq. (3.10)), it is over-complete, which leads to relations between
the tree-level partial amplitudes, the Kleiss-Kuijf relations [103, 116, 117] :

Atree
n (1, α, n, tβ) = (−1)|β|

∑

σ∈OP (α,
t
β)

Atree
n (1, σ(α ∪ tβ), n) , (3.20)

where α and β are two sets verifying α ∪ β = J2, n − 1K, α ∩ β = ∅, |β| is the cardinal
of β and OP (α, β) is the set of ordered permutations, preserving ordering within α and
β. Further relations exists upon partial amplitudes, especially gluonic ones, such as
the Bern-Carraso-Johanson (BCJ) relations that reveal the color-kinematics duality of
Yang-Mills amplitudes. In their simplest form, referred to as fundamental BCJ relations,
they read [117] :

n∑

i=3




i∑

j=3

s2j


Atree

n (1, 3, . . . , i, 2, i+ 1, . . . , n) = 0 . (3.21)

Then, it is possible to consider different color-ordering using the same partial ampli-
tudes. If Eq. (3.10) is based on the fundamental decomposition, it is possible to write a
decomposition based on adjoint representation [118] :

Atree
n (1, 2, . . . , n) = gn−2

s

∑

σ∈Sn−2/Zn

(
n−1∏

k=2

T aσ(k)

)

a1an

Atree
n (1, σ(2), . . . , n) , (3.22)

where (T a)bc = ifabc. This can be expanded at loop-level and also for amplitudes with
one quark-antiquark pair. A last decomposition we should mention is the color-flow
decomposition where gluons are characterized by a pair of fundamental anti-fundamental
color indices, leading to [116] :

Atree
n (1, 2, . . . , n) = gn−2

s 2−
n
2

∑

σ∈Sn−1/Zn

δ
i1
jσ(2)

[
n−1∏

k=2

δ
iσ(k)

jσ(k+1)

]
δ
iσ(n)

j1
Atree

n (1, σ(2), . . . , n) .

(3.23)
This way, quarks and gluons are treated on equal footing.
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Finally, we should mention some properties of partial amplitudes, based on symme-
tries they follow. Those are particularly useful since they reduce the number of helicity
configurations leading to independent amplitudes. These symmetries are :

• Cyclicity, as a consequence of partial amplitude definition :

An({i}) = An({(i+ 1 mod n)}) . (3.24)

• Parity, where all the helicities are flipped, that implies :

An({iλi}) = An({i−λi}) . (3.25)

• Charge conjugation, i.e the transformation of quark into antiquark and vice versa.
From the color-ordered quark-gluon vertex, it implies :

An(1q̄, 2q, 3, . . . , n) = −An(1q, 2q̄, 3, . . . , n) . (3.26)

• At tree level, the anti-symmetry of the color-ordered Feynman rules under reflec-
tion leads to :

Atree
n (1, 2, . . . , n) = −Atree

n (n, n− 1, . . . , 1) . (3.27)

Lastly, for gluon partial amplitudes at tree level, another interesting relation exists [112,
119] :

0 = Atree
n (1, 2, . . . , n) +Atree

n (2, 1, 3, . . . , n) + · · · +Atree
n (2, 3, . . . , 1, n) . (3.28)

This property can be obtained either from string theory techniques or considering the
color decomposition of Eq. (3.10), which is also valid when adding a U(1) photons, which
generator is the identity. Such amplitude vanishes and, considering a specific color factor,
leads to Eq. (3.28). Consequently, this relation is called photon decoupling relation or
dual Ward identity.

3.1.3 Helicity amplitudes

It is natural to use, as kinematic variables, the 4-momenta of the external particles
{ki} and the Lorentz invariant products (generalizing 4-point amplitudes Mandelstam
variables) defined as :

sij = (ki + kj)
2 . (3.29)

However, since the particles we deal with have spin, this is not the most suitable choice.
Actually, the helicity8 basis has been proved an effective choice leading to the spinor
helicity formalism [120–125]. Indeed, we will see that this basis is adapted to the am-
plitudes’ behavior and that it avoids some redundancy in the expressions (with, for

8
Helicity is the projection of a particle spin along its momentum.
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instance, the way to write polarization vectors). Also, by considering massless quarks
(adapted to describe high-energy collision), their helicities and chiralities are equivalent
hence, in this case, helicity is a conserved quantity.

The massless Dirac equation (see App. B.3 for a short review on the Dirac equation
and its solutions), which characterizes our on-shell quarks, leads to identical9 positive and
negative energy solutions (u and v respectively). From “these” solutions, we construct
the right-handed (+ helicity) and left-handed (− helicity) spinors (in 4-component Dirac
notation) :

u±(k) =
1

2
(1 ± γ5)u(k) ,

v∓(k) =
1

2
(1 ± γ5)v(k) =

1

2
(1 ± γ5)u(k) ,

(3.30)

for any null 4-vector k. Equivalently, the conjugate spinor read :

ū±(k) = ū(k)
1

2
(1 ∓ γ5) ,

v̄∓(ki) = v̄(k)
1

2
(1 ∓ γ5) = ū(k)

1

2
(1 ∓ γ5) ,

(3.31)

Note that, since we have adopted the outgoing momenta convention, the helicity of an
outgoing particle is its physical helicity while for an incoming particle, it is opposite
to its physical helicity. Then, when considering the momenta {ki}i∈J1;nK entering an
amplitude (with all legs on-shell), we will adopt the notation :

|i±⟩ = |k±i ⟩ = u±(ki) = v∓(ki) ,

⟨i±| = ⟨k±i | = ū±(ki) = v̄∓(ki) .
(3.32)

This way, we can write the spinor products as :

⟨ij⟩ = ⟨i−|j+⟩ = ū−(ki)u+(kj) ,

[ij] = ⟨i+|j−⟩ = ū+(ki)u−(kj) .
(3.33)

This leads to an even shorter notation for the spinors :

⟨i| ≡ ⟨i−| , |i⟩ ≡ |i+⟩ , |i] ≡ |i−⟩ , [i| ≡ ⟨i+| . (3.34)

These spinor products are antisymmetric :

⟨ij⟩ = −⟨ji⟩ , ⟨ii⟩ = 0 , [ij] = −[ji] , [ii] = 0 , (3.35)

and the other possible configurations vanish :

⟨ij] = [ji⟩ = 0 , (3.36)

9
At least up to normalization (which can be set equal).
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which can be easily seen by reinserting the adequate helicity projectors. All these spinors
follow the Dirac massless equation which can then be written as :

⟨i| /ki = 0 , /ki|i⟩ = 0 , /ki|i] = 0 , [i| /ki = 0 . (3.37)

The 4-momenta can be reconstructed from these spinors using the Gordon identity (for
massless spinors) :

Gordon identity

⟨i|γµ|i] = [i|γµ|i⟩ = 2kµi , (3.38)

and the invariants sij read :

⟨ij⟩[ji] = Tr

(
1

2
(1 − γ5)/ki/kj

)
= 2ki.kj = sij . (3.39)

The first equality in Eq. (3.39) can be inferred from the spinor completeness relation :

|i⟩[i| + |i]⟨i| = /ki , (3.40)

which can be split into two with the helicity projectors as :

|i⟩[i| =
1

2
(1 + γ5)/ki , |i]⟨i| =

1

2
(1 − γ5)/ki . (3.41)

Also, we will use the abusive notation :

⟨i|p|j] ≡ ⟨i|/p|j] , (3.42)

for any 4-momentum p. If p is light-like, the relation can be expressed :

⟨i|p|j] = ⟨ip⟩[pj] . (3.43)

Furthermore, the charge conjugation of current implies :

⟨i|γµ|j] = [i|γµ|j⟩ . (3.44)

An important relation in obtaining amplitudes in terms of spinor products is the Fierz
identity on spinors which reads :

Fierz identity

[i|γµ|j⟩[k|γµ|l⟩ = 2[ik]⟨lj⟩ . (3.45)

Finally, simplifying a helicity amplitude expression is mainly achieved by playing around
two relations. First, the Schouten identity :
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Schouten identity

[ij][kl] + [ik][lj] + [il][jk] = 0 ,

⟨ij⟩⟨kl⟩ + ⟨ik⟩⟨lj⟩ + ⟨il⟩⟨jk⟩ = 0 ,
(3.46)

which follows from the fact that helicity spinors are actually 2-component vectors (for
which an antisymmetric expression as in Eq. (3.46) vanishes). Thus, even if it is efficient
mainly with a small number of particles (entering an amplitude), we should mention the

momentum conservation

n∑

ii=1

kµi = 0, which implies the spinor product identity :

Momentum conservation
n∑

i=1

⟨ji⟩[ik] = 0 . (3.47)

We might refer to this relation as simply “momentum conservation”. Besides, the
development of the spinor helicity method is possible thanks to the possibility of writing
polarization vectors (for massless vector bosons of momentum k with defined helicity)
in terms of massless spinors [122, 124, 125] :

Polarization vectors

ϵ+µ (k, q) =
⟨q|γµ|k]√

2⟨qk⟩
, and ϵ−µ (k, q) = − [q|γµ|k⟩√

2[qk]
, (3.48)

where q is an auxiliary null vector, named reference momentum, which can be fixed
freely (for each boson) due to gauge freedom (but different than k). Indeed, a shift in
the reference momentum is a gauge invariance transformation, which can be written as :

ϵ+µ (q′) − ϵ+µ (q) =
⟨q|/kγµ + γµ/k|q′⟩√

2⟨q′k⟩⟨qk⟩
=

√
2⟨qq′⟩

⟨q′k⟩⟨qk⟩
kµ , (3.49)

leading to a vanishing contribution in the amplitude (or partial amplitude), as stated
by the Ward–Takahashi identity (for an amplitude A involving a vector boson with
momentum k and polarization vector ϵ) :

Ward–Takahashi identity

kµAµ = 0 , (3.50)

for A = ϵµAµ. This identity is a consequence of gauge invariance, implying that the
polarization of a vector boson parallel to its momentum does not contribute to the
amplitude. Furthermore, such polarization vector satisfies the transverse condition :

∀i, ki · ϵ±i = 0 , with i a gluon , (3.51)

76



where we have used the short notation ϵ±µ
i = ϵ±µ

i (ki, qi). In the following, we will also use
the notation ϵ±µ

i (qi) = ϵ±µ
i (ki, qi), when fixing the reference momentum to some specific

value. These polarization vectors are also transverse to the reference momentum :

qi · ϵ±i = 0 , with i a gluon . (3.52)

One can notice that complex conjugation reduces to a helicity flip :

(ϵ+µ )∗ = ϵ−µ . (3.53)

Also, the polarization vectors follow standard normalization :

ϵ±.(ϵ±)∗ = ϵ±.ϵ∓ = −1 , and ϵ±.(ϵ∓)∗ = ϵ±.ϵ± = 0 . (3.54)

In this form, it can be shown that the polarization vectors follow the completeness
relation as in a light-cone gauge :

∑

λ=±
ϵλµ(k, q)(ϵλν (k, q))∗ =

∑

λ=±
ϵλµ(k, q)ϵ−λ

ν (k, q) = −1

2

∑

λ=±

⟨kλ|γµ|qλ⟩⟨qλ|γν |kλ⟩
⟨q|k⟩[qk]

= −1

2

∑

λ=±

⟨kλ|γµ/qγν |kλ⟩
⟨q|k⟩[qk]

= −1

2

∑

λ=±

⟨kλ|qµγν + qνγµ − ηµν/q|kλ⟩
k.q

= −ηµν +
kµqν + kνqµ

k.q
,

(3.55)

where we have used γµγαγν = ηµαγν + ηανγµ − ηµνγα − iϵβµανγβγ
5. Numerous simplifi-

cations can be applied when fixing the reference momenta, such as :

• ϵ+i (q).ϵ+j (q) = ϵ−i (q).ϵ−j (q) = 0.

• ϵ+i (kj).ϵ
−
j (q) = ϵ+i (q)

∣∣∣
qi=q

.ϵ−j (ki) = 0.

• /ϵ
+
i (kj)|j⟩ = /ϵ

−
i (kj)|j] = 0.

• [j|/ϵ−i (kj) = ⟨j|/ϵ+i (kj) = 0.

Then, considerations based on the helicity configurations of an amplitude and a clever
fixing of the reference momenta can greatly simplify the calculation of a partial ampli-
tude. Also, if we consider the different products appearing in amplitudes :

ϵ+i .ϵ
+
j =

[kikj ]⟨qjqi⟩
⟨qiki⟩⟨qjkj⟩

, ϵ+i .ϵ
−
j = − [kiqj ]⟨kjqi⟩

⟨qiki⟩[qjkj ]
,

ϵ+i .k =
[kik]⟨kqi⟩√

2⟨qiki⟩
, ϵ−i .k = − [qik]⟨kki⟩√

2[qiki]
,

ki · kj =
1

2
⟨ij⟩[ji] ,

(3.56)

77



we observe that we are left with rational functions of the spinor products (characteristic
of the compactness of the helicity amplitudes).

To illustrate how spinor helicity can simplify an amplitude calculation, let’s consider
the simple example of the 4-point gluonic partial amplitude at tree level Atree

4 (1, 2, 3, 4)
(here, we will stress the vanishing contribution, for a more detailed example, see App. B.4).
In this amplitude, and more exactly in every diagram contributing to it, will appear

products of the type ϵ
λi
i .ϵ

λj

j . For the all plus helicity configuration Atree
4 (1+, 2+, 3+, 4+),

it is clear that, setting the reference momenta q1 = q2 = q3 = q4 = q leads to
Atree

4 (1+, 2+, 3+, 4+) = 0 (using ϵ+i (q).ϵ+j (q) = 0). In the same way, for the case
where the first gluon has opposite helicity with respect to the others, by choosing
q2 = q3 = q4 = k1, we conclude that Atree

4 (1−, 2+, 3+, 4+) = 0. From the properties
of partial amplitudes, only one more independent partial amplitude needs to be calcu-
lated : Atree

4 (1−, 2−, 3+, 4+). Indeed we have :

• Atree
4 (1−, 2−, 3−, 4−) = Atree

4 (1+, 2+, 3+, 4+) = 0 and
Atree

4 (1+, 2−, 3−, 4+) = Atree
4 (1−, 2+, 3+, 4+) = 0 by parity,

• Atree
4 (1−, 2+, 3+, 4+) = Atree

4 (4+, 1−, 2+, 3+)
= Atree

4 (3+, 4+, 1−, 2+) = Atree
4 (2+, 3+, 4+, 1−) = 0 ,

Atree
4 (1+, 2−, 3−, 4−) = Atree

4 (4−, 1+, 2−, 3−)
= Atree

4 (3−, 4−, 1+, 2−) = Atree
4 (2−, 3−, 4−, 1+) = 0 and

Atree
4 (1+, 2−, 3−, 4+) = Atree

4 (2−, 3−, 4+, 1+) by cyclicity,

• and finally Atree
4 (1−, 2+, 3−, 4+) = Atree

4 (1+, 2−, 3+, 4−)†

= −Atree
4 (1−, 3−, 2+, 4+) − Atree

4 (1−, 3−, 4+, 2+) using the dual Ward identity of
Eq. (3.28).

Note that, once written in terms of spinor products, the relation Eq. (3.25) actually
implies :

An({i−λi}) = (−1)n An({iλi})
∣∣∣
⟨⟩↔[]

= (−1)nAn({iλi})† . (3.57)

Choosing the reference momenta q1 = q2 = k4 and q3 = q4 = k1 reduces
Atree

4 (1−, 2−, 3+, 4+) to a single diagram leading to :

Atree
4 (1−, 2−, 3+, 4+) = i

⟨12⟩3
⟨12⟩⟨23⟩⟨34⟩⟨41⟩ , (3.58)

which is the only partial amplitude one has to calculate to obtain the 4-point tree-level
gluon amplitude (and the corresponding unpolarized cross-section).

Actually, with the same considerations, we can show that the tree level partial am-
plitude for n-gluons, with all plus helicity configuration or with one helicity opposite to
the other vanish :

Atree
n (1+, . . . , n+) = Atree

n (1−, . . . , n−) = 0 ,

Atree
n (1−, 2+, . . . , n+) = Atree

n (1+, 2−, . . . , n−) = 0 .
(3.59)
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3.1.4 Soft and collinear factorization

If the helicity basis permit reduction of the amplitude calculation to simpler objects
(polarized partial amplitudes), the spinor products are also well suited to describe am-
plitude behavior. This can be foreseen when considering real momenta. In this case,
angle and square bracket spinor products are related by complex conjugation :

[ij] = ⟨ij⟩∗ . (3.60)

Combined with Eq. (3.39), it implies that the spinor products are defined as :

[ij] =
√
sije

ϕij , ⟨ij⟩ =
√
sije

−ϕij , (3.61)

i.e that, up to a phase ϕij , spinor products are square roots of the invariants sij . Also,
these square roots are the poles of the amplitudes when two particles become collinear.
Indeed, if we consider the limit in which parton a and parton b become collinear (or
parallel), and we define Pa,b = ka + kb, then :

P 2
a,b = 2ka · kb −−→

a∥b
0 , (3.62)

the internal momentum Pa,b becomes on-shell, leading to a singularity in the amplitude.
By defining, in this limit, z as :

ka −−→
a∥b

zPa,b , kb −−→
a∥b

(1 − z)Pa,b , (3.63)

we can write the (partial) amplitude in a factorized form [126, 127] :

Atree
n (1, . . . , aλa , bλb , . . . , n) −−→

a∥b

∑

λ=±
Splittree−λ (z, aλa , bλb)×

×Atree
n−1(1, . . . , a− 1, P λ

a,b, b+ 1, . . . , n) .

(3.64)

This factorization is illustrated on Fig. 3.4.

An →...

a

b

...An−1Split

a

b

Pa,b

Figure 3.4: Diagrammatic representation of the factorization of an amplitudes when two
of its legs become collinear.
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Note that, since we consider color-ordered amplitudes, a and b have to be cyclically
adjacent. The functions Splittree−λ are polarized tree-level splitting functions, defined as :

Splittree− (a−, b−) =0 , Splittree− (a+, b+) =
1√

z(1 − z)⟨ab⟩
,

Splittree+ (a+, b−) =
(1 − z)2√
z(1 − z)⟨ab⟩

, Splittree− (a+, b−) =
−z2√

z(1 − z)[ab]
,

(3.65)

for an intermediate state of momentum Pa,b and helicity λ. This factorization property
hold also in presence of quarks, with the following splitting functions :

Splittree− (a+q , b
+) =

1√
1 − z⟨ab⟩ , Splittree− (a+q , b

−) =
−z√

1 − z[ab]
,

Splittree− (a+, b+q̄ ) =
1√
z⟨ab⟩ , Splittree− (a−, b+q̄ ) =

z − 1√
z[ab]

.

(3.66)

The rest of the splitting function can be obtained by parity or by charge conjugation.
In Eq. (3.64), the opposite sign of the helicity of the “collinear state” (a + b) is due to
the outgoing momenta convention (that we also apply on the splitting functions). One
may notice that summing these splitting functions over their helicities (for all 3 legs)
and squaring them, we recover the Altarelli-Parissi splitting functions10 (polarized and
unregularized).

This factorization of collinear singularities, appearing when two cyclically adjacent
particles become collinear, can be generalized. Indeed, we saw that the singularity was
coming from the intermediate line Pa,b going on-shell (implying a pole in the corre-
sponding propagator). Actually, this factorization also holds when any intermediate
propagator goes on-shell, i.e when P 2

i,j → 0 for Pi,j =
∑j

i ki. It is referred to as multi-

particle channel. In fact, with color-ordered amplitudes, only poles of the form P 2
1,j can

develop, leading to :

Atree
n (1, . . . , n) ∼

∑

λ

Atree
m+1(1, . . . ,m, P

λ)
i

P 2
1,m

Atree
n−m(m+ 1, . . . , n, P−λ) . (3.67)

In this limit, one propagator goes on-shell hence it links two on-shell amplitudes just as
described by Eq. (3.67).

The same kind of factorization holds when one of the gluons becomes soft (i.e its
momentum vanishes), as shown in Fig. 3.5.

In this limit, we have :

Atree
n (1, . . . , a, s±, b, . . . , n) −−−→

ks→0
S(a, s±, b)Atree

n−1(1, . . . , a−, b, . . . , n) , (3.68)

10
Actually, the real contributions.
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An →...

a

b

...s An−1S ×
a

b

s

Figure 3.5: Diagrammatic representation of the factorization of an amplitudes when a
gluon leg becomes soft.

with the soft factor (or eikonal factor) given by :

S(a, s+, b) =
⟨ab⟩

⟨as⟩⟨sb⟩ , S(a, s−, b) =
[ab]

[as][sb]
. (3.69)

These soft factors are independent of the helicity of a and b and whether they are
quarks or gluons but it only depends on their angular direction.

In the factorization of soft and collinear singularities, always appears at least one
spinor product (in either the soft factor or the different polarized splitting functions).
This shows how suitable is the helicity formalism to describe amplitudes and their di-
vergences.

3.1.5 Recursive techniques

Even with the techniques presented (color decomposition and spinor helicity formalism),
when the number of legs increases, the calculation of an amplitude stays complex due to
the number of (color-ordered) diagrams quickly growing. Some recursive techniques have
been developed to calculate tree-level amplitudes. We will present two, the Berends-Giele
recursion, particularly suitable for numerical calculations, and the BCFW recursion that
leads to compact expressions.

Berends-Giele recursion

One idea to build tree-level partial amplitudes recursively is to consider what is called
the off-shell current as a building block. This off-shell current is similar to an amplitude
but with an off-shell leg, not contracted then denoted by a Lorentz index (say µ). For n
on-shell gluon legs (and one off-shell gluon), we note it Jµ(1, . . . , n). It corresponds to
the sum of diagrams with n on-shell gluons and one off-shell (including its propagator).
This off-shell current isn’t gauge invariant, in particular, one should be careful, keeping
track of the auxiliary momenta (of the on-shell gluons) used when calculating it and
keep them till a gauge invariant expression is obtained. Then, the recursion is obtained
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by following the off-shell leg of our n legs current. The off-shell gluon line necessarily
enters either in a 3-gluon vertex or in a 4-gluon vertex. Then, each leg of these vertices
is related to an off-shell current (with necessary less than n legs). This leads to the
Berends-Giele recursion formula [128] :

Berends-Giele recursion

Jµ(1, . . . , n) = − i

P 2
1,n

[
n−1∑

i=1

V µνρ
3 (P1,i, Pi+1,n)Jν(1, . . . , i)Jρ(i+ 1, . . . , n)

+

n−2∑

i=1

n−1∑

j=i+1

V µνρσ
4 Jν(1, . . . , i)Jρ(i+ 1, . . . , j)Jσ(j + 1, . . . , n)

]
,

(3.70)

where V µνρ
3 and V µνρσ

4 are respectively the 3-gluon and 4-gluon color ordered vertices,
given by :

V µνρ
3 (P,Q) =

i√
2

[ηνρ(P −Q)µ + 2ηρµQν − 2ηµνP ρ]

V µνρσ
4 =

1

2

(
2ηµρησδ − ηµνηρσ − ηµσηνρ

)
.

(3.71)

···

1

2

3

n

µ µ=
∑

i

1

i

i + 1

n

V4
Jµ

J

J

···
· · ·

µ+
∑

i,j

J

J

J

···

· · ·

· · ·1
i

i + 1

n j + 1

j

Figure 3.6: Diagrammatic representation of the Berends-Giele recursion on off-shell
currents.

This recursion, summarized in Fig. 3.6, allows us to calculate the off-shell current
for any number of legs. Furthermore, to obtain the n-point partial amplitude from
the off-shell current Jµ(1, . . . , n − 1), one needs to multiply it by P 2

1,n−1 (canceling the
propagator) and contract if with the appropriate polarization vector (ϵµn). Then, the
amplitude is recovered by taking the on-shell limit k2n = P 2

1,n−1 → 0.
Nevertheless, the off-shell current satisfies the dual Ward identity :

0 = Jµ(1, 2, 3, . . . , n) + Jµ(2, 1, 3, . . . , n) + · · · + Jµ(1, 2, 3, . . . , n, 1) , (3.72)
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the reflection identity :

Jµ(1, 2, 3, . . . , n) = (−1)n+1Jµ(n, . . . , 3, 2, 1) , (3.73)

and also, current conservation reads :

Pµ
1,nJµ(1, . . . , n) = 0 . (3.74)

Overall, the Berends-Giele recursion is very efficient for numerical calculation and even
leads to analytical expression for some specific helicity configurations. For instance, the
all-plus off-shell current and the one with 1 negative helicity and n− 1 positive ones are
given by [128, 129] :

Jµ(1+, 2+, . . . , n+) =
⟨q|γµ /P 1,n|q⟩√

2⟨q1⟩⟨12⟩ · · · ⟨n− 1, 1⟩⟨nq⟩

Jµ(1−, 2+, . . . , n+) =
⟨q|γµ /P 2,n|q⟩√

2⟨12⟩⟨23⟩ · · · ⟨n− 1, 1⟩⟨n1⟩

n∑

i=1

⟨1i⟩⟨1|P1,i|i]
P 2
1,i−1P

2
1,i

.

(3.75)

where the reference momenta for all gluons have been fixed to q. An equivalent construc-
tion can be done by accounting for quarks, but it is much less compact. This recursion
can be used to calculate what is called the Maximally helicity violating (MHV) ampli-
tudes. Those are polarized partial gluon amplitudes where 2 gluons have negative helicity
while the others have positive helicity. Amplitudes with one more “-” helicity are called
Next to MHV (NMHV) (and so on). In a 2 → (n − 2) process, A(1+, 2+, . . . , n+) cor-
respond to the case where the incoming gluons have − helicity (physical one) while the
outgoing ones all have + helicity. Hence, it is “helicity violating”, but the corresponding
amplitude, as we have seen it, vanishes (see Eq. (3.59)). When one of the outgoing
states has a − helicity, it is less violating. But again, this amplitude vanishes. The first
non-zero amplitude (ordered by helicity violation) is then the one with two outgoing
legs with − helicity. Parke and Taylor have conjectured a formula for MHV amplitudes,
based on their behavior. Indeed, such amplitudes do not have multi-particle poles, as
one can see from Eq. (3.67). When only two gluons have − helicity, a multi-particle
pole would imply a factorization of the amplitude into two amplitudes with one that has
necessarily only 1 or even no gluon with a − helicity, hence vanishing. This has lead to
the Parke-Taylor formula for MHV amplitudes [126] :

∀j, k, AtreeMHV
jk = Atree

n (1+, . . . , j−, . . . , k−, . . . , n+) = i
⟨jk⟩4

⟨12⟩⟨23⟩ · · · ⟨n1⟩ . (3.76)

While conjectured by Parke and Taylor, this formula has been proved by Berends and
Giele using the recursion above [128]. The Maximally helicity violating bar (MHV )
amplitudes (where helicities are flipped) can be obtained by parity :

∀j, k, AtreeMHV
jk = Atree

n (1−, . . . , j+, . . . , k+, . . . , n−) = i(−1)n
[jk]4

[12][23] · · · [n1]
. (3.77)
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BCFW recursion

Another way of constructing recursively amplitudes is to use linear momentum shifts.
This method is based on complex analysis, where complex momenta are considered.
Let’s first consider the momentum shift :

k1(z) = k1 − zq , kn(z) = kn + zq , (3.78)

applied on legs 1 and n (cyclically adjacent). We will note with a hat the shifted legs
(1̂ and n̂ here). This choice maintains momentum conservation. Also, to keep the
on-shellness of the legs, q must satisfy :

q2 = 0 , q · k1 = 0 , q · kn = 0 . (3.79)

This leads to two solutions (up to normalization), that can be written as :

qµ1 = ⟨1|γµ|n] , qµ2 = ⟨n|γµ|1] . (3.80)

We should also mention that the shift of Eq. (3.78) can be expressed at the spinor level
as :

⟨1|(z) = ⟨1| , [1|(z) = [1| − z[n| ,
⟨n|(z) = ⟨n| + z⟨1| , [n|(z) = [n| . (3.81)

Then, we consider the partial amplitude for n gluons as a complex function of z :

An(z) ≡ An

(
1̂, 2, . . . , n̂

)
. (3.82)

Using Cauchy’s theorem, we can write :

1

2iπ

˛
C∞

dz
An(z)

z
= An(0) +

∑

k

Res

[
An(z)

z

]∣∣∣∣
z=zk

, (3.83)

where C∞ is the circle centered at the origin, with infinite radius; {zk} are the poles of
An(z). Note that these poles originate from propagators and are then simple poles. If
An(z) vanishes at infinity, then the closed integral in Eq. (3.83) vanishes, and we can
directly express the wanted amplitude (An(0), the amplitude without shift) with the
residues of An(z) :

An(0) = −
∑

k

Res

[
An(z)

z

]∣∣∣∣
z=zk

if lim
z→∞

A(z) = 0 . (3.84)

Hopefully, this condition is satisfied when taking qµ = qµ1 = ⟨1|γµ|n⟩, when {λ1, λn} ∈
{(+,+), (−,−), (−,+)} (see [130] for details). Now, we have to identify the residue part.
The poles of An(z) are located where the propagators go on-shell. Any momentum P1,i

has a dependence on z after the shift (since it separates the shifted legs). We write it
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P1,i(z) = P1,i− zq. Then, the on-shell condition at the pole zi, i.e P1,i(zi)
2 = 0, implies :

zi =
P 2
1,i

⟨1|P1,i|n]
. (3.85)

We can then evaluate the residues from the factorization property (of Eq. (3.67)), leading
to :

Res

[
An(z)

z

]∣∣∣∣
z=zi

= Ai+1

(
1̂, 2, . . . , i,−P̂ λ

1,i

) −i
P 2
1,i

An−i+1

(
P̂−λ
1,i , i+ 1, . . . , n̂

)
. (3.86)

Overall, the BCFW recursion relation for QCD amplitudes reads [130] :

BCFW recursion

An =

n−2∑

i=2

∑

h=±
Ai+1

(
1̂, 2, . . . , i,−P̂ λ

1,i

) −i
P 2
1,i

An−i+1

(
P̂−λ
1,i , i+ 1, . . . , n̂

)
, (3.87)

with the shifted momenta that can be expressed in terms of spinors as :

k̂µ1 = kµ1 − P 2
1,i

⟨1|P1,i|n]
⟨1|γµ|n] , k̂µn = kµn +

P 2
1,i

⟨1|P1,i|n]
⟨1|γµ|n] ,

P̂µ
1,i = Pµ

1,i −
P 2
1,i

⟨1|P1,i|n]
⟨1|γµ|n] .

(3.88)

An
=

∑

i

∑

h=±
Ai+1 An−i+1

P̂−h
1,i

1

2 n− 1

n

· · ·

···

···

1̂

2

i i + 1

n− 1

n̂

Figure 3.7: Diagrammatic representation of the BCFW recursion, where the momentum
shift is applied on the hatted legs.

This recursion is sometimes referred to as simply on-shell recursion. Note that this
recursion relation can be generalized to other theories (as long as a condition for the
amplitude vanishing at infinity is satisfied), for different momentum shifts (not only on
adjacent legs) and it might even be generalized at loop order (the generalization has
been done for supersymmetric theories in the planar limit [131–133] and some of the
difficulties arising at loop level have been already solved [134, 135]).
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To initiate the BCFW recursion, we need 3-point amplitudes. In the massless approxi-
mation, we follow, those amplitudes are pathological. Indeed, momentum conservation
and on-shellness imply that all the Lorentz invariants are null :

k1 + k2 + k3 = 0 , ∀i ∈ J1, 3K, k2i = 0 , ∀{i, j, l} = {1, 2, 3}, sij = k2l = 0 . (3.89)

Then, using Eq. (3.39) and Eq. (3.60) we conclude that all spinor products are null.
Actually, the latter expression holds only for real momenta. If we consider complex
momenta, then we can choose either angle or square brackets to vanish. If we keep
non-vanishing angle spinor products, we can write the 3-point MHV amplitude as :

Atree
n (1−, 2−, 3+) = i

⟨12⟩4
⟨12⟩⟨23⟩⟨31⟩ . (3.90)

If we keep the square spinors, we can write the 3-point MHV amplitude as :

Atree
n (1+, 2+, 3−) = i

[12]4

[12][23][31]
. (3.91)

Of course, in the physical limit, where momenta are real, these amplitudes vanish. Still,
they initiate the BCFW construction where momenta are shifted in the complex plane.
It is interesting to note that the polarized splitting function (appearing in Eq. (3.64))
are approximations of these amplitudes (the approximation being done at the level of
the kinematics).

3.1.6 Supersymmetry

While we are not concerned here by supersymmetric amplitudes, some of their prop-
erties can be used to calculate QCD amplitudes. We have already mentioned that the
photon decoupling identity (Eq. (3.28)) can be obtained as a supersymmetric Ward
identity. In fact, tree-level QCD partial amplitudes are effectively supersymmetric [136,
137]. Indeed, in partial tree level amplitude, since the color factors are not present,
nothing differs between a quark and a gluino. Then it is possible to apply tree-level
supersymmetric identity to QCD amplitudes. For instance, it can be shown that the
supersymmetric amplitudes (denoted by a super index SUSY) follow the supersymmetric
Ward Identity [138, 139] :

supersymmetric Ward Identity

Atree SUSY
n (1−, 2−, 3+, . . . , n+) =

⟨12⟩
⟨13⟩A

tree SUSY
n (1−, 2−g̃ , 3

+
g̃ , 4

+, . . . , n+) , (3.92)

where the index g̃ denotes a gluino. This identity is true to all orders, however, we
can apply it in QCD to obtain only tree-level partial amplitude (which are effectively
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supersymmetric). It is in particular useful to directly obtain amplitudes with a pair of
quark-antiquark (with a single gluon with negative helicity) from MHV amplitudes as :

Atree
n (1−q̄ , 2

+
q , 3

+, . . . , i−, . . . , n+) =
⟨2i⟩
⟨1i⟩A

tree
n (1−, 2+, 3+, . . . , i−, . . . , n+)

= i
⟨1i⟩3⟨2i⟩

⟨12⟩⟨23⟩ . . . ⟨n1⟩ .
(3.93)

At loop-level however, QCD partial amplitudes are no more supersymmetric. Still, gluon
and fermion loops can be decomposed into supersymmetric contributions and a scalar
field contribution. In the case of gluonic amplitude, we have :

g = (g + 4f + 3s) − 4(f + s) + s = ASUSY − 4AN=1 +As

f = (f + s) − s = AN=1 −As ,
(3.94)

where g, f and s denotes respectively a gluon, fermion, and scalar loop. ASUSY is the
supersymmetric amplitude (N = 4 super Yang-Mills) which multiplet is formed of a
gluon, four gluinos, and three complex scalars. AN=1 is the contribution of a N = 1
chiral matter supermultiplet (composed of one fermion and one complex scalar). Finally,
As corresponds to the scalar contribution. All those contributions are much simpler than
the gluon loop (especially the SUSY part). For the case with a quark-antiquark pair in
the amplitude, we will use similar relations to rewrite the decomposition in primitive
amplitudes given in Eq. (3.18). In terms of the “left” and “right” primitive amplitudes,
we have [115] :

ASUSY
n;1 = AL

n +AR
n +A

L,[ 12 ]
n +A

L,[ 12 ]
n

AN=1
n = −AL,[0]

n −A
L,[ 12 ]
n

As
n = AL,[0]

n ,

(3.95)

where all the cyclic orders are identical and where ASUSY
n;1 , is the leading color supersym-

metric partial amplitudes where quarks are replaced by gluinos. In particular, with this
new set of primitive amplitudes, the decomposition in Eq. (3.18) rewrites :

Primitive amplitudes

An;1(1q̄, 2q, 3, . . . , n) =

(
1 +

1

N2
c

)
AL

n(1q̄, 2q, 3, . . . , n) − 1

N2
c

ASUSY
n;1 (1g̃, 2g̃, 3, . . . , n)

−
(
nf
Nc

+
1

N2
c

)
AN=1

n (1q̄, 2q, 3, . . . , n)

+

(
ns − nf
Nc

− 1

N2
c

)
As

n(1q̄, 2q, 3, . . . , n) .

(3.96)

Some amplitudes, in the following, will be written according to this decomposition.
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3.1.7 Loop amplitudes

So far, we have treated mainly tree-level amplitude and mentioned some generalizations
to loop level without really giving the specifics of beyond tree-level calculations. We will
focus on 1-loop amplitudes in this section (because, for off-shell amplitudes presented
afterward, we won’t go further). Also, the need for higher order correction is justified
when studying high-energy collisions at LHC where QCD dominates. Tree-level calcu-
lation in QCD can lead to uncertainties of order of unity. This is due mainly to the
running constant whose dependence on the scale is hidden in higher-order correction. It
is then crucial to calculate higher order corrections (1-loop calculations reduce typically
these uncertainties to around 10%).

Loop integrand

At the second order in perturbation theory, diagrams participating to the amplitude
draw a closed loop (of internal propagators). This loop is parametrized with a loop
4-momenta l that has to be integrated to evaluate the amplitude (or the contribution of
a diagram). Then, in 1-loop amplitudes (with massless internal particles), integrals of
the following form appear :

Inl
[P (lµ)] =

ˆ
d4l

(2π)4
P (lµ)

l2(l − p1)
2(l − p1 − p2)

2 · · · (l − p1 − p2 − · · · − pn)2
, (3.97)

where P is a polynomial and {pi}i∈J1,nlK are momenta flowing out of the loop (cyclically
ordered, they can be expressed with the external momenta {ki}i∈J1,nK). We call these
integrals tensor integrals, except when the degree of P is 0, in which case we call them
scalar integrals. Such integrals are Ultra-Violet (UV) divergent (i.e they diverge for high
energy of the loop momentum). Actually, these divergences are absorbed into the renor-
malization of the bare parameters of the Lagrangian. This is done in practice through
the regularization of these integrals. The most natural method would be to impose a UV
cutoff. However, the standard regularization scheme consists in continuing analytically
the loop integral in D = 4 − 2ϵ dimensions11, which then depends on ϵ, and then take
the limit ϵ → 0. Dimensional regularization has the advantage to preserve gauge in-
variance, Lorentz invariance, translational invariance, unitarity, and chirality invariance.
However, the change of dimension implied by this technique gives a mass dimension to
the coupling constant g, dependent on ϵ (such that the action is dimensionless). This is
explicitly expressed through the renormalization scale µR (which has a mass dimension),
replacing :

g → µϵg (3.98)

Then, the calculation of the loop integrals (see Eq. (3.97)) goes through several steps.
First, the loop integrand in the numerator is expressed in terms of 4 independent mo-
menta (constructed from the ones entering the loop), such that the decomposition of l

11
Sometimes, the factor 2 is absorbed in ϵ, but then, factors 2 propagates in the results. Anyway, the

idea is to calculate the integral in a dimension D “around” 4 (and take the limit D → 4).
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makes appear the propagators present in Eq. (3.97) (that build its denominator). To
this end, we introduce the 4-momenta :

p′1 = p1, p′2 = p1 + p2, p′3 = p1 + p2 + p3, p′4 = p1 + p2 + p3 + p4, (3.99)

and build from them a set of dual vectors :

Kµ
1 = ϵµνσρp

′ν
2p

′σ
3p

′ρ
4 , Kµ

2 = ϵµνσρp
′ν
1p

′σ
3p

′ρ
4 ,

Kµ
3 = ϵµνσρp

′ν
1p

′σ
2p

′ρ
4 , Kµ

4 = ϵµνσρp
′ν
1p

′σ
2p

′ρ
3 ,

(3.100)

with ϵ the Levi-Civita tensor. This way, the loop integrand can be expressed (when
appearing in the numerator) as :

lµ =
1

ϵµνσρp
′µ
1p

′ν
2p

′σ
3p

′ρ
4

4∑

i=1

Kµ
i l · p

′
i

=
1

2ϵµνσρp
′µ
1p

′ν
2p

′σ
3p

′ρ
4

4∑

i=1

Kµ
i

[
l2 − (l − p′i)

2 + p′
2
i

]
,

(3.101)

where we have used Ki · p′j = ϵµνσρp
′µ
1p

′ν
2p

′σ
3p

′ρ
4δij in the first equality. Inserting this

decomposition in the integral of Eq. (3.97), we observe that the first term in the bracket
of the second line of Eq. (3.101) cancels the “first” denominator, the second term cancel
the i-th propagator and the third term is independent of l. In summary, this turns
an n-point integral (with a polynomial in the numerator) of degree m into a sum of 2
n − 1-point integrals of degree m − 1 and one n-point integral of degree m − 1. Such
techniques, and their iteration, are called loop integral reduction [140–143] (such as the
Passarino-Veltman [144–146], or the use of dual vector basis [147]) and permit to express
any loop integral in dimensional regularization in terms of a very limited set of integrals.
Those integrals consist of bubble (n = 2), triangle (n = 3), and box (n = 4) scalar
integrals (eventually tadpole, for n = 1 when we allow particles in the loop to have a
mass) and are referred to as master integrals. We will note them :

I2({p1}) =

ˆ
d4l

(2π)4
1

l2(l − p1)
2 ,

I3({p1, p2}) =

ˆ
d4l

(2π)4
1

l2(l − p1)
2(l − p1 − p2)

2 ,

I4({p1, p2, p3}) =

ˆ
d4l

(2π)4
1

l2(l − p1)
2(l − p1 − p2)

2(l − p1 − p2 − p3)
2 ,

(3.102)

with the momenta {pi} cyclically ordered (the dependence on the last 4-momentum is
dropped by momentum conservation), as shown in Fig. 3.8.

To calculate such integrals, the usual approach is first to use Feynman parametriza-
tion to rewrite the propagator product (in the denominator) into a single parametrized
denominator. One can see that :

∀a, b ∈ C,
1

ab
=

ˆ 1

0

dx

[ax+ b(1 − x)]2
. (3.103)
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Figure 3.8: Master integrals (with the outgoing momenta convention). In order : bubble,
triangle, and box scalar integral.

Deriving this expression (with respect to a and b) leads to :

∀a, b ∈ C, ∀m,n ∈ N,
1

ambn
=

Γ(m+ n)

Γ(m)Γ(n)

ˆ 1

0
dx

xm−1(x− 1)n−1

[ax+ b(1 − x)]m+n , (3.104)

with the gamma function defined as :

∀z ∈ C, Γ(z) =

ˆ +∞

0
dt tz−1e−t Re(z) > 0 . (3.105)

This is an extension of the factorial to the complex numbers which follow the properties :

∀n ∈ N, Γ(n+ 1) = n! , ∀z,Γ(z + 1) = zΓ(z) and Γ

(
1

2

)
=

√
π . (3.106)

It follows from Eq. (3.104), in all generality :

∀n ∈ N, ∀{ai}i∈J1,nK,

[
n∏

i=1

ai

]−1

= Γ(n)

ˆ 1

0
dx1

ˆ 1−x1

0
dx2 · · ·

×
ˆ 1−∑n−2

i=1 xi

0

dxn−1[
a1x1 + a2x2 + · · · + an

(
1 −∑n−1

i=1 xi

)]n .

(3.107)

Another possibility is the Schwinger parametrization which consists in rewriting a de-
nominator as an exponential using :

∀a ∈ C, ∀n ∈ N,
1

an
=

1

Γ(n)

ˆ +∞

0
dααn−1e−αa , (3.108)

which can be applied to :
ˆ

dl

a(l)n
=

1

Γ(n)

ˆ +∞

0
dααn−1

ˆ
dle−αa(l) . (3.109)

In particular, denominators with the Feynman prescription rewrite :

∀k ∈ R,
ˆ

1

k ± iϵ
= ∓i

ˆ +∞

0
dαe±i(k±iϵ)α . (3.110)
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Note that Feynman’s parametrization can be obtained from Schwinger’s one.
Using Feynman parametrization, the calculation of master integrals involves the evalu-
ation of integrals of the form :

In =

ˆ
d4l

(2π)4
1

[l2 −M ]n
, (3.111)

where M would depends on {pi} and on the parameters {xi} for the integral Ii. The
evaluation of such integral in dimensional regularization is performed using a Wick rota-
tion. This consists in making a rotation, in the complex plane, of the energy component
of the 4-momentum (l, in the loop) such that it is then Euclidian (that we then note
lE). This is done by multiplying the energy component by −i :

l0E ≡ −il0 , ∀i ∈ {1, 2, 3}, liE ≡ li . (3.112)

Note that l2E = −l2. Then, the Euclidian integral is related to the Minkowskian one
using complex analysis based on one of the paths shown in Fig. 3.9 (which is chosen
depending on the pole of the integrand, here related to the sign of M).

C1 C2

Figure 3.9: Path used when performing a Wick rotation (the arcs are at infinity).

For M > 0, applying the Wick rotation to Ii leads to :

In = (−1)ni

ˆ
d4lE

(2π)4
1

[l2E +M ]i
= (−1)ni

ˆ
d4lE

(2π)4
1

[l20 − |⃗l|2 +M ]i
, (3.113)

where we have used the path C1. Since it is now in Euclidian space, the integral can be
written in spherical coordinates using :

d4lE = d3ΩdlEl
3
E ,

ˆ
d3Ω = 2π2 , (3.114)

which leads to :

In = (−1)n
i

8π2

ˆ +∞

0
dlE

l3E

[l2E +M ]i
, (3.115)
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a divergent integral for n = 1 and n = 2. Still, it can be evaluated in dimensional
regularization where the passage to spherical coordinates now reads :

dDlE = dD−1ΩdlEl
D−1
E ,

ˆ
dD−1Ω =

2πD/2

Γ
(
D
2

) . (3.116)

This result can be obtained considering a Gaussian in D dimensions. Then, the Wick
rotation on the integral In reads :

In = lim
ϵ→0

(−1)n
2i

(4π)D/2Γ
(
D
2

)
ˆ +∞

0
dlE

lD−1
E

[l2E +M ]i

= lim
ϵ→0

(−1)n
iMD−2n

(4π)D/2

(
4π

M2

)ϵ Γ
(
n− D

2 + ϵ
)

Γ(n)
,

(3.117)

with :

∀n ∈ N, Γ(ϵ− n) =
(−1)n

n!

(
1

ϵ
+ ψ(0)(n+ 1) + O(ϵ)

)
, (3.118)

where :

∀z ∈ C, ψ(0)(z) =
Γ′(z)

Γ(z)
, (3.119)

The resulting master integrals are given in App. B.5, based on [148]. Once the master
integrals are known, calculation of a loop-level amplitude boils down to the determination
of the coefficient in the master integral decomposition :

A(1)
n ({ki}) =

4∑

i=2

∑

{pj}
ci({pj})Ii({pj}) , (3.120)

where the coefficients are calculated during the reduction and where {pj} define the
possible loop kinematics. Actually, in dimensional regularization, the coefficients {ci}
are also depending on ϵ. And, with the poles in ϵ of some of the master integrals, higher
orders in the coefficient are needed (up to order O(ϵ2). Then, it is usual to rewrite this
decomposition with a constant coefficient (in epsilon) and separate the rational term
produced by the higher order coefficients :

Master integral decomposition

A(1)
n ({ki}) =

4∑

i=2

∑

{pj}
ci({pj})Ii({pj}) +

∑

{pj}
R({pj}) , (3.121)

Also, to work with the helicity formalism, we use a specific scheme of dimensional regular-
ization where only the loop momentum is in dimension D, called dimensional reduction.
In particular, the polarization vectors are kept in 4 dimensions.
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Unitarity

While we have seen that the loop-integrand can be decomposed in a small number of
master integrals, the loop-level calculation can also be simplified using the unitarity of
the S-matrix. Indeed, if we write S = 1+ iT , separating its free part from its interaction
part T , unitarity implies :

S†S = 1, then 2 ImT = T †T . (3.122)

Then, when performing the perturbative expansion of T in the coupling constant, we
observe that one-loop amplitude can be expressed as a product of two tree-level ones.
These tree-level amplitudes correspond to cuts in the loop amplitude where two loop
propagators are set on-shell. This cut (noted by a ∆) can be pictured as in Fig. 3.10
and it follows the Cutkosky rules :

Cutkosky rules

∆A(1) ≡
ˆ

dµAtree
leftA

tree
right . (3.123)

where dµ is the Lorentz-invariant phase space.

...
A(1)

n
→

...
...

n

m + 1

n

m m

1

m + 1

1

2

...

2
l1

l1

Figure 3.10: Unitarity cut of a one-loop amplitude where the propagator on the cut
(dotted lines) is forced to be on-shell.

Then, the cut amplitudes can be used to reconstruct the full amplitudes. Indeed,
when considering the expansion of Eq. (3.120) for cut amplitude, we observe that the
branch cuts are located in the master integrals hence cut amplitudes follow the decom-
position :

∆A(1)
n ({ki}) =

4∑

i=2

∑

{pj}
ci({pj})∆Ii({pj}) , (3.124)

where the coefficients {ci} are the same as for the amplitude A(1)
n ({ki}). Then, the

coefficients {ci} are constrained by the equation of the form of Eq. (3.124), for all the
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possible branch cuts. Actually, one-loop amplitudes are cut-constructible which means
that they are fully determined by their branch cuts [149]. However, in D dimension,
the reconstruction of the rational term (as explicitly written in Eq. (3.121)) can be
tedious and this method is usually used in 4 dimensions (where no rational term is
needed). Overall, using branch cuts to determine loop amplitudes is called the unitarity
method [150–153].

Dipole subtraction

So far, we have treated amplitudes and reviewed methods useful to calculate them at
NLO. In particular, we saw that loop integrals may involve poles (in ϵ). Those poles
have to be canceled when calculating physical quantities (such that the limit ϵ → 0
can be safely taken). More precisely, the Kinoshita–Lee–Nauenberg theorem states that
the standard model is perturbatively IR finite. To understand how it is achieved, we
will consider cross-section calculations at NLO for which loop order amplitudes are
not the only important component. Indeed, if we consider the cross-section of a given
process P with an initial state consisting of two leptons (for simplicity) and a final state
characterized by n particles with momenta {pi}i∈J1,nK, we can write at LO :

σLOP ({pi}) =

ˆ
dσB =

ˆ
dϕ ({pi})

∣∣∣Atree
P ({pi})

∣∣∣
2
J ({pi}) , (3.125)

where dσB is called the Born-level cross-section, dϕ is the phase space of the final state
and J the jet function (that includes experimental cuts). Indeed, experimentally, instead
of the momenta of the partons in the final states, we have access to the momenta of jets.
The cross-section should then be soft and collinear safe. The first order corrections to
the LO calculation should then include loop amplitudes for n final particles on one side,
but also tree-level amplitudes for n+1 particles in a degenerate configuration (the added
particle being either soft or collinear to another one). The former contribution is called
virtual correction and the latter one real correction. We will denote this degenerate
configuration {p′i}i∈J1,n+1K, which verifies :

∃i ∈ J1, nK, {p′1, . . . , p′i + p′n+1, . . . , p
′
n} = {pi} ,

or {p′1, . . . , p′i−1, p
′
i+1, . . . , p

′
n} = {pi} .

(3.126)

Thereby, the NLO cross-section reads :

σP = σLOP + σNLO
P , (3.127)

with the following decomposition for the NLO cross-section :

σNLO
P =

ˆ
n+1

dσRP +

ˆ
n

dσVP , (3.128)

where the integral
´
n+1 indicates an integration over the phase space for the degenerate

state characterized by {p′i} and
´
n over the phase space of the final state {pi}. Then,
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the real and virtual contributions to the NLO cross section can be expressed :

dσRP =

ˆ
dϕ
(
{p′i}

) ∣∣∣Atree
P

(
{p′i}

)∣∣∣
2
J
(
{p′i}

)
,

dσVP =

ˆ
dϕ ({pi})

∣∣∣A(1)
P ({pi})

∣∣∣
2
J ({pi}) .

(3.129)

We already mentioned that the UV divergences originating from the loop integration in
the virtual correction are carried out through the renormalization procedure. Still, the
soft and collinear singularities remain12. They appear in both real and virtual correction
and cancel each other (due to soft and collinear safety of the cross-section). The problem
is that this cancellation is not done at the integrand level, since each contribution involves
a different phase space. Then, the numerical evaluation of such integrals is unsafe and
an analytical approach can be quickly hopeless with an increasing number of particles
and because of the experimental cuts leading to complicated phase space integration. To
solve this problem, one possibility is to treat the divergences analytically and integrate
the remainder numerically. To do so, we will follow the subtraction method [154] where
an intermediate cross-section dσA is introduced :

σNLO
P =

ˆ
n+1

[
dσRP − dσAP

]
+

ˆ
n+1

dσAP +

ˆ
n

dσVP , (3.130)

dσA has the same singular behavior, in D dimension, as dσR, such that the integration
over their difference can be evaluated after performing the limit ϵ→ 0. Another property
of dσA is that it is analytically integrable over the parton subspace leading to the soft
and collinear divergences. This way, it also cancels the poles of the virtual correction
under the integral over the n final state particles phase space. This is schematized as :

σNLO
P =

ˆ
n+1

[
dσRP − dσAP

]
ϵ=0

+

ˆ
n

[
dσVP +

ˆ
1

dσAP

]

ϵ=0

, (3.131)

and the final integration can be implemented numerically. dσA can be constructed in
a process-independent way as the convolution of the Born-level cross-section to some
dipole factors dVdipole that characterized the soft and collinear divergences :

dσAP =
∑

dipoles

dσBPdVdipole . (3.132)

This subtraction method and the determination of dσA through the dipole formalism
(based on the soft and collinear behavior of the amplitudes) is presented in [155] (with
a shorter review in [156]). We won’t go further in the construction of dσA. However,
we still have to consider hadronic collisions. In the case of collinear factorization, also
presented in [155], corrections to the PDF have to be taken into account too. Indeed,

12
In dimensional regularization, double poles in ϵ reflect soft and collinear divergences while simple

poles originate from soft or collinear divergences.
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these correction will absorb the IR divergences due to initial state emissions. This leads
to :

σab(Pa, Pb) =
∑

i,j

ˆ
dxidxj fi/a(xi, µ

2
F )fj/b(xj , µ

2
F )

×
[
σ̂LOij (xiPa, xjPb) + σ̂NLO

ij (xiPa, xjPb, µ
2
F )
] (3.133)

where we have dropped the process subscript and the partonic cross-sections follow :

∀i, j, σLOij (xiPa, xjPb) =

ˆ
n

dσBij (xiPa, xjPb) ,

∀i, j, σNLO
ij (xiPa, xjPb, µ

2
F ) =

ˆ
n+1

dσRij(xiPa, xjPb) +

ˆ
n

dσVij (xiPa, xjPb)

+

ˆ
n

dσCij(xiPa, xjPb, µ
2
F ) ,

(3.134)

where σC is a collinear subtraction counter-term (note that it depends on the fac-
torization scale). A similar subtraction procedure applies in this case (also shown
in [155]), but what we want to underline here is the intrication of the divergences of the
real and virtual correction and of the corrections to the PDF that depend on the fac-
torization scheme (that we will discuss a little further in the case of hybrid factorization).

In this section, we gave an overview of the techniques used to simplify the calculation
of amplitudes, with a focus on loop-level QCD amplitudes. We saw that the complex cal-
culations involved by the classical Feynman diagrams approach can be sorely simplified
by decomposing QCD amplitudes into color-ordered amplitudes (which are still gauge
invariant and are free from the color Lie algebra) and using the helicity formalism (where
the kinematics is encoded in the spinors rather than directly in the 4-momenta, which
is more suitable to reflect the amplitudes symmetries). At loop-level, the color-ordered
amplitudes can be further decomposed into supersymmetric and non-supersymmetric
primitive amplitudes (simpler to calculate than the partial amplitudes). Besides, the
loop integrands appearing in loop integrals can be decomposed in a few master integrals
simplifying again the calculation of loop amplitude. Furthermore, these coefficients can
be obtained from unitarity methods i.e, from tree-level calculation. We have also seen
that amplitudes can be calculated through different recursive methods. All these meth-
ods tend to explain the relative simplicity and compactness of amplitudes expressions.
Actually, this was just an overview of the tools available when calculating amplitudes,
enough to appreciate the on-shell amplitudes that we will use later. In particular, we
have not presented the generalized unitarity method [150, 151, 157] (where more than
two propagators are set on-shell simultaneously), which can be generalized to higher-
order calculation [158], we have not discussed the determination of cut integrals nor
the determination of the rational term in Eq. (3.121) (through some recursive tech-
niques [159–163]). Also, Feynman integrals are studied through differential equations
they follow [164, 165], and the logarithm and (multiple) polylogarithms that constitute
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them, leading to the use of symbols [166–169] to simplify their expressions. Another
approach should probably be mentioned, based on the geometric construction of am-
plitudes in the kinematics space, the amplituhedron citeArkani-Hamed:2013jha,Arkani-
Hamed:2017mur,Arkani-Hamed:2017tmz,Ferro:2020ygk. In the end, we have discussed
the treatment of the IR divergences through the subtraction and the dipole formalisms.
Now, we will review what changes when we consider off-shell amplitudes.

3.2 Gauge invariant off-shell amplitudes

We have seen in the previous chapter that, when interested in small-x physics, we need
to use either kT -factorization (Eq. (2.66)) or hybrid factorization (Eq. (2.67)). In both
cases, we need amplitudes with off-shell leg(s) (respectively 2 and 1) to calculate the hard
cross-section. Such amplitudes, if calculated naively by applying classical methods would
lead to non gauge-invariant expressions (like the off-shell current presented in Sec. 3.1.5).
However, at high energy, new degrees of freedom arise : the reggeized gluon. We saw
that they appear when deriving the BFKL equation. In the following, we will intro-
duce Lipatov’s high-energy effective action which describes these reggeized gluons, and
briefly discuss loop-level amplitude calculation within this approach. Afterward, we will
introduce the auxiliary parton method, a way to calculate off-shell amplitudes which is
based on on-shell calculation (making it relatively simple to apply). This method can be
demonstrated to be equivalent to high energy Lipatov’s effective action at tree level and
has been incorporated in the Monte-Carlo generator KaTie [99] (suitable for collinear,
hybrid, and kT -factorization). After this presentation, we will focus on generalizing this
method at loop-level. To this end, as a first step toward this generalization, we will
apply the auxiliary parton method to the finite all-plus helicity gluonic amplitude with
one off-shell leg and verify that it has the correct behavior. We will also apply it to
the 3-point g∗gg amplitude and compare it to one of the only calculations made so far
within high energy Lipatov’s effective action at loop-level.

3.2.1 Lipatov’s high-energy effective action

In this section, we introduce briefly Lipatov’s high-energy effective action, following the
report [170] to introduce some results that will be used later for comparison purposes.
When considering a collision between two hadron A and B, in the high energy limit
(or the Regge limit)13, their momenta pA and pB can then be considered, as a good
approximation, on the opposite sides of the light-cone. Then, it is convenient to define
the light-cone vectors as :

n± =
2√
s
pA,B , n+ · n− = 2 . (3.135)

13
Explicitly, for any mass scale, µ and with s = (pA + pB)

2
the center of mass energy, this limit is

characterized by lim µ
2

s
= 0
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Particles produced at high energy are then ordered in rapidity (hence local in rapidity),
following the multi-Regge kinematics, presented in Eq. (2.53). The couple between
separated rapidity sectors is done through the reggeized gluon (as illustrated for the
BFKL ladder of Fig. 2.10). Those are described in the Lipatov’s high-energy effective
action.

High-energy effective action

In this effective theory, we decompose the complete gluon field into a regular, local in
rapidity, gluon field (described by QCD) a(s)µ = −itaaa,(s)µ and a non-local one, R(s)

µ =

−itaRa,(s)
µ , referred to as the reggeized gluon field. The index s denotes the rapidity

sector in which lives the gluon, or, for the reggeized gluon, a sector at which it couples.
In the latter case, only the reference to one sector is needed due to the strong rapidity
ordering. This strong ordering also implies that it has no transverse component, i.e it
can be written :

Rµ,(s)(x) = R
(s)
+

nµ−
2

+R
(s)
−
nµ+
2
, (3.136)

and that its dependence on light-cone coordinates is frozen, following :

∂+R
(s)
+ = 0 , ∂−R

(s)
− = 0 . (3.137)

Finally, the effective Lagrangian of this theory is the sum of the QCD Lagrangian (gov-

erning quark fields and the gluon field a(s)) and an induced Lagrangian, governing the

coupling of the reggeized gluon field R
(s)
± to the gluon field a(s) :

Leff = LQCD

[
a(s),

{
ψ̄f,(s)

}
,
{
ψf,(s)

}]
+ Lind

[
a(s), R

(s)
+ , R

(s)
−
]
. (3.138)

The simplest expression for the induced Lagrangian, satisfying gauge-invariance, having
the right normalization and insuring that the reggeized gluon decouples from QCD dy-
namics when it becomes on-shell (such that it cannot be an asymptotic state), is of the
form :

Lind

[
a(s), R

(s)
+ , R

(s)
−
]

= Tr
[
(T−[a(x)] −R−(x)) ∂2⊥R+(x)

]

+ Tr
[
(T+[a(x)] −R+(x)) ∂2⊥R−(x)

]
,

(3.139)

where :

T±[a] = −1

g
∂±

1

1 + g
∂±
a±

= a±

[∑

n∈N

(
− g

∂±
a±

)n
]
, (3.140)

and :
1

∂±
a± =

1

2

ˆ x
±

−∞
dx′

±
a±(x′) . (3.141)

More details on this effective action and the justifications for the form of the induced
Lagrangian can be directly found in Lipatov’s papers [171, 172]. Also, it is possible to
consider, the same way, reggeized quarks. We don’t need it in the present discussion,
but details can be found in [173–175].
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Feynamn rules

From the effective Lagrangian presented in the previous section, it is possible to derive
Feynman rules involving reggeized gluon(s), that we might also call a reggeon. However,
Lipatov’s high-energy effective action implies an infinite number of possible vertices
between a reggeon and gluons. The propagators and the LO induced vertices are the
following :

• the reggeon propagator :

q
+, a −, b = δab

2i

q2
, (3.142)

• the reggeon-gluon (Rg) transition vertex14 :

q,±, a k, µ, b
= − i

2
q2δab(n±)µ , k± = 0 , (3.143)

• the Rgg vertex :

q
q,±, a

k2, µ2, b2

k1, µ1, b1

= fab1b2
gs
2

q2

k±1
(n±)µ1(n±)µ2 ,

with k±1 + k±2 = 0 ,

(3.144)

• the Rggg vertex :

q
±, a

k3, µ3, b3

k2, µ2, b2

k1, µ1, b1

= i
gs
2
q2
(
f b3b2xf b1xa

k±3 k
±
1

+
f b3b1xf b2xa

k±3 k
±
2

)
,

with k±1 + k±2 + k±3 = 0 .

(3.145)

14
Actually, this transition vertex vanishes when considering a± → a± +R± in the effective action.
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One has to take some care when applying these Feynman rules keeping in mind that
the reggeons link sectors separated in rapidity (hence, when calculating an amplitude
local in rapidity, it is needed to subtract diagrams with disconnected sectors, i.e with
internal reggeon). Another subtlety comes from the pole prescription for the light-cone
denominators which, if settled in a usual way, breaks the unitarity of the effective theory.
Some details on these calculation subtleties, not needed for the present discussion, are
reviewed in [170].

Rapidity divergences

At loop-level, another problem arises when using Lipatov’s high-energy effective action,
the appearance of rapidity divergences. Those divergences come from eikonal propa-
gators of the form n± · l (with l, the loop momentum) and they are not regulated by
dimensional regularization. Hopefully, the problem can be solved through the use of
tilted Wilson lines [174–181]15 i.e by shifting the light cone direction as :

n±µ → ñ±µ = n±µ + r n∓µ , with r ∈ R . (3.146)

This regulator preserves gauge invariance.

Results

We can now present results that have been calculated with Lipatov’s high-energy effec-
tive action, in particular the one-loop 3-point amplitude, given in [182] for any helicity
configuration. Actually, the results are given in terms of one-loop vertices and can be
used to express the 3-point partial amplitudes Rgg, with the spinor helicity formalism
as :

A(R, 3+, 4+) =i
g3s

24π2
p · k3(1 − nf

Nc
)
|k⊥|
κ∗2

[p3][p4]

⟨p3⟩⟨p4⟩

A(R, 3−, 4+) = − iµ−2ϵg3scΓ
p · k3
|k⊥|

⟨p3⟩[p4]

[p3]⟨p4⟩×

×
[(

−µ2

k2⊥

)ϵ [
2

ϵ2
+

1

ϵ

(
1 + ln r + iπ − ln

−|p · k3|2

k2⊥

)]
+ 2 − π2

2

]
,

(3.147)

where cΓ is defined in Eq. (B.29). These results are obtained replacing the light-cone n−
appearing in [182] by pµ = |k⊥|

2 nµ− (which implies that ki− is replaced by 2
|k⊥|ki−), where

k⊥ is the transverse momentum of the reggeon. Written this way, these amplitudes will
compare straightforwardly to the one presented in Sec. 3.3.

15
Actually, the functional T can be expressed in terms of Wilson lines stretching along the light-cone.

The substitution of Eq. (3.146) is the result of tilting the Wilson lines appearing in the Lagrangian.
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3.2.2 The auxiliary parton method

Calculating off-shell amplitudes from Lipatov’s high-energy effective action is quite de-
manding and only a few results have been calculated so far at loop-level [174, 175, 179–
181, 183–185]. However, it is possible to obtain off-shell amplitudes from on-shell ones
using the auxiliary parton method, that we may also call the Λ prescription. This method
has been demonstrated to be equivalent to Lipatov’s high-energy effective action at tree
level and has proven efficient [186–189]. Besides, it is implemented in the Monte-Carlo
event generator KaTie [99] to obtain results within both hybrid and kT -factorization.
In this section, we will present the first results obtained applying the Λ prescription to
loop-level amplitudes, the all plus off-shell multigluon amplitude g∗g · · · g. This result
has been published in [2]. We will also present the 3-point off-shell gluon amplitude g∗gg
for all helicity configurations.

Reconstructing gauge invariance explicitly

We will see in this section that it is actually possible to calculate off-shell amplitudes
starting from a classical approach and requiring them, in a later stage, to be gauge
invariant. To this end, we will summarize the demonstration provided in [187].

For simplicity, let’s consider the n-point gluonic amplitude with one off-shell leg, at
tree level, Atree(1∗, 2, · · · , n). It can be defined [29, 30, 190, 191] from the momentum
space Green function G (Fourier transform of the vacuum matrix element) as :

Atree(1∗, 2, · · · , n) = ϵ∗,µ1

n∏

i=2

ϵ
µi
i

S(ki)
Gµ1···µn

(k1, · · · , µn) , (3.148)

where we consider the high energy kinematics :

kµ = xnµA + k⊥ , nA · k⊥ = 0 , k2 = k2⊥ = −|k⊥|2 ,
∀i > 1, k2i = 0 ,

(3.149)

and where {ϵi}i∈J2,nK are the polarization vectors of the external on-shell legs and ϵ∗,µ =
|k⊥|nµ represents the eikonal coupling to the off-shell leg, with nA a light-like momentum
corresponding to the incident hadron. S(k) = −i

k
2
+iε

is the scalar part of the gluon

propagator. So, contrary to the other external (on-shell) lines, the propagator of the off-
shell line is not amputated from the Green function. To simplify further the problem, we
will consider the corresponding color ordered amplitude, A(1∗, 2, · · · , n) (which follows
the decomposition of Eq. (3.10)) represented diagrammatically in Fig. 3.11 (we drop the
tree superscript in this section for convenience).

Such expression is, as already mentioned, not gauge invariant and, in particular, it
doesn’t verify the Ward-Takahashi identity (see Eq. (3.50)). However, it is possible to
construct a gauge invariant amplitude A∗(1∗, 2, · · · , n) using a gauge restoring amplitude
W in the following way :

A∗(1∗, 2, · · · , n) = A(1∗, 2, · · · , n) +W ∗(1∗, 2, · · · , n) , (3.150)
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...

k1

k2 k3

kn

Figure 3.11: Color-order gluonic amplitude with one off-shell leg A(1∗, 2, · · · , n). The
crossed circle represents the eikonal coupling.

and imposing the Ward-Takahashi identity :

∀i ∈ J2, nK , A∗(1∗, 2, · · · , n) |ϵi→ki
= 0 , (3.151)

or, in other words, that :

∀i ∈ J2, nK , W (1∗, 2, · · · , n) |ϵi→ki
= −A(1∗, 2, · · · , n) |ϵi→ki

. (3.152)

Actually, to guarantee local gauge invariance in a non-abelian field theory as QCD, one
should rather consider the Slavnov-Taylor identity which generalizes the Ward-Takahashi
identity. This identity relates Green functions where one leg is contracted with its
momentum to diagrams involving ghosts as represented in Fig. 3.12. Note that all
diagrams are tree-level ones (the curvy gluon lines do not represent loops, but a gluon
line entering the blob).

... = ... + ... + · · · + ...

... + ... + · · · + ...+

Figure 3.12: Diagrammatic representation of the Slavnov-Taylor identity. The dashed
lines transforming into solid lines represent contraction with the momentum of the cor-
responding leg (instead of the polarization vector).

The Slavnov-Taylor identity can be applied on gluonic amplitudes with one off-shell
leg and permits to evaluate the different limits “ϵi → k′′i of Eq. (3.152). Actually,
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it simplifies to directly relate A(1∗, 2, · · · , n) |ϵi→ki
to an amplitude with a ghost, as

depicted in Fig. 3.13.

... = ...

Figure 3.13: Application of the Slavnov-Taylor identity to amplitudes with one off-shell
leg contracted with eikonal vertex.

This way, it is possible to calculate all the limits :

∀i ∈ J2, nK , Wi(1
∗, 2, · · · , n) ≡W (1∗, 2, · · · , n) |ϵi→ki

, (3.153)

from diagrams including ghosts. Then, the gauge restoring term W is reconstructed
using :

W (1∗, 2, · · · , n) ≡
n∑

i=2

Wi(1
∗, 2, · · · , n)αi , (3.154)

where αi = ϵi·nA
ki·nA

. This way, the amplitude A∗ verifies the Ward-Takahashi identity. This
gauge restoring term can be calculated explicitly, applying the Slavnov-Taylor identity
on the Green function where all on-shell legs are contracted with the corresponding
momenta, as shown in Fig. 3.14, leading to the following expression :

W (1∗, 2, · · · , n) = −A(1∗, 2, · · · , n) |ϵi→ki

n∏

i=2

αi

= −
(−gs√

2

)n−2

|k⊥|
k3 · nA . . . kn · nA

(k2 − k3) · nA . . . (k2 − · · · − kn−1) · nA
.

(3.155)

First, we note that this expression can be interpreted as the on-shell gluons being
attached to an infinite Wilson line in the direction nA. Actually, it is possible to calculate
gauge invariant off-shell amplitudes using matrix elements of straight infinite Wilson
lines [192]. Then, we can observe that this gauge restoring term vanishes if any of the
reference momenta of the polarization vector related to an on-shell leg is set to nA. It
follows that, by projecting any reference momenta of an on-shell leg to nA, one can
directly obtain a gauge invariant amplitude :

∀i ∈ J2, nK , A∗(1∗, 2, · · · , n) = A(1∗, 2, · · · , n) |ϵi→ϵi
(nA) , (3.156)

This also works when projecting several or even all on-shell legs. Besides, W vanishes
when |k⊥| → 0, insuring that A∗ has the correct on-shell limit.
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... = ... = ...

Figure 3.14: Gauge restoring term calculation.

Furthermore, this construction has been proven to be equivalent to Lipatov’s effective
action (comparing the different terms appearing in the Rgg vertex presented in [193]
written in the axial gauge to terms contributing to A and W in the present method). In
the following, we might refer to this method as the gauge restoring method.

The auxiliary parton method

In this section, we introduce a method to calculate amplitudes with one or two off-shell
legs, based on previous observations. The idea is to extract off-shell amplitudes from
on-shell ones to guarantee gauge invariance on one hand (in a way equivalent to the
introduction of the gauge restoring term just presented) and to take advantage of our
knowledge on on-shell amplitudes on the other hand. Let’s first introduce this method,
the auxiliary parton method, for an amplitude with one off-shell gluon and n−2 on-shell
particles A∗

n−1

(
g∗(k)X

)
. It was first presented in [187], but in the following, we will

introduce a variant proposed in [194] (explaining shortly the differences). The off-shell
gluon follows the high energy kinematics (or quasi-multi-Regge kinematics) :

kµ = xpµ + kµ⊥ , (3.157)

where pµ is the light-like momentum associated with the colliding hadron, x is the
fraction of this momentum carried by off-shell gluon, and kµ⊥ is the transverse component
(which verifies k⊥ · p = 0).
The main idea consists in embedding the considered process (g∗X ) in an on-shell, bigger
one in which we take some specific kinematics to extract it. Here, we will consider
an on-shell process with an auxiliary quarks-antiquark pair, more precisely, we will
obtain our off-shell amplitude from the on-shell amplitude An (q̄(k1)q(k2)X ). Finally,
we parametrize the kinematics of the auxiliary quarks momenta k1 and k2 through a
scalar Λ such that obtaining the off-shell amplitude involves taking the limit :

Auxiliary parton method

lim
Λ→+∞

(
x|k⊥|
gsΛ

A (q̄(k1)q(k2)X )

)
= A∗ (g∗(k)X

)
, (3.158)
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q

q̄

A

··
· X −−−−−→

Λ→+∞ g∗ A∗

· ·
· X

Figure 3.15: Scheme of the Λ-prescription : calculation of an off-shell amplitude from
an on-shell one with auxiliary gluons.

which is schematized in Fig. 3.15. We might refer to this method as the Λ-prescription.
The factor 1/gs and the factor |k⊥| make sure the amplitude is finite for |k⊥| → 0 (we
will enter more details later).

To go further, we need to detail the kinematics of the auxiliary quarks. We require
their momenta to be light-like and to add up to the off-shell gluon momentum :

k21 = k22 = 0 ,

kµ1 + kµ2 = kµ ,
(3.159)

Several choices can be done to fulfill this requirement. Here, we will use the following
Sudakov decomposition :

Auxiliary partons kinematics

kµ1 = Λpµ + αqµ + βkµ⊥ ,

kµ2 = (x− Λ)pµ − αqµ + (1 − β)kµ⊥ ,
(3.160)

where qµ is an arbitrary light-like momentum such that q ·k⊥ = 0, q · p > 0 and where :

α =
−β2k2⊥
2Λp · q , β =

1

1 +
√

1 − x/Λ
. (3.161)

This way, k1 and k2 verify Eq. (3.159) for any value of the real Λ, i.e guarantee the
high energy form of the off-shell gluon. This parametrization is different from the one
presented in [187] which consisted in taking kµ1 = k and kµ2 = 0. This had the convenience
to lead to simple spinor expression (for k1 and k2), but implied that momenta k1 and
k2 were complex (recovering physical momenta in the limit Λ → +∞). Here, we lose
the simplicity of the spinors but we have real momenta. Now, the key point is that, in
the limit Λ → +∞ the coupling of gluons to the quark line becomes eikonal, consistent
with the high energy limit, as in Eq. (3.148)16. Indeed, in the limit Λ → +∞, momenta
flowing in the quark line (due to the auxiliary quarks) are dominated by Λpµ. Let’s
consider such momenta kq = k1 +Kq where Kq can be expressed as a sum of momenta
of the on-shell legs (hence, it is negligible in the limit Λ → +∞). Then, the related

16
In [187], this was set by hand, forcing eikonal Feynman rules for the quark line
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propagator behaves as :

i
/kq

k2q
= i

/k1 + /Kq

(k1 +Kq)
2 −−−−−→

Λ→+∞
i

/p

2p · kq
. (3.162)

Now, concerning the spinor chain of this quark line (involving the numerator of the
quarks propagators, quark gluon vertices, and the auxiliary quarks spinors), we have :

⟨1|
v−1∏

i=1

[
i
√

2γµi /kqi

]
|1] −−−−−→

Λ→+∞
Λ

v∏

i=1

i
√

2⟨p|γµi |p] =
v∏

i=1

i2
√

2pµi . (3.163)

where v is the number of vertices on the quark line. This corresponds to an eikonal
coupling to the quark line (after canceling the factors 2 brought by the propagator and
by the vertices).

In practice, instead of using the above definitions of kµ1 and kµ2 , we will use their
expansion in Λ:

kµ1 = Λpµ +

(
1

2
+

x

8Λ

)
kµ⊥ − k2⊥

8Λp · q q
µ + O(Λ−2) ,

kµ2 = (x− Λ)pµ +

(
1

2
− x

8Λ

)
kµ⊥ +

k2⊥
8Λp · q q

µ + O(Λ−2) .

(3.164)

In order to use the helicity method, we can express kµ⊥ in terms of spinors as follows :

kµ⊥ = − κ√
2
εµ−(p, q) − κ∗√

2
εµ+(p, q) , (3.165)

with polarization vectors

εµ−(p, q) =
⟨p|γµ|q]√

2 [pq]
, εµ+(p, q) =

⟨q|γµ|p]√
2 ⟨qp⟩

. (3.166)

and

κ =
⟨q|/k|p]
⟨qp⟩ , κ∗ =

⟨p|/k|q]
[pq]

. (3.167)

In particular, we have :
k2⊥ = −κκ∗ . (3.168)

With this decomposition, it is then possible to express kµ1 and kµ2 spinors in terms of
those of pµ and qµ :

|1⟩ =
√

Λ |p⟩ − βκ̄∗√
Λ

|q⟩ , |1] =
√

Λ |p] − βκ̄√
Λ
|q] (3.169)

|2⟩ =
√

Λ − x |p⟩ +
βκ̄∗√

Λ
|q⟩ , |2] = −

√
Λ − x |p] − βκ̄√

Λ
|q] . (3.170)
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These expressions are valid at O
(

Λ− 1
2

)
, which is sufficient in practice. Also, we observe

that the external spinors associated to the auxiliary quarks bring an overall factor Λ,
which is compensated in Eq. (3.158). Notice that

√
(Λ − x)/Λβ = 1 − β and that the

spinor products involving both auxiliary quarks do not depend on Λ and reduce to :

⟨12⟩ = −κ∗ , [12] = −κ . (3.171)

Also, in the limit of interest, Λ → +∞, the spinors for auxiliary quarks behave as :

|1⟩ →
√

Λ |p⟩ , |1] →
√

Λ |p] , |2⟩ →
√

Λ |p⟩ , |2] → −
√

Λ |p] . (3.172)

Overall, the auxiliary parton method reduces the evaluation of the off-shell amplitude
for g∗X to the application of the kinematics just presented to the helicity on-shell
amplitude for qqX . This means replacing spinor products involving both auxiliary
quarks, using Eq. (3.171), replacing the leftover auxiliary spinors by their approximation
at large Λ (most of the time, the leading behavior, as in Eq. (3.172) is sufficient) and
finally, expressing Lorentz invariant by applying Eq. (3.164) (for which, most of the

time, only the O
(

Λ−1
)

part is necessary) and finally, taking the limit presented in

Eq. (3.158). Then, applying such kinematics to the embedding amplitude already
guarantees gauge invariance and the expected collinear and soft behavior of the result
(inherited from the on-shell amplitude), and also the expected high energy kinematic of
the off-shell gluon (with the form of k for any Λ and the eikonal coupling of the quark
line in the limit Λ → +∞).

Another important property of the obtained amplitudes is that they reduce to the
expected on-shell limit (i.e. the limit |k⊥| → 0). To demonstrate it, we first consider an

off-shell current Jµ attached to the auxiliary quark line via a gluon propagator
d
ν
µ(l,n)

l
2 in

the an axial gauge with gauge vector nµ :

dµν(k, n) = ηµν − kµnν + kνnµ

k · n + n2
kµkν

(k · n)2
, (3.173)

pµi
√

2
dνµ(l, n)

l2
Jν = −i

√
2
p · Jl
l2

+ i
√

2
p · l
n · l

n · Jl
l2

. (3.174)

For lµ = kµ = xpµ + k⊥, we observe that the corresponding off-shell current J couples
to the auxiliary quark line as −i

√
2p·J
k
2
⊥

, independently of the gauge choice. Also, charge

conservation reads :
k · J = 0 , (3.175)

and implies :

p · J = −1

x
k⊥ · J . (3.176)

For any other off-shell current Jl (with lµ ̸= kµ), we can see that, by fixing the gauge

with nµ = pµ, pµi
d
ν
µ(l,n)

l
2 Jν = 0. This means that, the only off-shell current that can be
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attached to the auxiliary quark line is kµ. In other words, the only graphs contributing
to the off-shell amplitude are those where only one gluon of momentum kµ is attached to
the quark line or those where all gluons attached to the quark line are on-shell (this latter
case is only possible when X consists only in gluons). If we consider off-shell amplitudes
with only gluons, like in Sec. 3.2.2, then, the former case corresponds to the amplitude
A in Eq. (3.150) while the former case is the gauge restoring amplitude W , filling the
gap between the two methods. However, this only proves the expected on-shell limit for
X consisting of only gluons. For the more general case, we need to go a few steps back.
When considering the limit k⊥ → 0, the contributions with a propagator denominator
k2⊥ = −κκ∗ dominate. Those contributions have the form :

i
√

2
p · J
k2⊥

= i
√

2
k⊥ · J
xκκ∗

= i
√

2
k⊥ · J
xκκ∗

. (3.177)

The second term shows the importance of the factor x in Eq. (3.158). To continue, we
consider Eq. (3.177) multiplied by x|k⊥| (again, as in Eq. (3.158)17) to see that it leads
to the right on-shell limit :

i
√

2
|k⊥|
κκ∗

k⊥ · J . (3.178)

Using Eq. (3.165), we conclude that the projection on k⊥ means a projection on the
polarization vectors ε±; leading to :

On-shell limit

lim
|k⊥|→0

A∗
n(g∗X ) =

|k⊥|
κ∗

A(g−X ) +
|k⊥|
κ

A(g+X ) , (3.179)

where A(g±X ) = ε± · J . It is possible to express |k⊥|/κ∗ = eiϕ for some angle ϕ,
and |k⊥|/κ its complex conjugate. Then, we see that the on-shell limit of the off-shell
amplitude obtained applying the auxiliary parton method is the sum of two on-shell
amplitudes, where the off-shell gluon becomes on-shell and acquires either a + or −
polarization, multiplied by some phase factor. Actually, the matching of the on-shell
result for gX and the on-shell limit of g∗X using the auxiliary parton method is achieved
at the level of amplitude square, after summation over initial-state helicities for the on-
shell process and averaged over the azimuthal angle ϕ for the off-shell one :

∑

λ=±

∣∣∣A(gλX )
∣∣∣
2

=

〈∣∣∣∣ lim
|k⊥|→0

A(g∗X )

∣∣∣∣
2
〉

ϕ

. (3.180)

Indeed, if we square our on-shell limit Eq. (3.179), we obtain :
∣∣∣∣ lim
|k⊥|→0

A∗(g∗X )

∣∣∣∣
2

=
∣∣∣eiϕA(g−X ) + e−iϕA(g+X )

∣∣∣
2

=
∣∣∣A(g−X )

∣∣∣
2

+
∣∣∣A(g+X )

∣∣∣
2

+ e2iϕA(g−X )A(g+X )∗ + e−2iϕA(g+X )A(g−X )∗ ,

(3.181)

17
The other factors are considered to be absorbed in the off-shell current for this demonstration.
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implying, after the average over ϕ :

〈∣∣∣∣ lim
|k⊥|→0

A(g∗X )

∣∣∣∣
2
〉

ϕ

=
∣∣∣A(g−X )

∣∣∣
2

+
∣∣∣A(g+X )

∣∣∣
2
. (3.182)

We see that the phase factors in Eq. (3.181) lead to an incoherent sum of the squared
amplitude, justifying the proper on-shell limit (after averaging over ϕ).

Finally, the auxiliary parton method is a generalization of the gauge restoration
method to any process with one off-shell gluon. It has been proved to be equivalent to
Lipatov’s high energy action [187] (by showing that it reproduces the effective vertices
involving reggeized gluons). Also, directly using eikonal Feynman rules to describe the
auxiliary partons is possible. Actually, any method that reproduces the eikonal coupling
to the off-shell gluon (with high energy kinematics), that ensures gauge invariance, the
proper soft and collinear behavior, and finally the proper on-shell limit would be ac-
ceptable (and indeed, variations on the method and more precisely deviations from the
kinematics proposed here exist).

This method can easily be generalized for processes with 2 off-shell gluons [187],
needed in kT -factorization. This would involve 2 pairs of auxiliary quarks and the corre-
sponding kinematics. It may also be used, in a modified version, for off-shell quarks [195]
(using an auxiliary quark and an auxiliary photon this time). Alternatively, the aux-
iliary parton method can be used with an auxiliary gluon line, instead of the quark
line (this has been proven in [194]). The idea is to project the color decomposition
of a (n − 2)-gluon amplitude with a quark-antiquark pair onto a (n − 1)-gluon ampli-
tude by a contraction with (ta∗)ji, where a∗ represents the color index of the off-shell
gluon. In practice, it means that, for an auxiliary gluon pair, one simply needs to select
contributions that retain the order of gluons 1 and 2 and substitute ta1ta2 → ta∗ .

Loop-level

The auxiliary parton method presented above has been developed and demonstrated for
tree-level calculations. It is useful in automated calculations and, as already mentioned,
has been implemented in the Monte Carlo generator KaTie [99] (used, for instance,
in the study proposed in Sec. 2.6.4). Recently, a proof of concept was proposed for
its generalization at one-loop in [194] (summarized in [196]). We will shortly present
the arguments advanced there but also present the difficulties linked to this one-loop
generalization.

Like in Lipatov’s high energy effective action, the first problem arising at loop level
comes from the regularization of the eikonal propagators. Such denominator would
contain momentum of the form Pi = k1 + Ki, where Ki is a sum of a subset of the
on-shell momenta. These denominators imply integrands of the form :

Λ

(l + k1 +Ki)
2 −−−−−→

Λ→+∞
1

2p · (l +Ki)
2 , (3.183)
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where the factor Λ comes from the spinor of the auxiliary quarks and l is the loop
momentum. However, with the presented auxiliary parton method, the parameter Λ
regularize such divergences. Indeed, at fixed Λ, there is no eikonal propagators and
the usual techniques to calculate loop integrands can be used (like those presented in
Sec. 3.1.7). Then, the idea is to take the limit Λ → +∞ after the loop integration (i.e.
after taking the limit ϵ→ 0). This means expanding in (logarithm of) Λ the loop integrals
expanded in ϵ. However, this is possible only if the divergences are not power-like (i.e
they are balanced by the factor 1

Λ in Eq. (3.158). This is actually the case (see [194] for

the demonstration), the loop amplitudes diverge at most like log2 Λ. Also, the expansion
in Λ can becomes quickly complicated with increasing multiplicity so one might want to
use master integral reduction (and calculate the coefficients numerically). The question
is then if the coefficients of this reduction (see Eq. (3.121)) can be calculated in the limit
Λ → +∞. Without entering the details, it is possible for most loop integrals but 2, the
anomalous bubble :

ˆ
d4l

(l + P0)
2(l + k1 + P1)

2 = − ln Λ +
1

ϵ
+ 2 + ln

(
2p · (P1 − P0)

−µ2
)

+ O(ϵ) , (3.184)

and anomalous triangle :

ˆ
d4l

l2(l + k1)
2(l + k)2

=
1

k2⊥

[
1

ϵ2
− 1

ϵ
ln

(
k2⊥
−µ2

)
+

1

2
ln2

(
k2⊥
−µ2

)]
+ O(ϵ) . (3.185)

Then, to calculate an off-shell amplitude at loop level using the auxiliary parton method,
one should :

• Choose a momentum routing such that the divergent components of the auxiliary
quark (linear in Λ) flow through the internal auxiliary quark line,

• consider only contributions with, at most, one momentum of the auxiliary quark
line in the denominator (other contributions either vanish or reduce to these ones),

• apply master integral reduction except for the anomalous integrals

• obtain the anomalous integral contribution by using auxiliary gluons instead of
auxiliary quarks.

To go further in the application of the auxiliary parton method at loop level, we will
test its application and see if the resulting amplitude verifies the properties observed at
tree level.

3.3 Results

To validate the proof of concept given in [99], we will apply the auxiliary parton method
to simple one-loop amplitudes and study the obtained result. In particular, we will
verify the correctness of the on-shell limit, we will test the equivalence with Lipatov’s
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high energy effective action and the equivalence between the use of auxiliary quarks
and auxiliary gluons. As a very first step, we want to consider the simplest one-loop
helicity amplitudes. Gluonic amplitudes with all helicities being the same vanish at tree
level while are non-zero at loop-level but are still free from divergences (avoiding the
anomalous integrals mentioned previously). Thus, we have chosen to study the one-loop
amplitudes with all-plus helicity gluons and one off-shell gluon (for arbitrary number of
gluons n). Later, we will apply our method to the one off-shell gluon two on-shell one
loop amplitude since equivalent Lipatov’s high energy effective action results are known
in this case.

3.3.1 g∗g+ . . . g+ amplitudes

In this section we present our results for the one loop amplitudes for one off-shell gluon
and n − 1 on-shell positive helicity gluons. These results were published in [2]. Such
amplitudes are primarily used for forward particle production.

We begin with several low multiplicity examples, starting with the simplest cases:
n = 3 (the vertex). We continue with n = 4 and n = 5 before presenting a result for
arbitrary n. For each case, we apply the the auxiliary parton method for auxiliary quarks
and also for auxiliary gluons. This means that we shall use the existing one-loop results
for (−+· · ·+) helicity on-shell amplitudes, where the first pair of particles is either gluon
pair or quark-antiquark pair. One may notice that result are only one partial amplitude
is given, the other ones being obtained through Eq. (3.14).

3-point vertex

We first consider the 3-point vertex with one off-shell gluon and two positive helicity on-
shell gluons at one loop. Such vertex has been calculated for arbitrary helicity projection
in [175] from the Lipatov’s effective action (as reported in Eq. (3.147)).

In order to calculate it from the auxiliary parton method, we need the 4-point ampli-
tude for quark, antiquark and two gluons. At one loop it has the following form [115] :

A
(1)
4;1(1

−
q̄ , 2

+
q , 3

+, 4+) = − ig4s

16π2

[
1

2

(
1 +

1

N2
c

)
+

1

3

(
1 +

ns − nf
Nc

)
s23
s12

] ⟨12⟩[24]

⟨23⟩⟨34⟩ ,
(3.186)

where nf accounts for the number of Weyl fermions circulating in the loop, ns the
number of complex scalars. Applying the Λ prescription we get :

g∗g+g+ loop-amplitude

A∗(1)
3 (g∗, 3+, 4+) = − ig3s

24π2

(
1 +

ns − nf
Nc

)
x|k⊥|

p · k3
k2⊥

κ∗[p4]

⟨p3⟩⟨34⟩

= − ig3s

24π2

(
1 +

ns − nf
Nc

)
x|k⊥|
κ2

p · k3
[p3][p4]

⟨p3⟩⟨p4⟩ ,
(3.187)
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where we used that k2⊥ = −κκ∗, κ = ⟨4|k/|p]/⟨4p⟩ and kµ = −kµ3 − kµ4 . We observe
that, for ns = 0 the above result agrees with Lipatov high energy effective action (see
Eq. (3.147)).

Now, we can test the equivalence in the auxiliary parton used. For this, we need the
4-point one loop amplitude for one negative helicity gluon and three positive helicity
gluons which is given by [115] :

A
(1)
4;1(1

−, 2+, 3+, 4+) =
ig4s

48π2

(
1 +

ns − nf
Nc

) ⟨24⟩[24]3

[12]⟨23⟩⟨34⟩[41]
. (3.188)

After applying the Λ prescription we indeed find that it leads to the same result as
before :

A∗(1)
3 (g∗, 3+, 4+) = − ig

3
sx|k⊥|
24π2

(
1 +

ns − nf
Nc

)
p · k3
k2⊥

κ∗[p4]

⟨p3⟩⟨34⟩ , (3.189)

where we have used p · k3 = −p · k4 since 0 = p · k = p · (−k3 − k4).

4-point amplitude

For the 4-point off-shell amplitude, we need the 5-leg amplitude with auxiliary quark
pair which is given by [115] :

A
(1)
5;1(1

−
q̄ , 2

+
q , 3

+, 4+, 5+) = − ig5s

32π2

(
1 +

1

N2
c

) ⟨12⟩[23]⟨31⟩ + ⟨14⟩[45]⟨51⟩
⟨23⟩⟨34⟩⟨45⟩⟨51⟩

− ig5s

48π2

(
1 +

ns − nf
Nc

)( ⟨13⟩[34]⟨41⟩2

⟨12⟩⟨34⟩2⟨45⟩⟨51⟩
+

⟨14⟩⟨24⟩[45]⟨51⟩
⟨12⟩⟨23⟩⟨34⟩⟨45⟩2

+
[23][25]

[12]⟨34⟩⟨45⟩

)
.

(3.190)

Applying the Λ prescription we find that the first term is of the order Λ−1 and thus
vanishes. Further calculation leads to the following result :

g∗g+g+g+ loop-amplitude

A
∗(1)
4;1 (g∗, 3+, 4+, 5+) = − ig4s

48π2

x|k⊥|
(

1 +
ns−nf

Nc

)

κ∗⟨p3⟩⟨34⟩⟨45⟩⟨5p⟩

×
[
⟨p3⟩2⟨p4⟩2 [34]

⟨34⟩ + ⟨p4⟩2⟨p5⟩2 [45]

⟨45⟩ −
κ∗

κ
sp3sp5

]
.

(3.191)

The 5-point on-shell gluon amplitude we need (with auxiliary gluons) is given
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by [197] :

A
(1)
5;1(1

−, 2+, 3+, 4+, 5+) =
ig5s

48π2

(
1 +

ns−nf

Nc

)

[12]⟨23⟩⟨34⟩⟨45⟩[51]
×
[
(s23 + s34 + s45)[25]2

−[24]⟨43⟩[35][25] − [12][15]

⟨12⟩⟨15⟩

(
⟨12⟩2⟨13⟩2 [23]

⟨23⟩ + ⟨13⟩2⟨14⟩2 [34]

⟨34⟩ + ⟨14⟩2⟨15⟩2 [45]

⟨45⟩

)]
.

(3.192)

Applying the same procedure as before leads to the following off-shell amplitude :

A
∗(1)
4;1 (g∗, 3+, 4+, 5+) =

ig4s

48π2

x|k⊥|
(

1 +
ns−nf

Nc

)

κ∗⟨p3⟩⟨34⟩⟨45⟩[5p] ×
[
sp3[p5]2

− κ[p5]

κ∗⟨p5⟩

(
⟨p3⟩2⟨p4⟩2 [34]

⟨34⟩ + ⟨p4⟩2⟨p5⟩2 [45]

⟨45⟩

)]
,

(3.193)

which turns out to be equal to Eq. (3.191).

5-point amplitude

Here, the amplitude with the auxiliary quark pair is given by [198] :

A
(1)
6;1(1

−
q̄ , 2

+
q , 3

+, 4+, 5+, 6+) =
ig6s

32π2

(
1 +

1

N2
c

) ∑5
l=3 ⟨1| /K2...l/kl|1]

⟨23⟩⟨34⟩⟨45⟩⟨56⟩⟨61⟩

+
ig6s

48π2

(
1 +

ns − nf
Nc

)[⟨14⟩⟨1|(2 + 3)(3 + 4)|1⟩
⟨12⟩⟨34⟩2⟨45⟩⟨56⟩⟨61⟩

+
⟨24⟩⟨15⟩⟨1|(4 + 5)(5 + 6)|1⟩
⟨12⟩⟨23⟩⟨34⟩⟨45⟩2⟨56⟩⟨61⟩

− ⟨25⟩⟨1|56|1⟩
⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨56⟩2

+
⟨1|3 + 4|2]2

⟨34⟩2⟨56⟩⟨61⟩⟨5|3 + 4|2]

+
⟨2|4 + 5|6]⟨1|4 + 5|6]2

⟨12⟩⟨23⟩⟨45⟩2⟨3|4 + 5|6]s456

− [26]2[2|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

[12]⟨34⟩⟨45⟩⟨5|3 + 4|2]⟨3|4 + 5|6]s345

]
,

(3.194)

where we defined :

/Ka···b =
b∑

i=a

/ki , (3.195)

sijk =
(
ki + kj + kk

)2
, (3.196)

and used :

⟨a|(i+ j)|b] = ⟨ai⟩[ib] + ⟨aj⟩[jb] (3.197)

⟨a|(i+ j)(k + l)|b⟩ = ⟨ai⟩[i|(k + l)|b⟩ + ⟨aj⟩[j|(k + l)|b⟩ . (3.198)
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Above a, b, i, j, k, l ∈ J1, nK, where n = 6 in the present section.

After we apply the Λ prescription we find that the term proportional to
(

1 + 1

N
2
c

)

vanishes, leading to :

g∗g+g+g+g+ loop-amplitude

A
∗(1)
5;1 (g∗, 3+,4+, 5+, 6+) =

(
1 +

ns − nf
Nc

)
×

× ig
5
sx|k⊥|
48π2

[
⟨p4⟩(κ∗[p|3 + 4|p⟩ + ⟨p3⟩[34]⟨4p⟩)

κ∗⟨34⟩2⟨45⟩⟨56⟩⟨6p⟩
+

⟨p4⟩⟨p5⟩⟨p|(4 + 5)(5 + 6)|p⟩
κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩⟨6p⟩

− ⟨p5⟩⟨p|56|p⟩
κ∗⟨p3⟩⟨34⟩⟨45⟩⟨56⟩2

+
⟨p|3 + 4|p]2

⟨34⟩2⟨56⟩⟨6p⟩⟨5|3 + 4|p]

+
⟨p|4 + 5|6]3

κ∗⟨p3⟩⟨45⟩2⟨3|4 + 5|6]s456
− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

κ⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]s345

]
.

(3.199)

In order to derive 5-point off-shell amplitude from auxiliary gluons, we use the fol-
lowing 6-point on-shell one loop amplitude [198] :

A
(1)
6;1(1

−, 2+, 3+, 4+,5+, 6+) =
ig6s

48π2

(
1 +

ns − nf
Nc

)
×

×
[

⟨1|2 + 3|6]3

⟨12⟩⟨23⟩⟨45⟩2s123⟨3|1 + 2|6]
+

⟨1|3 + 4|2]3

⟨34⟩2⟨56⟩⟨61⟩s234⟨5|3 + 4|2]

+
[26]3

[12][61]s345

(
[23][34]

⟨45⟩⟨5|3 + 4|2]
− [45][56]

⟨34⟩⟨3|1 + 2|6]
+

[35]

⟨34⟩⟨45⟩

)

− ⟨13⟩3[23]⟨24⟩
⟨23⟩2⟨34⟩2⟨45⟩⟨56⟩⟨61⟩

+
⟨15⟩3⟨46⟩[56]

⟨12⟩⟨23⟩⟨34⟩⟨45⟩2⟨56⟩2

− ⟨14⟩3⟨35⟩⟨1|2 + 3|4]

⟨12⟩⟨23⟩⟨34⟩2⟨45⟩2⟨56⟩⟨61⟩

]
.

(3.200)
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Applying the Λ prescription to the above on-shell result gives :

A
∗(1)
5;1 (g∗, 3+, 4+, 5+, 6+) =

ig5sx|k⊥|
48π2

(
1 +

ns − nf
Nc

)
×

×
[

(κ∗[p6] + ⟨p3⟩[36])3

κ∗⟨p3⟩⟨45⟩2sk3⟨3|k|6]
+

⟨p|3 + 4|p]3

⟨34⟩2⟨56⟩⟨6p⟩(sp3 + sp4)⟨5|3 + 4|p]

+
[p6]2

κ∗s345

(
[p3][34]

⟨45⟩⟨5|3 + 4|p] −
[45][56]

⟨34⟩⟨3|k|6]
+

[35]

⟨34⟩⟨45⟩

)

− ⟨p3⟩[p3]⟨p4⟩
⟨34⟩2⟨45⟩⟨56⟩⟨6p⟩

+
⟨p5⟩3⟨46⟩[56]

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩2

− ⟨p4⟩3⟨35⟩(κ∗[p4] + ⟨p3⟩[34])

κ∗⟨p3⟩⟨34⟩2⟨45⟩2⟨56⟩⟨6p⟩

]
.

(3.201)

This amplitude turns out to be equal to the one obtained with auxiliary quark line,
Eq. (3.194). The comparison is detailed in Appendix B.6.

n-point amplitude

Finally, in the following section we shall derive the general expression for one-loop am-
plitude for one off-shell gluon and n − 1 on-shell gluons with all helicities positive. To
this end, we need the one loop amplitude for a quark-antiquark pair and n− 1 positive
helicity gluons. A suitable expression has been derived in [198]. It reads :

A(1)
n+1(1

−
q̄ , 2

+
q , 3

+, · · · , (n+ 1)+) =
ign+1

s

32π2

(
1 +

1

N2
c

) ∑n
l=3⟨1| /K2···l/kl|1⟩

⟨23⟩ · · · ⟨(n+ 1)1⟩

+
ign+1

s

48π2

(
1 +

ns − nf
Nc

)
S1 + S2

⟨12⟩⟨23⟩ · · · ⟨(n+ 1)1⟩ ,
(3.202)

with :

S1 =

n∑

j=3

⟨2j⟩⟨1(j + 1)⟩⟨1| /Kj,j+1 /K(j+1)···(n+1)|1⟩
⟨j(j + 1)⟩ ,

S2 =
n−1∑

j=3

n∑

l=j+1

⟨1| /Kj···l /K(l+1)···(n+1)|1⟩2⟨2| /Kj···l /K(l+1)···(n+1)|1⟩
⟨1| /K(l+1)···(n+1) /Kj···l|(j − 1)⟩⟨1| /K(l+1)···(n+1) /Kj···l|j⟩

×
⟨(j − 1)j⟩⟨l(l + 1)⟩⟨1| /K2···(j−1)[F(j, l)]2 /K(l+1)···(n+1)|1⟩

⟨1| /K2···(j−1) /Kj···l|l⟩⟨1| /K2···(j−1) /Kj···l|(l + 1)⟩sj···l
,

(3.203)

where :

F(j, l) =
l−1∑

i=j

l∑

m=i+1

/ki/km . (3.204)
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After applying the Λ prescription we find that the term proportional to
(

1 + 1

N
2
c

)
is

of the order Λ−1, whereas the other term is of order 1 and is the one contributing to
the off-shell amplitude. Eventually, we obtain the following expression for the off-shell
amplitude :

g∗g+ · · · g+ loop-amplitude

A
∗(1)
n;1 (g∗, 3+, · · · , (n+ 1)+) =

igns x|k⊥|
48π2

(
1 +

ns − nf
Nc

)
U∗
1 + U∗

2 + U∗
3

κ∗⟨p3⟩⟨34⟩ · · · ⟨np⟩ , (3.205)

with :

U∗
1 =

n∑

j=3

⟨pj⟩⟨p(j + 1)⟩⟨p| /Kj,j+1 /K(j+1)···(n+1)|p⟩
⟨j(j + 1)⟩ ,

U∗
2 =

n−1∑

j=4

n∑

l=j+1

⟨p| /Kj···l /K(l+1)···(n+1)|p⟩3

⟨p| /K(l+1)···(n+1) /Kj···l|(j − 1)⟩⟨p| /K(l+1)···(n+1) /Kj···l|j⟩

×
⟨(j − 1)j⟩⟨l(l + 1)⟩⟨p| /K ′

3···(j−1)[F(j, l)]2 /K(l+1)···(n+1)|p⟩
⟨p| /K3···(j−1) /Kj···l|l⟩⟨p| /K3···(j−1) /Kj···l|(l + 1)⟩sj···l

,

U∗
3 =

n∑

l=4

⟨p| /K3···l /K(l+1)···(n+1)|p⟩3

⟨p| /K(l+1)···(n+1) /K3···l|p⟩⟨p| /K(l+1)···(n+1) /K3···l|3⟩

×
⟨p3⟩⟨l(l + 1)⟩[p|[F(3, l)]2 /K(l+1)···(n+1)|p⟩

κ∗[p| /K3···l|l⟩[p| /K3···l|(l + 1)⟩s3···l
.

(3.206)

It can be readily checked that the above expression recovers the amplitudes calculated
previously for n = 3, 4, 5 in an independent way.

Now, using auxiliary quarks, we need the on-shell gluonic amplitude taken from [198] :

A(1)
n+1(1

−, 2+, 3+, · · · , (n+ 1)+) =
ign+1

s

48π2

(
1 +

ns − nf
Nc

)
T1 + T2

⟨12⟩⟨23⟩ · · · ⟨n1⟩ , (3.207)

with :

T1 =

n∑

j=2

⟨1j⟩⟨1(j + 1)⟩⟨1| /Kj,j+1 /K(j+1)···(n+1)|1⟩
⟨j(j + 1)⟩ ,

T2 =

n−1∑

j=3

n∑

l=j+1

⟨1| /Kj···l /K(l+1)···(n+1)|1⟩3

⟨1| /K(l+1)···(n+1) /Kj···l|(j − 1)⟩⟨1| /K(l+1)···(n+1) /Kj···l|j⟩

×
⟨(j − 1)j⟩⟨l(l + 1)⟩⟨1| /K2···(j−1)[F(j, l)]2 /K(l+1)···(n+1)|1⟩

⟨1| /K2···(j−1) /Kj···l|l⟩⟨1| /K2···(j−1) /Kj···l|(l + 1)⟩sj···l
.

(3.208)
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Applying the Λ prescription to T2 gives the same result as for S2 in Eq. (3.203). It turns
out that T1 is equal to S1 within the Λ description once you realize that the first term
in the sum over j in T1 is of the order Λ−1. In the end, applying the Λ prescription to
q̄−q+g+ · · · g+ or g−g+g+ · · · g+ gives the same expression, given by Eq. (3.205).

On-shell limit

Now, that we have obtained the expression for A
∗(1)
n;1 (g∗, 3+, · · · , (n + 1)+), we should

verify that in the on-shell limit, i.e. when |k⊥| → 0, we obtain the incoherent sum of
one loop on-shell amplitude with the first gluon having the momentum xpµ and helicity
either “+” or “-” (as described in Eq. (3.179)). Rather than doing it for each multiplicity
separately, we directly use our result for an arbitrary number of gluons (see Eq. (3.205)).

First, one can notice that U∗
1 −−−−→

|k⊥|→0
T 1 and U∗

2 −−−−→
|k⊥|→0

T 2, which implies :

lim
|k⊥|→0

A
∗(1)
n;1 (g∗, 3+, · · · , (n+ 1)+) =

|k⊥|
κ∗

A(1)
n (xp−, 3+, · · · , (n+ 1)+)

+
igns x

48π2
limk⊥→0

(
U∗
3 |k⊥|/κ∗

)

⟨p3⟩⟨34⟩ · · · ⟨(n+ 1)p⟩ .
(3.209)

So we already have the contribution from the amplitude with negative helicity gluon
(the first term in the expression above). We now need to show that the second term is
actually the contribution from the amplitude with a positive helicity gluon, i.e. :

A
(1)
n;1(1

+, · · · , n+) =
igns

48π2

(
1 +

ns − nf
Nc

) ∑

1≤i<j<k<l≤n

⟨ij⟩[jk]⟨kl⟩[li]
⟨12⟩ · · · ⟨n1⟩ . (3.210)

To this end, we have to manipulate on the expression U∗
3 . One can show that :

U∗
3 −−−−→

|k⊥|→0

κ∗

κ[p(n+ 1)]
[p|[F(3, n)]2|(n+ 1)] =

κ∗

κ

∑

3≤i<j<k<l≤(n+1)

⟨ij⟩[jk]⟨kl⟩[li]

+
κ∗

κ

∑

3≤j<k<l≤(n+1)

⟨pj⟩[jk]⟨kl⟩[lp] .

(3.211)

Inserting this into Eq. (3.209) leads to :

lim
k⊥→0

A
∗(1)
n;1 (g∗, 3+, · · · , (n+ 1)+) =

|k⊥|
κ∗

A(1)
n (xp−, 3+, · · · , (n+ 1)+)

+
|k⊥|
κ

A(1)
n (xp+, 3+, · · · , (n+ 1)+) .

(3.212)

More details on the above rather non-trivial calculation are given in App. B.7. This is
exactly what we expect from the on-shell limit, as presented in Eq. (3.179).
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We see that, for the all-plus gluonic amplitude with one gluon off-shell, the auxiliary
parton method keeps the same properties at loop-level as at tree-level. In particular,
we respect the on-shell limit, we keep the equivalence between using auxiliary quark
and auxiliary gluons and, for the one we could verify (the 3-point vertex), we even
find agreement with Lipatov’s high energy effective action. Then, we can conclude that
the auxiliary parton method works at one-loop level, at least for amplitudes with same
helicities.

3.3.2 g∗gg

We have also calculated g∗gg amplitudes, this time for any helicity configuration, in
particular g∗g−g+18, which will be our first loop amplitude with divergences. This
calculation had also been performed within high energy Lipatov effective action, making
the comparison possible. We will also compare the results when using either auxiliary
quark or auxiliary gluon. However, we won’t be able to verify the on-shell limit since
the helicity amplitudes ggg vanish for real momenta (as discussed in Sec. 3.1.5).

g∗g−g+

For this amplitude, we use the result for q̄−q+g−g+ given in [115] in the form of primitive
amplitudes :

AL
4 (1−q̄ , 2

+
q , 3

−, 4+) =cΓA
tree
4 (1−q̄ , 2

+
q , 3

−, 4+)×

×
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s12
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AN=1
4 (1−q̄ , 2

+
q , 3

−, 4+) = As
4(1

−
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+
q , 3

−, 4+) = 0 ,

(3.213)

18
g
∗
g
+
g
+

has already been presented ion the precedent result, and g
∗
g
+
g
−

can simply be obtained
from g

∗
g
+
g
+

by using parity (see Eq. (3.57)).
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with the tree level amplitude :

Atree
4 (1−q̄ , 2

+
q , 3

−, 4+) = i
⟨13⟩3⟨23⟩

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ . (3.214)

We can now apply the auxiliary parton method, which leads to (we have used
Eq. (3.96)) :
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(3.215)

A4;3(1
−
q̄ , 2

+
q , 3

−, 4+) =
Λ−presc.

−ix|k⊥|g3s
cΓ⟨p3⟩3

κ∗⟨34⟩⟨p4⟩ ·
−2 ln(−1)

ϵ

(
−µ2

k2⊥

)ϵ

(3.216)

Comparing this result to Lipatov high energy action (see Eq. (3.147)) we see that
the results differ, with no relation between the regulator Λ and r that would let these
results match. Actually, from a diagrammatic point of view, it isn’t surprising. Indeed,
when looking at the loop diagrams contributing to q̄−q+g−g+, we observe diagrams that,
even considering the auxiliary parton in the eikonal approximation, has no equivalent
in Rg−g+. This stressed the difference in the regularization of the rapidity divergences
between these two approaches. Actually, we will see in the next section that, to apply
properly the auxiliary parton method at loop-level, we should refine the factorization
formula for NLO calculation (in particular, by defining IR subtraction scheme).

To use auxiliary gluons, we need the following amplitude :
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(3.217)
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which leaves, after applying the Λ prescription :

A4;1(1
−, 2+, 3−, 4+) =
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(3.218)

Then, the difference between auxiliary quarks and auxiliary gluons (for ns = 0)
reads :
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+
q , 3

−, 4+) −A4;1(1
−, 2+, 3−, 4+)
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Λ−presc.
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9
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(3.219)

So, the equivalence between using auxiliary quarks or auxiliary gluons also breaks. Be-
sides, other (unpublished yet) calculations exhibit the same difference.

3.4 Loop-level hybrid factorization

The differences observed between high-energy Lipatov effective action and the Λ-
prescription at loop-level are not really surprising, the regularization of the rapidity
divergences being different. In fact, using the Λ-prescription at loop-level implies a
refinement of the high energy hybrid factorization scheme used, as recently proposed
in [102] (that we briefly summarize here). In particular, the dipole subtraction, as pre-
sented in Sec. 3.1.7, does not hold when using the auxiliary parton model at NLO, due
to so-called unfamiliar real and virtual contribution. The former appears due to the
possibility that the radiative gluon takes an important momentum component p in the
limit Λ → +∞. The unfamiliar virtual correction is, on its side, due to the anomalous
integrals presented in Sec. 3.2.2. The interesting point is that these contributions only
depend on the choice of auxiliary momenta. Then, the Λ dependence of the one-loop
partial amplitudes using either auxiliary partons (quarks or gluons) has been determined
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in [102] and follow :
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(3.220)

such that :
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 ,

(3.221)

which justifies the observation of Eq. (3.219). Then, when applying the auxiliary parton
method at NLO, one should subtract to the obtained amplitude the second term in the
r.h.s of Eq. (3.220) (choising the one corresponding to the auxiliary parton used) to get
IR-subtracted amplitudes.

3.5 Chapter summary

In this chapter, we introduced a broad set of tools useful to calculate amplitudes. The
simplicity of these amplitudes contrasts with the extreme complexity of their description
through Feynman diagrams which makes them an important subject of study. A lot of
work is put into simplifying their calculation based on their properties and the methods
mentioned in Sec. 3.1 are relatively basic ones (but powerful). The evaluation of the
higher order corrections to QCD amplitudes is needed for precision calculation of the
QCD noise in collision hence for precision collider physics. This is also the case in
small-x physics, for which the special kinematics (the multi-Regge kinematics) demands
the construction of off-shell amplitudes. Calculation of such objects is usually done
through the use of Lipatov’s high energy effective action, an effective theory suitable
for this kinematics. However, while on-shell amplitudes are well known at NLO, only a
few processes have been calculated with Lipatov’s high energy effective action at NLO.
Then, having a method to extract an off-shell amplitude from an on-shell one seems very
appealing. This justifies the interest of the auxiliary parton method, as we presented
it. However, this method was only proven for tree-level calculation. The goal of the
work presented in this chapter was to perform the first steps towards the generalization
of the auxiliary parton method at loop level. We have successfully calculated the loop
amplitude for one off-shell gluon and any number of plus helicity gluons and proven
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its proper on-shell limit. On the other hand, we also have observed its limits when it
has to deal with virtual poles (loop integration). Also, this problem has been solved
(in parallel to the work of this thesis) and it opens the path to new possible plans :
determination of an NLO kT -factorization formula (for two off-shell gluons), addressing
off-shell quarks and ultimately automatize the NLO calculations in kT -factorization as
well as the small-x improved TMD factorization (ITMD) [199, 200].
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Chapter 4

Jets in heavy ion collisions

In this chapter, we will be interested in the evolution of jets, initiated by a parton coming
from the hard scattering, in a dense medium. Indeed, in heavy-ion collisions, a Quark-
Gluon Plasma (QGP) is formed and it will influence the jet evolution.
But first, in Sec. 4.1, we will have a closer look at jets and how they are defined both
theoretically and experimentally. Then we will overview their evolution in vacuum before
studying the medium influence on this evolution. This will lead us to the BDMPS-Z
formalism presented in Sec. 4.2. This formalism sets how jets interact with the QGP.
Then, it is possible, with some simple medium model, to derive evolution equations
for jets in a QGP, the BDIM equations. These equations have been derived for gluon-
dominated cascades and we will generalize them to the case where both quarks and
gluons are present in the parton shower (see Sec. 4.3.2).
In the following, we present 2 methods to solve the BDIM equations : a Monte-Carlo
(MC) approach (see Sec. 4.4.2) and a semi-analytical approach based on Chebyshev
polynomials (see Sec. 4.4.3).
Ultimately, we present and study the solutions of the different versions of the BDIM
equation presented (in Sec. 4.5).

Remark : In this chapter, we will use bold letters to label transverse
momenta (instead of using the index “⊥”).
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4.1 Jet physics

Due to color confinement, we do not have direct access to the hard partons produced in
the hard scattering. Indeed, those partons evolve from the hard scale to the hadroniza-
tion scale (around 1GeV) by the emission of partons (gluons or quark-antiquark pairs),
themselves initiating radiations. This series of radiation is called parton shower (or cas-
cade). Then, all the partons produced in the shower hadronize. The produced hadrons
are often unstable and eventually decay into stable and metastable hadrons (mainly pions
in high-energy hadronic collisions). To study the hard parton (i.e energetic) initiating a
shower, we introduce what we call a jet. A jet will link the hard parton (as described in
the final state of the scattering amplitude) to what we actually observe in our detectors :
a bunch of hadrons. Hopefully, what we really observe at high energy are collimated par-
ticles (hadrons). This is because of color coherence, the successive emission in a shower
are ordered in angle (this can be seen through the soft and collinear divergences of the
splitting functions). Then, it is natural to define a jet as a group of observed particles,
that we can set inside a cone, with the initial hard parton as the rotation axis. This
is one possible definition of a jet which is, in all generality, a way to cluster observed
particles in a detector event (a collision) such that they can be interpreted as the result
of the cascade of one hard parton (and can then be used as proxies of this parton). The
idea is to simplify the problem of describing the initial partons through the properties of
a single object, the jet, instead of numerous particles (and their kinematics). Studying
jets and their physics permit also to recognize detector events in terms of their underly-
ing hard process (and so, to select and class events of interest observed in a detector...).
The way we characterize and define a jet, in other words how we cluster final hadrons
and how we combine momenta inside it, is called jet algorithm. A jet algorithm must
be simple to implement in experimental analysis but also in theoretical calculations. It
has to be sensitive to the initial parton (its nature and dynamics)1. This implies that a
jet should not be sensitive to hadronization nor to showering (i.e it should be soft and
collinear safe2). Also, depending on our jet definition, we might account for losses due
to hadrons or radiations going outside our jet (while initiated by the same hard parton)
and for contamination (from other final state parton shower, initial state parton shower,
or underlying event).
Before entering the main jet algorithms, we should introduce some kinematics variables.
To a particle with 4-momentum p = (E, px, py, pz) and mass m, we associate the rapidity
y and the transverse mass mt defined as :

y =
1

2
ln
E + pz
E − pz

, mt =

√
m2 + p2t , (4.1)

where ϕ = arctan
py
pz

is the azimuth and pt =
√
p2x + p2y the transverse momentum. It

leads to p = (mt cosh y, pt cosϕ, pt sinϕ,mt sinh y). It is also usual to define the pseudo-

1
Because we use it as a proxy of this hard parton.

2
Adding a collinear or a soft radiation to an event should not change how hadrons are clustered in

this event
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rapidity η as :

η = − ln tan
θ

2
=

1

2
ln

|p| + pz
|p| − pz

, (4.2)

where θ = arccos pz
|p| is the polar angle. For massless particles, η = y.

Jets and angular ordering

As already mentioned, the idea of clustering hadrons into jets comes from the exper-
imental observation of collimated hadrons in high-energy collisions. This idea is also
justified by the theory (QCD, but that’s actually a feature of QFT). Let’s consider as
an illuminating example with the amplitude γ∗ → q̄q :

Mq̄q = −ū(p1)eqγ
µv(p2). (4.3)

Then, if we consider the final state emission of a gluon of momentum k, polarization
vector ϵ and color a (like the first emission in a final state shower that gives rise to a
jet), we have to consider the amplitude :

Mq̄qg = ū(p1)igs/ϵt
a i

/p1 + /k
ieqγ

µv(p2) − ū(p1)ieqγ
µ i

/p2 + /k
igs/ϵt

av(p2). (4.4)

Once squared (implying the sum over polarization and color of the emitted gluon), this
amplitude factorized in M2

q̄q and a soft factor as :

|Mq̄qg|2 = |Mq̄q|2CF g
2
s

2p1 · p2
(p1 · k)(p2 · k)

= |Mq̄q|2CF g
2
s

1

E2(1 − cos2 θ)
. (4.5)

This factorization hold when we consider also the phase space :

dϕq̄qg|Mq̄qg|2 = dϕq̄q|Mq̄q|2
d3k

2E(2π)3
CF g

2
s

1

E2(1 − cos2 θ)
= dϕq̄q|Mq̄q|2dS , (4.6)

with the soft factor :

dS =
d3k

2E(2π)3
CF g

2 1

E2(1 − cos2 θ)
=

2αsCf

π

dE

E

dθ

sin θ

dϕ

2π
. (4.7)

This soft factor is general to the emission of a gluon from a quark pair. For a gluon
pair emitting a gluon, only the color factor CF would change for CA = Nc. In any case,
the emission probability is enhanced3 in both the collinear limit (where θ → 0) and the
soft limit (where E → 0). This means that, in vacuum, the partons in a cascade will be
ordered in angle, leading to a collimated cascade of partons that can be identified as a
jet.
We should also mention that the jets follow, in vacuum the DGLAP equation to evolve
from the hard scale of the collision to the soft scale of hadronization (a backward evolu-
tion compared to the initial state one).

3
It is actually divergent, but compensated by virtual corrections.
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Jet algorithms

A jet algorithm is an algorithm that takes a set of (hadron) momenta {pi} (describing
an event) to produce a set of jets {ji}. As mentioned, the first idea to define a jet, based
on the fact that branching doesn’t modify the energy flow’s direction (i.e angular order-
ing), is to cluster final hadrons in cones defined by a radius R4 in the rapidity-azimuth
plane (y, ϕ). This class of jet algorithms is called cone algorithms [201]. After choosing
some cone size, the first step is to order the hadrons {pi} in an event according to their
transverse momentum. A cone is centered on the hardest particle, called seed (s). Then,
all particles in the cone, i.e the particles i that verify ∆Ris = (yi− ys)2 + (ϕi−ϕs)2 < R
are associated to this cone. The procedure is repeated till there is no hadron left and if
two cones overlap, they are merged.
Unfortunately, this procedure is not soft nor collinear safe. Indeed; when you add a soft
emission between two hard hadrons, the associated cones could merge. Also, if one of
the hardest particles is split into 2 collinear radiation, then the associated cone could
move to a nearby less hard hadron. This algorithm has been improved with the concept
of stable cone. Once a cone is set, all the 4-momenta of the particles inside the cone
are summed to verify that they point to the center of the cone. If it is the case, the
cone is stable and the procedure continues the same way as previously. If not, then, the
cone is re-centered in the direction pointed (and the procedure repeats). However, this
improvement does not solve the problems of soft and collinear safety.

The other main class of jet algorithms are the sequential recombination algorithms.
They try to reconstruct, backward, the branching process. They all follow the same
principle :

• Compute all distances between particles dij and all distances between a particle
and the beam axis diB.

• Find the smallest distance in {dij}
⋃{diB}

– if it is dij , merge i and j into a proto-jet p(ij) and combine momenta
pµ(ij) = pµi + pµj ,

– if it is diB, remove i from the set {pi} and place it in the set of jets {j}5.

• Return to step 1 as long as {pi} is not empty.

So basically, this algorithm sorts all hadrons by distances (between them and with the
beam axis) and considers that the nearest particles come from a branching. Of course,
the notion of jet is then highly dependent on the notion of distance used. One could
think of the invariant sij = pi · pj , but this doesn’t work well. Actually, to recover the

4
Which is actually the angular reach of the cone.

5
Instead of using the distance to the beam axis, it is also possible to impose a higher threshold in the

distance [202].
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branching process, the distance should be based on the properties of this branching.
Let’s recall the emission probability in the soft and collinear limit (noted S&C) :

dωS&C
g→gg =

2αs

π
CF

dE

E

dθ

θ

dϕ

2π
,

dωS&C
q→qg =

2αs

π
CA

dE

E

dθ

θ

dϕ

2π
.

(4.8)

Then, when the soft particle isn’t determined (between 2 emission i and j), we need to

rewrite dE
E

dθ
θ → dEi

min(Ei,Ej)

dθij
θij

. It leads to define the distance dij = 2

Q
2min(Ei, Ej)θij [202]

that reduces (modulo normalization) in the collinear limit to dij = min(p2i,t, p
2
j,t)

∆R
2
ij

R
2 [203,

204], where R is a parameter (whose role is similar to the radius in the cone algorithms).
The distance to the beam is then defined as diB = p2i,t. This distance is used in the
so-called kt-algorithm. The problem with it is that it clusters soft radiation first, hence
it is not soft-safe. Also, it leads to irregular shapes that complicate calibration.
The previous algorithm can be generalized by introducing the distance :

dij = min(p2αi,t , p
2α
j,t )

∆R2
ij

R2 ,

diB = p2αi,t .

(4.9)

Different choices for α have been used. For α = 1, we recognize kt-algorithm. α =
0 correspond to the Cambridge/Aachen algorithm [205, 206], where is only left the
geometrical dependency. Finally, the most used jet algorithm nowadays is the so-called
anti-kt algorithm [207, 208], where α is set to −16 (it is implemented in the FastJet
package [209, 210]). This might be counter-intuitive but, by clustering hard hadron
first, it leads to round-shaped jets (like with cone algorithm) and it is collinear and
soft safe! The anti-kt algorithm is then both easy to calibrate on the experimental
side and suitable for theoretical calculations since it tries to reconstruct the successive
branching appearing in the parton shower. A comparison of the results of the use of the
kt, Cambridge/Aachen, anti-kt and a cone algorithm (named SISCone [211]) is shown in
Fig. 4.1 (taken from [208]).

Jet and QGP

While jets are well described by (vacuum) parton shower in the case of pp collisions, it has
been observed that, in heavy-ion collisions, high-pt jets are suppressed [212–218]. This is
particularly clear in some back-to-back dijet events where one jet is strongly suppressed
compared to the other, as shown in Fig. 4.2 (where are presented 2 back-to-back dijet
events, one for pp collision one for PbPb collision, both from the CMS experiment).

This suppression, named jet quenching, is understood as the result of the interaction
between the jet and the medium formed during the collision. Indeed, contrary to pp

6
It means that, instead of defining your distance according to the emission probability of Eq. (4.8),

you consider the angular distance scaled (divided) by the energy of the hardest of the two partons.
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Figure 4.1: Jets obtained, from the same event, in the (y, ϕ) plane, by several jet algo-
rithms : SISCone (top left), Cambridge/Aachen (top right), kt (bottom left) and anti-kt
(bottom right) algorithms (from [208]).

collisions, heavy-ions collisions involve the formation of a highly dense and hot state of
matter, the QGP [221]. QGP is a state, predicted by asymptotic freedom, of highly
dense nuclear matter made of deconfined quarks and gluons (a color plasma). It appears
not only in heavy-ion collisions but also in neutron stars and it describes the matter a
few microseconds after the Big Bang. A phase diagram of QCD is depicted in Fig. 4.3
(from [222]), showing the phase transition between ordinary hadron phase and QGP (in
the temperature / baryon density plane).

Also studying it may lead us to a better understanding of quarks and gluon con-
finement. Then, the jet can be used as a hard probe of the QGP, and investigating
their interactions is a key to understand QGP (an overview on jet quenching is given
in [223]). Jet quenching is explained mainly by energy loss through two processes, elastic
and inelastic collisions with the medium constituents. The former process is also called
collisional energy loss (first proposed by Bjorken [224], the model has been improved
in [225–229]) where it is usual to consider heavy scattering centers (i.e neglecting recoils
effects). The latter is called radiative energy loss and consists of multiple scattering with
the medium constituent leading to (induced) radiations transporting a fraction of the
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Figure 4.2: Back to back dijet event from CMS in pp collision (left, taken from [219])
and in PbPb collision (right, taken from [220]).

Figure 4.3: The QCD phase diagram (from [222]).

initial parton energy outside the jet (breaking the angular ordering of vacuum cascades).
Radiative energy loss in QCD are the equivalent of Lando-Pomeranchuk-Migdal (PLM)
effect [230, 231] in QED which states that the bremsstrahlung spectrum of a highly
relativistic particle in dense media is suppressed (as compared to the Bethe-Heitler
spectrum [232], where incoherent rescattering is assumed) by interference appearing in
multiple medium scattering. Several models exist for the QCD equivalent and we will
study the very first one formulated : the Baier-Dokshitzer-Mueller-Peigne-Schiff Za-
kharov (BDMPS-Z) formalism [233–237]. It is based on a path-integral formulation of
the multiple (resummed) scattering on heavy and static color centers. Other stand-
ing out formalisms include Armesto-Salgado-Wiedemann (ASW) [238–242], Gyulassy-
Levai-Vitev (GLV) [243–246], Arnold-Moore-Yaffe (AMY) [247–249] and Higher-Twist
(HT) [250–254]. These models may differ in their treatment of the in-medium splitting
of the hard parton, their description of the medium, and by the assumed kinematics of
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the medium-parton interaction. A detailed comparison of these models is given in [255].

4.2 BDMPS-Z formalism

In this section, we will set up the next calculations by introducing useful notions and
results from the BDMPS-Z formalism [256, 257]. In particular, we will introduce the
splitting function (that are altered by the medium), as presented in [258] (going actually
beyond one of the hypotheses of the BDMPS-Z formalism).
In this model, the medium is viewed as a collection of static scattering colored centers
characterize by their density n along the (hard) parton path (this density may vary along
this path, in particular, a decreasing density would reflect the medium expansion). The
recoils of the scattering centers are neglected hence there is no collision energy loss in this
model. Also, the interaction of both the hard parton and its radiations to the medium
are considered eikonal. This means that partons propagate at a fixed transverse position.
This translates, for a parton of energy E emitting a parton of energy ω and exchanging
a transverse momentum q⊥ with the medium as :

E ≫ q⊥, ω ≫ kt. (4.10)

In other words, the radiations are considered collinear. For an emitted parton of energy
ω and transverse momentum kt

7, it means :

ω ≫ q⊥. (4.11)

Then, when a high energy parton (of energy ω and transverse momentum k⊥) propagates
through the QGP, it can radiate parton over a typical time scale :

τf ∼ 2ω

k2⊥
. (4.12)

τf is called the formation time. Its inverse represents the energy required to set it on-
shell. This energy is gained through multiple scattering with the medium constituents.
Also, the most important parameter of the BDMPS-Z formalism is the transport co-
efficient that measures the transverse momentum ∆k2⊥ accumulated by a parton when
passing through a length ∆l of medium. It is called the quenching parameter :

q̂ =
∆k2⊥
∆l

, (4.13)

which can equivalently be written in terms of the time passed in the medium ∆t :

q̂ = ∆k
2
⊥

∆t (since we are working in natural units). Then, it is possible to evaluate the

7
The index t refers to the transverse plane of the parent parton (while ⊥ is used for the transverse

plane of the beam axis / the initial hadron direction).
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Figure 4.4: BDMPS-Z energy spectrum for ᾱ = 0.3, q̂ = 1GeV2/fm for different medium
length (L ∈ {1, 2, 3, 4, 5, 6} fm).

time scale for in-medium splitting (or branching) as the formation time that verifies
Eq. (4.13) (identifying ∆t with τl and ∆k2⊥ with 2ω/τf ) :

τbr(ω) ∼
√

2ω

q̂
. (4.14)

The related typical transverse momentum acquired during τbr is then k2br = q̂τbr =

(2ωq̂)1/4. We can also evaluate a typical emission angle θbr ∼ kbr
ω , learning us that the

softer the parton the larger is its emission angle. This emission angle has minimum
fixed by τbr = L at θc = (q̂L3)−1/2 (where L is the length of the medium). Then, the
BDMPS-Z energy spectrum of radiated gluons follows :

ω
dN

dω
≃ ᾱ

√
ωc

ω
= ᾱ

√
L

τbr(ω)
, (4.15)

where N is the number of radiated gluons, τbr(ωc) ∼ L and ᾱ = αsNc
π . This spectrum

(illustrated in Fig. 4.4) holds for ω ≲ ωc. But, when τbr(ω) is of the order of the mean free
path λ the radiations are in fact produced by incoherent collision (multiple scattering
is negligible) and the above spectrum should then be replaced by the Bethe-Heitler
(bremsstrahlung) spectrum [232]. We characterize this limit by the frequency ωBH (such
that τbr(ω) ∼ λ). So, to consider medium-induced radiations, we need ωBH ≪ ω ≲ ωc.
In this range, the number of scattering centers coherently participating in the emission
is large (as τbr(ω)

λ ≫ 1). We can translate this condition over energy into a condition
on transverse momentum exchange by introducing the Debye (screening) mass that
characterizes the collision with a screened one parton exchange : m2

D = q̂λ. Then
ωBH ≪ ω translates into k≫brm

2
D. It is then possible to evaluate the energy loss as :

∆E =

ˆ ωc

ω0

dωω
dN

dω
∼ ᾱq̂L2. (4.16)
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This gives a simple estimation for the energy loss based on the intuitive parameter
q̂. Then, we can dwell on the average number of partons emitted, with an energy
ω′ ∈ [ω, ωc] :

∆N(ω) =

ˆ ωc

ω
dω′dN

dω′ ∼ ᾱ
L

τf (ω)
2. (4.17)

For relatively hard emissions (say ω ≳ ᾱωc), ∆N(ω) ≲ 1, meaning that the probability
of having multiple emissions is small. On the contrary, for relatively soft emissions (ω ≲
ᾱωc ≡ ωs), ∆N(ω) ≳ 1, and multiple emissions become important. Overall, it means
that the regime where ωBH ≪ ω ≪ ωc is dominated by medium-induced radiations
with an important contribution from multiple emissions. Finally, if we consider the
probability of emitting one parton of energy ω ≥ ω0 :

P (∆t;ω0) ∼ ᾱ
∆t

τbr(ω0)
. (4.18)

we can define the typical time interval τrad(ω0) that the a parton of energy ω does not
radiate in the range [ω0, ω] as P (τrad(ω0);ω0) = 1, leading to :

τrad(ω0) =
τbr(ω0)

ᾱ
=

1

ᾱ

√
2ω0

q̂
. (4.19)

This means that the typical time interval between radiations in the cascade is larger
than the formation time, hence that the successive emissions are independent (and color
coherence is lost). In other words, the “single (medium-induced) splitting” can be used
as a building block of the full cascade.

Now that the time scale considerations have been done, we need to better characterize
the problem. We consider a hard relativistic gluon propagating in the z direction and,
for simplicity, we consider only gluon radiations (quark will be reintroduced later). It
travels through the QGP over a distance L, from time t0 to time tL. The medium is
parametrized through a random color field A−

⊣ (in the light-cone gauge A+ = 0). Due
to the eikonal approximation, the gluons couple only to the − component of the gauge
field which is probed only around x−, justifying that we drop its x− dependence. From
now on, we will note t the light-cone time (i.e the x+) and we will indicate transverse
variables with bold letters the (i.e x⊥ → x). Assuming homogeneity in the transverse
plane and a constant color charge density n (i.e a static medium), we can describe this
medium field through a correlation function γ verifying :

〈
A−

a (q, t)A†−
b (q′, t′)

〉
= nδabδ(t− t′)(2π)2δ(2)(q − q′)γ(q) , (4.20)

where the angle brackets denotes the medium average. As an example, the correlation
function can be written, for a QGP at equilibrium (we will come back to the medium
model used in a few steps) using the screened Coulomb propagator 1

(q
2
+m

2
D)

2 with :

γ(q) =
g2n

(q2 +m2
D)2

. (4.21)
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The gluon propagator G, in presence of the background field A− verifies the equa-
tion [259, 260] :

[
2∂+x D−

x −∇2
⊥
]
ac
Gcb(x, y) = δabδ(x− y) ,

with D−
x = ∂− − igA− · T.

(4.22)

Actually, due to the form of A− (independent on x−), it is convenient to introduce
another Green function, G through :

Gab(x, y) =

ˆ
dk+

2π
e−ik

+
(x

+−y
+
) i

2k+
Gab(x, x

+,y, y+; k+). (4.23)

G satisfies the Schrödinger equation :

[
iD− − ∇2

⊥
2k+

]

ac

Gcb(x, x
+,y, y+) = iδabδ(x

+ − y+)δ(x− y) ,

with D− = i∂− + gsA
−.

(4.24)

G can then be written in the form of a path integral :

G(x, x+,y, y+) =

ˆ r(x
+
)=x

r(y
+
)=y

Dr exp

{
i
k+

2

ˆ x
+

y
+

dtṙ2
}
U(x+, y+; r) ,

with U(x+, y+; r) = T exp

{
igs

ˆ x
+

y
+

dtA−
a (t, r(t))ta

}
.

(4.25)

We will actually write it in momentum space as :

G(k, t,p0, t0) =

ˆ
dxdye−ik·ye−ip0·xG(x, x+,y, y+). (4.26)

We are now set up for the calculation of the collision and in-medium splitting kernels
needed to derive the Blaizot-Dominguez-Iancu-Mehtar-Tani (BDIM) equations in the
next section. Also, the medium will be better characterized when studying scattering
with the medium color charges.

4.2.1 Collision kernel

Let’s now study in-medium multiple scattering by introducing the probability
P1(k; tL, t0)dΩk to observe a gluon at tL with momentum in the phase space element
dΩk while it was in dΩp0

at time t0 (with energy p+0 , that we may also note E). The
invariant phase space element reads :

dΩk =
d2kdk+

(2π)3k+
. (4.27)
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Also, with the conservation of the + component of the momentum, it is convenient to
introduce P as :

P1(k; tL, t0) = 2p+0 2πδ(k+ − p+0 )P(k; tL, t0). (4.28)

P is then the probability, for gluon propagating in the medium, to acquire a transverse
momentum k − p0 during the time tL − t0. It is calculable as an amplitude squared,

with the help of the propagator G or more directly with the 2-point function S(2) (in
momentum space) :

(2π)2δ(2)(p0 − p̄0)P(k − p0; tL, t0) = S(2)(k, k̄, tL;p0, p̄0, t0) ,

with S(2)(k, k̄, tL;p0, p̄0, t0) =
〈
G†(p̄0, t0, k̄, tL)G(k, tL,p, t0)

〉
,

(4.29)

which is pictured in Fig. 4.5 where the amplitude is in blue and its complex conjugate
in red. The notation ā indicates that a is in the complex conjugate part.

t0 tL

σ(r)

p0

p̄0 k̄

k

Figure 4.5: Illustration of the 2-point function S(2) with amplitude in blue and its
complex conjugate in red. The grey dash line denotes the dipole involved in S(2).

The 2-point function can be evaluated, expressing the Green function with their path
integral form and performing the medium average, as :

S(2)(k, k̄, tL;p0, p̄0, t0) = (2π)2δ(2)(p0 − p̄0)

ˆ
d2re−i(k−p0)·re−

Ncn

2
(tL−t0)σ(r) , (4.30)

with σ the dipole cross section defined as :

σ(r) = 2g2s

ˆ
d2q

(2π)2

(
1 − eiq·r

)
γ(q) , (4.31)
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which Fourier transform reads :

σ(l) =

ˆ
dre−il·rσ(r) = −2g2s

[
γ(l) − (2π)2δ(2)(l)

ˆ
d2q

(2π)2
γ(q)

]
. (4.32)

It is usual to define the collision kernel Cg, which describes transverse momentum broad-
ening due to multiple scattering (without branching) as :

Cg(l) = −1

2
Ncnσ(l) = 4παSNcn

[
γ(l) − (2π)2δ(2)(l)

ˆ
d2q

(2π)2
γ(q)

]
, (4.33)

such as (combining Eq. (4.29),Eq. (4.30) and Eq. (4.33)) :

P(k − p0; tL, t0) =

ˆ
d2re−i(k−p0)·r+(tL−t0)Cg(l). (4.34)

It is also usual to set the medium model in a function w(q), the in-medium potential
(as it would appear in the Hamiltonian of the problem), defined such that :

Cg(l) =

[
w(l) − (2π)2δ(2)(l)

ˆ
d2q

(2π)2
w(q)

]
, (4.35)

meaning w(l) = 4παSNcnγ(l). For a weakly coupled QGP in thermal equilibrium at
high temperature T, this function can be obtained from hard thermal loop calculation
(out of the reach of this work) and reads [261] :

w(l) =
g4snNc

l2(l2 +m2
D)
. (4.36)

The Debye mass mD and the color charge density n can be related to the temperature
of the medium through :

m2
D = (

Nc

3
+
Nf

6
)g2T 2, and n = m2

D
T

g2
∝ T 3 , (4.37)

where the coupling constant g is evaluated at the temperature of the medium. As already
mentioned, we consider a constant color charge density, this can be understood also as
keeping a constant temperature for the medium.
We will also be interested in the function w for out-of-equilibrium plasma (without
screening) in the form :

w(l) =
g4snNc

l4
. (4.38)

Back to P, we see, deriving Eq. (4.34), that it follows the equation :

∂

∂t
P(k − p0; t, t0) =

ˆ
d2l

(2π)2
Cg(l)P(k − p0 − l; t, t0). (4.39)

This equation will be useful in the derivation of the BDIM equations (in the next section).
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4.2.2 Splitting kernel

Let’s now have a look at the medium-induced splitting process for which we will actually
go beyond the eikonal limit of the BDMPS-Z formalism (non-neglecting the transverse
momentum transfer during splitting). Similarly to P1 (Eq. (4.28)), we can define the
probability P2(ka, kb; tL, t0)dΩka

dΩkb
to observe 2 gluons at tL (in the phase space ele-

ments dΩka
and dΩka

respectively) given a single gluon at t0 (in dΩp0
). The same way,

we introduce P2 as :

P2(ka, kb; tL, t0) = 2p+0 2πδ(k+a + k+b − p+0 )P2(ka,kb, z; tL, t0). (4.40)

This probability can be expressed in terms of n-point functions (their Fourier transform),
when looking at the 1 → 2 amplitude between t0 and tL, as pictured in Fig. 4.6, where
the splitting happens at t1 in the amplitude and at t2 in its complex conjugate.

t0 t1 t2 tLS̃(2) S̃(4)S̃(3)

p0

p0

q1

q1
p1

q1 − p1

q̄2

q̄2 − p2

q̄2 − q2

q2

p2

kb

kb

ka

ka

Figure 4.6: Illustration of the 1 → 2 in-medium amplitude, in blue, and its complex
conjugate, in red with the regions described by S(2) ([t0, t1]), S

(3) ([t1, t2]), S
(4) ([t2, tL]).

Then, after summing over polarization and averaging over the azimuthal angle at the
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vertices, P2 reads :

P2(ka,kb, z; tL, t0) =
g2sPgg(z)

z(1 − z)(p+0 )2
2Re

ˆ tL

t0

dt2

ˆ t2

t0

dt1

×
ˆ

dp1

(2π)2
dq1

(2π)2
dq̄2

(2π)2
dp2

(2π)2
dq2

(2π)2
(P ·Q)

× S̃(4)(q2, q̄2 − q2,p2, q̄2 − q2, t2;ka,kb,ka,kb, tL)

× S̃(3)(p1, q1 − p1, q1, t1; q2, q̄2 − q2, q̄2, t2)

× S̃(2)(q1, q1, t1;p0,p0, t0) ,

(4.41)

with P = p1 − zq1 and Q = p2 − zq̄2. The regions between [t0, t1], [t1, t2] and [t2, tL]

are respectively covered by the following n-point functions S̃(2), S̃(3) and S̃(4) and the
Altarelli-Parisi splitting function comes from the square of the 2 vertices (in the ampli-
tude and its complex conjugate). Taking two times the real part of the integral written
with the time order t1 < t2 permits taking into account the reverse order t2 < t1. The
momenta notations follow from the fact that, at each time, the sum of momenta in the
amplitude equals the sum in its complex conjugate (implied by the n-point functions
and the correlator form). This transverse momentum conservation is held by the Dirac
delta functions in the n-point functions which, when we use the momenta as labeled in
Fig. 4.6, have already been applied. This means that we use n-point functions stripped
of their Dirac delta, which is denoted by a tilde. In the regime where τbr ≪ tL − t0,
several approximations can be done. First, the 4-point functions can be factorized into
two 2-point functions (the non-factorizable part being of order τbr

L [258]), hence, can be
written using P as :

S̃(4)(q2, q̄2 − q2,p2, q̄2 − q2, t2;ka,kb,ka,kb, tL)

= (2π)2δ(2)(p2 − q2)P(ka − q2; tL, t2)P(kb − q̄2 + q2; tL, t2).
(4.42)

If we use the time integration variables t1 (that we will rename t) and ∆t = t2 − t1, the
other approximation consists in neglecting the dependence in ∆t in the 4-point function
(i.e in the corresponding P). This way, it is possible to perform the integral over ∆t, on

S̃(3), apart. Overall, it leaves :

P2(ka,kb, z; tL, t0) = 2g2sz(1 − z)

ˆ tL

t0

dt

ˆ
dq1

(2π)2
dQ

(2π)2
dl

(2π)2

× P(ka − q2; tL, t)P(kb − q1 − l + q2; tL, t)

× Pgg(z)
(
z(1 − z)p+0

)2Re

[ ˆ
d∆t

ˆ
dP

(2π)2
(P ·Q)S̃(3)(P ,Q, l, z,∆t)

]

× P(q1 − p0; t, t0) ,

(4.43)

with the 3-point function S̃(3) written in terms of the natural momentum variable Q, P
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and l = q̄2 − q1
8 :

S̃(3)(P ,Q, l, z, t2 − t1) = S̃(3)(p1, q1 − p1, q1, t1; q2, q̄2 − q2, q̄2, t2). (4.44)

This way, we can define the in-medium splitting kernel as the part of Eq. (4.43) related

to the region between t1 and t2 (i.e the part described by S̃(3) but also the vertices) :

Kgg(Q, l, z, t) ≡ Pgg(z)
(
z(1 − z)p+0

)2Re

[ ˆ
d∆t

ˆ
dP

(2π)2
(P ·Q)S̃(3)(P ,Q, l, z,∆t)

]
. (4.45)

We will come back to the calculation of the 3-point function and then of this splitting
kernel in a few steps. With this splitting kernel, P2 verifies :

P2(ka,kb, z; tL, t0) = 2g2sz(1 − z)

ˆ tL

t0

dt

ˆ
dq1

(2π)2
dQ

(2π)2
dl

(2π)2

× P(ka − q2; tL, t)P(kb − q1 − l + q2; tL, t)Kgg(Q, l, z, t)P(q1 − p0; t, t0).

(4.46)

Also, the transverse momentum l can be neglected in the factors P. Indeed, it represents
the typical transverse momentum acquired during branching and is of order l ∼ q̂τbr,
negligible compared to ka or kb. We can then rewrite Eq. (4.47) as :

P2(ka,kb, z; tL, t0) = 2g2z(1 − z)

ˆ tL

t0

dt

ˆ
dq1

(2π)2
dQ

(2π)2

× P(ka −Q− zq1; tL, t)P(kb + Q− (1 − z)q1; tL, t)

×Kgg(Q, z, t)P(q1 − p0; t, t0) ,

(4.47)

with Kgg(Q, z, t) =
´

dl

(2π)
2Kgg(Q,P , l, z, t) and rewriting q2 = Q+ z(l+ q1) ∼ Q+ zq1.

Taking the time derivative, we obtain the equation :

∂tP2(ka,kb, z; t, t0) =2g2sz(1 − z)

ˆ
dq1

(2π)2
dQ

(2π)2
dl

(2π)2

× (2π)4δ(2)(ka −Q− zq1)δ
(2)(kb + Q− (1 − z)q1)

×Kgg(Q,P , z, t)P(q1 − p0; t, t0) ,

(4.48)

where we have used P(p; t, t) = (2π)2δ(2)(p). This equation, with the one for P
(Eq. (4.39)) are the roots of the equations derived in the following section.

Now, we need to determine the in-medium splitting kernel Kgg which means that we

have to evaluate the 3-point function S̃(3). Like for the 2-point function, S(3) can be
written in terms of the medium average of 3 Green functions G :

S(3)(p1,q1 − p1, q1, t1; q2, q̄2 − q2, q̄2, t2) =
〈
G†(q1, t1, q̄2, t2)G(q̄2 − q2, t2, q1 − p1, t1)G(q2, t2,p1, t1)

〉
.

(4.49)

8
Also, S̃

(3)
depends only on the time difference t2 − t1 and not on t2 and t1 independently.
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Again, writing the Green functions G as path integrals and performing the medium aver-
age leads to (in coordinate space first, for simplicity, notations follow those of Fig. 4.7) :

S(3)(xi,xk, x̄j , t1;yi,yk, ȳj , t2) =ˆ
DriDrjDrkexp

{
i

2

ˆ t2

t1

dt(ωiṙ
2
i + ωkṙ

2
k − ωj ṙ

2
j )

}

× exp

{
−Ncn

4

ˆ t2

t1

dt
[
σ(ri − rj) + σ(rk − rj) + σ(rk − ri)

]}
,

(4.50)

where all the possible dipoles that can be formed between the 3 gluons appear, as
pictured in Fig. 4.7.

t1 t2

xj, pj

xk, pk

xi, pi

yj, qj

yk, qk

yi, qi

σ(rk − ri)

σ(ri − rj) σ(rk − rj)

Figure 4.7: Illustration of the 3-point function S(3) with amplitude in blue and its
complex conjugate in red. The grey dash line denotes the dipole involved in S(3).

Then, we perform a change of variable, using u = ri−rk and v = zri+(1−z)rk−rj .
Considering also ωi = zωj and ωk = (1 − z)ωj we obtain :

S(3)(xi,xk, x̄j , t1;yi,yk, ȳj , t2) =ˆ
DuDvDrjexp

{
iωj

2

ˆ t2

t1

dt(v̇2 + 2v̇ · ṙj + z(1 − z)u̇2)

}

× exp

{
−Ncn

4

ˆ t2

t1

dt [σ(u) + σ(v − zu) + σ(v + (1 − z)u)]

}
.

(4.51)

v is the distance between the gluon j and the “center of mass” of gluon i and k and it
follows a straight line, making the kinetics integral over the path v and rj possible and
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leaving :

S(3)(xi,xk, x̄j , t1;yi,yk, ȳj , t2) =
( ωj

2π∆t

)2
exp

{
iωj

2

∆v

∆t
· (∆v + 2∆rj)

}ˆ
Du

× exp

{
iω0

2

ˆ t2

t1

dtu̇2 − Ncn

4

ˆ t2

t1

dt [σ(u) + σ(v − zu) + σ(v + (1 − z)u)]

}
.

(4.52)

with ∆v = v(t2) − v(t1), ∆rj = ȳj − x̄j , ω0 = z(1 − z)ωj and ∆t = t2 − t1. We need

now to take the Fourier transform of S(3) as :

S(3)(pi,pk, p̄j , t1; qi, qk, q̄j , t2) =

ˆ
d2xi

(2π)2
d2xk

(2π)2
d2x̄

(2π)2
d2yi

(2π)2
d2yk

(2π)2
d2ȳ

(2π)2

× e−iqi·yie−iqk·ykeiq̄j ·ȳjeipi·xieipk·xke−ip̄j ·x̄j

× S(3)(xi,xk, x̄j , t1;yi,yk, ȳj , t2).

(4.53)

Then, using the notations introduced earlier, it is possible to write S̃(3) as :

S̃(3)(P ,Q, l, z,∆t, t) =

ˆ
d2u1d

2u2d
2v eiu1·P−iu2·Q−iv·l

ˆ
Du

× exp

{
i
ω0

2

ˆ t2

t1

dt u̇2 − Ncn

4

ˆ t2

t1

dt [σ(u) + σ(v − zu) + σ(v + (1 − z)u)]

}
.

(4.54)

To achieve it, one needs to rewrite the space coordinates xi and xk in terms of the
endpoint of the path u and v (with u(ti) = ui for i ∈ {1, 2} and equivalently for v).
Also, the other integrals introduced by the Fourier transform reduce to Dirac deltas that
are implicit with the notations used (those of Fig. 4.7), as explained when we introduced

the tilde notation. Then, we notice that the integral over l (that appears in front of S̃(3)

in Kgg) leaves a Dirac delta function that let simplify the involved dipoles as :
ˆ

dl

(2π)2
S̃(3)(P ,Q, l, z,∆t, t) =

ˆ
d2u1d

2u2e
iu1·P−iu2·Q

ˆ
Du

× exp

{
i
ω0

2

ˆ t2

t1

dt u̇2 − Ncn

4

ˆ t2

t1

dt [σ(u) + σ(−zu) + σ((1 − z)u)]

}
.

(4.55)

Actually, the integral over v could be done without performing the integral on l first (as
shown in [258]), but it is simpler this way (since we aim at an expression for Kgg(Q, z, t)).
To go further, we will focus on the integral :

I(u1, t1,u2, t2) =

ˆ
Du exp





i
ω0

2

ˆ t2

t1

dt u̇2

− Ncn

4

ˆ t2

t1

dt [σ(u) + σ(−zu) + σ((1 − z)u)]




.

(4.56)
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To calculate it, we need to evaluate the dipole cross-section in the harmonic approxima-
tion, i.e by expanding it at quadratic order in the dipole size :

Ncnσ(r) ≃ 1

2
q̂r2. (4.57)

Note that, considering q̂ constant is also part of the harmonic approximation. Then, the
integral I can be written as :

I(u1, t1,u2, t2) =

ˆ
Du exp

{
iω0

ˆ t2

t1

dt

[
u̇2

2
+ iω2

bru
2

]}
. (4.58)

where we define a typical branching time τbr, a typical branching energy ωbr and an
effective quenching parameter q̂eff :

τbr ≡
√
ω0

q̂eff
, ωbr ≡

1

2τbr
, q̂eff ≡ q̂

2

[
1 + z2 + (1 − z)2

]
. (4.59)

We see that I (and then S̃(3)) is exponentially suppressed for large time ∆t > τbr,

limiting ∆t to small times. This justifies the approximation made for S̃(4), where we
neglected the time dependence on ∆t. Also, we recognize a classical path integral for
the harmonic oscillator that yields :

I(u1, t1,u2, t2) =
(1 − i)k2br

4π sinh (Ω∆t)
exp

{
(i− 1)k2br
4 sinh Ω∆t

(
(u2

1 + u2
2) cosh Ω∆t− 2u1 · u2

)}

=
(1 − i)k2br

4π sinh (Ω∆t)
exp





(i− 1)k2br
2

(
(u1 + u2)

2 tanh
Ω∆t

2

+ (u1 − u2)
2 coth

Ω∆t

2

)
,




.

(4.60)

with Ω = (1 + i)ωbr and kbr = q̂effτbr. In this form, it is possible to perform the left

Fourier integrals (on u1 and u2) in S̃(3) leading to :
ˆ

dl

(2π)2
S̃(3)(P ,Q, l, z,∆t, t) =

2π(1 + i)

k2br sinh (Ω∆t)
exp





− (i+ 1)

4k2br

(
(P + Q)2 tanh

Ω∆t

2

+ (P −Q)2 coth
Ω∆t

2

)




.

(4.61)

Finally, after performing the Gaussian integral on P , one obtain the splitting kernel :

Kgg(Q, z, t) =

Pgg(z)
(
z(1 − z)p+0

)2Re

[ ˆ
d∆t cosh−2 (Ω∆t)exp

{
− iQ2

2z(1 − z)p+0 Ω
tanh (Ω∆t)

}]
. (4.62)
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The last step to determine the in-medium splitting kernel in the harmonic approximation
is to perform the time integral :

Kgg(Q, z, t) =
Pgg(z)

z(1 − z)p+0
Re

[
i

ˆ t2−t0

0
d∆t

d

d∆t
exp

{
− iQ2

2z(1 − z)p+0 Ω
tanh (Ω∆t)

}]

=
Pgg(z)

z(1 − z)p+0
Re

[
iexp

{
− iQ2

2z(1 − z)p+0 Ω
tanh (Ω(t2 − t0)) − i

}]
.

(4.63)

Also, when t2− t0 ≫ τbr, tanh (Ω(t2 − t0)) ∼ 1 and if we neglect the region t2− t0 ≲ τbr,
we obtain a time independent kernel :

In-medium splitting kernel for gluon

Kgg(Q, z, p+0 ) ≃ 2
Pgg(z)

z(1 − z)p+0
sin

Q2

2k2br
exp− Q2

2k2br
. (4.64)

It is worth mentioning that this kernel can be negative. If this is a hint on the limits
of the approximations made to obtain it, it hopefully happens only for large momentum
transfer Q > πkbr where the exponential crushes the expression.

4.3 BDIM equations

In this section, we will derive the equation governing the inclusive one gluon distribu-
tions (in the in-medium cascade) depending on both the fraction of the initial parton
energy x and the transverse momentum k. This equation goes beyond the BDMPS-Z
formalism since the transverse momentum transferred during branching is taken into ac-
count (with the in-medium splitting functions introduced in the previous section). The
energy distribution will be obtained by integrating the transverse momentum compo-
nent of the inclusive gluon distribution. It describes the radiative energy loss of a jet
when passing through a QGP following the BDMPS-Z formalism. Also, these distribu-
tions describe the medium-induced parton shower of hard jets, hence we may call them
(in-medium jet) Fragmentation Functions (FF) in the current work (like in Eq. (1.19)).
Describing the evolution of jet in the medium through FFs implies that we assume fac-
torization in heavy-ion collisions (which is not proved but is motivated by time scale
considerations). The evolution equations describing these FFs are referred to as Blaizot-
Dominguez-Iancu-Mehtar-Tani (BDIM) equations (and were originally derived in [258,
262]).

4.3.1 Pure gluons

As a first derivation of the BDIM equation, we will consider the pure gluonic case (i.e
with only gluons populating the medium-induced parton shower), that follows from
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Sec. 4.2. Let’s begin by defining the fragmentation function D, i.e the inclusive one
gluon distribution function :

Dg(x,k, t) = k+
dNg

dk+dk
≡ k+

〈∑

n∈N∗
+

n∑

i=1

δ(3)(kj − k)

〉

=
1

(2π)3

∑

n∈N+
∗

1

n!

(
n−1∏

i=1

dΩki

)
nPn(k, k1, k2, . . . , kn−1; t, t0) ,

(4.65)

with the convention
∏n−1

i=1 dΩi =
n=1

1. This fragmentation function counts all the pos-

sibilities to have one gluon at t0 initiating the cascade and any number n of gluons at
time t. Then, the formal derivation of the BDIM equation needs the introduction of a
generating functional [262], not needed for the present discussion. The main steps will
be summarized here. The main idea is to consider, for an infinitesimal time δt, that
the FF D can only evolve through scattering with the medium and through a single
medium-induced emission (at leading order in perturbation theory). This means that
D(t0 + δt) depends only on P1(t0 + δt) and P2(t0 + δt) :

Dg(x,k, t0 + δt) =
1

(2π)3
n

(
P1(k, ; t+ δt, t0) +

1

2

ˆ
dΩk2

P2(k1, k2; t+ δt, t0)

)
. (4.66)

Then, the BDIM equation for gluon-dominated cascades is obtained using the equations
for P and P2 (Eq. (4.39) and Eq. (4.48) respectively). Actually, the equation on P1

(Eq. (4.39)) required to be corrected by order of αs term (to have the same order in
perturbation theory as Eq. (4.48)) :

∂

∂t
P(k − p0; t, t0) =

ˆ
d2l

(2π)2
Cg(l)P(k − p0 − l; t, t0)

− αs

ˆ 1

0
dzK(z, p+0 , t)P(k − p0; t, t0).

(4.67)

This correction takes into account the probability of the gluon not to undergo branching.
All together, it leads to the BDIM equation :

BDIM equation for gluons

∂

∂t
Dg(x,k, t) =

ˆ 1

0
dz

ˆ
d2q

(2π)2
αs

[
2Kgg

(
Q, z,

x

z
p+0

)
Dg

(x
z
, q, t

)

−Kgg(q, z, xp+0 )Dg(x,k, t)

]

+

ˆ
d2l

(2π)2
Cg(l)Dg(x,k− l, t).

(4.68)
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This equation has a simple interpretation. The FF for in-medium jet Dg(x,k, t) (ac-
counting for gluons only) can evolve through 3 possible processes (3 elementary blocks of
the parton shower in the medium). A gluon can be emitted with a fraction of energy x
and transverse momentum k at time t from a parent gluon at

(
x
z , q, t

)
(for any z ∈ [0, 1]

and any q), leading to a gain term (first line of the r.h.s). A gluon at (x,k, t) can split,
leading to a loss term (2nd line) and finally, a gluon can gain transverse momentum to
reach k leading to the collision term (3rd line). Also, one should understand that in
this equation, the integral over z goes implicitly from 0 to 1 for the loss term while it
goes from x to 1 in the gain term (such that x

z ∈ [0, 1]). This could be written explicitly
by adding Heaviside θ functions (and setting the integral on z from 0 to 1), but it has
been chosen to keep it implicit for readability. We should remind that the solutions of
this equation should be used to describe the evolution of jets in a collision involving
the formation of a QGP (basically, a heavy-ion collision) where this evolution can be
factorized9 from the rest of the cross-section, i.e the initial state shower and the hard
part. This means that we want to solve the BDIM equation for an initial high energy
parton (a final state of the hard process), in the present case, an on-shell gluon. This is
represented by the product of two Dirac’s delta functions :

Dg(x,k, t0) = δ(1 − x)δ(2)(k). (4.69)

The solutions of this equation will be studied in Sec. 4.5.1, but for now, we will present
different forms of BDIM equations.

4.3.2 System of equations

The BDIM equation (Eq. (4.68)) presented for gluon-dominated cascades in the previous
section can be extended to a cascade accounting for both quarks and gluons. This
generalization, with the calculation of the needed kernels (and the study of the solutions)
were published in [4]. What changes are the possible building blocks to be used in the
cascade with, in particular, different color factors. In this sense, we define a quenching
parameter stripped off its color factor :

ˆ̄q =
q̂

Nc
. (4.70)

If, for instance, we consider the gluon FF Dg(x,k, t), it can now evolve through the
emission of a gluon at (x,k, t) from either a gluon parent or a quark parent (there are
now 2 gain terms), through gluon at (x,k, t) emitting either a gluon or forming a quark-
antiquark pair (leading to two loss terms) and finally, the elastic scattering term does not
change. Doing the same exercise for the quark leads to the BDIM system of equation for
both gluon distribution Dg and quark distributions Dqi

(with i the flavor of the quark) :

9
At least, is considered to factorize, like in Eq. (1.19).

145



BDIM equations

∂

∂t
Dg(x,k, t) =

ˆ 1

0
dz

ˆ
d2q

(2π)2
αs

{
2Kgg

(
Q, z,

x

z
p+0

)
Dg

(x
z
, q, t

)

+ Kgq

(
Q, z,

x

z
p+0

)∑

i

Dqi

(x
z
, q, t

)

−
[
Kgg(q, z, xp+0 ) + Kqg(q, z, xp+0 )

]
Dg(x,k, t)

}

+

ˆ
d2l

(2π)2
Cg(l)Dg(x,k− l, t) ,

∂

∂t
Dqi

(x,k, t) =

ˆ 1

0
dz

ˆ
d2q

(2π)2
αs

{
Kqq

(
Q, z,

x

z
p+0

)
Dqi

(x
z
, q, t

)

+
1

Nf
Kqg

(
Q, z,

x

z
p+0

)
Dg

(x
z
, q, t

)

−Kqq(q, z, xp
+
0 )Dqi

(x,k, t)

}

+

ˆ
d2l

(2π)2
Cq(l)Dqi

(x,k− l, t) ,

(4.71)

where the collision kernels Cg and Cq differ only from the color factor used (set inside
the in-medium potential wq(g)) :

Cq(g)(l) = wq(g)(l) − δ(l)

ˆ
d2l′wq(g)(l

′) , (4.72)

with :

wg(l) =
Nc g

4
sn

l2(l2 +m2
D)
, wq(l) =

CF g
4
sn

l2(l2 +m2
D)
. (4.73)

Note that we consider here the in-medium potential for a weakly coupled QGP in thermal
equilibrium at high temperature T . Contrary to the gluon-dominated cascade, we won’t
treat the out-of-equilibrium case (without screening), focusing, when using this system of
equations, on the difference between quark and gluon jets and their composition (rather
than on different medium models).
For the splitting kernel Kij (for an emitted parton i, from a parent parton j), we need to
go some steps backward to determine them properly. Basically, their derivation follows
the same steps as for Kgg but different dipole cross-sections appear when writing S̃(3).
Indeed, these dipoles can now be between a gluon and a quark (with a quark spectator)
and between 2 quarks (with a gluon spectator) in addition to the case with only gluons
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which impacts the color factors used. In all generality, the splitting kernels read :

Kij(Q, z, p
+
0 ) =

P
(k)
ij (z)

ω2
0

Re

ˆ +∞

0
d∆t

ˆ
d2P

(2π)2
d2l

(2π)2
(P ·Q)S̃

(3)
ij (P ,Q, l, z,∆t, t) ,

S
(3)
ij (P ,Q, l, z,∆t, t) =

ˆ
d2u1d

2u2d
2v eiu1·P−iu2·Q−iv·l

×
ˆ u(t2)=u2

u(t1)=u1

Du e
i
ω0
2

´ t2
t1

ds u̇
2
(s)−

´ t2
t1

ds n(s)σij,eff(u(s),v) ,

(4.74)

where ω0 = z(1 − z)p+0 , and P
(k)
ij (z) are the (unregularised) Altarelli-Parisi splitting

functions. σij,eff gathered the 3 dipoles cross-sections participating in S
(3)
ij , it is defined

as :

σij,eff(u,v) =
Ci + Ck − Cj

2
σ̄(u) +

Ci + Cj − Ck

2
σ̄(v + (1 − z)u)

+
Ck + Cj − Ci

2
σ̄(v − zu) .

(4.75)

where Ci is the squared Casimir operators of the color representation of the particle
i and σ̄ is the dipole cross-section stripped of its color factor. The form of the color
factors follows from color conservation arguments [263, 264]. Again, we have stripped
off the dipole cross-section from their color factor to obtain these expressions, with
σ̄(r) ≡ σ(r)

Nc
(considering σ defined in the pure gluon case). Then, the calculation follows

the same steps as in the gluon-dominated case (calculation of Kgg). In particular, once
the harmonic approximation is applied, it leads to the following effective quenching
parameter :

q̂ij(z) = fij(z)ˆ̄q , (4.76)

where :

fij(z) =
Ci + Ck − Cj

2
+
Ci + Cj − Ck

2
(1 − z)2 +

Ck + Cj − Ci

2
z2 . (4.77)

Explicitly, this gives :

fgg(z) = (1 − z)CA + z2CA ,

fqg(z) = CF − z(1 − z)CA ,

fgq(z) = (1 − z)CA + z2CF ,

fqq(z) = zCA + (1 − z)2CF .

(4.78)

Then, we can write the in-medium splitting kernel the same way as in Eq. (4.64) :

In-medium splitting kernels

Kij(Q, z, p
+
0 ) = 2

Pij(z)

z(1 − z)p+0
sin

Q2

2k2ij,br
exp− Q2

2k2ij,br
, (4.79)
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with k2ij,br =
√
z(1 − z)p+0 q̂ij(z). We recall the unregularized Altarelli-Parisi splitting

functions :

Pgg(z) = CA
[1 − z(1 − z)]2

z(1 − z)
,

Pqig
(z) =

1

Nf
Pqg(z) =

1

2

[
z2 + (1 − z)2

]
,

Pgqi
(z) = Pgq(z) = CF

1 + (1 − z)2

z
,

Pqiqj
(z) = δijPqq(z), Pqq(z) = CF

1 + z2

1 − z
.

(4.80)

4.3.3 Energy distribution

The precedent versions of the BDIM equation permit to follow the transverse momentum
evolution of the partons in an in-medium cascade, i.e it makes possible the study of jet
broadening. Also, these equations are well suited to study (alone) radiative energy loss.
To this end, one might integrate the BDIM equations (hence we will call them integrated
BDIM equations) along the transverse momentum k. This leads then to equations on the
energy distributions Dg(qi)

(x, t) =
´

dk

(2π)
2Dg(qi)

(x,k, t) (if it isn’t ambiguous, we might

also call them in-medium jet FF). The integrated BDIM equation for gluon dominated
cascade is then :

∂

∂t
Dg(x, t) = αs

ˆ
dz

[
2Kgg

(
z,
x

z
p+0

)
Dg

(x
z
, t
)
−Kgg(z, xp+0 )Dg(x, t)

]
, (4.81)

where the integrated in-medium branching kernel reads :

Kgg(z, p+0 ) ≡
ˆ

dQ

(2π)2
Kgg(Q, z, p+0 ) =

Pgg(z)

2πτbr
. (4.82)

This recalls that, in the BDMPS-Z formalism, the scattering with the medium color
charges is elastic and hence does not involve energy loss (implying that

´
dl

(2π)
2Cg(l) = 0).

Eq. (4.81) can be further simplified using the dimensionless quantities :

t∗ ≡ π

αsNc

√
p+0
q̂
, τ ≡ t− t0

t∗
, Kgg(z) ≡ 2t∗αsKgg(z, p+0 ) =

[1 − z(1 − z)]
5
2

[z(1 − z)]
3
2

, (4.83)

where t∗ is the stopping time (typical time spent in the medium for a hard parton to
thermalize) and τ is called proper time. Then, Eq. (4.81) can be put in the form :

Integrated BDIM equation for gluons

∂

∂τ
Dg(x, τ) =

ˆ
dzKgg(z)

[√
z

x
Dg

(x
z
, τ
)
− z√

x
Dg(x, τ)

]
. (4.84)
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It is interesting to note that the collinear kernel encodes the gluon spectrum produced
via a single medium-induced radiation which can be recognized as the BDMPS-Z spec-
trum [233–235, 237] :

z
dN

dz
=
αs

π
ztLKgg(z) =

αs

π
tLPgg(z)

√
q̂eff

z(1 − z)p+0
. (4.85)

This is expected since when integrating the BDIM equations over the transverse momen-
tum, we recover the eikonal limit of the BDMPS-Z formalism. We should mention that
this equation, describing energy loss within BDMPS-Z formalism, was already known
(meaning, before the establishment of the BDIM equation) and proposed heuristically
in [225, 265]. It also has been implemented in the MC event generator MARTINI [266].
The same procedure can be used for the “full” cascade (accounting for quarks), however,

one has to define a stopping time stripped of its usual color factor : t̄∗ = π
αs

√
p
+
0
ˆ̄q

. and

it leads to the system of equations :

Integrated BDIM equations

∂

∂t
Dg(x, τ) =

ˆ
dz 2Kgg(z)

[√
z

x
Dg

(x
z
, τ
)
− z√

x
Dg(x, τ)

]

−
ˆ

dz 2Kqg(z)
z√
x
Dg(x, τ)

+

ˆ
dzKgq(z)

√
z

x

∑

i

Dqi

(x
z
, τ
)
,

∂

∂t
Dq(x, τ) =

ˆ
dzKqq(z)

[√
z

x
Dq

(x
z
, τ
)
− 1√

x
Dq(x, τ)

]

+
1

Nf

ˆ
dzKqg(z)

√
z

x
Dg

(x
z
, τ
)
,

(4.86)

where the collinear splitting kernels are defined as :

In-medium collinear splitting kernels

Kij(z) =
Pij(z)

2

√
fij(z)

z(1 − z)
. (4.87)

It is also convenient to rewrite the latter equations in the quark singlet/non-singlet
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basis [267] (characterizing respectively sea and valence quarks), where we find :

∂

∂t
Dg(x, τ) =

ˆ
dz 2Kgg(z)

[√
z

x
Dg

(x
z
, τ
)
− z√

x
Dg(x, τ)

]

−
ˆ

dz 2Kqg(z)
z√
x
Dg(x, τ)

+

ˆ
dzKgq(z)

√
z

x
DS

(x
z
, τ
)
,

∂

∂t
DS(x, τ) =

ˆ
dzKqq(z)

[√
z

x
DS

(x
z
, τ
)

− 1√
x
DS(x, τ)

]
+

ˆ
dz 2Kqg(z)

√
z

x
Dg

(x
z
, τ
)
,

∂

∂t
D

(i)
NS(x, τ) =

ˆ
dzKqq(z)

[√
z

x
D

(i)
NS

(x
z
, τ
)
− 1√

x
D

(i)
NS(x, τ)

]
,

(4.88)

with :

DS =

Nf∑

i=1

[
Dqi

+Dq̄i

]
, D

(i)
NS = Dqi

−Dq̄i
. (4.89)

4.3.4 Approximations

Collinear approximation

If we go back to the BDIM equations (Eq. (4.68) or Eq. (4.71) for the gluon dominated
case), several approximations can be done on either the branching kernel or the scat-
tering one. Actually, the typical momentum k2br transferred during branching is small
(compared to the transverse momentum acquired through scattering) and then often
neglected. In this case, the collinear splitting kernels, as seen in the integrated BDIM
equation (see Eq. (4.86) and Eq. (4.81)) might be used also in what we will call collinear
BDIM equation :

Collinear BDIM equation for gluons

∂

∂t
Dg(x,k, τ) =

ˆ
dz2Kgg(z)

[
1

z2

√
z

x
Dg

(
x

z
,
k

z
, τ

)
− z√

x
Dg(x,k, τ)

]

+ t∗
ˆ

d2l

(2π)2
Cg(l)D(x,k− l, τ) ,

(4.90)

for the pure gluon case, and, when accounting for quarks :
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Collinear BDIM equations

∂

∂t
Dg(x,k, τ) =

ˆ
dz2Kgg(z)

[
1

z2

√
z

x
Dg

(
x

z
,
k

z
, τ

)
− z√

x
Dg(x,k, τ)

]

−
ˆ

dz 2Kqg(z)
z√
x
Dg(x,k, τ)

+

ˆ
dzKgq(z)

1

z2

√
z

x

∑

i

Dqi

(
x

z
,
k

z
, τ

)

+ t̄∗
ˆ

d2l

(2π)2
Cg(l)D(x,k− l, τ) ,

∂

∂t
Dq(x,k, τ) =

ˆ
dzKqq(z)

[
1

z2

√
z

x
Dq

(
x

z
,
k

z
, τ

)
− 1√

x
Dq (x,k, τ)

]

+
1

Nf

ˆ
dzKqg(z)

1

z2

√
z

x
Dg

(
x

z
,
k

z
, τ

)

+ t̄∗
ˆ

d2l

(2π)2
Cq(l)Dq(x,k− l, τ) .

(4.91)

Diffusion approximation

The BDIM equation can be simplified further considering another interesting approxi-
mation which concerns the collision term this time. For simplicity in the discussion, we
consider first the gluon-dominated case. So, the typical momentum transferred during a
collision is of order mD, which is much smaller than the momentum transferred during
the propagation over a distance l ∼ L, which would be

√
q̂l. With this in mind, we can

rewrite the equation followed by P (see Eq. (4.39)) as a Fokker-Plank equation [262]10 :

∂

∂t
P(k − p0; t, t0) =

q̂

4

∂2

∂k2P(k − p0; t, t0) , (4.92)

where the quenching parameter q̂ plays the role of a diffusion parameter. This directly
translates in the collinear BDIM equation through a diffusion term :

Collinear BDIM equation for gluons with diffusive approximation

∂

∂t
Dg(x,k, τ) =

ˆ
dz2Kgg(z)

[
1

z2

√
z

x
Dg

(
x

z
,
k

z
, τ

)
− z√

x
Dg(x,k, τ)

]

+
t∗

4
q̂∇2

k

[
D(x,k, t)

]
.

(4.93)

The same could be done when accounting for quarks :

10
Actually, the quenching parameter in this case should be logarithmic in k, but we have neglected

this dependence here.
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Collinear BDIM equations with diffusive approximation

∂

∂t
Dg(x,k, τ) =

ˆ
dz2Kgg(z)

[
1

z2

√
z

x
Dg

(
x

z
,
k

z
, τ

)
− z√

x
Dg(x,k, τ)

]

−
ˆ

dz 2Kqg(z)
z√
x
Dg(x,k, τ)

+

ˆ
dzKgq(z)

1

z2

√
z

x

∑

i

Dqi

(
x

z
,
k

z
, τ

)

+
t̄∗

4
q̂∇2

k

[
D(x,k, t)

]
,

∂

∂t
Dq(x,k, τ) =

ˆ
dzKqq(z)

[
1

z2

√
z

x
Dq

(
x

z
,
k

z
, τ

)
− 1√

x
Dq (x,k, τ)

]

+
1

Nf

ˆ
dzKqg(z)

1

z2

√
z

x
Dg

(
x

z
,
k

z
, τ

)

+
t̄∗

4
q̂∇2

k

[
D(x,k, t)

]
.

(4.94)

Gaussian approximation

In this last approximation, for the gluon-dominated case, it is possible to approach the
solution considering that its dependence on the transverse momentum remains Gaussian
all along the evolution in the medium. Then, the estimation of the mean transverse
momentum leads to a solution that we will call the Gaussian approximation [268] :

DG(x,k, t) = D(x, t)
4π

⟨k2⊥⟩
exp

[
− k2

⟨k2⊥⟩

]
, (4.95)

where

⟨k2⊥⟩x,t ≡
´

dk

(2π)
2 |k|D(x,k, t)

´
dk

(2π)
2D(x,k, t)

= min

{
1

2
q̂t(1 + x2),

k2br(x)

4ᾱ
, (xE)2

}
, (4.96)

with E the energy of the initial hard gluon and k2br(x) =
√
xEq̂. In this approximation,

the solution takes the factorized form of the solution of the integrated BDIM equation
(for gluons, Eq. (4.84)) times a Gaussian dependence on the transverse momentum. This
Gaussian dependence, characterized by ⟨k2⊥⟩, is obtained in different regimes. The first
term in Eq. (4.96) (in the min function) corresponds to the regime where single medium-
induced radiations dominate (it is obtained as a perturbative estimate of the solution)
while the second term corresponds to the regime dominated by multiple scattering.
Finally, the last term is actually a condition for the approximation done to estimate
⟨k2⊥⟩ to be valid.
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Perturbative estimate

Finally, we should consider the 1st-order perturbative estimation of the BDIM equation
(to approach its solution) which is equivalent to considering a single in-medium splitting
or scattering. We derive this estimation for the most general case.
Let’s begin with a (hard) gluon initiator :

D(0)
g (x,k) = xδ(1 − x) δ(2)(k) , and D(0)

q (x,k) = 0 . (4.97)

We introduce this initial solution in the BDIM equation Eq. (4.71) in order to find the
first-order perturbative estimate :

D(1)
g (x,k, δt) =D(0)

g (x,k)×

×
{

1 − δt

[
αs

ˆ 1

0
dz
(
Kgg(z, p+0 ) + Kqg(z, p+0 )

)
+

ˆ
d2q

(2π)2
wg(q)

]}

+
δt

(2π)2

[
2αs xKgg(k, x, p+0 ) + xδ(1 − x)wg(k)

]
,

D(1)
q (x,k, δt) =

δt

(2π)2
αs

NF
xKqq(k, x, p

+
0 ) ,

(4.98)

where Kij(x, p
+
0 ) =

´
d
2
k

(2π)
2 Kij(k, x, p

+
0 ). The term in curly brackets next to the initial

condition D(0)
g (x,k) is responsible for probability conservation. Now, integrating out the

transverse momentum k or the momentum fraction x, respectively, we get the following
distributions:

D(x, t) ≡
ˆ

d2kD(x,k, t) , D(k, t) =

ˆ 1

0
dxD(x,k, t) , (4.99)

which respects
´ 1
0 dxD(x, t) = 1 and

´
d2kD(k, t) = 1. The expressions for these

distributions take the form :

D(1)
g (x, δt) = δt 2αs xKgg(x, p+0 ) ,

D(1)
q (x, δt) = δt

αs

NF
xKqg(x, p+0 ) ,

(4.100)

and, finally :

D(1)
g (k, δt) =

δt

(2π)2

ˆ 1

0
dx 2αs xKgg(k, x, p+0 ) +

δt

(2π)2
wg(k) ,

D(1)
q (k, δt) =

δt

(2π)2
αs

NF

ˆ 1

0
dxxKqg(k, x, p+0 ) .

(4.101)

For readability, we have dropped terms that are proportional to the initial condition.
They are however crucial to restore the normalization of the distributions.
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Now, for the quark initiator, we have :

D(0)
g (x,k) = 0 , and D(0)

q (x,k) = xδ(1 − x) δ(2)(k) , (4.102)

which leads to :

D(1)
g (x,k, δt) =

δt

(2π)2
αsNF xKgq(k, x, p

+
0 ) ,

D(1)
q (x,k, δt) =D(0)

q (x,k)

{
1 − δt

[
αs

ˆ 1

0
dzKqq(z, p

+
0 ) +

ˆ
d2q

(2π)2
wq(q)

]}

+
δt

(2π)2
xδ(1 − x)wq(k) .

(4.103)

The integrated distributions now read, omitting the terms proportional to the initial
condition :

D(1)
g (x, δt) = δt αsNF xKgq(x, p

+
0 ) ,

D(1)
q (x, δt) = δt αs xKqq(x, p

+
0 ) ,

(4.104)

and, finally :

D(1)
g (k, δt) =

δt

(2π)2

ˆ 1

0
dxαsNF xKgq(k, x, p

+
0 ) ,

D(1)
q (k, δt) =

δt

(2π)2
αs

ˆ 1

0
dxxKqq(k, x, p

+
0 ) .

(4.105)

Note that these perturbative estimates imply the integral of the splitting kernel which
has to be performed numerically.

4.4 Resolution of the BDIM equations

Now that we have derived equations for the evolution of jet in a QGP, we will consider
different options to solve them. The BDIM equations are linear integral-differential
equations (for which numerous methods exist) but the difficulty to solve these equations
lies in 2 main points. First, the branching kernels diverge for z = 0 and z = 1, sec-
ondly the dependence in x

z and k
z of the fragmentation functions makes it non-trivial to

mesh efficiently a grid for standard numerical method. Anyway, in this section, we will
first consider a simplified BDIM equation for which an analytical solution exists. We will
study briefly this solution to use it later as an analytical ansatz to compare it to solutions
for the actual BDIM equation (in one of the forms presented in the previous section).
Then, we will present 2 methods to solve them. A Markov Chain Monte-Carlo (MCMC)
method (used differently by two programs, MINCAS [269] and TMDICE [270]) that has
proven efficient and able to solve all the forms of BDIM equations we are interested
in. A second one, semi-analytical, based on the expansion of the fragmentation func-
tions in Chebyshev polynomials (which, while not completely adapted to the problem,
successfully solved the integrated BDIM equations).
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4.4.1 Analytical solution

In the simplest case, i.e the integrated BDIM equation for gluon-dominated cascades
(see Eq. (4.84)), they are no analytical solutions. Still, it is possible to simplify the
branching kernel in this case (Eq. (4.83)), setting its numerator to 1 :

Ksimple(z) =
1

[z(1 − z)]
3
2

. (4.106)

This does not change the divergent behavior of the kernel hence the solution of this sim-
plified equation should keep the main features of the complete solution. With this kernel,
it is possible to obtain an analytical solution to Eq. (4.84) for the starting distribution
Dg(x, 0) = δ(1 − x) using a Laplace transform leading to [271] :

Da(x, τ) =
τ√

x(1 − x)3
e−π τ

2

1−x . (4.107)

We can already see that this distribution scales like 1√
x

at small-x for any time τ > 0.

More remarkably, at low-x, the x and τ dependence factorize :

Da(x≪ 1, τ) ≃ 1√
x
τe−πτ

2

. (4.108)

At small times (and small-x), if the scale is governed by a 1√
x

shape, its amplitude

increase linearly with time. The stability of the x dependence while time increases
reflects that the energy flows from the initial source at x = 1 (the initial parton) to
x = 0 without any accumulation at intermediate x, which is a signature of what is called
wave turbulence [271, 272]. By the way, the total energy for gluons in the cascade with
energy 0 < x < 1 decreases with time as :

Ea(τ) ≡
ˆ 1

0
dzDa(x, τ) = e−πτ

2

. (4.109)

The essential singularity at x = 1 can be understood as due to the vanishing probability
of emitting no gluon at a finite time (which can be written as a Sudakov suppression
factor [273]). This solution is presented in Fig. 4.8, multiplied by

√
x, for several values

of τ (τ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}). We clearly see the low-x scaling and also the
energy flow that washes out the initial peak at x = 1 to leave after long evolution time
a depletion in the energy distribution.

4.4.2 Resolution with Monte-Carlo approach

We will begin by presenting the method applied by the MCMC program MINCAS [269],
provided by our collaborator Wieslaw P laczek, that we have used extensively to produce
solutions to all the forms of BDIM equations presented earlier, and study them. In
particular, we will detail this method directly for the most general case of Eq. (4.71)
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Figure 4.8: Analytical solution
√
xDa(x, τ) for several evolution times (τ ∈ {0.1, 0.2,

0.4, 0.6, 0.8}).

(complete cascade with broadening in branching).
Actually, the first step to solve the BDIM equation Eq. (4.71) with a MCMC method
is to rewrite it in a Volterra type form. To this end, we have first to introduce a few
notations. First, we rewrite the equations not only in terms of the partons types i, j but
in terms of their precise flavor I, J ∈ {g, q1, . . . qNf

, q̄1, . . . q̄Nf
}, leading to the definition

of the kernels :

KIJ(z, y,Q) =
αs

(2π)2
(1 + δIgδJg) t̄∗ zKIJ(Q, z, yp+0 ). (4.110)

This leads to Kgqi
≡ Kgq, Kqig

≡ Kqg/Nf , and Kqiqj
≡ δijKqq while the delta functions

(1 + δIGδJG) accounts for the symmetry in Kgg.
To continue, we need to introduce the Sudakov form-factor ΨI(x) that resums all unre-
solved branchings and scatterings :

ΨI(x) = ΦI(x) +WI , (4.111)

where :

ΦI(x) =
∑

J

ΦJI(x) , ΦJI(x) =

ˆ 1−ϵ

0
dz

ˆ
d2QKJI(z, x,Q) , (4.112)

and :

WI = t̄∗
ˆ
|l|>lmin

d2l

(2π)2
wI(l) . (4.113)

This Sudakov form factor is defined with a higher cutoff ϵ for the integration in z
(delimiting the resolvable branching) and a lower cutoff lmin in the integral over the
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transverse momentum l (acquired through multiple scattering). Then, we can define a
kernel accounting for both branching and scattering :

GIJ(z, y,Q, l) = KIJ(z, y,Q)θ(1 − ϵ− z)δ(l) + t̄∗
wI(l)

(2π)2
θ(|l| − lmin) δ(1 − z)δ(Q)δIJ .

(4.114)
Finally, we can write the Eq. (4.71) using the introduced notations and the proper time
τ as :

∂

∂τ
DI(x,k, τ) + ΨI(x)DI(x,k, τ) =

ˆ 1

0
dy

ˆ 1

0
dz

ˆ
d2k′

ˆ
d2Q

ˆ
d2l

× δ(x− zy) δ(k− l−Q− zk′)
∑

J

GIJ(z, y,Q, l)DJ(y,k′, τ) .

(4.115)
which solution can be written as a Volterra-type equation, namely :

DI(x,k, τ) =DI(x,k, τ0) e
−ΨI(x)(τ−τ0)

+
∑

J

ˆ τ

τ0

dτ ′
ˆ 1

0
dy

ˆ 1

0
dz

ˆ
d2k′

ˆ
d2Q

ˆ
d2l GIJ(z, y,Q, l)

×DJ(y,k′, τ ′) e−ΨI(x)(τ−τ
′
) δ(x− zy) δ(k− l−Q− zk′) ,

(4.116)

where τ0 = t0/t̄
∗ is the initial proper time for the evolution. In this equation, the

first term in the r.h.s corresponds to the probability that no (resolvable) branching
nor scattering occurs between τ0 and τ . Such equations can be solved iteratively (like
Fredholm equations seen in Sec. 2.5). This can be written in our case :

DI(x,k, τ) =
∑

J0

ˆ 1

0
dx0

ˆ
d2k0

{
e−ΨJ0

(x0)(τ−τ0) δIJ0 δ(x− x0) δ(k− k0)

+

+∞∑

n=1

∑

J1,J2,...,Jn

n∏

i=1

[ˆ τ

τi−1

dτi

ˆ 1

0
dzi

ˆ
d2Qi

ˆ
d2li

GJiJi−1
(zi, xi−1,Qi, li) e

−ΨJi−1
(xi−1)(τi−τi−1)

]

× e−ΨJn
(xn)(τ−τn) δJnI δ(x− xn) δ(k− kn)

}
DJ0

(x0,k0, τ0) ,

(4.117)

where :
xi = zixi−1, ki = Qi + li + ziki−1 . (4.118)

The last step is the evaluation of this iterative solution and this is done with the help
of a MCMC method. This means that we have to rewrite Eq. (4.117) in a probabilistic
way, suited to MCMC. To do it, we define the Probability Distribution Function (p.d.f)
for the generation of the variable τi :

ϱJi−1
(τi) = ΨJi−1

(xi−1) e
−ΨJi−1

(xi−1) ,(τi−τi−1) θ(τi − τi−1). (4.119)
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For the generation of the variables (zi,Qi, li), we define :

ΞJiJi−1
(zi,Qi, li) =

GJiJi−1
(zi, xi−1,Qi, li)

ΨJiJi−1
(xi−1)

, ΨJiJi−1
(xi−1) = ΦJiJi−1

(xi−1) +WJi
.

(4.120)
And finally, the conditional probability for generating a new parton flavor Ji (given the
flavor Ji−1) reads :

pJi ≡ p(Ji|Ji−1) =
ΨJiJi−1

(xi−1) e
−ΨJi−1

(xi−1)(τi−τi−1)

ϱJi−1
(τi)

. (4.121)

All those probability distributions are normalized to 1. Now we can write Eq. (4.117)
as :

DI(x, τ) =

d(τ0)

ˆ 1

0
dx0

ˆ
d2k0 χ(x0,k0)

∑

J0

pJ0

{ˆ +∞

τ
dτ1 ϱJ0(τ1) δJ0I δ(x− x0) δ(k− k0)

+
+∞∑

n=1

∑

J1,...Jn

n∏

i=1

[ˆ τ

0
dτi ϱJi−1

(τi) pJi

ˆ 1

0
dzi

ˆ
d2Qi

ˆ
d2li ΞJiJi−1

(zi,Qi, li)

]

×
ˆ +∞

τ
dτn+1 ϱJn(τn+1) δJnI δ(x− xn) δ(k− kn)

}
,

(4.122)
with the initial functions :

d(τ0) =

ˆ 1

0
dx0

ˆ
d2k0

∑

J

DJ(x0,k0, τ0) , (4.123)

χ(x0,k0) =

∑
J DJ(x0,k0, τ0)

d(τ0)
, pJ0 =

DJ(x0,k0, τ0)∑
J DJ(x0,k0, τ0)

. (4.124)

Eq. (4.122) can be proceeded following the MCMC algorithm :

1. Set the initial values of (x0,k0) and J0 or generate them according to the proba-
bilities χ(x0,k0) and pJ0 , respectively. Set i = 1.

2. Generate τi according to the p.d.f ϱJi−1
(τi).

2.1 If τi > τ set x = xi−1, k = ki−1, I = Ji−1 and stop,

2.2 otherwise, i.e. if τi ≤ τ :

(a) generate the parton flavour Ji according the probability pJi ,

(b) generate the variables (zi,Qi, li) according to the p.d.f. ΞJiJi−1
(zi,Qi, li),

(c) set xi = zi xi−1 and ki = ziki−1 + Qi + li,

(d) increment i→ i+ 1 and go to step 2.
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At the end of the algorithm, one get an n-leap trajectories γn with MC weight :

w
γn
I (x,k, τ) = d(τ0) δJnI δ(x− xn) δ(k− kn) . (4.125)

The expectation value of such a weight is the sought distribution function DI(x,k, τ):

E
[
wγ
I (x,k, τ)

]
= DI(x,k, τ) . (4.126)

In practice, histograms of the desired variables are filled with the described algorithm,
weighted as in Eq. (4.125). However, in this algorithm, it is not trivial that the
necessary random variable can be sampled from the respective probability distribution
functions (ϱ and Ξ for instance). In particular, the kernels used to define them are
not integrable analytically. MINCAS deals with this problem using a simplified kernel
(as close as possible to the original one but which can be integrated analytically) and
re-weights the event accordingly. More details on MINCAS may be found on the paper
where it was used ([269] for the collinear case, where more details on the re-weighting
are given, [3] in the pure gluon case, accounting for broadening in branching and finally
in [4] for the most general case presented here).

Basically based on the same approach, TMDICE [270] is another MCMC based pro-
gram (developped by our collaborator Martin Rohrmoser) that solves the BDIM equa-
tion. Actually, TMDICE focuses on the multiplicity distributions Fi :

Fi(x,k, t) ≡
d3Na

dx d2k
=

1

x
Di(x,k, t) , (4.127)

and calculates solution of the BDIM equivalent equations for this multiplicity distribu-
tion :

∂

∂t
Fg(x,k, t) = αs

ˆ 1

0
dz

ˆ
d2q

(2π)2

[
2Kgg(Q, z,

x

z
p+)

1

z
Fg

(x
z
,q, t

)

+ Kgq(Q, z,
x

z
p+)

1

z
Fq

(x
z
,q, t

)

−
{
Kgg(q, z, xp+) + Kqg(q, z, xp+)

}
Fg(x,k, t)

]

+

ˆ
d2l

(2π)2
Cg(l)Fg(x,k− l, t) ,

∂

∂t
Fq(x,k, t) = αs

ˆ 1

0
dz

ˆ
d2q

(2π)2

[
Kqq(Q, z,

x

z
p+)

1

z
Fq

(x
z
,q, t

)

+ Kqg(Q, z,
x

z
p+)

1

z
Fg

(x
z
,q, t

)
−Kqq(q, z, xp+)Fq(x,k, t)

]

+

ˆ
d2l

(2π)2
Cq(l)Fq(x,k− l, t) .

(4.128)
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Basically, it leads to the iterative solution Eq. (4.122) but with some changes in the p.d.f
and kernels used. Ξ and G are replaced by Ξ̃ and G̃, defined as :

Ξ̃JiJi−1
(zi,Qi, li) =

G̃JiJi−1
(zi, xi−1,Qi, li)

ΨJiJi−1
(xi−1)

,

G̃IJ(z, y,Q, l) =
1

z
KIJ(z, y,Q)θ(1 − ϵ− z)δ(l)

+ t̄∗
wI(l)

(2π)2
θ(|l| − lmin) δ(1 − z)δ(Q) .

(4.129)

Please note that the functions ΦJiJi−1
, ΨJiJi−1

, and WJi
stay the same in both

approaches.
Another subtle difference exists between the two MCMC programs, TMDICE deals with
the non-integrable kernel (used in the p.d.f performing the sampling of the needed ran-
dom variables) numerically. This might be long (especially if great numerical precision
is needed) but no re-weighting is needed. More details on TMDICE can be found in [270].

Finally, we should mention that to consider collinear splitting (as in Eq. (4.91)), one
only needs to perform the following substitution in the definition of GIJ (Eq. (4.114)) :

KIJ(z, y,Q) → 1√
y
zKIJ(z) , (4.130)

and for the energy distribution Eq. (4.86)), set also wI(l) = 0.

4.4.3 Resolution with Chebyshev method

Now, we will present a method to solve linear integral differential equation based on
Chebyshev polynomials and apply it to the BDIM equations. This method has been
developed to provide a semi-analytical approach to the resolution of the BDIM equations
and then to confirm results obtains by the MCMC programs presented above. The
idea is to decompose the solution in Chebyshev polynomials such that, in the end, we
determine numerically the coefficients of this decomposition and can then use them
to obtain the solution for any value. Also, we decompose integrands in Chebyshev
polynomials to evaluate the appearing integrals. Consequently, we call this method the
Chebyshev method. It is based on the method used in [274] to solve QCD evolution
equations, adapted to our specific problem (similar method had also been used to solve
BK equations [275, 276]).
So, we will first present the method (with a more general equation) and the useful
properties of the Chebyshev polynomials before applying it to the integrated BDIM
equations (first for gluons only then for quarks and gluons). We will then study the
obtained solution and their dependence on some non-physical parameters (linked to
the method) to understand the limits of the Chebyshev method on solving the BDIM
equation.
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General method

We consider equations of the form :

∂D(x, τ)

∂τ
=

ˆ 1

0
dz
[
K1(x, z)D(x, τ) + K2(x, z)D(

x

z
, τ)
]
, (4.131)

with D the distribution function we are interested in (D(x, τ) can be a vector, in the
case of a system of equations), x ∈ [0, 1], τ > 0, K1,2 some kernels (K1,2(x, z) can be
matrices) that may be divergent on 0 and/or 1.

To solve the differential equation, we will use standard numerical methods (as simple
as the Euler method, and maybe some higher-order Runge-Kutta).
To do so, we need to discretize the distribution function on a set of coordinates {xk},
{τk}. But, due to the term D(xz , τ), we decide to expand D in Chebyshev polynomials
on the x variable. This way D(x, τ) can be taken outside the integrals.
The Chebyshev expansion reads :

D(x, τ) ≃ 2

N

N−1∑

i=0

′
N−1∑

j=0

D(xj , τ)Ti(yj)Ti(y(x)) , (4.132)

where :

• {Ti}i∈J1;NK are the N-th first Chebyshev polynomials of the first kind (N ∈ N is
the order of our decomposition). They are defined as :

∀i ∈ N, ∀z ∈ [−1, 1], Ti(z) = cos(i arccos(z)).

•
∑ ′ means that the first term in the sum is divided by 2,

• {yi}i∈J1;NK are the nodes (or zeros) of TN :

yi = cos
π

N
(i+

1

2
), i ∈ J1;NK ,

• y : [0, 1] → [−1, 1] is an arbitrary bijection (that we will give explicitly later),

• {xi}i∈J1;NK are the arguments of {yi} by y :

∀i ∈ J1;NK, xi = y−1(yi).

Some remarks :

• We note that Ti(yj) does not depend on the bijection y used to define {yi}, we will
then simply note Ti,j ≡ Ti(yj) as the i-th Chebyshev polynomial evaluated on the
j-th node (of the N-th Chebyshev polynomial).
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• The convergence of the Chebyshev expansion is only given for bounded and contin-
uous functions (it is even exponential for infinitely smooth ones). We may still use
it while this is not fulfilled by the searched function. In this case, the convergence
has to be checked.

• The decomposition in Chebyshev polynomials at orderN is exact on the nodes {xk}
of the N-th polynomial, like an interpolation of the function considered over these
points. Also, it may have the same defaults as a simple polynomial interpolation
(oscillation around the interpolated points), what make this decomposition special
is the distribution of the nodes : denser at the border of the definition set of the
considered function.

The idea now is to solve the equation on the arguments of y of the N-th Chebyshev
polynomial (TN ) nodes, i.e on {xi}i∈J1;NK. But before that, we should rewrite the integral
(considering that D(x, τ) is only defined for x ∈ [0, 1] :

∂D(x, τ)

∂τ
=

ˆ 1

x
dz
[
K1(x, z)D(x, τ) + K2(x, z)D(

x

z
, τ)
]

+

ˆ x

0
dzK1(x, z)D(x, τ).

(4.133)
Indeed, when evaluating the integrals with the Chebyshev method, it is important that
the range of integration is in the support of the integrand (if not, the precision drastically
drops). This means, for instance, that the implicit Heaviside function implied by the
coordinate x

z has to be set explicit in the integration bounds. Also, keeping K1 and K2

under the same integral around 1 insures convergence in the equations we will study
later (basically considering they have canceling divergences around 1). The equations
on the nodes are then :

∂D(xk, τ)

∂τ
=

2

N

N−1∑

i=0

′
N−1∑

j=0

D(xj , τ)Ti,j

[ ˆ 1

xk

dz
[
K1(xk, z)Ti,k + K2(xk, z)Ti(y(

xk
z

))
]

+

ˆ xk

0
dzK1(xk, z)Ti,k

]

=
2

N

N−1∑

i=0

′
N−1∑

j=0

D(xj , τ)Ti,j

[ ˆ 1

xk

dz
[
K1(xk, z)δj,k + K2(xk, z)Ti(y(

xk
z

))
]

+

ˆ xk

0
dzK1(xk, z)δj,k

]
,

(4.134)

where we went from the 1st line to the 2nd one using the orthogonality of the Chebyshev
polynomials.

More generally, we obtain an equation of the form :

∂D(xk, τ)

∂τ
=

N−1∑

j=0

D(xj , τ)Sj(xk) , (4.135)
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that is easily solved by an Euler method :

D(xk, τt+1) = D(xk, τt) + dτ

N−1∑

j=0

D(xj , τt)Sj(xk) , (4.136)

with dτ a fixed time step and τt = τ0 + tdτ (with τ0 the starting time, for which we need
an initial distribution D0(x) = D(x, τ0) and t ∈ N).

Chebyshev integration

To solve our equation with the Euler method, as presented before, we need first to
calculate the matrix S. This means, calculating the integrals appearing in Eq. (4.134)
which will be done using another Chebyshev expansion. The idea is to expand the
integrands in the Chebyshev polynomial using a bijection y going from the integrals
borders to [−1, 1]. Then, the only integrals left are on the Chebyshev polynomials´ 1
−1 dzTi(z) which are perfectly known. More precisely, if we consider f : [a, b] → R and

a linear bijection y : [a, b] → [−1, 1], we can write :

ˆ b

a
dzf(z) ≃ 2

N

N−1∑

i=0

′
N−1∑

j=0

f(xj)Ti(yj)

ˆ b

a
dzTi(y(z))

=
b− a

N

N−1∑

i=0

′
N−1∑

j=0

f(xj)Ti(yj)

ˆ 1

−1
dzTi(z).

(4.137)

Here :

y : [a, b] → [−1, 1] ,

x 7→ 2x− b− a

b− a

(4.138)

whose inverse is (needed to calculate {xk}) :

y−1 : [−1, 1] → [a, b] .

x 7→ 1

2
((b− a)x+ b+ a)

(4.139)

And the integrals of the Chebyshev polynomials are given by :

ˆ 1

−1
dzTi(z) =

{
0, for i = 1 ,
1+(−1)

i

1−i
2 otherwise

(4.140)

This way of calculating integrals works better if [a, b] ∈ supp(f). For instance,

integrals of the form
´ b
a dzf(z)θ(z− c) with c ∈ [a, b] should be written

´ b
c dzf(z) before

using this method (this means also that the bijection should be defined y : [c, b] → [−1, 1]
in this case).
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Also, a linear bijection may not be best suited for any integral. Particularly, when
the integrand diverges on the border of the integral, a logarithmic bijection might be
interesting :

y : [a, b] → [−1, 1] ,

x 7→ 1 + 2
log x

b

log b
a

(4.141)

whose inverse is :

y−1 : [−1, 1] → [a, b] ,

x 7→ b

(
b

a

)x−1
2 (4.142)

which leads to the following formula for the integral :

ˆ b

a
dzf(z) ≃ 1

N

N−1∑

i=0

′
N−1∑

j=0

f(y−1(yi))Ti,jb

(
b

a

) yj−1

2

log
b

a

ˆ 1

−1
dzTi(z). (4.143)

Of course, the logarithmic bijection doesn’t work for a = 0. If we still want to use it
in this case, we need to introduce a regulator ϵ > 0 and integrate over [ϵ, b] rather than
[0, b].

In the following, we use a logarithmic bijection (from [0, 1] to [−1, 1]) for the expan-
sion of the distribution D (fragmentation function) and linear bijections for the integrals
(either from [xk, 1] to [−1, 1] or from [0, xk] to [−1, 1]). This choice has been done after
some tests (taking logarithmic bijections for both doesn’t give as good results as we
thought).

Algorithm scheme

Before going through each equation we solved with this method, we will describe the
general scheme of the program coded (since it follows what has been stated before, this
section serves also to introduce the notations used in the program).
As described before, the distribution D is discretized in x on the Chebyshev polynomial
nodes {xk} and linearly in τ such as :

Dt,k ≡ D(τ0 + tdτ, xk) , (4.144)

with τ0 the starting time of the Euler method (for which we provide a distribution) and
dτ the time step. This way Eq. (4.136) is rewritten :

∆Dk,t = Dk,t+1 −Dk,t ≃
N−1∑

j=0

Dj,tSk,j . (4.145)
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Let’s mention that the number of operations made during this Euler method, with the
S matrix calculated in advance, grows as ntN

2 with nt the number of time steps (and
N the order in the Chebyshev expansion).

We will see that even with such a simple approach to the differential equation (Euler
method), results are qualitatively correct (main difficulties are elsewhere). Actually, we
have also tested multistep methods (with an Adams–Bashforth method, easily imple-
mented in the used code) to increase the accuracy but the change was completely negli-
gible hence we have kept the Euler method for both simplicity and low calculation cost
(even with a high number of time steps). Anyway, an important (and time-consuming)
part of the algorithm is the calculation of the matrix S, which contain the integrals
calculated via Chebyshev polynomials. We follow the decomposition of Eq. (4.134) :

Sk,j =
2

N

N−1∑

i=0

′Ti,j

ˆ 1

xk

dz
[
K1(xk, z)Ti,k + K2(xk, z)Ti(y(

xk
z

))
]

+

ˆ xk

0
dzK1(xk, z)δj,k

=
2

N

N−1∑

i=0

′Ti(yj)I
1
k,i + δj,kI

2
k ,

(4.146)

where :

• I1k,i ≡
´ 1
xk
dz
[
K1(xk, z)Ti,k + K2(xk, z)Ti(y(xk

z ))
]
,

• I2k ≡
´ xk

0 dzK1(xk, z).

Since we need to calculate integrals over [0, xk] and [xk, 1] we need to introduce 2 sets
of bijections (linear ones) and the corresponding arguments of the nodes {xi} :

• {y0k}k∈J1;NK with :

∀k ∈ J1;NK, y0k : [0, xk] → [−1, 1] ,

• {x0ki }i∈J1;NK are the arguments of {yi} by y0k :

∀i ∈ J1;NK, x0ki = y0k
−1

(yi) ,

• {yk1}k∈J1;NK with :

∀k ∈ J1;NK, yk1 : [xk, 1] → [−1, 1] ,

• {xk1i }i∈J1;NK are the arguments of {yi} by yk1 :

∀i ∈ J1;NK, xk1i = yk1
−1

(yi).
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Then, we can express the integrals as :

I1k,i ≃
1 − xk
N

N−1∑

l=0

′
N−1∑

m=0

[
K1(xk, x

k1
m )Ti,k + K2(xk, x

k1
m )Ti(y(

xk

xk1m
))

]

× Tl,m

ˆ 1

−1
dzTl(z) ,

I2k ≃xk
N

N−1∑

l=0

′
N−1∑

m=0

K1(xk, x
0k
m )Tl,m

ˆ 1

−1
dzTl(z).

(4.147)

Some remarks :

• The calculation of the S matrix grows as N4 with the order in Chebyshev expan-
sion. It can quickly become resource-demanding.

• This method provides a semi-analytical solution in the sense that the behavior in x
is given by the Chebyshev decomposition (and the coefficients of this decomposition
are obtained numerically). However, depending on the distribution behavior, the
solutions obtained may oscillate a lot around the nodes. Then it may be interesting
to consider the solution as completely numerical, meaning as a simple grid (meshed
with the Chebyshev nodes), and extrapolating the values in between as if it wasn’t
obtained by this specific decomposition (a linear extrapolation for instance). This
take on the result is possible since the coefficient of the Chebyshev expansion
corresponds to the value of the distribution on the N-th Chebyshev polynomial
nodes.

For those interested in the details of the code, or those who would like to modify it, a
detailed review, introducing all notations and subroutines, is given in App. C.1. Also,
the code itself is shared on github.

Application to the integrated BDIM equation for gluons

We will first apply the Chebyshev method to the integrated BDIM equation for gluon-
dominated cascade, which we recall (with explicit Heaviside functions) :

∂D(x, t)

∂t
=

1

t∗

ˆ 1

0
dzK(z)

[√
z

x
D
(x
z
, t
)
θ(z − x) − z√

x
D(x, t)

]
. (4.148)

The Euler method reads :

∆Dk,t = Dk,t+1 −Dk,t ≃=
dt

t∗

N−1∑

j=0

Dj,tSk,j , (4.149)

with :

• Dt,k ≡ D(t0 + tdt, xk) with t0 the starting time and dt the time step (for the Euler
method),
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• Sk,j = 1√
xk

2
N

(∑N−1
i=0

′Ti,jI
2
k,i − δk,j

N
2 I

1
k

)
,

• I1k ≡
´ xk

0 dzK(z)z,

• I2k,i ≡
´ 1
xk
dzK(z)

(√
zTi(y(xk

z )) − δj,kz
)

=
´ 1
xk
dzK(z)

(√
zTi(y(xk

z )) − zTi,k
)
,

and the integrals are given by :

I1k ≃ xk
N

N−1∑

l=0

′
N−1∑

m=0

x0kmK(x0km )Tl,m

ˆ 1

−1
dzTl(z) ,

I2k,i ≃
1 − xk
N

N−1∑

l=0

′
N−1∑

m=0

K(xk1m )

[√
xk1mTi

(
y

(
xk

xk1m

))
− xk1mTi,k

]
Tl,m

ˆ 1

−1
dzTl(z).

(4.150)

We should mention that this method naturally avoids numerical instabilities due to the
divergences of the kernel K(z) (for z = 0 and z = 1) with the calculations made on the
nodes (which never are on the edge of the considered range). Also, the higher density of
nodes near the edges helps in the precision of the integration of this kernel. Then, the
Chebyshev method seems well suited to the studied equation. The problem comes from
the initial distribution we need :

D0(x) = D(x, τ0) = δ(1 − x) , (4.151)

a Dirac’s delta function which is completely non-reproducible by a Chebyshev polynomial
series. What we do is that we initialize our solution with a narrow Gaussian, peaked in
1 instead (to mimic the delta function), as follows :

D0(x; ε) =

√
2

π

1

ε
exp

[
−(x− 1)2

2ε2

]
, (4.152)

where ε cannot be taken too small for the Chebyshev polynomials to reproduce the initial
solution. Another solution would be to use the analytical solution (see Eq. (4.107)) for
the simplified case at a short time τ0 > 0 or a solution obtained for some short time
(with the MCMC approach for instance). Anyway, the most important problem for the
Chebyshev method is the error made at the initialization (and how they propagate in
the evolution).

Convergence of the results As a test, we consider the simplified BDIM equation
(with the simplified kernel of Eq. (4.106)) that has an analytical solution to see if we
reproduce it with the Chebyshev method. In Fig. 4.9, we compare the results obtained
with ε = 10−4, dt = 10−6 and N = 200 when using either a linear bijection to decompose
D or a logarithmic one.

With the linear bijection, we see that the Chebyshev polynomials completely fail to
reproduce the initial distribution and undergo important oscillation that makes them
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Figure 4.9: Comparison of results obtained with the Chebyshev method (solid lines)
for the simplified BDIM equation with its analytical solution (dashed lines) at different
evolution times (τ ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}) and using either a linear bijection
(left) or a logarithmic one (right). The ratio of Dcheb/Da is also presented.

unusable. The evolution tends to amplify the initial oscillations due to the peaked
shape of the initial distribution (not well reproduced by the Chebyshev polynomials)
and propagates them at low-x. Still, the high-x distribution (x ≳ 0.1) is relatively well
reproduced (especially at relatively low evolution times). Note that, in these pictures
(and in the following ones), we use do not show the full decomposition but only the
value of the distributions on the nodes of the Chebyshev polynomials (with this number
of nodes, it doesn’t make an important difference).
On the other hand, when we use a logarithmic bijection, the analytical result is recovered,
for long enough evolution time (already at τ = 0.05, the result is decent). In this case,
the oscillations are tamed with the evolution and are important only at short times
(τ = 0.01), stressing again the problem due to the reproduction of the initial delta
Dirac. Also, the method fails to properly describe the solution at high x in a range that
becomes larger and larger with time (but, this is not too bad with this number of nodes,
see the drop of the ration Dcheb/Da around x = 1). Anyway, in the following, we should
use the logarithmic bijection.
Actually, the difference with the analytical solution at long evolution time, looks like
a cumulative error, mainly due to the initial distribution used, and its reproduction
by the Chebyshev polynomials. Indeed, tests have been made with multistep methods
(that were expected to reduce the cumulative error) but the results weren’t significantly
different.

In Fig. 4.10, we show the difference between our results obtained with the simplified
kernel and the full one. Basically, the broadening of the peak at x = 1 seems slower
when considering the full kernel. It is visible longer with the evolution and this makes
look the evolution of the low-x distribution slower that in the simplified case.
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Figure 4.10: Comparison of results obtained with the Chebyshev method for the inte-
grated BDIM equation (solid lines) with its simplified version (dashed lines) at evolution
times τ ∈ {0.01, 0.05, 0.1, 0.2} (left) and τ ∈ {0.4, 0.6, 0.8} (right).

Next, we have made a series of convergence checks (important since the Chebyshev
decomposition is not guaranteed to converge in the studied case). If the method is not
very sensitive to the time step dt, a very small time step will help at high x for long
evolution times (where unphysical oscillations appear). It is also important to very small
x at small evolution times. These extreme cases are shown in Fig. 4.11 (note that here,
and in the following figures, we plot the solutions at the nodes and do not use anymore
the full decomposition since it has not proven relevant).
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Figure 4.11: Comparison of results obtained with the Chebyshev method for different
time steps (dt ∈ {10−4, 10−5, 10−6, 10−7, 10−8}) at τ = 0.001 (left) and τ = 0.1 (right).

For the behavior with respect to ϵ, we can see some fluctuations at small times (see
Fig. 4.12) but it converges quickly in time (at τ = 0.1, the differences are negligible)
to the same solution (at least for the cutoff, the linear bijection, denoted by “ϵ = 0”,
exhibits the oscillations already observed).

Finally, let’s review the parameter that influences the most the solutions obtained,
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Figure 4.12: Comparison of results obtained with the Chebyshev method for different
cutoff (ϵ ∈ {0, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7}) at τ = 0.01 (left) and τ = 0.1
(right).

the order in the Chebyshev expansion (equivalently the number of nodes) N . A priori,
we might think that increasing the number of nodes should result in a more accurate
result. Alas, this is mathematically proven only when it is used on bounded functions
while in this method, it is used, among others, on the integrand of the integral appearing
in the evolution equation, that is to say on unbounded functions (with divergences in 0
and in 1). Then, an option is to simply run the calculation with an increasing number
of nodes and see if we converge to a unique solution (up to minor fluctuations). We
show in the following plots (where N ∈ {50, 75, 100, 125, 150, 200}), that it indeed seems
to converge. Indeed, The results mainly differ at small times but after a long enough
evolution (for t > 0.15 and for N ≥ 75), the solutions seem already in good agreement.
In our example, only the solution for N = 50 does not converge in time to the same
solution as others. Also, at t = 0.08, the solutions for N ≥ 75 are nearly identical, as
you can see in Fig. 4.13.
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Figure 4.13: Comparison of results obtained with the Chebyshev method for different
numbers of nodes (N ∈ {50, 75, 100, 125, 150, 200}) at τ = 0.01 (top left), τ = 0.1 (top
right), τ = 0.2 (bottom left) and τ = 0.8 (bottom right).

Application to the full integrated BDIM equations

Then, we consider the coupled integrated BDIM equations for gluon, flavor singlet and
non-singlet FFs (as defined in Eq. (4.89)) written with explicit Heaviside functions :

∂Dg(x, t)

∂τ
=

ˆ 1

0
dzKgg(z)

[√
z

x
Dg
(x
z
, t
)
θ(z − x) − z√

x
Dg(x, t)

]

−
ˆ 1

0
dzKqg(z)

z√
x
Dg(x, t) +

ˆ 1

0
dzKgq(z)

√
z

x
DS
(x
z
, t
)
θ(z − x) ,

∂DS(x, t)

∂τ
=

ˆ 1

0
dzKqq(z)

[√
z

x
DS
(x
z
, t
)
θ(z − x) − 1√

x
DS(x, t)

]

+

ˆ 1

0
dzKqg(z)

√
z

x
Dg
(x
z
, t
)
θ(z − x) ,

∂DNS(x, t)

∂τ
=

ˆ 1

0
dzKqq(z)

[√
z

x
DNS

(x
z
, t
)
θ(z − x) − 1√

x
DNS(x, t)

]
.
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This system of equations follows the same resolution scheme as the previous one, let’s
list the quantities appearing in this case :

• Dg
t,k ≡ Dg(t0 + tdt, xk),

• DS
t,k ≡ DS(t0 + tdt, xk),

• DNS
t,k ≡ DNS(t0 + tdt, xk).

Then, the Euler method reads :

∆Dg
k,t = Dg

k,t+1 −Dg
k,t ≃ dt

N−1∑

j=0

(
Sgg
k,jD

g
j,t + SgS

k,jD
S
j,t

)

∆DS
k,t = DS

k,t+1 −DS
k,t ≃ dt

N−1∑

j=0

(
SSS
k,jD

S
j,t + SSg

k,jD
g
j,t

)

∆DNS
k,t = DNS

k,t+1 −DNS
k,t ≃ dt

N−1∑

j=0

SNSNS
k,j DNS

j,t

(4.154)

where all the time-independent parts are calculated in advance in the following matrices :

Sgg
k,j =

1√
xk

[
2

N

N−1∑

i=0

′Ti,jI
g,1
k,i − δk,j

(
Ig,2k + Ig,3

)]

SgS
k,j =

1√
xk

2

N

N−1∑

i=0

′Ti,jI
g,4
k,i ,

SSS
k,j =

1√
xk

[
2

N

N−1∑

i=0

′Ti,jI
S,1
k,i − δk,jI

S,2
k

]

SSg
k,j =

1√
xk

2

N

N−1∑

i=0

′Ti,jI
S,3
k,i ,

SNSNS
k,j = SSS

k,j .

(4.155)

and the integrals are :

• Ig,1k,i ≡
´ 1
xk
dzKgg(z)

(√
zTi(y(xk

z )) − zTi,k
)
,

• Ig,2k ≡
´ xk

0 Kgg(z)z,

• Ig,3 ≡
´ 1
0 Kqg(z)z,
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• Ig,4k ≡
´ 1
xk

Kgq(z)
√
zTi(y(xk

z )),

• IS,1k,i ≡
´ 1
xk
dzKqq(z)

(√
zTi(y(xk

z )) − Ti,k
)
,

• IS,2k ≡
´ xk

0 Kqq(z),

• IS,3k ≡
´ 1
xk

Kqg(z)
√
zTi(y(xk

z )),

• INS,1
k,i ≡

´ 1
xk
dzKqq(z)

(√
zTi(y(xk

z )) − Ti,k
)

= IS,1k,i ,

• INS,2
k ≡

´ xk

0 Kqq(z) = IS,2k .

Results test As a test, we tried to reproduce qualitatively the results presented
in [267]. As presented in Fig. 4.14 for a gluon-initiated jet and in Fig. 4.15 for a quark-
initiated jet, the results of the Chebyshev method agree well with these results.

We could observe that, when looking at the full decomposition (and not only the
values on the nodes) the oscillations, directly due to the polynomial interpolation, quickly
vanish (for τ > 0.02 at worst) which is encouraging for the applicability of the method.
We will come back to it later but we can already observe that quarks have a different
behavior that gluons. It is especially true for the non-singlet distribution for a quark-
initiated jet, which does not scale as 1√

x
.

Limits and the transverse momentum dependent case

Finally, the Chebyshev method has proved relatively efficient in solving the integrated
BDIM equations. Its strength comes from the low calculation cost of the Euler method
used to solve the time evolution which makes it suitable when a long evolution time
is needed. However, in practice, for heavy-ion collisions, the length of the QGP is of
the order of a few fm only, limiting this benefit. On the other hand, the incapacity to
properly initiate the solution is an important weakness of the method. This gets worse
when we try to solve the BDIM equation with transverse momentum. First, if what was
taking time in the integrated case was the calculation of the matrix S, it becomes much
worse when a second Chebyshev decomposition, for the variable k this time, is added
to the method (on both the fragmentation functions and the integrands). Indeed, each
decomposition implies two loops over N (so the calculation time in this case, grows like
N4).
But that is just a problem of computation time, what is worse is the fact that the initial
distribution should now contain 2 delta functions. In the tests made, this led to the
failure of the method and no solution to this problem has been found. Consequently,
we use the Chebyshev solution only to solve the integrated BDIM equations. A last
difficulty should be mentioned, the choice of range for k. Indeed, cutting it too low
might leads to underestimation of broadening but cutting it too high might demand a
high number of nodes to reach a sufficient density at low k where both the scattering
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Figure 4.14: Solutions of the integrated BDIM equation obtained with the Chebyshev
method for a jet initiated by a gluon. Both Gluons distribution (top) and singlet dis-
tribution (bottom) are presented for short times τ ∈ {0.01, 0.02, 0.04, 0.06, 0.08, 0.1 }
(left) and long times τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9} (right).

and the branching kernel are peaked (this is also problematic when applying classical
numerical method).

4.5 Solutions of the BDIM equations

In this section, we present the solutions we obtained for the different BDIM equations
(that we presented in [3, 4]). First, we will have a look at the features of gluon dom-
inated cascade described this way. We will study the energy distributions before ex-
amining broadening (through the transverse momentum distributions). The goal is to
investigate the features of the solutions of the BDIM equation in different cases (different
approximations for the branching and the scattering kernel). Secondly, we will account
for quarks and focus on the differentiation of gluon and quark jets (and on the difference
in the gluon and quark composition of such jets). This will be done at the level of the
energy distribution first then in terms of broadening (with different observables).
The solutions that we will present have been obtained with the following input param-
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Figure 4.15: Solutions of the integrated BDIM equation obtained with the Chebyshev
method for a jet initiated by a quark. The Gluons distribution (top), singlet distribution
(middle), and non-singlet distribution (bottom) are presented for short times τ ∈ {0.01,
0.02, 0.04, 0.06, 0.08, 0.1 } (left) and long times τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9}
(right).

eters :

xmin = 10−4, ϵ = 10−6, lmin = 0.1 GeV,

Nc = 3, Nf = 3, αs = π/10,

E = 100 GeV, n = 0.243 GeV3, ˆ̄q = 1 GeV2/fm, mD = 0.993 GeV,

(4.156)
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where the first line corresponds to the regulator for MINCAS [269]. Indeed, the study
of the solutions of the BDIM equations proposed here will be based on those obtained
through MINCAS. For a comparison of the results obtained through the different meth-
ods presented in the previous section, see App. C.2. The rest are physical parameters
(already introduced). It was already mentioned, but the medium is not considered evolv-
ing hence the physical parameters (like the density of scatterers n, the Debye mass mD

and the quenching parameter ˆ̄q) are here constant. Also, it is worth mentioning that
the coupling to the medium (usually evaluated at the scale of the medium temperature
∼ 2πT ) and the coupling in the medium cascade (that should scale with k2br) are taken
equal (and constant). With the parameters chosen, the stopping time is t̄∗ = 14.81fm11.
Still, we will look at the evolution up to a time of order of the usual medium length in
a heavy-ion collision, i.e of order 4fm.

4.5.1 Results for the pure gluon case

In the case of gluon-dominated cascades, we will have a look in Sec. 4.5.1 at the en-
ergy distributions Dg(x, t), either obtained directly solving the integrated BDIM equa-
tion Eq. (4.84) or integrating over the transverse momentum the solution of the BDIM
equation for gluons Eq. (4.68). Then, in Sec. 4.5.1, we will study jet broadening and
the difference of the transverse momentum distribution obtained in different limits and
models.

Energy distribution

In Fig. 4.16 is presented the energy distribution Dg(x, t) for evolution time t = 0.1fm,
t = 1fm, t = 2fm, t = 3fm and t = 4fm. We can already observe that the scaling at low-x
(like 1√

x
), if still present, is less marked than in the analytical solution (of Eq. (4.107)).

And actually, these solutions are well different from the analytical solution.
This can be observed in Fig. 4.17 (where we decided, to have a different point of

view, plotting directly Dg(x, t) on a linear scale). At low evolution times, the analytical
solution is actually a good estimate of the actual solution. However, at a longer evolution
time, the quenching of the peak in x = 1 is slower than the one predicted by the
analytical solution. Also, as a consequence, the analytical solution overestimates the
energy distribution at intermediate and low x.

Basically, if the energy flow going from the initial peak at x = 1 toward x = 0 is still
a feature of the solution of the integrated BDIM equations, this flow is slightly slower
than in the simplified case.
We obtained the BDIM equation for the energy distribution by integrating the one
taking into account broadening (through both scattering and branching). If then, in
theory, all the fragmentation functions Dg(x,k, t) obtained from different versions of
the BDIM equations (the collinear one for instance, or the different approaches to the
scattering part, that shouldn’t play a role in the energy loss), it is interesting to verify

11
We count the time in fermi because it is directly related to the length of the medium crossed.
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Figure 4.16: Solution of the integrated BDIM equation for gluons dominated cascade at
times t = 0.1fm, t = 1fm, t = 2fm, t = 3fm and t = 4fm.
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Figure 4.17: Comparison of the energy distribution of the BDIM equation (numerical
solution) to the one of the simplified case (analytical solution) at different evolution
times.
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that the obtained fragmentation functions all integrate to the same energy distribution.
This comparison is done in Fig. 4.18. For the comparison, we will consider either the
full splitting kernel (of Eq. (4.64)) or the collinear one (of Eq. (4.83)). Considering the
collision kernel, we will use both the one corresponding to a QGP at thermal equilibrium
(defined by the in-medium potential of Eq. (4.36)) or out of equilibrium (defined by the
in-medium potential of Eq. (4.38)) and we may even switch it off. We also consider the
Gaussian approximation of Eq. (4.95).

  Gaussian approximation
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Figure 4.18: Comparison of the energy distribution of the BDIM equation for several
models : full splitting kernel with equilibrium medium (in green, it serves also as the
base for the ratio plot), full splitting kernel with out of equilibrium medium (red),
full splitting kernel without scattering (blue), collinear splitting kernel with equilibrium
medium (brown), collinear splitting kernel with out of equilibrium medium (magenta)
and finally the Gaussian approximation (black).

We can see the perfect agreement between the curves (up to some statistical er-
rors) which implies that all the models studied here describe the same energy loss, as
expected12 (by momentum conservation).

12
Still, this is an important check of the validity of our solutions.

178



Broadening

Let’s now turn on broadening and observe the influence of the different kernels used on
the transverse momentum distribution. While we may present some results in terms of
k (i.e through kx and ky), by symmetry of the BDIM equations on the azimuthal angle,
most of the results will be presented in terms of kT ≡ |k| dependence. We then need to
introduce the distribution :

D̃(x, kT , t) =

ˆ 2π

0
dϕkT D(x,k, t), such that D(x, t) =

ˆ
dkT D̃(x, kT , t) . (4.157)

The k distribution of the solution of the BDIM equation for gluon is presented in Fig. 4.19
(the distributions are integrated over x).
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Figure 4.19: 2D transverse momentum distribution (kx, ky) of the solution of the BDIM
equation for gluons at times t = 0.1fm, 1fm, 2fm and 4fm.

The broadening of the solutions with time is clearly observed with an important
evolution of the shape of the distributions while time increases. This is a hint that
the Gaussian approximation should fail to describe this broadening. And indeed, if
we have a look at the same distribution in the case of the Gaussian approximation, as
shown in Fig. 4.20, we observe important differences. As mentioned, contrary to the
Gaussian approximation, the actual solution sees the shape of its transverse momentum
distribution changing with time (while in the former, by construction, it stays Gaussian).
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Then, it is clear that the Gaussian approximation completely underestimates broadening
(with a much steeper shape than in the “actual” solution13).
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Figure 4.20: 2D transverse momentum distribution (kx, ky) of the Gaussian approxima-
tion at times t = 0.1fm, 1fm, 2fm and 4fm.

To see clearly these differences, we should study the kT distributions. In Fig. 4.21
we show this kT distribution for different models (the same as presented in Fig. 4.18).

This is clear that the Gaussian approximation fails to approach any of the other mod-
els. The nearest one is the solution accounting for broadening in splitting but without
collision term (which is not expected since the Gaussian approximation should approx-
imate the solution for collinear splitting and diffusion approximation). The shapes are
similar, but the width of the distributions is much thinner in the Gaussian case. Then,
all the other distributions show fast broadening (with similar width) but non-Gaussian
shape. For the collision kernel based on out-of-equilibrium medium (without screening),
we observe similar distribution when considering or not broadening in splitting (slightly
wider in the former case). For the collision kernel based on medium at thermal equi-
librium (with screening), overall, we observe more peaked distributions around kT = 0
hence, slower broadening than when the medium is out of equilibrium. Also, in this case,
there is a noticeable difference in shape when turning on or off broadening in splitting

13
For simplicity, we may refer to the solution of the BDIM equation Eq. (4.68) for gluon, or Eq. (4.71)

more generally, as “actual” solution, as opposed to the solutions of the different approximations of the
BDIM equation.
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Figure 4.21: The kT distributions for the evolution time values t = 0, 0.1, 1, 2, 4 fm,
for different kernels: the Gaussian approximation, K(z) and K(Q, z, p+) (denoted as
K(Q, z)), and different collision terms: no collision term, the collision term for an equi-
librium medium and for an out of equilibrium medium.

(especially at short times).
To go further, we study the mean transverse momentum ⟨k2⊥⟩, that can now be defined
thanks to the distribution D̃ :

⟨kT ⟩ =

´
d2k |k|D(x,k, t)´

d2kD(x,k, t)
=

´ +∞
0 dkT k

2
T D̃(x, kT , t)´ +∞

0 dkT kT D̃(x, kT , t)
, . (4.158)

These distributions, for the different cases studied here, are presented in Fig. 4.22.
In every case, langlek2⊥⟩ overall grows with x. The narrow kT distribution of the

Gaussian approximation reflects in the drop of the langlek2⊥⟩ distribution at low-x (seen
only in this case). One can notice that, for every case, the langlek2⊥⟩ distribution at
small-x converges quickly to some linear function (already at t = 1fm, the distribu-
tion does not evolve anymore). The slopes are similar from one case to the other but
are shifted in abscissa. Overall, the Gaussian approximation gives the smallest values
of langlek2⊥⟩, followed by the case without collision (but accounting for broadening in
splitting). Then, different behavior can be observed around x = 1. In particular, with a
collinear kernel, these distributions have a positive second derivative in this region while
those obtained with the full kernel undergo a drop at x = 1. This drop results from the
fact that the evolution starts at x = 1 with kT = 0 and already a single soft emission
with the Q-dependent kernel K gives to the emitter a significant kT -kick, which is not
the case for the z-only dependent emission kernel. This effect is more pronounced for
the shortest evolution time t = 0.1 fm, when the (x, kT )-distribution is strongly peaked
at x = 1 and kT = 0 (which is no more the case for long evolution times).
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Figure 4.22: The ⟨kT ⟩ vs. log10 x distributions for the evolution time values t = 0,
0.1, 1, 2, 4 fm, for different kernels: the Gaussian approximation, K(z) and K(Q, z, p+)
(denoted as K(Q, z)), and different collision terms: no collision term, the collision term
for equilibrium and out of equilibrium medium.

In Fig. 4.23 we present the dependence of the kT distribution on the quenching param-
eters. We present solutions for a double and a halved quenching parameter (compared
to the one we used so far : ˆ̄q = 1GeV2/fm) at long evolution time (4fm).

It is worth mentioning that the dependence on the quenching parameter is not
trivial (as it could have been thought from its simple interpretation in the diffusion
approximation), its increase does not resumes in broaden kT distributions. This
direct translation only applies when there is no collision kernel (as in the Gaussian
approximation and the case without scattering). In the remaining cases, the interplay
between splitting and scattering (in which the quenching parameter enters, differently)
results in non-trivial observed structures.

This study let us conclude that the Gaussian approximation is a very crude approx-
imation that underestimates broadening and that the effect of broadening appearing in
the splitting process is not negligible compared to broadening coming from scattering
with the medium. The features of the BDIM equations for gluon-dominated cascade can
be summarized through kT vs. x distributions (showing both energy loss and broaden-
ing), as illustrated in Fig. 4.24.

4.5.2 Results for the system case

Now that we have studied features of the BDIM solution in the case of gluon-dominated
cascades, we will look at the influence of quarks in the cascades. In particular, we will
focus on the difference between jets initiated by a hard gluon and those initiated by a
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Figure 4.23: The kT distributions for q̂ = 0.5, 1, 2 GeV2/fm and t = 4 fm, for different
kernels: the Gaussian approximation, K(z) and K(Q, z, p+) (denoted as K(Q, z)), and
different collision terms: no collision term, the collision term for equilibrium out of
equilibrium medium.

hard quark. We will begin with the energy distribution in Sec. 4.5.2 and see if gluon
and quark jets can be discriminated by their in-medium energy loss. Then, in Sec. 4.5.2
we will observe the difference in the broadening of these jets (through not only the
transverse momentum distribution but also the energy in-cone that we will define). And
we will conclude with an evaluation of the dijet asymmetry (an important observable)
in our model.

Energy distribution

The energy distributions of gluons and quarks in a gluon jet (cascade initiated by a hard
gluon) and by a quark jet (cascade initiated by a hard quark) are presented in Fig. 4.25.

These results agree with those presented in [267]. We see that even with quarks in
the cascade, the gluons distribution for both gluon and quark jet scales like 1√

x
at low-x

after some time. This scaling implies no accumulation of energy at intermediate or low
x while the energy flows from x = 1 to x = 0, the sign of a turbulent behavior of the
cascade. However, for quark jets, the quarks distribution exhibit a different behavior,
going like x3/2 at low-x, which reflects the thermalization of valence quarks. Also, the
energy loss for quark jets is slower than the one for gluons (the peak at x = 1 smears
out quickly in gluon jets, which is much slower for quark jets). In the case of the initial
gluon at late times there is a region, at high x, where quarks dominate while in the case
of the initial quark, gluons tend to dominate if x is low for all time scales and quarks
dominate at x > 0.5.
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Figure 4.24: 2D distribution in the (x, kT ) of the solutions of the BDIM equations at
times t = 0.1fm, 1fm, 2fm and 4fm.
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Figure 4.25: The
√
xD(x, t) distributions at the time-scales t = 0.1, 1, 4 fm: cascades

initiated by a gluon (left) and a quark (right). The dashed lines correspond to the quark
distributions while the solid lines to the gluon distributions.

Broadening

For the case with both quarks and gluons in the cascade, we will consider, when studying
broadening, only the BDIM equation Eq. (4.71) (splitting with broadening and collision
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kernel for a medium at equilibrium). Let’s first have a look at the kT distributions
for either gluons or quarks in gluon jets and quark jets, as presented in Fig. 4.26 (the
distributions are integrated over x).
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Figure 4.26: The D̃(kT , t) distributions at the time-scales t = 0.1, 1, 4 fm: cascades
initiated by gluon (left) and quark (right). The dashed lines correspond to the quark
distributions while the solid lines to the gluon distributions.

We observe that both the quarks and the gluons fragmentation functions become
wider, in both gluon and quark jets. Still, gluon broadening is faster, leading to wider
gluon jets (for the same time evolution). Furthermore, the distributions of gluons are
higher than that of quarks if gluons are in the initial state, and similarly, the distributions
of quarks are higher than that of gluons if quarks are in the initial state. To summarize
(visually) the features of the solutions of the BDIM equations, we present both quarks
and gluons 2D distributions on the (x, kT ) plane, for gluon jets in Fig. 4.27 and quarks
jets in Fig. 4.28.

To go further in the comparison of gluon and quark jets and their composition, we
will study some observables (in the formal sense). As for the gluon case, we will begin
with the average transverse momentum ⟨kT ⟩. This average transverse momentum is
presented in Fig. 4.29 as a function of x (actually in logarithmic scale) for different
evolution times and for both quark and gluon components of either quark or gluon jets.

These distributions are rather similar for both gluon and quark jets. The distribu-
tions for different times tend to merge as x gets small enough (like in the gluon case).
Certain differences can be observed, between the distributions for the final quark and
final gluon, as time progresses, through different slopes and a more linear behavior for
the gluon distributions at high x (where there is a depletion in the quark distribution).
These differences suggest that gluons have harder momenta at large x.

An interesting observable to compare gluon and quark jets is the energy contained
in a cone of angle Θ (that we will simply call energy in cone), defined as :

Ein−cone(Θ) =

ˆ 1

0
dx

ˆ xE sinΘ

0
dkT D̃(x, kT , t) . (4.159)
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Figure 4.27: The gluon (left) and quark (right) kT vs. x distributions for cascades
initiated by gluons at the time-scales t = 0.1, 1, 4 fm.

This function is related to the picture of a jet as collimated particles inside a cone (hence
could be seen as the “energy in the jet”). This energy in cone, as a variable of the cone
angle Θ, is illustrated in Fig. 4.30 for both quark and gluon jets. The figure shows the
energy coming from both quarks and gluons in the cascade independently as well as the
total energy (the sum of them). Also, we compare the result for the BDIM equation to
the Gaussian approximation of Eq. (4.95) and also to the analytical ansatz of Eq. (4.107)
(for the simplified case).

We already noted that the Gaussian approximation was underestimating greatly
broadening. This can be seen in the energy in-cone where for the Gaussian approxi-
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Figure 4.28: The gluon (left) and quark (right) kT vs. x distributions for cascades
initiated by quarks with at the time-scales t = 0.1, 1, 4 fm.

mation, it grows faster and reaches a plateau as Θ increases before the actual solution.
This implies that jets described by the Gaussian approximation are more collimated than
those described by the full BDIM equation. Also, the energy in-cone in the Gaussian
approximation is greater than the actual one. It is interesting to see that the analytical
ansatz describes pretty well the energy in-cone of gluons for Θ large enough (greater than
0.4 roughly). Then, comparing the distributions obtained for initial quark and initial
gluons, one can conclude that quark jets are more collimated than gluon ones (which is
expected since quark jets broaden slower than gluon ones). Also, if the energy in cone
for an initial quark quickly saturates, the one for an initial gluon keeps growing slowly
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Figure 4.29: The average transverse momentum ⟨kT ⟩ versus log10 x for the time-scales
t = 0.1, 1, 2, 4 fm.
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Figure 4.30: Energy in cone for an initial gluon jet (left) and an initial quark jet (right)
after 4fm for the full BDIM equation (solid lines), in the Gaussian approximation (dotted
lines) and for the analytical ansatz (green dashed line, only in the case of gluon jets).

with Θ. This can be rephrased as radiative energy loss in quark jets comes from very
small angle (hence very soft) radiations, while for gluon jets, it is much less localized.
Finally, we study the evolution of the energy in-cone with time, for fixed cone angle
values (a small one Θ = 0.1 and a large one Θ = 1). This is presented in Fig. 4.31.

Here we remark that quarks dominate at all times in quark jets while in gluon
jets, if gluon initially dominates, after a long evolution time (around 8 − 10fm), quarks
becomes dominant14. Then, we see that the analytical ansatz diverges from the actual
gluon distribution after a long evolution time while the Gaussian approximation roughly
describes the behavior of the actual solution at large angles (better for quarks than for
gluons). This last observation is expected since the Gaussian approximation integrates
to the same energy distribution as the actual solution.

Perturbative estimate

It is very instructive to compare the result of the full medium evolution with a pertur-
bative estimate which only accounts for one single emission or elastic scattering with the
medium, as presented in Sec. 4.3.4. In order to write the perturbative estimate in terms
of kT , we note that D(k, δt) = D(k2, δt), so that :

D̃
(1)
i (kT , δt) = 2π kT D

(1)
i (kT , δt) . (4.160)

The comparison between the perturbative estimate and the actual solution is done for
a gluon jet in Fig. 4.32 for the energy distribution and in Fig. 4.33 for the transverse
momentum distribution.

We observe that it is actually quite a crude estimate that barely reproduces the
gluons energy distribution at short times but fails at reproducing the quark distribution

14
Also, this is a theoretic observation, 8fm being longer than any realistic value for the medium length.
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Figure 4.31: Time evolution of the jet energy in a fixed cone with Θ = 0.1 (upper panels)
and Θ = 1 (lower panels) for the initial gluon jet (left panels) and the initial quark jet
(right panels) for the full BDIM equation (solid lines), in the Gaussian approximation
(dotted lines) and for the analytical ansatz (green dashed line, only in the case of gluon
jets)..

and the transverse momentum distribution. This underlines the importance of multiple
splitting and scattering in in-medium cascades.

Dijet asymmetry

One way to experimentally evaluate jet quenching is through the asymmetry of back-
to-back jets in heavy ion collision (where jet quenching is more striking). To this end,
we consider 2 back to back hard partons of the same energy E = 100GeV (the simplest
situation we could think of). The 1st one (leading jet) crosses 1fm of the medium while
the second one (sub-leading) crosses 4fm (meaning that we evolve these hard jets through
the BDIM equations for the corresponding evolution time). Then we can evaluate the
dijet energy imbalance as a function of the jet (cone) angle Θ. This reads :

∆Ei(Θ) =

ˆ 1

0
dx

ˆ xE sinΘ

0
dkT x

(
D̃i(x, kT , t1) − D̃i(x, kT , t2)

)
, (4.161)
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initiated by a gluon, gluons distribution on left, quarks on right. The solid lines corre-
spond to the full medium evolution and the dotted line to the perturbative estimate.

0 2 4 6 8 10 12 14
 [GeV]Tk

4−10

3−10

2−10

1−10

1

10
  t = 0.1 fm   t = 1 fm
  t = 4 fm   
  full evo.   pert. est.

Gluon -> Gluons

0 2 4 6 8 10 12 14
 [GeV]Tk

4−10

3−10

2−10

1−10

1

10

Gluon -> Quarks

Figure 4.33: The D̃(kT , t) distributions at the time-scales t = 0.1, 1, 4 fm: cascades
initiated by gluon, gluons distribution on left, quarks on right. The solid lines correspond
to the full medium evolution and the dotted line to the perturbative estimate.

where t1 and t2 correspond respectively to the evolution time of the leading jet and the
sub-leading jet. Results are shown in Fig. 4.34, where we have used a binning similar
to those used experimentally [277] (even if the discussion will stay qualitative, since our
model, with fixed medium temperature, is not phenomenology ready).

First, the steps like shapes (of the low energy bins) are due to the effective binning of
the distribution in Θ (since the distributions are binned in kT = xE sin Θ, a low energy
implies an important sensibility to binning of Θ). The energy imbalance is clear at low
angles (for the gluons distribution in case of back-to-back gluon jets and for the quarks
distribution in case of back-to-back quark jets), for the hard particles, and is balanced at
larger angles, i.e for soft particles. We can observe that the balance of the soft particles
is more important for quark jets than for gluon jets (and overall, less important than
in the Gaussian approximation). Also, we observe a different energy distribution in the
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full BDIM case than in the Gaussian approximation. In the latter, the energy from low
energy particle (first energy bin) decreases with the angle (but still becomes dominant
at a large angle), while in the former case, it is negligible at low angles and increases
with Θ.

4.6 Chapter summary

We have been interested in this chapter in jets, their definition and their evolution,
with a focus on their evolution when they interact with a QGP (different from their
vacuum evolution). The mechanisms that describe this interaction have been studied
for nearly 30 years now and the 1st formalism to describe it is the well-known BDMPS-
Z formalism. In this formalism, the interactions of a jet with the medium (a QGP)
are described through two mechanisms : scattering with the medium color charges and
medium-induced radiation. We have seen how to derive an evolution equation for gluon-
dominated jets crossing a dense medium, taking into account these 2 formalisms (as
building blocks of the parton cascade) and we went beyond the BDMPS-Z formalism
by taking into account momentum transfer in branching (which goes beyond the eikonal
limit of the BDMPS-Z formalism). This leads to the BDIM equation, where the jet en-
ergy loss is due to (medium-induced) splitting and jet broadening is both due to splitting
and (multiple) scattering. We have then derived the equivalent equations accounting for
quarks in the cascade (which also makes it possible to consider either quark or gluon
jets). To this end, we calculated the different in-medium splitting kernels necessary in
this case. After reviewing different forms and approximations of the BDIM equations,
we have presented methods to solve them. We saw that an analytical solution existed
in a simplified case. Then, we described a Monte-Carlo approach to solve the different
forms of the BDIM equations presented (note that, the MCMC programs presented here,
MINCAS [269] and TMDICE [270] were the first to propose a full treatment of broadening
in splitting15). A method of resolution based on the Chebyshev polynomials has also
been proposed, but it has been proven successful only for the integrated BDIM equations
(describing the jet energy distribution). Finally, we studied the solutions of the BDIM
equation, obtained through the program MINCAS, and observed the importance of the
broadening coming from branching. We have also pointed out differences between quark
and gluon jets, the former being more collimated than the latter. Also, there is still space
for future work on the BDIM equations and their extensions. First, a natural next step
would be to, somehow, take into account the dynamics of the medium. This could be
done through some model for the temperature evolution, leading to evolving parameters
(like the scatterers density, the Debye mass, and the scale of the coupling constant used
in the scattering term). Another question is the role of vacuum-like emission that should
be added to the model.

15
Of course, other MC approaches have been proposed to describe jet evolution in heavy-ion colli-

sions [278, 279], but so far without accounting for broadening in branching.
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Figure 4.34: Dijet energy imbalance in function of the jet angle Θ for back-to-back gluon
jets (top), back-to-back quark jets (middle) and for the Gaussian approximation in gluon
dominated cascade (bottom). The energy imbalance is calculated in terms of the gluons
distribution (left) and the quark distribution (right). The histogram accounts for the
following binning in energy : [0.5, 1] GeV (in blue), [1, 2] GeV (in yellow), [2, 4] GeV (in
orange), [4, 8] GeV (in green), [8, 50] GeV (in magenta) and [50, 100] GeV (in red).
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Chapter 5

Conclusion and outlook

Along this thesis, we have explored different aspects of high-energy QCD and heavy-
ion collisions. In particular, we have focused our attention on the influence of the
kinematic variable kT , the transverse momentum of an initial state hadron. We had
to first introduce factorization which describes a hadronic process as the convolution
of a non-perturbative part, hold by PDFs that describes universally the content of this
hadron, with a perturbative part, describing the collision of two partons and hold by
amplitudes. Another way to interpret PDFs is the transport of a soft parton inside the
hadron (at a hadronic scale) to the scale of the collision, described by the evolution
equation (that PDFs obey). In particular, we introduced kT and hybrid factorization
which involve TMDs, which permit the initial state in a collision to be off-shell. This
factorization also relies on off-shell amplitudes (for one or both of the initial states
legs). The Chap. 2 was dedicated to these PDF, their definition, given by factorization
theorems, and their properties through the different evolution equations they follow. As
our main focus was TMD, we presented a method to obtain them : the parton branching
method, and studied the first PB nTMD obtained, for lead. This study ended with some
comparison of results based on these nTMDs to CMS data for Z boson production in
proton-lead collision i.e a DY process where kT -factorization holds. While our predictions
were based on tree-level matrix elements, they were in surprisingly good agreement with
data. Also, this study has well shown the importance of the factorization scheme and
the nuclear effects on the TMD. Then, we studied the calculation of QCD amplitudes
in Chap. 3 with an introduction to common (but powerful) techniques to simplify the
quick complexity involved by evaluating amplitude by applying Feynman rules. After
a relatively long, but far from the exhaustive presentation of tools applicable to on-
shell amplitudes, we focused on amplitudes with off-shell leg(s). We quickly introduced
Lipatov’s high energy effective theory in which reggeized gluons are new degrees of
freedom. Also, the small amount of calculation made at one-loop in this theory suggests
the difficulty of its application. We presented then a method to calculate off-shell gluon
amplitudes based on the extraction, from specific kinematics, of this amplitude from the
well-known on-shell amplitudes in a gauge invariant way : the auxiliary parton method.
This method was working at tree level and the aim of the following was to generalize
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it (at least, initialize its generalization) to NLO. We proposed an expression for the
loop amplitude with one off-shell gluon and an arbitrary number of plus helicity gluons
which exhibits the expected properties. However, we realized its limits when we tried
to apply it to g∗g+g−. In this case, we have to apply the auxiliary parton method
on (embeding) amplitudes with IR divergences (something new compared to the all
plus helicity case). It appeared that, while the method naturally regularizes rapidity
divergences, it led to expressions for them non equivalent to those calculated within
Lipatov’s high energy effective action. In the meantime, a solution was proposed in the
form of a hybrid factorization formula at NLO. The last subject of this thesis was the jets
and their interactions with the QGP formed during heavy-ion collisions. Understanding
this object, a trail of collimated particles due to color confinement, is a key point to fill
the gap between the partons leaving amplitudes and what is experimentally seen. Also,
this gap gathers several phenomena (parton shower, hadronization, and decays). Being
sensible to the medium they pass through, jets can be used as a probe. In particular, they
are sensitive to the QGP formed in heavy-ion collision and are our key to understanding
this state of matter. Especially, jets undergo energy loss when interacting with a QGP,
which is referred to as jet quenching. This phenomenon can be described through the
BDMPS-Z formalism which describes two kinds of interaction between the jet and the
medium : scattering with the medium color charges and medium-induced radiations.
From this formalism, and going beyond it (considering momentum transfer in branching)
it is possible to derive the BDIM equations. Those equations describe the energy loss
of a jet, traveling in a QGP, through medium-induced splitting and jet broadening (the
former are more collimated). However, this equation was describing only pure gluon
jets. We derived an equivalent equation accounting for quarks, such that we could
evaluate their influence (greater than what is usually considered) and also observe the
differences between a quark and a gluon jet. We also studied the relative importance of
broadening and splitting These studies have been possible with the help of two Monte-
Carlo programs, MINCAS [269], TMDICE [270] and a Chebyshev approach (even if this
last approach wasn’t suitable to solve the full unintegrated BDIM equation). There is
also room for new developments in this direction. Indeed, in these equations, the medium
is considered static (which leads to an overestimation of quenching). The dynamic of the
medium could be taken into account, first, through the modeled evolution of a parameter
(the temperature). Another question is the role of vacuum-like emissions and how to
implement them.

Also, the three elements studied here : nuclear TMD, off-shell amplitudes, and frag-
mentation functions convoluted through hybrid or kT -factorization open the path to the
study of the relative importance of saturation (taken into account at the TMD level)
and jet quenching.
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Appendix A

Appendices related to Parton
Distribution Functions

A.1 Light-cone perturbation theory

Light cone perturbative theory has been introduced in [280–282] to quantize QCD on
light cone coordinates (where the light-cone time takes the place of the time), suitable
for the description of bound states (hadrons) in terms of quantum-mechanical (light-
cone) wave functions. We won’t enter the details of light-cone quantization but we
will introduce light-cone coordinates to then give the QCD LCPT rules (that are some
modified Feyman rules to be used in this context) to finally introduce light-cone wave
function (that are used to described hadrons).

A.1.1 Light-cone coordinates

If we consider a 4-momentum p in some frame F where its standard coordinates read :

pµ = (p0, p1, p2, p3) = (E, px, py, pz) , (A.1)

where we have recalled 2 standard notations. Then we can rewrite p in what are called
light-cone coordinates :

pµ = (p+, p⊥, p−) , (A.2)

where :
p+ = E + pz , p⊥ = (px, py) , p− = E − pz . (A.3)

Then, the product of two 4-momenta p and k reads :

p · k =
1

2
p+k− +

1

2
p−k+ − p⊥ · k⊥ . (A.4)

This translates in the metric, which nonzero component are :

η+− = η−+ =
1

2
, ηxx = ηyy = −1 . (A.5)
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Note that in light-cone coordinates, the metric isn’t diagonal. This leads to :

p− =
1

2
p+ , p+ =

1

2
p− , and ∂− =

1

2
∂+ , ∂+ =

1

2
∂− . (A.6)

We can also define Dirac matrices in light-cone coordinates as :

γ+ = γ0 + γz , γ− = γ0 − γz . (A.7)

Then we can define a projector :

Λ± =
1

2
γ0γ± . (A.8)

which satisfies :
Λ+Λ− = 0 , Λ2

± = Λ± , andΛ+ + Λ− = 1 . (A.9)

This projector permit to separate a quark field q(x) into two spinor components :

q±(x) = Λ±q(x) . (A.10)

A.1.2 QCD light-cone perturbative theory rules

LCPT is comparable to time-ordered perturbation theory (see [47] for instance) where,
in place of the time, we use the light-cone time x+. The QCD LCPT rules that we will
present have been calculated in [280–283] in the specific light-cone gauge (see Eq. (1.7))1 :

A+ = 0 . (A.11)

QCD LCPT rules are like Feynman rules describing how to calculate an amplitude in
this approach. They can be written as follows :

• Draw all diagrams for the considered process and order in perturbation theory.
Include all possible ordering of the vertices in the light-cone time.

• Assign an on-shell 4-momentum k to each line (of mass m) of the form :

kµ =

(
k+, k⊥,

k2⊥ +m2

k+

)
. (A.12)

This form reflects the on-shellness of the particle and the fact that only the + and
⊥ component of the momentum are conserved at each vertex.

• Quarks on-shell spinors follow the Lepage and Brodsky [280] convention :

uσ(k) =
1√
k+

ξ(σ)
(
k+ +mγ0 + γ0γ⊥ · k⊥

)
,

vσ(k) =
1√
k+

ξ(−σ)
(
k+ −mγ0 + γ0γ⊥ · k⊥

)
.

(A.13)

1
This can be obtain choosing the light-cone vector n

µ
= (0, 0⊥, 2) when fixing the axial gauge.
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where :

ξ(+1) =
1√
2




1
0
1
0


 , ξ(−1) =

1√
2




0
1
0
−1


 . (A.14)

• Gluon polarization vectors are of the form :

ϵµλ(k) =

(
0, ϵλ⊥, 2

ϵλ⊥ · k⊥
k+

)
, with ϵλ⊥ = − 1√

2
(λ, i) , (A.15)

such that it verifies ϵ+λ = 0 and ϵλ(k) · k = 0.

• Each intermediate state comes with the energy denominator :

1

(
∑

initial −
∑

intermediate) k
− + iϵ

, (A.16)

were the sums are defined respectively over the initial states of the considered
diagram and over the particles over the intermediate state considered.

• Each internal lines with momentum k+ flowing in the future light-cone direction
imply a factor :

θ(k+)

k+
. (A.17)

• The vertices are as follows :

– Quark-gluon vertex :

k, λ, a

p1, σ1, i

p2, σ2, j = −gsūσ2,i2
(p2)/ϵλ(k)(ta)ijuσ1,i1

(p1) . (A.18)

– 3-gluons vertex :

p3, λ3, c

p1, λ1, a

p2, λ2, b

= −igsfabc
[
(k1 − k3) · ϵ∗λ2

(k2)ϵλ1
(k1) · ϵλ3

(k3)

+ (k2 − k1) · ϵλ3
(k3)ϵ

∗
λ2

(k2) · ϵλ1
(k1)

+ (k3 − k2) · ϵλ1
(k1)ϵλ3

(k3) · ϵ∗λ2
(k2)

]
.

(A.19)
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– 4-gluons vertex :

k3, λ3, c

k1, λ1, a

k4, λ4, d

k2, λ2, b

= g2s
[
fabef cde

(
ϵλ1

· ϵλ3
ϵ∗λ2

· ϵ∗λ4
− ϵλ1

· ϵ∗λ4
ϵλ3

· ϵ∗λ2

)

+ facef bde
(
ϵλ1

· ϵ∗λ2
ϵλ3

· ϵ∗λ4
− ϵλ1

· ϵ∗λ4
ϵλ3

· ϵ∗λ2

)

+ fadef bce
(
ϵλ1

· ϵ∗λ2
ϵλ3

· ϵ∗λ4
− ϵλ1

· ϵλ3
ϵ∗λ2

· ϵ∗λ4

) ]
,

(A.20)
where the momenta of the polarization vectors are implicit for readability.

In addition to these vertices (equivalent to those of usual Feynman rules), in light-
cone perturbation theory, due to the light-cone time ordering, one has to take into
account the following instantaneous parton exchanges (denoted by a cross) :

– Instantaneous quark exchange :

p1, σ1, i1

k1, λ1, a1

k2, λ2, a2

p2, σ2, i2

=g2s ūσ2,i2
(p2)/ϵλ1

(k1)
γ+

2(p+1 − k+2 )
/ϵ
∗
λ2

(k2)

× (ta1ta2)i1i2uσ1,i1
(p1) .

(A.21)

– 3 possible instantaneous gluon exchange :

p3, σ3, i3

p1, σ1, i1

p4, σ4, i4

p2, σ2, i2

=g2s ūσ2,i2
(p2)γ

+(ta)i2i1uσ1,i1
(p1)

× 1

(p+1 − p+2 )2
ūσ4,i4

(p4)γ
+(ta)i4i3uσ3,i3

(p3) .

(A.22)

k3, λ3, a3

k1, λ1, a1

k4, λ4, a4

k2, λ2, a2

=g2sf
a1a2bfa3a24ϵ∗λ2

· ϵλ1
ϵ∗λ4

· ϵλ3

× (k+1 + k+2 )(k+3 + k+4 )

(k+1 − k+2 )2
.

(A.23)
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k1, λ1, a1

p1, σ1, i1

k2, λ2, a2

p2, σ2, i2

= − g2s ūσ2,i2
(p2)γ

+(tb)i2i1uσ1,i1
(p1)

× k+1 + k+2

(k+1 − k+2 )2
ifa1a2bϵ∗λ2

· ϵλ1
.

(A.24)

In these diagrams, the light cone time flows from left to right.

• Integrate, for each independent momentum kµ, with the measure :
ˆ

dk+d2k⊥
2(2π)3

. (A.25)

• Sum over internal quarks and gluons polarization and color.

A.1.3 Light-cone wave function

One of the strength of LCPT it is that it gives a suitable framework to characterize
bounded partonic states (a hadron) in terms of quantum-mechanical wave function (and
the possibility to calculate them following the QCD LCPT just presented), which is
much harder with standard Feynman diagrams. Let’s consider a hadron state |Ψ⟩. This
state is a superposition of Fock states of the form :

|ng, nQ⟩ ≡ |ng, {k+i , ki,⊥, λi, ai}i∈J1,ngK;nQ, {p+j , pj,⊥, σj , αj , fj}j∈J1,nQK⟩ , (A.26)

for a state composed of ng gluons, nq quarks and nq̄ antiquarks (with nQ = nq + nq̄),
where gluons are characterized by the + and transverse component of their momentum
k, their polarization λ and their color index a while quarks are characterized the + and
transverse component of their momentum p, their helicity σ, their color α and their
flavor f .
These Fock states form a complete basis, which translates in :

∑

ng ,nQ

ˆ
dΩng ,nQ

|ng, nQ⟩⟨ng, nQ| = 1 . (A.27)

Each Fock states are normalized to 1 (⟨ng, nQ|ng, nQ⟩ = 1) and the phase-space integral
is defined, for a hadron of momentum P , as :

ˆ
dΩng ,nQ

=
2P+(2π)3

Sn

ˆ ng∏

i=1

∑

λi,ai

dk+i d2ki,⊥
2k+i (2π)3

nQ∏

i=j

∑

σj ,αj ,fj

dp+j d2pj,⊥
2p+j (2π)3

× δ


P+ −

ng∑

i
+
=1

k+
i
+ −

ng∑

j
+
=1

p+
j
+


 δ(2)


P⊥ −

ng∑

i⊥=1

ki⊥,⊥ −
ng∑

j⊥=1

pj⊥,⊥


 ,

(A.28)
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where the symmetry factor reads Sn = ng!nq!nq̄!. Note that the LCPT rules are respected
with the momentum conservation of only the + and transverse components.
With this, we can define the hadron state |Ψ⟩ as :

|Ψ⟩ =
∑

ng ,nQ

ˆ
dΩng ,nQ

|ng, nQ⟩⟨ng, nQ|Ψ⟩ , (A.29)

and define the light-cone wave function as the multi-particle wave function corresponding
to the hadron Fock state with ng gluons and nQ quarks (antiquarks included) :

Ψ(ng, nQ) ≡ ⟨ng, nQ|Ψ⟩ . (A.30)

We can see that this wave function is normalized to a number less or equal to 1, when
writing the condition :

⟨Ψ|Ψ⟩ = 1 =
∑

ng ,nQ

ˆ
dΩng ,nQ

|Ψ(ng, nQ)|2 . (A.31)

We mentioned that one can use the QCD LCPT to calculate a light-cone wavev function.
Actually some modification havee to be taken into account :

• The outgoing states are treated as internal (bringing an energy denominator). This
is because the outgoing states in a wave-function are thought to interact further.

• Outgoing lines are treated as external and only bring a factor θ(k+).

• Incoming external lines are treated as internal and bring a factor 1

k
+ (the theta

function is not necessary for these lines).

A.1.4 Light-cone “Diracology”

We will gather here some properties of the Dirac spinors in light-cone coordinates, useful
when calculating light-cone wave functions. First we define the operation × as :

p⊥ × k⊥ ≡ pxky − pykx = ϵijpi⊥k
j
⊥ . (A.32)

Then, the following relation are needed to calculate light-cone wave function :

ūσ′(p′)√
p′+

γ+
uσ(p)√
p+

= 2δσ,σ′ ,

ūσ′(p′)√
p′+

γ−
uσ(p)√
p+

= 2
δσ,σ′

p+p′+
(
p⊥ · p′⊥ − iσp⊥ × p′⊥

)
,

ūσ′(p′)√
p′+

γi⊥
uσ(p)√
p+

= δσ,σ′

(
p′i⊥ − iσϵijp′j⊥

p′+
+
pi⊥ − iσϵijpj⊥

p+

)
,

(A.33)
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for matrix elements based on massless u spinors only and :

v̄σ′(p′)√
p′+

γ+
uσ(p)√
p+

= 2δσ,−σ
′ ,

v̄σ′(p′)√
p′+

γ−
uσ(p)√
p+

= 2
δσ,−σ

′

p+p′+
(
p⊥ · p′⊥ − iσp⊥ × p′⊥

)
,

v̄σ′(p′)√
p′+

γi⊥
uσ(p)√
p+

= δσ,−σ
′

(
p′i⊥ − iσϵijp′j⊥

p′+
+
pi⊥ − iσϵijpj⊥

p+

)
,

(A.34)

for matrix elements mixing massless u and v spinors. The other possible matrix elements
are found using :

v̄σ′(p′)γµvσ(p) = ūσ(p)γµuσ′(p′) ,

ūσ′(p′)γµvσ(p) =
(
v̄σ(p)γµuσ′(p′)

)∗
.

(A.35)

A.2 Splitting functions

We review here the derivation of the LO splitting functions. This derivation follows the
one presented in [6].

A.2.1 Pqq

Let’s begin by the splitting Pqq. To calculate it, we need to evaluate the first order
corrections to the quark wave function. For instance, the real correction to the quark
wave function ψf

n is presented in Fig. 2.6. This type of diagram permits to relate the wave
function ψq

n (at the dash line 2) to the wave function ψf
n−1 (at the dash line 1) using the

QCD LCPT rules (see Sec. A.1.2) to describe what happens in between. Actually, Pqq

appears when calculating the corrections to the quark parton distribution function ff/p

which comes to LO corrections to the wave function squared |ψf
n|2. These corrections

are pictured in Fig. A.1 where diagram A represents the real correction while diagrams
B and C are the virtual corrections.

Let’s begin with the real correction, as depicted in Fig. 2.6. Applying the QCD
LCPT rules (for a wave function, in the light-cone gauge A+ = 0) leads to :

ψf
n({ki};x, k⊥;h) =

gst
aθ(k+)θ(k′+ − k+)

(k′ − k)− + k− +
∑n−1

j=1 k
−
j − P−

1

k′+

× ūh(k)/ϵ
∗
λ(k′ − k)uh′(k′)ψf

n−1({ki};x′, k′⊥;h′) ,

(A.36)

where P is the momentum of the initial hadron. Then, the energy denominator is
transformed using the on-shellness of the particles in LCPT and also the LLA, which
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A B C

Figure A.1: Diagrams contributing to Pqq

permit to neglect all transverse momenta squared towards k2⊥. It leads to :

1

(k′ − k)− + k− +
∑n−1

j=1 k
−
j − P−

1

k+
=

1

(k
′
⊥−k⊥)

2

(k
′−k)

+ + k⊥2

k
+ +

∑n−1
j=1

k
2
j,⊥

k
+
j

− P⊥2

P
+

1

k+

≃ 1

k
2
⊥

(k
′−k)

+ + k⊥2

k
+

=
k+(k′ − k)+

k′+k2⊥
,

(A.37)

where z = k
+

k
′+ . Using the properties of spinors (see Eq. (A.33)), one can evaluates the

spinor part as :

ūh(k)/ϵ
∗
λ(k′ − k)uh′(k′) =ūh(k)γ+uh′(k′)

ϵλ⊥
∗ · (k′ − k)⊥
(k′ − k)+

− ūh(k)γ⊥ · ϵλ⊥
∗
(k′ − k) · uh′(k′)

=
δh,h′

√
z(1 − z)

ϵλ⊥
∗
(k′ − k) · (k⊥ − zk′⊥) [1 + z + hλ(1 − z)] ,

(A.38)

where we have used in the first equality the form of the gluon polarization vector in
LCPT (as given in Eq. (A.15)). It can be further simplified in the LLA (neglecting
k′⊥). In the following, wee will set the momentum dependence of the polarization vector
implicit (for readability). Overall, Eq. (A.36) now reads :

ψf
n({ki};x, k⊥;h) = − gst

aθ(z)θ(1 − z)δh,h′
√
z
ϵλ⊥

∗ · k⊥
k2⊥

× [1 + z + hλ(1 − z)]ψf
n−1({ki};x′, k′⊥;h′) .

(A.39)

Squaring this expression and summing over the polarizations, helicities and colors (has

it would appears in the PDF ff/p), and using the expression for ϵλ⊥ (given in Eq. (A.15)),
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reads :
∑

h,h
′
,λ,a

∣∣∣ψf
n({ki};x, k⊥;h)

∣∣∣
2

=8παsCF θ(z)θ(1 − z)
z(1 + z2)

k2⊥

×
∑

h
′
=±

∣∣∣ψf
n−1({ki};x′, k′⊥;h′)

∣∣∣
2
.

(A.40)

We should then write the expression of the quark PDF at the end of our diagram (denoted
by the superscript A) :

fAf/p(x, µ
2) =

∑

n

1

x

ˆ
d2k⊥

2(2π)3
d2(k′⊥ − k⊥)

2(2π)3
d(k′+ − k+)

k′+ − k+

n∏

i=1

dxi
xi

d2ki,⊥
(2π)3

×
∑

h,h
′
,λ,a

∣∣∣ψf
n({ki};x, k⊥;h)

∣∣∣
2

× (2π)3δ2


k′⊥ +

n−1∑

j=1

kj,⊥


 δ

(
1 − x′ −

n−1∑

l=1

xl

)
,

(A.41)

where, due to the momentum ordering, the partons are distinguishable hence, no sym-
metry factor is needed. Before introducing the formula we got for

∑
h,h

′
,λ,a |ψ

f
n|2 in this

expression, we should rewrite the phase space integrals of the momentum of the emitted
gluon as :

ˆ
d2(k′⊥ − k⊥)

2(2π)3

ˆ P
+−k

+

0

d(k′+ − k+)

k′+ − k+
=

ˆ
d2k′⊥

2(2π)3

ˆ P
+

k
+

dk′+

k′+ − k+

=

ˆ µ
2

d2k′⊥
2(2π)3

ˆ 1

x

dz

z(1 − z)
,

(A.42)

where we have used the fact that k+ is fixed and that the integration over k⊥ is already
performed in the expression of fAf/p. This leads to (introducing also Eq. (A.40)) :

fAf/p(x, µ
2) =

αsCF

2π

1

x

ˆ µ
2

dk2⊥
k2⊥

ˆ 1

x
dz

1 + z2

1 − z

∑

n

ˆ n∏

i=1

dxi
xi

d2ki,⊥
(2π)3

d2k′⊥
2(2π)3

×
∑

h
′
=±

∣∣∣ψf
n−1({ki};x′, k′⊥;h′)

∣∣∣
2

× (2π)3δ2


k′⊥ +

n−1∑

j=1

kj,⊥


 δ

(
1 − x′ −

n−1∑

l=1

xl

)
.

(A.43)

We recognize in this expression x′ff/p(x
′, k2⊥) = x

z ff/p

(
x
z , k

2
⊥
)

(from the 2nd line), which

leads to the integral relation :

fAf/p(x, µ
2) =

αsCF

2π

ˆ µ
2

dk2⊥
k2⊥

ˆ 1

x

dz

z

1 + z2

1 − z
ff/p

(x
z
, k2⊥

)
, (A.44)
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which can be differentiated as :

µ2
∂

∂µ2
fAf/p(x, µ

2) =
αs

2π

ˆ 1

x

dz

z
PA
qq(z)ff/p

(x
z
, µ2
)
, (A.45)

where PA
qq is the contribution of diagram A to Pqq, defined as :

PA
qq(z) = CF

1 + z2

1 − z
. (A.46)

This is the first step in the derivation of the DGLAP equation, which implies to account
all other possible correction (for both quark and gluon PDF). To obtain Pqq, we still
need to account for the virtual correction. We can see that, directly by construction
or invoking unitarity that the virtual correction (diagrams B and C) lead to the same
formula (up to a sign) for the wave function as in the real corrections (see Eq. (A.36))

except that the relation linked ψf
n to ψf

n. Also, note that the dominant transverse
momentum in this case is k′⊥. This leads to :

∑

h,h
′
,λ,a

∣∣∣ψf
n({ki};x, k⊥;h)

∣∣∣
2

= − 8παsCF θ(z)θ(1 − z)
z(1 + z2)

k′2⊥

×
∑

h=±

∣∣∣ψf
n({ki};x, k⊥;h)

∣∣∣
2
.

(A.47)

Then the corresponding PDF reads :

fB+C
f/p (x, µ2) =

∑

n

1

x′

ˆ
d2k′⊥

2(2π)3
d2k⊥

2(2π)3
d(k+ − k′+)

k+ − k′+

n∏

i=1

dxi
xi

d2ki,⊥
(2π)3

×
∑

h,h
′
,λ,a

∣∣∣ψf
n({ki};x′, k′⊥;h′)

∣∣∣
2

× (2π)3δ2


k⊥ +

n∑

j=1

kj,⊥


 δ

(
1 − x−

n−1∑

l=1

xl

)
.

(A.48)

In this case, the gluon phase space is written as (with the 1
x
′ factor) :

ˆ
d2(k⊥ − k′⊥)

2(2π)3

ˆ P
+

0

d(k+ − k′+)

k+ − k′+
1

x′
=

ˆ
d2k⊥

2(2π)3

ˆ k
+

0

dk′+P+

k′+(k+ − k+)

=

ˆ µ
2

d2k′⊥
2(2π)3

ˆ 1

0

dz

xz(1 − z)
.

(A.49)

This leads to :

fB+C
f/p (x, µ2) = −αsCF

2π

ˆ µ
2

dk′2⊥
k′2⊥

ˆ 1

0
dz

1 + z2

1 − z
ff/p(x, k

′2
⊥) , (A.50)
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which can be differentiated as :

µ2
∂

∂µ2
fB+C
f/p (x, µ2) = −αsCF

2π

ˆ 1

0
dz

1 + z2

1 − z
ff/p(x, µ

2) . (A.51)

Accounting for all 3 diagrams leads to the equation :

µ2
∂

∂µ2
ff/p(x, µ

2) =
αsCF

2π

[ˆ 1

x

dz

z

1 + z2

1 − z
ff/p

(x
z
, µ2
)
−
ˆ 1

0
dz

1 + z2

1 − z
ff/p(x, µ

2)

]
,

(A.52)
where it is possible to define Pqq in the form :

Pqq(z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
, (A.53)

with the + prescription given by :
ˆ 1

x
dz

f(z)

(1 − z)+
≡
ˆ 1

x
dz
f(z) − f(1)

1 − z
+ f(1) ln(1 − x) . (A.54)

This way, we can write :

µ2
∂

∂µ2
ff/p(x, µ

2) =
αs

2π

ˆ 1

x

dz

z
Pqq(z)ff/p

(x
z
, µ2
)
, (A.55)

which is the form wanted for the DGLAP equations.

A.2.2 Pgq

To calculate Pgq, the only possible LO contribution is the real correction presented in
Fig. A.2.

Figure A.2: Diagram contributing to Pgq

The calculation of this correction is very similar to the real correction of Pqq. Ba-
sically, the role of the outgoing quark and outgoing gluon are inverted. Then we can
directly write Pgq as :

Pgq(z) = PA
qq(1 − z) = CF

1 + (1 − z)2

z
. (A.56)
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A.2.3 Pqg

For Pqg, there is also an unique diagram (real correction), presented in Fig. A.3.

Figure A.3: Diagram contributing to Pqg

The calculation can be handled the same way as for the real correction to Pqq, starting
with :

ψf
n({ki};x, k⊥;h) =

gst
aθ(k+)θ(k′+ − k+)

(k′ − k)− + k− +
∑n−1

j=1 k
−
j − P−

1

k′+

× ūh(k)/ϵ
∗
λ(k′)vh′k′ − k)ψf

n−1({ki};x′, k′⊥;h′) ,

(A.57)

when the antiquark is observed (the case where the quark is observed has also to be
taken into account, but it leads to the same contribution). Rather than performing
again the same calculation, we will give arguments to obtain it from PA

qq. Indeed the
considered diagram differs from the real correction of Pqq by the fact that here, the
gluon is incoming while the quark antiquark pair is outgoing which will translate into
a crossing symmetry Pqg(z) ∝ zPA

qq

(
1 − 1

z

)
. Also, the color factor CF is replaced by 1

2 ,
and since we sum here over the quark and antiquark flavors, we also need a factor 2Nf .
Overall Pqg reads :

Pqg(z) =
Nf

CF
zPA

qq

(
1 − 1

z

)
= Nf

[
z2 + (1 − z)2

]
. (A.58)

A.2.4 Pgg

Finally, we will calculate Pgg. This is probably the most complex splitting function,
since, as shown in Fig. A.4, we have 1 diagram for real corrections and no less than 4
diagrams for virtual corections.

Let’s first have look at the real correction, as shown in Fig. A.5. Contrary to the
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A B C

D E

Figure A.4: Diagrams contributing to Pgg

other real correction calculated so far, we have here a 3-gluons vertex, which leads to :

ψn({ki};x, k⊥;λ) =
igsf

abcθ(k+)θ(k′+ − k+)

(k′ − k)− + k− +
∑n−1

j=1 k
−
j − P−

1

k′+

×
[

(k′ + k) · ϵ∗
λ
′′ϵ∗λ · ϵλ′ + (k − 2k′) · ϵ∗λϵλ′ · ϵ∗

λ
′′

+ (k′ − 2k) · ϵλ′ϵ∗
λ
′′ · ϵ∗λ

]

× ψn−1({ki};x′, k′⊥;λ′) .

(A.59)

Using the form of the polarization vectors in LCPT (seeEq. (A.15)), applying the
LLA, and using Eq. (A.37), one should obtain :

ψn({ki};x, k⊥;λ) =igsf
abcθ(z)θ(1 − z)

z(1 − z)

k2⊥

×




2

1 − z
k⊥ · ϵλ

′′

⊥
∗
ϵλ

∗ · ϵλ
′

⊥ +
2

z
k⊥ · ϵλ⊥

∗
ϵλ

′

⊥ · ϵλ
′′

⊥
∗

− 2k⊥ · ϵλ
′

⊥ ϵ
λ
′′

⊥
∗
· ϵλ⊥

∗




× ψn−1({ki};x′, k′⊥;λ′) .

(A.60)
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1 2

k′ − k, λ′′, ck′, λ′, b

k, λ, a

Figure A.5: 1st order real correction to the quark PDF

Once squared, and summed over color and polarization, it gives :

∑

λ,λ
′
,λ

′′
,a,b,b

′
,c

|ψn({ki};x, k⊥;λ)|2 = 16παsNcθ(z)θ(1 − z)
1

k2⊥

×
[
z2 + (1 + z2)(1 − z)2

]

×
∑

λ
′
,b

∣∣ψn−1({ki};x′, k′⊥;λ′)
∣∣2 ,

(A.61)

where b′ correspond to the color of the incoming gluon, but in the conjugate amplitude.
From applying this expression to the gluon PDF in diagram D, it follows the integral
relation :

fAg (x, µ2) =
αsNc

π

ˆ µ
2

dk2⊥
k2⊥

ˆ 1

x

dz

z2(1 − z)

[
z2 + (1 + z2)(1 − z)2

]
fg

( z
x
, k′2⊥

)
, (A.62)

which can be differentiated as :

µ2
∂

∂µ2
fAg (x, µ2) =

αs

2π

ˆ 1

x

dz

z
PA
gg(z)fg

( z
x
, k′2⊥

)
, (A.63)

where PA
gg is the contribution from diagram A to Pgg, defined as :

PA
gg(z) = 2Nc

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
. (A.64)

Actually, the virtual corrections can be obtained with the already derived splitting func-
tions. Indeed, diagrams B and C corresponds to virtual corrections to the real correction
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A and diagrams B and C corresponds to virtual corrections to the real correction leading
to Pqg.
It leads to :

µ2
∂

∂µ2
fB+C
g (x, µ2) = −αsNc

2π

ˆ 1

0
dz

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
fg(x, k′2⊥)

= −αsNc

2π

[ˆ 1

0
dz

2

1 − z
− 11

6

]
fg(x, k′2⊥) ,

µ2
∂

∂µ2
fD+E
g (x, µ2) = −αsNf

4π

ˆ 1

0
dz
[
z2 + (1 − z)2

]
fg(x, k′2⊥) = −αs

2π

Nf

3
fg(x, k′2⊥) .

(A.65)

Accounting for all contributions, it is possible to show that :

µ2
∂

∂µ2
fg(x, µ2) =

αs

2π

ˆ 1

x

dz

z
Pgg(z)fg

( z
x
, k′2⊥

)
, (A.66)

with the splitting function Pgg expressed as :

Pgg(z) = 2Nc

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]
+

11Nc − 2Nf

6
δ(1 − z) . (A.67)

A.3 DGLAP solution through Mellin transform

A common method to solve DGLAP equations, is to rewrite the equations in moment
space, using the Mellin transform [284] fω(Q2) of the distribution functions f(x,Q2) :

{Mf}(ω) = fω(Q2) ≡
ˆ 1

0
dxxωf(x,Q2). (A.68)

We will note fSω , fNS
ω and fgω the Mellin transform of fS , fNS and fg respectively and

γij(ω) those of the splitting functions Pij (γij are called anomalous dimension). Then,
it can be shown that, in moment space, the DGLAP equations reads [285, 286] :

∂

∂ lnQ2

(
fSω (Q2)

fgω(Q2)

)
=
αs(Q

2)

2π

(
γqq(ω) γqg(ω)
γgq(ω) γgg(ω)

)(
fSω (Q2)

fgω(Q2)

)

∂fNS
ω (Q2)

∂ lnQ2 =
αs(Q

2)

2π
γqq(ω)fNS

ω (Q2) ,

(A.69)
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with the anomalous dimension given as :

γqq(ω) = CF

[
1

(1 + ω)(2 + ω)
+

3

2
− 2ψ(2 + ω) + 2ψ(1)

]
,

γqg(ω) = CF

[
1

2 + ω
+

1

ω(1 + ω)

]
,

γgq(ω) = Nf

[
1

1 + ω
+

1

(2 + ω)(3 + ω)

]
,

γgg(ω) = 2Nc

[
1

ω(1 + ω)
+

1

(2 + ω)(3 + ω)
− ψ(2 + ω) + ψ(1)

]
+

11Nc − 2Nf

6
,

(A.70)

where ψ(ω) = Γ
′
(ω)

Γ(ω) is the digamma function. In this form, the solution of the DGLAP
equations can be written as the following exponential :

(
fSω (Q2)

fgω(Q2)

)
= exp

{ˆ Q
2

Q
2
0

dQ′2

Q′2
αs(Q

′2)
2π

(
γqq(ω) γqg(ω)
γgq(ω) γgg(ω)

)}(
fSω (Q2

0)

fgω(Q2
0)

)

fNS
ω (Q2) = exp

{ˆ Q
2

Q
2
0

dQ′2

Q′2
αs(Q

′2)
2π

γqq(ω)

}
fNS
ω (Q2

0) .

(A.71)

Then, to obtain the solution in x-space, one has to use inverse Mellin transform :

f(x,Q2) = {M−1fω}(x,Q2) ≡
ˆ a+i∞

a−i∞

dω

2iπ
x−ω−1fω(Q2) . (A.72)
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A.3.1 Mellin transform properties

Here are gathered some properties of the Mellin transform :

{Mxvf(x)} = {Mf}(ω + v) ,

{Mf(xv)} =
1

|v|{Mf}(
ω

v
) ,

{Mf(vx)} = v−ω{Mf}(ω) ,

{M lnxf(x)} = {Mf ′}(ω) ,

{M dn

dxn
f(x)} = (−1)n

Γ(ω)

Γ(ω − n)
{Mf}(ω − n) ,

{M
(
x

d

dx

)n

f(x)} = (−ω)n{Mf}(ω) ,

{M
ˆ x

0
dyf(y)} = − 1

ω
{Mf}(ω + 1) ,

{M
ˆ +∞

x
dyf(y)} =

1

ω
{Mf}(ω + 1) ,

{M
ˆ +∞

0

dy

y
f1

(
x

y

)
f2(y)} = {Mf1}(ω){Mf2}(ω) ,

{Mf1(x)f2(x)} =
1

2iπ

ˆ c+i∞

c−i∞
ds{Mf1}(s){Mf2}(ω − s) .

(A.73)
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Appendix B

Appendices related to amplitudes

B.1 QCD Feynman rules

We present here the Feynman rules for QCD, with massless quarks (in the presented
diagrams, time flows from left to right) :

• The external lines are written as (the dot symbolise an undefined vertex) :

– Gluon :

k, λ, a
= ϵλ(k) ,

k, λ, a
= ϵλ(k)∗ . (B.1)

– Quark :

p, σ, i
= uσ(p) ,

p, σ, i
= ūσ(p) . (B.2)

– Antiquark :

p, σ, i
= v̄σ(p) ,

p, σ, i
= vσ(p) . (B.3)

• The propagators (internal lines) read :
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– Gluon propagator (in the light cone gauge) :

k, λ
µ ν

=
−iδa,b
k2 + iϵ

[
ηµν −

nµkν + nνkµ
n · k

]
. (B.4)

– Quark propagator :

p, σ
i j = iδi,j

/p

p2 + iϵ
. (B.5)

• The vertices are as follows :

– Quark-gluon vertex :

µ, a

i

j = −igsγµ(ta)ij . (B.6)

– 3-gluons vertex (with incoming momenta) :

q

k

p

ρ, c

µ, a

ν, b = −gsfabc
[
ηµν(k− p)ρ+ ηνρ(p− q)µ + ηρµ(q− k)ν

]
.

(B.7)

– 4-gluons vertex :

σ

µ

ρ

ν

= −ig2s
[
fabxfxcd (ηµρηνσ − ηµσηνρ)

+ facxfxbd (ηµσηνρ − ηµνηρσ)

+ fadxfxbc (ηµρηνσ − ηµνηρσ)
]
.

(B.8)

We do not consider ghosts since we are working in the light-cone gauge.
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B.2 Colored ordered QCD Feynman rules

When considering colored ordered amplitude (partial amplitudes), since the color part
is treated by the color decomposition, we should used modified Feynman rules as follows
(where we consider momenta outgoing) :

• The propagators (internal lines) read :

– Gluon propagator (in the light cone gauge) :

k, λ
µ, a ν, b

=
−i
k2

[
ηµν −

nµkν + nνkµ
n · k

]
. (B.9)

– Quark propagator :

p, σ
i j = i

/p

p2
. (B.10)

• The vertices are as follows :

– Quark-gluon vertex :

µ

i

j =
i√
2
γµ . (B.11)

– 3-gluons vertex (with incoming momenta) :

q

k

p

ρ

µ

ν =
i√
2

[
ηµν(k − p)ρ+ ηνρ(p− q)µ + ηρµ(q − k)ν

]
.

(B.12)
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– 4-gluons vertex :

σ, d

µ, a

ρ, c

ν, b

= iηµρηνσ − i

2
(ηµνηρσ + ηµρηνσ) . (B.13)

For the external lines, color-ordered Feynman rules are identical to those presented in
App. B.1.

B.3 Dirac equation

In this appendix, we shortly review the Dirac equation and provide a solution for the
massless case, useful for numerical calculations.

The Dirac equation is the relativistic equation of motion for spin-12 massive particles
(like quarks). It reads (in natural units) :

Dirac equation
(
i/∂ −mf

)
ψf
i (x) = 0 , (B.14)

for a quark of flavor f and color i. Since the color has no action in this equation, we
will drop the index i in the following. For an antiquark, it would be :

ψ̄f (x)
(
−i/∂ −mf

)
= 0 . (B.15)

The Dirac equation has plane-wave solutions of positive and negative energy that can
be written :

ψf
+(x) = uf (p)e−ip·x , and ψf

−(x) = vf (p)eip·x . (B.16)

The functions uf and vf are (4-components) Dirac spinors and they follow the Dirac
equation in momentum space :

(
/p−mf

)
uf (p) = 0 ,

(
/p+mf

)
vf (p) = 0 . (B.17)

Now, we are interested in the massless case. Then, both uf and vf follow the same
equation and are equal up to normalization (we can also drop the flavor index) :

Massless Dirac equation

/pu(p) = 0 . (B.18)
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Actually, in this limit, the Dirac equation is equivalent to the Weyl equation, which
describes spin-12 massless particles :

σµ∂µψ(x) = 0 , (B.19)

where σµ are the Pauli matrices. Due to this, the helicity formalism can also be described
in terms of (2-components) Weyl spinors (see [105] for a review).

We conclude this appendix presenting one solution of the Dirac equation in terms of
Dirac spinors. This solution is the one presented in [287] and can be used for numerical
applications. For fixed helicities, we have :

u+(k) = v−(k) =
1√
2




√
k+√

k−eiφk

√
k+√

k−eiφk



, u−(k) = v+(k) =

1√
2




√
k−e−iφk

−
√
k+

−
√
k−e−iφk

√
k+



, (B.20)

with e±iφk = k
1±ik

2√
k
+
k
− and k± = k0 ± k3. Then, the spinor products can be written (for

ki,j > 0) :

⟨ij⟩ =
√

|sij |eiϕij , [ij] =
√

|sij |e−i(ϕij+π) , (B.21)

with cosϕij =
k
1
i k

+
j −k

1
jk

+
i√

|sij |k+i k
+
j

and sinϕij =
k
2
i k

+
j −k

2
jk

+
i√

|sij |k+i k
+
j

. It can be checked that such solutions

are indeed solution of the Dirac equation Eq. (B.18), and that they follow the properties
presented in the main text.

B.4 q̄qgγ – detailed calculation

To show how to apply the helicity formalism, we consider the simple case of q̄qgγ.

4γ

1q̄

3

2q

We consider external momenta outgoing, labeled with the letter k, the helicities are
labelled λ, the polarization vectors ϵ and the corresponding reference momenta q. At
tree level, the color decomposition of such amplitude is very simple since it involves only
one term :

Atree(1q̄, 2q, 3, 4γ) = gs
√

2eq(t
a3)

j̄1
i2
Atree(1

λ1
q̄ , 2

λ2
q , 3

λ3 , 4λ4
γ ). (B.22)
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Such partial amplitude is obtained with the two following diagrams :

1 =

4γ

1q̄

3

2q

=
−i

2s14
⟨2λ2 |/ϵ∗3(/k1 + /k4)/ϵ

∗
4|1

−λ1⟩

=
i

2s23
⟨2λ2 |/ϵ∗3(/k2 + /k3)/ϵ

∗
4|1

−λ1⟩ ,

(B.23)

2 =

3

1q̄

4γ

2q

=
−i

2s13
⟨2λ2 |/ϵ∗4(/k1 + /k3)/ϵ

∗
3|1

−λ1⟩

=
i

2s24
⟨2λ2 |/ϵ∗4(/k2 + /k4)/ϵ

∗
3|1

−λ1⟩ .

(B.24)

Note that only the ordering of the partons is fixed by color-ordering, the photon can
have different positions. The spinor chain involved by the quark line imposes that the
quark and the anti-quark have opposite helicities λ1 = −λ2 ≡ λq. Using the properties
of the polarization vectors (see Eq. (3.51) to Eq. (3.56)), we notice that :

• ampltude 1 vanishes for :

{
q4 = k1 if λ4 = λq

q3 = k2 if λ3 = −λq
,

• and amplitude 2 vanishes for :

{
q3 = k1 if λ3 = λq

q4 = k2 if λ4 = −λq
.

This implies that :

Atree(1
λq

q̄ , 2
−λq
q , 3−λq , 4

−λq
γ ) = Atree(1

λq

q̄ , 2
−λq
q , 3λq , 4

λq
γ ) = 0 (B.25)

Now, we will only consider λ1 = − and λ2 = + (i.e λq = −) since the opposite helic-
ity configuration is obtained by charge conjugation. It leaves only two non-vanishing
amplitudes : Atree(1−q̄ , 2

+
q , 3

−, 4+γ ) and Atree(1−q̄ , 2
+
q , 3

−, 4+γ ). In the former helicity con-

figuration, if we impose q4 = k1 or q3 = k2, the contribution of diagram 1 vanishes.
In the latter configuration, by imposing q3 = k1 or q4 = k2, the contribution of diagram
1 vanishes. Let’s calculates these two amplitudes.
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B.4.1 Atree(1−
q̄ , 2

+
q , 3

−, 4+
γ )

For Atree(1−q̄ , 2
+
q , 3

−, 4+γ ), we choose q4 = k1 (we do not fix q3 since, as we will see,
it doesn’t appears in the final result). In this case, the only contribution comes from

diagram 2 . For the readability, we keep q4 in the intermediate steps :

Atree(1−q̄ , 2
+
q , 3

+, 4−γ ) =
−i

2s13
[2|/ϵ+4 (/k1 + /k3)/ϵ

−
3 |1⟩

=
−i

4s13

1

[q33]⟨q44⟩
[2|γµ⟨q−4 |γµ|4](|1⟩[1| + |3⟩[3|)γν [q3|γν |3⟩|1⟩

=
−i

4s13

1

[q33]⟨q44⟩

[
[2|γµ|1⟩[4|γµ|q4⟩[1|γν |1⟩[q3|γν |3⟩

+ [2|γµ|3⟩[4|γµ|q4⟩[3|γν |1⟩[q3|γν |3⟩

]

=
−i

2s13

1

[q33]⟨q44⟩
([24]⟨q41⟩[1q3]⟨31⟩ + [24]⟨q43⟩[3q3]⟨31⟩)

=
−i

2s13

[24]⟨13⟩2
⟨14⟩ = i

[24]⟨13⟩
[13]⟨14⟩ .

(B.26)

B.4.2 Atree(1−
q̄ , 2

+
q , 3

−, 4+
γ )

For Atree(1−q̄ , 2
+
q , 3

−, 4+γ ), we choose q3 = k1 for which only diagram 1 contributes.

Note that, the expressions for 1 (Eq. (B.23)) and 2 (Eq. (B.24)) only differ by the
exchange of the role of legs 3 and 4. Then, we can use the expression we get in the
previous case, before fixing the auxiliary momenta, and switching 3 ↔ 4. This leads to :

Atree(1−q̄ , 2
+
q , 3

−, 4+γ ) =
−i

2s14

1

⟨q33⟩[q44]
([23]⟨q31⟩[1q4]⟨41⟩ + [23]⟨q34⟩[4q4]⟨41⟩)

=
i

2s14

[23]⟨14⟩2
⟨13⟩ = i

[23]⟨14⟩
⟨13⟩[14]

(B.27)

B.5 Master integrals

We gather here master integrals for massless internal particles, based on results provided
in [148] (where results accounting for massive particles are also presented). First, let’s
recall our notation :

ID2 ({p1}) =
µ4−D

i(4π)
D
2

ˆ
dDl

(2π)4
1

l2(l − p1)
2 ,

ID3 ({p1, p2}) =
µ4−D

i(4π)
D
2

ˆ
d4l

(2π)4
1

l2(l − p1)
2(l − p1 − p2)

2 ,

ID4 ({p1, p2, p3}) =
µ4−D

i(4π)
D
2

ˆ
d4l

(2π)4
1

l2(l − p1)
2(l − p1 − p2)

2(l − p1 − p2 − p3)
2 ,

(B.28)
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p1

l p1

p2

l
p1

p2 p3

p4

p3

l

Figure B.1: Master integrals (with the outgoing momenta convention). In order : bubble,
triangle, and box scalar integral.

in dimensional regularization with D = 4 − 2ϵ, all momenta outgoing (as shown in
Fig. B.1) and where1 :

cΓ =
1

(4π)2−ϵ

Γ(1 + ϵ)Γ2(1 − ϵ)

Γ(1 − 2ϵ)

=
1

(4π)2

[
1 + (ln 4π − γ) ϵ+

1

2

(
(ln 4π − γ)2 − π2

6

)
ϵ2
]

+ O(ϵ3)

(B.29)

In practice, those integrals are written in terms of products of the involved momenta
(momenta square p2i , invariants sij , and in the massive case, squares of the masses m2

i ).
We have one bubble integral :

ID2 (p21) =

(
µ2

−p21

)ϵ [
1

ϵ
+ 2

]
+ O(ϵ) , (B.30)

two triangle integrals ID3 (p21, p
2
2, p

2
3) :

ID3 (0, p22, p
2
3) =

1

p22 − p23




1

ϵ

(
ln

(
µ2

−p22

)
− ln

(
µ2

−p23

))
+

1

2

(
ln2

(
µ2

−p22

)
− ln2

(
µ2

−p23

))




+ O(ϵ) ,

ID3 (0, 0, p23) =
1

p23

[
1

ϵ2
+

1

ϵ
ln

(
µ2

−p23

)
+

1

2
ln2

(
µ2

−p23

)]
+ O(ϵ) ,

(B.31)

1
It is also usual to write these integrals with :

rΓ =
Γ
2
(1− ϵ)Γ(1 + ϵ)

Γ(1− 2ϵ)
= 1− γϵ+

(
γ
2

2
− π

2

12

)
ϵ
2
+O(ϵ

3
)

instead of cΓ.
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and five box integrals ID4 (p21, p
2
2, p

2
3, p

2
4, s12, s23) :

ID4 (0, p22, p
2
3, p

2
4, s12, s23) =

µ2ϵ

s12s23 − p22p
2
4

×

×




2

ϵ2

(
(−s12)−ϵ + (−s23)−ϵ − (−p22)−ϵ − (−p23)−ϵ − (−p24)−ϵ

)

+
1

ϵ2

((−s23
p22p

2
3

)ϵ

+

(−s12
p23p

2
4

)ϵ)
− ln2

(
s12
s23

)

− 2Li2

(
1 − p22

s12

)
− 2Li2

(
1 − p24

s23

)
− 2Li2

(
1 − p22p

2
4

s12s23

)




+ O(ϵ) ,

ID4 (0, 0, p23, p
2
4, s12, s23) =

µ2ϵ

s12s23




2

ϵ2

(
(−s12)−ϵ + (−s23)−ϵ − (−p23)−ϵ − (−p24)−ϵ

)

+
1

ϵ2

(−s12
p23p

2
4

)ϵ

− ln2

(
s12
s23

)

− 2Li2

(
1 − p23

s23

)
− 2Li2

(
1 − p24

s23

)




+ O(ϵ) ,

ID4 (0, p22, 0, p
2
4, s12, s23) =

µ2ϵ

s12s23 − p22p
2
4

×

×




2

ϵ2

(
(−s12)−ϵ + (−s23)−ϵ − (−p22)−ϵ − (−p24)−ϵ

)

− ln2

(
s12
s23

)
− 2Li2

(
1 − p22

s12

)
− 2Li2

(
1 − p22

s23

)

− 2Li2

(
1 − p24

s12

)
− 2Li2

(
1 − p24

s23

)
− 2Li2

(
1 − p22p

2
4

s12s23

)




+ O(ϵ) ,

ID4 (0, 0, 0, p24, s12, s23) =
µ2ϵ

s12s23




2

ϵ2

(
(−s12)−ϵ + (−s23)−ϵ − (−p24)−ϵ

)

+ 2Ls−1

(
s12

p24
,
s23

p24

)


+ O(ϵ) ,

ID4 (0, 0, 0, 0, s12, s23) =
µ2ϵ

s12s23

[
2

ϵ2

(
(−s12)−ϵ + (−s23)−ϵ

)
− ln2

(
s12
s23

)
− π2

]

+ O(ϵ) ,

(B.32)
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where :

Ls−1(x, y) = Li2(1 − x) + Li2(1 − y) + ln(x) ln(y) − π2

6
(B.33)

with the dilogarithm defined as :

Li2(x) = −
ˆ x

0

dz

z
ln(1 − z)

=
∑

i∈N∗

xi

i2
, for |x| ≤ 1 .

(B.34)

B.6 5-point amplitude – detailed calculation

In order to compare the off-shell gauge invariant 5-point amplitude obtained from the
auxiliary quark line q̄−q+g+g+g+g+ to the one obtained from the auxiliary gluon line
g−g+g+g+g+g+, we will rewrite both expressions. Let’s first rewrite the first term of the
amplitude with auxiliary quarks (before applying the Λ prescription, see Eq. (3.194))

⟨14⟩⟨1|(2 + 3)(3 + 4)|1⟩
⟨12⟩⟨34⟩2⟨45⟩⟨56⟩⟨61⟩

=
⟨14⟩(⟨12⟩[23]⟨31⟩ + ⟨1|2 + 3|4]⟨41⟩)

⟨12⟩⟨34⟩2⟨45⟩⟨56⟩⟨61⟩

= − ⟨14⟩[23]⟨13⟩
⟨34⟩2⟨45⟩⟨56⟩⟨61⟩

+
⟨23⟩⟨45⟩⟨14⟩2⟨1|5 + 6|4]

⟨12⟩⟨23⟩⟨34⟩2⟨45⟩2⟨56⟩⟨61⟩

= − ⟨14⟩[23]⟨13⟩
⟨34⟩2⟨45⟩⟨56⟩⟨61⟩

+
⟨24⟩⟨35⟩⟨14⟩2⟨1|5 + 6|4]

⟨12⟩⟨23⟩⟨34⟩2⟨45⟩2⟨56⟩⟨61⟩

− ⟨25⟩⟨14⟩2⟨1|5 + 6|4]

⟨12⟩⟨23⟩⟨34⟩⟨45⟩2⟨56⟩⟨61⟩
.

(B.35)
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Above, we have used the momentum conservation to write ⟨1|2 + 3|4] = −⟨1|5 + 6|4] and
the Schouten identity: ⟨23⟩⟨45⟩ = ⟨24⟩⟨35⟩ + ⟨25⟩⟨43⟩. It leads to

A(1)
5 (g∗, 3+, 4+, 5+, 6+)

=
ig5x|kT |

48π2

[
− ⟨p4⟩[p3]⟨p3⟩

⟨34⟩2⟨45⟩⟨56⟩⟨6p⟩
+

⟨35⟩⟨p4⟩3⟨p|5 + 6|4]

κ∗⟨p3⟩⟨34⟩2⟨45⟩2⟨56⟩⟨6p⟩

− ⟨p5⟩⟨p4⟩2⟨p|5 + 6|4]

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩⟨6p⟩
+

⟨p|4 + 5|6]3

κ∗⟨p3⟩⟨45⟩2⟨3|4 + 5|6]sk3

+
⟨p4⟩⟨p5⟩(⟨p4⟩[4|5 + 6|p⟩ + ⟨p5⟩[56]⟨6p⟩)

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩⟨6p⟩
− ⟨p5⟩⟨p|56|p⟩
κ∗⟨p3⟩⟨34⟩⟨45⟩⟨56⟩2

+
⟨p|3 + 4|p]2

⟨34⟩2⟨56⟩⟨6p⟩⟨5|3 + 4|p]
− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

κ⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]sk6

]

=
ig5x|kT |

48π2

[
− ⟨p4⟩[p3]⟨p3⟩

⟨34⟩2⟨45⟩⟨56⟩⟨6p⟩
+

⟨35⟩⟨p4⟩3⟨p|5 + 6|4]

κ∗⟨p3⟩⟨34⟩2⟨45⟩2⟨56⟩⟨6p⟩

+
⟨p|4 + 5|6]3

κ∗⟨p3⟩⟨45⟩2⟨3|4 + 5|6]sk3
+

⟨p4⟩⟨p5⟩2[56]⟨6p⟩
κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩⟨6p⟩

− ⟨p5⟩2[56]⟨6p⟩
κ∗⟨p3⟩⟨34⟩⟨45⟩⟨56⟩2

+
⟨p|3 + 4|p]2

⟨34⟩2⟨56⟩⟨6p⟩⟨5|3 + 4|p]

− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

κ⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]sk6

]
.

(B.36)

Terms 4 and 5 can be combined using the Schouten identity

⟨p5⟩2[56]

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩2
(⟨p4⟩⟨56⟩ − ⟨6p⟩⟨45⟩) =

⟨p5⟩3⟨46⟩[56]

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩2
. (B.37)

Thus, finally, the amplitude reads

A(1)
5 (g∗, 3+, 4+, 5+, 6+)

=
ig5x|kT |

48π2

[
⟨p|4 + 5|6]3

κ∗⟨p3⟩⟨45⟩2⟨3|4 + 5|6]sk3
+

⟨p|3 + 4|p]2

⟨34⟩2⟨56⟩⟨6p⟩⟨5|3 + 4|p]

− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

κ⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]sk6
− ⟨p4⟩[p3]⟨p3⟩

⟨34⟩2⟨45⟩⟨56⟩⟨6p⟩

+
⟨p5⟩3⟨46⟩[56]

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩2
+

⟨35⟩⟨p4⟩3⟨p|5 + 6|4]

κ∗⟨p3⟩⟨34⟩2⟨45⟩2⟨56⟩⟨6p⟩

]
.

(B.38)

Let us now rewrite the expression for the amplitude Eq. (3.200). In the second term
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we use

s234 = s23+s24+s34 −−−−−→
Λ prescr.

Λ(sp3+sp4)+O(1) = Λ(⟨p3⟩[3p]+⟨p4⟩[4p]) = Λ⟨p|3+4|p] .
(B.39)

In the first term we use

⟨1|2 + 3|6] = −⟨1|4 + 5|6] −−−−−→
Λ prescr.

−Λ⟨p|4 + 5|6] + O(1) (B.40)

For the factorized term in the second line, we can use the momentum conservation

s345 = sk6 . (B.41)

For the last term, before applying Λ prescription, we use :

⟨1|2 + 3|4] = −⟨1|5 + 6|4] −−−−−→
Λ prescr.

−Λ⟨p|5 + 6|4] + O(1) (B.42)

In the end, we have

A(1)
5 (g∗, 3+, 4+, 5+, 6+)

=
ig5x|kT |

48π2

[
− ⟨p|4 + 5|6]3

κ∗⟨p3⟩⟨45⟩2sk3⟨3|k|6]
+

⟨p|3 + 4|p]2

⟨34⟩2⟨56⟩⟨6p⟩⟨5|3 + 4|p]

+
[p6]2

κ∗sk6

(
[p3][34]

⟨45⟩⟨5|3 + 4|p] −
[45][56]

⟨34⟩⟨3|k|6]
+

[35]

⟨34⟩⟨45⟩

)

− ⟨p3⟩[p3]⟨p4⟩
⟨34⟩2⟨45⟩⟨56⟩⟨6p⟩

+
⟨p5⟩3⟨46⟩[56]

κ∗⟨p3⟩⟨34⟩⟨45⟩2⟨56⟩2

+
⟨p4⟩3⟨35⟩⟨p|5 + 6|4]

κ∗⟨p3⟩⟨34⟩2⟨45⟩2⟨56⟩⟨6p⟩

]
.

(B.43)

Let us now compare Eq. (B.38) and Eq. (B.43). It is clear that the terms 2, 4, 5 and 6
are the same. The first terms are also equal upon applying ⟨3|4 + 5|6] = −⟨3|k|6]. Let
us now work on the third term of Eq. (B.38):

[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]
=

[5|(3 + 4)(4 + 5)|6]

⟨34⟩⟨45⟩⟨3|4 + 5|6]
+

[p|343(4 + 5)|6]

⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]

=
[53]⟨3|(4 + 5)|6]

⟨34⟩⟨45⟩⟨3|4 + 5|6]
+

[54]⟨45⟩[56]

⟨34⟩⟨45⟩⟨3|4 + 5|6]
+

[p3]⟨34⟩[43]⟨3|(4 + 5)|6]

⟨34⟩⟨45⟩⟨5|3 + 4|p]⟨3|4 + 5|6]

= − [35]

⟨34⟩⟨45⟩ +
[45][56]

⟨34⟩⟨3|k|6]
− [p3][34]

⟨45⟩⟨5|3 + 4|p] .
(B.44)

If we put back the factor − [p6]
2

κ
∗
sk6

(not writen in the calculation for simplicity), we recog-

nize the second line of Eq. (B.43). Thus, both approaches give the same result.
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B.7 On-shell limit calculation

In this appendix we detail the calculation that leads to Eq. (3.211) which implies the
correct on-shell limit for the n-point off-shell amplitude we presented in Eq. (3.208).

In order to rewrite the expression for U∗
3 so that the on-shell limit can be utilized, let

us come back to the expression for T2, see Eq. (3.208) before applying the Λ prescription.
We focus on the first term in the sum over j (i.e. for j = 3), since it is the term that
leads to U∗

3 when applying the Λ prescription. Let us call this term T3:

T3 =
n∑

l=4

⟨1| /K3···l /K(l+1)···(n+1)|1⟩3

⟨1| /K(l+1)···(n+1) /K3···l|2⟩⟨1| /K(l+1)···(n+1) /K3···l|3⟩

×
⟨23⟩⟨l(l + 1)⟩⟨12⟩[2|[F(3, l)]2 /K(l+1)···(n+1)|1⟩

⟨12⟩[2| /K3···l|l⟩⟨12⟩[2| /K3···l|(l + 1)⟩s3···l
.

(B.45)

We have

⟨1| /K3...l /K(l+1)...(n+1)|1⟩ = −⟨1| /K2
3...l|1⟩ − ⟨1| /K3...l|2]⟨21⟩ −−−−−→

Λ prescr.
Λκ∗

l∑

i=3

spi . (B.46)

Similar, we have

⟨1| /K(l+1)...(n+1) /K3...l|2⟩ = −⟨12⟩[2| /K3...l|2⟩ −−−−−→
Λ prescr.

−Λκ∗
l∑

i=3

spi , (B.47)

⟨1| /K(l+1)...(n+1) /K3...l|3⟩ = − ⟨1| /K2
3...l|3⟩ − ⟨12⟩[2| /K3...l|3⟩

=⟨13⟩s3...l − ⟨1| /K2
3...l|3⟩ − ⟨12⟩[2| /K3...l|3⟩ ,

(B.48)

which implies

⟨1| /K(l+1)...(n+1) /K3...l|3⟩ −−−−−→
Λ prescr.

−
√

Λ
(
κ∗[p| /K3...l|3⟩ + ⟨p3⟩s3...l

)
−−−−→
kT→0

−
√

Λ⟨p3⟩s3...l .
(B.49)

We may also notice that, for l = n, we have

[2| /K3...l|(l + 1)⟩ = [2| /K3...n|(n+ 1)⟩ = −[21]⟨1(n+ 1)⟩ −−−−−→
Λ prescr.

κ⟨p(n+ 1)⟩ . (B.50)

This is the only term in the sum over l that has κ in the denominator and that is the
only non vanishing term when kT tends to 0.

Putting all this together leads to

T3 −−−−−→
Λ prescr.

U∗
3 =κ∗

n−1∑

l=4

(∑l
i=3 spi

)2
⟨l(l + 1)⟩[p|[F(3, l)]2 /K(l+1)···(n+1)|p⟩

[p| /K3···l|l⟩[p| /K3···l|(l + 1)⟩s23···l

+ κ∗
(∑n

i=3 spi
)2 ⟨n(n+ 1)⟩[p|[F(3, n)]2|(n+ 1)]⟨(n+ 1)p⟩

[p(n+ 1)]⟨(n+ 1)n⟩κ⟨p(n+ 1)⟩s23···n

−−−−→
kT→0

κ∗

κ

(∑n
i=3 spi

)2
[p|[F(3, n)]2|(n+ 1)]

[p(n+ 1)]s23···n
.

(B.51)
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Notice that

s3···n = sp(n+1) = ⟨p(n+ 1)⟩[(n+ 1)p] = −
n∑

i=3

⟨pi⟩[ip] = −
n∑

i=3

spi . (B.52)

Back to U∗
3 , we have

lim
kT→0

|kT |
κ∗

U∗
3 =

|kT |
κ[p(n+ 1)]

[p|[F(3, n)]2|(n+ 1)]. (B.53)

This demonstrates the first relation in Eq. (3.211). We now have to prove the second
one i.e. we need to show that the obtained expression corresponds to the numerator of
the amplitude for n − 1 gluons with positive helicity (up to some factor). Actually, we
should first rewrite this numerator

∑

1≤i<j<k<l≤n

⟨ij⟩[jk]⟨kl⟩[li] =
1

[1n]

∑

1≤i<j<k<l≤n

⟨ij⟩[jk]⟨kl⟩[li][1n]

=
1

[1n]

∑

1≤i<j<k<l≤n

([1l]⟨lk⟩[kj]⟨ji⟩[in] + [1i]⟨ij⟩[jk]⟨kl⟩[ln])

=
1

[1n]


 ∑

2≤i<j<k<l<n

+
∑

1≤l<k<j<i≤n


 [1i]⟨ij⟩[jk]⟨kl⟩[ln].

(B.54)

Now we can work on U∗
3 . Let’s first express F in terms of a sum. For a direct

comparison, we should also use the expression of U∗
3 with the following change in the

momenta label : p → 1, ∀i ∈ 3, . . . , n + 1, i → i − 1 (then momentum conservation
expresses the same way i.e.

∑n
i=1 ki = 0).

lim
kT→0

|kT |
κ∗

U∗
3 =

|kT |
κ[1n]

[1|[F(2, n− 1)]2|n]

=
|kT |
κ[1n]

∑

2≤i<j<n
2≤k<l<n

[1i]⟨ij⟩[jk]⟨kl⟩[ln]
(B.55)

We have then for both Eq. (B.55) and Eq. (B.54) a sum over the same expression. We can
then, to shorten the demonstration, forget about the summed term (i.e. [1i]⟨ij⟩[jk]⟨kl⟩[ln])
and work directly on the sums to show that they are the same in this context.
On one side we have

∑

2≤i<j<n
2≤k<l<n

=
∑

2≤i<j<k<l<n

+
∑

2≤i≤k<j≤l<n

+
∑

2≤i≤k<l<j<n

+
∑

2≤k<i<j≤l<n

+
∑

2≤k<i≤l<j<n

+
∑

2≤k<l<i<j<n

(B.56)
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on the other hand, we have

∑

2≤i<j<k<l<n

+
∑

1≤l<k<j<i≤n

=
∑

2≤i<j<k<l<n

−


 ∑

2≤k<l<j<i≤n

+
∑

2≤k<j≤l<i≤n

+
∑

2≤k<j<i≤l<n




=
∑

2≤i<j<k<l<n

+


 ∑

2≤i≤k<l<j<n

+
∑

2≤k<i≤l<j<n

+
∑

2≤k<l<i<j<n




+


 ∑

2≤i≤k<j≤l<n

+
∑

2≤k<i<j≤l<n

+
∑

2≤k<j<i≤l<n




−
∑

2≤k<j<i≤l<n

=
∑

2≤i1<j1<n
2≤i2<j2<n

(B.57)

The first equality is obtained by momentum conservation on the index l (in the second
term only) and the second one also by momentum conservation, on the index i this time
(for terms 2 and 3). This finally proves the second relation in Eq. (3.211) which leads
then to the expected on-shell limit for the amplitude in Eq. (3.205).
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Appendix C

Appendices related to jet
quenching

C.1 BDIM solved with Chebyshev method : Code in de-
tails

We present an overview of the code used to apply the Chebyshev method, as described in
Sec. 4.4.3 (most of the variables names follow those used in this section). This program
is available on github. This overview will enter in the details of the usage of the program,
and, for those interested in how its works or who would like to modify it, a review of
the different variables and subroutines is given.

C.1.1 Usage

The program is compiled through the command :

$ g++ −std=c++11 −o cheb Cheb general main . cpp

or simply by running the script compile.sh (which just launch the compilation com-
mand). Then three commands can be used to launch the program :

$ . / cheb

to launch it with the default parameter file Parameters, provided with the source code.
The help is accessible through :

$ . / cheb help

Finally, for those who would like to prepare different parameter files, it is possible to
select the parameter file parameterfile through the command :

$ . / cheb p a r a m e t e r f i l e

For the details of the input parameters used, refer to Sec. C.1.3.
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C.1.2 General structure

Let’s begin the code overview by the structure of the program and the role of its different
files. First, the main file Cheb general main.cpp (see Sec. C.1.4) organizes the code.
It launches the parameter initialisation (from a file), allocates memory for arrays going
from one subroutine to another, launches the calculation of the S matrix, initializes
the result file, launches the Euler method and finally frees memory. Also, the code is
basically separated in 2 subprograms, with same structure, devoted to either the gluon
dominated cascade or the one accounting for quarks.
Then, Cheb method g.h (see Sec. C.1.5) contain the subroutines of the calculation
of the S matrix and of the Euler method, in the pure gluon case. Similarly, Cheb-
method g S NS.h (see Sec. C.1.6) contain the subroutines of the calculation of the S

matrix and of the Euler method for the case accounting for quarks this time.
Finally, Cheb functions.h (see Sec. C.1.7) contains mathematical definitions related
to the Chebyshev polynomials, as well as the kernels of the BDIM equation and the
initial solutions intended in the code.

C.1.3 Parameters

As already mentioned, input parameters are read from a file. This permits to rerun the
program with different parameters without having to recompile it. The parameter file
can be organized at will. The code will only recognize lines of the form1 :

1 parametername = parametervalue

where “parametername” is the name of a parameter from the parameters class. And,
any parameter not present in the parameter file is set to a default value. Also, after the
program has read the parameters, and before launching the calculation, the parameters
used are printed.
All the input parameters enter a parameter class defined in Cheb parameters.h, which
reads :

1 // Constants parameters used

2 class parameters

3 {

4 public:

5 // Result options

6 int norm;

7 bool positivity;

8

9 // Evolution used

10 int evo;

11

12 // Chebyshev method

13 int Nx;

14 double eps;

15

16 // Euler method

1
Actually, if it is separated by a space, anything can be put after parametervalue.
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17 int Nt;

18 int Nt_w;

19 double t0;

20 double dt;

21

22 // Initial distributions

23 bool initgrid;

24 string initgridname;

25 double Ieps;

26 double C_g0;

27 double C_S0;

28 double C_NS0;

29

30

31 string gridname;

32

33 // internal parameters

34 bool paramfromfile;

35

36 void from_file(string filename);

37 void default_ ();

38 void show();

39 void write ();

40 };

Lets review all these parameter :

• int norm specifies a normalization for the fragmentation function, with the fol-
lowing possibilities2 :

– 0 : no normalization (the default choice)

– 1 : normalisation of the fragmentation functions Dg(x) +DS(x)

– 2 : normalisation of the multiplicity functions
Ng(x) +NS(x) = 1

x(Dg(x) +DS(x))

– 1 : normalisation of each fragmentation functions Di(x) (when not null)

– 2 : normalisation of each multiplicity functions Ni(x) = 1
xDi(x) (when not

null)

Note that option 1 & 3 and 2 & 4 are the same in the pure gluon case.

• bool positivity : forces positivity of D(x) when set to 1 (setting the negative
values of D(x)3 to 0). When set to 0, the negative values are allowed (and may
rise from the oscillation of the solution due to the polynomial expansion).

• int evo defines the type of evolution : pure gluon for 0, with quarks for 1 and the
simplified case of (with the kernel of Eq. (4.106)) for (2).

2
This choices where implemented for comparison purpose, to MC approach, testing different weight-

ing. There are not meant to be physical (except the default choice).
3
i.e the values of D on the Chebyshev nodes.
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• int Nx is the order of the Chebyshev decomposition over the variable x of both
the FF D and the integrands.

• double eps defines the bijection used as :

– if eps= 0 : a linear bijection from y : [0, 1] → [−1, 1] as defined in Eq. (4.138).

– if eps> 0 : a logarithmic bijection from y : [ϵ, 1] → [−1, 1] as defined in
Eq. (4.141).

• int Nt is the number of time steps4.

• int Nt w is the number time steps saved in the result grids. This means that
the Euler method can run for an high number of time steps (and hence increas-
ing the precision of the calculation) without having the size of the grids increase
dramatically (by fixing Nt w at a reasonable value).

• int t0 is the initial time of the evolution (usually set to 0, but it could be set
differently when initiating the evolution with an already evolved distribution...).

• int dt is the time step used in the Euler method.

• bool initgrid defines if a grid is used as the initial solution (when set to 1) or
if the initial solution is taken from an analytical formula, characterized by other
parameters (when set to 0).
In the former case, the grid is loaded from the file initgridname. The file as to
be a 1 column array of Nx lines, filled with the Chebyshev decomposition of the
initial distribution to be used. Caution, no verification on the file formatting is
done.
When initgrid= 0, the initial solution is defined by :

Dg(x, t0) = Cg0Dinit(x, Iϵ) ,

DS(x, t0) = CS0Dinit(x, Iϵ) ,

DNS(x, t0) = CNS0Dinit(x, Iϵ) ,

(C.1)

where the FF Dinit reads :

Dinit(x, Iϵ) =

{
Da(x, t0), if Iϵ = 0 ,

D0(x, Iϵ), if Iϵ > 0 ,
(C.2)

where Da and D0 are respectively the analytical solution to the simplified BDIM
equation, given in Eq. (4.107) and the Gaussian approaching a Dirac delta function,
defined in Eq. (4.152). Note that, using Da as the initial solution implies choosing

4
While noted t, it is actually the proper time τ that is used in this program.
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an initial time t0 > 0 (and no verification in this sense are made by the program5).
In the case of the gluon dominated cascade, Eq. (C.1) reduces to :

Dg(x, t0) = Dinit(x, Iϵ) , (C.3)

where the factors C have no impact. Indeed, these factors are present to define
the composition of the initial jet.

• string gridname is the time step used in the Euler method.

• bool paramfromfile is set to 1 when the parameter file has been found, and to
0 in the contrary case. It is use to specify, in the later case, that the parameters
used are the default ones (when printing the parameters used).

Finally, some routines are attached to these parameters :

• void from file(string filename) initializes the parameters of the class, first with
default values then reading them from the file filename (if found).

• void default () sets the default values of the parameters.

• void show() display the parameters (in the shell).

• void write() writes the parameters in a file (in gridname+” parameters”.

Also, a set of little functions is defined to extract in a line in the parameter file the
parameter (with the wanted type) :

1 double paramstr2double(string str);

2 int paramstr2int(string str);

3 bool paramstr2bool(string str);

4 string paramstr2str(string str);

While we will not enter into the details of all routines, we will just mention how the
parameters are read from the parameter file. Basically the lines of the parameter file are
scanned, looking for the possible parameters. Once a line with a parameter is found, we
use the relevant function to extract from it the wanted parameter. In the case of Nx, it
reads :

1 while (getline(parameters_file , line))

2 {

3 if (!( line [0]== ’/’ && line [1]== ’/’))

4 {

5 if (line [0]== ’N’ && line [1]== ’x’)

6 Nx = paramstr2int(line);

7 .

8 .

9 .

10 }

11 }

5
In this case, i.e when Iϵ = 0 and t0 = 0, the initial solution will be null as well as the solution

calculated.
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As one can see, any line beginning with // is directly skipped.

For any modification implying a new parameter a, this parameter has to be correctly
implemented in the parameter class and all its subroutines (which means basically an-
swering how to read it from file, what is its default value, how to display it and to write
it in a summary parameter file).

C.1.4 Cheb general main.cpp subroutines

Let’s now have a look to the main file. First, some constants, not accessible through the
input parameters

1 const long double M_PI = 3.141592...;

2 const int Nc = 3; // Number of colors

3 const int Nf = 3; // Number of active quark flavors

4 // Casimir operators

5 const double C_A = Nc;

6 const double C_F = (Nc*Nc -1) /2./Nc;

7 const double T_F = .5;

Then the function int main(int argc, char** argv) gives the possibility to set the
parameter file to use when running the program (which is, without argument, ’Parame-
ters’). It permits also to display the help message (written in int help(void)) and an
error message when the program is run with more than one argument. When the pro-
gram is run with zero or one argument (the name of the parameter file), then the routine
int program init(string parametersfile) is launched. It creates the parameter class
used in the whole algorithm from the file parametersfile and, depending on the type
of evolution (defined by evo), it launches either int program g S NS(parameters
param) or int program g(parameters param) in the pure gluon case. These rou-
tine are very similar, the former reducing to the later when forgetting all the variables
relative to color singlet and non singlet.
Then we will detail it for the pure gluon case. The first goal of int program g
(parameters param) is to allocate memory for the arrays that will be shared between
the calculation of the S matrix and the Euler method :

1 double *D = new double[Nx];

2 double **T = new double *[Nx];

3 double *X = new double[Nx];

4 double **S = new double *[Nx];

5

6 for (int i = 0; i < Nx; ++i)

7 {

8 T[i] = new double[Nx];

9 S[i] = new double[Nx];

10 }

where :

• double ∗D correspond to the gluon (discrete) fragmentation function Dt,k we want
to evolve. Actually, only the fragmentation at the current time (in the time loop
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of the Euler method) is kept in memory (but it is written on the result grid during
the time loop).

• double ∗∗S correspond to Si,j .

• double ∗∗T correspond to Ti,j .

• double ∗X is the set of used nodes {xi}.

Then, the calculation of the matrix S is hold by the routine cheb initilization g(X,
T, S, param) (defined in Sec. C.1.5). Once achieved, the result grid D grid is created
and the Euler method can be carried out by the routine cheb Euler g(X, T, D, S,
D grid, param) (also defined in Sec. C.1.5). Finally, once the solution obtained, the
memory used by the arrays defined earlier is deallocated (and the result file closed).

In the “full” case (accounting for quarks in the cascade), int program g S NS
(parameters param) has exactly the same structure, what changes are the different
arrays defined. In addition to the one introduced in the gluon case, we have :

• double ∗D g corresponds to the gluon fragmentation function Dg
t,k.

• double ∗D S corresponds to the color singlet fragmentation function DS
t,k.

• double ∗D NS corresponds to the color non-singlet fragmentation function DNS
t,k .

• double ∗∗S gg corresponds to Sgg
i,j .

• double ∗∗S gS corresponds to SgS
i,j .

• double ∗∗S SS corresponds to SSS
i,j .

• double ∗∗S Sg corresponds to SSg
i,j .

• double ∗∗S NSNS corresponds to SNSNS
i,j .

This, of course implies different definitions of the routines holding the S matrix calcu-
lation and the Euler method (which are written in cheb initilization g S NS(X, T,
S, param) see Sec. C.1.6).

C.1.5 Cheb method g.h subroutines

Cheb method g.h contains the routines related to both the calculations of the S matrix
and and of the Euler method. Let’s review the different subroutine present :

• cheb initilization g initialize the calculation of the matrix S by defining the
useful Chebyshev polynomials Tij . Then, it launches the subroutines where the
actual calculation of the matrix S takes place. This choice depends on the value
of ϵ :

234



– for ϵ = 0, the calculation is performed with a linear bijection, hold by the
subroutine cheb init S chebint g.

– for ϵ > 0, the calculation is performed with a logarithmic bijection, hold by
the subroutine cheb init S chebint glog.

• cheb Euler g initialize the solution with the initial distribution either coming
from a grid or following Eq. (C.1). Then, the Euler method is performed, given
the S matrix, through a loop in time t. During this loop, the derivative of the
FF D is calculated using Eq. (4.149) and added to the value of D in the previous
iteration. Note that the results are directly written during the Euler method.
Indeed, when t ≡ 0 mod int

(
N t

N t w

)6, in addition to the actual calculation, D is
added to the result grid (i.e its value on the Nx nodes).

• normalize Dg is used to applied, during the Euler method, the normalization
choice set by norm.

We will detail a little the calculation of the S matrix, in the case of the logarithmic
bijection (i.e, as described in cheb init S chebint glog). This calculation uses the
following variables :

• double ∗∗intTk corresponds to the integral of the l-th Chebyshev polynomial
between -1 and 1.

• double ∗X0k is the set of used nodes {x0ki }.

• double ∗Xk1 is the set of used nodes

• double ∗∗I 1 corresponds to I1k .

• double ∗∗I 2 corresponds to I2k,i. {xk1i }.

First, the arrays intTk, X0k and Xk1 are evaluated. Then The calculation of both the
S matrix and the different integrals I are performed in the same loops (ordered in such
a way that it works). If we isolate the S calculation, it follows exactly the formula given
in Sec. 4.4.3 :

1 for (int k = 0; k < N; ++k){

2 for (int i = 0; i < N; ++i){

3 for (int j = 0; j < N; ++j){

4 if (i==0)

5 S_gg[k][j] += 1./N/sqrt(X[k])*T[i][j]*I_g1[k][i];

6 else

7 S_gg[k][j] += 2./N/sqrt(X[k])*T[i][j]*I_g1[k][i];

8 } }

9 S_gg[k][k] -= 1./ sqrt(X[k])*(I_g2[k]+I_g3);}

6
this condition insure the number of time points in the result grid to be N t w.
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where the if loop is due to the prime prescription for the sum on i . What is less direct,
is how the calculation of the integrals I is implemented in the same loop (since the loop
due to the Chebyshev integration has to be performed before the calculation of S). One
may argue that each integral and the sum could be calculated in separated loop but,
since the calculation of I2i,j already implies 4 for loops (2 on the indices, 2 for the sums)),
it is faster in the proposed way :

1 for (int k = 0; k < N; ++k){

2 for (int i = 0; i < N; ++i){

3 for (int m = 0; m < N; ++m){

4 for (int l = 0; l < N; ++l){

5 I = 1./N*T[l][m]*.5*(1 -X[k])*intT[l];

6 if (l==0)

7 I_g1[k][i] += I*K_gg(Xk1[m][k])

8 *(sqrt(Xk1[m][k])

9 *cheb_T(i,y_log(X[k]/Xk1[m][k],eps ,1))

10 -Xk1[m][k]*T[i][k]);

11 else

12 I_g1[k][i] += 2*I*K_gg(Xk1[m][k])

13 *(sqrt(Xk1[m][k])

14 *cheb_T(i,y_log(X[k]/Xk1[m][k],eps ,1))

15 -Xk1[m][k]*T[i][k]);

16 if (i==0){

17 if (l==0)

18 I_g2[k] += 1./N*K_gg(X0k[m][k])*X0k[m][k]

19 *T[l][m]*.5*X[k]*intT[l];

20 else

21 I_g2[k] += 2./N*K_gg(X0k[m][k])*X0k[m][k]

22 *T[l][m]*.5*X[k]*intT[l];}}}}}

This basically follows the expressions given in Eq. (4.147), with some changes in the
indices adapted to the loop and ordering used. Note that the integrals are initialized to
0 in advance.

C.1.6 Cheb method g S NS.h subroutines

Cheb method g S NS.h works the same way as Cheb method g.h but in the sys-
tem of equation case, as presented in Sec. 4.4.3. Then, to the variables present in
Cheb method g.h, we have to add :

• double ∗∗I g1 corresponds to Ig,1k,i .

• double ∗I g2 corresponds to Ig,2k .

• double I g3 corresponds to Ig,3

• double ∗I g4 corresponds to Ig,4k .

• double ∗∗I S1 corresponds to IS,1k,i .

• double ∗I S2 corresponds to IS,2k .
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• double ∗I S3 corresponds to IS,3k .

• double ∗∗I NS1 corresponds to INS,1
k,i .

• double ∗I NS2 corresponds to INS,2
k .

Also, the normalization of the FF is now hold by two definitions of normalize D (cor-
responding to either the normalisation of the sum of FF or of each of them).

C.1.7 Cheb functions.h subroutines

Finally, Cheb functions.h contains all the “basic” function i.e mathematical defini-
tions. First we have the definitions related to the Chebyshev polynomials.
cheb T evaluates the n-th Chebyshev polynomial (of the first kind) on x.

1 double cheb_T(int n, double x){

2 double T;

3 if (x<-1){

4 cout << "\nError cheb_T cannot be evaluated on " << x;

5 return 0;}

6 else if (x>1){

7 cout << "\nError cheb_T cannot be evaluated on " << x;

8 return 0;}

9 T = cos(n*acos(x));

10 return T;}

cheb int evaluates the integral of the i-th Chebyshev polynomial on the range [−1, 1].

1 double cheb_int(int i){

2 double y;

3 if (i==1)

4 y = 0;

5 else

6 y = (pow(-1., double(i))+1)/double(1-i*i);

7 return y;}

node returns the i-th node of the N -th Chebyshev polynomial.

1 double node(int N, int i){

2 return cos(M_PI/N*(i+.5));}

y defines a linear bijection y : [a, b] → [−1, 1], returning its value on x.

1 double y_(double x, double a, double b){

2 return (2*x-b-a)/(b-a);}

y inv defines the inverse of the linear bijection y, y−1 : [−1, 1] → [a, b], returning its
value on x.

1 double y_inv(double x, double a, double b){

2 return 0.5*((b-a)*x+b+a);}

y log defines a logarithmic bijection y : [a, b] → [−1, 1], returning its value on x.

1 double y_(double x, double a, double b){

2 return 1+2* log(x/b)/log(b/a);}
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y log inv defines the inverse of the logarithmic bijection y, y−1 : [−1, 1] → [a, b], re-
turning its value on x.

1 double y_inv(double x, double a, double b){

2 return b*pow(b/a, .5*(x-1));}

Then, the kernels of the BDIM equations are defined :

1 double K_simpl(double x)

2 return 1./ pow(x*(1-x) ,1.5);

3

4 double K_gonly(double x)

5 {

6 double f;

7 f = 1-x+x*x;

8 return pow(f ,2.5)/pow(x*(1-x) ,1.5);

9 }

10

11 double K_gg(double x){

12 double f;

13 f = 1-x+x*x;

14 return pow(C_A ,1.5)*pow(f,2.5)/pow(x*(1-x) ,1.5);}

15

16 double K_gq(double x){

17 return C_F /2.*(1+ pow(1-x,2))/x*sqrt (((1-x)*C_A+x*x*C_F)/(x*(1-x)));}

18

19 double K_qq(double x){

20 return C_F /2.*(1+x*x)/(1-x)*sqrt((x*C_A+pow(1-x,2)*C_F)/(x*(1-x)));}

21

22 double K_qg(double x){

23 return Nf*T_F*(x*x+pow(1-x,2))*sqrt((C_F -x*(1-x)*C_A)/(x*(1-x)));}

And finally, the possible analytical expression that can be used to define initial distri-
bution are set. D t0 e defines the narrow Gaussian peaked in 1 (as in Eq. (4.152)).

1 double D_t0_e(double x, double eps){

2 return sqrt (2./ M_PI)/eps*exp(-pow((1-x)/eps ,2.) /2.);}

D t0 a defines the analytical solution of the simplified BDIM equation (as in Eq. (4.107)).

1 double D_t0_a(double x, double tau){

2 return tau/sqrt(x*pow(1-x,3.))*exp(-M_PI*tau*tau/(1-x));}

C.2 BDIM solutions, different approaches comparison

In this appendix, we compare the results obtained by the different method to solve the
BDIM equations presented in Sec. 4.4. First, we will compare the energy distribution
obtained with the Chebyshev method, with MINCAS and with TMDICE. The solutions
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used here were obtained with the following input parameters :

xmin = 10−4, ϵ = 10−6, lmin = 0.1 GeV,

ϵCheb = 10−4, dt = 10−6, N = 200,

Nc = 3, Nf = 3, αs = π/10,

E = 100 GeV, n = 0.243 GeV3, ˆ̄q = 1 GeV2/fm, mD = 0.993 GeV.

(C.4)

where the first line corresponds to regulator for both MCMC methods and the second
lines concerns parameters specific to the Chebyshev method. They are the same as those
used in Sec. 4.5 with the addition of specific parameters for the Chebyshev method (in
particular, ϵCheb is the low-x cut used for the logarithmic bijection). The comparisson
is presented in Fig. C.1.
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Figure C.1: Comparison of energy distribution obtained with the MINCAS (in red),
TMDICE (in black) and the Chebyshev method (in blue) for an initial gluon (left) and
for an initial quark (right) at 0.1fm (top) and 4fm (bottom). Ratio plots with respect
to the MINCAS solution are also plotted.

We observe a very good agreement between all 3 approaches except for some statis-
tical errors in TMDICE (which could be solved with finer numerical integration, but the
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calculation time increase rapidly then) and some oscillations of the Chebyshev method
(even for the nodes) at low-x in the quark distribution for quark jets at low time (where
the Chebyshev expansion has difficulty to reproduce the steep peak appearing in the
distribution).
We can also have a look on the transverse momentum distributions of the solutions
to the “full” BDIM equation (Eq. (4.71)) obtained by MINCAS and TMDICE. This is
illustrated in Fig. C.2.
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Figure C.2: Comparison of transverse momentum distribution obtained with the MIN-
CAS (in red) and TMDICE (in black) for an initial gluon (left) and for an initial quark
(right) at 0.1fm (top) and 4fm (bottom). Ratio plots with respect to the MINCAS solu-
tion are also plotted.

Again, both approaches agree well on the transverse momentum distribution, even
if it is more complicated to obtain good statistics with TMDICE (due to the precision of
the numerical integration...). Still, it is interesting to note a slight difference in shape
(not due to statistical errors) at low-kT for the distribution after a long evolution (4fm
for instance).
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