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ABSTRACT

Jets of Active Galactic Nuclei (AGN) and gamma-ray bursts emit strong high-

energy electromagnetic radiation and are the main candidates for sources of ultra

high-energy cosmic rays. Particle acceleration is often assumed to take place at

relativistic shocks in the jets. These shocks are typically magnetized and mostly quasi-

perpendicular (superluminal). Their physics have been extensively studied in the

ultrarelativistic regime, and mildly relativistic shocks are poorly explored. The aim

of this dissertation is to investigate mildly relativistic shocks in magnetized electron-

proton plasma with unprecedentedly high-resolution and large-scale kinetic particle-

in-cell (PIC) simulations, for conditions typical for internal shocks in blazar cores. The

simulations take into account ion-scale effects that cause corrugations along the shock

surface. They are performed in two dimensions (2D) for two different configurations of

the mean perpendicular magnetic field that is either in- or out- of the simulation plane.

The focus of my studies in on particle heating and acceleration that results in the proton-

to-electron energy transfer in the shock. My results show that the synchrotron maser

instability persists to operate in mildly relativistic shocks in agreement with theoretical

predictions and produces coherent emission of upstream-propagating electromagnetic

waves. Shock front ripples are excited in both mean field configurations and they

engender effective wave amplification. The action of these waves with plasma generates

electrostatic wake-fields in the shock upstream that act to energise electrons. The

wakefield acceleration (WFA) is not efficient and the majority of the energy transfer

takes place in the shock and downstream, where the electron heating proceeds beyond

adiabatic compression at the shock. I for the first time demonstrate that the shock

rippling is crucial for the electron non-adiabatic energisation processes in the shock. The

resulting ion-to-electron energy transfer is far below energy equipartition, independent

of the mean magnetic field configuration. Downstream electron energy spectra are close

to thermal distributions, although limited-range supra-thermal power-law components

are also present. My results show that WFA at mildly relativistic magnetized shocks

in AGN jets cannot be the source of high-energy cosmic rays. Limited level of the

electron-ion coupling is in tension with leptonic models of blazar emission based on

internal mildly relativistic shock scenario, unless the presence of the positron plasma

component can facilitate enhanced ion-to-electron energy transfer.
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STRESZCZENIE

Dżety aktywnych jąder galaktyk i błyski gamma emitują silne promieniowanie

elektromagnetyczne wysokich energii i są głównymi kandydatami na źródła promieni

kosmicznych najwyższych energii. Często przyjmuje się, że przyspieszenie cząstek

w dżetach zachodzi w relatywistycznych falach uderzeniowych. Szoki te są zwykle

zmagnetyzowane i quasi-prostopadłe (ponadświetlne). Ich fizyka jest dość dobrze

zbadana w reżimie ultrarelatywistycznym, natomiast fale średnio relatywistyczne są mało

poznane. Celem niniejszej rozprawy jest badanie średnio relatywistycznych szoków

w zmagnetyzowanej plazmie elektronowo-protonowej za pomocą symulacji kinetycznych

typu cząstka w komórce. Zastosowane symulacje wielkiej skali odznaczają się bardzo

wysoką rozdzielczością i wykonane zostały dla warunków typowych dla wewnętrznych

szoków w rdzeniach blazarów. Uwzględniają one efekty w skali jonowej, które

prowadzą do pofałdowania powierzchni szoku, i wykonywane są w dwóch wymiarach

dla dwóch różnych konfiguracji średniego prostopadłego pola magnetycznego, które

znajduje się w płaszczyźnie symulacji lub tworzy z nią kąt 90o. W moich badaniach

skupiłam się na procesach grzania i przyspieszania cząstek, które skutkują przekazem

energii od protonów do elektronów w fali uderzeniowej. Moje wyniki pokazują,

że synchrotronowa niestabilność maserowa zachodzi w średnio relatywistycznych

szokach zgodnie z przewidywaniami teoretycznymi i generuje emisję spójnych fal

elektromagnetycznych rozchodzących się przed szokiem. Pofałdowania powierzchni fali

są wzbudzane dla obu konfiguracji średniego pola, wzmacniając te fale. Ich oddziaływanie

z plazmą z przodu fali generuje fale elektrostatyczne, które przyspieszają elektrony

w procesie WFA. Proces ten nie jest jednak wydajny, a transfer energii odbywa się

głównie w szoku i w obszarze za szokiem, gdzie procesy grzania elektronów odbiegają od

adiabatycznej kompresji w szoku. Po raz pierwszy pokazuję, że pofałdowanie szoku ma

kluczowe znaczenie dla nieadiabatycznych procesów przyspieszania elektronów. Przekaz

energii proton-elektron zachodzi znacznie poniżej warunku ekwipartycji, niezależnie od

konfiguracji średniego pola magnetycznego. Widma energii elektronów z tyłu szoku

są bliskie rozkładom termicznym, choć występują również składowe ponadtermiczne

w ograniczonym zakresie energii. Moje wyniki pokazują, że proces WFA w średnio

relatywistycznych zmagnetyzowanych szokach dżetów aktywnych galaktych nie może

być źródłem wysokoenergetycznych promieni kosmicznych. Ograniczony poziom

sprzężenia elektron-proton stoi w sprzeczności z leptonowymi modelami emisji blazarów

w ramach scenariusza średnio relatywistycznych szoków wewnętrznych, chyba że

obecność składowej pozytronowej może znacznie wspomóc transfer energii protonów do

elektronów.
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CHAPTER 1

INTRODUCTION

The origin of energetic particles is a long-standing problem of major importance

in astrophysics. High-energy charged particles are thought to be responsible for

the intense non-thermal emissions observed from astronomical objects and in violent

explosive phenomena in the Universe. They also reach Earth in great amounts as cosmic

rays (CRs). Highest energy CRs may reach 1021 eV, and may be even more energetic

at the production sites, since part of their energy becomes lost during propagation in

intergalactic and/or interstellar media. It is widely assumed that CRs with energies

up to ∼ 1015 eV are produced at non relativistic shocks in our Galaxy, in particular

by supernova remnants. Concerning higher-energy particles, in particular these with

energies above ∼ 1018 eV, it is presumed that they are of extra-galactic origin and

generated in systems with relativistic plasma outflows. The main candidates are Active

Galactic Nuclei (AGN) (such as blazars) and Gamma Ray Bursts (GRB). Observations

of non-thermal synchrotron and inverse Compton emission in blazar jets that extends

in broad energy range from radio up to TeV γ rays, indicates the presence of ultra

relativistic electrons. Recently established possible association of one of the high-energy

neutrino sources with a flaring blazar TXS 0506+056 [Aartsen et al., 2018] shows that

also CRs hadrons can be produced in Active Galactic Nuclei. High-energy electrons

are most likely also responsible for the inverse Compton component of the GRB jet

afterglow emission at sub-TeV gamma-ray energies, as evidenced by recent discoveries

[Acciari et al., 2019a,b, Abdalla et al., 2019]. It is often assumed that particles in AGN

and GRBs can reach very high energies through acceleration in shock waves associated

with the jets. These shocks have Lorentz factors, Γsh, ranging from mildly relativistic

to ultra relativistic values. Diffusive Shock Acceleration (DSA) has been often invoked

as the acceleration process, though this mechanism may not work at ultra relativistic

(Γsh� 1) magnetized shocks due to inherent superluminal conditions in which particle

diffusion across the magnetic field lines is difficult to achieve [e.g., Niemiec et al., 2006].

In fact, particle-in-cell simulation studies confirmed that ultra relativistic shocks can be

efficient particle accelerators through DSA-like processes only if plasma magnetization

is very small (σ . 10−3, where σ is the ratio of the Poynting flux to the kinetic energy

flux) or the shock is subluminal [for review see, e.g., Pohl et al., 2020].
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As an alternative to the DSA model, it has been argued that wave-particle

interactions of plasma collective phenomena can lead to an efficient particle acceleration

at superluminal magnetized relativistic shocks. Such shocks are mediated by magnetic

reflection of the incoming flow off the shock-compressed magnetic field [e.g., Gallant

et al., 1992, Hoshino et al., 1992, Langdon et al., 1988]. Coherent gyration of particles

at the shock front breaks up in bunches of charge and triggers the Synchrotron

Maser Instability (SMI), which excites large-amplitude electromagnetic waves of the

extraordinary mode (X-mode) that can escape towards the upstream region. This

precursor wave emission has been confirmed through one-dimensional (1D) [e.g.,

Langdon et al., 1988, Hoshino and Arons, 1991, Gallant et al., 1992, Hoshino et al.,

1992, Amato and Arons, 2006, Plotnikov and Sironi, 2019] and two-dimensional (2D)

[e.g., Sironi and Spitkovsky, 2009, 2011, Iwamoto et al., 2017, Plotnikov et al., 2018,

Iwamoto et al., 2018, Iwamoto et al., 2019] particle-in-cell (PIC) simulations.

In the electron-ion plasmas, interactions of the incoming electrons with the precursor

waves can also generate large-amplitude longitudinal electrostatic (ES) oscillations, so-

called wake-field [Lyubarsky, 2006]. It was shown that electrons and ions can be

energised to very high energies in a manner analogous to Wake-field Acceleration

(WFA) during the nonlinear process of the Langmuir wave collapse [Hoshino, 2008].

WFA has been first proposed in laboratory plasmas [Tajima and Dawson, 1979] and

later applied to UHECR acceleration [e.g., Chen et al., 2002]. It was then demonstrated

through laser plasma experiments and simulations [e.g., Kuramitsu et al., 2008] that

the WFA produces power-law energy spectra with a spectral index of 2. Indeed, the

WFA in relativistic shocks represents a promising scenario for ultra high energy CR

(UHECRs) acceleration.

Relativistic magnetized shocks have recently been studied with 2D PIC simulations

for the case of pair plasmas [Sironi and Spitkovsky, 2009, Iwamoto et al., 2017, 2018,

Plotnikov et al., 2018], electron-ion plasmas [Sironi and Spitkovsky, 2011, Stockem

et al., 2012, Iwamoto et al., 2019] and also mixed-composition plasmas [Stockem et al.,

2012]. It has been demonstrated by Iwamoto et al. [2017] that simulations need to have

high numerical resolution to detect fully the precursor waves. If this condition is met

coherent waves continue to persist, even in weakly magnetized plasmas, dominated by

the relativistic Weibel instability [e.g., Kato and Takabe, 2010, Sironi and Spitkovsky,

2



2011]. In pair plasmas, the precursor wave amplitudes were found to be systematically

smaller in 2D simulations compared with the 1D case. However, the wave power is

sufficient to disturb the upstream medium.

2D simulations with the magnetic field in the simulation plane showed that also

ordinary mode (O-mode) waves are excited and at low magnetizations the Weibel

instability amplifies these waves [Iwamoto et al., 2018]. The amplitudes in pair plasmas

are in general much smaller than in ion-electron shocks [Iwamoto et al., 2019]. In

conditions of high electron magnetization the wave energy exceeds that in pair plasmas

by almost two orders of magnitude and the 2D amplitude is close to the one observed

in one-dimensional simulations. In high-Γsh shocks this amplification over the pair

plasmas is attributed to the so-called positive feedback process associated with the

ion-electron coupling through the induced wake-fields. In the turbulent wake-fields

close to the shock the electrons can be efficiently heated so that the energy equipartition

between electrons and ions may be achieved before the flow reaches the shock front. At

the same time non-thermal electrons and ions can be generated. This further confirms

that Wake-field Acceleration may indeed be applicable for UHECR acceleration in

relativistic astrophysical objects.

Most of the works reviewed above treat ultra relativistic shocks with Lorentz factors

Γsh ≥ 10. The mildly relativistic regime, Γsh ≈ 2, has been instead poorly explored and

only with low-resolution studies [Lyubarsky, 2006, Sironi and Spitkovsky, 2011]. It has

been estimated that only for electron-ion shocks with Γsh & (mi/me)1/3, where mi/me is

the ion-to-electron mass ratio, the electrons will form ring-like phase-space distribution

unstable to SMI. Shocks with Γsh . 10 show very weak [Sironi and Spitkovsky, 2011]

or no wake-field [Lyubarsky, 2006]. In consequence ion-to-electron energy transfer

in the upstream is suppressed. The level of proton-to-electron energy transfer at

mildly relativistic shocks is of importance to modelling the synchrotron and inverse

Compton emission from blazar jets. It is often assumed that radiating particles are

high-energy electrons and positrons accelerated in mildly relativistic internal shocks

[e.g, Ghisellini and Madau, 1996]. Very strong coupling of electrons with protons

indicated by PIC simulations of ultra relativistic shocks favour leptonic models for

luminous blazar emission over the hadronic ones. On the other hand, reconciling the

radiative consequences of these models with observed X-ray spectra poses quite strong

3



constraints on the location of the emission sites in the jet and on the pair content [e.g.,

Sikora et al., 2013]. However, the conclusions may be different if a lower-level coupling

is observed for mildly relativistic and magnetized conditions.

The aim of this dissertation is to examine the physics of mildly relativistic shocks

in magnetized electron-ion plasma for conditions in AGN jets. I use unprecedentedly

high-resolution large-scale 2D PIC simulations to probe strictly perpendicular shocks,

in which the mean magnetic field direction forms an 90◦ angle with the shock normal.

Two different simulations are brought forth, with different inclination of the ambient

magnetic field with respect to the simulation plane. I investigate the triggering of

SMI and wake-fields and the mechanisms of particle heating, including WFA and the

previously unreported effects of the ion-scale corrugations of the shock surface on

particle acceleration. I also discuss the resulting level of electron-ion coupling. This

dissertation is organised as follows:

• In Chapter 2 the physics of CRs is briefly introduced, and the current theories of

UHECRs generation in AGN are outlined.

• In Chapter 3 a brief description of the shock physics in collisionless plasmas is

provided.

• In Chapter 4 the main properties of the SMI and the WFA-related acceleration

mechanisms are outlined.

• Chapter 5 presents the basics of the PIC simulation method and the techniques I

used to suppress the numerical instabilities that affect simulations of relativistic

plasmas. Results of test simulations defining the numerical PIC model used are

presented.

• Chapter 6 presents the results of my 2D and 1D large-scale PIC simulations.

• Finally, Chapter 7 presents the summary and discussion of my results and their

applications in astrophysics.
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CHAPTER 2

HIGH ENERGY COSMIC RAYS AND ACTIVE GALACTIC NUCLEI

The discovery of CRs dates back to more than a century ago, when Victor Hess

performed his balloon experiment in 1912 [Hess, 1912]. However, after over 100 years

of investigations, the origin of CRs is still source of debate, especially concerning the

highest energy particles. It is known that CR are charged particles (protons, pairs and

some atomic nuclei) that reach Earth from various sources, both galactic and extra-

galactic. The CR spectrum is known and it has been measured with a great accuracy.As

seen in Fig. 2.1, the spectrum extends from about 1 GeV up to about 1021 eV, spacing

roughly 12 orders of magnitude. Below 1 GeV, CR flux is heavily influenced by solar

modulation. Above 1 GeV energy, CR spectrum can be roughly approximated with a

power-law distribution, F(E) ∝ E−α, with the spectral index α ≈ 3. However, at closer

look the global spectrum of cosmic rays shows three distinctive features: the knee

at energy of E ≈ 3× 1015 eV, where the spectral index α of the CR spectrum varies

from 2.7 (appropriate for E < 1015 eV) to 3.1; the ankle at energy of E ≈ 3× 1018 eV,

where the spectral index flattens again to α = 2.7; and the GZK-cutoff at E ≈ 5× 1019

eV [Zatsepin and Kuz’min, 1966, Greisen, 1966]. The latter is due to the energy losses

that UHECR experience on their way towards Earth due to the interaction with Cosmic

Microwave Background photons and consequent pion production. For energies higher

than E ≈ 1019 eV, the CR flux is heavily suppressed, both by the GZK-cutoff and by the

small amount of astrophysical sources capable of producing such high energy particles.

Moreover, great uncertainties in the measurements due to the low flux affect this portion

of the spectrum.

Suggestions on the origin of CRs can be inferred from their global spectrum. The

spectrum transitions from a solar wind dominated one up to about 1 GeV into one

dominated by cosmic rays from galactic sources like supernova remnants (SNRs) and

pulsar wind nebulae. The knee is proposed to be a signature of the limit of CRs of

galactic origin [Cesarsky, 1980, Lagage and Cesarsky, 1983]. The origin of the flux

between ≈ 1015
÷ 1018 eV is uncertain, although it is believed to be the intersection

region in which galactic and extra-galactic sources contribute. The ankle can instead

mark a transition to a flux of extra-galactic origin [Berezinsky et al., 2006, Allard et al.,

2007, Hooper et al., 2007].
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Figure 2.1: Compilation of measurements of the energy spectrum of charged cosmic rays. The
observations can be described by a power-law with spectral breaks at 3 PeV, referred to as the
knee and the ankle at 1 EeV (from [Hillas, 2006])

2.1 Galactic Cosmic Rays

The main source of CR in the galaxy is considered to be SNRs. SNRs are the

leftovers of a supernova (SN) explosions, and they play a crucial role in CR physics.

The hypothesis of supernovae as sources for Cosmic Rays was at first presented in the

early age of CRs physics by Baade and Zwicky, who in 1934 displayed an interest for the

liaison between these exploding stars and CRs production [Baade and Zwicky, 1934].

This hypothesis is based on energetic considerations: in fact, an exploding SN creates a

shock carrying kinetic energy of about 1051erg. If only 10% of this energy is converted

to CR acceleration, with a rate of around 3 SN explosion per century in our galaxy it’s

possible to supply CR luminosity, i.e., LCR ≈ 5×1040erg/sec [Ginzburg and Syrovatsky,

1961, Webber, 1998]. Moreover, latest results by Fermi-LAT collaboration, which was

able to spatially resolve and singularly study a great number of SNRs, seem to support

this hypothesis [Weekes et al., 2002, Wakely and Horan, 2008, Blasi, 2009, Ackermann
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et al., 2013]. The description of acceleration by SNR and the consequent behaviour of

CR is known as the SNR paradigm [Blasi, 2009]. An exploding SN expels material and the

ejecta of a stellar blast move supersonically. This leads to the formation of a shock front

propagating in the interstellar or circumstellar medium, and the characteristic of this

front (e.g., its extension, Mach number, etc.,) depend on the exploding SN type and the

environmental conditions around the star. SN shock fronts usually are non relativistic,

and they are thought to be able to accelerate CRs. Particle energisation at these shocks is

mediated by the first-order Fermi process, also known as diffusive shock acceleration (DSA)

[Fermi, 1949, Axford et al., 1977, Bell, 1978a,b, Blandford and Ostriker, 1978, Drury and

Voelk, 1981]. In this process, acceleration occurs due to multiple crossings of the shock

front, while particles are confined in the shock vicinity by pitch-angle scattering off the

magnetic turbulence. The acceleration process leads to the formation of the power-law

particle energy distribution which is compatible with observations. Multi-wavelength

studies of supernova remnants provide evidence of high-energy particle production

in SNRs [Aharonian et al., 2007, Morlino and Caprioli, 2011, Slane et al., 2014, Aleksić

et al., 2015, Archambault et al., 2017].

2.2 Extra-galactic Cosmic Rays

CRs at energies above E ≈ 1018 eV (i.e., UHECRs, above the ankle) are assumed

to be extra-galactic [Axford, 1994], and their origin is still debated. Two main types

of processes invoked to explain their creation are the so-called "top-down models", in

which UHECR are the results of decay or annihilation of supermassive primary particles

which are even more energetic (e.g., supermassive dark-matter particles, [Berezinsky

et al., 1997, Aloisio et al., 2015], and the "bottom-up models", presenting acceleration

from low to high energy by astrophysical phenomena. Bottom-up models can be

divided in two sub-categories. The first one assumes that particles are accelerated

directly to very high energies by an extended electric field [Hillas, 1984], i.e, in the

so-called “one-shot” mechanisms. The required electric fields are generally associated

with the rapid rotation of small, highly magnetized objects such as white dwarfs [Zhang

and Kumar, 2013, Asano and Mészáros, 2014], neutron stars [Mannheim et al., 2001,

Kistler et al., 2014, Murase et al., 2014], or black holes [Aartsen et al., 2018, Keivani

et al., 2018, Gao et al., 2019]. This acceleration mechanism is indeed fast, but it is
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strongly hampered by the fact that acceleration occurs in astrophysical sites of very

high energy density, where energy loss processes also play a significant role. The

second sub-category assumes that particles gain energy gradually through multiple

stochastic interactions with moving magnetized plasmas, as in the Fermi mechanisms

[Fermi, 1949, 1954]. While the top-down models are at present still very exotic and seem

to be excluded by recent observations [Aab et al., 2017a,b, Abbasi et al., 2019], many

sources are known that have the capacity of accelerating particles to high energy via

stochastic processes: active galactic nuclei (AGN) [Williams, 2004, Jacobsen et al., 2015,

Vuillaume et al., 2018], jets of radio galaxies [Rees, 1966, Cohen et al., 1971, Pearson

et al., 1981], and gamma-ray bursts [Berezinsky and Zatsepin, 1969, Milgrom and Usov,

1995, Baerwald et al., 2015]. Since the maximum energy gain by a particle in the Fermi

processes depends on the confinement time in the source (high-energy particles will

escape, thus ending their progressive acceleration), and the confinement time itself

depends on the dimensions of the source and the strength of the magnetic field a

criterion was proposed in [Hillas, 1984] that the acceleration of a particle can progress

only until the particle gyro-radius does not exceed the size of the accelerator. Hence,

the maximum energy that a charged particle can obtain in a source can be estimated as:

Emax < Z e R B ≈ Z β(
R

kpc
)(

B
10−6G

)×1018eV, (2.1)

where B is the magnetic field strength, Z e is the particle charge, R is the radius of

the accelerator, and β=v/c is the ratio between the velocity of the particles’ scattering

centres and the speed of light. It follows that for larger accelerating sources, lower

magnetic fields are enough to reach high energies. The possible acceleration sites can

be represented on a B-vs-R Hillas plot (Fig. 2.2), which shows the various source classes

that can be responsible for the acceleration of particles in various ranges of the source-

size-magnetic-field strength. As one can see in Fig. 2.2, sources such as, e.g., GRBs,

AGN and neutron stars are capable of producing a 1020eV proton, while SNRs will not

be able to accelerate protons beyond PeV energies. The focus of this thesis is on AGN

as sources of high-energy CRs.
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Figure 2.2: A modern version on the the Hillas plot [Hillas, 1984], showing the various source
classes that can be responsible for the acceleration of particles in various ranges of size-magnetic
field strength (from [Letessier-Selvon and Stanev, 2011]).

2.3 Active Galactic Nuclei as sources of UHECRs

In some galaxies, known as active galactic nuclei , the nucleus of the galaxy emits

more radiation than the entire rest of the galaxy, to the point that it can even outshine

the luminosity of the galaxy itself. The AGN emitted radiation has been found to

be variable at all wavelengths at which it have been observed [Peterson, 2001]. At

present, it it is understood that at the centre of the AGN is a supermassive black

hole "engine", whose gravitational potential energy constitute the source for the AGN

emitted luminosity [Rees, 1984, Urry and Padovani, 1995] (see Fig 2.3 for a schematic

structure of an AGN). The emission has a very wide spectrum: turbulent processes in

the accretion disk produce bright ultraviolet and maybe soft X-ray emission; hard X-ray

radiation is also produced near the black hole; strong optical and ultraviolet emission

is produced in clouds of gas (the so-called broad-line region) that rapidly move in the

potential of the black hole [Urry and Padovani, 1995].
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Figure 2.3: Schematic view of an AGN, from Urry and Padovani [1995]

The optical and ultraviolet radiation is obscured along some lines of sight by a

torus of gas and dust which does not coincide with the accretion disk and broad-line

region. Beyond the torus, slower moving clouds of gas produce emission lines with

narrower widths. Outflows of energetic particles occur along the poles of the torus,

escaping in the intergalactic medium and forming collimated, radio-emitting jets. The

axisymmetric structure of AGN implies that AGN may appear radically different at

different angles of observation. In particular, blazars are AGNs in which the emitted jet

is almost aligned with line of sight to the observer. The jets are perpendicular to the

accretion disc and collimated by strong magnetic fields: they appear to be stable up to

kpc scales and are often characterised by a highly polarised radiation, short variability

time-scales and an apparent superluminal motion [Fugmann, 1988, Impey et al., 1991,

Valtaoja et al., 1992, Wills et al., 1992]. These relativistic jets, the turbulence and shocks

inside them have been proposed as as sources of UHECRs.

Shocks can occur in various locations in the jet. At the lobes formed in the

termination of the jet, where the ejecta enters the interstellar medium, an outward

propagation bow shock is produced, as well as the corresponding reverse shock
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propagating internally in the jet material producing the so-called hot spot. Inside

the jet shocks can also originate if the central engine does not emit a continuous plasma

flux, but instead it emits plasma shells moving at different speeds. These shells can

collide with each other inside the jet, giving rise to the so-called internal shocks. In

the regions closer to the engine, at the core, before the conical jet develops, a standing

shock can also be created. The composition of the astrophysical jets is not precisely

known, although it is thought that they consist of populations of electrons and protons,

plus a positron component [Urry and Padovani, 1995, Wardle et al., 1998, Meli, 2012].

The internal shock discontinuities that form inside jets are of highest interest for this

dissertation, as they are proposed as one of the places where cosmic rays from the bulk

plasma can eventually get accelerated.

If a shock is non relativistic, the main acceleration mechanism proposed is DSA. As

noted, this process produce power-law particle energy spectrum [Drury, 1983]:

f (E) ∝ E−2. (2.2)

The calculated spectral index of -2 is compatible with the spectra observed in sources

and also to the overall spectral index of the differential CR spectrum observed on

Earth, after correcting for the propagation effects. However, this result does not carry

over to relativistic shocks because of the strong anisotropy of the plasma distribution

function due to rapid convection of particles through the shock and away downstream.

Early works assuming relativistic shocks and a semi-analytical approach were brought

forth for the limit of extremely small angle scattering (i.e., pitch angle diffusion) [e.g.,

Kirk and Schneider, 1987]. However the validity of the semi-analytic approximation

is limited to the case of a weakly perturbed magnetic field [Niemiec and Ostrowski,

2006]. Application of such conditions in superluminal relativistic shocks does not

allow for DSA, as particles are rapidly advected and do not cross the shock many times

[Begelman and Kirk, 1990].

Monte Carlo techniques have been employed extensively to investigate relativistic

shocks in view of their applicability to particle acceleration in AGN [Ellison et al., 1990,

Ostrowski, 1991, Bednarz and Ostrowski, 1996, Meli and Quenby, 2003a,b, Niemiec and

Ostrowski, 2004, Ellison and Double, 2004, Niemiec et al., 2006, Niemiec and Ostrowski,

2006]. Most studies showed a trend of spectral index flattening as a function of the
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shock velocity, occasionally with spectral features, as well a clear deviation of the

spectral index from the universal value for different shock inclination. These studies

disputed the general belief that an universal power-law index of ≈ −2.2 had to be

obtained from acceleration by both non-relativistic and relativistic shocks. It is now

known that only quasi-parallel shocks, or shocks in weekly magnetized plasma recover

this spectral index [Begelman and Kirk, 1990, Niemiec et al., 2006]. Numerical studies

show that superluminal shocks do not show to be efficient accelerators for the very

high energy cosmic rays via DSA [Langdon et al., 1988, Gallant et al., 1992, Niemiec

and Ostrowski, 2004, Niemiec et al., 2006, Niemiec and Ostrowski, 2006, Sironi and

Spitkovsky, 2009, 2011].

Various alternative mechanisms have been proposed to explain particle accelerations

in relativistic jets, especially concerning AGN. Relativistic magnetic reconnection has

been proposed as a source of acceleration for many different astrophysical objects: in

highly conducting plasmas, the magnetic energy is released by reconnection of the

magnetic lines of force where the magnetic field changes sign [Lyubarsky, 2005]. The

relativistic magnetic reconnection was proposed as a source of the high-energy emission

in pulsars [Lyubarskii, 1996, Kirk et al., 2002] and GRB [Drenkhahn and Spruit, 2002,

Drenkhahn, 2002], as well AGN, such as blazars [Sikora et al., 2005a,b]. It was shown via

PIC simulations that relativistic reconnection is very efficient in accelerating particles,

producing power-law particle energy distributions with a spectral index close to 1

when the plasma is very strongly magnetized [Sironi and Spitkovsky, 2014, Guo et al.,

2014, Werner et al., 2016, Guo et al., 2016, Nalewajko et al., 2016]. For blazars, a

simplified scenario of jets-in-a-jet, in which magnetic reconnection creates compact

emitting regions moving relativistically in the main plasma jests comoving frame

was proposed by Giannios et al. [2009] and applied to observations by Nalewajko

et al. [2011]. Advances in the PIC simulation capabilities allowed in recent years to

investigate the magnetic reconnection with a greater care for the complexity of this

phenomenon [Nalewajko et al., 2018, Ortuño-Macías and Nalewajko, 2019, Christie

et al., 2019, Guo et al., 2019].

Other mechanisms that can be efficient in accelerating particles rely on wave-plasma

interactions. Laser-plasma experiments in the laboratory demonstrated that when an

intense laser pulse propagates in an electron-ion plasma a Langmuir wave is excited via
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Raman scattering. The associated ponderomotive force expels electrons from the region

of high laser intensity, while ions are mostly unaffected by the wave. As a consequence,

a large charge-separation develops, which is associated with a longitudinal electric

field – the so-called wakefield. As the phase velocity of the excited Langmuir wave

is nearly equal to the group velocity of the laser pulse, and close to the speed of

light, the wakefield is able to accelerate particles up to highly-relativistic energies via

Landau resonance [Tajima and Dawson, 1979, Kuramitsu et al., 2008]. This mechanism,

called Wake-field Acceleration (WFA, see Sec. 4.2) was extrapolated to the astrophysical

environment by Chen et al. [2002], who showed how a large-amplitude Alfvén wave

that propagates in a relativistic plasma generates an electrostatic wave behind itself,

and a particle may be accelerated by the electric field of the wave up to energies

compatible with UHECR energies. PIC simulation studies showed how in the presence

of relativistic shocks large-amplitude electromagnetic waves are generated at relativistic

shock fronts by the Synchrotron Maser Instability (see Ch. 4), triggered by the particles

reflected by magnetic fields at the shock front [Langdon et al., 1988, Hoshino and

Arons, 1991, Gallant et al., 1992]. This electromagnetic precursor has been proven

to generate wake-fields of substantial amplitude when the shock is ultra-relativistic

[Lyubarsky, 2006, Hoshino, 2008, Iwamoto et al., 2017, 2018, Iwamoto et al., 2019], and

consequently causing the production of non-thermal electrons via WFA.

However, shocks in AGN jets are not exclusively ultra relativistic, and in fact

models that try to explain spectral energy distributions of blazars specifically require

mildly relativistic internal shocks [e.g, Spada et al., 2001a,b]. However, the literature

investigating mildly relativistic shocks is quite sparse, and it is lacking in high resolution

studies on the particular parameter regime applicable to internal shocks, especially in

what concerns the efficiency of ion-to-electron energy transfer. This latter characteristics

is of great importance for modelling the synchrotron and inverse Compton emission

from blazar jets, as it is often assumed that particles responsible for this emission

are high-energy electrons and positrons accelerated in mildly relativistic internal

shocks. The principal models that require mildly relativistic shocks assume very strong

coupling of electrons with shock-heated protons [e.g., Spada et al., 2001a,b, Ghisellini

and Madau, 1996]. A strong coupling also favours leptonic over hadronic models to

explain the origin of the luminous blazar emission, and thus introducing the necessity of
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strong constraint on the emission site, and the jet composition [e.g., Sikora et al., 2013].

However, until now the level of coupling has been probed with sufficient resolution

only for ultra-relativistic shocks. In this dissertation the problem of ion-to-electron

energy transfer will be addressed for mildly relativistic magnetized shocks.
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CHAPTER 3

SHOCKS IN PLASMA

Plasma physics is a relatively new branch of physics that became a mature

science over the last half of the 20th century. In particular, it represents a large

branch in astrophysical investigations, since processes in plasma are often invoked

to provide an interpretation of a variety of astrophysical phenomena - in the Sun, the

Earth magnetosphere, and emission of far-away objects. Since astrophysical shock

phenomena are ubiquitous in nature and generally very difficult to reproduce in

a laboratory, the investigation of these particular shocks system heavily relies on

computer simulations to explore all the regimes.

In this chapter properties that describe a plasma properties and the selected aspects

of shock physics which are relevant to AGN and blazar physics will be shortly

presented.

3.1 Plasma properties and collisionless shocks

The plasma is an ionised medium in a state of electrical quasi-neutrality, the

behaviour of which is dominated by collective interactions due to electromagnetic

effects [Goossens, 2003]. In the simplified astrophysical description, plasma consists of

charged particles (ions and electrons) and it so rarefied that particle collisions are rare.

This is the so-called collisionless plasma.

In order to describe shocks in plasma, it is useful to define the main plasma

parameters, which will be fundamental to understand the phenomena involved. In

the electron-ion plasma, one can define electron and ion plasma frequencies, i.e.

ωpe =

√
Neq2

i

ε0me
, (3.1)

ωpi =

√
Niq2

e

ε0mi
, (3.2)

where m j and N j are the mass and number density for species j = e, i, for electrons and

ions, respectively, q j is the electric charge, and ε0 is the vacuum electric permittivity.

Total plasma frequency is then defined as ωp =
√
ω2

pe +ω2
pe ∼ ωpe - since mi� me. The

associated characteristic plasma lengths (skin depths) related to these basic plasma
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modes are:

λse =
c
ωpe

, (3.3)

and

λsi =
c
ωpi

. (3.4)

One can then define the Debye length, λD, as the distance describing the electric

screening of the Coulomb potential of an individual particle in a plasma:

λD =

√
ε0kbTe

Neq2 =
vth,e
√

2ωpe
, (3.5)

where kB is the Boltzmann constant, Te is the electron temperature and vth,e =
√

2kBTe
me

is

the electron thermal velocity. The number of charged particles within a Debye cube is

defined as nD = Nλ3
D, and it measures the number of particles that interact collectively

in the plasma. One can see that this parameter must be large for the medium to be

in the plasma state [Callen, 2006]. In fact, plasma becomes collisionless when the

rate of particle collisions due to Coulomb scattering is much smaller then the plasma

frequency. One can define electron mean free path as lm f p,e =λDnD and then the collision

rate becomes [Klimontovich, 1997]:

ν ∝
vth, e

l
=

vth, e

λD nD
. (3.6)

Hence, using equation 3.5, one obtains:

ν
ωpe

=
vth, e λD

λD nD vth, e
=

1
nD
, (3.7)

where g = 1
nD
∝

N1/2
e

T3/2
e

is called the plasma parameter. In the absence of collisions g goes

to zero. This happens if nD � 1, i.e, in hot and rarefied plasma. The AGN jets are

constituted by collimated disc accretion winds, and for these objects a value for nD ≈ 105

is estimated [Council, 2007]. One can therefore expect the conditions of collisionless

plasma in these objects.
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3.2 Shock description in MHD

A shock is defined as a sudden transition between a supersonic and a subsonic flow.

In the framework of fluid dynamics, the shock is described by discontinuous solution to

the fluid conservation equations [see, e.g., Landau and Lifshitz, 1959]. These solutions

represent the jump conditions. At the shock the flow speed changes and dissipation

takes place, causing an increase in the temperature. Hence the shock actually mediates

the transfer from upstream bulk kinetic energy to downstream thermal energy.

3.2.1 Jump conditions

The jump conditions are usually derived in the reference frame in which the shock

is at rest, exemplified in Fig. 3.1, where index 1 represents the upstream and index 2

the downstream physical quantities. P indicates the plasma pressure, ρ the plasma

density and T its temperature. In the shock reference frame, the plasma has inflow

velocity v1 = γ1β1 upstream, while it flows away downstream with the outflow velocity

v2 = γ2β2.

Figure 3.1: Schematic illustration of the parameters of the plasma in the shock region, in the
shock rest frame.

Equations for density, magnetic flux, total energy and total momentum conservation

in this frame are [Stockem et al., 2012]:

γ1,s β1,s n1,s = γ2,s β2,s n2,s (3.8)
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β1,s B1,s = β2,s B2,s (3.9)

γ2
1,s β1,s w1 +β1,s

B2
1,s

µ0
= γ2

2,s β2,s w2 +β2,s
B2

2,s

µ0
(3.10)

γ2
1,s β

2
1,s w1 + P1,s +

B2
1,s

2µ0
= γ2

2,s β
2
2,s w2 + P2 +

B2
2,s

2µ0
. (3.11)

Here, the first index 1 or 2 refers to a quantity in the upstream or downstream region

respectively, while the second index can take value 1, 2 or s and denotes the frame

in which the quantity is evaluated (upstream plasma rest frame, downstream plasma

(simulation) rest frame or shock rest frame, respectively). wi is the fluid enthalpy, which

is related to the adiabatic index and it is defined as wi = ni mc2 + (Γad/(Γad−1))Pi, where

m is the total mass of the fluid components. Here, the single index denotes quantities

evaluated in their rest frame (in lieu of the double index i, i).

One can perform a Lorentz transformation of Eq.s 3.8, 3.9, 3.10 and 3.11 to the

downstream frame, as this is the frame used in our simulations. In the special case

of perpendicular shock (i.e., the angle between the shock normal and the ambient

magnetic field is θB = 90◦) one obtains [Plotnikov et al., 2018]:

γ1,2(β1,2 +βs,2) n1 = βs,2n2 (3.12)

γ1,2(β1,2 +βs,2) b1 = βs,2 b2 (3.13)

γ2
1,2 (β1,2 +βs,2)

w1,2 +
b2

1

µ0

−βs,2

P1,2 +
b2

1

2µ0

 = βs,2

w2−P2 +
b2

2

2µ0

 (3.14)

γ2
1,2 β1,2 (β1,2 +βs,2)

w1,2 +
b2

1

µ0

+

P1,2 +
b2

1

2µ0

 = P2 +
b2

2

2µ0
. (3.15)

Here the proper densities ni and magnetic field bi are related to the apparent

quantities as Ni, j = γi, j ni, Bi, j = γi, j bi, where γi, j is the bulk Lorentz factor of the flow

in the region denoted by the index i and seen in the rest frame denoted by the index

j To simplify the derivations but still maintain their validity for all values of γ1,2 the
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only approximation one needs to make is the strong shock limit, w1 ≈ n1mc2. Under this

assumption the total upstream pressure terms (P1,2 + B2
1/2µ0) are negligible. Defining

the upstream plasma magnetization as:

σ =
b2

1

µ0w1γ2
1,2

=
B2

1,2

µ0N1,2m c2 γ1,2
(3.16)

deducing b2 from Eq. 3.13 and inserting it into Eq. 3.15 on can determine the

downstream kinetic pressure as

P2

w1
= γ2

1,2β1,2(β1,2 +βsh)(1 +σ)−γ2
1,2

(β1,2 +βsh)2

β2
sh

σ
2

(3.17)

One can insert this expression in Eq. 3.14, and combining with Eq. 3.12 for the density

ratio one obtains for the shock speed the second order equation:

2γ1,2β1,2(1 +σ)β2
sh− [2(γ1,2−1)(Γad−1) +γ1,2Γadσ]βsh +γ1,2β1,2(2−Γad)σ = 0. (3.18)

This relation is valid for any upstream plasma Lorentz factor, but the ultra relativistic

limit can be easily recovered with appropriate approximations (i.e., for γ1,2� 1, w2 =

1/(Γad−1)P2,2) to be [e.g., Gallant et al., 1992, Kennel and Coroniti, 1984]:

β2
sh

(
1 +

1
σ

)
−βsh

(
Γad

2
+

1
σ

(Γad−1
)
−

(
1−

Γad

2

)
= 0 (3.19)

In the same way, the non relativistic limit is recovered by imposing γ1,2 ≈ 1. I perform a

first run where the magnetic field points outside of the simulation plane (out-of-plane):

in this simulation the particles are constrained to move in the simulation plane, and the

adiabatic index is the one of the pure 2D case, i.e. Γad = 3/2. For the second simulation,

the magnetic field lies inside the simulation plane (in-plane), and the particles gain one

additional degree of freedom. The appropriate adiabatic index in this case is Γad = 3/2.

For my simulation parameters I obtain for the shock velocities:

βs,2 = 0.48 for out-of-plane B, Γad = 3/2

βs,2 = 0.42 for in-plane B, Γad = 4/3.
(3.20)

The compression ratio can be deduced using Eq.s 3.12 and 3.13,
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R =
B2

B1,2
=

N2

N1,2
=

n2

γ1,2n1,2
= 1 +

β1,2

βs,2
, (3.21)

and the downstream temperature is given by

kBT2

γ1,2mc2 = βshβ1,2(1 +σ)−
β1,2 +βsh

βs,2

σ
2
. (3.22)

Imposing γ1,2 ≈ 1, σ = 0 and the appropriate adiabatic index Γad, nr = 5/3 the known

compression ratio for the unmagnetized, non relativistic shock is recovered, i.e., R = 4.

For the out of plane ultra relativistic 2D case, the compression ratio R = 3 is recovered

with Γad, rel = 3/2, γ1,2� 1. For my simulations, the expected compression ratios are

R = 2.8 for out-of-plane B,

R = 3.1 for in-plane B.
(3.23)

3.2.2 Perpendicular magnetized shocks

magnetized shocks can be classified in terms of the magnetic field orientation.

Systems in which the ambient magnetic field forms an angle of θB = 0◦ with the shock

normal are defined as strictly parallel, while cases in which the angle is θB = 90◦ are

called strictly perpendicular. For intermediate obliquities, shocks are defined as quasi-

parallel (0◦ < θB < 45◦) and quasi-perpendicular (45◦ < θB < 90◦).

In the presence of a magnetic field in the plasma one can express the shock velocity

vsh in terms of the Alfvén velocity by defining the Alfvén Mach number:

MA =
vsh

vA
. (3.24)

Here, vA is the Alfvén velocity, defined as

vA =

√
B2

0

µ0(Neme + Nimi)
(3.25)

where B0 is the large-scale upstream magnetic field embedded in the plasma, and µ0

is the magnetic permeability of vacuum. In the case of magnetized plasma I can also
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define useful temporal and spatial scales. The relativistic gyrofrequency for a species j is:

Ω j =
eB0

m jγ
, (3.26)

where γ indicates the particle Lorenz factor. From this quantity one can define the

particle gyroradius:

λgj =
v⊥
Ω j

(3.27)

where v⊥ is the particle velocity perpendicular to the magnetic field direction.

A further shock classification distinguishes between subluminal and superluminal

shocks: a shock is superluminal when particles cannot escape ahead of the shock

by sliding along the magnetic field lines [Begelman and Kirk, 1990]. The threshold

between sub- and superluminal shocks occurs when the magnetic inclination θB is

greater than a critical angle θcrit. In upstream frame, this critical angle is given by

cosθ′crit = β′sh, where β′sh is the shock speed in the upstream frame. In the downstream

frame this corresponds to θcrit = arccot (Γsh(βsh + β2)), where Γsh and βsh are the shock

Lorentz factor and velocity (in units of c) of the shock in the downstream frame, while

β2 is the bulk plasma velocity in units of c in the downstream frame.

The magnetic inclination strongly influences the physics of the shock. In the case

of subluminal shock, with particles escaping upstream along the field lines, the shock

region is very large, up to the order of 100 ions gyroradii. In the superluminal case,

instead, particle trying to escape upstream are constrained by the magnetic field and

they remain in a narrow region, up to just a few iron gyroradii wide. The simulations

in this thesis study strictly perpendicular shocks, which hence are superluminal.

3.3 Structure of a superluminal relativistic shock

A further classification of shocks distinguishes between subcritical and supercritical

shocks. Subcritical shocks can be substained by pure resistive dissipation [Treumann,

2009]. Instead, resistive processes are not efficient enough to sustain a supercritical

shock. In such shocks the dissipation of the excess energy occurs through reflection of

a substantial portion of the incoming plasma back upstream. The number of reflected

particles corresponds to the fraction of particles whose excess motional energy the shock

is unable to convert into heat. A shock criticality is defined through the critical sonic
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Mach number Mc. A shock is called sub-critical if Ms < Mc, and supercritical if Ms > Mc.

The maximum value of the critical Mach number derived for perpendicular shocks is

Mc ≈ 2.76 [Marshall, 1955]. Relativistic shocks are therefore always supercritical.

In an ion-electron perpendicular shock, a fraction of the incoming ions is reflected by

the shock compressed magnetic field. Reflected ions describe only a single gyration in

the upstream, corresponding to a ring-like distribution in the velocity space. Then they

gain enough energy in the upstream motional electric field to enter the downstream

region at later times. Ion reflection generates the overshoot-undershoot pattern just

behind the ramp. Since, as noted, relativistic shocks are always supercritical, their

structure is described by the foot-ramp-overshoot pattern, as shown in Fig. 3.2.

Figure 3.2: Schematic view of a superluminal relativistic shock.

In superluminal shocks reflected particles are able to move back upstream only by

less than a single gyroradius before their gyromotion returns them back to the shock.

The foot region then corresponds to the reflected ion region of thickness∼λgi. Reflected

ions also interact with the incoming plasma and can trigger multiple instabilities e.g.,

the Weibel instability, SMI, that mediate the shock dissipation and shape the structure

of the shock.

3.3.1 Shock front corrugations

The presence of a highly anisotropic distribution of reflected ions gyrating at the

front of low Mach number shocks has been shown in the non-relativistic case to drive the

Alfvén Ion Cyclotron (AIC) temperature anisotropy instability or the mirror instability

[e.g., Tanaka et al., 1983, Winske and Quest, 1988, Umeda et al., 2014, Lowe and Burgess,

2003]. 2D simulations of higher Mach number shocks instead indicated that the large
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Figure 3.3: Shock structure at fixed inflow speed vi = 5vAlfvén for Bz = 180deg (i.e. pointing
towards the page), with Alfvén Mach number MA = 7.6. Top panels: y-averaged magnetic
field magnitude, ion temperature normalized to upstream value, and temperature anisotropy
ratio. Lower panel: gray-scale map of field magnitude shown with a white-black range of
0.9B0 ÷ 6.5B0. White lines are shown at the nominal shock position and at +5 and +10 λse
thereafter. From [Burgess and Scholer, 2007]

temperature anisotropy introduced by the reflected ions is rapidly destroyed almost

totally within the shock front [Winske and Quest, 1988], and only the small anisotropy

left can drive AIC or mirror instability, although with a slow growth rate. The AIC

modes propagate along the mean magnetic field, so they can be observed in 2D

simulations only if the field is in the plane of the numerical grid. The assumption

that an upstream magnetic field is perpendicular to the shock front and is directed out

of the simulation plane alters the above picture, as in this configuration AIC and mirror

instabilities are suppressed. 2D hybrid simulations of non relativistic, perpendicular,

supercritical collisionless shocks with this specific magnetic field orientation were

carried out by Burgess and Scholer [2007]. They observed a rippling feature at the

23



shock front, in which the ripples propagate along the shock surface in the direction

of the ion gyration and at with the average ions speed at the shock. This effect is

triggered for high shock Mach number and low plasma beta, where the plasma beta

is the ration between the plasma thermal pressure and the magnetic pressure, defined

as βpl = (2µ0kbT j)/B2. It has also been observed for conditions of high-speed SNR

shocks [Wieland et al., 2016] Fig. 3.3 shows the observed rippling feature in Burgess

and Scholer [2007]. The shock corrugations are compatible with the ion gyration at

the shock.

The shock ripples triggered by a similar mechanism to the one described in Burgess

and Scholer [2007] have also been observed in PIC simulations of relativistic shocks

with out-of-plane magnetic field configuration by Sironi et al. [2013]. They observed

that in such a case the rippling develops for a limited regime of magnetization, σ =

[3× 10−3
÷ 10−1]. For smaller magnetizations the corrugations are suppressed by pre-

shock electron heating by the Weibel instability, while for higher magnetization the

SMI-generated EM precursor destroys the shock ripples. It was noted in Sironi et al.

[2013] that the shock rippling does not influence the injection of particles into the

acceleration processes.

Large spatial scale simulations described in this dissertation allowed me to observe

the shock corrugations for both the out-of-plane and the in-plane magnetic field

orientations investigated. As will be presented in the thesis, the shock ripples play

a significant role in shaping the structure of a mildly relativistic magnetized shock and

the electron heating and acceleration processes.
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CHAPTER 4

SYNCHROTRON MASER INSTABILITY AND WAKEFIELD
ACCELERATION IN RELATIVISTIC SHOCKS

The plasma particles inflowing towards a relativistic perpendicular shock start

gyrating in the shock compressed magnetic field. These gyrating particles form a

ring-like distribution in the velocity space, which is unstable to the SMI. Due to

the gyro-phase resonance the ring breaks up into bunches of charges that in turn

radiate a train of large amplitude coherent electromagnetic waves that can propagate

towards the upstream [Sprangle et al., 1977, Hoshino and Arons, 1991, Hoshino et al.,

1992, Gallant et al., 1992]. These waves, called precursor waves, are mainly linearly

polarised transverse waves of the extraordinary mode (X-mode). Emission of waves

of the ordinary mode (O-mode) in this scenario it has been shown to be subdominant

[Wu and Lee, 1979, Lee et al., 1980, Melrose et al., 1984]. However, SMI-related O-

mode waves were detected in Iwamoto et al. [2018] (see Sec. 6.4.1(a)). Both gyrating

electrons/positrons and ions are able to trigger SMI, but due to the difference in mass

the growth rate of the ion-SMI is smaller than the electron-SMI. In pair-ion plasma

SMI is then an instability composed of two phases: initially the pairs are unstable to

SMI, and they start emitting precursor waves whose wavelength is comparable to the

electrons Larmor radius in the shock compressed fields; ions are not affected by these

waves as the wavelength is too short, and only in a later time the proton ring becomes

unstable to SMI and in turn starts to emit long wavelength precursors. In the ion-

pair plasma the emission of ion-generated precursor has been connected to positron

acceleration [Hoshino and Arons, 1991, Amato and Arons, 2006] through particle-wave

gyro-resonance. Electrons are not influenced by these waves, due to opposite gyration

direction. For this reason the role that ion-SMI plays in the electron-ion plasma is

limited [Lyubarsky, 2006].

In the electron-ion plasma, the presence of the precursor can excite the other type

of waves. As the large amplitude precursor wave propagates upstream, incoming

electrons experience intense transverse oscillations in the waves’ strong fields. Electron

guiding-centre velocity then decreases, while ions are unaffected by the presence of the

waves due to their higher mass. The resulting difference in bulk velocity between

electrons and ions results in the generation of a longitudinal electric field, known as

the wake-field. This electric field can accelerate electrons and mediate ion-to-electron
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energy transfer [Lyubarsky, 2006].

In the following sections, I will present the dispersion relation for the X-mode

precursor waves, and show how the presence of the wakefield can result in electron

acceleration via the WFA mechanism.

4.1 The dispersion relation for the X-mode waves

A general form of the dispersion relation for X-mode waves can be derived starting

from the Vlasov equation. A method to obtain this relation is to determine the dielectric

tensor. Here I follow the derivation in Krall and Trivelpiece [1973]. The Vlasov equation

reads:
∂ f
∂t

+ v ·∇ f + F ·
∂ f
∂p

= 0, (4.1)

where f (t,x,p) is the particle distribution function, F is the total force, p is the particle

momentum, and v is their velocity.

One can rewrite the distribution function and the force as the sum of an unperturbed

and a perturbed component (the latter denoted with tilde), where the perturbation is

caused by the wave propagating in the plasma:

f = n0 f0 + f̃ , F = F + F̃. (4.2)

where f0 is the unperturbed distribution normalised to unity. Then for the perturbed

component f̃ , the Vlasov equation is:

∂ f̃
∂t

+ v ·∇ f̃ + n0F̃ ·
∂ f0
∂p

+ F0 ·
∂ f̃
∂p

= 0 (4.3)

By using Liouville’s theorem (integration by characteristics) one can estimate f (t,x,p)

at any t from f (t,x(t),p(t)) = f (t0,x0,p0), where (x(t),p(t)) is the phase space trajectory so

that (x(t0),p(t0)) = (x0,p0). However it may be very complex to describe such trajectories.

In the absence of the wave one has:
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dx̆
dt̆ = v(p̆)

dp̆
dt̆ = F0(t̆, x̆, p̆)

x̆(t̆ = t) = x

p̆(t̆ = t) = p,

(4.4)

when the accent ˘ denotes particle properties along a trajectory not affected by the

waves. When a wave is present, f (t, x̆, p̆) is not conserved along this unaffected

trajectory. However, choosing (x̆, p̆) to be close to the trajectory in presence of the

wave, (x(t), p(t)), it is possible to find how the distribution function evolves in the

presence of the wave evolves along the unaffected trajectory. First, one considers Eq.

4.3 by taking the derivative of f̃ along (x̆, p̆):

d
dt̆

f̃ (t̆, x̆(t̆), p̆(t̆)) =

(
∂ f̃
∂t

+ v ·∇ f̃ + F0 ·
∂ f̃
∂p

)
(t̆, x̆(t̆), p̆(t̆))

= −

(
n0F̃ ·

∂ f0
∂p

)
(t̆, x̆(t̆), p̆(t̆))

, (4.5)

where the lower index shows the variables on which the expressions are evaluated.

Integrating over t̆ and using (x̆, p̆) ≈ (x(t), p(t)) one has:

−

∫ t

t0

(
n0F̃ ·

∂ f0
∂p

)
(t̆, x̆(t̆), p̆(t̆))

dt̆ = ∆ f̃ (t, x̆(t̆), p̆(t̆)) = ∆ f̃ (t, x, p). (4.6)

Hence the current induced by the force F̃ is:

j(t, x) = e
∫

v ∆ f̃ (t, x p)d3p = −e
∫

d3p
∫ t

t0

(
n0F̃ ·

∂ f0
∂p

)
(t̆, x̆(t̆), p̆(t̆))

dt̆. (4.7)

In the presence of electromagnetic waves the force is the Lorentz force:

F̃ = e Ẽ(t̆, x̆)(1−
k · v̆
ω

+
v̆k
ω

), (4.8)

with the complex field Ẽ(t̆, x̆) = Ẽ0 e−iωt+ik·x. Eq. 4.7 now is:

j(t, x) =
m

∑
sω

2
p,s

4π

∫
d3p v

∫ t

t0

(
e Ẽ(t̆, x̆)(I× (1−

k · v̆
ω

) +
v̆k
ω

)
∂ f0
∂p

)
(t̆, x̆(t̆), p̆(t̆))

dt̆ =

=
iω
4π

χ̂ Ẽ0 e−iωt+ik·x,

(4.9)
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where I is he identity matrix, χ̂ is the susceptibility tensor,
∑

s is summation over all

species in the plasma, and ε = I +
∑

sχs is the dielectric tensor.

The equations motion of the single particle in a magnetic field B0 is:

dp̆
dt̆

=
q
m

v̆×B0

dr̆
dt̆

= v̆

with v̆ =
p̆
γm

.

(4.10)

The position and momentum vectors are defined such as :

r̆(t̆ = t) = r

p̆(t̆ = t) = p.
(4.11)

Let us now define the components of the velocity as vx = v⊥ cosφ and vy = v⊥ sinφ, and

the cyclotron frequency for species s as Ωs = qB0/(mcγ). One can write τ= t− t̆ to obtain:

v̆x =v⊥ cos(φ+Ωsτ)

v̆y =v⊥ sin(φ+Ωsτ)

v̆y =v‖

x̆ =x−
v⊥
Ωs

[sin(φ+Ωsτ)− sinφ

y̆ =y +
v⊥
Ωs

[cos(φ+Ωsτ)− cosφ

z̆ =z−v‖τ.

(4.12)

Assuming now f0 = f0(p⊥,p‖) (i.e. azimuthal anisotropy of the distribution fuction),

and kx = k⊥ cosθ, ky = k⊥ sinθ one obtains for the current:

j(t,x) =
m

∑
sω

2
p,s

4π

∫
d3pv

∫ t

t0

dτ eiβ
(
Ex A cos(φ+Ωsτ) + Ey B sin(φ+Ωsτ)+

+Ez

[
∂ f0
∂p‖
−C cos(φ−θ+Ωsτ)

])
,

(4.13)

where
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A =
∂ f0
∂p⊥

+
k‖
ω

(
v⊥
∂ f0
∂p‖
−v‖

∂ f0
∂p⊥

)

B =
k⊥
ω

(
v⊥
∂ f0
∂p‖
−v‖

∂ f0
∂p⊥

)

C =

(
1−

nΩs

ω

∂ f0
∂p‖

)
+

nΩsp‖
ωp⊥

∂ f0
∂p⊥

(4.14)

β = −
k⊥ v⊥

Ωs
[sin(φ−θ+Ωsτ)− sin(φ−θ)] + (ω− k‖v‖)τ.

The integral in 4.13 can be now decomposed as:∫
d3p dτ =

∫
dp‖

∫
p⊥ dp⊥

∫
dτ

∫
dφ. (4.15)

First let us integrate in dφ. Defining zs = (k⊥v⊥)/Ωs, the various elements of 4.13

containing φ become:

∫ 2π

0
eizs[sin(φ+Ωsτ)−sinφ]



sinφsin(φ+Ωsτ)

sinφcos(φ+Ωsτ)

cosφsin(φ+Ωsτ)

cosφcos(φ+Ωsτ)

1

sinφ

cosφ

sin(φ+Ωsτ)

cos(φ+Ωsτ)



dφ = 2π
+∞∑

n=−∞

e−inΩsτ



(J′n)2

−
i n
zs

JnJ′n

i n
zs

JnJ′n

n2

z2
s

(Jn)2

(Jn)2

− iJnJ′n
n
zs

(Jn)2

iJnJ′n
n
zs

(Jn)2



(4.16)

where Jn = Jn(zs) are the Bessel functions. Now we integrate in dτ. The components with

sin(Ωsτ) or cos(Ωsτ) are solved in the integration of dφ, resulting in the e−inτ exponent

in 4.16 that still needs to be integrated in dτ. A second exponential in β, e(ω−k‖v‖)τ, is

also present in 4.13. The integral in dτ is then:
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∫ t−t0

0
eiτ(ω−k‖v‖−nΩs)dτ =

ei(ω−k‖v‖−nΩs)(t−t0)

i(ω− k‖v‖−nΩs)
Im(ω)>0

=
i

(ω− k‖v‖−nΩs)
. (4.17)

One now has all the components to express the general dielectric tensor:

ε(ω,k) = I−
∑

s

ω2
p,s

ωΩs

+∞∑
n=−∞

∫ +∞

0
2πp⊥ dp⊥

∫ =∞

−∞

dp‖

(
Ωs

ω− k‖v‖−nΩs
Λn

)
(4.18)

Here Λn is the matrix, expressed in the general form by:

Λn =


n2(Jn)2

z2
s

p⊥A i n Jn J′n
zs

p⊥A n(Jn)2

zs
p⊥C

−
i n Jn J′n

zs
p⊥A (Jn)2p⊥A i n JnJ′np⊥C

n(Jn)2

zs
p‖A −i n JnJ′np‖A (Jn)2p‖C

 (4.19)

4.1.1 Transversely propagating waves

For transverse electromagnetic waves propagating in the x-direction, k = (kx,0,0, ),

across the magnetic field with the only component along the z-axis, B = (0,0,B0), the

wavevector paralellel to the magnetic field k‖ is equal to 0 and only the following

components of Λn are nonzero:

Λn,kx =


λxx λxy 0

λyx λyy 0

0 0 λzz

 . (4.20)

The λzz component is polarised along ẑ, and hence relates to an O-mode wave. The

other four components are related to the X-mode of interest. They are:

Λn, reduced =


n2(Jn)2

z2
s

p⊥
∂ f0
∂p⊥

i n Jn J′n
zs

p⊥
∂ f0
∂p⊥

−
i n Jn J′n

zs
p⊥

∂ f0
∂p⊥

(Jn)2p⊥
∂ f0
∂p⊥

.

 (4.21)

Hence the general form of the dielectric tensor for the X-mode in this specific case is:

ε(ω,k)lq = δlq−2π
∑

s

+∞∑
n=−∞

ω2
p,s

ω(ω−nΩs)

∫ +∞

0
p⊥ dp⊥

∫ =∞

−∞

dp‖Λ
n,reduced
lq , (4.22)

30



where δlq is the Dirac delta. Eq. 4.22 is consistent with the one derived in Hoshino and

Arons [1991].

4.1.2 Cold ring distribution

Eq. 4.22 can be re-written in terms of velocities, as expressed in Hoshino and Arons

[1991]:

ε(ω,k)lq = δlq−2π
∑

s

+∞∑
n=−∞

ω2
p,s

ω(ω−nΩs)

∫ +∞

0
v2
⊥ dv⊥

∫ =∞

−∞

dv‖
∂ f0
∂v⊥

ψlq, (4.23)

with

ψ =


n2(Jn)2

z2
s

i n Jn J′n
zs

−
i n Jn J′n

zs
(Jn)2

 . (4.24)

and zs re-defined again in terms of velocities as zs = k⊥cv⊥,s/(Ωsγs). Assuming a cold

ring distribution function for the particles, i.e.,

fs(v⊥,v‖) =
1

2πv0, s
δ(v⊥−v0, s)δ(v‖), (4.25)

where v0,s is the initial particle velocity directed along x̂, Eq. 4.23 becomes

ε(ω,k)lq = δlq−2π
∑

s

+∞∑
n=−∞

ω2
p,s

ω(ω−nΩs)

∫ +∞

0
v2
⊥ dv⊥

∫ =∞

−∞

dv‖
∂( 1

2πv0, s
δ(v⊥−v0, s)δ(v‖))

∂v⊥
ψlq.

(4.26)

Integrating by parts, one obtains the componetns of the dielectric tensor:
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εxx = 1−
∑

s

+∞∑
n=−∞

n2ω2
p,s

z2
sω(ω−nΩs)

(
2zs Jn J′n−

γ2
s −1

γ2
s

ω J2
n

ω−nΩs

)

εxy = −εyx = i
∑

s

+∞∑
n=−∞

n2ω2
p,s

z2
sω(ω−nΩs)

(
Jn J′n + zs(J′n

2 + Jn J”n)−
γ2

s −1

γ2
s

ω Jn J′n
ω−nΩs

)

εyy = 1−
∑

s

+∞∑
n=−∞

n2ω2
p,s

z2
sω(ω−nΩs)

(
2 J′n

2 + 2zs J′n J”n−
γ2

s −1

γ2
s

ω J′n
2

ω−nΩs

)
.

(4.27)

The dispersion relation for X-mode waves is obtained from [Hoshino and Arons,

1991]:

(η2(k̂k̂−1) +ε)E = 0 (4.28)

where η = kc/ω. For kwaves = kx̂, one has

k̂k̂ =

1 0

0 0

 (4.29)

hence

η2(k̂k̂−1) +ε =

εxx εxy

εyx εyy−n2

 . (4.30)

The solution of 4.28 is obtained by imposing that the determinant of the right hand

term of Eq. 4.30 is equal to zero, i.e.:

η2 = εyy−
εxy εyx

εxx
(4.31)

which can be solved numerically.

4.1.3 X-mode dispersion relation in mildly relativistic electron-ion plasma

The dispersion relation calculated for the parameters assumed in my simulations

is shown in Fig. 4.1. It was derived from Eq. 4.31, but assuming that both electrons

and ions form cold rings in velocity space while they gyrate about the magnetic field

lines with γ0 = 2. This is justified here for my approximate analysis since the effects
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Figure 4.1: The dispersion relation for X-mode waves in the electron-ion case, for the parameters
of the simulations presented in this thesis, for electron-SMI (dark red: real part of ω; light red:
imaginary part of ω) and ion-SMI (dark green: real part of ω; light green: imaginary part of
ω). The blue line represents the light-wave dispersion relation. It is evident that the growth
rate of the ion-SMI is lower than the the electron one, and it is mostly subluminous. For this
this reason I expect to be able to observe the electron-SMI generated waves, while the ion-SMI
is not expected to be detected due to the superluminal nature of the shock

of the finite electron ring temperature are not significant for the ion maser instability

[Hoshino and Arons, 1991]. The dispersion relations have harmonic structures for both

the electron-generated SMI and the ion-generated SMI. For the electron SMI, the growth

rate of the fundamental mode is comparable to that of the higher harmonic waves. The

phase velocities of the unstable modes satisfy ω/kc ≈ 1. The bandwidth of the first

harmonic unstable modes is wide, in particular for the fundamental wave, whose grow

rate is flat for a wide range of k. The frequencies and growth rates of the ion unstable

modes are lower than the electron ones by approximately the ion-to-electron mass ratio,

and the growth rate slightly increases with higher harmonic number. In the periodic

system one should thus expect two stages of the SMI to occur – first the electron SMI,

then followed by the ion maser instability. However, upstream of a relativistic shock

the situation may be different because the ion emission is mostly sub-luminous (the

phase velocities of the modes are ω/kc . 1) and the waves emitted at the shock may not

33



outrun it to reach the precursor.

Hence, under the assumption that only the electron contribution to SMI is relevant

for the mildly relativistic shock in the ion-electron plasma, one can then obtain the form

for the X-mode dispersion relation in the upstream (plasma rest) frame by imposing

γs = 1 in Eq. 4.27 and inserting the components in Eq. 4.31. Since under this condition

zs = 0, one obtains εxy = εyx = 0 and

η′2 = 1−
ω2

pe

ω′2−Ωce
. (4.32)

4.2 Wakefield Acceleration

The first study on SMI and wakefield acceleration in relativistic shocks in the

electron-ion plasma has been performed by Lyubarsky [2006], who demonstrated that

the large-amplitude precursor waves propagate towards the shock upstream and upon

the interaction with the incoming plasma the velocity of the electron guiding centres

decreases, while ions are unchanged. The relative motion between ions and electrons

generates an electrostatic field that can lead to particle acceleration. The idea that an

electrostatic wake-field can accelerate particles was first proposed and investigated

in the laser-plasma experiment community [e.g., Tajima and Dawson, 1979, Esarey

et al., 1996, Mourou et al., 2006], and then extended to the astrophysical plasma setting

by Chen et al. [2002], who suggested that UHECRs may be generated by the wake-

field acceleration. It was also demonstrated through laser plasma experiments and

simulations [e.g., Kuramitsu et al., 2008] that the WFA produces power-law energy

spectra with a spectral index of 2. Therefore, the WFA in relativistic shocks represents

a promising scenario for UHECR acceleration.

Hoshino [2008] extended the study of relativistic shocks investigating wake-field

generation and its role in particle acceleration. He showed that by the action of the

ponderomotive force on electrons due to the large-amplitude electromagnetic (EM)

precursor wave, electrons can be expelled from the precursor wave region and the large-

amplitude electrostatic wake-field can be generated. The effect of the ponderomotive

force can be investigated by considering a transverse EM wave in which the electric
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and magnetic components are described by

E(x, t) = E0(x, t) cos(ω t) (4.33)

B(x, t) = B0(x, t) sin(ω t) (4.34)

and they are correlated trough the Faraday’s Law,

B(x, t) = −c
∫ t

0
∇×E0(x, t) cosω t (4.35)

A charged particle in the wave fields has an equation of motion:

m
dv
dt

= e
(
E0(x, t) cosω t +

v
c
×B(x, t)

)
. (4.36)

Following [Hoshino, 2008], one notices that the motion of the charged particle has two

time scales: the simple harmonic motion in response to an electric field oscillating with

high frequency, and the slow movement of the centre of oscillation. One can then write

the variable v as the sum of two quantities,

v = U + u, (4.37)

where U is a slowly varying quantity, relative to the slow motion, while u is rapidly

varying quantity related to the fast motion in the oscillating EM field. One can assume

that |U|� |u| and that eE0/(mω c)� 1. Then, at first order one retrieves the fast oscillating

motion:
du
dt

=
e
m

E0(x, t) cos(ω t), (4.38)

and it follows that

u =
e
m

∫ t

0
E0(x, t) cos(ω t) dt. (4.39)

To the next order, one can obtain the slowly varying motion. The oscillation average

gives

m
dU
dt

ex =
e
c
〈u×B〉 = −

e2

m
〈

∫ t

0
E0(x, t1) cos(ω t1)dt1×

∫ t

0
E0(x, t2) cos(ω t2) dt2〉. (4.40)
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Here, ex is the versor of axis x, and Eqs. 4.35 and 4.39 were used. If one can assume

E0(x, t) = E0(x) and E0(x, t) = E0(x) , then one obtains:

m
dU
dt

ex = −
e2

2mω2∇E2
0(x)〈sin2 (ω t)〉 = −

e2

4mω2∇E2
0. (4.41)

One can see that the particle can be accelerated due to the wave pressure force, called

the ponderomotive force [Hoshino, 2008]:

m
dU
dt

= Fpond = −e∇φpond, (4.42)

with

φpond =
1
4

e
mω2 E2

0(x). (4.43)

The ponderomotive force is proportional to the gradient of the wave pressure, and

is independent of the sign of charge. However, the force on the electrons is much larger

than that on ions, since me � mi. For this reason, if one neglects the ion response,

one can estimate the wake-field induced by the SMI-generated EM precursor waves by

equating the electrostatic force and the ponderomotive force:

E′wake =
1
e

F′pond (4.44)

Here, the primed quantities denote that they are estimated in the upstream plasma rest

frame, while unprimed quantities refer to the downstream (simulation) frame. The

ponderomotive force is:

F′pond = −e∇′φ′pond, (4.45)

with the potential:

φ′pond =
1
4

e
mω′20

E′20(x), (4.46)

where E′0 and ω′0 denote the injected (SMI-generated) EM wave amplitude and

frequency, respectively. One can see that E′wake = Ewake is Lorentz invariant. In the

case of relativistic shocks, the amplitude of the EM precursor can be very large [e.g.,

Iwamoto et al., 2017, 2018, Iwamoto et al., 2019]. Therefore in this case it is appropriate
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to use the generalized ponderomotive force [Bauer et al., 1995]

φ′pond = m c2
√

1 +ξ a′20, (4.47)

where a′0 = (e E′0)/(mcω′0) is the normalized amplitude of the EM wave, and ξ depends

on the wave polarization and is ξ = 1 for circular polarization and ξ = 1/2 for a linearly

polarized wave.

It has been observed in relativistic magentized shock simulations [Hoshino, 2008,

Iwamoto et al., 2017, 2018, Iwamoto et al., 2019] that the ponderomotive force is active

not only at the tip of the precursor wave in the upstream, but also inside the precursor,

because the wave amplitude inside the precursor region can be periodically modulated

by either the stimulated Raman scattering or the self-modulation effects [Hoshino,

2008]. In the case of relativistic shocks, in the tip region of the precursor wave the

wake-field has a sinusoidal waveform, and it causes a acceleration/deceleration pattern

for electrons. However, behind the sinusoidal wavetrain, the wake-fields can collapse

due to the nonlinear effects (see below). During this nonlinear process, the upstream

cold electrons are heated and accelerated. The maximum attainable energy during the

acceleration at the edge region of the precursor waves can be estimated as:

Emax ∝ e EwakeL, (4.48)

where Ewake and L are respectively the amplitude and the scale length of the wake-

field. The efficiency of the electron acceleration increases with increasing upstream

bulk Lorentz factor γ, and the accelerated electron energy can exceed the upstream

bulk energy of ions if γ is larger than the ion-to-electron mass ratio [Hoshino, 2008].

Further processes can contribute to particle energisation in the turbulent wave

region, in which the wakefield collapses. Of particular importance is the phase slippage

effect [e.g., Tajima and Dawson, 1979], in which particles which are moving in the same

direction as the wake-field can get in resonance with the wake-field electric field and get

accelerated. In the phase slippage effect, the maximum energy attainable by a particle
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in the upstream plasma rest frame is

E′max, ph. sl.

mec2 ≈

e E′wakeL
′

mec2
c

|c−v′ph|
, (4.49)

where v′ph = ω′/k′ is the phase speed of the wake-field in the upstream plasma rest

frame, and the term c/(|c− v′ph|) accounts for the phase slippage between the particle

and the wake-field.

The process of wakefield formation can be understood to result from the parametric

decay instability [PDI; e.g., Kruer, 1988]. Parametric instabilities are a common wave-

wave interactions. They arise when a nonlinearity such as a pressure gradient couples

waves. The waves must allow frequency and wavenumber matching which are

consequences of energy and momentum conservation. In the case discussed here a

large-amplitude electromagnetic (pump) wave decays into a Langmuir wave and a

scattered electromagnetic (light) wave. Coupling to these wave modes occurs through

the stimulated Raman scattering instability [Hoshino, 2008]. In the conditions with the

pump wave frequency much larger than the plasma frequency, the Forward Raman

Scattering (FRS) is triggered, in which the scattered electromagnetic wave and the

Langmuir wave propagate in the same direction as the pump wave. The wavelength

of the Langmuir wave is close to the electron inertial length, and its phase velocity

approaches the group velocity of the pump wave, that is close to the speed of light.

The enhanced emission of the precursor waves may also trigger the nonlinear FRS

process [Hoshino, 2008]. In the first stage of FRS, the injected EM wave decays in a

scattered EM wave and an electrostatic Langmuir wave, and in the second stage the

scattered EM wave can further decay into another EM wave and a Langmuir wave.

As this process may repeat many times, broadband wave spectrum can be generated.

In the upstream plasma rest frame, these waves all propagate towards the upstream.

However, when performing the Lorentz transformation to the simulation frame, a part

of those EM and electrostatic waves can propagate towards the downstream. Since

upstream propagating waves and the downstream propagating waves coexist in the

shock upstream region, one can expect that the slippage effect between the particles with

downstream-pointing momenta and the nonlinear FRS-produced wake-fields (which in

turn are propagating toward the downstream in the simulation frame) can be triggered.
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With a similar reasoning as Eq. 4.49, one obtains the maximum energy as

E′max, nlFRS

mec2 ≈
e EwakeL

mec2
c

|c−vph|
(4.50)

The acceleration efficiency is again expressed by the product of the wake-field

scale length and the slippage effect, but for the FRS they are estimated in the simulation

frame. Here, the scale size L increases with decreasing phase velocity, and the maximum

energy efficiency is given for the largest wavenumber of the wake-field.
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CHAPTER 5

NUMERICAL SIMULATIONS FOR PLASMA PHYSICS

Although the ideal way to study physical phenomena is the experimental approach,

this is not always achievable. It is not possible, for example, to gain direct experimental

access to most astrophysical systems. It is also still very difficult to reproduce

astrophysical conditions in controlled laboratory conditions. In the same way, some

systems can be too complex or nonlinear, and involve large number of degrees of

freedom. This make them unsuitable also for a theoretical approach involving analytical

methods. Under such circumstances, the development of tools allowing scientists to

perform numerical simulations has been of prime importance. The latest developments

in supercomputer (SC) construction allowing access to a unprecedented computational

capability, has seen a great advancement in the potential of the computer modelling of

the physical systems.

For this investigation, the particle-in-cell (PIC) numerical method has been used.

In particular, a variant of THISMPI (Two-and-a-Half-Dimensional Stanford code with

Message Passing Interface) code has been adapted, which is a modified version of

the relativistic electromagnetic PIC code TRISTAN (Three-Dimensional Stanford code)

[Buneman, 1993] with Message Passing Interface (MPI)-based parallelisation [Niemiec

et al., 2008]. In this Chapter the PIC method is shortly introduced based mainly on the

algorithms implemented in the THISMPI code.

5.1 Modelling the plasma: a kinetic description

The choice of the plasma modelling technique depends on the accuracy required in

the study. For an investigation of a large-scale plasma system, the most used setup is

the fluid (Magneto-HydroDynamical, MHD) description. In this technique, electrons and

ions are treated as fluids, and their motion is described by fluid equations, based on

macroscopic quantities. This model is inapt to describe the system micro-physics.

A hybrid description treats electrons as a fluid, but follows ions as single particles. It

is therefore appropriate for the study of ion-scale physics. However, it is clearly unable

to describe processes that occurs at the electron scales.

A kinetic model follows the full particle motions by solving the Vlasov equation,

which contains self-consistent collective electromagnetic fields. It is a scheme
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appropriate to investigate the micro-physics in the plasma, especially phenomena like

particle acceleration and interactions with waves.

The Vlasov equation describes the evolution of the particle distribution function,

f = f (x, p, t), in the self-consistent electromagnetic fields generated by the particles

themselves. In this equation

∂ fi
∂t

+ v ·
∂ fi
∂x

+ qi(E(x, t) + v×B(x, t)) ·
∂ fi
∂p

= 0, (5.1)

index i represents particle species, v = v(p) is the particle velocity p is the relativistic

particle momentum and q is the electric charge. The evolution of the fields is given by

Maxwell’s equations:

∇·E =
ρ

ε0
,

∇·B = 0,

∇×E = −
∂B
∂t
,

∇×B =
1
c
∂E
∂t

+µ0j,

(5.2)

where ρ is the electric charge density and j is the electric current, defined as:

ρ(x, t) =
∑

i

qi

∫
fi(x, v, t) d3v

j(x, t) =
∑

i

qi

∫
f (x,v, t) v d3v.

(5.3)

Direct numerical solution of the Vlasov equation is possible, though computationally

expensive and usually limited to small-scale systems. A far more convenient method is

offered by the PIC model. This technique of solving the Vlasov equation employs

the method of characteristics [Filbet et al., 2001]: we look for solutions that satisfy
d
dt f (x (t),v (t), t) = 0, where (x (t),v (t)) is itself a solution of the system

dp
dt

= F(x (t), t),

dx
dt

= v (t).
(5.4)

In the plasma case, F(x(t), t) is the Lorenz force, both generated by other particles and

due to the self-consistent fields. So, the first equation in 5.4 becomes:
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dγmv
dt

= q(E + v×B), (5.5)

where the sum on the index k involves all the fields. If the initial positions and velocities

of the particles are known, as well as the external fields, it is possible to follow the

evolution of the system only by solving Eq.s 5.4 and 5.5.

5.2 The Particle-In-Cell Method

The PIC method has been used since the 1950s [e.g., Harlow, 1956, Buneman, 1959,

Yee, 1966, Okuda, 1972, Dawson, 1983, Langdon, 1985, Birdsall and Langdon, 1991]). It

implements the following features to facilitate the computations:

1. The use of discretisation: the electromagnetic fields, electric charges and currents

are discretised on a spatial grid, while particles can have arbitrary positions

on the grid. Forces acting on particles are calculating by interpolation of the

fields from the grid points to particle positions, using finite-difference methods.

Quantities are also discretised in time. In this way, the dependence between the

number of arithmetic operations N is linear. It therefore requires considerably

less computational resources than a direct kinetic approach, that would involve

calculations of interactions between all particles and N2 arithmetic operations.

2. The reduction of mass ratio, mi/me: in real plasma, processes acting on the ion

or the electron scales are separated by a large spatial and temporal gap. This

gap is often too large for computational resources, and it becomes convenient to

compress the dynamical ranges by reducing the ion-to-electron mass ratio. The

scale of the reduction needs to be chosen depending on the system under study, so

that both the electron- and ion-scale processes can correctly reproduce the plasma

behaviour, and a reasonable consumption of computational resources is achieved.

3. The definition of macroparticles: since investigating the plasma processes requires

a very large number of particles, macroparticles are used instead. They represent

many real particles, and since the Lorentz force depends only on the charge-to-

mass ratio, a macroparticle will follow the same trajectory as a real particle would,

provided that this ratio is preserved. This allows to save computational resources,

while at the same time the physics of the system is not affected.
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4. The finite-size particle approach: the macroparticles have a geometrical shape of

"clouds" with a finite radius. This occurs naturally when we operate on a grid. For

a radius which is comparable or larger than the Debye length, binary collisions

cross section and frequency decrease much faster than for the point particles,

making the finite-size particles approach very apt to describe collisionless plasma.

A PIC code computational cycle that solves the system of Eq.s 5.2, 5.3, 5.4 and 5.5

is made of four stages for every time-step, represented in schematic way in Figure

5.1. At first, the code integrates the relativistic particle equations of motion (5.5) under

Lorentz force and advances particles to new positions (5.4). Secondly, equation 5.3 is

discretised, and charges or currents are calculated by weighting particle contributions

to appropriate grid locations. Thirdly, Maxwell’s equations (5.2) are integrated on the

grid. Fourthly, the new magnetic and electric fields are interpolated to new particle

positions and new forces are calculated. At this point the cycle is finished, and a new

cycle starts from the first stage.

Figure 5.1: The four stages of a a computational cycle in a PIC simulation program. Index p
refers to particles, while the g index is related to grid points.

Below, the basic algorithms implemented in the THISMPI code are shortly described.

The presentation is not complete, as details can be found in, e.g., Buneman [1993]. The

introduction here serves mainly as a basis to describe the code extensions necessary to

perform simulations of mildly relativistic shocks.
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5.2.1 Integration of particle equations of motion

The most commonly used integration scheme for particle equations of motion in

PIC codes is the leapfrog method [Birdsall and Langdon, 1991]. This method is very

efficient in terms of number of arithmetic operations and has a second-order calculation

accuracy. A characteristic of the leapfrog method is that particle positions and forces

acting on a particle are defined at full-integer time steps, n∆t, while particle velocities

are calculated at half-integer time steps, (n + 1/2)∆t (see Figure 5.2).

Figure 5.2: Graphical representation of the leapfrog method for the discretization of equations
of motion. Particle positions and forces acting on particles are defined at full-integer time steps,
n∆t, while particle velocities are calculated at half-integer time steps, (n + 1/2)∆t.

The discretization of equations of motion 5.4 in the leapfrog scheme can be done in

the following way:

m
v n+1/2

−v n−1/2

∆t
= F(x n),

x n+1
−x n

∆t
= v n+1/2,

(5.6)

where, for simplicity, the formulas are given in the non relativistic limit, where the

particle Lorentz factor γ→ 1. In this form the scheme is explicit and centred in time.

It also allows to keep the particle position and velocity data only for a single time-

step and then overwrite it for the next time-step. In this wave the integration method
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does not require large RAM memory. For this reason, the leapfrog method is the best

compromise between computational accuracy and the limited computational resources.

The integration of Eq. 5.5 with the Lorentz force is more complicated than the

advancement of particle positions. Since the fields are calculated at integer time-steps,

we need a formula to calculate the velocity at the same time-step n∆t. A discretization

by finite-difference scheme of 5.5 (now in its relativistic formulation) yields :

m
γ n+1/2 v n+1/2

−γ n−1/2 v n−1/2

∆t
= q(E n + v n

×B n). (5.7)

The velocity v n must be defined from velocities calculated at half-integer points, v n+1/2

and v n−1/2. The THISMPI code uses a solution proposed in Vay [2008]. With

v n =
v n+1/2 + v n−1/2

2
, (5.8)

Eq. 5.7 can be solved by defining a new quantities u = γ v, γ n+1/2 =
√

1 + (u n+1/2/c)2,

and

u′ = u n−1/2 +
q∆t
m

(
E n +

v n−1/2

2
×B n

)
. (5.9)

In this way, u n+1/2 and γ n+1/2 at half-integer time steps are defined as:

u n+1/2 = s
(
u′+

(
u′ ·

τ

γ n+1/2

)
τ

γ n+1/2
+ u′×

τ

γ n+1/2

)
(5.10)

and

γ n+1/2 =

√
ζ+

√
ζ2 + 4(τ2 + u∗ 2)

2
, (5.11)

where s = 1/(1 = t2), τ = (q∆t/2m)B n, u∗ = u′ ·τ and ζ = (1+u′/c2)−τ2. Hence, the value

of u n at the integer time-step is given by:

u n = u n−1/2 +
q∆t
2m

(E n + v n−1/2
×B n). (5.12)

5.2.2 Integration of Maxwell’s equations and current deposition

In most PIC simulations electromagnetic fields are computed using the finite-

difference time-domain (FDTD) method first introduced by Yee [Yee, 1966]. The Yee

method is a very simple and robust tool for electromagnetic simulation, and the most
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popular technique for the solution of differential equations. The method employs a

cubic lattice of cells to approximate Maxwell’s curl equations, as shown in Fig. 5.3.

A grid point in space is defined as (i, j, k) = (i∆x, j∆y, k∆z). Fig. 5.3 shows Yee

computational grid for ∆x = ∆y = ∆z = 1.

Figure 5.3: Representation of the positions of electric and magnetic field components in Yee
lattice: electric field components are defined at mid-cell edges, and the magnetic field at mid-cell
surfaces

In the Yee scheme the electric field components are defined at mid-cell edges, and

the magnetic field at mid-cell surfaces, i.e.,

Ex (i, j,k) → Ex (i + 0.5, j,k)

Ey (i, j,k) → Ey (i, j + 0.5,k)

Ez (i, j,k) → Ez (i, j,k + 0.5)

(5.13)

for the electric field components, and

Bx (i, j,k) → Bx (i, j + 0.5,k + 0.5),

By (i, j,k) → By (i + 0.5, j,k + 0.5),

Bz (i, j,k) → Bz (i + 0.5, j + 0.5,k),

(5.14)

for the magnetic field components. For the electric currents the same convention as

for the electric field is used, and charge density is defined on nodes of the lattice.

This staggered definition of quantities ensures that the change of B flux through a cell

surface equals the negative circulation of E around that surface, and the change of E flux
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through a cell surface equals the circulation of B around that surface minus the current

through it. This helps in simplifying the discretization of the Maxwell’s equations.

The THISMPI code uses the last two Maxwell’s equations 5.2 to calculate the electric

and the magnetic fields (ε0 = 1, µ0 = 1/c2):

∂E
∂t

= c ∇×B− j, (5.15)

∂B
∂t

= − c ∇×E. (5.16)

Time-centred discretization of these equations on the Yee lattice gives:

(
∂E
∂t

) n+1/2

=
E n+1

−E n

∆t
= c (∇×B) n+1/2

− j n+1/2, (5.17)

(
∂B
∂t

) n

=
B n+1/2

−E n−1/2

∆t
= c (∇×E) n. (5.18)

Here the leapfrog scheme is applied, in which E is the quantity defined every integer

time step, while B and j are defined at every half-integer time-step. In the 2D

implementation the scheme thus gives for the magnetic field pusher (∆t = 1):

Bnew
x (i, j) = Bold

x (i, j) + c (Eold
z (i, j)−Eold

z (i, j + 1)),

Bnew
y (i, j) = Bold

y (i, ) + c (Eold
z (i + 1, j)−Eold

z (i, j)),

Bnew
z (i, j) = Bold

z (i, j) + c (Eold
y (i, )−Eold

y (i + 1, j) + Eold
x (i, j + 1)−Eold

x (i, j)),

(5.19)

and for the electric field pusher:

Enew
x (i, j) = Eold

x (i, j) + c (Bold
z (i, j)−Bold

z (i, j−1))− jold
x (i, j)

Enew
y (i, j) = Eold

y (i, j) + c (Bold
z (i−1, j)−Bold

z (i, j))− jold
y (i, j),

Enew
z (i, j) = Eold

z (i, j) + c (Bold
y (i, j)−Bold

y (i−1, j) + Bold
x (i, j−1)−Bold

x (i, j))− jold
z (i, j).

(5.20)

The remaining Maxwell’s equations are solved implicitly. Taking time derivative of

the second equation 5.2, we have (again, ε0 = 1, µ0 = 1/c2):

∂
∂t

(∇·B) = ∇·
∂B
∂t

= − c ∇· (∇×E), (5.21)
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which means that if initially ∇·B = 0, then it will always stay equivalent to zero during

the simulation. For the same operation on the first equation we obtain:

∂
∂t

(∇·E−ρ) = ∇· j−
∂ρ

∂t
. (5.22)

This equation expresses the charge conservation that must be rigorously fulfilled to

satisfy the Poisson’s equation. In the THISMPI code, the zigzag scheme developed by

Umeda et al. [2003] is used for charge-conserving current deposition. This method is

very accurate and computationally very efficient.

5.2.3 The CFL condition

When we use discretization of space and time variables (necessary for numerical

simulations) we must remember a caveat: if the grid spacing or the time step is too

large, the numerical stability of the calculations can be severely impaired. We have

then to derive a threshold that guarantees the stability of our integration scheme.

Let us consider a physical quantity, A(x, t) = A0 eikx−iωt. Applying the space-centred

discretization scheme that we use for the leapfrog method we obtain:

∂A
∂x

=
∆A(x, t)

∆x
=

A(x0 +∆x/2, t)−A(x0−∆x/2, t)
∆x

=

=
eik∆x/2

− e−ik∆x/2

∆x
A0(x0, t) = i

sin(k∆x/2)
∆x/2

A0(x0, t) = i K A0(x0, t),
(5.23)

where K =
sin(k∆x/2)

∆x/2 . In the same way, we can perform a time-centred discretization:

∂A
∂t

=
∆A(x, t)

∆t
=

A(x, t0 +∆t/2)−A(x, t0−∆t/2)
∆t

=

=
e−iω∆t/2

− eiω∆t/2

∆t
A0(x0, t) = −i

sin(ω∆t/2)
∆t/2

A0(x0, t) = i Ω A0(x0, t),
(5.24)

where Ω =
sin(ω∆t/2)

∆t/2 . Hence, the dispersion equation for an electromagnetic wave on

our grid will be Ω2 = c2K2, and inserting the values for Ω and K we have:

(
sin(ω∆t/2)

c∆t

)2

=
∑

a=x,y,z

(
sin(ka∆a/2)

∆a

)2

. (5.25)
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A condition to have a real ω (and thus no instability development) is:

1 > (c∆t)2
∑

a=x,y,z

( 1
∆a2

)
(5.26)

If the grid has cubic cells (i.e. (∆x = ∆y = ∆z) the condition becomes:

c
√

D <
∆x
∆t
, (5.27)

where D is the number of dimensions. Eq. 5.27 is known as the Courant-Friedrichs -

Lewy (CFL) condition [Courant et al., 1928]. When this condition is violated,ω becomes

complex, and nonphysical growth of waves occurs.

The simulations performed for this thesis use 2D computational boxes, so the CFL

condition is c < (1/
√

2)∆x/∆t ∼ 0.7∆x/∆t. For the assumed ∆x = ∆y = 1 and ∆t = 1, we

set c = 0.5, which satisfies the CFL condition.

5.3 Numerical techniques for reducing the noise

Since any physical quantity in our simulations is discretized on the grid, it follows

that we cannot resolve scales which are smaller that the grid size. This causes Fourier

power spectra of spatial quantities to present non-physical modes called aliases. When

aliases interact with the physical modes the physics can be disturbed, producing

nonphysical instabilities, numerical noise, and spurious forces. It is then necessary

to devise some numerical techniques to decrease the influence of aliases and reduce

the numerical noise.

Since statistical noise decreases as N−1/2
pcc (where Npcc is the number of particles per

cell) a first basic method to damp numerical noise is the use of large Npcc. However,

this method is not always exploitable, since it makes the simulation computationally

heavier. Higher-order computational schemes for integration of field equations, e.g.,

the fourth-order integration instead of the second order one, can be used to provide

further damping of the noise (see Section 5.5). Also higher-order interpolation methods

for calculations of physical quantities that use higher-order particle shape factors (see

Section 5.3.1) can be implemented. On top of these additional digital noise filtering

methods can be implemented.
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5.3.1 Particle shape

It was already mentioned that PIC simulations make use of finite-size macroparticles,

i.e. "clouds" of plasma particles. The choice of the macroparticle shape depends on

the required order of approximation. The charge weights which should be assigned to

appropriate grid points are defined by the particle shape function.

The simplest particle shape is the zero-order approximation (Figure 5.4, panel 1),

and the corresponding shape function is defined as:

S1(x) =



1,
x−xp
∆x < 1

2

1
2 ,

x−xp
∆x = 1

2 .

0,
x−xp
∆x > 1

2

(5.28)

Here, x is the discretized position coordinate along the grid, and xp is a particle position.

In this way every particle is assigned to the nearest grid point. However, this particle

shape function produces a high computational noise.

The first-order approximation is the so-called cloud-in-cell (CIC) model (Figure 5.4,

panel 2). In this setup the electric charge of the particle is shared between two adjacent

grid points, and the weights linearly depend on the particle position relative to the grid

points. The shape function for the CIC model is:

S2(x) =


1−

x−xp
∆x ,

x−xp
∆x ≤ 1

0,
x−xp
∆x > 1 .

(5.29)

This method presents a higher accuracy, but is more computationally expensive,

because each particle shares its charge into two grid points in 1D case and the four

grid points in the 2D case.

Even more higher accuracy is obtained by implementing a second-order approximation,

the triangular-shape-cloud (TSC) (Figure 5.4, panel 3). The macroparticles have a

triangular shape and particle charge is assigned to three grid points in 1D case and nine

grid points in 2D case. The shape function in this case is:
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S3(x) =



3
4 −

(x−xp
∆x

)2
, 0 ≤

x−xp
∆x ≤

1
2

1
2

(
3
2 −

(x−xp
∆x

))2
, 1

2 ≤
x−xp
∆x ≤

1
2 .

0,
x−xp
∆x > 3

2

(5.30)

This high-order particle shape functions is more computationally expensive. However,

this model is very efficient in reducing the numerical noise in the simulations. This

set-up in fact works like a low-pass filter, by cutting the highest frequencies in Fourier

decomposition of integrated quantities [Umeda, 2004]. The TSC shape factors are used

in the simulations presented in this thesis.

Figure 5.4: Distributions of electric charge for particles (top) and corresponding shape functions
(bottom) for zero-order approximation (panel 1), cloud-in-cell (CIC) approximation (panel 2),
and triangular-shape-cloud (TSC) approximation (panel 3)

5.3.2 Filtering

If the amount of available computational resources (CPU time, RAM memory) is

limited, or the other techniques not efficient enough, additional noise filtering methods

must be implemented to improve overall accuracy and reduce noise, in particular

where finite difference algorithms for ∇ and ∇2 become most inaccurate. In Fourier-

based codes, which operate directly on the Fourier spectra of physical variables, one

can simply use low-pass filters to cut high frequencies related to aliases. In the PIC

codes, such as the THISMPI code, one cannot operate directly on the Fourier spectra of

physical variables. For this reason, the filtering must be done in x space and methods of

digital filtering must be used. The most commonly used filter in PIC simulation is the
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binomial filter [Birdsall and Langdon, 1991]. Let the quantity to be filter to be defined

as A(xi) ≡ Ai, which is a periodic quantity and it is known at the grid points xi ≡ i∆x.

Applying a simple filter to Ai means substituting the physical quantity with its filtered

counterpart, defined as:

A′i =
W Ai−1 + Ai + W Ai+1

1 + 2W
, (5.31)

where W is the weight. In the Fourier space, the representation of this filter may be

obtained by assuming that the Fourier transform of the original quantity, Ai(k), is given

by
∑N

i=1 A(xi) eikxi . Hence, the filtered quantity in the Fourier space is

A′i (k) =

N∑
i=1

W Ai−1 + Ai + W Ai+1

1 + 2W
eikxi (5.32)

and defining p = i−1 and q = i + 1 one gets for A′i :

A′i (k) =
W

∑N−1
p=0 A(xp) eikxp+1 +

∑N
i=1 A(xi) eikxi +

∑N+1
q=2 A(xq) eikxq−1

1 + 2W
(5.33)

Remembering now that Ai is periodic, i.e., the numbering of the grid points can start

anywhere, one find the result

A′(k) =
1 + 2W cos(k∆x)

1 + 2W
A(k) = S(k∆x) A(k) (5.34)

where S(k∆x) is the smoothing function. It can be noted that for W > 0.5 the smoothing

function flips sign in the region 0< k∆x<π, which is an undesirable behaviour. For W =

0.5, the smoothing function is instead always positive, and it goes to zero quadratically

as k∆x approaches π. Application N times leads to filtering to order of cos2N(k∆x), in

analogy of what would be obtained from a single-pass filter with binomial coefficients

[Birdsall and Langdon, 1991]. The filter with W = 0.5 is hence called the binomial filter.

A simple example of application of a binomial 2D filter is then:

A′(xi, y j) = A(x j, y j)⊗


1 2 1

2 4 2

1 2 1

 (5.35)

where ⊗ designates convolution of matrices. A binomial filter is applied in the code
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used for this dissertation to the components of currents, which are the source terms in

Maxwell’s equations.

A severe source of noise in relativistic plasma simulations is the Cerenkov emission,

caused by the fact that fields in PIC simulations are computed using FDTD method,

which is affected by numerical phase error. In fact, on grid, the dispersion relation for

electromagnetic waves is given by Eq. 5.25, while in contrast, electromagnetic waves

in real space propagate according to:

ω2

c2 = k2
x + k2

y + k2
z = k2 . (5.36)

One can see that the numerical dispersion relation (Eq. 5.25) approximates equation

5.36 only at low frequencies (where sinx ∼ x). The numerical wave propagation speed

at high frequencies is slower than the physical wave propagation speed. If relativistic

particles are in a simulation, their velocities are close to c and may exceed the numerical

wave propagation speed at high frequencies. This results in the appearance of non-

physical numerical Cerenkov radiation fields that may significantly disturb the system

and for this reason they must be eliminated.

Among the methods that can be used to efficiently damp the numerical Cerenkov

emission [see, e.g., Greenwood et al., 2004] is the Friedman filter [Rambo et al., 1989,

Friedman, 1990]. It uses the standard Yee update equation for the electric fields

presented Eq. 5.17, while the magnetic field pusher in Eq.5.18 is augmented to take the

form:

B n+1/2 = B n−1/2
−∆t∇×

[(
1 +

θ f

2

)
E n
−θ f

(
1−

θ f

2

)
E n−1 +

1
2

(1−θ f )2 θ f E n−2
]
. (5.37)

Here, the parameter θ f is introduced that sets the strength of the filter in a range

0 ≤ θ f ≤ 1, and E n−2 = E n−2 +θ f E n−3. The standard fields updating (equations 5.17

and 5.18) is recovered for θ f = 0. It seems that a compromise between an efficient

suppression of the Cerenkov nonphysical modes and the need to guarantee that the

physics of the phenomena to be studied is not affected is achieved for θ f = 0.05

[Greenwood et al., 2004]. Through test simulations it was verified that this is true

also for the parameters of the simulations performed for this thesis (see Section5.4).
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Therefore, here I set θ f = 0.05.

5.3.3 Fourth-order field pusher

Another solution to damp the numerical noise, especially nonphysical Cerenkov

radiation, is the alteration of the computational stencil. This requires changing the

approximation to the spatial derivatives for the FDTD method [Greenwood et al.,

2004]. The Yee method uses second-order centred finite differences. A higher-order

approximation takes more values around the point of interest, as illustrated in Figure

5.5.

Figure 5.5: Fourth-order approximation: the Ex and Ey values are used to compute ∇×E to
update Bz. The standard Yee FDTD scheme uses the values shown in green. The values shown
in red and blue are used in addition to the values shown in green.

In the fourth-order approximation we can calculate ∇×E, necessary to update the

Bz-field at a point located in the centre in Figure 5.5, in three ways. First, with the

values showed in green (Yee standard scheme) give:

Bz(i, j,k) = ẑ · (∇×E)(i+1/2, j+1/2,k)

=
Ey

(i+1, j+1/2,k)−Ex
(i+1/2, j+1,k)−Ey

(i, j+1/2,k) + Ex
(i+1/2, j,k)

∆
+O(∆2) ,

(5.38)

where again a notation A(i, j,k) indicates a quantity evaluated at the position (i∆x, j∆y,
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i∆z ) on the grid, and we assume ∆x = ∆y = ∆z = ∆. A second way is to approximate

the curl by using the values shown in red:

Bz(i, j,k) =
Ey

(i+2, j+1/2,k)−Ex
(i+1/2, j+2,k)−Ey

(i−1, j+1/2,k) + Ex
(i+1/2, j−1,k)

3∆
+O(∆2) , (5.39)

and the third one is to use the values shown in blue:

Bz(i, j,k) =
1

6∆

(
Ey

(i+2, j−1/2,k) + Ey
(i+2, j+3/2,k)−Ex

(i+3/2, j+2,k)−Ex
(i−1/2, j+2,k)

−Ey
(i−1, j+3/2,k)−Ey

(i−1, j−1/2,k) + Ex
(i−1/2, j−1,k) + Ex

(i+3/2, j−1,k)

)
+O(∆2) .

(5.40)

Each of these approximations is second-order accurate. Hence, a linear combination of

them is also second-order accurate. We can then approximate the curl as Bz = K1 Eq.5.39

+ K2 Eq. 5.40 + (1−K1−K1) Eq. 5.38, where Ka are weight factors [Hadi and Picket-May,

1997]. The case with K1 = K2 = 0 recovers the standard Yee FDTD scheme. The fourth

order accurate approximation is recovered with K1 = −1/8, and K2 = 0 [Cangellaris and

Lee, 1992]. It has been shown how in this configuration even relativistic particle do

not excede the numerical light propagation speed for most time-steps, ∆t [Greenwood

et al., 2004]. Moreover, this K1−K2 combination provides the largest maximum stable

time-step among the configurations that effectively damp the nonphysical Cerenkov

radiation. For these reasons, this fourth-order accurate field-pusher is incorporated in

the THATMPI code used for my simulations. A series of preliminary tests allowed us

to determine that in order to suppress efficiently nonphysical Cerenkov radiation in

our simulation setup the use of the fourth order approximation is necessary.

5.4 Code stability tests

In order to assess the stability of our configuration against numerical instabilities

several tests have been performed. They are summarised here and parameters of the

most representative tests are listed in Table 5.1. For the tests we put an electron-

ion plasma slab in 2D simulation box and allowed it to propagate freely with the

flow Lorentz factor Γ0 = 2 along the x-direction for time tωpe = 1000. This time frame

corresponds to the distance (x−x0) = 870λse travelled by the beam. We need the plasma

to propagate unperturbed as far as possible to avoid any numerical instability to arise
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before the plasma interacts with the shock or with upstream propagating waves. The

box is periodic in all directions, which allows us to calculate the box-average quantities

that characterise the system. The tests summarised here have been performed with the

electron skin depth λse = 10∆ and ion-to-electron mass ratio mi/me = 50.

Table 5.1: Summary of the most representative stability tests. Investigated are the effects of the
Friedman filter parameter θ f , the fourth order field pusher, a different time step value, ∆t, and
the plasma upstream electron thermal velocity, ve,th.

σ θ f ve,th Field pusher ∆t
T1 0.0 0.05 0.01c 2-nd order 1.0
T2 0.0 0.05 0.01c 4-th order 1.0
T3 0.0 0.00 0.01c 4-th order 1.0
T4 0.0 0.05 0.01c 4-th order 0.5
T5 0.0 0.05 0.01c 4-th order 1.1
T6 0.1 0.05 0.01c 4-th order 1.0
T7 0.1 0.05 0.0 4-th order 1.0

A system with a plasma beam propagating in an empty space should be not different

from the plasma system at rest, due to Lorentz invariance. However, numerical

instabilities described above may significantly alter the system and in the extreme

case even completely destroy the beam to the point of its isotropization. The most

efficient in the beam destruction are the grid-Cerenkov effects, that develop very fast

if damping numerical techniques are not implemented. In the tests I investigated the

effect of the Friedman filter, the fourth order field pusher, different time steps, ∆t, and

the electron upstream thermal velocity, ve,th. It must be noted that obtaining eternally

stable configurations is not possible. I then look for a parameter set that enables us to

keep the plasma stable for an appropriate time, to guarantee that in a final simulation

any interaction with the shock will happen before nonphysical instabilities build up.

Results for different tests are compared in Figure 5.6, in which I plot the beam velocity

in the plasma rest frame. As noted, in a stable system, this velocity should be zero.

Any significant bulk plasma motion in its original rest frame is thus a good proxy for

the amplitude of the numerical instabilities in a numerical setup.

The first tests have been performed for unmagnetized plasma, runs T1-T5. One can

see that models using the second-order field pusher, run T1, or no Friedman filtering,

run T3, are highly unstable. On the other hand, the stability is ensured when applying

the fourth-order field pusher and a Friedman filter with a parameter θ f = 0.05, run T2.
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Figure 5.6: Stream velocity in the plasma rest frame for the runs listed in Table 5.1. Test with
an unmagnetized plasma are presented in panel (a), tests T1-T5, and the magnetized one in
panel (b), tests T6-T7. In panel (a), the lines for tests T2, T4 and T5 overlap at zero.

The stability of this model does not depend on the choice of the time-step, as verified

for ∆t = 0.5 (run T4) and ∆t = 1.1 (run T5), results for which overlap in Figure 5.6a.

Note that these time-steps are consistent with the CFL condition (see Section 5.2.3).

The independence of the code stability on the time-step in our code is in contrast to the

so-called implicit codes, for which a specific CFL number can be found that minimises

the excitation of the numerical instabilities [e.g., Ikeya and Matsumoto, 2015].

In the second types of tests, the plasma carries a large-scale magnetic field

perpendicular to the simulation plane, runs T6-T7. The strength of this field gives

the plasma magnetization assumed in the production simulations. Run T6 uses the

model proved to be stable for the unmagnetized beam. However, in the magnetized

case, the Cerenkov radiation quickly sets in and destroys the beam. Run T6, as other

test runs, T1-T5, assumed an almost cold beam with the electron mean thermal velocity

ve,th = 0.01 in the beam rest frame. Further tests showed that the beam stability in

the magnetized beam could be assured only when applying the so-called quiet start

method, in which ve,th = 0. Results for run T7 in Figure 5.6b show that in this case the

plasma is much more stable, although a small heating is present at the end of the run.

However, in a shock simulation the beam interaction with the shock happens much

earlier than the travel time allowed within time frame of tωpe = 1000∆t. The stability is

also improved at much higher resolution of λse = 80∆ used in the production runs. The

T7 model can thus be safely applied to study magnetized mildly relativistic shocks.
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CHAPTER 6

SIMULATIONS OF PERPENDICULAR SHOCKS

In this chapter I present results of my very-large-scale high-resolution 2D PIC

simulations of mildly-relativistic shocks in the electron-ion plasma. I will demonstrate

generation of electromagnetic precursor waves through SMI and production of

wakefields in the shock upstream and discuss particle acceleration mechanisms

upstream and downstream of the shock. I will investigate the effects of the shock

rippling on the shock structure and particle energisation. Simulation setup is presented

in Section 6.1, in which a rationale for performing very high-resolution studies is given

in Section 6.1.1. The 2D simulations are performed for two configurations of the

perpendicular mean magnetic field with respect to the simulation plane – the out-of-

plane, with results presented in Section 6.2, and the in-plane, described in Section 6.4.

For comparison, in Section 6.3 I also show results for a 1D simulation.

6.1 Simulation setup

As the computational cost of 3D PIC experiments is prohibitively high for the

resolution required in my study, I restrain to 2D3V simulations that use two-

dimensional spatial grid but follow three components of particle momenta and

electromagnetic fields (a 2D3V model). The plasma beam lies in the x− y plane. My

simulations exploit the commonly used reflective wall setup, where a cold electron-

ion beam is injected at the right side of the box to flow in the negative x-direction.

Upon reflection off the conductive wall at the left side of the simulation box, the beam

collides with the incoming flow to form a shock propagating in the positive x-direction.

In order to suppress numerical Cerenkov radiation I implemented Friedman filtering

with parameter θ f and a fourth order accurate FTFD technique, as described in Section

5.3. The CFL condition is satisfied by ∆t = ∆x = 1.0, c = 0.5 and the plasma beam is

totally cold, which is the most stable configuration as shown in Sec. 5.4. The beam

carries a large-scale magnetic field B0 that is set to be perpendicular to the shock

normal. I probe two values of the magnetic field inclination angle with respect to the

simulation frame: ϕB = 90◦, in which the large scale magnetic field is perpendicular

to simulation plane (the out-of-plane setup) and ϕB = 0◦, in which the magnetic filed

lies in the simulation plane (the in-plane setup). Corresponding motional electric field
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Figure 6.1: Simulation setup for the simulations described in this dissertation: I make use of
the reflective wall setup, in which the incoming beam collides with the conductive surface and
is then reflected, thus forming a shock propagating backwards along the x-axis. The ambient
magnetic field is perpendicular to the shock normal and forms the angle ϕB with the simulation
plane.

E0 = −v0×B0 is also initialised in the plasma, with the beam velocity v0. This motional

field lies in the simulation plane (E0 = −Ey ŷ) in the out-of-plane setup and it points out

of the simulation plane (E0 = Ezẑ) in the in-plane magnetic field case. Note that due to

different number of degrees of freedom (3 and 2 in the in-plane and the out-of-plane

case, respectively) the shock physics may in general be different in the two models.

For the large-scale simulations the box has a transverse dimension of Ly = 5760 cells,

and I used 10 particles per cell and per species. The use of such a large transverse box

size is due to the necessity to fully resolve the features that develop in the shock surface

and that have characteristic lengths of several λsi. The lateral box size, Lx, expands

in x-direction during simulations and reaches the final size of Lx = 160000∆ ' 283λsi

at tmax. The unit of length used here is the ion skin depth, λsi = c/ωpi = 566∆. Both

the value for λsi and Nppc are determined through the convergence tests described in

Sec. 6.1.1. The box is then ∼ 10λsi wide.

I probe a mildly relativistic regime, appropriate for the internal shock model of

AGN jets, and I use the system parameters that are representative of the jet physics.

The beam Lorentz factor is set to γ0 = 2.02, so that the resulting Lorentz factor of the

shock is Γsh ' 2.2 in the shock upstream rest frame. Furthermore, I assume a total

plasma magnetization σ = 0.1, with

σ =
B2

0

µ0Ni(me + mi)γ0c2 , (6.1)
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where µ0 is the permeability of free space, and the upstream quantities – magnetic field

strength, B0, and the ion density, Ni – are given in the simulation (shock downstream)

frame [Hoshino et al., 1992]. With this definition, it follows that 1/σ = 1/σe + 1/σi,

where σe and σi are electron and ion magnetizations, respectively. I assumed a reduced

ion-to-electron mass ratio of mi/me = 50, to reduce the computational burden of my

simulations. This mass ratio is large enough to separate electron and ion scales.

Through test simulations I verified that our results do not change if a higher mass

ratio of mi/me = 100 is used. With mi/me = 50 the electron magnetization is σe = 5.2.

Time and all temporal dependencies is expressed in units of the ion cyclotron frequency

Ωci = (eB0)/(miγ0). 2D simulations ran for a long time into the nonlinear phase, up to

tΩci = 84.3 and complementary 1D simulation reaches tmax = 163.1Ω−1
ci . The time-step

I used is δt = 1/1131ω−1
pi = 1/3556.8Ω−1

ci .

6.1.1 The need for high-resolution studies

The main problem with performing numerical simulations of shocks in plasma is the

constraint by the available computational resources. Present-day simulations employ

billions of computational particles but at the same time the size of the simulation

grid and its resolution and a final simulation time must be properly chosen for the

characteristic physical distances and frequencies of the problem under study. The

inclusion of ions in PIC simulations constitutes a further challenge: in fact , if the

simulated system is only composed by electrons and positrons with mass me, the

characteristic time scale that must be resolved is typically ω−1
pe ∼

√
me, and it is possible

to run a simulation for thousands of ω−1
pe and analyse the system up to a strongly non-

linear phase. However, studying protons in the simulations requires much longer time

scales. In order to correctly capture the ion behaviour, a PIC simulation must resolve

a good number of ion characteristic time scales, ω−1
pi ∼

√
mi. If one were to perform

a simulation for a realistic mass ratio mi/me ≈ 1836 this would correspond to running

the simulation for a time interval that is
√

mi/me ≈ 42 times longer than for the case

involving only leptons. The spatial scale also constitutes a problem, since ions require

correspondingly larger spatial scales. It can be seen that in principle the simulation

box size that is necessary to model electron-proton plasmas increases compared to that

required by leptonic plasmas by a factor of ∼
√

D, where D is the number of spatial

dimensions resolved by the code [Bret and Dieckmann, 2010]. For this reason PIC
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simulations that use realistic electron-to-ion mass ratio are very unusual and mostly

restricted to 1D regimes [e.g., Dieckmann et al., 2006] and to 2D simulations that need

to resolve a very small spatio-temporal domain [e.g., Honda et al., 2000], while 2D

PIC simulations that cover a large domain and 3D PIC simulations normally introduce

reduced mass ratio of 16÷100 (e.g. [e.g., Spitkovsky, 2007, Niemiec et al., 2008, Hoshino

et al., 1992, Martins et al., 2009, Stockem et al., 2012, Iwamoto et al., 2019]). However,

caution must always be exercised since some phenomena such as magnetic reconnection

and Buneman instability have been shown to be influenced by the mass ratio [Guo and

Lu, 2007, Bohdan et al., 2017].

A second, but very important factor is the simulation the space resolution, i.e.,

the number of simulation cells used to resolve electron and ion skin depths. High-

frequency short-wavelength oscillations characteristic of, e.g., precursor waves emitted

by the shock towards the upstream plasma may be easily damped out in case of

insufficient resolution. Consequently, simulations which aim at investigating these

kind of waves must set this parameter carefully. If, on one hand, applying a lower

resolution eases the computational burden, on the other hand it may fully or partially

suppress physical phenomena. Very low resolutions of λse = 10∆x have been used in,

e.g., Sironi and Spitkovsky [2011] and λse ≈ 2.3∆x in [Stockem et al., 2012]. Iwamoto

et al. [2017] investigated the relation between the value of these simulation parameters

and the numerical damping of the SMI shock-emitted waves by performing numerical

convergence tests in Nppc and the resolution. They observed that the precursor wave

amplitude systematically increases with the resolution until the value at which a

convergence is achieved, that occurs for λse = 40∆x in their model. This proves that

the precursor wave emission is very sensitive to numerical resolution. As the code

used for my simulations is structured differently from the one in [Iwamoto et al.,

2017], I performed my own set of test simulations, to find the appropriate simulation

parameters.

I have performed two sets of test simulations for a numerical convergence study.

In the first set I used 2D simulations with the setup the same as in our run with the

out-of-plane magnetic field, ϕB = 90◦, and I probed different resolutions in terms of

the electron skin depth values of λse = 15∆, 40∆ and 80∆, and different number of

particles per cell, Nppc = 10,20 and 40. The transverse size of the numerical grid was

61



Figure 6.2: Profiles of Bz magnetic field fluctuations upstream of the shock located at x/λsi ' 33
at time tΩci ' 22.5 and different Nppc = 10 (a), 20 (b) and 40 (c) for the 2D convergence tests.
Profiles are taken in the middle of the box along y/λsi = 1.5 and are normalised to the initial
magnetic field strength. Here λse = 15∆.

Figure 6.3: Profiles of Bz magnetic field fluctuations upstream of the shock located at x/λsi ' 33
at time tΩci ' 22.5 and different λse = 15∆ (a), 40∆ (b) and 80∆ (c) for the 2D convergence
tests. Profiles are taken in the middle of the box along y/λsi = 1.5 and are normalised to the
initial magnetic field strength. Here Nppc = 10.
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adjusted to have Ly ' 3λsi in each case. Figure 6.2 shows the profiles of Bz magnetic

field fluctuations taken in the middle of the box along y/λsi = 1.5 at time tΩci ' 22.5

for λse = 15∆ and different Nppc. Similarly, Figure 6.3 presents results for the case of

Nppc = 10 and different λse. In Figure 6.4 we compare the normalised amplitudes of

the waves at different λse and Nppc. The amplitudes are averaged in the region of

x/λsi = 35− 40, located about 2λsi from the shock. One can see that the number of

particles per cell does not influence the amplitude of the precursor waves, and so that

I choose Nppc = 10 for our 2D large-scale production runs. However, the amplitude

increases with the electron skin depth.

Figure 6.4: Normalized amplitudes of δBz at different λse and Nppc obtained in 1D (blue
dashed line) and 2D (solid blue, green, and red lines) convergence test runs. The amplitudes are
calculated at tΩci ' 22.5 and are averaged in the region of x/λsi = 35−40, located about 2λsi
from the shock (compare Fig. 6.19). Note that results for 2D tests and different Nppc overlap.

To verify whether δBz/B0 is saturated at the maximum resolution of λse = 80∆ tested

with 2D simulations, we performed the second set of test runs with 1D simulations

with the same λse and also extending the probed resolution range for the cases with

λse = 100∆, 120∆, and 140∆. For 1D tests we take Nppc = 10 and use the 2D simulation

code but with 5 cells in the y-direction, which is the minimum number of grid points

in the transverse direction allowed in our code. 1D tests show that the convergence is

indeed obtained for λse = 80∆, which is the value used in our production runs. Note

that the amplitudes in 1D simulations are slightly larger than in 2D runs at the same

skin depth because the shock has not yet reached a steady state (see discussion in

Section 6.2.2(d) and compare Fig. 6.19).
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6.2 Results for out-of-plane setup

In this section I describe the structure of a mildly relativistic strictly perpendicular

shock in ion-electron plasma observed in the setup with the large-scale magnetic field

pointing out of the simulation plane. I simulated up to tmaxΩci = 84.3. Differently from

what has been observed for highly relativistic flows [e.g., Sironi and Spitkovsky, 2011,

Iwamoto et al., 2019], the mildly relativistic shock is not laminar throughout the entire

simulation but quickly develops corrugations in its surface. These shock rippling,

visible in both density and electromagnetic field maps, start appearing at tΩci ∼ 6.5,

and fully unfold by tΩci ∼ 8.5. In Sec. 6.2.1 I first present the structure of the laminar

shock at tΩci ' 7.5 to demonstrate that the SMI is already operating at this early stage

in line with theoretical expectations. In Sec. 6.2.2 I compare the laminar shock stage

results with the nonlinear physics of fully-evolved rippled shock.

6.2.1 Laminar shock stage

The shock structure in the initial stages of my simulations (tΩci = 7.5) is shown in

Fig. 6.5. The shock front is located at x/λsi ∼ 11. The density increase in the downstream

is averaging around ∼ 3, consistent with the value of R = 2.83 derived from Eq. 3.23 in

Sec. 3.2.1. The last two panels of Fig. 6.5 show details of the upstream region of the

shock.

The features in Bz are fully compatible with those in Ey, hence Ey map is not showed

here. The shock front is located at x' 11λsi. Upstream of the shock, at x& 12λsi, one can

see plane-wave fluctuations in Bz magnetic field (see 2D map of δBz = Bz−B0 in Fig. 6.5c

and transversely-averaged profile in Fig. 6.5e), that move with the speed of light away

from the shock (i.e., their wave vector is along positive x, kBz = kxx̂). They are polarised

in the z-direction, parallel to the large-scale magnetic field. The associated fluctuations

in Ey are transverse both to the mean magnetic field and to the propagation wave

vector. These waves are then electromagnetic waves of the X-mode type. In the shock

upstream one can also see longer-wavelength longitudinal fluctuations in Ex electric

field (Figs. 6.5b and 6.5d) with kEx = kxx̂ and moving also with the speed of light. The

normalised amplitude of these electrostatic waves averaged over the three oscillations

observed, Ey/B0c ' 1.8 ·10−2, is an order of amplitude smaller than the X-mode waves

amplitude. Note that already in this very early stage of the simulation the shock surface
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Figure 6.5: Distribution of the normalised electron number density Ne/N0 (a) and the structure
of Ex electric field (b) and turbulent Bz magnetic field (c) components at time tΩci = 7.5.
Logarithmic scaling is applied to the density map. The scaling for electromagnetic fields is
also logarithmic, but sign-preserving (e.g., sgn(Bz) · {2 + log[max(|Bz|/B0,10−2)]}), so that
field amplitudes below 10−2B0 are not resolved. Field amplitudes are normalised to the initial
magnetic field strength. Panel (d) shows transversely averaged profile of the electric field, 〈Ex〉,
upstream of the shock, and panel (e) the profile of δBz taken in the middle of the box along
y/λsi = 6.

is perturbed by the developing shock-front ripples.

The emission of X-mode polarised electromagnetic waves from the shock towards

the upstream region is a signature of SMI [e.g., Hoshino, 2008, Iwamoto et al., 2017,

2018]. Linear dispersion relation for this waves for parameters used in this study is
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presented in Sec. 4.1. Direct comparison with the linear theory will be discussed

in the following sections, since the limited extension of the shock precursor at this

early stage restricts the dynamic range of wave-vectors. However, here I demonstrate

that the waves observed in the precursor of my mildly relativistic shock have been

generated through the SMI mechanism by analysing the wave power spectrum, shown

for the oscillations in Bz in Fig. 6.6a. I choose the region upstream of the shock at

x/λsi = 13−18 (see Fig. 6.5). The waves emitted immediately after the beam reflection

off the conducting wall and now localised in the x/λsi ∼ 20− 23 region are heavily

affected by the initial conditions and hence are not considered in this analysis.

One can see in the spectra that the waves are mostly parallel with kBz,x/λsi ' 10−20,

though a weak oblique component is also present. The wave spectrum has a cutoff

at lower wave-numbers and the wave power is mostly to the right of the white solid

line. This line represents an estimate of the theoretical cutoff wavenumber. This

cutoff represents the minimum wave number above which the waves can propagate

upstream ahead of the shock. It expresses the requirement that the upstream-directed

group velocity of the precursor waves is larger than the shock velocity. To estimate

this wavenumber, one can start from the the X-mode waves dispersion relation in the

upstream, Eq. 4.32:

η′2 = εyy→
c2 k′2

ω′2
= 1−

ω2
pe

ω′2−Ω2
ce
. (6.2)

Here and in the following, upstream rest frame quantities are denoted with prime. In the

upstream plasma rest frame, the wavenumber is k′ = kx. One observes that if ω′� ωpe

we retrieve the dispersion relation in a weekly magnetized plasma, ω′2 = k′2c2 +ω2
pe. In

case ofω′→∞ the dispersion relation tends to the one for a wave in vacuumω′2 = k′2c2.

Considering that Ω2
ce = ω2

peσ
2 and by performing a Lorentz transformation one obtains

the dispersion relation in the simulation rest frame:

ω2

ω2
pe

=
σ

γ2(1 +β η cosθ)
+

1
1−η2 . (6.3)

As we consider precursor waves propagating towards the upstream, −π/2 < θ < π/2 is

the angle between the x−axis and the wave propagation direction. One observes that,

in the first term on the right hand side (1 + βηcosθ) is always equal or greater than
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Figure 6.6: Fourier power spectra for Bz field fluctuations and Ex in the early stage of the shock
evolution, t = 7.5Ω−1

ci , calculated upstream of the shock in the region x/λsi = (13−18) (compare
Fig. 6.5). The solid white line represents the precursor wave theoretical cutoff wavenumber.

unity. I then estimate the maximum contribution to the dispersion relation by this term

as σ/γ2, and the dispersion relation in its approximated form can be written:

ω2

ω2
pe
≈
σ

γ2 +
1

1−η2 . (6.4)

This gives

ω ≈

√
(1 +

σ

γ2 )ω2
pe + c2k2, (6.5)

where the terms in the fourth power of ωpe were discarded. The waves group velocity

is then:

vgr =
∂ω
∂k

=
c2k√

(1 + σ
γ2 )ω2

pe + c2k2
. (6.6)

From the group velocity one can estimate the cutoff wavenumber for the precursor

waves propagating in the upstream. Equating the x−component of the wave group

velocity vgr,x = vgr cosθ with the shock velocity, cβsh one obtains:

kx = βshΓsh

√
(1 +

σ

γ2 )
ω2

pe

c2 + k2
y. (6.7)

To calculate the theoretical cutoff wavenumber I used the shock velocities measured

from the simulations.

In the magnetized electron-proton plasma the interaction of the precursor waves
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with the upstream medium should lead to the generation of electrostatic fluctuations,

so-called wake-field. Fig. 6.6b shows the Fourier power spectrum of Ex in the same

upstream region that was selected to obtain Fig. 6.6a. Parallel component (with ky ≈ 0)

is clearly present at kEx,xλsi ' 2.5−3.0. Higher-intensity oblique spectral component at

kx & 4 also exists for Ex. As discussed in the next section, these waves are electromagnetic

SMI-induced modes generated at oblique angles due to the shock ripples already

emerging at this stage. The signal at kxλsi ∼ 1−4 and kyλsi ∼ 3−20 is due to upstream

filamentation and is described in detail in Sec. 6.2.2(c).

The wavelength of the waves in the Ex component propagating in the x−direction

can be inferred from Fig. 6.6 to be λEx ∼ 3.2λsi. Under the assumption that wake-

field waves are generated via Raman scattering, it is expected that if in the upstream

frame the frequency of the electromagnetic pump wave is larger than ωpe, then for the

Langmuir wave ω′L ' ωpe, and k′L ' 1/λse [Kruer, 1988, Hoshino, 2008], This condition

is met in our simulation, since the frequencies of the precursor waves ω′/Ωce & 1 and

Ωce/ωpe ' 2.25 (see Sec.4.1). After performing the Lorentz transformation we obtain the

wavenumber, kL, of the electrostatic waves in the downstream (simulation) frame:

kL =γ0 k′L (1−β
ω′L
c k′L

) ' γ0
1
λse

(1−β
ωpe λse

c
)

=
γ0

λsi

√
mi

me
(1−β).

(6.8)

For our parameters, this gives the theoretical wavenumber kExλsi ' 1.86, corresponding

to the wavelength ofλEx ' 3.4λsi. A slight discrepancy with the observed signal is due to

a coarse sampling for the wavenumbers allowed by a limited extension of the precursor

wave region at this stage (compare Fig. 6.5). A better agreement is observed in the later

stage (see Fig. 6.11b in Sec. 6.2.2(b), in which the Fourier spectra are calculated in a

region of double width.

6.2.2 Nonlinear Shock Structure

Fig. 6.7 shows the map of the Bz magnetic field fluctuations at time tΩci = 56.2 in the

region extending from near the shock to the far upstream. For this stage I analysed the

properties of the precursor waves and compare them with the linear theory in Fig. 6.8.

Fig. 6.9 shows the full shock structure and the shock region structure respectively, at
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the final stage of my simulation at tΩci = 84.3.

Figure 6.7: Map of the normalised Bz magnetic field fluctuations, δBz, at time tΩci = 56.2. The
shock is located at x/λsi ' 84 and waves beyond x/λsi & 162 resulting from the initial transient
are not shown. Logarithmic scaling is applied (see Fig. 6.5). Regions 1 and 2 highlighted with
blue squares for x/λsi = 150−160 and x/λsi = 90−100, respectively, mark the initial positions
of the regions chosen for the Fourier analysis of the waves presented in Fig. 6.8. Note that the
colour scale is saturated at the shock to enhance the visibility of the precursor waves.

6.2.2(a) Precursor Waves

As one can see in Fig. 6.7, far upstream from the shock, from x/λsi & 148, the

precursor waves retain their plane-wave character. Closer to the shock, the structure

of the waves changes and they acquire an oblique component. Near the shock and

up to x/λsi ∼ 120 (see also Fig. 6.9) the waves form a quasi-regular pattern of stripes

of oblique waves of modulated amplitude. This feature is related to the ripples in the

shock surface. However, the waves in the whole precursor (both oblique and plane)

are extraordinary electromagnetic waves generated through SMI, as in the linear stage

discussed in Sec. 6.2.1. To verify this, I performed the Fourier analysis in the frequency-

wavevector domain of the waves in two selected regions of the shock precursor. The

regions are fixed in the upstream plasma rest frame, and they move in the simulation

frame with the appropriate speed. Their location at the initial time-step of my analysis

is framed with square boxes in Fig. 6.7. The regions move towards the shock, and by

the last time step of the analysis they covered a distance of ≈ 1.5λsi.

The Fourier-Laplace power spectra shown in Fig. 6.8 are calculated from quantities

in the upstream plasma rest frame, which facilitates a direct comparison with the

theoretical dispersion relation discussed in Sec. 4.1, but at the same time does not

permit a direct visual comparison with Fig. 6.6. The theoretical dispersion relation is

overlaid in the plots with white dots. To derive the spectra, I selected a region in the

shock upstream which is at rest in the upstream plasma frame. For every time step, I

then perform the Lorentz transformation of the field map from corresponding region

69



in the simulation frame and subtract the background magnetic field component. Then

I perform Fourier-Laplace analysis to investigate the evolution in time of a 1D profile of

the waves taken in a selected range of x along y = 5λsi . The time frame of 2000δt used

for the calculations is between tΩci ' 56.23 and 56.79, that corresponds to ∼ 28.1Ω−1
ce .

The field data is stored every 10 time steps, so that the maximum frequency resolved

is ωmax = π/(10δt) ' 22.3Ωce. The limited time span of our analysis does not allow us

to resolve the low frequency modes of SMI generated by ions. However, as discussed

in Sec. 4.1, I do not expect to observe the ion-induced SMI, as the emission by ions is

mostly subluminous.

The Fourier power spectrum of the waves in Region 1 at x/λsi = 150−160 is shown

in Fig. 6.8a. This region includes the plane-waves with k ≈ kx analysed in Sec. 6.2.1

that travelled with a speed close to the speed of light towards upstream and have been

identified with the electron SMI-generated modes. The observed signal matches very

well the theoretical dispersion relation for the electron SMI. In particular, the wave

power is mostly along the light mode, ω = kc, and a few first harmonic modes exist

for a wide range of wave vectors. The power spectrum in Region 2 at x/λsi = 87− 97

presented in Fig. 6.8b is calculated only for the kx component of the waves. The

spectrum in this region is heavily influenced by the the effects of the shock rippling and

(a) Region 1 (b) Region 2

Figure 6.8: Fourier power spectrum of Bz magnetic field oscillations inω−kx space taken along
y = 5λsi in Regions 1 and 2 marked in Fig. 6.7. The time interval is 0.562Ω−1

ci ' 28.1Ω−1
ce ,

starting from time tΩci ' 56.23. The analysis is performed in the upstream plasma rest frame.
The angular frequency, ω, is normalized with the electron cyclotron frequency, Ωce, and the
wavevector, kx, by Ωce/c. Overlaid with white dots is the theoretical dispersion relation derived
from the linear analysis presented in Sec. 4.1.
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Figure 6.9: Distribution of the normalised electron number density (a), ion density (b), Bz
magnetic field fluctuations, δBz (c), and Ex electric field (d) at the final stage of the simulation,
tΩci = 84.3. Logarithmic scalings are applied to density and field maps (see Fig. 6.5). Panel
(e) shows a close-up of Region A in the electron density plot (a). The axes show scales in units
of both the ion, λsi, and the electron, λse, skin depth. Region B marked with squares in panels
(c) and (d) for x/λsi = 130− 140 is chosen for the Fourier analysis of the waves presented in
Fig. 6.11. Region C marked with a blue parallelogram in panel (c) is chosen to plot the averaged
and smoothed profile of Bz precursor waves shown in panel (f), in which the distance along the
oblique direction is given in units of λsi with an arbitrary starting point.

also by the nonlinear evolution of the wave modes, as in particular can be noted in the

low frequency and wavenumber part of the plot. Nevertheless, the spectrum retains

its qualitative agreement with the theory of the electron SMI.
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Figure 6.10: Scheme of the derivation of the ripple scale lenght L as a function of the upstream
and downstream ion gyroradii (R and r respectively).

6.2.2(b) Effects of Shock Rippling on the Waves

The shock front ripples are visible in Figs. 6.7 and 6.9 through correlated fluctuations

in density and all electromagnetic field components. They propagate along the −y-

direction with an average velocity consistent with the velocity of reflected ions gyrating

at the shock. Their observed mean wavelength along the shock surface, λrippl ≈ 3.3λsi,

fits a scale of a double of the cumulative ion gyro-radius, λgi, rippl = λgi, up−λgi, down ≈

1.7λsi, as shown in Fig. 6.10. This supports the interpretation that the origin of the

rippling is in the instability resulting from a modulation of shock-reflected ions along

the shock surface [Burgess and Scholer, 2007], as described in Sec. 3.3.1.

In my simulation of a mildly relativistic magnetized shock with out-of-plane

magnetic field configuration the shock surface ripples grow quickly from small-scale

fluctuations to a long-wave mode visible in Figs. 6.7 and 6.9. However, their structure

is highly dynamic on timescales shorter than Ω−1
ci . As one can see in Fig. 6.9, the

wavelength of the mode is determined by the modulation in the ion density, but its

structure is given by the effects of the magnetic field compression and charge-separation

induced because of different inertia of electrons and ions. These effects shape the ripples

to a form of arcs of increased magnetic field and electron density and associated electric

fields. As evidenced in the maps of the Bz and Ex field components in Figs. 6.9c-d, these

arcs are apparently related to the observed pattern of oblique waves.

The oblique structure of the precursor waves can be understood to result from a

combination of two effects – relativistic aberration of light and precursor wave emission
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in a direction normal to a local tangent to the surface of the ripplings’ arcs. The velocity

of the ripples along the negative y-direction is vrippl ≈ 0.8c, close to the speed of light. The

emitted radiation is then affected by the relativistic aberration, i.e., the angle between

the wave propagation and the source velocity in the observer (simulation) frame is

given by:

cosϑ =
cosϑ′− v

c

1− v
c cosϑ′

, (6.9)

where v is the source velocity in the observer frame and ϑ′ is the angle between the

source direction of motion and the wave-vector of the emitted waves in the source

rest frame. If a wave is emitted along the x-axis in the ripple frame of reference (i.e.,

ϑ′ = 90◦), we obtain that in the simulation frame the radiation appears to be emitted

at an angle of ≈ 37◦ with the y-axis, close to the observed wave front inclination

angle. The emission normal to the arcs’ surface results from the effect of the phase

bunching of electron distribution [Hoshino and Arons, 1991, Sprangle et al., 1977]. This

phenomenon takes place when the frequency of the wave is just slightly higher than

the plasma cyclotron frequency. Then, the particles on average travel through an angle

less than 2π in coordinate space in a wave period, they slip behind the waves and

their distribution after an integer number of wave periods is bunched in gyrophase.

The wave emission thus will be defined by the structure of the compressed magnetic

field at the arcs, in which the electrons gyrate and produce the emission of precursor

waves. The combined effects of the gyrophase bunching and the light aberration cause

the precursor wave emission angle to change with the evolving shape of the ripples,

leading to a wide range of the obliquity angles, as visible in Figs. 6.7 and 6.9c-d and

apparent in 2D Fourier power spectra of fluctuations in Bz and Ex shown in Figs. 6.11a-b

for waves in Region B marked in Fig. 6.9. Note however, that the dominant emission

pattern comes from an average ripple profile, and the high intensity emission shows

compatibility with the ripple scale length.

An effective emission angle of the bunched precursor waves is about 45o. Fig. 6.9f

shows the averaged and smoothed profile of the Bz magnetic field fluctuations taken

along the oblique direction, as marked with a blue parallelogram in panel (c). One

can note the large wavelength in a range (2− 3.5)λsi, consistent with λrippl. Similar

wave profile is observed in Ex and Ey electric field components (not shown). The

short-wavelength modes have their magnetic fields in Bz. The associated electric field
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Figure 6.11: Fourier spectra for Bz fluctuations (a), Ex (b) and the electron density (c) for
Region B at x/λsi = 130−140 at time tΩci = 84.3 (see Fig. 6.9). The solid white line represents
the precursor wave theoretical cutoff wavenumber.

has components laying in the x− y plane, that are transverse to the magnetic field and

the oblique wave-vector. The waves are thus of the X-mode type. Their spectra have
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cutoffs at lower wave-numbers, as expected on theoretical grounds (see Fig. 6.11a-b, the

spectrum of Ey fluctuations, not shown, is compatible with Bz). Therefore the peculiar

structure of the precursor waves in my mildly relativistic shock results from the large-

scale effects of the rippled shock surface, while the emission mechanism is generic and

corresponds to the well known process of the electron synchrotron maser.

In addition to the dominant oblique component, the Fourier power spectrum of

Bz oscillations in Fig. 6.11a shows the presence of parallel waves with kBz ≈ kx ' (10−

30)λsi, demonstrating the precursor wave emission from an average shock structure.

As one can see in the map of Ex in Fig. 6.9d and the spectrum in Fig. 6.11b, the

wake-field resulting from the precursor waves in the close upstream region of the

shock has an oblique structure, that corresponds to the dominantly oblique precursor

waves. The spectral signal has wave-vector kλsi ' 2, in agreement with the theoretical

wavenumber for the wake-field induced by the standard electron SMI scenario, as

estimated in Equation 6.8. It couples in a nonlinear way to the magnetic field and

density perturbations that show corresponding oblique long-wave component in their

spectra (Figs. 6.11a and 6.11c).

6.2.2(c) Parametric Instability and filaments generation

The Fourier power spectrum of electron density in Fig. 6.11c has a significant wave

power for transverse wavevectors with kyλsi ∼ 10−30 with a longitudinal component

around kxλsi ∼ 2−4. The corresponding density perturbations are visible in Figs. 6.9a

and 6.9e, the latter showing the density map in Region A in the linear scale. They

form filamentary structures whose transverse scale is several electron skin depths,

λse. I ascribe these perturbations to the parametric filamentation instability [Kaw et al.,

1973, Drake et al., 1974] triggered when intense electromagnetic waves interact with the

incoming upstream plasma. Such filaments in density and magnetic fields have been

recently identified in high-resolution studies of ultrarelativistic magnetized pair shocks

[Iwamoto et al., 2017, 2018, Plotnikov et al., 2018] and electron-ion shocks [Iwamoto

et al., 2019]. Their presence indicates that the precursor waves remain coherent during

the simulation. The filaments observed in pair plasmas largely retain their structure

while convected toward the shock with the upstream flow. On the other hand, the

filaments in the electron-ion plasmas quickly merge to form longer ion-scale turbulent

structures ahead of the shock. In my mildly-relativistic shock the filaments resemble
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those at pair shocks: they extend in a very large region upstream, up to x/λsi ∼ 200, but

their structure is disrupted by the wave emission at oblique angles. These waves also

cause a reduction in the amplitude of the filaments (compare the filaments in the in-

plane case discussed in Sec. 6.4.1). As a result the corresponding filamentary structures

are not observed in the magnetic field maps. However weak wave powers are visible

at kx ≈ 0 in the Bz and Ex Fourier spectra in Figs. 6.11a-b, indicating nonlinear coupling.

Though in conditions of mildly relativistic shocks the strength of the precursor waves

is limited compared to the ultrarelativistic case and the parametric instability is not

strongly unstable, this result demonstrates that high-resolution simulations are able to

detect even weak signatures of a coherent precursor wave emission.

6.2.2(d) Precursor Wave Amplitudes

Fig. 6.12 shows the profiles of the precursor Bz and the wake-field Ex wave

components upstream of the shock. The profile of δBz is taken along y/λsi = 6, whereas

the electrostatic field 〈Ex〉 is y-averaged to filter out the Ex component of the oblique

large-amplitude precursor waves. These profiles can be compared to corresponding

profiles obtained in 1D simulation with the same parameters and shown in Fig. 6.18 in

Sec. 6.3 .

Figure 6.12: Profiles along the shock normal of normalized upstream waves at time tΩci = 84.3.
The electric field 〈Ex〉 is averaged over y-direction (a) and δBz magnetic field is taken in the
middle of the box along y/λsi = 6 (b).

The amplitudes of the precursor waves are comparable in 2D and 1D simulations.

In 2D, the average amplitude of the waves in the broad upstream region extending up

to x/λsi ≈ 230 is even larger than the waves in the tip of the precursor, that includes

the strongly coherent oscillations generated in the linear stage of the shock evolution

(compare also magnetic field amplitudes in the map of δBz in Fig. 6.7). This is in
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contrast to the wave structure in 1D simulation, in which the waves closer to the

shock are weaker, possibly due to the effects of the effective thermal spread of the

electrons reaching the shock. A final thermal spread of electrons gyrating at the

shock suppresses higher harmonic wave growth and becomes significant at lower

harmonics with increasing electron ring temperature [Amato and Arons, 2006]. In a

2D simulation, thermal effects are similarly expected to act toward a decrease of the

precursor wave amplitude. Moreover, inhomogeneities at the shock surface may cause

the wave coherency loss in the precursor. I ascribe the effective amplification of the

precursor waves observed in mildly relativistic shock to the effects of the shock front

rippling. As explained in Sec. 6.2.2(b), the shock ripples are organised as to produce a

semi-coherent in phase and modulated train of oblique precursor waves. Thus, instead

of acting destructive on the waves, the ripples actually increase their amplitudes in the

extended upstream region.

The magnetic field fluctuation amplitudes normalised to the upstream field strength,

δB/B0, and to the upstream electron kinetic energy, εp = δB2/(2µ0γ0Nemec2), are listed

in Table 6.1, in which comparison with other works is also provided. Here, δB refers

to the total magnetic field that constitute the precursor (δB = δBz in the out-of-plane

case, and δB =
√
δB2

x +δB2
y +δB2

z in the in-plane case). The amplitudes are averaged in

the region of x/λsi = 129−134, located about 2λsi from the shock. A full comparison of

results between 1D- and 2D setups can be found in Fig. 6.19 in Sec. 6.3, which presents

time evolution of the field amplitudes thus calculated. One can note that in contrast

to 1D simulation, in which the wave amplitude initially decreases with time due to

the heating effects discussed above and then saturates, the level of the magnetic field

fluctuations in 2D run, after initial short increase, stays roughly constant throughout

the simulation. This is due to the fact that the shock front ripples quickly emerge in the

system and dominate the emission of the precursor waves.

The magnetic field oscillations amplitude can also be compared to the results

obtained for ultra relativistic shocks. Since the emission of precursor waves is governed

by the electron magnetization, in Table 6.1 the available results for shocks with σe = 5 are

listed. As expected, the amplitudes obtained here are smaller than the level reported

in 1D simulation of pair shocks in Gallant et al. [1992], both in terms of δBz/B0 and

εpHowever, they are much larger than amplitudes obtained for pair shocks in 1D and

77



Table 6.1: Precursor wave amplitudes δB/B0 obtained in my simulations, compared with other
works. Here, δB refers to the total turbulent magnetic fields that constitute the precursor waves

(δB = δBz in the out-of-plane case, and δB =
√
δB2

x +δB2
y +δB2

z in the in-plane case). I averaged
the amplitude in a region 5λsi wide, located 2λsi upstream of the shock. Iwamoto et al. [2019]
performed the average of the wave energy and amplitude in a region that contains the entire
laminar (i.e. non collapsing) wake-field, about 70λsi-wide, and about 32λsi upstream of the
shock. This is done to focus on the linear phase of the PDI. Gallant et al. [1992] performed the
average in a region upstream including the full precursor.

δB/B0 δB2/(2µ0γ0Nemec2)

2D i− e−, out-of-plane 0.19±0.01 0.09±0.005
1D i− e− 0.18±0.01 0.08±0.005
2D i− e−, in-plane 0.15±0.01 0.07±0.005

1D e+
− e− Gallant et al. [1992] 0.46+0.18

−0.12 0.53+0.22
−0.15

2D e+
− e− Iwamoto et al. [2019] 0.064±0.031 0.010±0.005

1D e+
− e− Iwamoto et al. [2019] 0.10±0.01 0.025±0.005

2D i− e− Iwamoto et al. [2019] 0.50±0.10 0.65±0.25
1D i− e− Iwamoto et al. [2019] 0.75±0.09 1.4±0.4

2D simulations by Iwamoto et al. [2019]. The amplitudes are much smaller than in ion-

electron shocks with γ0 = 40 [Iwamoto et al., 2019]. For these ultra relativistic shocks,

the wave energy for both 1D and 2D exceeds that in pair plasmas by almost two orders

of magnitude and the 2D amplitude is close to the 1D level. This amplification over the

pair plasmas is attributed in high-Γsh shocks to the so-called positive feedback process,

in which incoming electrons heated in the wake-field cause enhanced precursor wave

emission, that in turn induces a stronger wake-field. In the case analysed in here,

however, the wake-field does not reach very high amplitudes (see Sec. 6.2.3) and

the positive feedback should not operate. However, electromagnetic precursor wave

amplification up to the 1D level is achieved through the effects of the shock rippling.

6.2.3 Particle Heating and Acceleration

6.2.3(a) Electron Interactions with Upstream Waves

Figs. 6.13a-c show electron and ion phase-space distributions across the shock, as

well as the mean particle kinetic energy, 〈γ− 1〉mlc2, normalized to the bulk kinetic

energy of injected upstream ions, (γ0 − 1)mic2. It can be seen that electrons flowing

in towards the shock become gradually heated, and in the close upstream region a

very small population of particles accelerated up to γ ∼ 40 can be found. Inspection of
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panel e) indicates that up to x/λsi ' 160, the mean kinetic energy stays at the far upstream

value and it is modulated with a regular energy increase and decrease pattern. Closer

to the shock one can observe a steady, albeit a weak, average energy growth.

Figure 6.13: Phase-space distributions map for electrons along x axis (a) and along y axis (b),
and distributions map for ions along x axis (c) in the upstream region, at time t = 84.3 Ω−1

ci ;
mean particle energy (blue for ions and red for electrons) in units of the ions upstream bulk
energy (d) and close up of the electron mean particle energy in the vicinity of the shock (e).

As noted before, the action of the ponderomotive force on the upstream plasma

leads to the excitation of the longitudinal plasma motions and associated Langmuir

waves (i.e. the wake-field waves). However, as it can be seen from Fig. 6.12a, the

average amplitude of the wake-field does not exceed 〈Ex〉/(B0c) ∼ 0.01, and the wave

can be considered weak. This results from a relatively weak amplitude of the precursor

waves, that can be measured through the so-called strength parameter a = eδE/mecω,
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where δE is the amplitude of the wave electric field and ω is the wave frequency

[Kuramitsu et al., 2008]. The waves are considered to be strong if a & 1, in which

conditions they can generate large-amplitude Langmuir waves. One can estimate the

strength parameter applying the approximate formula used in Iwamoto et al. [2017]:

a ' γ0
√
σe
ωpe

ω
δB
B0
. (6.10)

As one can see in Fig. 6.11a, typical wavenumbers range in k ∼ (15− 40)λ−1
si ≈ (2.1−

5.7)λ−1
se . Combining these wavenumbers with the dispersion relation in Equation 6.5,

one obtains the wave frequency in a range:

ω
ωpe
∼ 2.6−5.9. (6.11)

With the average magnetic field amplitude, δBz/B0 ' 0.19 (see Table 6.1), the strength

parameter is:

a ' 0.15−0.30, (6.12)

and the corresponding amplitude of the wake-field [Hoshino, 2008]:

〈Ex〉

B0c
'

ξa2√
1 +ξa2

(
1
√
σeγ0

) ' 2.5×10−3
−0.01, (6.13)

in agreement with my simulation result. Here I assumed ξ = 1/2, appropriate for a

linearly polarised wave.

The interactions of the incoming electrons with a Langmuir wave, even of such small

amplitude, should lead to oscillatory motion that can be observed as modulations

in phase-space correlated with the phase of the 〈Ex〉 field. Such modulations are

responsible for the acceleration-deceleration pattern in the mean electron energy in

Fig. 6.13e. Since far upstream from the shock the wave is sinusoidal, there is no net

acceleration. However, these coherent oscillations in velocity can be regarded as an

apparent heating, with the maximum energy [Hoshino, 2008]:

εmax

γ0mec2 ' e〈Ex〉L '
ηa2√

1 +ηa2
(1 +β0) ' 0.1, (6.14)

where the wavelength L ∼ 1/k and I considered the maximum amplitude of the wake-
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field from Equation 6.13. This is compatible with the amplitude of the average electron

energy oscillations but much less than the maximum εmax/γ0mec2
≈ 20, noted above in

the near upstream region. Hence, the enhanced energisation in this region suggests

that the electrons may be involved also in nonlinear interactions with the wake-field.

As discussed above, the occurrence of the shock surface rippling causes enhanced

emission of the precursor waves at oblique angles. This in turn produces oblique

Langmuir waves. The wake-field profile shown in Fig. 6.12a averages these

fluctuations, which at different spatial locations may reach large amplitudes. In fact, the

time evolution analysis shows that from time tΩci ∼ 40 on, when the oblique precursor

wave structure is well established, episodes of stronger semi-coherent wave emission

from the shock lead to generation of stronger wake-field in the close upstream region.

These wake-field not only leads to enhanced oscillations visible in the electron phase-

space for x/λsi ∼ 127−180, but also to electron acceleration demonstrated by a higher-

energy (anisotropic) component in pxe−x and pxe−x distributions. This is a signature

of the nonlinear collapse of the wake-field. I will show below that the signatures

of electron acceleration in this region can be explained as resulting from interactions

between electrons and strong wake-field. It can be noted that even the ion phase-space

shows very weak disturbances in the amplified wake-field region.

Figure 6.14: Stack plot of the averaged wake-field waveforms, 〈Ex〉/(B0c), upstream of the
shock, starting at time t0Ωci = 56.2 and ending at tmaxΩci = 84.7. The profiles are shifted so
that the shock at all times is located at the left side of the figure at x/λsi ' 86.
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As described in Sec. 4.2, the ponderomotive force is proportional to the gradient of

the wave pressure and can act also inside the precursor if the electromagnetic waves

are modulated. One of the modulation process is the stimulated Raman scattering

instability that couples to the wave modes generated by the Parametric Decay Instability

(PDI). The enhanced emission of the precursor waves through rippling structures

discussed above amplifies the waves and it may also trigger nonlinear processes of the

Forward Raman Scattering (FRS). In nonlinear FRS the scattered electromagnetic waves

successively decay into another electromagnetic waves and Langmuir waves. As the

frequency of the scattered waves is lower than that of the pump waves, broadband

precursor wave spectra extending from the initial ω′ & Ωce down to ω′ > ωpe are

generated. Similarly, broadband Langmuir waves are produced with k′L < ωpe/c and

ω′L ' ωpe [Hoshino, 2008] .

In the upstream plasma rest frame the electromagnetic and Langmuir waves at

all wavenumbers have phase velocities in the upstream direction. However, as an

effect of non-linear FRS, in the simulation frame part of these waves move toward

downstream. Since the phase velocities of the Langmuir waves are close to the speed

of light, these waves can now scatter the electrons and boost them toward the shock.

Fig. 6.14 shows the stack plot of the averaged wake-field profiles upstream of the

shock for time frame (t− t0)Ωci ' 28.1, starting at t0Ωci = 56.2. The profiles are shifted

so that the shock at all times is located at the leftmost boundary of the figure. Far

upstream of the shock, the Langmuir waves propagate away from the shock, while

in the region extending as far as (x− xsh)/λsi ≈ 70 , the wake-field on average moves

along the negative x-direction, i.e. towards the shock front. This downstream-directed

motion of the wake-field waves supports a scenario of the nonlinear FRS operating in

the mildly relativistic shock. It also explains higher-energy components in the electron

phase space in the close upstream region, in which large-amplitude Langmuir waves

can be excited (see the structure at x/λsi ≈ 120 at t = t0 in Fig. 6.14) and accelerate

electrons. As in the ultrarelativistic shock studied in Hoshino [2008], the electron

acceleration through these waves may be due to the so-called phase slippage effect,

described in Sec 4.2, and it would account for the anisotropy in pxe− x (Fig. 6.13a). It

can be also combined with a direct acceleration in the upstream motional electric field

in the shock-surfing acceleration (SSA) process that would accelerate electrons in the
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Figure 6.15: Particle energy spectra (red for electrons, blue for ions) in a region x/λsi =
113− 123 downstream of the shock at xsh/λsi ≈ 127 at time tΩci = 84.3 (a). Energy axis is
scaled with respective particle mass, m = me,mi. Vertical dashed and dash-dotted lines mark
initial bulk kinetic energies of the electrons and ions, respectively. The electron spectrum is
fitted with double Maxwellian distribution (red thick dotted line) composed of relativistic 2D
Maxwellians shown with thin red dotted lines. Inset (b) presents close-up of the high-energy part
of the electron spectrum, in which fits of the double Maxwellian (red), a power-law ∝ (γ−1)−2.1

(yellow) and their sum (green) are shown with dotted lines.

y-direction. The anisotropy in the pye−x toward positive momenta is the evidence that

the SSA operates in the shock upstream (Fig. 6.13b). We further show in Sec. 6.2.3(c)

through the analysis of trajectories of selected electrons that on their approach to the

shock the energy gains and losses occur through the electron motion in the direction

of Ey.

In spite of moderately efficient production of coherent precursor waves, the bulk

energy gain of electrons before they hit the shock is only 5% of their initial kinetic

energy (see Fig. 6.13e). The majority of the energy transfer from ions to electrons takes

place in the shock transition and the close downstream region, as will be discussed in

the following section.

6.2.3(b) Downstream Particle Spectra

Fig. 6.15 shows kinetic energy spectra of electrons (red line) and ions (blue line) at

time tΩci = 84.3 in a region x/λsi = 113− 123 downstream of the shock. The shock is

located at xsh/λsi ≈ 127. Vertical lines in the plot mark initial bulk kinetic energies of

the particles.

It can be seen that although some electrons reach energies exceeding the kinetic
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energy of upstream ions, their average Lorentz factor, 〈γe−1〉/mi ≈ 0.11 is only 13% of

the mean downstream ion Lorentz factor, 〈γe − 1〉/mi ≈ 0.81. The two species do not

reach equipartition, differently from what it is typically observed in ultrarelativistic

shocks [e.g., Lyubarsky, 2006, Sironi and Spitkovsky, 2011]. Downstream of the shock

ions and electrons carry, respectively, ∼ 81.5% and ∼ 10.6% of the initial ion kinetic

energy per particle, (γ0− 1)mic2. Thus as much as ∼ 7.9% of the energy is transferred

to electromagnetic waves and turbulence, since as expected the total energy in the

upstream region is compatible with the total energy in the downstream, when measured

in the simulation frame.

The ion spectrum shows mainly relaxation around the mean ion energy and tends

towards a 2D relativistic Maxwellian distribution. Higher-energy part of the spectrum

contains particles with Lorentz factors up toγi ≈ 6. These are particles reflected from the

shock compressed magnetic field, that typically perform a single loop in the upstream

motional electric field before being advected, experiencing one cycle of the shock-drift

acceleration (SDA). The electron distribution is more asymmetric. The bulk of the

spectrum can be best fitted with two Maxwellians. They are shown with thin red

dotted lines, and the thick red dotted line is the combined fit. The hotter Maxwellian

peaks at (γe−1)/mi ' 0.2 and dominates the lower-temperature Maxwellian that has a

maximum at the Lorentz factor about 6 times smaller. The electron spectrum also shows

a supra-thermal narrow-range component for (γ−1)/mi & 1, whose slope is compatible

with a power-law ∝ (γ−1)−p with a spectral index of p ' 2.1, as shown with the yellow

dotted line in Fig. 6.15b. The particle spectrum presented in Fig. 6.15 represents a

steady-state distribution that does not appreciably change with the distance from the

shock.

6.2.3(c) Energisation Processes

As it was discussed in Sec. 6.2.3(a), although coherent precursor waves exist

upstream where they generate wake-field, the interaction of the latter with the incoming

plasma causes only a limited energy transfer from ions to electrons. Nevertheless,

particle heating at the shock proceeds beyond adiabatic compression and also supra-

thermal electrons are produced. Note that due to a weak electron and ion coupling

in the upstream region, the ions enter the shock with bulk energy much larger than

electrons. On their gyration at the shock-compressed magnetic field, the ions thus
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penetrate deeper, and the charge-separation electrostatic field is produced at the shock

that points towards upstream. However, unless the field-particle interaction time

is shorter than an electron gyro-time, this cross-shock electric potential field cannot

provide B-parallel electron heating in our strictly perpendicular shock with out-of-

plane B0 = Bz, as the particle motion is constrained in the x-y plane.

In this section I provide an interpretation for the electron energisation processes

in the shock transition region and the production of downstream particle spectra by

analysing sample particle trajectories.

Fig. 6.16 illustrates the main stages of electron energisation, in which we trace

trajectories of particles traversing the shock transition. The particles are selected in

the far upstream region of the shock at the same x-coordinate along the y-axis, so that

they reach the vicinity of the shock ramp at the same time. Some of the traced particle

trajectories are shown with thin grey lines in panels (a)-(c). At each time interval

I selected a single representative electron whose trajectory is plotted with thick red line

for better visualisation: in each panel a different particle is highlighted. The temporal

evolution of the kinetic energy averaged over the whole particle sample is shown with

red line in panel (d). In the same panel we also plot contributions to the energy gains

or losses from the work done by the Ex (green line) and Ey (blue line) electric field

components, (γ− 1)Ei =
∫ t1

t0
qevi ·Ei/(mec2)dt, i = x, y, where qe = −e, local electric field

values are measured at particle positions, and the integration time is from t0Ωci = 20

to t1Ωci = 30. Finally, in panel (e) we plot with red line the particle-sample average

of the magnetic moment, µ, and the magnetic field profile (blue line) along particle

trajectories. Here µ is defined as µ = p⊥/2me|Bp|, where p⊥ is the transverse momentum

of the particles in a local magnetic field, Bp, and µ0 = µ(t0). Note that the averaged

quantities shown in panels (d) and (e) are calculated from much larger particle set than

that shown in panels (a)-(c).

As discussed in Sec. 6.2.3(a), the electrons approaching the shock may interact with

the wake-field. In the far upstream region the wake-field amplitude is weak and

most of the particles only oscillates in the waves’ electrostatic field not gaining net

energies. Closer to the shock the wake-field is stronger and the electrons interacting

with these waves may become decoupled from the bulk flow. When this occurs, the

electron gyro-centres still move toward the shock with the E0 ×B0 drift velocity, but
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Figure 6.16: Trajectory segments of sample electrons superposed on the map of the normalised
magnetic field strength, |Bz|/B0, at three time intervals. The scale of the map is linear and
only a small portion of the numerical box is shown. The panels (a)–(c) display the state of the
system at times ta (a), tb (b), and tc (c) that are marked in panels (d) and (e), and the circles
indicate the positions of the electrons at these moments. The particles are selected in the far
upstream region of the shock to originate at the same x-coordinate along the y-axis. The grey
lines show trajectories history for the time span 0.3Ω−1

ci . Selected single electron trajectories
are plotted with thick red lines, each panel displaying a different particle. Panel (d) shows the
time evolution of the total kinetic energy (red line) averaged over the particle sample from
time t0Ωci = 20 to t1Ωci = 26 and the average acceleration rates in the electric field at particle
positions split into the x- (green line) and y- (blue line) components of the electric field work,
(γ− 1)Ei =

∫ t1

t0
qevi ·Ei/(mec2)dt, i = x, y, that is perpendicular to the magnetic field. Panel (e)

shows the magnetic moment (red line) and the magnetic field profile (blue line) along particle
trajectories averaged over the electron sample.

they start to feel the motional electric field and are accelerated in the y-direction. We

noted in Sec. 6.2.3(a) that this SSA-like process is visible through the anisotropy in the

pye− x phase-space. However, very few particles experience strong interactions with

the wake-field and most of them reach the shock vicinity unaffected. Only a portion of

them are weakly decoupled from the bulk flow and show small-amplitude oscillations
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in their trajectories, as it can be visible for some particles in Fig. 6.16a. A significant

impact of the upstream waves can be instead observed just in front of the shock for

electrons that on their way encounter strong waves emitted by a shock ripple. As one

can see in Fig. 6.16a, the waves form an arc-like features in the Bz distribution and also

have corresponding Ex and Ey electric field components (not shown). The Ex wave field

is strong enough to effectively stop a particle and decouple it from the bulk flow. This

causes wiggles in particle trajectories, well visible for the electron marked with red line

at (x/λsi, y/λsi) ≈ (33.2,4.2) and particles below it at y/λsi ≈ 3.2− 4 that were smashed

by the waves emitted by the lower ripple, and particles at y/λsi ≈ 5.9−7.4, affected by

the upper ripple. Note, that at time ta at which Fig. 6.16a is plotted the emitted strong

waves are already behind the affected electrons. After decoupling from the flow, the

electrons experience strong pull by the upstream-directed electrostatic Ex field and also

the acceleration in the motional Ey field. The corresponding particle average energy

gain is dominated at ta by the work done by the Ex field, since the work in the Ey

field is averaged over the phase of the gyrating electrons in the motional electric field

(see panel (d)). I interpret the electrostatic field that acts on particles as due to strong

wake-field excited by the waves emitted by the ripple. It can also be partially due to the

cross-shock potential field that exists in this region and can be probed by the electrons

because their interaction time is shorter than the electron gyration time. Energisation

at this stage is non-adiabatic, as evidenced by a jump in the average magnetic moment

(panel (e)). The interaction of an electron with the waves produced by the ripples as

described above is a crucial and necessary step for its subsequent acceleration to higher

energies. Such interaction is possible in the mildly relativistic shock only because the

formation of the strong rippling. To my knowledge, such a process for a rippled shock

has not been reported in the literature before.

At a later stage, the electrons hitting the shock experience the adiabatic heating

in the compressed magnetic field. This takes place while the particles undergo the

E×B drift, which has −ExBz ŷ component that is equal to the velocity of the rippling

waves along the shock surface. In fact, the combined motion of transmitted ions and the

shock-reflected ions drifting across the shock and along its surface results in the charge-

separation electric field in the ripples with components of amplitude Ex ∼Ey�E0. Thus

in the simulation frame the particles are dragged together with the downward moving
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and advancing ripple and are accelerated along the Ey field and decelerated in the Ex

field. This corresponds to diverging (γ− 1)Ex and (γ− 1)Ey energy gains at t & ta. One

can see the drifting electron trajectories in Fig. 6.16b. Note, however, that the behaviour

of individual particles may differ from that of the averaged picture. When an electron

is decoupled in the upstream from the bulk flow and starts gyrating in the motional

electric field it may hit the shock with an unfavourable phase and with a low energy.

After adiabatic heating at the shock it will be advected downstream and it will populate

the low-energy portion of the downstream electron spectrum, together with electrons

that are transmitted through the shock without interacting with the ripple-generated

upstream waves.

After a net non-adiabatic energy gain of the averaged population around ta, the

electrons reside in the shock overshoot and their energy evolution is well described

by adiabatic processes. This stage is illustrated in Fig. 6.16b at tb. At this stage the

magnetic moment is conserved while the magnetic field strength decreases, which

results in gradual energy loss due to decompression (compare panels (d) and (e) at

tb). However, the mean energy of the electrons again increases at around t ≈ tc, which

is associated with a second jump in the magnetic moment. Inspection of particle

trajectories in panel (c) reveals that gyroradii of some electrons are comparable to the

scale of the turbulent field (note sample electron marked with red line). These electrons

can therefore undergo resonant scattering off these waves. Essentially all electrons

with Lorentz factor γ & 10 have large enough gyroradii to experience a gyro-resonant

interaction and become accelerated. They will populate a higher-energy portion of the

downstream spectrum.

One can see that at times t > tc the average energy for the analysed particle sample

saturates. This is due to the lack in the downstream of the turbulent fields with larger

scales that would enable resonant interactions with higher-energy particles. The scale

of the turbulence in the region of the resonant scattering is set by the ripple wavelength

and it exists in a narrow zone downstream of the overshoot, so that only particles that

happen to encounter the resonant waves while they drift downstream can be energised.

The features discussed here for the average electron population can explain the

structure of the downstream electron energy spectrum as formed by a single population

of particles accelerated in the shock transition: some particles that are decoupled by the

88



Figure 6.17: Trajectory of a highly energetic electron overlaid on the map of Bz magnetic field
(a). The map is plotted at time tΩci = 23.6, at which the particles first interact with the shock
front, located at x/λsi ' 34. The scale of the map is linear. Time evolution of the total kinetic
energy for the electron (red line) and acceleration rates in the Ex and Ey electric fields (b, see
Fig. 6.16). The trajectory ends at time t ' 31.5, as marked with black vertical line.

upstream waves from the bulk flow and accelerated in the shock through the ripple-

mediated processes can experience further acceleration in gyro-resonant interactions

with the waves. Therefore, the transition between the low-energy and high-energy

components in the electron spectrum is smooth. It is in addition deformed by yet

another energising process that is the stochastic second-order Fermi-like scattering off

the turbulence present in the shock. Electrons accelerated in this process can find

favourable conditions of local turbulence encountered on their way across the shock.

Example is the particle shown in Fig. 6.17. After decoupling from the upstream flow

this electron experienced multiple inelastic scatterings in the shock transition gaining

or loosing its energy through the action of Ex and Ey electric fields and finally reaching

an energy in excess of γe ≈ 80. Such particles form the supra-thermal power-law portion

of the electron spectrum. However, these particles are rare, and most of the scattered

particles are less successful and they contribute to the bulk of the downstream electron

population. In this mildly relativistic magnetized shock, the electromagnetic turbulence

in the shock transition is relatively narrow, so that stochastic scattering does not lead to

additional significant electron acceleration further downstream. I again stress that on

the approach to the shock some electrons are accelerated in resonant interactions with

strong wake-field occasionally generated in the upstream, and they will also contribute

to the higher-energy portion of the downstream electron spectrum.
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6.3 Comparison with a 1D simulation

The results presented in Section 6.2 can be compared with the results of a 1D

simulation. In such a setup the development of the rippling and obliquely emitted

waves is suppressed. In the ultra relativistic regime 1D amplitudes of the SMI-

generated precursor waves are observed to be systematically larger than in 2D because

of the inhomogeneity in the shock surface through which the waves may loose

coherence in phase [Iwamoto et al., 2017, 2018]. However, in the electron-ion plasma

the waves can be significantly amplified due to the positive feedback process, in which

electrons accelerated in the shock upstream enhance the precursor wave emission

that in turn induce stronger wakefield, accelerating the incoming electrons even more

efficiently, up to the energy equipartition between electrons and ions [Lyubarsky,

2006, Hoshino, 2008]. We have recently showed in Iwamoto et al. [2019], that in

ultrarelativistic shocks this mechanism operates in 2D at high electron magnetizations,

σe & 1, at which the amplitude of the precursor waves is comparable to the 1D case.

In our 2D simulation with ϕB = 90◦ the positive feedback process is not operative.

However, the wave amplification observed is ascribed to the presence of the shock

rippling. The 1D simulation is performed to evaluate the precursor wave amplitudes

in a setup devoid of multidimensional effects that should possibly provide the most

efficient wave generation through SMI.

1D simulation setup is the same as that for the 2D simulation, but the transverse

dimension of the computational box is only 5 cells wide. The simulation can be thus

considered 1D, since ∆y � λse � λsi. Fig. 6.18 shows the wave profile for the 1D

simulation at time of Ωcit = 84.7, the same as tmax in 2D simulations. The shock is

located at x/λsi ∼ 127, and its velocity is compatible to the one measured in the 2D

Figure 6.18: Upstream wave profiles for Ex and Bz in 1D simulation at time t = 84.7Ω−1
ci .
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Figure 6.19: Wave amplitude normalised to the upstream magnetic field, δB/B0, and precursor
wave energy normalised to the upstream electron kinetic energy, εp, for the 2D out-of-plane
(thick line), 2D in-plane (dashed-dotted-line) and 1D simulations (dashed line), in function of
the simulation time.

out-of plane simulation. 1D setup allows only the Ex,Ey and Bz field components. The

fluctuations in Ey are correlated with Bz and so the waves are X-mode electromagnetic

waves. The precursor wave profiles in the 1D setup can be directly compared with that

obtained in 2D (see Fig. 6.12 and also Fig. 6.24 below). Their amplitudes are also listed

in Table 6.1. The 1D structure of the precursor waves is different than in 2D. In the

latter case, the wave amplification due to shock ripples causes the amplitude near the

shock to be larger than the one of the waves emitted in the early stage of the simulation.

In the 1D case, the waves emitted in the later stage are weaker, since the presence of

electrons heated on their way to the shock deteriorates the emission of the precursor

waves [Amato and Arons, 2006].

Figure 6.20: 1D Fourier power spectrum for Bz and Ex (black and red respectively), in the
region x/λsi = 130÷140 at time t = 84.3 Ω−1

ci .
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Fig. 6.19 shows the time evolution of the wave amplitude normalised to

the upstream magnetic field strength (δB/B0) and the precursor wave energy εp =

δB2/(2µ0γ0Nemec2) (see Sec. 6.2.2(d)) for 1D and 2D simulations. The profile for 1D

demonstrates the influence of the thermal effects noted above. A discussion of the

results for 2D out-of-plane simulation is given in Sec. 6.2.2(d). One can note that in the

2D in-plane case the total precursor waves amplitude is only slightly smaller than the

one observed for ϕB = 90o and the wave evolution is similar. This shows that a shock

rippling-mediated amplification mechanism is operating also in the in-plane case. I

discuss the ϕB = 0o simulation results in Sec. 6.4.1(a)).

Fig. 6.20 shows the 1D Fourier power spectra upstream of the shock, in the region

x/λsi = (130−140). The signal band in the magnetic field oscillations, Bz, is consistent

with the SMI precursor waves observed in the 2D case. The electrostatic component

in Ex has a wavenumber of kEx,1D ∼ 2, consistent with the theoretical wave number for

SMI-generated wake-field.

A 1D simulation imposes a much lighter computation burden, so my 1D simulation

has been prolonged up to tΩci ∼ 163.6, in order to investigate possible long-term effects.

Fig. 6.21 shows the particle phase-space distribution at this final simulation time.

The shock is located at x/λsi ∼ 239. The phase-space structure is consistent to the one

Figure 6.21: Phase-space distributions map for electrons (a) and ions (b) along the x-axis (b)
in the upstream region, at time t = 163.1 Ω−1

ci ; mean particle energy (blue for ions and red for
electrons) in units of the ion upstream bulk energy (c) and close up of the electron mean particle
energy in the vicinity of the shock (d).
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Figure 6.22: Particle energy spectra in 1D run (red for electrons, blue for ions) in a region
x/λsi = (204−234) downstream of the shock at xsh/λsi ≈ 239 at time tΩci = 163.6 (a). Energy
axis is scaled with respective particle mass, m = me,mi. Vertical dashed and dash-dotted lines
mark initial bulk kinetic energies of the electrons and ions, respectively. The electron spectrum
is fitted with a Maxwellian distribution (red thick dotted line).

observed at tΩci ∼ 84.3 (not shown), and it is qualitatively similar to the phase-space

presented in Fig. 6.13 for the 2D out-of-plane run. As in the latter case, the energisation

of particles in the upstream in extremely limited, and the majority of the ion-to-electron

energy transfer takes place at the shock front and in the immediate downstream.

The particle kinetic energy spectra downstream of the shock at x/λsi = (204− 234)

are shown in Fig. 6.22. The ion spectrum shows again mainly relaxation around the

mean ion energy and tends towards a 2D relativistic Maxwellian distribution. Electron

distribution can also be approximated with a 2D Maxwellian. In the downstream,

electrons’ average Lorentz factor is 〈γe − 1〉/mi ≈ 0.0.17, about 22% of the mean

downstream ion Lorentz factor, 〈γe−1〉/mi ≈ 0.78. Energy equipartition is not reached

also in this case. However, the energy transfer process is slightly more efficient than

in 2D simulations (see Fig. 6.31 below. No signature of the positive feedback process

is observed, even in this very long 1D run. Downstream of the shock ions carry

∼ 78.3% of their initial kinetic energy per particle, (γ0−1)mic2, while electrons ∼ 16.7%.

The fraction of energy transferred to electromagnetic waves is thus ∼ 5%. The electron

heating also in this case proceeds above adiabatic compression, which is due to electron

scattering off turbulent fields in the shock downstream.
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6.4 Results of the in-plane setup

In this section I investigate a mildly relativistic shock in the setup with the upstream

magnetic field lying in the plane of the simulation, B0 = By ŷ, thusϕB = 0◦ (see Fig. 6.1). I

discuss the shock structure and particle acceleration and heating processes and compare

them with the results obtained in Section 6.2.

6.4.1 The Shock Structure

In the case with the in-plane magnetic field configuration the shock structure quickly

acquires its steady-state form and does not develop strong rippling features observed in

the out-of-plane case. Because of that here I discuss only the nonlinear shock properties

at a final simulation time, tΩci = 84.3.

The shock structure is presented in Fig. 6.23. The shock front is located at x/λsi ' 108,

indicating that it moves with the velocity v = 0.41c that is smaller than the shock speed

in the case with the out-of-plane magnetic field. The density jump is n2/n1 ∼ 3.2. Both

the slower shock velocity and the slightly larger density compression with comparison

to the out-of-plane case are consistent with theoretical jump conditions in relativistic

plasma with three degrees of freedom, in which the adiabatic index Γ = 4/3 [Plotnikov

et al., 2018].

At the shock front, the fluctuations in density and electromagnetic fields can be

observed together with corrugations in the shock surface. The latter develop at very

early stages of the simulation and fast evolve into a long-wave rippling mode with

λrippl ' 5λsi. They propagate along the mean magnetic field and their amplitude does

not exceed ∼ λsi. The nature of the shock-front turbulence and ripples is different from

the previously analysed case with the mean field B0 out of the simulation plane. In the

present case, I ascribe these waves to the anisotropy in the ion temperature, Ti⊥ > Ti‖,

resulting from the ion reflection from the shock, as shown in panel Fig. 6.23e). The

temperatures are defined here with respect to the mean magnetic field direction. In

such conditions the Alfvén Ion Cyclotron instability is triggered, known to be a source

of ripples in low Mach number shocks [e.g., Winske and Quest, 1988, Umeda et al.,

2014, Lowe and Burgess, 2003]. Note that similar temperature-anisotropy instabilities

on the Alfvén mode branch were found to generate magnetic field fluctuations in the

front of relativistic pair shocks in Iwamoto et al. [2018]. The shock-front corrugations
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Figure 6.23: Distribution of the normalised electron number density (a), By magnetic field
fluctuations, δBy (b), Bz magnetic field component (c) and Ex electric field (d) at the final
stage of the simulation with ϕB = 0◦, tΩci = 84.3. Logarithmic scalings are applied to density
and field maps (see Fig. 6.5). Panel (e) shows the profiles of the ion temperature at the shock,
differentiating between components parallel and perpendicular to the ambient magnetic field.
Panel (f) shows a close-up of Region A in the electron density plot (a). Region B marked with
squares in panels (b-d) for x/λsi = 110−120 is chosen for the calculations of the Fourier power
spectra presented in Fig. 6.26 (compare Fig. 6.9).
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and fluctuations are also a source of downstream turbulence, via the mechanism of the

vorticity generation through a process similar to the Richtmyer-Meshkov instability

[e.g., Mizuno et al., 2011, 2014].

6.4.1(a) Upstream Waves

One can see in Fig. 6.23b-d that short-scale oscillations are present upstream of the

shock in all magnetic field components. These precursor waves are accompanied with

long-wave electrostatic, Ex, wake-field (Fig. 6.23d). Fig. 6.24 shows the profiles of these

fluctuations in the entire upstream region at time tΩci = 84.3, applying the same format

as the one used in Fig. 6.12 for 2D out-of-plane simulation and in Fig. 6.18 in Sec. 6.3 for

1D run. Fig. 6.25 shows the enlarged view of the region x/λsi = (120−125), presenting

also the fluctuations in the Ey and Ez electric field components.

Figure 6.24: Profiles along the shock normal of normalised upstream waves for simulation with
the in-plane magnetic field configuration at time tΩci = 84.3. The electric field 〈Ex〉 is averaged
over y-direction (a) and fluctuations in the magnetic field components, By,δBy = (By−B0), and
Bz are taken in the middle of the box along y/λsi = 6 (b-d) (see also Fig. 6.12).

Electromagnetic waves with the By component represent fluctuating magnetic fields

parallel to the mean upstream magnetic field B0 = By ŷ and perpendicular to the wave

vector k = kxx̂. Similar in amplitude, the fluctuating Ez electric field component is

perpendicular to both B0 and kx and anti-correlates in phase with δBy (see Fig. 6.25a).

This wave is thus identified as an X-mode, linearly polarised along the direction of the

mean upstream field. The wave with Bz and Ey electromagnetic field components of

the same amplitude and correlated in phase (Fig. 6.25b) has fluctuating magnetic field
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Figure 6.25: Enlarged view of the region x/λsi = (120−125) shown in Fig. 6.24 demonstrating
phase (anti)correlation between y and z components of the wave electromagnetic fields for the
X-mode (a) and O-mode (b) waves. The wave amplitudes are normalised as in Fig. 6.24. The
black and red lines show the magnetic field and the electric field components, respectively.

perpendicular to B0 and the electric field oscillations along the ambient magnetic field.

The wave is then an O-mode linearly polarised transverse wave with k = kxx̂.

The magnetic field fluctuation amplitudes are listed in Table 6.1, together with the

results obtained in 1D and 2D out-of-plane simulations. As before, the amplitudes are

averaged in the region located about 2λsi from the shock, at x/λsi = 110− 115. Time

evolution of the field amplitudes thus calculated is shown in Fig. 6.19 in Sec. 6.3.

Both in Fig. 6.19 and in Table 6.1 I list the total amplitude of the magnetic field

oscillations, δB =
√
δB2

x +δB2
y +δB2

z , not differentiating between the X-mode and O-

mode waves. Nevertheless, one can see in Fig. 6.24 that the amplitude of the X-mode

wave, δBX/B0 =
√
δB2

x +δB2
y/B0 ' 0.12, is much larger than the amplitude of the O-mode

wave, δBO/B0 = δBz/B0 ' 0.08. The total precursor wave amplitude, δB/B0 ' 0.15, is also

slightly smaller than the amplitudes obtained in my 2D run with the mean magnetic

field out of the simulation plane and in 1D simulation.

As explained in Sec. 6.2.2(d), strong shock ripples generated in the 2D run with

the out-of-plane magnetic field configuration cause the enhancement of the precursor

waves amplitude to the level observed in 1D simulation. In the present case, I also see

similar amplification by the ripples. This can be best noted in Fig. 6.23b, which shows

the emission of the precursor waves in bunches, whose shapes correspond to the long-

wave profiles of the rippling mode along the shock surface at a given time (note a weak

oblique component that produces oscillations in Bx with δBx/B0 ' 0.016). However,

the AIC instability-driven rippling mode is relatively weak and the in-phase bunching

of the waves cannot fully overcome losses in the wave coherency due to random
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inhomogeneities at the shock surface and the suppression of the wave amplitudes

caused by thermal effects. Irrespective of that, the precursor wave amplitude is large

enough to induce the wake-field and influence the particle acceleration and heating

processes. As one can see in Fig. 6.19 the up8tream oscillations amplitude is roughly

constant throughout the 2D simulation with the in-plane setup, which corresponds to

an early formation of the shock ripples.

As already noted, the X-mode emission is consistent with the linear theory of the

SMI. This theory also predicts that the emission of the X-mode waves is dominant over

the emission of the O-mode waves [Wu and Lee, 1979, Lee et al., 1980, Melrose et al.,

1984]. Nevertheless, the production of the O-mode waves was previously observed

in 2D simulations of ultrarelativistic pair plasma shocks with the in-plane magnetic

field setup [Iwamoto et al., 2018]. In that work the O-mode energy was observed to

even exceed the X-mode energy at very small electron magnetizations, σe . 10−2. As

explained in that work, the O-mode results from the mode conversion from the X-mode

generated in the turbulent shock transition. In the early stages of the shock evolution,

the mean magnetic field is aligned along the y-axis, causing charged particle gyration

in the x− z plane and triggering the X-mode waves with δBy. As plasma instabilities

develop in the shock transition and generate fluctuations in Bz of amplitude comparable

to B0, the net magnetic field undulates also in the y−z plane. X-mode waves produced

by the SMI now have both δBy and δBz components. When propagating upstream of the

shock in the unaltered magnetic field and maintaining their polarisation, the X-mode

waves may be converted into the O-mode waves. In support that this interpretation is

valid also in the case of my mildly relativistic shock, I note that the O-mode waves are

produced with a small delay with respect to the X-mode waves. As one can see in Fig.

6.24c-d, the tip of the Bz wave is behind the tip of the By wave. This supports the notion

that O-mode waves are generated after the shock front has developed large enough

turbulence. Note that a relatively smaller amplitude of the O-mode waves with respect

to the X-mode waves are compatible with a moderate level of the Bz fluctuations in the

shock front, δBz/B0 ∼ 1, in some regions (compare results for σe & 10−2 in Iwamoto et al.

[2019]).

Fig. 6.26 shows Fourier power spectra of fluctuations in By, Bz, Ex, and the electron

density in Region B marked in Fig. 6.23. These spectra can be compared to the spectra
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Figure 6.26: Fourier power spectra for wave fluctuations in By (a) and Bz (b) magnetic field and
Ex (c) electric field components and the electron density (d) for Region B at x/λsi = 110−120
at time tΩci = 84.3 (see Fig. 6.23). The solid lines show the theoretical cutoff wavenumber for
the X-mode (a) and the O-mode (b) waves.

in Fig. 6.11 obtained for B0 out of the simulation plane. The cutoff wavenumber that is

marked in the figure panels with white lines for the respective modes was estimated

for O-mode waves in an analogous way as in the out-of-plane-case (see Sec. 6.2.1).

The dispersion relation for these waves in the simulation frame is the same as for the

electromagnetic wave in unmagnetized plasma, and it can be recovered from Eq. 6.3

by imposing σ = 0:

ω2 = k2c2 +ω2
pe (6.15)

which leads to the cutoff wavenumber for the ordinary mode:

kx = βshΓsh

√
ω2

pe

c2 + k2
y . (6.16)
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Note that the wave power in the spectra for δBy and δBz is located to the right of

the theoretical cutoff wavenumbers. The waves thus propagate upstream with the

group velocity larger than the shock velocity, as expected. The wave-vector range of

the precursor waves is similar to the range reported in the out-of-plane setup. These

waves propagate predominantly with k ≈ kx, but an oblique component is also present,

as observed in the field maps in Fig. 6.23.

As in the case of my simulation with the out-of-plane setup (Sec. 6.2.2(c)), also

in the case with B0 in the simulation plane transverse density filaments are formed

upstream of the shock. One can see in Figures 6.23a and 6.23e, that the amplitude of

the filaments, δNe/N0 ≈ 0.5 is much larger than in the previous simulation and they

are mostly aligned in the x-direction, that corresponds to the dominant wave power

at k ≈ ky in Fig. 6.26d. As before, I interpret the origin of these structures by the

parametric filamentation instability, the development of which is not disturbed here by

the weak ripples at the shock. This again shows persistence of the coherent precursor

waves in mildly relativistic shocks, albeit with smaller amplitude compared to the

ultrarelativistic regime.

One can note in Fig. 6.23d that the wake-field is excited upstream of the shock, as

in the case with out-of-plane magnetic field. Fig. 6.26c shows that the main signal is

at k ≈ kx ' 2λ−1
si and also has an oblique component with kλsi ' 3. This is consistent

with the estimate in Equation 6.8. The average amplitude of these Langmuir modes is

slightly less but still comparable to that observed in the simulation with the out-of plane

magnetic field (compare Fig. 6.24a with Fig. 6.12a). In fact, noting from Figures 6.26a-b

that a typical wavenumber of the precursor waves is k ∼ 20λ−1
si ≈ 2.8λ−1

se , one can apply

the procedure used in Sec. 6.2.3(a) and combine the wave-vector with the dispersion

relation for the dominant X-mode waves given by Equation 6.15 to obtain a typical

wave frequency:
ω
ωpe
∼ 3.2. (6.17)

Using Equation 6.10 with δB/B0, thus adding the contributions from the X- and O-

modes, one can estimate the strength parameter

a ' 0.21, (6.18)
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and calculate the amplitude of the wake-field (Eq. 6.13):

〈Ex〉

B0c
' 5×10−3. (6.19)

Therefore, the wake-field in the simulation with the in-plane magnetic field

configuration should exert similar effects on the upstream plasma as observed in the

case with an angle between magnetic field and shock normal ϕB = 90◦. I will show in

the next section that this indeed is the case.

For comparison with the out-of-plane case I also present in Fig. 6.27 the ω′− k′ plot

for waves in By in a region located at x/λsi = 77−87. The shock is located at x/λsi ≈ 70 .

The Fourier-Laplace analysis was brought forth in the same way as for the out-of-plane

case. The theoretical dispersion relation calculated in Sec. 4.1 is overplotted with white

dots.

Figure 6.27: Fourier power spectrum of Bz magnetic field oscillations in ω− kx space taken
along y = 5λsi in a region located at x/λsi = 77−87. The shock is located at x/λsi ≈ 70. The time
interval is 0.562Ω−1

ci ' 28.1Ω−1
ce , starting from time tΩci ' 56.23. The analysis is performed

in the upstream plasma rest frame. The angular frequency, ω′, is normalised with the electron
cyclotron frequency, Ωce, and the wave-vector, k′x, by Ωce/c. Overlaid with white dots is the
theoretical dispersion relation derived from the linear analysis presented in Sec. 4.1.

The region choosen for the analysis of the wave power spectra is close to the shock

and direct comparison can be drawn with Fig. 6.8b for ϕB = 90o. Similarly to that

case, the close-shock region is influenced by the the effects of the AIC-driven shock

corrugations and by the nonlinear evolution of the wave modes. This effect can be

noted in the low frequency and wavenumber part of the plot. Overall though, as for
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the out-of-plane case, the spectrum retains its qualitative consistency with the theory

of the electron SMI.

6.4.2 Particle Energisation in the In-Plane Case

6.4.2(a) Upstream Particle-Wave Interactions and Downstream Spectra

The phase-space distributions of electrons and ions and the mean particle kinetic

energy profiles in the upstream and across the shock are presented in Fig. 6.28. One

can see that results for the in-plane case are very similar to that shown in Fig. 6.13 for

the simulation with ϕB = 90◦. This is because the amplitudes of the precursor waves

and wake-field are compatible in both runs. Therefore, essentially the same physical

mechanisms of particle interactions with the upstream waves operate here.

In particular, the electrons can be accelerated by strong wake-field waves, that are

observed to propagate toward the shock also in this case (see Fig. 6.29), and reach

energies in excess of γe ∼ 20. In effect, the anisotropy in pxe − x is produced. As I

will show below, the SSA process works as well, though the corresponding anisotropy

along the motional electric field in the pze−x cannot be observed in my 2D simulation.

The bulk energy gain of electrons before they reach the shock is again about 5% of their

initial kinetic energy, so that electrons and ions are far from the energy equipartition

upstream of the shock.

Fig. 6.30 shows downstream particle spectra. As in the case with the out-of-plane

magnetic field, the ions are in the process of thermalization around their mean energy

and the reflected particles undergo SDA at the shock. Electron distribution is close to

the combination of two 3D Maxwellians, each described by:

f (γ−1)dγ ∝
√

(γ−1)e−
mec2
kTe

(γ−1) (6.20)

and where the two peaks are very close together. The distribution can be also

approximated by a single 3D Maxwellian, but the two Maxwellians provide a slightly

better fit. Also in the present case a limited-range supra-thermal component in the

electron spectrum is present with the power-law spectral index p ' 2.1, as shown in

inset (b) of Fig. 6.30. The slope of the supra-thermal component is similar to that in the

out-of-plane simulation.

One can see that the level of electron-ion coupling downstream of the shock in the
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Figure 6.28: Phase-space distributions map for electrons along x axis (a) and along y axis
(b), and distributions map for ions along x axis (c) in the upstream region, at time t = 84.3
Ω−1

ci ; mean particle energy (blue for ions and red for electrons) in units of the ions upstream
bulk energy (d) and close up of the electron mean particle energy in the vicinity of the shock
(e). Phase-space distributions map for electrons along x axis (a) and along y axis (b), and
distributions map for ions along x axis (c) in the upstream region, at time t = 84.3 Ω−1

ci ; mean
particle energy (blue for ions and red for electrons) in units of the ions upstream bulk energy
(d) and close up of the electron mean particle energy in the vicinity of the shock (e).

in-plane case is far from the energy equipartition, as in the setup with ϕB = 90◦. To

facilitate a direct comparison, in Fig. 6.31 I once again show the electron spectra for

both 2D runs and also for 1D simulation.

In the case with ϕB = 0◦, the average Lorentz factor of electrons 〈γe−1〉/mi ≈ 0.13 is

16% of that of the ions, 〈γe−1〉/mi ≈ 0.77, the electrons carry ∼ 12.6% of the initial ion

kinetic energy per particle and 77,2% stays in the downstream ion energy. The ion-to-

electron energy transfer is thus slightly larger in the in-plane case, but comparable in

both 2D runs. In 1D simulations the coupling is slightly stronger, the electrons gaining

16,8% of the ion energy. Nevertheless, in all cases the electrons and ions are weakly

coupled.
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Figure 6.29: Stack plot of the averaged wake-field waveforms, 〈Ex〉/(B0c), upstream of the
shock, starting at time t0Ωci = 56.2 and ending at tmaxΩci = 84.7, for the in-plane case. The
profiles are shifted so that the shock at all times is located at the left side of the figure at x/λsi ' 70.

6.4.2(b) Electron Energisation Mechanisms

As in Sec. 6.2.3(c), I describe the electron heating and acceleration processes

by analysing average quantities derived from sample of traced particles. Fig. 6.32

illustrates the main electron energisation phases in a format similar to that in Fig. 6.16.

In the present case I split the work done by the electric field into components parallel

and perpendicular to the local magnetic field (see caption of Fig. 6.32).

Qualitatively, in the setup with the in-plane B0 the electron energisation proceeds

with the same phases as described for the case with ϕB = 90◦. On the approach

toward the shock the particles interact with the wake-field, and those that later can

gain significant energies are decoupled from the bulk flow at an interaction with strong

waves emitted by the ripples. A strong pull by the Ex electric field and acceleration in

the motional electric field, Ez, results in an initial energy gain that is due to work done

by the perpendicular electric field components. The magnetic moment increases. This

is a step at time t = ta (Fig. 6.32a). Note, that gyration in the magnetic field is in the

x− z plane and the E×B drift motion due to the Ex field is out of the simulation plane,

−ExByẑ, and is not visible through particle trajectories.

Upon entering the shock the particles undergo adiabatic heating. The magnetic

moment stays roughly constant until the electrons come close to the overshoot at

time tb (Fig. 6.32b), when the magnetic moment starts to increase and particles gain

a significant amount of energy through the work of the y-component of the parallel
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Figure 6.30: Particle energy spectra (red for electrons, blue for ions) in a region x/λsi = 87−97
downstream of the shock at xsh/λsi ≈ 107 at time tΩci = 84.3 (a) and close-up of the high-energy
part of the electron spectrum (b). Dotted line in panel (a) shows relativistic 3D Maxwellian fit
to the electron spectrum (see Fig. 6.15).

Figure 6.31: Comparison of the electron spectra downstream of the shock obtained in 2D (blue
line for ϕB = 90◦, red line for ϕB = 0◦) and 1D simulations (orange line). The spectra are
calculated in a region 5λsi−15λsi downstream of the shock front (compare Figs. 6.15 and 6.30).

electric field. The inset in panel (b) shows that By ŷ magnetic-field-aligned electric fields

exist everywhere along the magnetic overshoot. Their structure in a larger portion of

the overshoot and the region downstream is shown in Fig. 6.33.

One can note that in the overshoot density of ions is much larger than that of

electrons. This creates strong charge-separation electric fields. The ion density increase

results from their deceleration during a coherent reflection in the shock-compressed
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Figure 6.32: Trajectory segments of sample electrons (a-c), time evolution of the average kinetic
energy and acceleration rates (d) and the magnetic moment and the magnetic field profile (e)
in the simulation with ϕB = 0◦e. The format is the same as in Fig. 6.16, except that the total
magnitude of the magnetic field strength, |B|/B0, is shown in panels (a-c) and (e) and the
acceleration rates are split into components parallel, (γ− 1)Epar =

∫ t1

t0
qev ·E‖/(mec2)dt (blue

line), and perpendicular (γ− 1)Eper =
∫ t1

t0
qev ·E⊥/(mec2)dt (green line) to the magnetic field.

For (γ− 1)Epar I also show its y-component with orange line. The inset in panel (b) shows
zoom-in of the fields configuration in a region marked with a square box, where red arrows
present the in-plane electric field, black lines the contours of the Az-component of the vector
potential (displaying the in-plane magnetic field lines), and the the green thick line shows the
region with strong electric field component along the magnetic field.

magnetic field. The electrostatic field is thus associated with the cross-shock potential

that reflects the ions and accelerates the electrons toward downstream. In a laminar

shock the cross-shock potential electric field is directed toward its normal, so in our

geometry this electric field would lie along the x-coordinate and flip sign across it. This

is visible in Figure 6.33 upstream and downstream from the overshoot (red arrows).

However, in the overshoot the electric field structure forms a complex set of thin and

warped filaments that at some locations are at a large angle with respect to the y-axis.
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Figure 6.33: Distribution of the normalized charge density (left panel) and the electric field
component aligned with the magnetic field (right panel) at time tΩce = 24.2 and a portion of the
box around the shock overshoot. Red arrows show the in-plane electric field. Magnetic field lines
in the right panel are shown with black and magenta lines, the latter highlighting the region, in
which Epar has a substantial amplitude.

The charge-separation field thus acquires a component along the magnetic field, that

is largely in the y-direction. Electrons that are able to move freely along magnetic field

lines can be efficiently accelerated in the co-aligned electric fields (see a trajectory of

sample electron marked with red line in Fig. 6.32b).

Electrostatic fields with components transverse to the shock normal often occur in

non relativistic systems. The electrons that are accelerated in the cross-shock potential

can excite two-stream instabilities while streaming across the background electrons or

ions [Thomsen et al., 1983, Goodrich and Scudder, 1984]. Similar processes can occur

here. However, one can see in Fig. 6.33 that the overshoot structure is modulated

on large scales by the shock ripples. The presence of modulations at scales of the

ion skin depth and smaller suggests that some other instabilities may also operate in

the overshoot. The coupling between these unstable modes is difficult to disentangle.

I only note that the effect of the E‖ fields is specific to the in-plane magnetic field

configuration under study. The strength of this electric field component is much larger

than that typically observed in non relativistic shocks, and may be due to specific

conditions in our mildly relativistic and magnetized shock. Also note that the adiabatic

heating works on top of the processes discussed. However, it is difficult to separate

this component from the other contributions in our in-plane setup.

After crossing the overshoot the average kinetic energy of the particle sample and
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the magnetic moment keep increasing, despite the magnetic field decompression. As

in the case with B0 out-of-plane, this non adiabatic acceleration is due to either gyro-

resonant or stochastic scattering of the electrons off downstream turbulent fields created

due to the shock front ripples (Fig. 6.32c). Note, that magnetic-field aligned electric

fields persist in an extended region past the overshoot, providing scattering centres.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this dissertation I investigate with PIC simulations the shock structure,

production of plasma instabilities, and associated particle acceleration and heating

in mildly-relativistic magnetized shocks. The main application of this study is in the

physics of AGN jets, that are observed to be sources of high-energy electromagnetic

emission and also CR particles. In this context the focus of this work is on conditions

typically assumed in the internal shock scenario of the electromagnetic emission

production. I therefore assume the shock Lorentz factor of Γsh ' 2 and plasma

magnetization, σ = 0.1. At this magnetization the shocks are mediated through particle

reflection off the shock-compressed magnetic field and the flow energy dissipation

processes involve emission of strong coherent electromagnetic radiation. Nevertheless,

mildly-relativistic shocks in this parameter regime have been poorly explored and only

with very-low-resolution PIC simulations, that indicated a low efficiency of particle

energisation processes and a resulting very weak proton-electron coupling. However,

it has been recently noticed that an appropriate scrutiny of the electromagnetic shock

structure requires sufficiently high numerical resolution. Only such studies can

properly quantify the amplitude of the precursor waves and their interactions with

particles. The aim of this thesis is to re-assess the physics of mildly relativistic

magnetized shocks with kinetic PIC simulations that have unprecedentedly high-

resolution and in addition take into account large-scale effects related to the proton

gyration at the shock and the excitation of the corrugations along the shock surface.

This is to investigate the applicability of the WFA model in AGN jets for the problem

of high-energy CR origin and also to evaluate a realistic level of the proton-to-electron

energy transfer in the shock. The study is performed for shocks in plasma composed

of electrons and ions, without a positron content. As relativistic shocks are typically

superluminal, my simulations investigate strictly perpendicular shocks. The geometry

of the simulations is 2D because 3D large-scale high-resolution studies are at present

not feasible from the computational side. However, to evaluate realistic 3D physics

I probe two different configurations of the mean magnetic field with respect to the

simulation plane, namely the out-of-plane and the in-plane field orientation.

My results show that the SMI operates in mildly relativistic shocks in agreement
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with theoretical predictions and produces coherent emission of upstream-propagating

electromagnetic waves. As observed in Iwamoto et al. [2017, 2018] for ultra relativistic

shocks, the amplitude of these precursor waves in high-resolution studies in the mildly

relativistic regime is much larger than the amplitude obtained at low resolutions. The

strength of the waves is nevertheless much smaller than in high-Γsh shocks. However,

the waves continue to persist and their amplitudes reach finite moderate level that in 2D

is comparable to that in 1D simulations. This effective wave amplification overcomes

destructive effects of the inhomogeneous shock surface and the temperature of the

inflowing plasma and is due to the shock-front corrugations. The shock ripples appear

for both configurations of the mean magnetic field, though their generation mechanisms

differ in each case – it is the process described by Burgess and Scholer [2007] forϕB = 90o

and the AIC temperature-anisotropy instability in the case with ϕB = 0o. In each case

the ripples heavily influence the upstream plasma. Their presence is also essential for

the electron acceleration and heating processes.

In the case with the out-of-plane mean magnetic field the precursor waves are of the

X-mode type. The shock ripples cause them to be on average emitted at oblique angles

to the shock normal. The ripple structure with strong plasma compressions enables

the wave amplification. The AIC-generated shock front corrugations in the in-plane

case are of slightly lower amplitude, and the waves are mostly propagating along the

shock normal with only a weak oblique component. The presence of magnetic field

turbulence in the shock leads in this case to the generation of the O-mode waves,

in addition to the dominant X-mode waves. For each magnetic field configurations

studied I observe the production of density filaments upstream of the shock via the

parametric filamentation instability. Also in each case the electrostatic Langmuir wave

modes – the wakefields – are excited in the upstream plasma.

It has been suggested that the wakefield acceleration in ultrarelativistic shocks

may account for the production of highly energetic particles up to the UHECRs

energy range through nonlinear collapse of the waves [Lyubarsky, 2006, Hoshino,

2008, Iwamoto et al., 2017, 2018, Iwamoto et al., 2019]. In the mildly relativistic shocks,

the shock ripples generate at times stronger precursor wave emission that results in

nonlinear wakefield amplitudes. The nonlinear processes of FRS are then triggered,

producing downstream-propagating wakefields that accelerate electrons through the
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phase-slippage effect combined with SSA [Hoshino, 2008]. However, the WFA is less

efficient than in the ultra relativistic regime and only few particles become significantly

energized close to the upstream bulk energy of ions in the upstream precursor wave

region. In result, in contrast to ultrarelativistic shocks, the electrons and ions do not

reach equipartition by the time they arrive to the vicinity of the shock.

The ion-to-electron energy transfer is comparable in both 2D simulations. In both

cases it is far below equipartition, with electrons on average carrying ∼ 11%− 13%

of the initial ion kinetic energy per particle. However, it is still much in excess of

me/mi = 2%, for the assumed mi/me = 50. The majority of the energy transfer takes

place in the shock and downstream and electron heating proceeds beyond adiabatic

compression at the shock. Resulting steady-state downstream electron energy spectra

are close to thermal distributions, although narrow-energy-range supra-thermal power-

law components are also present. The presence of the shock rippling is again crucial

for electron energisation processes. Strong waves emitted by the shock ripples close to

the shock excite wakefields that are able to effectively decouple a particle from the bulk

flow. These particles can then experience strong acceleration in the electrostatic field

in the turbulent rippling zone. This non-adiabatic energisation phase mediated by the

shock corrugations is a necessary step to subsequent acceleration in the shock. To my

knowledge, such process has not previously been reported in the literature.

In the setup with the out-of-plane magnetic field electrons crossing the shock ramp

reside in the overshoot, wherein they experience adiabatic heating. Here some particles

that underwent significant acceleration in the rippled shock front now have gyro-

radii comparable to scale of the downstream turbulent field, that is set by the ripples’

evolution. They can gain further energies via gyro-resonant interactions with the

turbulence. Stochastic second-order Fermi-like inelastic scattering also takes place,

with some particles reaching supra-thermal energies. Similar processes shape the

downstream energy spectra in the in-plane magnetic field case. Additional significant

energisation for this field configuration takes place in the shock overshoot, where the

charge-separation electric fields associated with the cross-shock potential and modified

by the shock ripples form a peculiar structure of complex thin and warped filaments. In

effect, the electric fields acquire magnetic-field-aligned component, facilitating electron

acceleration.
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My studies underline a critical role of the shock front rippling in forming the shock

structure and facilitating the electron heating and acceleration processes. Such effects

have not been reported so far for relativistic shocks. Sironi et al. [2013] observed

the shock corrugations generated in the mechanism of Burgess and Scholer [2007] in

their simulations of perpendicular high Lorentz factor shocks. They showed that the

rippling occurs only in a limited range of plasma magnetization, 3× 10−4 . σ . 10−1,

and at other values of σ it is suppressed by too high a temperature of electrons heated

in the upstream. For σ ≤ 10−4 the electrons are heated in the region of the Weibel

instability filaments, while for σ > 0.1 in the SMI-mediated precursor. One can expect

that the ripples in the mildly relativistic shocks can similarly be suppressed at low

magnetizations, since the Weibel instability is important for the shock formation down

to trans-relativistic shock velocities [e.g., Kato and Takabe, 2010]. On the other hand,

at magnetizations higher than σ ≈ 0.1, one does not expect that the precursor wave

emission be stronger than in the case of σ = 0.1 analysed here [see Iwamoto et al., 2019],

so that the rippling may survive in the conditions of higher magnetizations. The same

argument should hold for the AIC-instability-generated corrugations.

The simulations presented in this thesis are 2D, and the persistence of the obtained

results in realistic 3D systems should be discussed. As my simulations show that intense

coherent precursor waves are generated by the SMI irrespective of the magnetic field

configuration, one can expect that this mechanism will excite the waves also in 3D.

In a three-dimensional setup one should expect that both the X-mode and O-mode

waves are emitted by the shock, but the efficiency of the ordinary mode emission is

difficult to estimate for the 3D configuration. The source of instabilities in the shock

transition region that enable the generation of the O-mode is the gyration of particles at

the shock front. As this gyration motion in 3D is expected to be less coherent than in the

in-plane 2D simulations, one may presume that O-mode emission is less efficient in the

3D configuration [Iwamoto et al., 2018]. Recent multidimensional simulations of ultra

relativistic shocks in pair plasmas carried out by Plotnikov and Sironi [2019] showed

that at high σe & 1 (recall that here σe = 5.2 is assumed) the physics of the precursor

wave emission in 3D is better represented with the out-of-plane 2D model. This result

should in principle hold in the electron-ion plasma, since the emission mechanism of

the SMI waves in this case is the same as in the pair plasma. However, as demonstrated
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in this thesis, the precursor wave strength and structure in mildly relativistic shocks

is significantly influenced by the shock ripples. The survival of the rippling structure

observed in the out-of-plane simulation in the 3D regime is not assured. This is because

the Burgess and Scholer [2007] mechanism requires a suppression of the fluctuations

parallel to the main magnetic field that might be difficult to achieve in 3D. Nevertheless,

because the ripples generated through the AIC instability in the in-plane setup amplify

the precursor waves to amplitudes comparable to that in the ϕB = 90o case, similar

strength of the precursor waves can be expected in 3D.

Similar conclusion should be valid to what concerns the particle energisation

efficiency. For both field configurations studied similar processes operate to heat

and accelerate electrons and thermalize the ions. In 3D, a restriction that cross-field

diffusion is suppressed in the in-plane configuration is waived [Jokipii et al., 1993], and

thus gyroresonant or stochastic electron scattering may proceed even more efficiently

to generate high-energy particles. On the other hand, the coherency of the precursor

waves in 3D should rather not be greater than in lower-dimensionality simulations.

As a consequence, the particle acceleration efficiency in 3D is expected to be at best

the same as observed in 2D simulations. In result, I do not anticipate the possibility

to obtain a stronger ion-electron coupling in three-dimensional studies. Note that the

level of the coupling does not significantly depend on the superluminal shock angle

in ultrarelativistic shocks [Sironi and Spitkovsky, 2011], in which the energy transfer

occurs in the turbulent precursor. Future studies need to verify whether the effects of the

shock rippling can enhance the coupling at angles lower than the strictly perpendicular

to the shock normal.

The absence of energy equipartition between ions and electrons has important

implications when one considers the astrophysical application of this result. Previous

works concerning internal shock model for blazar jets require energy equipartition

between the two species to reproduce blazars SED via leptonic models [see, e.g. Spada

et al., 2001a,b]. Copious electrons naturally explain large luminosities of blazars. If the

equipartition is not reached, then significant amount of energy is held by ions. It needs

to be checked if and under which conditions the level of the electron-ion coupling

reported in this work can be reconciled with the observed γ-ray luminosities of blazars.

A modeling needs also to account for the observed X-ray spectra. As shown in Sikora
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et al. [2013] under the assumption of strong coupling, the observed 2-10 keV spectral

slopes of blazars can be explained in the external radiation Compton (ERC) mechanism

of γ-ray production only if electrons are efficiently cooled down at sub-parsec distances

from the accretion disk or the spectra are dominated by the synchrotron self-Compton

(SSC) component up to at least 10 keV, though the SSC model is less favoured in

blazar modeling. These conclusions may be different for the the lower-level coupling

observed here if mildly relativistic and magnetized shock conditions prevail in the

AGN jet emission sites. The ion-electron coupling also plays a role in estimating the

fraction of pairs-vs-ions in the jet [see, e.g., Sikora et al., 2013].

Recent observations by the IceCube Collaboration reported the detection of a high-

energy neutrino events correlated with the flaring blazar TXS 0506+056 [Aartsen et al.,

2018]. This result prompts to exclude pure pair plasma composition of jets, at least for

this particular source, and it points towards the presence of protons in these sources.

My results show that high-energy protons that produced the IceCube neutrinos could

not be accelerated via WFA or DSA in a magnetized mildly relativistic shock in the jet.

However, in the plasma composed of electron-positron pairs with the proton content,

in some conditions an additional process may operate that accelerates electrons and

positrons. Reflected ions gyrating in the shock emit left-handed elliptically polarized

magnetosonic waves with frequencies that are harmonics of the ion cyclotron frequency

(the ion SMI). If the spectrum of the ion-emitted waves has enough power at high

harmonics at and above the cyclotron frequencies of positrons and electrons, then

pair particles traversing the shock can be accelerated to non-thermal energies through

resonant relativistic synchrotron absorption of the magnetosonic waves [Hoshino and

Arons, 1991]. In ultrarelativistic shocks this mechanism was demonstrated to be very

efficient in accelerating positrons [Hoshino and Arons, 1991, Hoshino et al., 1992].

Non-thermal electrons are also created, albeit in a less efficient way because of the left-

handed wave polarization of the ion waves [Amato and Arons, 2006, Stockem et al.,

2012]. Therefore, also in mildly relativistic shocks one can expect similar processes to

operate to increase the coupling between leptons and protons and possibly make the

leptonic models capable of explaining the blazar emission. New high-resolution and

large-scale PIC simulation studies are necessary to investigate the mildly relativistic

scenario in ion-pair plasmas.
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