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Abstract

This thesis discusses QCD factorization frameworks for hadronic collisions that directly include transverse
momenta of interacting partons. In the first part we show how the Transverse Momentum Dependent (TMD)
distributions become process dependent and calculate TMD gluon distributions for processes involving 5 and
6 colored partons. A general result for multi-gluon process at large Nc is presented. The second part concerns
the phenomenology of hadronic collisions. We investigate the importance of several physical effects that can
improve theoretical description of processes with jets in the final state. We study the double parton scattering
contributions to dijet cross section, constructed from the single jet production in high energy factorization
(HEF). We analyze the effect of final state radiation and introduce initial state parton shower based on the
unintegrated parton distributions. Finally, the results of TMD gluon distributions, obtained in the first part,
were used to compare the predictions for three jet production in HEF and Improved TMD factorization.

Streszczenie

W niniejszej rozprawie przedstawione są podejścia faktoryzacyjne chromodynamiki kwantowej uwzględni-
ające pędy poprzeczne oddziałujących partonów. W pierwszej części pokazane zostało jak rozkłady partonowe
TMD uzyskują zależność od procesu oraz otrzymano rozkłady gluonowe TMD dla procesów zawierających 5
i 6 cząstek posiadających ładunek kolorowy. Przedstawiony został także ogólny wynik dla wielogluonowych
procesów w granicy dużej liczby kolorów. Druga część pracy dotyczy fenomenologii zderzeń hadronów. Anal-
izowany jest wpływ szeregu efektów fizycznych pozwalających na lepszy opis teoretyczny procesów produkcji
dżetów. W szczególności, badany jest wkład podwójnego rozpraszania partonów do procesu produkcji dwóch
dżetów, skonstruowanego na podstawie produkcji pojedynczego dżetu w faktoryzacji wysokoenergetycznej,
oraz rozpatrywane są efekty kaskad partonowych ze stanów początkowych i końcowych. Na koniec, wyniki
rozkładów gluonowych TMD, otrzymane w pierwszej części, zostały zastosowane do porównania przewidywań
dla procesu produkcji trzech dżetów w formalizmie ulepszonej faktoryzacji TMD oraz faktoryzacji wysokoen-
ergetycznej.
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Preface

The Standard Model (SM) has been the leading theory of particle physics with exceptional success in
describing the strong and electroweak interactions of fundamental fermions and vector bosons. Nevertheless,
despite the great success, the Standard Model cannot be the final theory - even after the discovery of the
Higgs boson - as there are phenomena, like baryon asymmetry or neutrino masses, which cannot be explained
within the model. For this reason a considerable effort has been dedicated to the search for new physics
beyond the SM.

An unprecedented opportunity to explore new physics has emerged with the start-up of the Large Hadron
Collider (LHC) at CERN. The strong interactions are the dominant mechanism of particle production at the
LHC and Quantum Chromodynamics (QCD) is the fundamental theory underlying calculations. Extraction
of new physics signal from huge Standard Model background requires understanding of QCD at a remarkably
accurate level.

The fundamental role in application of QCD play so-called factorization theorems, which allow to separate
the short-distance perturbative physics from the long-distance nonperturbative effects. While the standard
collinear factorization is a sufficiently good approximation for most inclusive processes in hadronic collisions,
it leaves many problems unaddressed. A wide class of processes that require extension are those involving
measurable internal transverse momenta of partons. A consistent theoretical treatment of such processes,
depending on kinematic regime, is based on the Transverse Momentum Dependent (TMD) or High Energy
factorization (HEF). In high-energy factorization, applicable when both momentum scale and energy scale
involved in the scattering process are high, long-distance part is described by unintegrated gluon densities,
which in addition to the longitudinal hadron momentum fraction, depend as well on the transversal momen-
tum. As a consequence parton densities in high-energy factorization have to be convoluted with the hard
process calculated with the initiating gluons being off-shell. In TMD factorization, the on-shell hard process
is accompanied by several process-dependent TMD distributions, which leads to violation of factorization in
hadron-hadron collisions.

In the present thesis, we study the phenomenology of TMD and HEF factorizations. The thesis is
organized as follows. Section 1 is introductory and contains a number of preliminary topics. In particular,
we describe Lagrangian of QCD and review evolution equations. We also present a short overview of collider
phenomenology. In Section 2 we discuss factorization theorems. Section 3 describes the kT -dependent
distributions. In Section 4 we calculate TMD distributions for multiparton processes. Section 5 contains
phenomenology of multijet processes. A final discussion is presented in Section 6, which is followed by six
appendices.

The original work, presented in this Thesis, is based on the following publications

• Single and double inclusive forward jet production at the LHC at
√
s = 7 and 13 TeV

M. Bury, M. Deak, K. Kutak and S. Sapeta, Phys. Lett. B 760 (2016)

• Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
M. Bury, A. van Hameren, H. Jung, K. Kutak, S. Sapeta and M. Serino, Eur. Phys. J. C 78 (2018) no. 2

• Single inclusive jet production and the nuclear modification ratio at very forward rapidity in
proton-lead collisions with

√
sNN = 5.02 TeV

M. Bury, H. van Haevermaet, A. van Hameren, P. van Mechelen, K. Kutak and M. Serino, Phys. Lett. B 780
(2018)

• TMD gluon distributions for multiparton processes
M.Bury, P. Kotko and K.Kutak, Eur. Phys. J. C 79 (2019) no. 2
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1 INTRODUCTION

1 Introduction

1.1 Basics of QCD

Quantum Chromodynamics, formulated in 1973 [1–3], is the part of the Standard Model that describes
strong interactions of quark and gluons. Formally, QCD is a non-abelian gauge theory based on the symmetry
group SU(Nc), also called a Yang-Mills theory, with Nc = 3, and the degree of freedom associated with this
gauge group referred to as color. Some of the most important experimental observations predicted by QCD
are asymptotic freedom, confinement and scaling violation.

The SU(Nc)1 group is a Lie group specified by N2
c − 1 = 8 generators T a, which, together with the

commutation relations [
T a, T b

]
= ifabcT c , (1.1)

form the Lie algebra [4]. fabc are called the structure constants of the group and a, b, c = 1, . . . , N2
c − 1

(summation over repeated indices is implied). Among the representations of the SU(Nc) group, two of them
are of particular importance. In the fundamental representation, generators are the Nc × Nc matrices
T a(F ) ≡ ta = λa/2, where λa are (generalized) Gell-Mann matrices [5]. In the adjoint representation,
generators have the form of the N2

c − 1×N2
c − 1 matrices defined by the structure constants T abc = −ifabc.

Quarks transform under the fundamental representation whereas gluons under the adjoint representation.
For any representation R, one can construct a Casimir operator that commutes with the generators

∑

a

T aik(R)T akj(R) = CRδik . (1.2)

The value of the constant CR in the fundamental representation is given by CF =
N2
c−1

2Nc
and in the adjoint

representation by CA = Nc.
The QCD Lagrangian density is given by [4]

LClassical =
∑

flavors

q̄i
(
i /D −m

)
ij
qj −

1

4
F aµνF aµν , (1.3)

where F aµν is the field-strength tensor derived from the gauge field Aaµ,

F aµν ≡ ∂µAaν − ∂νAaµ − gsfabcAbµAcν . (1.4)

/D is a symbolic notation for γµDµ, where γµ are the Dirac matrices satisfying the anticommutation relations
{γµ, γν} = 2gµν , with the metric gµν = diag(1,−1,−1,−1). The covariant derivative takes the form

Dµ = ∂µ + igsA
a
µT

a . (1.5)

The fundamental parameters of QCD embedded in the Lagrangian are the masses of different quark flavors
and the coupling constant gs, which determines the strength of the interaction. It is useful to introduce also
the quantities

αs =
g2
s

4π
and ᾱs =

Nc

π
αs . (1.6)

Certain features of the theory can be inferred directly from analyzing the structure of the Lagrangian
above. The last term of Eq. (1.4) gives rise to triplet and quartic gluon vertices, which distinguish QCD
from Quantum Electrodynamics (QED). Gluons carry color and interact among themselves, unlike photons,
which have no charge. These self-interactions lead ultimately to the properties of asymptotic freedom and
the existence of jets. In the former case, gluon splittings are the source of an antiscreening effect, which
manifests itself as the weakening of the coupling with decreasing distance. In the latter case, gluon splittings

1We leave Nc unspecified whenever possible.
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1 INTRODUCTION

play a major role in the creation of large number of particles, all originating from the same initial parton.
Another property of the theory that is evident from the Lagrangian, is gauge invariance. The theory is

constructed in a manner that ensures it is invariant under local gauge transformations [6]

q(x)→ U(x)q(x) , q̄(x)→ q̄(x)U−1(x) , (1.7)

Aµ(x)→ U(x)Aµ(x)U−1(x) +
i

gs
[∂µU(x)]U−1(x) , (1.8)

where U(x) = eiα
a(x)ta and the αa(x) are arbitrary real functions. Actually, the Lagrangian (1.3) can be

derived directly from the gauge symmetry of the form above [7]. This property means that one can perform a
redefinition of the color quark fields independently at every point in space-time without changing the physical
content of the theory. Even though the quantization procedure explicitly breaks the invariance, its effect is
still present in the fact that physical observables should be independent of the gauge choice used to construct
the gluon propagator. The same is known to be true also for QED, however, what is distinctive in non-abelian
theories, is that the field-strength tensor is not gauge invariant and it transforms like

Fµν(x)→ U(x)Fµν(x)U−1(x) .

This is, again, because of the self-interaction of gluons. As a consequence, it is not possible to unambiguously
define states with a definite number of gluons. Gauge transformation can turn a state with a quark and no
gluons to a state with a quark and many gluons, so that the partonic picture of processes involving hadrons
depends on it.

The Lagrangian (1.3) represents only the classical part of the theory and needs to be quantized. The
quantization procedure requires addition of supplementary terms, namely

LQCD = LClassical + LGauge + LGhost . (1.9)

The gauge-fixing term is necessary to avoid double counting of equivalent gluon-field configurations, so that
the gluon propagator can be defined. Moreover, if the gauge-fixing term is of the covariant type, also the
so-called ghost term is needed to cancel unphysical degrees of freedom. In axial gauges, however, ghosts are
absent.

The main measurable quantities that we are interested in calculating in particle physics are decay widths
and scattering cross sections. They both depend on the squared matrix element or amplitude for the
transition between some initial and final states, which contains all the dynamical information describing
interactions between the involved particles. Amplitudes can be evaluated as a perturbation series over
the coupling constant, provided that the coupling is small enough. This theoretical framework is called
perturbative QCD (pQCD). The perturbation series is conveniently represented using Feynman diagrams,
consisting of particle propagators and interaction vertices, which, together with Feynman rules for translating
diagrams into mathematical expressions, are extracted from the Lagrangian. In the region of large coupling,
other formalisms are required, such as e.g. lattice QCD. In this approach, the theory is formulated in the
Euclidean space-time, discretized into lattice with spacing a, with quark fields placed on sites, and gauge
fields on the links between sites. The continuum theory is recovered by taking the limit of vanishing lattice
spacing. An important feature of the lattice formulation of QCD, which leads to considerable simplifications,
is that it preserves gauge invariance without any need for gauge-fixing. The building blocks for calculations
are expectation values of various operators associated, for instance, with hadronic masses or quark - antiquark
potential.

9



1 INTRODUCTION

1.2 Renormalization and running coupling

The value of the coupling is essential from the standpoint of applicability of pQCD. Nevertheless, the prop-
erty of running coupling is not straightforward from the Lagrangian formulation and in order to understand
its origins, it is necessary to address the removal of ultraviolet divergences and the renormalization procedure.
Calculations of amplitudes at higher orders involve loop diagrams containing momentum integrals, which are
divergent as momentum goes to infinity (UV divergences). These integrals can be formally calculated, e.g.
by introducing a cutoff parameter µR. Such procedure is called regularization and exists in several different
versions. The obtained expressions consist of finite terms and terms which are infinite when the cutoff is
removed. Divergent terms appear because the coupling gs from the Lagrangian, called the bare coupling, is
not a correct expansion parameter and needs to be redefined. The bare coupling absorbs divergent terms and
gives finite, experimentally measured physical coupling. This procedure is called renormalization, and it
needs to be applied also to the bare mass and bare fields from the Lagrangian. Ultimately, the renormalized
Lagrangian splits into two parts. The first part has the form identical to the original Lagrangian, but with
the physical (renormalized) quantities instead of bare, whereas the second part contains formally divergent
counterterms. These counterterms cancel the divergences from the bare-like part, so that the perturbation
series based on the renormalized Lagrangian gives finite results. The artifact of this procedure is the depen-
dence of the Lagrangian on the renormalization scale µR and regularization method. Physical observables,
however, cannot depend on µR, and this requirement leads to the renormalization group equations.

The renormalization group equation that determines the evolution of the coupling reads

µ2
R

∂αs
∂µ2

R

= β(αs) . (1.10)

The function β(αs) introduced above has a perturbative expansion, and at one-loop order it reads [3, 8]

β(αs) = − (11Nc − 2Nf )α2
s

12π
, (1.11)

where Nf is the number of active flavors. We can see that for Nf ≤ 16 this function is negative, which
means that increasing the energy scale (or decreasing the distance scale) lowers the value of the renormalized
coupling. This is a fundamental property of the theory, called asymptotic freedom, since due to the smallness
of the coupling at high energies quarks behave effectively as free particles. In contrast, in QED the coupling
grows with the scale. The formula (1.11) for the beta function has two contributions. The term proportional
to the number of flavors comes from the contributions of fermion loops to the gluon propagator. This is
an analogue of vacuum polarization in QED, which is associated with a screening effect. On the other
hand, the term proportional to the number of colors comes from the contribution of gluon loops to the
gluon propagator. The opposite effect of gluons as compared to fermions has been argued to be due to the
gluons having spin 1 [9]. Although there is no straightforward intuitive explanation for this phenomenon,
contribution from gluons dominates and leads to an effective antiscreening.

The change of the value of the coupling with the energy scale can be obtained from (1.10), provided we
operate in perturbative region. At one-loop order we get

αs(Q
2) =

αs(µ
2
R)

1 + αs(µ2
R)b ln(Q2/µ2

R)
, (1.12)

where b = (11Nc − 2Nf )/12π. In this expression, the parameters are the renormalization scale µR and the
value of the coupling at that scale. They can be replaced for a single dimensionful parameter ΛQCD, defined
as the scale at which coupling calculated perturbatively would diverge. In terms of this parameter

αs(Q
2) =

1

b ln(Q2/Λ2
QCD)

. (1.13)

10



1 INTRODUCTION

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1: Summary of measurements of αs as a function of the energy scale Q. The respective degree of
QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO: next-to-leading order;
NNLO: next-to-next-to leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO). Excerpted from [10].

Quantitatively, ΛQCD determines the approximate scale where non-perturbative effects become important
and thereby perturbation theory breaks down. Experimentally this scale is found to be approximately
200 MeV, however, its value depends on the precise definition (which involves e.g. the number of flavors and
renormalization scheme). Perturbation theory is therefore reliable at energy scales & 1 GeV.

The growth of the coupling for smaller scales predicted by (1.13) is consistent with experimental obser-
vation that quarks and gluons never appear as asymptotic states, only color singlet hadrons are detected.
The Q . ΛQCD region cannot be addressed by perturbative methods, however lattice studies show that when
a quark and an antiquark are separated by a large distance, the force between them does not fall off with
distance, while the potential energy grows linearly. Before quarks can be separated, the stored energy is large
enough to create new quark-antiquark pair that combines with the original one, such that color neutrality is
preserved. This is called color confinement.

Experimental measurements of the coupling constant confirm predictions calculated in the QCD frame-
work. Fig. 1 shows a summary of measurements of αs as a function of the energy scale Q. One can clearly
see the asymptotic behavior, as predicted by the theory. World average value of the coupling at the mass of
the Z boson is currently αs(MZ) = 0.1181 [10]. The results indicate that already at scales of the order of a
few GeV, the coupling is small enough to perform perturbative calculations.

1.3 Factorization and distribution functions

The properties of running coupling, described in the previous section, limit the application of pQCD
primarily to the study of hard processes, where the exchanged transverse momentum is very large. The

11



1 INTRODUCTION

P1

P2

x1P1

x2P2

fi(x1)

fj(x2)

σ̂ij(αs)

Figure 2: Schematic picture of factorized hadronic cross section.

fundamental degrees of freedom in perturbative calculations are then quarks and gluons rather than hadrons
observed in experiments. It is therefore necessary to establish a systematic approach to relate calculations
performed at the partonic level to the hadronic states. In the QCD improved parton model, the partonic
level cross sections are convoluted with the corresponding probability of finding the interacting parton inside
a hadron. In such a setup, the cross section for scattering of two hadrons with four-momenta P1 and P2 can
be written as [6]

σ(P1, P2) =
∑

i,j

∫
dx1dx2fi(x1, µ

2
F )fj(x2, µ

2
F ) σ̂ij(p1, p2, αs(µ

2
R), Q2/µ2

F , Q
2/µ2

R) , (1.14)

which corresponds to the structure depicted in Fig. 2. The parton model picture is most conveniently
formulated in the infinite momentum frame in which the hadron is moving very fast. In this frame the
hadron is a collection of constituents moving almost parallel to each other and carrying a fraction x of
hadron’s momentum. The functions fi(x, µ2

F ) are thus (collinear) parton distribution functions (PDFs)
describing the probability to find a specific parton inside a hadron and pi = xiPi are momenta of partons
entering short-distance cross section σ̂ij . Q denotes the characteristic scale of the hard scattering, e.g. the
mass of an electroweak boson or the transverse momentum of a jet. In the perturbative regime, the short-
distance cross section can be calculated as a series in the strong coupling [6]

σ̂ = αks (µ2
R)

n∑

m=0

αms (µ2
R) σ̂(m)

(
p1, p2,

Q2

µ2
F

,
Q2

µ2
R

)
, (1.15)

with the leading power k depending on the hard process. Beyond the leading order, the short-distance cross
section receives contributions that contain soft (infrared) and collinear singularities (beside UV singularities
resolved by renormalization, as discussed earlier). In general, soft divergences arise from the emission of
particles with vanishing four-momentum, whereas collinear ones are related to the splitting of massless
particles at small angles. We cannot distinguish soft emissions and collinear splittings from events in which
these emissions and splittings are absent. It was shown, originally in QED by Bloch and Nordsieck [11] and
later proven for QCD by Kinoshita, Lee and Nauenberg (KLN) [12,13], that the infrared and collinear (IRC)
singularities cancel after performing summation over degenerate states. In QCD, KLN theorem requires
summation over both initial and final state degeneracies and this cannot be done for hadrons in the initial
state. When this is the case, singular contributions are factored out from the short-distance cross section
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k

k′

q

X

P

Figure 3: Kinematics of deep inelastic charged lepton-proton scattering.

and absorbed into PDFs. After this operation, the short-distance cross section becomes dependent only on
high momentum transfers, hence short times and distances, and is not influenced by low-momentum scales.
Furthermore, the factorization of singularities, order by order, renders both the short-distance cross section
and the PDFs dependent on an arbitrary parameter, the factorization scale µF . It can be interpreted as
a transverse momentum scale separating long- and short-distance physics. Partons emitted with transverse
momentum below this scale are considered to be part of the hadron structure and are absorbed into a PDF,
while the rest belongs to the short-distance cross section. These two components depend on the factorization
scale in such a way that the resulting hadronic cross section is scale independent, which leads to evolution
equations for parton distributions. Usually, factorization and renormalization scales are set to a single scale
µ = µR = µF , with the standard choice µ = Q, the hard scattering scale.

The formula for hadronic cross section (1.14) should in principle include also the fragmentation functions,
which describe the probability of producing a specific hadron from the hadronization of an outgoing parton.
The main focus of this thesis are however inclusive cross sections, where summation over all possible hadronic
final states is performed and fragmentation functions are absent.

Factorization theorems enable us to use QCD as a predictive calculational tool with controllable approx-
imations. Some details of this very broad subject are presented in Section 2. We will see that the formula
(1.14) is just the leading contribution of an expansion in terms of the inverse powers of the hard scale and
that the probabilistic interpretation of the PDFs is not necessary. Their definition requires only the ability
of factoring out the non-perturbative effects.

Collinear parton distribution functions are inherently non-perturbative and cannot be calculated from
first principles. These functions are however universal in the sense that they are process-independent, i.e.
the same distribution can be used for any hard process which involves hadrons. In practice, the distributions
are measured in deep inelastic scattering (DIS) experiments and then used to calculate cross sections for
hadron-hadron collisions. Since the probe in DIS, namely a photon or electroweak boson, is color-neutral
and does not interact strongly, such experiments are perfect to determine parton distribution functions of a
hadron. In the following, we present a brief description of this process.

In deep inelastic scattering a lepton scatters off a hadron via the exchange of an electroweak boson.
Highly energetic boson penetrates deep into the target hadron and transfers large energy-momentum that
knocks a quark out and causes hadron to break up inelastically. Let us focus on DIS of an electron scattering
off a proton through the exchange of a virtual photon2, as depicted in Fig. 3. An incident electron with
four-momentum kµ interacts with a proton with four-momentum Pµ, with the outgoing particles being the
electron with four-momentum k′µ and hadronic state X. The emitted photon carries four-momentum qµ

equal to the change of the electron momentum qµ = kµ − k′µ. Conventionally these kinematic variables are
2We will neglect the Z boson contribution for simplicity.
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expressed in terms of the following Lorentz invariant quantities

Q2 ≡ −q2 , x ≡ Q2

2P · q , y ≡ P · q
P · k , (1.16)

where Q2 is the virtuality of the photon, x is known as the Bjorken-x variable that measures the inelasticity
of the process, 0 ≤ x ≤ 1, with x = 1 corresponding to the elastic scattering, and y is the fraction of
electron’s energy transferred to the proton in the proton rest frame, 0 ≤ y ≤ 1. Using the above invariants,
and neglecting the proton mass, the DIS cross section can be parametrized in the following way

d2σ

dxdQ2
=

4πα2
em

Q4

[
[1 + (1− y)2]F1 +

(1− y)

x
(F2 − 2xF1)

]
, (1.17)

where Fi(x,Q2) are the structure functions, which contain the information about the proton probed by the
virtual photon. In the limit of Q2 → ∞, with x fixed, the structure functions satisfy a scaling behavior,
called Bjorken scaling [14, 15], i.e. they depend only on the dimensionless variable x, which, if we neglect
the transverse momentum of a parton, has a physical interpretation as the fraction of the proton momentum
carried by the struck parton. Scaling implies that the constituents of the proton have no associated length
scale and therefore are pointlike. Moreover, structure functions are related to each other, F2(x) = 2xF1(x)

(the Callan-Gross relation [16]), which is a consequence of quarks carrying spin 1/2. F2 can be written in
terms of the quark and antiquark densities, ff and ff̄ , and their couplings to the photon (electric charges
ef ) as3

F2(x,Q2) = x
∑

f

e2
f

[
ff (x,Q2) + ff̄ (x,Q2)

]
, (1.18)

where the sum runs over all quark flavors.
The inclusion of QCD corrections leads to the violation of the Bjorken scaling, as well as the Callan-Gross

relation. Quarks can emit and absorb gluons, which subsequently can split into quark-antiquark pairs or
gluon pairs. More and more of these partons are resolved as the virtuality of the photon increases, since the
resolving power depends on the wavelength λ = ~

Q . When Q2 increases, we observe a depletion of quarks at
large x and a corresponding accumulation at smaller x. This is reflected in the shape of F2. Fig. 4 shows F2

as a function of Q2 for different values of x.

1.4 Parton evolution

The parton distribution functions are non-perturbative objects, however their dependence on both ar-
guments can be studied by perturbative methods and leads to a set of evolution equations. In order to
derive these equations one needs to take into account corrections that come from considering multiple parton
branchings. In practice, the calculations are performed with certain approximations that restrict the phase
space of radiation and are valid in regions of x and Q2 where the selected contributions dominate. Basically
there are two regions. The first one is the collinear region, which gives logarithmic enhancements of the form
αs ln(Q

2

Q2
0
). The second one is the soft region, which gives logarithmic enhancements of the form αs ln( 1

x ). The

overlap of these two gives double logarithmic enhancements of the form αs ln(Q
2

Q2
0
) ln( 1

x ). Each enhancement
can be related to the phase space region where successive partons have strongly ordered transverse and/or
longitudinal momenta [17]. Fig. 5 shows the ln(Q2) − ln( 1

x ) plane and the regions of validity of different
evolution equations.

In general, the individual contributions to the evolution equation can be represented by so-called ladder
diagrams, as illustrated in Fig. 6 [19]. The evaluation of such diagram requires integrations of functions that
describe the dynamics of the emitted partons (splitting functions) over internal momenta exchanged between
the rungs. We work in an axial gauge, in which the gluon has only the two physical polarization states and

3In DIS factorization scheme; in other schemes such relation holds only at leading order perturbation theory.
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Figure 4: The proton structure function F2 (for the purpose of plotting multiplied by the factor 2ix , where
ix is the number of the x bin). From [10].

Figure 5: Diagram showing the QCD evolution of the partonic structure of the proton and the validity range
for the different evolution equations [18].
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ghosts contributions are not needed, and in infinite momentum frame of the proton. The emitted partons
(rungs of the ladder) carry the transverse momenta pTi and fractions of proton longitudinal momentum
ξi, whereas for side rails these components are denoted respectively by kTi and xi. Energy-momentum
conservation implies that xi = xi+1 + ξi+1 and thus xi > xi+1.

1.4.1 DGLAP

The approximation that leads to the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations
[20–22] sums the ladder diagrams in which the transverse momenta of the side rails are strongly ordered,
i.e. Q2 � k2

Tn
� . . . � k2

T1
� Q2

0. Then the virtualities of the partons in the side rails are very small in
comparison to the virtuality of the parton that enters the interaction and can be neglected, so the nested
integration over all n rungs can be performed

(αs
2π

)n ∫ Q2

Q2
0

dk2
Tn

k2
Tn

∫ k2
Tn

Q2
0

dk2
Tn−1

k2
Tn−1

· · ·
∫ k2

T3

Q2
0

dk2
T2

k2
T2

∫ k2
T2

Q2
0

dk2
T1

k2
T1

=
(αs

2π

)n 1

n!
lnn
(
Q2

Q2
0

)
. (1.19)

The result is an expression ∝
[
αs ln

(
Q2

Q2
0

)]n
in which αs is multiplied by a logarithm that can be large

when the difference of scales is large. These logarithms balance the smallness of αs. Since αs decreases
logarithmically with Q2 and is compensated by logarithmically growing term in Q2, in a perturbative ex-
pansion, all graphs with rungs up to n =∞ must be summed. This is called the leading log approximation
in ln

(
Q2

Q2
0

)
, because each power of the strong coupling is accompanied by the same power of the logarithm.

Such approximation holds when Q2 is large, but x is not too small to produce also the large logarithms of 1
x ,

αs ln(
1

x
)� αs ln

(
Q2

Q2
0

)
. 1 . (1.20)

The evolution equations in this approximation - the DGLAP equations for the gluon and quark densities
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are
dqf (x,Q2)

d lnQ2
=
αs
2π

∫ 1

x

dz

z

[
qf (z,Q2)Pqq(

x

z
) + g(z,Q2)Pqg(

x

z
)
]
,

dg(x,Q2)

d lnQ2
=
αs
2π

∫ 1

x

dz

z


∑

f

qf (z,Q2)Pgq(
x

z
) + g(z,Q2)Pgg(

x

z
)


 ,

(1.21)

for each quark flavor f . They contain the Altarelli-Parisi splitting functions [21], Pij(z), which are interpreted
as the probability that a parton of type j emits a collinear parton of type i, with the momentum fraction z
of the parent parton. The (unregularized) splitting functions at LO are given by

Pqq(z) =CF
1 + z2

1− z ,

Pqg(z) =TR
[
z2 + (1− z)2

]
, TR =

1

2
,

Pgq(z) =CF
1 + (1− z)2

z
,

Pgg(z) =2CA

[
z

(1− z) +
1− z
z

+ z(1− z)
]
.

(1.22)

The DGLAP equations are coupled integro-differential equations that allow one to calculate quark and gluon
densities for any value of Q2 and x > x0, provided that the densities are known at a particular value of Q2

0

for x > x0.
The DGLAP equations apply also in the overlapping region of large Q2 and small x. In this region, besides

strong kT ordering, also strong ordering in x is required, x � xn � · · · � x1 � x0. The large logarithmic
terms that arise from the integration need to be summed and have the form ∝

[
αs ln

(
Q2

Q2
0

)
ln( 1

x )
]n

. This is
the double leading log (DLL) approximation relevant when

αs ln
(
Q2

Q2
0

)

αs ln( 1
x )

}
� αs ln

(
Q2

Q2
0

)
ln(

1

x
) . 1 . (1.23)

At small-x, the gluon dominates, so in the first approximation quarks can be neglected. Then, the DGLAP
equation can be written as

dg(x,Q2)

d lnQ2
=
αs
2π

∫ 1

x

dz

z
Pgg

(x
z

)
g(z,Q2) , (1.24)

which can be solved directly, e.g. with the help of the Mellin transform. To obtain the solution from the
summation of ladder diagrams, let us look at a contribution from a single rung. At small-x, Pgg(z) ≈ 2Nc

z ,
see (1.22), so each rung produce a factor [23]

∫
dxi−1

xi−1

∫
dk2
Ti

{
αs
2π

1

k2
Ti

Pgg

(
xi
xi−1

)}
≈ Ncαs

π

∫
dxi−1

xi−1

∫
dk2
Ti

k2
Ti

(
xi−1

xi

)
. (1.25)

The integrations over the transverse and longitudinal momenta can be performed separately. As before, from
the strongly kT -ordered region nested integrations give

(
Ncαs
π

)n ∫ Q2

Q2
0

dk2
Tn

k2
Tn

∫ k2
Tn

Q2
0

dk2
Tn−1

k2
Tn−1

· · ·
∫ k2

T2

Q2
0

dk2
T1

k2
T1

= (ᾱs)
n 1

n!
lnn
(
Q2

Q2
0

)
, (1.26)

whereas from the strongly x-ordered region, we get

∫ 1

x

dxn
xn

. . .

∫ 1

x2

dx1

x1

∫ 1

x1

dx0

x0
x0g(x0, Q

2
0) =

1

n!
lnn
(

1

x

)
G0 , (1.27)
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where G0 is the small-x limit of xg(x,Q2
0). The sum of the ladder diagrams that gives the DLL approximation

for xg(x,Q2) is the sum of products of the above two terms. The summation gives a modified Bessel function,
which using the large-argument asymptotics can be written as

xg(x,Q2) = G0

∑

n

(
1

n!

)2(
ᾱs ln

(
Q2

Q2
0

)
ln

(
1

x

))n
∼ G0 exp

(
2

√
ᾱs ln

(
Q2

Q2
0

)
ln

(
1

x

))
. (1.28)

The solution that takes into account the running of the coupling is also known [24], and it reads

xg(x,Q2) ≈ xg(x,Q2
0) exp

√√√√4Nc
πb

ln

[
ln(Q2/Λ2

QCD)

ln(Q2
0/Λ

2
QCD)

]
ln

(
1

x

)
. (1.29)

If the initial distribution of gluons is too steep at small-x, however, these solutions will not hold. The resulting
gluon density shows a strong growth in the small-x region. Actually, it grows faster than any power of ln( 1

x ).
Similarly to the renormalization group equations, DGLAP equations enable us to calculate the change

of the distribution function with the scale. Nevertheless, the absolute value at a given scale cannot be
determined without specifying the initial condition, which is not provided by the perturbative theory itself
and has to be fitted to the data. The determination of PDFs has great practical importance and many groups,
like e.g. MMHT2014 [25], NNPDF [26] and CTEQ-TEA [27], have been continuously working on improving
their predictions as new experimental data become available. The usual procedure to determine PDF is the
following. The quark and gluon distribution functions are parametrized at some initial scale Q0 ∼ 1 GeV by
a general expression of the form

xff (x,Q2
0) = xa1(1− x)a2P (x, {a3, . . . , an}) , (1.30)

where P is some polynomial and ai are parameters which need to be determined from the fit. These initial
PDFs are then evolved, using DGLAP equations, to the scale Qi which correspond to the ith data point and
used to calculate theoretical predictions and χ2

i function for that point. This operation is repeated for all
experimental points and the total χ2 =

∑
i χ

2
i is calculated and then minimized to obtain the final values

of parameters ai. As an example, Fig. 7 shows the (unpolarized) parton distribution functions xf(x,Q) for
fixed values of Q = 8 GeV and Q = 85 GeV [27].

1.4.2 BFKL

In the region of small x and moderate Q2, not large enough to reach the DLL regime, the leading ln( 1
x )

terms need to be summed while keeping the full Q2-dependence. This means that we have strongly ordered
x without strong ordering of kT , which need to be integrated over the full range. As a result we work with
the unintegrated gluon distribution F(x, k2

T ) (since gluons dominate at small-x), related to the usual gluon
distribution in the DLL limit via

xg(x,Q2) =

∫ Q2

0

dk2
TF(x, k2

T ) . (1.31)

The leading ln( 1
x ) behavior can be also viewed as a sum of ladder diagrams, however, in this case, calculations

are more complicated and the ladder diagrams are only an effective representation for an entire set of Feynman
diagrams, which were originally summed by Balitsky, Fadin, Kuraev and Lipatov [29–31]. This approximation
is valid in the region where

αs ln

(
Q2

Q2
0

)
� αs ln

(
1

x

)
. 1 . (1.32)

The BFKL equation is an evolution equation in x for the unintegrated gluon distribution and at the leading
order it is given by
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Figure 7: CT10NNLO parton distribution functions [27]. Each graph shows xuval = x(u−ū), xdval = x(d−d̄),
0.1xg and 0.1xqsea as functions of x for a fixed value of Q = 8 (left) and Q = 85 GeV (right). The quark sea
contribution is qsea = 2(d̄+ ū+ s̄). The dashed curves are the central CT10NLO fit [28].

∂F(x, k2
T )

∂ ln(1/x)
= ᾱs

∫ ∞

0

dk′2T
k′2T

[
k′2T F(x, k′2T )− k2

TF(x, k2
T )

|k′2T − k2
T |

+
k2
TF(x, k2

T )√
4k′4T + k4

T

]
. (1.33)

One can also introduce dimensionless gluon density f(x, k2
T ) = k2

TF(x, k2
T ), for which the BFKL equation

reads
∂f(x, k2

T )

∂ ln(1/x)
= ᾱsk

2
T

∫ ∞

0

dk′2T
k′2T

[
f(x, k′2T )− f(x, k2

T )

|k′2T − k2
T |

+
f(x, k2

T )√
4k′4T + k4

T

]
. (1.34)

Once F(x, k2
T ) is known at some value of x0 for all k2

T , it can be calculated at smaller values of x. For fixed
αs, the BFKL equation can be solved analytically to give (in the saddle point approximation)

F(x, k2
T ) ∼

(
x

x0

)−λ (
k2
T

) 3
2

√
2πλ” ln(x0/x)

exp

[− ln2(k2
T /k̄

2
T )

2λ” ln(x0/x)

]
∼
(
x

x0

)−λ
, (1.35)

with λ = Ncαs
π · 4 ln 2 and λ” = Ncαs

π · 28ζ(3) (the Riemann zeta function ζ(3) = 1.202). k̄2
T specifies the

starting point of the evolution. We see the characteristic x−λ behavior, modulated by a (ln(1/x))
− 1

2 factor.
Hence, the gluon density is expected to rise like a power of 1/x for decreasing x, faster than the DLL result
(1.29). Actually, the DLL approximation is reproduced when we constrain the kT ’s to be strongly ordered,
i.e. k2

T � k′2T in Eq. (1.33) [23]. If we take the typical value of αs = 0.18 then λ ≈ 0.5, however it decreases
when running of αs and higher order corrections are included [32].

Another characteristic feature of the solutions of the BFKL equation, which is a consequence of no
ordering in kT , is a random walk in kT of an individual evolution path, such that evolution to smaller x
is accompanied by a diffusion in kT . The expression (1.35) explicitly shows the diffusion pattern, given by
a Gaussian distribution in ln k2

T with a width that increases as
√

ln (1/x). kT -diffusion poses a problem in
the applicability of the BFKL equation, since kT may diffuse into the infrared region (kT < Q0), where the
equation is not expected to be valid. To avoid this, usually a lower cut-off k2

0 is imposed on the kT integration.
The BFKL equation does not properly describe the behavior of structure function F2, as it predicts that λ
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remains fixed instead of rising with Q2 [33]. It was argued that this is because of not taking sufficient account
of momentum conservation and nonperturbative effects from soft gluons [34, 35]. The inclusion of running
coupling does not help and only makes the equation unstable [36–38]. The situation is even aggravated
by the next-to-leading order correction [39], which turned out to be large and negative and led to negative
cross sections. The root of the problem has been traced back to unresummed logarithms of Q2 [40]. Several
proposals to correct the BFKL equation have been made, like resummation [41, 42], imposing momentum
conservation [43] or imposing perturbative stability [44]. The overview of these methods can be found in [33].

1.4.3 CCFM

Although the predictions obtained from the BFKL equation and the DGLAP equations are different,
both approaches to describe the evolution of the gluon PDF do not contradict each other. They are simply
organizing the double power expansion in logarithms in a different way. As we increase the accuracy of each
approach, the predictions should approach each other.

The BFKL equation has a limited region of validity, determined by the size of the Q2 logarithms it resums.
For the LLA equation αs ln 1/x ∼ 1, while αs ln Q2

Λ2
QCD
� 1. On the other hand, the DGLAP equation, which

resums
(
αs ln Q2

Λ2
QCD

)n
terms is not expected to hold at very small values of x. For the cases in which both type

of logarithms become sizable, it is important to have an unified way of evolving the DIS structure functions
throughout the x−Q2 plane. A theoretical framework which provides such a treatment has been developed
by Ciafaloni-Catani-Fiorani-Marchesini (CCFM) [45–47]. It leads to an evolution equation, called the CCFM
equation, which reduces to the BFKL equation in the leading ln 1/x approximation, and is equivalent to the
DGLAP equation at moderate x (solutions of the CCFM equation can be found in [48]). The CCFM equation
is based on the coherent branching of gluons along a ladder. The emissions are coherent in the sense that
there is an angular ordering θ1 < . . . < θn going downwards along the ladder, where θi is the polar angle that
the i-th gluon forms with the original direction, the one of the first parton emitted by the parent hadron.
Outside this kinematic region there is a destructive interference such that the multigluon contributions vanish
to leading order.

According to the CCFM evolution equations, the emission of gluons (“ladders”) during the initial cascade is
only allowed in an angular-ordered region of phase space. The CCFM evolution with respect to the evolution
variable q̄2 can be written as [49]

q̄2 d

dq̄2

xA(x, k2
T , q̄

2)

∆s(q̄2, Q2
0)

=

∫
dz
dφ

2π

P̃ (z, (q̄/z)2, k2
T )

∆s(q̄2, Q2
0)

x′A
(
x′, k2′

T , (q̄/z)
2
)
, (1.36)

where the splitting function P̃ (z, (q̄/z)2, k2
T ) is related to the two scales q̄ and kT . The introduced Sudakov

form factor ∆s(q̄
2, Q2

0) is simply the probability of evolving from Q2
0 to q̄2 without branching. The uninte-

grated parton density, written in standard notation A
(
x′, k2′

T , (q̄/z)
2
)
(identical to g(x,Q2) in the collinear

DGLAP picture) describes the probability of finding a parton carrying a longitudinal momentum fraction x
and transverse momentum fraction kT at the factorization scale µ = q̄. The scale

q̄i ≡
|qi|

1− zi
, (1.37)

is related to the angle of the emitted gluon θi, such that

q̄i+1

q̄i
= zi

θi+1

θi
, (1.38)

and from using the angular ordering condition θi+1 > θi one obtains ordering condition for rescaled transverse
momenta

q̄i+1 > ziq̄i . (1.39)
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At small x, the angular ordering does not provide any constraint on the transverse momenta along the gluon
ladder, so that A becomes independent on the scale and one recovers BFKL equation.

1.4.4 BK

The steep growth of parton density is an unwanted feature, because it leads to the cross sections which,
at large center-of-mass energy s behave like sλ, and hence grow faster than allowed by the Froissart-Martin
bound [50,51]

σtot(s) ≤ const · ln2 s , (1.40)

which means that unitarity is violated.
When the number of partons is too large their wave functions start to overlap and recombination effects

should take place. These phenomena, known as saturation effects would limit the growth of the gluon PDF.
The scale at which the hadron is so densely packed that the recombination effects are important is called the
saturation scale Qs(x). Saturation scale being greater than ΛQCD ensures that it can be understood within
perturbative methods. Balitsky and Kovchegov [52,53] showed that in the large-Nc limit, there is a nonlinear
generalization of the BFKL equation, the BK equation.

The BK equation for gluon number density Φ(x, k2) reads [54]

Φ(x, k2) = Φ0(x, k2) + ᾱs

∫ 1

x/x0

dz

z

∫ ∞

0

dl2

l2

[
l2Φ(x/z, l2)− k2Φ(x/z, k2)

|k2 − l2| +
k2Φ(x/z, k2)√

(4l4 + k4)

]

− ᾱs
πR2

∫ 1

x/x0

dz

z
Φ2(x/z, k2) . (1.41)

As we will later see, Φ(x, k2) is one of the basic gluon distributions, called theWeizsäcker-Williams distribution
and is related to the unintegrated (dipole) gluon density by

F(x, k2) =
Nc

4αsπ2
k2∇2

kΦ(x, k2) . (1.42)

The parameter R in (1.41) controls the strength of the nonlinear term, and can be interpreted as a hadron’s
radius. The BK equation is a central tool for understanding the initial conditions in hadronic collisions when
gluon density approaches unitarity limits.

1.5 Kinematics and acceptance

Let us look at a basic 2 → 2 process, in which two incoming particles with four-momenta p1, p2 scatter
and produce a final state of two particles with four-momenta p3, p4. The transverse momentum pT of a
particle can be written as

|pT | = |p′| sin θ =
√
p2
x + p2

y , (1.43)

with θ the angle with respect to the z axis. It is also customary to introduce the Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2 , (1.44)

t = (p1 − p3)2 = (p2 − p4)2 , (1.45)

u = (p1 − p4)2 = (p2 − p3)2 , (1.46)

satisfying the identity

s+ t+ u =

4∑

i=1

m2
i , (1.47)
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where mi are the masses of the particles.
Another frequently used kinematic variable is the rapidity of a particle. It is defined as

y =
1

2
ln
E + pz
E − pz

. (1.48)

The rapidity transforms under a boost in the z direction with velocity β as

y → y′ = y − cothβ , (1.49)

hence the shape of the rapidity distribution is invariant with respect to Lorentz boosts along the beam axis.
In the high energy limit, or for massless particles, rapidity can be directly related to the angle θ

η ≡ y|m=0 = − ln tan
θ

2
, (1.50)

where η is called pseudorapidity of a particle. Particles that are produced at high rapidities have a very
small angle θ and are very close to the beam pipes of the accelerator. This region of phase space is called
the forward region.

It is useful to introduce the light-cone basis defined using two null four-vectors n = (1, 0, 0,−1) /
√

2 and
ñ = (1, 0, 0, 1) /

√
2. They define the ’plus’ and ’minus’ components of a four-vector v: v+ = n · v, v− = ñ · v,

so that the four-vector has a decomposition

vµ = v+ ñµ + v− nµ + vµT . (1.51)

The light-cone coordinates are (v+, v−, ~vT ), where the Euclidean transverse vector is defined (in canonical
coordinates) as vµT = (0, ~vT , 0).

1.6 Collider phenomenology

In the previous subsection we presented the description of hadron collisions from a theoretical point
of view. Here we will introduce phenomenological models which are needed to describe the experimental
data and which complement the factorization approach. Hadronic collisions are usually divided to different
components that describe a certain stage in the dynamics of the collision and the Monte Carlo generators,
like Pythia [56] or Herwig [57] are used to simulate these different stages. Fig. 8 represent a typical hadron-
collider event. The central part of the event is provided by the hard process (the dark red blob in the
figure), and can be calculated in fixed order perturbation theory. This stage of the simulation is managed
by computations based on matrix elements, and they are provided by special programs called parton-level or
matrix-element generators. The QCD evolution of the process from the hard scale to the hadronization scale
(red in the figure) is described by parton showers, which model multiple QCD radiation in some approximation
to exact perturbation theory [55]. At the hadronization scale the transition to colorless hadrons occurs (light
green blobs). This stage is described by purely phenomenological fragmentation models, which are fitted
to data. At the end, hadrons decay (dark green blobs) into particles observed in detectors. Another type
of phenomena arises from interactions between hadron remnants, which may undergo secondary hard or
semi-hard interactions. Such radiation is called the underlying event (represented by purple blob). Also the
interactions between hadrons from the same bunches that cross during the collision may contaminate the
results (pileup). The underlying event and pileup have mixed, perturbative and nonperturbative nature [58]
and phenomenological models must be employed to describe them.

1.6.1 Parton showers

The partons participating in the hard scattering are accelerated and, just as electric charges emit QED
radiation, colored partons will emit QCD radiation in the form of gluons. As gluons themselves carry color
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Figure 8: Schematic view of a hadron-hadron collision and its different components. The hard interaction
(big red blob) is followed by the decay of the outgoing particles (small red blobs). Additional hard QCD
radiation is produced (red) and a secondary interaction takes place (purple blob) before the final-state partons
hadronize (light green blobs) and hadrons decay (dark green blobs). Photon radiation occurs at any stage
(yellow). From [55].

charges, they emit further radiation, leading to parton showers. In principle, the showers represent higher-
order corrections to the hard subprocess. When a parton with 4-momentum pµ emits radiation, its virtuality
T 2 = −p2 changes [19]. The parameter t = ln(T 2/ΛQCD) is the evolution parameter. A final-state shower
develops from a parton outgoing from the hard process and its evolution start from the primary parton at
high energy and a large virtuality, and loses energy and virtuality until it falls to some small scale at which
splitting is terminated (time-like shower). An initial-state shower develops on an incoming parton of the
hard process. The constituent parton starts at high energy and low virtuality and evolves to higher virtuality
by emitting partons and losing energy (space-like shower). The showering of this parton terminates when it
collide to initiate the hard process.

The probability P that a branching i→ jk will occur with a small change in dt is given by the evolution
equation [20–22]

dPi→jk
dt

=

∫ 1

0

dz
αs(Q

2)

2π
Pi→jk(z) , (1.52)

where the functions Pi→jk(z) are the Altarelli-Parisi splitting functions Pji, given by Eq. (1.22).

1.6.2 Hadronization

The parton shower terminates at some low scale of the order of a few GeV, after which the colored partons
recombine into final state color-neutral hadrons observed in experiments in a process called hadronization.
As a nonperturbative phenomenon, it can be described only by empirical models and not from first principles.
There are two hadronization models that are most widely used - the Lund string model [59] and the cluster-
hadronization model [60]. The Lund model is based on the observation, from lattice simulations of QCD,
that the potential energy of color sources (like quark-antiquark pair) increases linearly with their separation,
corresponding to a distance-independent force of attraction. As a quark and antiquark produced in the
collision move apart, a color flux tube is stretched between the pair and the stored energy inside this tube
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increases linearly. At some point the energy stored is so high that the string breaks and form a new quark-
antiquark pair, producing two color-singlet states. In cluster-hadronization model, the basic assumption is a
local parton-hadron duality, i.e. the idea that quantum numbers on the hadron level follow very closely the
flow of quantum numbers on the parton level [61]. Therefore, the clusters are considered as a kind of “hadron
matter”, carrying the quantum numbers of hadrons.

1.6.3 Jets

The high energy partons originating from the hard scattering are not directly observed by the detectors,
since as they separate from the rest of the proton, the value of the coupling constant increases and the
QCD force becomes stronger (confinement). This increases the probability of radiation of secondary partons,
predominantly at small angles, until a point where a non-perturbative transition combines partons into bound
states of color-neutral hadrons. The result is a collimated stream of hadrons, forming roughly conical shape,
extending from the point of interaction into the detectors, called a jet. Collective energy and momentum of
hadrons building a jet reflect the energy and momentum of the partons taking part in the hard scattering.
To ensure such correspondence one needs a precise jet definition.

A complete jet definition consists of a jet algorithm, in conjunction with some parameters and a recom-
bination scheme. Jet algorithm provide a set of rules for grouping particles into jets and the parameters
indicate how close two particles must be in order to belong to the same jet. Recombination scheme specifies
what momentum to assign to the combination of two particles, and currently a simple 4-momenta sum is
almost exclusively used.

Jet algorithms fall into two broad categories: the cone algorithms and the sequential-recombination algorithms.
The cone algorithms can be thought of as a top-down approach to jet finding, because they rely on the idea
that QCD branching and hadronization does not change the event’s energy flow to a great extent. The
sequential recombination algorithms represent a bottom-up approach that repeatedly recombine the closest
pair of particles. An important property that a jet algorithm must satisfy is the infrared and collinear (IRC)
safety , which states that the set of hard jets that are found in the event should remain unchanged if one
modifies the event by a collinear splitting or the addition of a soft emission.

The cone algorithms were historically first, with the Sterman-Weinberg algorithm [62] for e+e− , and
they were later extensively used at hadron colliders, especially at the Tevatron [63]. Most of them were
however plagued with the issues of the IRC unsafety [64]. The problems originated from the need to define
seeds in order to start an iterative procedure to search for stable cones. Those seed were identified with
final state particles. Such procedure is manifestly IRC-unsafe, as an emission of a soft or collinear parton
changes the set of initial seeds, which in turn, for a non-negligible fraction of events, leads to a different set of
the final-state jets. Resolution of this long-standing problem came with the Seedless Infrared-Safe Cone jet
algorithm (SISCone) [65], where an efficient procedure for finding stable cones, without introducing initial
seeds, was proposed.

The sequential recombination algorithms currently dominate in the jet measurements. They combine the
closest particles according to a distance measure which can be generally written as

dij = min
(
p2p
Ti
, p2p
Tj

) ∆R2
ij

R2
, diB = p2p

Ti
, (1.53)

where dij is a distance between the particles i and j and diB is a distance between the particle i and the
beam. The parameter R is called the jet radius and

∆R2
ij = (yi − yj)2 + (φi − φj)2 (1.54)

is the geometric distance between the particles in the rapidity-azimuthal angle plane. The parameter p defines
specific algorithm from the sequential-recombination family: p = 1 for the kT algorithm [66, 67], p = 0 for
the Cambridge/Aachen (C/A) algorithm [68,69], and p = −1 for the anti-kT [70] algorithm.
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The procedure of finding jets with the sequential-recombination algorithm consists of the following steps:

1. Compute distances between all pairs of final-state particles, dij , as well as the particle-beam distances,
diB , using the measure from (1.53).

2. Find the smallest dij and the smallest diB in the sets of distances obtained above. If dij < diB ,
recombine the two particles, remove them from the list of final-state particles, and add the particle ij
to that list. If diB < dij , call the particle i a jet and remove it from the list of particles.

3. Repeat the above procedure until there is no particles left.

Despite the same formula for distance measure used in all three algorithms, they have different properties.
The kT algorithm starts from clustering together low-pT objects and successively accumulates particles around
them. The C/A algorithm is insensitive to the transverse momenta of particles and build up jets by merging
particles closest in the y−φ plane. The anti-kT algorithm starts from accumulating particles around high-pT
objects, and stops when there are no particles within radius R around the hard center, producing circularly-
shaped jets in y − φ plane [58].
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2 Factorization theorems

Factorization is the basic concept that underlies the phenomenological studies of high-energy hadronic
physics. QCD factorization theorems allow for the systematic separation of short- and long-distance effects in
field theory. The most well-established form of factorization, the collinear factorization [71], briefly discussed
qualitatively in the previous section, involves a single large energy scale which dominates the dynamics, and
the PDFs are only a function of this scale and of the longitudinal momentum fraction x of the parton. All
other relevant energy scales are assumed to be of the same order. Consequently, the processes which can be
described using this framework are inclusive processes where it is necessary to sum over a large class of possible
final states and all variables that are not of the same order as the hard scale need to be integrated over. Studies
of less inclusive processes that depend on a second, smaller scale, showed the need for generalization of PDFs
to include the dependence of transverse momentum, giving rise to transverse-momentum dependent (TMD)
PDFs, and appropriate extension of collinear factorization into TMD factorization [72, 73]. TMD PDFs, in
contrast to their collinear counterparts, are not universal and depend on the hard process under consideration.
This is because their operator definitions require insertions of appropriate Wilson lines which resum collinear
gluons related to initial and final state interactions. In the kinematic region of small x another type of
factorization is needed, the so-called high-energy (HEF) or kT -factorization [74–77]. It involves universal
unintegrated parton distributions (usually unintegrated gluon distribution as gluon dominates at small x),
which just like the TMDs depend on the transverse momentum, convoluted with off-shell matrix elements.
At even smaller x, i.e. in the saturation regime, the high density of gluons allows for a semiclassical treatment
of the color field, leading to an effective theory, the Color Glass Condensate (CGC) [78–81]. In the context
of dilute-dense collisions, it was shown that by considering the appropriate limits both the TMD and kT -
factorization formulas can be derived from CGC, and a new formalism to interpolate between these two limits
has been developed, called the small-x improved TMD factorization (iTMD) [82,83].

The subject of factorization, despite being intensively studied since the very beginnings of QCD, is still
a very active field of research with many open problems. Therefore, a comprehensive review of such a broad
topic is beyond the scope of this work. This section is intended to briefly discuss various approaches mentioned
above. We start from collinear factorization and consider the most important ingredients required to prove
it. Then, the TMD and HEF factorization are introduced. We finish this section by describing factorization
in forward jet production.

2.1 Collinear factorization

The first step in constructing a proof of a factorization theorem is to analyze all Feynman diagrams
that contribute to the cross section. A general diagram involves integrals over loop momenta and we need
to identify the integration regions that give dominant contributions to these integrals. The term dominant
refers to the limit of small parameter Λ/Q, where Q is the hard scale of the process and Λ represents
small kinematic quantities and the scale of nonperturbative QCD interactions. The dominant contribution
is called the leading twist, while the terms suppressed as powers of Λ/Q are called higher twist. The leading
contributions come from the integration regions near singularities in the integrand of the graph when all
quantities of order Λ are set to zero [84]. However, only those singularities at which the integration contour
is pinched between two or more singularities are relevant [85, 86], because otherwise the singularities can be
avoided by a deformation of the integration contour. Such configurations of the loop momenta are called
pinch singular surfaces (PSS). The most general leading PSS can be represented diagrammatically, with
the subdiagrams characterized by the momenta of internal lines being either hard, soft or collinear to an
external direction, as shown in Fig. 9(left) [58,87]:

• Collinear subgraphs CA, CB describe the incoming partons and the corresponding beam remnants after
the hard scattering. The typical momenta of particles in this region, in light-cone basis, scale as

pµCA ∼ (Q,Λ2/Q,Λ) , pµCB ∼ (Λ2/Q,Q,Λ) . (2.1)
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• Hard subgraph H, with the momenta
pµH ∼ (Q,Q,Q) . (2.2)

• Final-state jets J1, J2, . . . , JN , formed after the hard scattering, with momenta collinear to the ones
that go out of the hard part.

• Soft subgraph S, with the momenta
pµS ∼ (Λ,Λ,Λ) . (2.3)

␣

Figure 9: The most general leading pinch singular surface diagram (left) and factorized form of cross section
(right) for hadron-hadron collision. From [58].

The subdiagrams above are in general connected by quark and gluon lines. It can be shown, however, that
many of these connections contribute only to the higher twist [71], while the remaining must be resummed.
The hadronic cross section factorizes, if at leading twist it can be written as a convolution

dσ =
∑

i,j

fi/A ⊗ fj/B ⊗Hij ⊗ Sij ⊗ J1 ⊗ . . . JN , (2.4)

where fi/A and fj/B are the already introduced in previous sections collinear (integrated) PDFs, corresponding
to the collinear subgraphs and the rest of the notation follows that of Fig. 9. The sets of the soft, Sij , and the
hard, Hij , functions are process-dependent, and together form the perturbatively calculated short-distance
cross section, as discussed in previous section, Eq. (1.15). In order to prove that factorization applies, one
need to show that the expressions corresponding to Fig. 9 can be written in the form of Eq. 2.4. In gauge
theories there are the following connections that can spoil the factorization [87], denoted by wavy lines in
Fig. 9:

• Soft-gluon connections between the wide angle jets in the hard subdiagram (red lines).

• Soft-gluon connections between the collinear subgraphs CA and CB through the soft function S (blue
lines).

• Longitudinally-polarized-gluon connections between the collinear subgraphs CA,B and the hard part H
(green lines).
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The factorization of the first and the second type connections, i.e. the soft gluons, can be proved by de-
formation of the integration contour in the complex plane of the soft gluon momenta, such that one of the
longitudinal components dominates along the entire integration path. Subsequently, the non-abelian Ward
identities [88,89] are used (hence, gauge invariance) to show that the corresponding contribution either van-
ishes or factorizes. In some cases, however, this procedure cannot be applied, because the connecting gluons
are pinched in so-called Glauber region [87,90] or the Coulomb region [91–93]. The components of the gluon’s
four-momentum in this region are not comparable, as in Eq. (2.3), but the longitudinal components are much
smaller than the transverse one and the necessary contour deformation is impossible. Contributions from
that region must vanish in order for the factorization procedure to be successful. The proof that it happens is
one of the most technical aspect involved in the proof of factorization. We shall not consider it in details here
and only note that the factorization is rescued from the soft gluons pinched in the Glauber/Coulomb region
by the sum over final states. It turns out that, after such a sum is performed, the soft gluon connections
between the final state jets Ji vanish [87, 94]. These cancellations take place because of unitarity, as those
interactions happen long after the hard process. The same situation holds for both the fully inclusive cross
sections and the jet production cross sections, because the hard final state jets are well separated in space
and they cannot meet again to produce another hard scattering.

In case of the soft connections between the collinear subgraphs CA and CB , the pinches in the Glauber
region vanish after the sum over final states is performed, so that the deformation of the contour is possible.
Then, the application of non-abelian Ward identities turn the S−CA,B connections into connections between
the soft function S and the Wilson lines. Therefore, that part of the formula is factorized from the rest, as
shown in Fig. 9(right) [58].

The last problem, of the longitudinally polarized gluons connecting H with CA and CB , can be solved
by absorbing the longitudinal gluons into the parton distribution through the so-called gauge− links, using
the eikonal propagators [94]. Then again, due to the non-abelian Ward identities, it can be shown that the
gluons from CA and CB effectively connect to the Wilson line, represented as double line in Fig. 9(right) [58],
and factorize from the rest of the diagram. Physically, this is because the collinear gluons cannot resolve any
transverse structure of H, which appears to those gluons as a Wilson line.

The above procedure of absorbing longitudinal gluons into the parton distribution functions via the gauge-
links leads to the following, gauge invariant definitions of the parton distribution functions [71,84,95] [84,95,96]

f(x)q/h =

∫
dξ−

2π
e−ixP

+ξ−〈P |ψ̄(0, 0,0T )Un(0; ξ−)
γ+

2
ψ(0, ξ−,0T )|P 〉 , (2.5)

f(x)g/h =

∫
dξ−

2πP+
e−ixP

+ξ−〈P |F+j
a (0, 0,0T )Unab(0, ξ−)F+j

b (0, ξ−,0T )|P 〉 , (2.6)

where ψ is a Dirac field and F ija is a gluon field-strength tensor. The object Un(0; ξ−) in the above expressions
is called the Wilson line (double line in Fig. 9). It resumms all exchanges of the longitudinal gluons between
the hard part and the collinear part. A generic Wilson line joining x and y through a path C is defined as
path-ordered exponential

UC(x; y) = P exp

{
−ig

∫

C

dzµÂ
µ (z)

}
. (2.7)

and is a matrix in color space. The Wilson line can be defined also in the adjoint representation, by replacing
generators ta by (T a)bc = −ifabc. In the definitions above, the path C runs along the minus direction with
the endpoints (0, 0,0T ) and (0, ξ−,0T ). Insertion of this Wilson line between the quark and gluon fields in
the distributions guarantees their gauge invariance.

2.2 TMD factorization

In collinear factorization it is assumed that only one longitudinal component of each incoming parton’s
momentum is kept (e.g. k+ for parton moving in the plus direction), while the others are neglected, c.f.
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Eq. (2.1). Such approximation however is not appropriate for a certain class of observables, which are
directly sensitive to the transverse component of incoming parton’s momentum. The typical example is the
distribution of the transverse-momentum imbalance qT = |pT1 + pT2| between two leptons produced in the
Drell-Yan process or between two hardest jets in proton-proton scattering. When the two momenta are
back-to-back in the transverse plane, qT is very small and its value can be comparable with the transverse
momentum kT of the incoming parton. Therefore, neglecting kT in that case would lead to a significant
modification of the qT distribution in the low-qT region. A proper treatment of such processes requires
introduction of the transverse momentum dependent (TMD) parton distributions.

In principle, extending the definitions of the distributions in Eq. (2.5) and (2.6) to include transverse
momentum should not be difficult, all that is needed is to allow for a transverse separation of the two field
operators and then perform the Fourier transform on the transverse coordinates [95]

f(x, kT ) =

∫
dξ−d2ξT

(2π)3
e−ixP

+ξ−+ikT ·ξT 〈P |φ†(0, 0,0T )U [C](0, ξ−, ξT )φ(0, ξ−, ξT )|P 〉 , (2.8)

where φ represents quark fields ψ or gluon field-strength tensor F a. However, if the fields are allowed to
be at different transverse coordinates, the Wilson line in transverse direction has to be included. Therefore,
in general the object U [C] is a gauge-link, composed of multiple Wilson lines in both the light-cone and the
transverse directions

Un[a;b] = P exp

{
−ig

∫ b

a

dzn ·A(z)

}
, UT[a;b] = P exp

{
−ig

∫ b

a

dzT ·AT (z)

}
. (2.9)

There is no obvious choice for the path of the gauge-links connecting the space-time points, and different
choices would lead to different definitions. Therefore, a prescription for the gauge-link path is needed.
The Wilson lines are usually thought of as a way of resumming contributions from initial or final state
interactions. In the collinear case most of these contributions cancel out, but in the TMD case it leads to
process-dependence of the distributions.

The general method to determine the appropriate gauge-links for arbitrary process is known [97]. The
gauge-links are related to the resummation of gluon emissions collinear to one of the participating partons.
This resummation procedure is quite general and depends on the color flow. The simplest example comes
from comparing single inclusive deep inelastic scattering (SIDIS) and Drell-Yan process. In calculations of the
quark distributions in SIDIS it is necessary to consider only final state interactions and therefore the gauge-
link structure is “future pointing”, with Wilson lines extending in the plus infinite longitudinal direction. In
Drell-Yan the gauge-link is “past pointing” with Wilson lines extending to minus infinity in the longitudinal
direction. Using the Wilson lines in the longitudinal and transverse directions, Eq. (2.9), the future pointing
gauge-link U [+] in SIDIS and the past pointing gauge-link U [−] in Drell-Yan are given by

U [±] = Un[(0−,0T );(±∞−,0T )]UT[(±∞−,0T );(±∞−,∞T )]UT[(±∞−,∞T );(±∞−,ξT )]Un[(±∞−,ξT );(ξ−,ξT )] . (2.10)

and the corresponding paths are depicted in Fig. 10. The transverse gauge-links at infinity have been shown
to be essential to maintain the gauge invariance, even though their contribution vanish when choosing a
gauge where the fields are zero at infinity. The detailed structure of the transverse link at infinity is chosen
in that particular way for technical reasons [98].

Since we have different types of TMDs for different processes, the strict factorization property is lost due
to the loss of universality of the TMDs. However, the TMDs for SIDIS and Drell-Yan are related by time-
reversal and differ only by the change of sign for two of the TMDs [99], so that the loss of universality does
not spoil the predictive power. For more complicated processes, like dijet production in hadronic collisions,
new gauge-link structures appears, like for example Wilson loops U [�]

U [�] = U [+]U [−]† = U [−]U [+]† , (2.11)
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ξT

ξ−

ξT

ξ−

ξT

ξ−

Figure 10: Path of future pointing gauge link U [+] (left), past pointing gauge link U [−] (middle) and closed
link structure - Wilson loop U [�] (right).

shown in Fig. 10(right). As a result, the dijet production requires new types of TMDs, which are not reducible
to those encountered in SIDIS or DY. Different TMDs appear even for different channels in dijet production,
hence cross section does not factorize in the strong sense. The calculations of TMD structures for processes
involving 3 and more colored partons will be the subject of Section 4 of this thesis.

It has been shown in Refs. [100,101] that the TMD factorization breaks down for hadron-hadron collisions.
The problem originates from the fact that the soft gluon interactions can be resummed into gauge-links only
when one hadron is considered at a time, as gluon emissions from different participants could interfere leading
to lack of possibility to separate gauge-links. Factorization works however when the transverse momentum
of only one of the partons incoming to hard scattering is relevant.

2.3 High Energy Factorization

For processes where the center-of-mass energy is much larger than any other scale, i.e. s � Q, High
Energy factorization or kT -factorization applies. HEF has been proposed in the context of heavy quark
production [75, 102], which is another type of multi-scale problem. The key observation is that, at high
energies, the dominant contribution to the cross section comes from exchanges of longitudinal gluons, whereas
other terms are subdominant. Hence, the cross section formula can be factorized into an unintegrated gluon
distribution function, undergoing BFKL evolution, which emits an off-shell (i .e. kT 6= 0) gluon, and an off-
shell matrix element. In Ref. [75] an effective procedure is derived, which guarantees gauge invariance of the
off-shell amplitudes within a subclass of axial gauges.

In high energy factorization heavy quark pair is produced via the tree-level hard subprocess g∗(kA)g∗(kB)→
QQ̄ in the axial gauge. The initial-state gluons are off-shell, with momenta

kA = xApA + kT A , kB = xBpB + kT B , (2.12)

where pA, pB are the momenta of the incoming hadrons and pi ·kT i = 0. This form of the exchanged momenta
is a consequence of the imposed high energy limit. The off-shell gluons have “polarization vectors” given by
pA and pB , respectively. Due to this kinematics, the subproces given by ordinary Feynman diagrams is gauge
invariant despite its off-shellness. The factorization formula for heavy quark production is written as (see.
Fig. 11A) [103]

dσAB→QQ̄ =

∫
d2kT A

∫
dxA
xA

∫
d2kT B

∫
dxB
xB

Fg∗/A(xA, kT A)Fg∗/B(xB , kT B) dσ̂g∗g∗→QQ̄(xA, xB , kT A, kT B) ,

(2.13)

where dσ̂g∗g∗→QQ̄ is the partonic cross section and Fg∗/A, Fg∗/B are unintegrated gluon distributions for
hadrons A and B.

The approach presented above has been extended to jet production cross sections in hadron-hadron
collisions (see e.g. [103] for overview). The problematic issue that needed to be solved comes from the
processes with gluons in the final state, for which the ordinary method of calculating amplitudes does not
give the gauge-invariant results. A few methods have been developed to calculate a gauge-invariant extension
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Figure 11: A) The kT -factorization for inclusive heavy quark production; despite the fact that the gluons
entering the central blob are off-shell, the subprocess is gauge invariant. B) For subprocesses with final state
gluons, the gauge invariance requires the off-shell gluons to be replaced by the effective particles giving rise
to multiple eikonal gluon exchanges between the blobs. From [103].

of such amplitudes [104–107], which are based on helicity techniques and allow for efficient implementation in
computer programs. These gauge-invariant off-shell amplitudes correspond to a vertex that can be calculated
from the Lipatov’s effective action [108,109] (see Fig. 11B).

2.4 Factorization in forward jet production

In this section we consider a subclass of dijet processes in which both jets are produced at large rapidities.
This case corresponds to an asymmetric configuration, in which the two colliding objects are probed in
different momentum ranges.

In the process of dijet production, schematically written as

A+B 7→ a+ b→ jet1 + jet2 +X , (2.14)

the fractions of the longitudinal momenta of the incoming parton from the projectile, x1, and from the target,
x2, can be expressed in terms of the rapidities and transverse momenta of produced jets as

x1 =
1√
s

(pT1e
y1 + pT2e

y2) , x2 =
1√
s

(pT1e
−y1 + pT2e

−y2) . (2.15)

which in the limit yi � 0 for forward rapidities effectively selects those fractions to be x1 ∼ 1 and x2 � 1. As
the number of gluons grows rapidly with decreasing momentum fraction, the forward production corresponds
to dilute-dense collisions, where the projectile, probed at a high momentum fraction, hence appearing as
dilute, can be described in terms of a collinear parton distribution. In contrast, the small-x gluons of the
dense target nucleus are described by an unintegrated or transverse-momentum dependent distribution, which
evolve toward small x according to nonlinear equations. Moreover, the momentum of the incoming gluon
from the target, besides the longitudinal component, has in general a non-zero transverse component, kT ,
which leads to imbalance of transverse momentum of the produced jets

k2
T = |pT1 + pT2|2 = p2

T1 + p2
T2 + 2pT1pT2 cos ∆φ . (2.16)

The process of dijet production in the forward direction is a multi-scale problem. The highest scale is
the collision energy

√
s, then the jets’ transverse momenta pT1, pT2 and, finally, the dijet imbalance (or

equivalently, the transverse momentum of the off-shell gluon), given by Eq. (2.16), which can in principle be
anywhere below the transverse momenta of the individual jets. The case with kT ∼ pT1, pT2, corresponds
to a very small angle ∆φ, between the two forward jets, while if kT � pT1, pT2, the two jets are almost
back-to-back. The former is the domain of application of high energy factorization and the latter generalized
TMD factorization.
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2.4.1 HEF

In the context of the forward dijet production, the HEF formula takes a hybrid form, as we only need to
consider the off-shell gluon effects in one of the colliding hadrons [110,111]

dσpA→dijets+X

dy1dy2d2pT1d2pT2
=

1

16π3(x1x2s)2

∑

a,c,d

x1fa/p(x1, µ
2) |Mag∗→cd|2Fg/A(x2, kT )

1

1 + δcd
. (2.17)

This formula contains only a single unintegrated gluon distribution Fg/A (dipole distribution) which is de-
termined from fits to DIS data. The hard factor (which, because we have only one TMD, is just a matrix
element squared) depends on the transverse momentum, hence, we shall refer to it as an off-shell matrix
element. The complete set of the off-shell matrix elements needed for hadroproduction of forward jets were
calculated and analyzed in Refs. [110, 112]. As demonstrated in Ref. [82], the factorization formula (2.17)
can be also derived for all channels from the CGC approach in the kinematic window pT1, pT2 ∼ kT � Qs.
This limit corresponds to the dilute target approximation, hence, it should not be employed to study non-
linear effects in dense systems. It can however be used in the, so-called, geometric scaling region, where the
linear approximation is still valid but saturation effects can be felt [111,113,114]. However, the HEF formula
is not applicable in situations corresponding to kT ∼ Qs. This deficiency is fixed by the improved TMD
factorization framework.

2.4.2 Generalized TMD factorization

An approach valid in the regime where the transverse momentum imbalance between the outgoing parti-
cles, Eq. (2.16), is much smaller than their individual transverse momenta, is the generalized TMD factor-
ization. Even though there is no TMD factorization theorem for jet production in hadron-hadron collisions,
such a factorization can be established when only one of the colliding hadrons is described by a TMD gluon
distribution. The TMD factorization formula for dijet production in dilute-dense collision reads [115]

dσpA→dijets+X

dy1dy2d2pT1d2pT2
=

α2
s

(x1x2s)2

∑

a,c,d

x1fa/p(x1, µ
2)
∑

i

H
(i)
ag→cdF (i)

ag (x2, kT )
1

1 + δcd
, (2.18)

where several TMD gluon distributions F (i)
ag with different operator definition are involved and convoluted

with the hard factors H(i)
ag→cd. The hard factors were calculated in [115] as if the small-x2 gluon was on-shell.

The kT dependence is only in the gluon distributions and there are eight of them, which in the limit of large
Nc reduce to five that can be written down as convolutions of two fundamental distributions: the so-called
dipole distribution and the Weizäsacker-Williams distribution (WW) (we will discuss these distributions in
Section 4.4).

In Ref. [115] it was also found that the same factorization formula, Eq. (2.18) involving identical gluon
distributions, can be derived from the CGC in the correlation limit (i.e. for nearly back-to-back dijet config-
urations). As a standard QCD framework is completely different than semi-classical CGC, the fact that the
two lead to identical results should be regarded as a nontrivial check of the generalized TMD factorization
formula.

If the kT dependence of the hard factors inside (2.18) can be restored, a connection can be made between
the HEF and TMD frameworks, providing a unified formulation which encompasses both the dilute and
nearly back-to-back limit.

2.4.3 Improved TMD Factorization

A framework unifying the HEF formalism (applicable when kT ∼ pT1, pT2) and the generalized TMD
formalism (applicable for kT � pT1, pT2) was proposed in Ref. [82]. It can be regarded as a generalization of
Ref. [115] to the case in which the kT dependence is kept also in the hard factors. The latter were computed
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with two independent methods: the original procedure of Refs. [75,102] as well as the color ordered amplitudes
approach [116]. The improved factorization formula reads

dσpA→dijets+X

d2PT d2kT dy1dy2
=

α2
s

(x1x2s)2

∑

a,c,d

x1fa/p(x1, µ
2)

2∑

i=1

K
(i)
ag∗→cd(PT , kT )Φ

(i)
ag→cd(x2, kT )

1

1 + δcd
, (2.19)

where K(i)
ag∗→cd and Φ

(i)
ag→cd are the new hard factors and the new TMDs, replacing, respectively, H(i)

ag→cd
and F (i)

ag from Eq. (2.18). As we see, K(i)
ag∗→cd is a hard factor for an off-shell, hence kT -dependent, incoming

gluon. This formula involves two TMDs per each channel, thus, six altogether. Another improvement of
Ref. [82] was a restoration of the full Nc dependence in the hard factors.

The formula (2.19) coincides with CGC expressions in two important limits. They both, in turn reduce
to the TMD factorization formula when Qs ∼ kT � PT and to the HEF formula when Qs � kT ∼ PT :

• The TMD factorization formula with kT -dependent gluon distributions and on-shell matrix elements is
obtained from (2.19) after simplifying K(i)

ag∗→cd(PT , kT ) into K(i)
ag∗→cd(PT , 0)

• The HEF formula with a single gluon TMD and off-shell matrix elements is obtained using the fact
that up to power corrections, all the gluon TMDs coincide in the large-kT limit:

Φ
(i)
ag→cd(x2, kT )→ Φg/A(x2, kT ) +O(1/k2

T ) , (2.20)

and denoting

g4
s

2∑

i=1

K
(i)
ag∗→cd(PT , kT ) = |Mag∗→cd|

2
. (2.21)

The improved TMD factorization (2.19) is valid in the limit pT1, pT2 � Qs for an arbitrary value of kT , hence
it provides a powerful framework for studies of the non-linear domain of QCD with hard jets. Preliminary
results indicate differences with respect to the HEF formalism [117].
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3 Unintegrated parton distribution functions

3.1 KMRW

Here we present the method of obtaining unintegrated parton distributions from collinear ones by the
application of the KMRW procedure [118–120]. In this method, the kT -dependent distributions are calculated
from the DGLAP equation by taking into account only the contribution corresponding to a single real
emission. The virtual contributions between the scales kT and µ are resummed into a Sudakov factor, which
describes the probability that there are no emissions.

The precise expressions for the unintegrated distributions read

Fi(x, k2
T , µ

2) =
∂

∂k2
T

[
xfi(x, k

2
T ) ∆i(k

2
T , µ

2)
]
, (3.1)

with the Sudakov factors for quarks

∆q(k
2
T , µ

2) = exp

(
−
∫ µ2

k2
T

dκ2
T

κ2
T

αS(κ2
T )

2π

∫ 1

0

dζ Pqq(ζ)Θ(1− zM − ζ)

)
, (3.2)

and for gluons

∆g(k
2
T , µ

2) = exp

(
−
∫ µ2

k2
T

dκ2
T

κ2
T

αS(κ2
T )

2π

∫ 1

0

dζ [ ζ Pgg(ζ)Θ(1− zM − ζ)Θ(ζ − zM ) + nFPqg(ζ) ]

)
. (3.3)

Here nF is the number of active quark-antiquark flavors into which the gluon may split, and, in what follows,
we set nF = 5. The infrared cutoff zM ≡ kt

µ+kt
arises because of the singular behavior of the splitting

functions Pqq(z) and Pgg(z) at z = 1, which correspond to soft gluon emission.
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Figure 12: Comparison between the integrated TMD using the method of Ref. [120] and the underlying
collinear CT10nlo gluon PDFs [28] at a scale µ = 500 GeV for gluons (left) and u-quarks (right).

The unintegrated distributions are defined only for kT > µ0, where µ0 ∼ 1 GeV is the minimum scale for
the the integrated (collinear) PDFs. In order to extend them to the region kT < µ0, we tested three methods.
One is to set the UPDF proportional to kT , the second is to freeze the UPDF at kT = µ0 and the third is
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taken from Ref. [120] and is used here:

Fi(x, k2
T , µ

2) =
1

µ2
0

xfi(x, µ
2
0) ∆i(µ

2
0, µ

2) . (3.4)

The unintegrated distributions that will be applied to phenomenology (MRW-CT10nlo) are based on
the CT10nlo collinear PDF set [28] including the appropriate running coupling αs. In Fig. 12, we show a
comparison of the original CT10 parton density with the TMDs constructed here, integrated over kT up to
the scale µ using the TMDplotter tool [121]. We observe reasonable agreement, except at large x, where the
integration limits in the Sudakov form factor play a role. The large x region is, however, not relevant for the
processes studied in this thesis.

In Fig. 13, we show the kT dependence of the unintegrated distributions at the scale µ = 500 GeV, for
different values of x. One can clearly see the treatment of the non-perturbative region of kT < 1 GeV. The
discontinuity at small kT comes from the matching procedure in Eq. (3.4). The grids of KMRW distributions
as a function of x, k2

T and µ2 were calculated using the C++ program mrwcalc [122].
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Figure 13: Transverse momentum distribution of the unintegrated PDFs at the scale µ = 500 GeV for gluons
and u-quarks at x = 0.01 (left) and x = 0.1 (right).

3.2 Unified BK/DGLAP

In this approach, the problem of instability of the NLO BFKL equation is resolved by the inclusion of
a subset of higher order corrections, based on the formulation presented in [123]. The main correction is
provided by the consistency constraint on emissions of real gluons. Other corrections come from running
of the coupling and the nonsingular pieces of DGLAP splitting functions. The result is the improved BK
equation for the unintegrated gluon density [124,125]
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F(x, k2) = F (0)(x, k2)

+
αs(k

2)Nc
π

∫ 1

x

dz

z

∫ ∞

k2
0

dl2

l2

{
l2F(xz , l

2) θ(k
2

z − l2) − k2F(xz , k
2)

|l2 − k2| +
k2F(xz , k

2)

|4l4 + k4| 12

}

+
αs(k

2)

2πk2

∫ 1

x

dz

[(
Pgg(z)−

2Nc
z

)∫ k2

k2
0

dl2 F
(x
z
, l2
)

+ zPgq(z)Σ
(x
z
, k2
)]

− 2α2
s(k

2)

R2

[(∫ ∞

k2

dl2

l2
F(x, l2)

)2

+ F(x, k2)

∫ ∞

k2

dl2

l2
ln

(
l2

k2

)
F(x, l2)

]
, (3.5)

where z = x/x′ and k and l are the transverse momenta of gluons in the side rails of the ladder. The kinematic
constraint is introduced through the theta function. The DGLAP effects generated by the nonsingular part
of the splitting function Pgg(z) in the z → 0 limit and contributions from the sea quarks are provided by the
first and the second term in the third line of the equation, respectively, where Σ(x, k2) denotes the singlet
quark distribution (sum of quark and antiquark distributions of all flavors). The nonlinear term (the last
line of the equation), which supplies unitarity corrections, comes from the triple pomeron vertex [126] (it
allows for the recombination of gluons). The strength of the nonlinear term is controlled by the parameter
R, which stems from integration of the gluon density over the impact parameter b and has an interpretation
of the proton radius. The input gluon distribution F (0)

p (x, k2) is given by

F (0)(x, k2) =
αs(k

2)

2πk2

∫ 1

x

dzPgg(z)
x

z
g
(x
z
, k2

0

)
, (3.6)

where xg(x, k2
0) is the integrated gluon distribution at the initial scale k2

0 = 1GeV2, parametrized as

xg(x, 1GeV2) = N(1− x)β(1−Dx) . (3.7)

The parameters N, β, D, together with the proton radius R, were constrained with a fit to HERA data [127]
in [111]. The obtained results gave a very good description of data, which corresponds to χ2/ndof = 1.73 and
the following values of the parameters: N = 0.994, β = 18.6, D = −82.1 and R = 2.40GeV−1. The gluon
density resulting from this procedure will be referred to as KS nonlinear.

The nonlinear evolution equation (3.5) provides a framework that accounts for saturation of gluon density.
The framework without saturation can be constructed in a straightforward way from a linearized version of
this equation, obtained simply by dropping the last term. The linearized equation then becomes independent
of R. An analogous fit to the HERA data was performed in [111], resulting in the following fit parameters
at the minimal value of χ2 = 1.51: N = 0.004, β = 26.7 and D = −51102. This version predicts too strong
rise of F2 with x,especially at low values of Q2, and it was concluded that some mechanism of damping the
gluon density at low x and Q2 is needed to describe HERA data in the full range of Q2. The gluon density
obtained from the linearized version of Eq. (3.5) will be referred to as KS linear.

The evolution equation (3.5) and its linearized version were used to determine the unintegrated gluon
above the initial momentum scale, that is for k2 > 1GeV2. Below this scale, the gluon density F(x, k2) is
constrained by the condition that it should match the evolved unintegrated gluon density at k2 = k2

0. Each
version has different parametrization in that region, namely

KS nonlinear : F(x, k2) = k2F(x, k2
0 = 1GeV2) ,

KS linear : F(x, k2) = F(x, k2
0 = 1GeV2) .

(3.8)

The evolution of the unintegrated gluon density in the case of a nucleus, FA, can be obtained through
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Figure 14: Left: KS nonlinear unintegrated gluon density in the proton. Middle: Comparison between KS
nonlinear and KS linear gluon density. Right: KS nonlinear gluon density in the Pb nucleus (A = 207).
From [111].

the following formal substitution in Eq. (3.5)

1

R2
→ A

R2
A

, R2
A = R2A2/3 ,

where RA is the nuclear radius and A is the mass number (A = 208 for Pb). The resulting nuclear gluon
density is normalized to the number of nucleons in the nuclei, with the strength of the nonlinear term
enhanced by A1/3. Since the A-dependence is already included in the evolution (enters the nonlinear term
through the impact parameter), the initial condition F (0)(x, k2) is the same for proton and nucleus.

The KS nonlinear unintegrated gluon density as a function of gluon transverse momentum, for several
values of x, is shown in Fig. 14 (left). The sharp peak corresponds to the matching point k2

0. One can see
that with lower values of x, perturbatively generated maximum starts to emerge, which signals the presence
of saturation. Fig. 14 (middle) compares KS nonlinear and KS linear. At large values of x and k2

T both
distributions are similar, however the linear gluon grows much faster than the nonlinear one in low-k2

T region,
especially for smaller values of x. Fig. 14 (right) shows the KS nonlinear gluon density in the Pb nucleus.
It can be noticed that, due to stronger saturation effects in Pb, the gluon density is lower than that in the
proton, and the maxima are shifted towards larger values of k2

T , which corresponds to the larger saturation
scale.

3.3 Unified BK/DGLAP with hard scale dependence

Another type of effect, that is beyond the BK equation, is color coherence, i.e. angular ordering of
successive parton branchings. The inclusion of such effects leads to dependence of the gluon density on
the scale of the hard process. A relatively straightforward framework to provide the hard scale dependence
is based on the KMRW method described in the previous subsection, where the Sudakov effects [128] are
factorized into form factors. In [129] this method was used to introduce the hard scale dependence to the KS
linear and nonlinear unintegrated gluon densities. Here, we present a short outline of such construction.

The main assumption is that the hard-scale-dependent gluon density, F(x, k2, µ2), after integration is
equal to F(x, k2). This ensures that the Sudakov form factor only modifies the shape of the gluon density,
leaving the distribution unchanged at the inclusive level. The contribution when k2 > µ2 is simply given by
the unintegrated distribution. The above can be summarized by the formula [129]

F(x, k2, µ2) := θ(µ2 − k2)∆(µ2, k2)
xg(x, µ2)

xghs(x, µ2)
F(x, k2) + θ(k2 − µ2)F(x, k2) , (3.9)
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Figure 15: KS hardscale nonlinear unintegrated gluon density (UGD), evaluated at x = 10−5 and several
values of µ2, for proton (left) and Pb (right). Hard scale µ2 = 20 GeV2 (red continuous line), µ2 = 200 GeV2

(purple dotted line), KS nonlinear at x = 10−5 (blue dashed line). From [129].

where

xghs(x, µ
2) =

∫ µ2

dk2∆(µ2, k2)F(x, k2) , xg(x, µ2) =

∫ µ2

dk2F(x, k2) , (3.10)

and the Sudakov form factor is given by Eq. (3.3), as in the KMRW method. After integration up to the
hard scale in Eq. (3.9) and application of Eq. (3.10), the xghs terms cancel and the part proportional to
θ(k2 − µ2) drops. Hence, at the integrated level, the number of gluons does not change, the Sudakov form
factor just makes the shape of the gluon density scale dependent.

The KS linear and KS nonlinear unintegrated gluon densities (described in the previous subsection) supple-
mented with hard scale dependence will be referred to as KS hardscale linear and KS hardscale nonlinear,
respectively. Fig. 15 shows KS hardscale nonlinear gluon in proton and Pb for several values of µ2, compared
with KS nonlinear. As already discussed, k2

0 = 1GeV2 is the initial scale, below which model extension is
applied. The maximum of the distribution signals the emergence of the saturation scale. One can see that
the hard-scale-dependent gluon density dominates regular gluon density in the regions where the hard scale
is approaching k. The ratio of the unintegrated gluon density of lead to the unintegrated gluon density of
proton, shown in Fig. 16, indicates that the gluon density of proton is more affected by Sudakov effects than
Pb, since the ratio is smaller than one in a wider range of k. This is because the saturation effects in lead
are larger and the suppression of the low k region is more significant already in hard scale independent gluon
density.

The inclusion of the Sudakov effects is necessary in order to describe the LHC jet data at small x, but
before reaching the saturation regime, as was shown in [114,130,131]. An alternative approach to introduce
such effects incorporates them directly as a part of the evolution equation, i.e. at all steps in the evolution, and
leads to the CCFM evolution, discussed in Section 1.4.3, and the nonlinear equation developed in [54,132,133].
However, due to its numerical complexity, the nonlinear equation has not yet been applied to phenomenology.
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Figure 16: The ratio of the KS hardscale nonlinear unintegrated gluon density of lead (UGDPb) to unin-
tegrated gluon density of proton (UGDp), evaluated at x = 10−3 (left) and x = 10−5 (right) for several
values of µ2. Hard scale µ2 = 25 GeV2 (green dotted line), µ2 = 45 GeV2 (purple dashed line), µ2 = 80 GeV2

(magenta dotted line), µ2 = 400 GeV2 (red continuous line), KS nonlinear (blue dashed line). From [129].
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4 TMD gluon distributions for multiparton processes

The TMD factorization, as discussed in Section 2, in strict sense is applicable only to a few processes.
Nevertheless, the basic objects appearing in the formalism, the TMD distributions, can be studied in the
broader context. They are defined as the Fourier transforms of the hadronic matrix elements of bilocal field
operators with non-light-like separation. To ensure the gauge invariance, the Wilson links connecting the two
space-time points must be inserted. For the gauge invariance itself the shape of the links is not relevant. In the
TMD factorization however, the shape of the links is determined by the hard process accompanying the TMD
parton distribution. This happens because the collinear gluons (to the incoming hadron), which couple to
various components of the hard process, have to be considered as a part of the nonperturbative wave function.
They can be resummed into the Wilson links attached to each external leg by means of the Ward identity.
Since the external legs are connected by certain color matrix, so are the pieces of Wilson links and this is how
the process dependence enters [97,134]. For simple processes like Drell–Yan pairs production, the color flow
in the hard process is rather simple because of only two colored partons. Consequently, the resulting TMD
parton distribution has also simple structure. On the contrary, for processes with several colored partons
one gets multiple nonequivalent structures (including Wilson loops), which cannot be eliminated by a gauge
choice.

Even though the strict all-order factorization theorems fail for processes with more than two colored
partons participating in the hard collision [101], in the nonlinear small-x regime the lowest order TMDs are of
great phenomenological importance. In Ref. [115] a leading power limit of the expressions for dijet production
in pA collisions within the CGC was studied. They found that the correlators of Wilson lines averaged over
color sources according to the CGC theory correspond exactly to the TMD gluon distributions for 2 → 2

processes, provided the hadronic matrix elements are traded for the color source averages. Not only the
correlators agree, but also the hard factors. Although it is not yet known whether this correspondence survives
beyond the leading order, it opened new phenomenological opportunities to study with better theoretical
control semi-hard jets in the gluon saturation domain [82, 135–138]. In particular, in Ref. [82] a beyond-
leading-power extension of the TMD factorization for forward dijets in pA collisions was proposed, such that
it coincides with the leading power of CGC in the dense nucleus regime, and with the all-power high energy
factorization in the dilute nucleus limit (see subsection 2.4). The formal TMD factorization breaks because
one is unable to define the separate correlators whilst more than two colored partons are present [101]. In the
small-x approach for dilute-dense collisions, however, there is only one correlator with transverse separation.
Therefore the complications that lead to the lack of possibility to separate Wilson links into TMD operators,
formally do not appear here. Outside the small-x limit for dilute-dense collisions these results might also be
useful: for example to access the factorization breaking effects.

Motivated by the phenomenological usability of the non-universal TMD gluon distributions, we will present
explicit results for the operator structures for all 3 - 6 colored parton processes. We first describe the rules
derived in [97] for calculation of a TMD operator structure in an arbitrary process and show some examples
of how to apply them to calculate structures corresponding to several Feynman diagrams. Afterwards, we
implement this prescription to color-ordered amplitudes and present the results of TMD structures appearing
in multiparton processes.

4.1 Gauge-links in arbitrary processes

We start off by providing necessary definitions of the TMD distribution correlators. The same rules apply
also for calculations of the TMD fragmentation correlators, but we will not consider them here. The TMD
quark and gluon correlators are defined by the following matrix elements [139–141] [139–141]

Φq(x, kT ) =

∫
dξ− d2ξT

(2π)3
eik·ξ〈H|ψ†i (0)ψj(ξ)|H〉 , (4.1)

40



4 TMD GLUON DISTRIBUTIONS FOR MULTIPARTON PROCESSES

(
Un

[+∞;ξ]

)
ji

〈X|ψi(ξ) |H〉

(
Un

[0;+∞]

)
kj

〈H| ψ̄k(0) |X〉

Figure 17: Gauge-link in quark distribution correlator in SIDIS.

Φg(x, kT ) =

∫
dξ− d2ξT

(2π)3
eik·ξ〈H|F †µνa (0)F ρδb (ξ)|H〉 , (4.2)

where |H〉 is a hadron state, ψi is color triplet quark field and F̂µν (x) = Fµνa (x) ta is the field strength tensor
(we use Tr

(
tatb

)
= TF δ

ab, TF = 1/2 convention for the generators). Such bilocal products of field operators
require insertion of Wilson lines to ensure gauge invariance. A generic Wilson line was defined in Eq. (2.7).
The requirement of gauge invariance alone does not uniquely fix the integration path. The Wilson lines are
obtained by resumming all diagrams describing the exchange of collinear gluons between the soft and hard
parts [142], so the integration path is fixed by the hard part of the process.

As explained in Ref. [97], in order to obtain gauge-link in a particular correlator, all the gluon couplings
to the hard must be summed, and at leading twist it involves gluons which are collinear to the hadron’s
momentum. Such resummation leads to the attachment of Wilson lines to each external leg of the hard part,
except to the one which connects the hard part and the correlator under consideration. The type of the
external parton determines what kind of Wilson line is attached (this is summarized in Table 1). In the final
step all the Wilson lines are pulled through the color fields of the hard parts to the correlator, where they
combine into the required gauge-link. The process-dependence of the gauge-link stems from this last step.
In the final expression the transverse pieces of the gauge-link must be included.

In summary, the procedure to derive the full gauge-link for any process consists of the following steps:

1. Consider the diagram for an elementary squared amplitude and replace the free spinors of external
partons by matrix elements given in the column ’fields in correlator’ in Table 1.

2. Replace the color wave functions of the external partons (except the one which is connected to the
correlator) by Wilson lines given in the column ’contribution to other gauge-links’ in Table 1.

3. Pull the Wilson lines through the color structure of the hard part using the Fierz identity

taijt
a
kl = TF

(
δilδjk −

1

Nc
δijδkl

)
. (4.3)

4. The resulting expression contains the desired gauge-link and the structure corresponding to the bare
diagram. Divide this expression by the color structure of a bare diagram where the legs flowing to the
correlator have open indices.

Let us now perform some calculations to illustrate the procedure. We will need to transform Wilson lines
in the adjoint representation to the Wilson lines in the fundamental representation, which is done using the
following relation (

U [C](η; ξ)
)
ab

=
1

TF
Tr
[
taU [C](η; ξ)tbU [C]†(η; ξ)

]
. (4.4)

Distribution in SIDIS

The Feynman diagram for the semi-inclusive deep inelastic scattering is depicted in Fig. 17. In the first
step we replace spinors of the incoming quark by the matrix elements 〈X|ψi(ξ)|H〉 and 〈H|ψ̄k(0)|X〉 in the
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’free’ wave functions fields in correlator contribution to other
gauge-links

incoming quark ui(p)e
ip·ξ 〈X|δijψj(ξ)|H〉eip·ξ

(
Un[ξ;−∞])

)
ij

incoming antiquark v̄i(p)e
ip·ξ 〈X|ψ̄j(ξ)δji|H〉eip·ξ

(
Un[−∞;ξ])

)
ji

incoming gluon εa(p)eip·ξ 〈X|δabFµνb (ξ)|H〉eip·ξ
(
Un[ξ;−∞])

)
ab

outgoing quark ūi(k)e−ik·ξ 〈hX|ψ̄j(ξ)δji|0〉e−ik·ξ
(
Un[+∞;ξ])

)
ji

outgoing antiquark vi(k)e−ik·ξ 〈hX|δijψj(ξ)|0〉e−ik·ξ
(
Un[ξ;+∞])

)
ij

outgoing gluon ε∗a(k)e−ik·ξ 〈hX|Fµνb (ξ)δba|0〉e−ik·ξ
(
Un[+∞;ξ])

)
ba

’free’ wave functions fields in correlator contribution to other
gauge-links

incoming quark ūi(p) 〈H|ψ̄j(0)δji|X〉
(
Un[−∞;0])

)
ji

incoming antiquark vi(p) 〈H|δijψj(0)|X〉
(
Un[0;−∞])

)
ij

incoming gluon εa(p) 〈H|Fµνb (0)δba|X〉
(
Un[−∞;0])

)
ba

outgoing quark ui(k) 〈0|δijψj(0)|hX〉
(
Un[0;+∞])

)
ij

outgoing antiquark v̄i(k) 〈0|ψ̄j(0)δji|hX〉
(
Un[+∞;0])

)
ji

outgoing gluon ε∗a(k) 〈0|δabFµνb (0)|hX〉
(
Un[0;+∞])

)
ab

Table 1: Fields and gauge-links entering hadron correlators. The standard free wave functions of the partons
in the hard scattering amplitudes are given in the first column. The second column shows how the partons
appear in the correlators. The third column gives the contributions of the external partons to the various
gauge-links. The Un[a;b] are the Wilson lines along the light-cone direction n. The upper table is for the
diagram corresponding to the hard amplitude, and the lower table for the diagram corresponding to the
conjugate amplitude. From [97].
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Un
[ξ;−∞]

〈X|ψl(ξ) |H〉

Un
[−∞;0]

〈H| ψ̄i(0) |X〉

(
U[+∞;ξ]

)
xk

(
U[0;+∞]

)
jx

U+∞;ξ] U[0;+∞]

Figure 18: Diagram contributing to the quark-quark scattering.

amplitude and the conjugated amplitude, respectively. The spinors of the outgoing quark are replaced by the
Wilson lines (Un[+∞;ξ])ji and (Un[0;+∞])kj (again, in the amplitude and the conjugated amplitude, respectively),
as prescribed in Table 1. Therefore the expression for the quark correlator is

Φq =
∑

X

∫
dξ− d2ξT

(2π)3
eik·ξ〈H|ψ̄k(0)|X〉(Un[0;+∞])kj(U

n
[+∞;ξ])ji〈X|ψi(ξ)|H〉 , (4.5)

and the Wilson lines give the gauge-link U [+]

(Un[0;+∞])kj(U
n
[+∞;ξ])ji =

(
U [+]

)
ki
. (4.6)

After using the resolution of unity
∑
X |X〉〈X|, the quark TMD correlator in SIDIS is

Φ[+]
q (x, kT ) =

∫
dξ− d2ξT

(2π)3
eik·ξ〈H|ψ̄(0)U [+]ψ(ξ)|H〉 , (4.7)

so we reproduced the well-known quark correlator with a future pointing Wilson line. In this process the
hard part does not depend on color, so step 3 and 4 of the procedure do not apply.

Distribution in quark-quark scattering

Here we will calculate the quark distribution correlator for one of the quark-quark scattering channels,
shown in Fig. 18. The expression for the quark correlator obtained by applying the steps 1 and 2 is

〈H|ψ̄i(0)|X〉taij(Un[0;+∞])jx(Un[+∞;ξ])xkt
b
kl〈X|ψl(ξ)|H〉 × (Un[−∞;0])mnt

a
no(Un[0;+∞])oy(Un[+∞;ξ])ypt

b
pq(Un[ξ;−∞])qm

(4.8)
= 〈H|ψ̄i(0)|X〉taijU [+]

jk t
b
kl〈X|ψl(ξ)|H〉 × (Un[−∞;0])mnt

a
noU [+]

op t
b
pq(Un[ξ;−∞])qm =

= 〈H|ψ̄i(0)|X〉taijU [+]
jk t

b
kl〈X|ψl(ξ)|H〉 × Tr[Un[−∞;0]t

aU [+]tbUn[ξ;−∞]] =

= 〈H|ψ̄i(0)|X〉taijU [+]
jk t

b
kl〈X|ψl(ξ)|H〉 × U [−]†

mn t
a
noU [+]

op t
b
pm .

(4.9)
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Now we need to use the Fierz identity (4.3) to rewrite products of color matrices and gauge links

U [+]
jk U [−]†

mn U [+]
op (taijt

a
no)(t

b
klt

b
pm) =

= U [+]
jk U [−]†

mn U [+]
op (TF δioδjn −

TF
Nc

δijδno)(TF δkmδlp −
TF
Nc

δklδpm) =

= T 2
FU [+]

jk U [−]†
mn U [+]

op (δioδjnδkmδlp −
1

Nc
δioδjnδklδpm −

1

Nc
δijδnoδkmδlp +

1

N2
c

δijδnoδklδpm) =

= T 2
F (U [+]

jk U
[−]†
kj U

[+]
il −

1

Nc
U [+]
nl U [−]†

mn U [+]
im −

1

Nc
U [+]
im U [−]†

mo U [+]
ol +

1

N2
c

U [+]
il U [−]†

mo U [+]
om)

(4.10)

Putting this back to the correlator we have

T 2
F 〈H|ψ̄i(0)|X〉×

(
U [+]
il Tr

[
U [+]U [−]†

]
− 1

Nc
U [+]
im U [−]†

mn U [+]
nl −

1

Nc
U [+]
im U [−]†

mo U [+]
ol +

1

N2
c

U [+]
il Tr

[
U [−]†U [+]

])

× 〈X|ψl(ξ)|H〉 = (4.11)

= T 2
F 〈H|ψ̄(0)

{
N2
c + 1

N2
c

Tr
(
U [�]

)
U [+] − 2

Nc
U [�]U [+]

}
ψ(ξ)|H〉. (4.12)

The color factor for the bare diagram with open indices i and l is

taijt
b
jlt
a
mnt

b
nm = T 2

F

(
δinδjm −

1

Nc
δijδmn

)(
δjmδln −

1

Nc
δjlδnm

)
= (4.13)

= T 2
F

(
Ncδil −

1

Nc
δil −

1

Nc
δil +

1

N2
c

Ncδil

)
= T 2

F

N2
c − 1

Nc
δil. (4.14)

After dividing by this color factor and summing over X states we get the final answer

Φ[U ]
q (x, kT ) =

∫
dξ−d2ξT

(2π)3
eik·ξ〈H|ψ̄(0)

{
N2
c + 1

N2
c − 1

Tr
(
U [�]

)

Nc
U [+] − 2

N2
c − 1

U [�]U [+]

}
ψ(ξ)|H〉 . (4.15)

A few more examples, for gluon distribution correlators, are presented in Appendix A. For processes
with larger number of partons the calculations become more involved and also the number of contributing
Feynman diagrams grows rapidly. Therefore, we resort to the methods applied in calculations of amplitudes,
i.e. the color decompositions.

In the rest of this section, we will be concerned with the gluon TMD distributions of the generic form

F (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT 〈P |Tr

{
F̂ i+ (0)UC1 F̂

i+
(
ξ+ = 0, ξ−, ~ξT

)
UC2

}
|P 〉 , (4.16)

where UC1
, UC2

are certain fundamental representation Wilson lines, multiplied by possible traces of Wilson
loops. The exact shape of Wilson lines will depend on the hard process coupled to the TMD. Their calculation
for multiple partons is the main goal of the present section.

4.2 Color decomposition

The calculation of the operator structure entering the TMD distributions is nicely systematized not by
considering a particular diagrams, but rather by considering various color flows in the amplitude (squared)
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under consideration. Such systematization is achieved by using gauge invariant decomposition of amplitudes
into so-called color-ordered amplitudes (called also partial, or dual amplitudes). Here we are presenting only
necessary definitions and properties, see e.g. [116] for a complete review.

We will consider n-parton processes with a gluon in the initial state

g (k1) + bn (kn)→ b2 (k2) + · · ·+ bn−1 (kn−1) , (4.17)

where the partons bi can be quarks or gluons (restricted by the flavor number conservation). The initial state
gluon with momentum k1 carries a fraction x of the parent hadron momentum Pµ = P+ñµ (in light-cone
basis)

kµ1 ' xPµ + kµT . (4.18)

Above, the minus component is suppressed as it is neglected in the hard part. The transverse component is
also neglected within the leading twist collinear and TMD factorization. In the more general case, the gluon
may be off-shell and a suitable redefinition of the hard process is required to maintain the gauge invariance
(see e.g. [107, 143–146]). Even then, at least formally, the principles to obtain the TMD distributions still
hold, therefore we shall not distinguish these situations here.

Let us start with pure gluonic tree-level amplitudes. For the sake of this section we assume that all the
momenta are outgoing (later, it will become necessary to distinguish incoming and outgoing legs). The most
standard decomposition reads

Ma1...an (k1, . . . , kn) =
∑

π∈Sn/Zn
Tr (taπ(1) . . . taπ(n)) A (π (1) , . . . , π (n)) , (4.19)

where the sum runs over all noncyclic permutations π ∈ Sn/Zn of an n-element set (Sn is the set of all permu-
tations of n gluons, while Zn is the subset of cyclic permutations). Three important properties of the above
decomposition are: i) the partial amplitudes A are gauge invariant, ii) the partial amplitudes contain only
planar diagrams; consequently the full amplitude squared satisfies |M|2 = C

∑
Sn−1

|A (1, π (2) , . . . , π (n))|2+

O
(
1/N2

c

)
, with C being a color factor, iii) the amplitudes A satisfy so-called Ward identities: A (1, . . . , n) +

A (1, . . . , n, n− 1) + · · · +A (1, n, 2, . . . ) = 0 (and similar for other partial amplitudes). Because of the last
property, sometimes more desirable is a decomposition which utilizes only (n− 2)! independent partial am-
plitudes, instead of (n− 1)! as in the fundamental-representation (4.19). Such decomposition uses the adjoint
generators [147]:

Ma1...an (k1, . . . , kn) =
1

2

∑

π∈Sn−2

(T aπ(2) . . . T aπ(n−1))a1an
A (1, π (2) , . . . , π (n− 1) , n) , (4.20)

with (T a)bc = −ifabc. The partial amplitudes above are the same as in the fundamental-representation
decomposition.

Finally, let us recall the so-called color flow decomposition [148]. It will be useful especially for processes
with quarks as it treats gluons and quarks on equal footing. The basic idea is to work with the gluon fields
as the elements of the SU (Nc) algebra, i.e. matrices Âij ≡ Aa (ta)

i
j . That is, a gluon is characterized by a

pair of fundamental and anti-fundamental representation indices i, j = {1, . . . , Nc}. In this representation,
the amplitude can be decomposed as

Mi1...in
j1...jn

(k1, . . . , kn) = 2−n/2
∑

π∈Sn−1

δi1jπ(2)
δ
iπ(2)

jπ(3)
δ
iπ(3)

jπ(4)
. . . δ

iπ(n)

j1
A (1, π (2) , . . . , π (n)) , (4.21)

again with exactly the same partial amplitudes as in the other two representations.
For processes with quarks, there is also a fundamental representation [149] and for a process with one
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quark-antiquark pair,
g (k1) q (k2) g (k3) . . . g (kn−1) q̄ (kn)→ ∅ ,

it reads

Miq2a1a3...an−1

jq̄n
(k1, . . . , kn) =

∑

π∈Sn−2

(taπ(1)taπ(3) . . . taπ(n−1))
iq2
jq̄n
A
(
2q, π (1) , π (3) , . . . , π (n− 1) , nq̄

)
(4.22)

Above we put superscripts q, q̄ to remind which indices belong to a quark (antiquark). However, for processes
with quarks we will use the color flow decomposition, as it treats the quarks and gluons on equal footing,
and is best for easy calculation of the TMD operator structures. The color flow decomposition for a process
with one quark-antiquark pair is given by

Mi1i
q
2i3...in−1

j1j3...jn−1j
q̄
n

(k1, . . . , kn) = 2−(n−2)/2
∑

π∈Sn−2

δ
iq2
jπ(1)

δ
iπ(1)

jπ(3)
δ
iπ(3)

jπ(4)
. . . δ

iπ(n−1)

jq̄n

A
(
2q, π (1) , π (3) , . . . , π (n− 1) , nq̄

)
. (4.23)

and for a process with two quark-antiquark pairs,

g (k1) q (k2) q̄ (k3) q (k4) g (k5) . . . g (kn−1) q̄ (kn)→ ∅ ,

reads

Mi1i
q
2i
q
4i5...in−1

j1j
q̄
3 ...jn−1j

q̄
n

(k1, . . . , kn) = 2−(n−4)/2
∑

π∈Sn−3

δ
iq2
jq̄{3
δ
iq
4}
jπ(1)

δ
iπ(1)

jπ(5)
δ
iπ(5)

jπ(6)
. . . δ

iπ(n−1)

jq̄n

A
(
2q, π

(
3q̄, 4q

)
, π (1) , π (5) , . . . , π (n− 1) , nq̄

)

− 1

Nc

∑

r∈{1,5,...,n−1}

∑

π∈Sn−4

(
δ
iq2
jπ(1)

δ
iπ(1)

jπ(5)
. . . δ

iπ(r)

jq̄n

)(
δ
iq4
jπ(r+1)

δ
iπ(r+1)

jπ(r+2)
. . . δ

iπ(n−1)

jq̄3

)

A
(
2q, π (1) , . . . , π (ri) , n

q̄, 4q, π (ri+1) , . . . , π (n− 1) , 3q̄
)
. (4.24)

In the decomposition above, the first sum runs over all permutations of the n − 4 gluons and a quark-
antiquark pair (the curly brackets in deltas denote that the enclosed indices should be permuted together,
according to the permutation π), while the second sum runs over various partitions of the two quark-antiquark
pairs with gluon insertions. The second sum is genuinely suppressed by 1/Nc in case of distinct quark-
antiquark pairs; for identical pairs subleading terms will contribute to both sums in the partial amplitudes. In
the present work, we shall explicitly consider processes with up to 6 partons, thus we do not give decomposition
for more quark-antiquark pairs.

When constructing the TMD operators, the initial and final states are treated differently, i.e. they are
assigned different gauge links. Therefore, we have to adjust the color flow decomposition (4.21)-(4.24) to take
into account the fact, that two legs are incoming (recall, that these decomposition are within the standard
convention of all outgoing partons). This is fixed by making the replacement i1 ←→ j1, in ←→ jn, as in our
convention always the first and the last partons are incoming.

In a sense, there is a price for the simplicity of the color flow decomposition. Namely, to each final state
gluon we have to apply the projector

Pii′jj′ = δii
′
δjj′ −

1

Nc
δijδ

i′

j′ , (4.25)

which removes the redundant degrees of freedom from the sum over colors. For pure gluon amplitude they
are actually not needed, but must be applied to the quark amplitudes.
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Triple gluon vertex ∼ δi2j1δ
i3
j2
δi1j3

i1
j1 i2

j2

i3j3

Four-gluon vertex ∼ δi2j1δ
i3
j2
δi4j3δ

i1
j4

i1
j1

j2

j3
j4

i2

i3
i4

Quark-gluon vertex ∼ δiqj1δ
i1
jq

i1
j1 iq

jq

Gluon propagator ∼
(
δii
′
δjj′ − 1

Nc
δijδ

i′

j′

)
i

j

i′

j′− 1
Nc

×

i

j

i′

j′

Table 2: Standard color flow Feynman rules for partial amplitudes. All momenta are outgoing. In the middle
column we show the color part only.

4.3 Color flow Feynman rules for TMD operators

The color flow Feynman rules (see e.g. [148]) are useful for calculating color factors. It turns out that they
are also very useful in the context of calculation of the structure of the TMD operators in (4.16), especially,
when quarks are involved. We shall supplement the standard color flow rules for color-ordered diagrams (see
Table 2) with a set of additional rules which are simple color flow representations of the rules derived in [97]
for calculation of a TMD operator structure in an arbitrary process.

The original procedure, described in subsection 4.1, effectively leads to the following recipe. For each
final state, we assign the gauge link U [+], which joins the points 0 and ξ through the point in +∞, defined
in Eq. (2.10). In the case of gluons, the gauge link is to be defined in adjoint representation. The Wilson
link replaces the deltas for color summation when the amplitude is squared: δi′i →

(
U [+]

)
i′i

for quarks,

δjj
′ →

(
U [+]†)jj′ for antiquarks and δa′a →

(
U [+]

)
a′a

for gluons (here and in what follows i, j, k, . . . are
fundamental color indices, while a, b, c, . . . are adjoint). For the initial state (not connected to the TMD
gluon distribution), the resummation of the initial state interactions leads to the Wilson line extending to
−∞ , Eq. (2.10). Similar to final states, one needs to replace the color deltas for initial states by the matrix
elements of U [−]. The remaining initial state (connected to the TMD) is attached to F i+a (ξ) in the amplitude
and to F i+a′ (0) in the conjugate amplitude. The rest of the procedure is similar to calculating color factors:
one extracts the color structure of the pertinent amplitude and makes all the contractions (here with Wilson
lines and field strength tensors instead of deltas). In the end, one needs to divide out the color factor for a
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Outgoing gluon
(
U [+]

)
i′i

(
U [+]†)jj′ − 1

Nc
δji δ

j′

i′

j j′

i i′

− 1
Nc

× j

i

j′

i′

Incoming gluon
(
U [−]†)ii′ (U [−]

)
j′j
− 1

Nc
δijδ

i′

j′

i i′

j j′

− 1
Nc

× i

j

i′

j′

Outgoing quark
(
U [+]

)
i′i

i i′

Incoming quark (
U [−]†)ii′ i i′

Outgoing antiquark (
U [+]†)jj′ j j′

Incoming antiquark
(
U [−]

)
j′j

j j′

Field strength operators 2
(
F̂+i (ξ)

)j
i

(
F̂+i (0)

)j′
i′

j i j ′ i′

Table 3: Color flow Feynman rules for the gauge links. The diagrams correspond to the cut lines, as denoted
by the vertical dotted line. The routing in the color loops is clock-wise.

process without gauge links.
Passing to the color flow representation is straightforward. Nothing really is to be done for quarks and

antiquarks. For gluons, we first need to make a connection of the adjoint Wilson line with the trace of
fundamental-representation instances of the same Wilson line, and next project it onto the fundamental color
quantum numbers with the help of the Fierz identity. All rules with graphical representation are collected
in Table 3. The procedure of calculating the TMD operator structures is now reduced to considering all
possible color flows and applying the rules. Although, in principle, we could consider all standard Feynman
diagrams, draw them in the color flow representation and calculate TMD operator structures, fortunately,
we do not need to do this. Instead we can just use the color flow decomposition described in Subsection 4.2.
This will also ensure, that we work with gauge invariant sets from the start.

Below, we present some examples to better illustrate the procedure.

4.3.1 Examples

Let us first illustrate the usage of color flow Feynman rules to calculate the structure of the TMD operator
for the following diagram:
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k4

k3

k2

k1

This diagram contributes to the process g (k1) q (k4) → q (k2) g (k3) and represents the diagram squared
and summed over final/initial colors (except insertions of the field operators). The arrows indicate whether
the line is incoming/outgoing. Let us stress, that considering particular diagrams is not the way we will
ultimately proceed; instead we will consider various color flows as defined in Eqs. (4.21)-(4.24). The structure
of the TMD operator for this diagram was calculated in [97]. In the color flow representation we have to
consider two diagrams:

− 1
Nc

×

The diagram with dashed line represents an exchange of the U (1) gluon (a colorless gluon). To calculate
the diagrams we simply look for the closed quark loops and make the trace of the objects appearing in the
loop. The direction of the trace is clockwise. The dashed lines carry no color, thus they do not make any
traces (they also always accompany 1/Nc factors). Note, we calculate only color part (with possible SU (Nc)

matrix insertions) - we are not concerned with any kinematic factors. For the first diagram, we have

Tr
{
F (ξ)U [+]†F (0)U [+]

}
Tr
{
U [�]

}
, (4.26)

where the first trace corresponds to the bottom loop, the second to the top loop. Above, we defined the
Wilson loop [97]

U [�] = U [−]†U [+] . (4.27)

We also use shorthand notation F (ξ) ≡ F̂ i+
(
ξ+ = 0, ξ−, ~ξT

)
. The second diagram reads

− 1

Nc
Tr
(
F (ξ)U [−]†F (0)U [+]

)
. (4.28)

To get the final result, the sum of the two contributions must be divided by the sum of the color factors
(without the Wilson lines), with open indices where the field operators are attached:
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− 1
Nc

×

The part multiplying the open indices reads

Nc −
1

Nc
=
N2
c − 1

Nc
. (4.29)

Thus the TMD operator reads

Tr

{
F (ξ)

[
N2
c

N2
c − 1

TrU [�]

Nc
U [+]† − 1

N2
c − 1

U [−]†
]
F (0)U [+]

}
, (4.30)

which exactly agrees with the result quoted in [97].
As an illustration of a more complicated structure, let us consider an example contribution to the process

gg → qq̄gg:

 + . . .

Applying the color flow rules gives immediately the operator structure for the leading color flow displayed
on the r.h.s.:

NcTr
{
F (ξ)U [+]†F (0)U [+]

}
TrU [�] TrU [�]† . (4.31)

Above, the Nc factor comes from the second loop from the bottom, Tr
{
U [+]†U [+]

}
= Tr 1 = Nc.

To close this subsection, let us stress, that the problem of proliferation of color flow diagrams compared
to ordinary diagrams, will not concern us at all. As mentioned, we shall use the color flow decomposition,
which sets the color flow without need to consider particular diagrams.

4.4 The operator basis for arbitrary TMD gluon distribution

Using the color flow Feynman rules from the previous section we can easily determine all possible ’basis’
operators, from which a TMD gluon distribution for arbitrary process can be constructed. Alternatively, one
can think about ’basis’ TMD gluon distributions.

Plenty of different operators already appear for processes with four colored partons considered in [97]. In
order to find all of them, we use the following facts. First, there are at most two U [−] Wilson lines. This is
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the case for initial state gluons where U [−] and U [−]† appear. Thus, we can built at most two Wilson loops
(4.27), when they are looped with U [+] or U [+]† (see the last example in Section 4.3). Second, any color flow
loop will contribute trace of at most first power of U [±], U [±]† (and F (ξ), F (0), or both), in addition to
mentioned Wilson loops (at most U [�] and U [�]†). This is because for a color flow loop with many Wilson
lines (contributed by many final states), most of the Wilson lines will collapse to unity, U [+]†U [+] = 1, leaving
only at most single instances of U [±], U [±]†, U [�], U [�]†.

Basing on the above, below we list all ’basis’ TMD gluon distributions, from which an arbitrary TMD is
given as a linear combination. We assume here, that the correlators are real valued functions.

F (1)
qg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]〉

= 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [−]

]〉
,

(4.32)

F (2)
qg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]

]

Nc
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉

= 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]†]

Nc
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉
,

(4.33)

F (3)
qg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [�]U [+]

]〉

= 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [+]

]〉
,

(4.34)

F (1)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]†]

Nc
Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]〉

= 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]

]

Nc
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [−]

]〉
,

(4.35)

F (2)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT 1

Nc

〈
Tr
[
F̂ i+ (ξ)U [�]†

]
Tr
[
F̂ i+ (0)U [�]

]〉

= 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT 1

Nc

〈
Tr
[
F̂ i+ (ξ)U [�]

]
Tr
[
F̂ i+ (0)U [�]†

]〉
,

(4.36)

F (3)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉
, (4.37)

F (4)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [−]

]〉
, (4.38)

F (5)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [�]U [+]

]〉
, (4.39)

F (6)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]

]

Nc

Tr
[
U [�]†]

Nc
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉
, (4.40)
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F (7)
gg (x, kT ) = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]

]

Nc
Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [+]

]〉

= 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
U [�]†]

Nc
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [�]U [+]

]〉
.

(4.41)

In the definitions above, the average should be understood as the hadronic matrix elements, cf. Eq. (4.16).
Two new structures appear in addition to those known in the literature: F (3)

qg and F (7)
gg .

Here the subscripts refer to a partonic process to which a given TMD distribution belongs - whether this
is a pure gluonic process or a process with quarks 4. This notation was first introduced in [115] in the context
of the small-x limit and we stick to that notation in the present work.

The above set of basic TMD gluon distribution constitutes the basis for any TMD gluon distribution to
be convoluted with a hard process. As discussed in Section 2, this assumption is meant to be used at small-x
where it can be justified from the CGC effective theory. It is important to note, that it is the complete
basis within the rules of [134] - it does not represent a basis for a gluon correlator with arbitrary gauge link
structure. At least formally, the basis structures are independent; however, in the large-kT limit, they start
to be degenerate (or vanish).

The definitions above represent bare TMD distributions, which need to be renormalized. In the small-x
regime with gluon saturation playing significant role, the evolution equations are nonlinear and thus more
complicated than the equations at moderate x [151–153]. In addition, the program of obtaining the renor-
malization group evolution equations for all possible TMD operators is nowhere near the end. Hopefully, the
correspondence of the small-x TMD gluon distributions and CGC correlators [115] allows for a treatment of
evolution in the strict small-x limit using the Balitsky–Jalilian–Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (B-JIMWLK) equations [154–160] following Ref. [136]. At small x, but in the linear regime, where
the saturation scale is much smaller than the typical scale of the internal transverse momenta, it seems that
the various TMD gluon distributions converge to one universal distribution, which may be identified with
the unintegrated gluon distribution, the same for any color flow (see Section 3).

In saturation physics, the two TMD distributions with the most elementary Wilson line structure, i.e.
F (1)
qg and F (3)

gg , has been known as the dipole gluon distribution and the Weizsäcker-Williams (WW) gluon
distribution, respectively [161]. The WW gluon distribution is calculated from the correlator of two classical
gluon fields of relativistic hadrons (non-abelian Weizsäcker-Williams fields) and has a clear physical inter-
pretation as the number density of gluons inside the hadron in light-cone gauge. The dipole distribution is
defined as the Fourier transform of the color dipole cross section and does not have a clear partonic inter-
pretation. The dipole density is probed in most QCD processes, like inclusive DIS, semi-inclusive DIS or
Drell-Yan, thus it is quite well constrained from data. In contrast, the WW distribution so far has been only
calculated from models, however, it can be probed in more complicated processes, like dijet production in
γA and pA collisions [115].

Numerical implementation of the iTMD factorization, which will be performed in the next section, requires
evaluation of the TMD gluon distributions. The dipole distribution F (1)

qg , often denoted xG(2), in the small-x
limit can be related to the Fourier transform of the fundamental dipole amplitude NF (x, r), where r denote
the transverse size of the dipole [115,136]

F (1)
qg (x, kT ) =

Nc
αsπ(2π)3

∫
d2b

∫
d2r e−ikT ·r∇2

r NF (x, r) ≡ xG(2)(x, kT ) . (4.42)

The amplitude NF is defined through the CGC expectation value of the S-matrix, SF , of a quark-antiquark
dipole scattering off the dense target: NF (x, r) = 1 − SF (x, r) with SF (x, r) =

〈
Tr
[
U(r)U†(0)

]〉
x
/Nc in

terms of fundamental Wilson lines [135]. The dipole gluon distribution can then be written as
4The notation for the above TMD gluon distributions should not be confused with the double-TMD parton distributions (see

e.g. [150]).
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xG(2)(x, kT ) =
Nc k

2
T S⊥

2π2αs
F (x, kT ) , (4.43)

where S⊥ denote the transverse area of the target and F (x, kT ) is the Fourier transform of the fundamental
dipole

F (x, kT ) =

∫
d2r

(2π)2
e−ikT ·rSF (x, r) . (4.44)

Calculations of the other TMD distributions are more complicated. The WW distribution, usually denoted
xG(1), can be obtained from quadrupole operator, and in general is not related to F (x, kT ). However, the
evaluation of the other TMD distributions can be simplified by using a mean-field approximation. In the
so-called Gaussian approximation of the CGC [162–168], which assumes that all the color charge correlations
in the target stay Gaussian throughout the evolution, and in the large-Nc limit, the WW gluon distribution
can be expressed in terms of an adjoint dipole [135]

xG(1)(x, kT ) =
CF

2αsπ4

∫
d2b

∫
d2r

r2
e−ikT ·r [1− SA(x, r)] , (4.45)

where SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint Wilson lines. The Gaussian
approximation allows also to write SF = S

2CF /CA
BK and SA = S2

BK , where SBK is the solution of the BK
equation. At large Nc, SA(x, r) = [SF (x, r)]

2, and one can write WW distribution in terms of the dipole
distribution and the Fourier transform of the fundamental dipole (see [135] for more detailed calculations)

xG(1)(x, kT ) =
1

2

∫ ∞

k2
T

dk
′2
T ln

(
k′2T
k2
T

)∫
d2qT
q2
T

xG(2)(x, qT )F (x, k′T − qT ) . (4.46)

As was shown in [82] (which we will verify later in this section), in the large-Nc limit there are five gluon
distributions entering the dijet cross section in TMD/iTMD factorization: F (1)

qg , F (2)
qg , F (1)

gg , F (2)
gg , F (6)

gg (so
the WW distribution is not directly one of them). In the Gaussian approximation and in the large-Nc limit
these distributions can be expressed in terms of xG(1) and xG(2) [115]

F (1)
qg (x, kT ) = xG(2)(x, qT ) , (4.47)

F (2)
qg (x, kT ) =

∫
d2qT xG

(1)(x, qT )F (x, kT − qT ) , (4.48)

F (1)
gg (x, kT ) =

∫
d2qT xG

(2)(x, qT )F (x, kT − qT ) , (4.49)

F (2)
gg (x, kT ) = −

∫
d2qT

(kT − qT ) · qT
q2
T

xG(2)(x, qT )F (x, kT − qT ) , (4.50)

F (6)
gg (x, kT ) =

∫
d2qT d

2q′T xG
(1)(x, qT )F (x, q′T )F (x, kT − qT − q′T ) . (4.51)

Therefore, employing Eq. (4.43) and Eq. (4.46) they can be obtained from the solution of the BK equation
in the momentum space F (x, kT ). In Ref. [135] these TMD distributions were calculated using the KS gluon
distribution [111], described in subsection 3.2, which provides directly the dipole gluon xG(2)(x, kT ). The
resulting TMD distributions as a function of kT are shown in Fig. 19. There is a small mismatch in their
high-kT behavior, due to the initial condition for the evolution in x in KS gluon.

4.5 Operator structures for multi-parton processes

In this subsection we present the calculations of TMD gluon distributions for the processes with 3-6
colored partons, together with their large Nc limit, which will be useful phenomenologically in short run.
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Figure 19: The KS gluon TMDs as a function of log(k2
T /GeV2) for the proton (left) and the lead nucleus

(right). Since F (2)
gg goes negative, its absolute value is shown on the figures. From [135].

We will start with a derivation of 3 parton TMD operators, to demonstrate the procedure utilizing the color
decomposition and to introduce the general notation we shall use for more complicated processes (the operator
structures for 4 parton processes were first obtained in [97], using the standard Feynman diagram method,
as shown in the previous subsections, and in [82] using the color decomposition). The results presented here
were obtained using form program gtmdcalc [169].

4.5.1 3 partons

This is a good example to demonstrate the algorithm which is used for processes with more partons, since
the decompositions consists of only one term, represented by a single diagram, depicted in Fig. 20.

j3

〈X|F a1(ξ) |H〉

j′
3

〈H|F a′
1(0) |X〉

i2 i′2

a3

〈X|F a1(ξ) |H〉

a′
3

〈H|F a′
1(0) |X〉

a2 a′
2

Figure 20: Diagrams contributing to single jet production.

gq → q

The process
g(k1)q(k3)→ q(k2) , (4.52)

shown in Fig. 20(left), can be decomposed in both the fundamental basis, Eq. (4.22) and the color flow basis,
Eq. (4.23). The final result is of course the same. The decomposition in the color flow basis is

Mi1i2
j1j3

=
1√
2
δi2j1δ

i1
j3
A(2, 1, 3) , (4.53)
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while in the fundamental basis we have

Mi2a1
j3

= (ta1)
i2
j3
A(2, 1, 3) . (4.54)

As in this case we have only one permutation A(2, 1, 3), we will not introduce matrix notation here. The
square of amplitude, summed over color is

(ta1)
i2
j3

(
ta
′
1

)j′3
i′2

δA1A
′
1δi2i′2

δ
j′3
j3

= TF

(
δi2i′2
δ
j′3
j3
− 1

Nc
δi2j3δ

j′3
i′2

)
δi2i′2

δ
j′3
j3

= TF
(
N2
c − 1

)
. (4.55)

It is calculated starting from the fundamental decomposition in this case. In order to calculate the TMD
operator structure, we need to insert the appropriate gauge links instead of deltas summing over colors, as
reviewed in Section 4.3. In this case, we assign the future-pointing gauge-link U [+] for the outgoing quark
and the past-pointing gauge-link U [−]† for the incoming quark to obtain

Mi2a1
j3
M†j

′
3

i′2a
′
1

(
U [+]

)i2
i′2

(
U [−]†

)j′3
j3
F i+a1

(ξ)F i+a′1
(0) . (4.56)

Since these Wilson lines are in the fundamental representation, we immediately obtain the following structure

(
tA1
)i2
j3

(
tA
′
1

)j′3
i′2

(
U [+]

)i2
i′2

(
U [−]†

)j′3
j3
FA

′
1(0)FA1(ξ) =

= (F (ξ))
i2
j3

(
U [−]†

)j′3
j3

(F (0))
j′3
i′2

(
U [+]

)i2
i′2

= Tr
[
F (ξ)U [−]†F (0)U [+]

]
. (4.57)

The above result must be divided by the color factor of the squared amplitude, but without summation of
the indices of the gluon for which we calculate the TMD operator, which is given by Eq. 4.55 divided by(
N2
c − 1

)
. Therefore, the considered structure, divided by TF gives

2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT

〈
Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]〉
= F (1)

qg (x, kT ) . (4.58)

gg → g

The process, represented in Fig. 20(right)

g (k1) g (k3)→ g (k2) . (4.59)

has the following decomposition

M = T a2
a1a3
A(1, 2, 3) = ifa1a2a3A(1, 2, 3) . (4.60)

Here we need to insert gauge-links in the adjoint representation, the U [+] for the outgoing gluon and U [−]†

for the incoming gluon, and thus we obtain

ifa1a2a3

(
−ifa′1a′2a′3

) (
U [+]

)a′2a2
(
U [−]†

)a3a
′
3

F a
′
1(0)F a1(ξ) . (4.61)

The Wilson lines in the adjoint representation are then transformed using Eq. (4.4 to the fundamental
representation, which leads to

− F a
′
1(0)F a1(ξ)

T 2
F

ifa1a2a3 ifa
′
1a
′
2a
′
3 Tr

[
ta
′
2U [+]ta2U [+]†

]
Tr
[
ta3U [−]†ta

′
3U [−]

]
. (4.62)
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Lets take care of the trace part first

Tr
[
ta
′
2U [+][ta1 , ta3 ]U [+]†

]
Tr
[
ta3U [−]†[ta

′
1 , ta

′
2 ]U [−]

]
= (4.63)

= t
a′2
ij U

[+]
jk (ta1

kl t
a3

lm − ta3

kl t
a1

lm)U [+]†
mi × ta3

abU
[−]†
bc

(
t
a′1
cdt

a′2
de − t

a′2
cdt

a′1
de

)
U [−]
ea = (4.64)

= U [+]
jk U

[+]†
mi U

[−]†
bc U [−]

ea (ta1

kl t
a3

lmt
a3

ab − ta3

abt
a3

kl t
a1

lm)
(
t
a′1
cdt

a′2
det

a′2
ij − t

a′2
ij t

a′2
cdt

a′1
de

)
= (4.65)

= T 2
F U [+]

jk U
[+]†
mi U

[−]†
bc U [−]

ea

[
ta1

kl

(
δlbδma −

1

Nc
δlmδab

)
−
(
δalδbk −

1

Nc
δabδkl

)
ta1

lm

]
×

×
[
t
a′1
cd

(
δdjδei −

1

Nc
δdeδij

)
−
(
δidδjc −

1

Nc
δijδcd

)
t
a′1
de

]
= (4.66)

= T 2
F U [+]

jk U
[+]†
mi U

[−]†
bc U [−]

ea

[(
ta1

kbδma −
1

Nc
ta1

kmδab

)
−
(
ta1
amδbk −

1

Nc
ta1

kmδab

)]
×

×
[(
t
a′1
cj δei −

1

Nc
t
a′1
ce δij

)
−
(
t
a′1
ie δjc −

1

Nc
t
a′1
ce δij

)]
= (4.67)

= T 2
F U [+]

jk U
[+]†
mi U

[−]†
bc U [−]

ea [ta1

kbδma − ta1
amδbk]

[
t
a′1
cj δei − t

a′1
ie δjc

]
= (4.68)

= T 2
F

[
U [+]
jk t

a1

kbU
[−]†
bc U

[+]†
ai U [−]

ea − U [+]
jb t

a1
amU [+]†

mi U
[−]†
bc U [−]

ea

] [
t
a′1
cj δei − t

a′1
ie δjc

]
= (4.69)

= T 2
F

(
ta1

kbU
[−]†
bc t

a′1
cjU

[+]
jk U [+]†

ae U [−]
ea − ta1

kbU
[−]†
bc U

[+]
ck U

[+]†
ai U [−]

ea t
a′1
ie

)
−

− T 2
F

(
ta1
amU [+]†

me U [−]
ea U [−]†

bc t
a′1
cjU

[+]
jb − ta1

amU [+]†
mi t

a′1
ie U [−]

ea U [−]†
bc U

[+]
cb

)
= (4.70)

= T 2
F

(
Tr
[
ta1U [−]†ta

′
1U [+]

]
Tr
[
U [�]†

]
− Tr

[
ta1U [�]

]
Tr
[
ta
′
1U [�]†

])
−

− T 2
F

(
Tr
[
ta1U [�]†

]
Tr
[
ta
′
1U [�]

]
− Tr

[
ta1U [+]†ta

′
1U [−]

]
Tr
[
U [�]

])
(4.71)

After restoring the fields we obtain

(
Tr
[
F (ξ)U [−]†F (0)U [+]

]
Tr
[
U [�]†

]
− Tr

[
F (ξ)U [�]

]
Tr
[
F (0)U [�]†

])
−

−
(

Tr
[
F (ξ)U [�]†

]
Tr
[
F (0)U [�]

]
− Tr

[
F (ξ)U [+]†F (0)U [−]

]
Tr
[
U [�]

])
. (4.72)

There are four structures, however two of them are the complex conjugate of the other two. Expressed in
the basis distributions, the result is

NcF (1)
gg −NcF (2)

gg , (4.73)

which after dividing by the color factor of the square of amplitude (withoutN2
c−1) gives the TMD distribution

F (1)
gg −F (2)

gg . (4.74)
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4.5.2 4 partons

As the color decomposition is most straightforward for pure gluonic amplitude, let us start with the
process

g (k1) g (k4)→ g (k2) g (k3) . (4.75)

For gluons, three color decompositions can be used: the fundamental (4.19), the color flow (4.21), and
the adjoint (4.20). First two involve 6 partial amplitudes, while the last one, only two. As mentioned in
Section 4.2, the 6 partial amplitudes are not independent, but their squares give the leading contribution in
the large Nc limit - a property which we will use in Section 4.6. Here, we are interested in the full answer,
thus we use the adjoint color decomposition (for processes with quarks we will use exclusively color flow
decomposition). It reads

Ma1a2a3a4 (k1, k2, k3, k4) =
1

2
(T a2T a3)a1a4

A(1, 2, 3, 4) +
1

2
(T a3T a2)a1a4

A(1, 3, 2, 4) . (4.76)

The square of the amplitude, summed over colors, can in general be written in a matrix form

|M|2 = ~A †C ~A , (4.77)

where C is the color matrix and ~A is a column vector constructed from the partial amplitudes. For the
present case

C =
1

4
N2
cNA

(
1 1

2
1
2 1

)
, (4.78)

and ~A is a column vector constructed from the partial amplitudes, given in Table 4. In order to calculate
the TMD operator structure, we need to insert the appropriate gauge links instead of deltas summing over
colors (as reviewed in Section 4.3)

Ma1a2a3a4M†a′1a′2a′3a′4
(
U [+]

)a′2a2
(
U [+]

)a′3a3
(
U [−]†

)a4a
′
4

F i+a1
(ξ)F i+a′1

(0) . (4.79)

The Wilson lines in adjoint representation are transformed to the fundamental representation using Eq. (4.4.
Next, the decomposition (4.76) is used to represent the above expression in the following general form

~A † F ~A , (4.80)

where F is the matrix of the TMD operators containing implicitly the color factors of the hard process. In
most cases, it is reasonable to keep these color factors together with the hard matrix elements. Thus, to
avoid double counting, we divide the elements of F by the corresponding color factors of the square of the
amplitude, but without the summation of indices where the field operators are attached (this corresponds
to the elements of the matrix C (4.78) divided by NA). This leads to the following definition of the TMD
distribution matrix

Φ = 2

∫
dξ−d2ξT

(2π)
3
P+

eixP
+ξ−−i~kT ·~ξT 〈P |F �

(
1

NA
C

)
|P 〉 , (4.81)

where the symbol � represents the Hadamard division, i.e. the element-wise division: (A�B)ij = Aij/Bij .
It may happen, for certain multiparticle processes, that some elements of the color matrix C vanish, but
the corresponding elements of F are non-zero. In that case, we need to modify the above prescription. We
shall come back to this point when discussing processes where this happens. An additional motivation to
divide out the color factors from the TMD operators is that one could in principle use the results with matrix
elements not represented in the color-ordered form.

With the above definitions, the cross section for a collinear parton a to scatter off a gluon with some
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g1g4 → g2g3 g1q4 → g2q3 g1q̄4 → g2q̄3 g1g4 → q2q̄3(
A(1, 2, 3, 4)
A(1, 3, 2, 4)

) (
A(3, 1, 2, 4)
A(3, 2, 1, 4)

) (
A(4, 1, 2, 3)
A(4, 2, 1, 1)

) (
A(2, 1, 4, 3)
A(2, 4, 1, 3)

)

Table 4: Definitions of the vector of partial amplitudes for all four-parton processes. The subscripts in the
sub-process indication correspond to the momenta enumeration.

internal transverse momentum and producing certain number of colored partons, can be generically written
as

dσag→X =

∫
~A † (C ◦Φag→X) ~A dΓ , (4.82)

where dΓ represents all pre-factors, phase space, and convolution in x and kT . The symbol ◦ is the Hadamard
(element-wise) multiplication, (A ◦B)ij = AijBij .

In the present example of four gluons, the TMD gluon distribution matrix reads

Φgg→gg =

(
Φ1 Φ2

Φ2 Φ1

)
, (4.83)

with two independent TMD gluon distributions expressed in terms of the basis distributions:

Φ1 =
1

2N2
c

(
N2
cF (1)

gg − 2F (3)
gg + F (4)

gg + F (5)
gg +N2

cF (6)
gg

)
, (4.84)

Φ2 =
1

N2
c

(
N2
cF (2)

gg − 2F (3)
gg + F (4)

gg + F (5)
gg +N2

cF (6)
gg

)
. (4.85)

For more complicated processes with gluons it is useful to write the above equations in a matrix form:




Φ1

...
Φk


 = M




F (1)
gg

F (2)
gg
...
F (7)

gg



, (4.86)

where M is a matrix with k rows and 7 columns. For the case of four gluons, this matrix reads

Mgg→gg =

(
1
2 0 − 1

N2
c

1
2N2

c

1
2N2

c

1
2 0

0 1 − 2
N2
c

1
N2
c

1
N2
c

1 0

)
. (4.87)

In a similar fashion, one can derive the matrices Φ and M for other 4-parton channels. The only difference
is that for processes with quarks, we always use the color flow decomposition of an amplitude. For the channel

g (k1) q (k4)→ g (k2) q (k3) , (4.88)

we obtain

Φgq→gq =

(
Φ2 Φ1

Φ1 Φ1

)
, (4.89)

with the Φi given in Table 5. For a similar process with an antiquark, we get

Φgq̄→gq̄ =

(
Φ1 Φ1

Φ1 Φ2

)
. (4.90)

58



4 TMD GLUON DISTRIBUTIONS FOR MULTIPARTON PROCESSES

g1g4 → g2g3 g1g4 → q2q̄3(
1
2 0 − 1

N2
c

1
2N2

c

1
2N2

c

1
2

0 1 − 2
N2
c

1
N2
c

1
N2
c

1

) (
N2
c

NA
0 − 1

NA
0 0 0

0 −N2
c 1 0 0 0

)

g1q4 → g2q3 g1q̄4 → g2q̄3(
1 0

− 1
NA

N2
c

NA

) (
1 0

− 1
NA

N2
c

NA

)

Table 5: Matrices M of structures appearing in four-parton processes. The subscripts in the sub-process
indication correspond to the momenta enumeration.

Finally, for
g (k1) g (k4)→ q (k2) q̄ (k3) , (4.91)

we have

Φgg→qq̄ =

(
Φ1 Φ2

Φ2 Φ1

)
. (4.92)

The partial amplitude vectors ~A for the above cases are listed in Table 4.

4.5.3 5 partons

The calculation of the TMD gluon distributions with 5 colored partons proceeds in the same fashion,
but is technically more complicated. Also, a new feature appears. Certain color factors, building up the
matrix C, vanish for some processes. However, some of the corresponding TMD operators do not vanish
(more precisely, we mean here corresponding elements of the F matrix). It is a special property of the TMD
factorization: certain color flows would not contribute in the collinear factorization (where only the matrix
C appears), but they do contribute if the TMD gluon distributions are considered. Thus we need to modify
the definition of the TMD gluon distribution matrix Φ (4.81) and the Eq. (4.82) for such processes. In both
formulas, instead of the matrix C (which has zeros), we use the matrix C′ with elements

C′ij =

{
Cij if Cij 6= 0

1 if Cij = 0
. (4.93)

This is a simple way to extract the hard matrix element color factors only from those TMD operators, for
which the color factor is nonzero. For reader’s convenience, the color factors for 5 parton processes in the color-
ordered-amplitude representation are collected in Appendix E (they were cross-checked with [170], [147]).

Below, we present the TMD gluon distribution matrices Φ for various channels. The vectors ~A of partial
amplitudes, corresponding to the entries of the matrices Φ, are given in Table 6 in Appendix B. The TMD
gluon distributions Φi building up these matrices, are expressed through the ’basis’ distributions (4.32)-
(4.41), as given by the M matrices listed in Table 7 (Appendix B). The M matrices for processes in which
the incoming and outgoing quarks are replaced by the incoming and outgoing antiquarks are the same.

For the pure gluonic process,
g (k1) g (k5)→ g (k2) g (k3) g (k4) , (4.94)
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we obtain

Φgg→ggg =




Φ1 Φ2 Φ2 Φ3 Φ3 Φ∗4
Φ2 Φ1 Φ3 Φ∗4 Φ2 Φ3

Φ2 Φ3 Φ1 Φ2 Φ∗4 Φ3

Φ3 Φ∗4 Φ2 Φ1 Φ3 Φ2

Φ3 Φ2 Φ∗4 Φ3 Φ1 Φ2

Φ∗4 Φ3 Φ3 Φ2 Φ2 Φ1



. (4.95)

The Φi gluon distributions are listed in the first row of Table 7. This process has the property mentioned in
the beginning of this subsection i.e. some color factors in the matrix C vanish while the corresponding TMD
operators do not vanish. The entries for which the color factors are zero are marked with the asterix ∗.

For
g (k1) g (k5)→ q (k2) q̄ (k3) g (k4) , (4.96)

we get

Φgg→qq̄g =




Φ1 Φ2 Φ2 Φ3 Φ3 Φ4

Φ2 Φ2 Φ5 Φ6 Φ3 Φ3

Φ2 Φ5 Φ2 Φ3 Φ6 Φ3

Φ3 Φ6 Φ3 Φ2 Φ5 Φ2

Φ3 Φ3 Φ6 Φ5 Φ2 Φ2

Φ4 Φ3 Φ3 Φ2 Φ2 Φ1



, (4.97)

with the TMD gluon distributions given in the second row of Table 7.
For the process with initial state quark

g (k1) q (k5)→ g (k2) g (k3) q (k4) , (4.98)

or antiquark, we obtain, respectively

Φgq→ggq =




Φ1 Φ2 Φ3 Φ4 Φ5 Φ4

Φ2 Φ1 Φ5 Φ4 Φ3 Φ4

Φ3 Φ5 Φ3 Φ4 Φ6 Φ4

Φ4 Φ4 Φ4 Φ4 Φ4 Φ4

Φ5 Φ3 Φ6 Φ4 Φ3 Φ4

Φ4 Φ4 Φ4 Φ4 Φ4 Φ4



, (4.99)

and

Φgq̄→ggq̄ =




Φ4 Φ4 Φ4 Φ4 Φ4 Φ4

Φ4 Φ4 Φ4 Φ4 Φ4 Φ4

Φ4 Φ4 Φ3 Φ3 Φ6 Φ5

Φ4 Φ4 Φ3 Φ1 Φ5 Φ2

Φ4 Φ4 Φ6 Φ5 Φ3 Φ3

Φ4 Φ4 Φ5 Φ2 Φ3 Φ1



, (4.100)

with the TMD gluon distributions given in the third row of Table 7. These matrices differ by the permutations
of the entries, which has its origin in a slightly different color decomposition for quarks and antiquarks.
Namely, the order of quark-antiquark lines (with the outgoing-momenta convention) is reversed in one case
with respect to the other.

Finally, the processes with two quark-antiquark pairs, with incoming quark

g (k1) q (k5)→ q (k2) q̄ (k3) q (k4) , (4.101)
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or antiquark, involve respectively

Φgq→qq̄q =




Φ1 0 Φ1 Φ1

0 Φ2 Φ3 Φ1

Φ1 Φ3 Φ2 0

Φ1 Φ1 0 Φ1


 , (4.102)

and

Φgq̄→qq̄q̄ =




Φ1 0 Φ1 Φ1

0 Φ2 Φ1 Φ3

Φ1 Φ1 Φ1 0

Φ1 Φ3 0 Φ2


 . (4.103)

The TMD gluon distributions appearing in these matrices are listed in the fourth row of Table 7. Interestingly,
for this case, not only some of the color factors vanish, but also the corresponding TMDs.

As the potential phenomenological application of the results (in short run) concerns rather the large Nc
limit, we present the relevant matrices in this limit in Appendix D.

4.5.4 6 partons

Six parton processes do not involve new features with respect to five partons, except more channels
and more involved calculations. The vectors ~A of the partial amplitudes, and the M matrices are given in
Tables 8 and 9-12 in Appendix C. The M matrices for processes in which the incoming and outgoing quarks
are replaced by the incoming and outgoing antiquarks are the same. Below, we present results for the TMD
gluon distribution matrices Φ for all channels. The number of partial amplitudes necessitates the use of block
matrices to compactify the notation.

For the six-gluon process,
g (k1) g (k6)→ g (k2) g (k3) g (k4) g (k5) , (4.104)

the Φ matrix is

Φgg→gggg =




T1 T2 T3 T4

T2 T1 T5 T6

T ᵀ3 T5 T1 T7

T ᵀ4 T ᵀ6 T7 T1


 , (4.105)

where Ti are 6×6 block matrices given by equations C.1 - C.2 (C.1).
In the present case, we have two TMD operators, for which the color factor vanishes - Φ∗4 and Φ∗8 (we

remind, that we mark these matrix elements with an asterix). The full list of the TMD gluon distributions
is given in the Table 9.

Next, consider the process

g (k1) g (k6)→ q (k2) q̄ (k3) g (k4) g (k5) . (4.106)

The TMD matrix reads

Φgg→qq̄gg =




T1 T2 T3 T4

T ᵀ2 T5 T6 T7

T ᵀ3 T6 T5 T8

T ᵀ4 T ᵀ7 T ᵀ8 T9


 , (4.107)

where the blocks gathered in equations C.3 - C.7 (C.7). The TMD gluon distributions are given in the
Table 10.

For the process
g (k1) q (k6)→ g (k2) g (k3) g (k4) q (k5) , (4.108)
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the TMD matrix reads

Φgq→gggq =




T1 T2 T3 T4

T ᵀ2 T5 T6 T7

T ᵀ3 T6 T5 T8

T ᵀ4 T ᵀ7 T8 T5


 , (4.109)

with the blocks expressed by equations C.8 - C.11 (C.3). The TMD distributions are in Table 11.
Similarly, for the process with the antiquark

g (k1) q̄ (k6)→ g (k2) g (k3) g (k4) q̄ (k5) , (4.110)

we get

Φgq̄→gggq̄ =




T1 T1 T1 T1

T1 T2 T3 T4

T1 T3 T2 T5

T1 T ᵀ4 T5 T2


 , (4.111)

with the blocks given by equations C.12 - C.14 (C.4). The TMD distributions are in Table 11.
Processes with two quark-antiquark pairs have smaller number of partial amplitudes. For the process

g (k1) g (k6)→ q (k2) q̄ (k3) q (k4) q̄ (k5) , (4.112)

we obtain

Φgg→qq̄qq̄ =

(
T1 T2

T2 T1

)
, (4.113)

with only two blocks:

T1 =




Φ1 0 Φ2 Φ3 0 Φ2

0 Φ4 0 0 Φ5 0

Φ2 0 Φ1 Φ2 0 Φ3

Φ3 0 Φ2 Φ1 0 Φ2

0 Φ5 0 0 Φ4 0

Φ2 0 Φ3 Φ2 0 Φ1



, T2 =




Φ1 Φ3 Φ1 Φ3 Φ1 Φ3

Φ3 Φ6 Φ1 Φ1 Φ6 Φ3

Φ1 Φ1 Φ1 Φ3 Φ3 Φ3

Φ3 Φ1 Φ3 Φ1 Φ3 Φ1

Φ1 Φ6 Φ3 Φ3 Φ6 Φ1

Φ3 Φ3 Φ3 Φ1 Φ1 Φ1



. (4.114)

The TMD distributions are given in the Table 12.
For the process

g (k1) q (k6)→ g (k2) q (k3) q̄ (k4) q (k5) , (4.115)

we have

Φgq→gqq̄q =

(
T1 T2

T ᵀ2 T3

)
, (4.116)

with three different blocks

T1 =




Φ1 0 Φ2 Φ3 0 Φ2

0 Φ4 Φ∗5 0 Φ3 Φ∗6
Φ2 Φ∗5 Φ4 Φ3 0 Φ4

Φ3 0 Φ3 Φ3 0 Φ3

0 Φ3 0 0 Φ3 0

Φ2 Φ∗6 Φ4 Φ3 0 Φ4



, T2 =




Φ1 Φ3 Φ1 Φ3 Φ1 Φ3

Φ2 Φ3 Φ1 Φ2 Φ7 Φ3

Φ2 Φ3 Φ1 Φ2 Φ2 Φ3

Φ3 Φ3 Φ3 Φ3 Φ3 Φ3

Φ3 Φ3 Φ3 Φ3 Φ3 Φ3

Φ2 Φ3 Φ3 Φ7 Φ2 Φ3



, (4.117)
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T3 =




Φ4 0 Φ2 Φ4 Φ∗8 Φ3

0 Φ3 0 0 Φ3 0

Φ2 0 Φ1 Φ2 0 Φ3

Φ4 0 Φ2 Φ4 Φ∗9 Φ3

Φ∗8 Φ3 0 Φ∗9 Φ4 0

Φ3 0 Φ3 Φ3 0 Φ3



. (4.118)

Note, that in this process there appear both the vanishing structures for vanishing color factors and non-
vanishing structures for vanishing color factors. The list of the TMD distributions is given in the Table 12.
Similarly for the process with an antiquark, we get:

Φgq̄→gqq̄q̄ =

(
T1 T2

T2 T3

)
, (4.119)

with

T1 =




Φ3 0 Φ3 Φ3 0 Φ3

0 Φ4 Φ∗6 0 Φ3 Φ∗5
Φ3 Φ∗6 Φ4 Φ2 0 Φ4

Φ3 0 Φ2 Φ1 0 Φ2

0 Φ3 0 0 Φ3 0

Φ3 Φ∗5 Φ4 Φ2 0 Φ4



, T2 =




Φ3 Φ3 Φ3 Φ3 Φ3 Φ3

Φ3 Φ7 Φ2 Φ1 Φ3 Φ2

Φ3 Φ2 Φ7 Φ3 Φ3 Φ2

Φ3 Φ1 Φ3 Φ1 Φ3 Φ1

Φ3 Φ3 Φ3 Φ3 Φ3 Φ3

Φ3 Φ2 Φ2 Φ1 Φ3 Φ2



, (4.120)

T3 =




Φ3 0 Φ3 Φ3 0 Φ3

0 Φ4 Φ∗9 0 Φ3 Φ∗8
Φ3 Φ∗9 Φ4 Φ2 0 Φ4

Φ3 0 Φ2 Φ1 0 Φ2

0 Φ3 0 0 Φ3 0

Φ3 Φ∗8 Φ4 Φ2 0 Φ4



. (4.121)

The large Nc limits of gluon distributions for 6 parton processes were gathered in Tables 14-17 in Appendix D.
Additionally, we collect the color factors for all processes in Appendix E.

4.6 Large Nc analysis for arbitrary number of gluons

In this section, we shall utilize the color flow method described in subsection 4.3 to give the large Nc
results for a process with n gluons

g (k1) g (kn)→ g (k2) . . . g (kn−1) . (4.122)

We shall use the fact that the color flow decomposition (4.21) involves all (n− 1)! partial amplitudes which
are the same as in the fundamental decomposition (4.19). Therefore, the leading Nc contribution is given by
the partial amplitudes squared (the interference terms are subleading) [171]

|M|2 = C
∑

π∈Sn/Zn

{
|A (π (1) , . . . , π (n))|2 +O

(
1

N2
c

)}
, (4.123)

with C being some color coefficient. Note that, if we used the adjoint color decomposition to reduce the
number of partial amplitudes, only to the linearly independent ones, as we did in the previous section, we
would not be able to claim (4.123). Consequently, the general analysis of large Nc would be very difficult.
Therefore, there is a trade off: switching to a general argumentation requires giving up the advantage of
using minimal number of amplitudes. In practice, however, any partial amplitude can be easily calculated
numerically, so the real loss is not so big.

Based on the above, the idea is to calculate first the diagonal elements of matrix Φ, as they will definitely
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contribute in the large Nc limit. This would be the final answer, if there is no enhancement of powers of N2
c

for some of the non-diagonal elements. In fact, as we shall see, the enhancement indeed occurs, but still the
TMD gluon distribution appearing off the diagonal is numerically small.

Let us start with calculating the diagonal elements of the TMD gluon distribution matrix Φ. It is sufficient
to consider only the following diagrams:

...

k1

k2

k3

kn−2

kn−1

kn

...

k1

k2

k3

kn−2

kn

kn−1

...

k1

kn

k2

kn−2

kn−1

kn−1

|A (1, 2, . . . , n)|2 |A (1, 2, . . . , n, n − 1)|2 |A (1, n, 2, . . . , n − 1)|2

The first diagram from the left corresponds to the partial amplitude squared |A (1, 2, . . . , n)|2 and the
TMD operator reads (after dividing by the corresponding color factor)

Nn−3
c

Nn−2
c

Tr
{
F (ξ)U [−]†F (0)U [+]

}
TrU [�]†  F (1)

gg , (4.124)

i.e. it corresponds to the TMD F (1)
gg , Eq. (4.35). However, any permutation of the following (n− 2) final

state legs will give the same contribution, thus, the set
{
|A (1, π (2) , π (3) , . . . , π (n− 1) , n)|2

∣∣∣π ∈ Sn−2

}
 F (1)

gg . (4.125)

The second diagram, corresponding to |A (1, 2, . . . , n, n− 1)|2, gives

Nn−4
c

Nn−2
c

Tr
{
F (ξ)U [+]†F (0)U [+]

}
TrU [�]†TrU [�]  F (6)

gg . (4.126)

Not only any permutation of final states will give the same result, but also any diagram with leg kn permuted
with {3, . . . , n− 2}. Thus
{
|A (1, π (2) , . . . , π (n− 2) , n, π (n− 1))|2

∣∣∣π ∈ Sn−2

}

∪
{
|A (1, π (2) , . . . , π (n− 3) , n, π (n− 2) , π (n− 1))|2

∣∣∣π ∈ Sn−2

}

· · · ∪
{
|A (1, π (2) , n, π (3) , . . . , π (n− 2) , π (n− 1))|2

∣∣∣π ∈ Sn−2

}

 F (6)
gg . (4.127)

Finally, the third diagram, gives complex conjugate of the operator in (4.124), thus also F (1)
gg , because of our

assumption of the reality of the correlators. We get therefore
{
|A (1, n, π (2) , π (3) , . . . , π (n− 1))|2

∣∣∣π ∈ Sn−2

}
 F (1)

gg . (4.128)

Now let us put together the above results, using the matrix notation as in Section 4.5. Let us define the
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partial amplitude vector so that it preserves the block structure emerging above

~A =




A(1̂, 2, . . . , n− 2, n− 1, n̂)
...

A(1̂, 2, 3, . . . , n− 2, n̂, n− 1)
...

A(1̂, 2, 3, . . . , n̂, n− 2, n− 1)
...

A(1̂, 2, n̂, 3, . . . , n− 2, n− 1)
...

A(1̂, n̂, 3, . . . , n− 2, n− 1)
...




, (4.129)

where we have used hats to denote momenta with fixed position in a given group (the actual ordering in each
group doesn’t matter). For this choice of the vector ~A, the diagonal contribution to the matrix Φ at large
Nc reads

Φdiag =




T1 0 0

0 T2 0

0 0 T1


 , (4.130)

where
T1 = F (1)

gg 1(n−2)!, T2 = F (6)
gg 1(n−3)(n−2)! . (4.131)

For example, for n = 4, we have explicitly

Φdiag =




F (1)
gg 0 0 0 0 0

0 F (1)
gg 0 0 0 0

0 0 F (6)
gg 0 0 0

0 0 0 F (6)
gg 0 0

0 0 0 0 F (1)
gg 0

0 0 0 0 0 F (1)
gg




. (4.132)

Now, let us consider the nondiagonal elements. As said above, these elements will be convoluted with
partial amplitudes (interference terms) whose color factors are suppressed by at least 1/N2

c (to say it dif-
ferently, the non-diagonal elements of the color matrix C in (4.82), if it is calculated in fundamental color
decomposition, are subleading of at least 1/N2

c ). Therefore, they do not contribute in large Nc, unless some
off-diagonal TMD gluon distribution is enhanced by at least N2

c . This still might not be enough, but is a
sign that a careful analysis has to be carried.

The most suspicious non-diagonal elements are those which correspond to the color flow diagrams with
the least number of loops. This is slightly counter-intuitive, but we have to keep in mind that, by definition,
we divide the color factors out of the TMD (there are no vanishing color factors for gluons in the color flow
representation, unlike for the adjoint representation). Thus, the enhancement may happen if the diagrams
with Wilson lines have much more loops than the pure color factor diagrams. It is best to illustrate this by
an explicit example. Consider a 4-gluon process and the following interference term:

A (1, 2, 3, 4)A∗ (1, 4, 2, 3) . (4.133)

We have the following two leading diagrams for the color factor:
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k1

k2

k3

k4

− 1
Nc

k1

k2

k3

k4

The U (1) colorless propagator for the k1 leg stems from the projectors that have to be inserted for the final
state gluons, cf. (4.25). Recall, that in general these color factor diagrams have to be divided by NA to get
the color factor with ’open indices’. The first, Möbius-loop-like diagram, cancels with the second:

1

NA

(
N2
c −

1

Nc
N3
c

)
= 0 . (4.134)

(We called the first diagram ’Möbius-loop-like diagram’ because one of the internal loops shares its border
with the external loop.) Similar cancellation happens for the diagrams, where the U (1) gluon appears for
legs k2 and k3. The sub-leading diagrams are those where U (1) colorless gluon is k4, i.e. it crosses the other
legs:

+ 1
N2
c

k1

− 1
Nc

k1

k2

k3

k4

k2

k3

k4

In this case, we get
1

NA

(
− 1

Nc
N3
c +

1

N2
c

N2
c

)
= −1 . (4.135)

Now, let us look at the leading diagram for the TMD operator:

k1

k2

k3

k4
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It reads
NcTr

{
F (ξ)U [�]

}
Tr
{
F (0)U [�]†

}
= N2

cF (2)
gg . (4.136)

Dividing by the leading color factor (divided by NA) we get finally the following non-diagonal element of the
Φ matrix in the large Nc limit:

(Φ)15 = −N2
cF (2)

gg . (4.137)

As the color factor for A (1, 2, 3, 4)A∗ (1, 4, 3, 2) is suppressed with respect to diagonal elements by 1/N2
c , the

TMD gluon distribution −F (2)
gg indeed contributes in the large Nc limit. In a similar manner, but considering

much more complicated diagrams with maximal number of crossed lines, one can deduce, that this will be
always the case for some non-diagonal elements for any multi gluon process. For example, after a similar but
tedious calculation for 5 gluon process, we find that the dominant non-diagonal element is −N4

cF (2)
gg /4. We

will always get the F (2)
gg TMD gluon distribution, because of the Möbius-loop-like structure, which gives the

two traces appearing in the definition (4.36).
While perhaps it is possible to derive the answer for the non-diagonal leading Nc elements for any n,

let us note that F (2)
gg gives numerically rather small contribution to the cross section, compared to the

other gluon distributions [172,173]. Indeed, it vanishes very quickly with kT , so that it is small for transverse
momenta around the saturation scale. Moreover, it does not survive the collinear limit. Therefore, in possible
phenomenological studies of multigluon production, it is safe to set

Φgg→g...g = Φdiag . (4.138)

The study of large Nc limit for multiparton processes with quarks, and for gluons without the approxi-
mation described above, is left for a separate work.
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5 Phenomenology of multi-jet processes

In this section we present the phenomenology of multi-jet processes. We will start however with the
description of the initial-state parton shower that is based on unintegrated parton distributions. The im-
plementation of this parton shower completes the framework that is used to perform calculations in High
Energy factorization.

5.1 Initial State Parton Shower based on unintegrated parton distributions

The parton shower, which is described here, follows consistently the parton evolution of the unintegrated
distributions. By this we mean that the splitting functions Pab, the order in αs, the scale in the calculation
of αs, as well as the kinematic restrictions applied are identical in both the parton shower and the evolution
of the parton densities.

The backward evolution method, as now common in Monte Carlo event generators, is applied for the
initial state parton shower, evolving from the large scale of the matrix-element process backwards down to
the scale of the incoming hadron. However, in contrast to the conventional parton shower, which generates a
transverse momentum of the initial state partons during the backward evolution, the transverse momentum
of the initial partons of the hard scattering process is fixed by the unintegrated distribution and the parton
shower does not change the kinematics. The transverse momenta during the cascade follow the behavior of
the unintegrated PDF. The hard scattering process is obtained directly using the off-shell matrix element
calculations The partonic configuration is stored in the form of an LHE (Les Houches Event) text file, but
now including the transverse momenta of the incoming partons. This LHE files are input to the shower and
hadronization interface of Cascade [174, 175] (new version 2.4.x) for the transverse momentum dependent
shower where events in HEPMC [176] format are produced. LHE and HEPMC are standardized interfaces
for communication between matrix element generators and event generators.

The backward evolution of the initial state parton shower follows very closely the description in [174,175,
177,178]. The evolution scale µ is selected from the hard scattering process, with µ2 = p̂2

T or µ2 = Q2
T + ŝ for

an evolution in virtuality or angular ordering, with p̂T being the transverse momentum of the hard process,
QT being the vectorial sum of the initial state transverse momenta and s being the invariant mass of the
subprocess.

Starting with the hard scale µ = µi, the parton shower algorithm searches for the next scale µi−1 at
which a resolvable branching occurs. This scale µi−1 is selected from the Sudakov form factor ∆S making
use of the unintegrated densities Fa(x′, k′t, µ

′) which depend on the longitudinal momentum fraction x′ = xz

of parton a, its transverse momentum k′T probed at a scale µ′ (see also [174]). The Sudakov form factor ∆S

for the backward evolution is given by (see Fig. 21 left):

∆S(x, µi, µi−1) = exp

[
−
∫ µi

µi−1

dµ′

µ′
αs(µ̃

′)
2π

∑

a

∫
dzPa→bc(z)

x′Fa(x′, k′T , µ
′)

xFb(x, kT , µ′)

]
, (5.1)

which describes the probability that the parton b remains at x with the transverse momentum kT when
evolving from µi to µi−1 < µ. Please note that the argument in αs is µ̃′, and depends on the ordering
condition as discussed later.5

In the parton shower language, the selection of the next branching comes from solving the Sudakov form
factor Eq. (5.1) for µi−1. However, solving the integrals in Eq. (5.1) numerically for every branching would
be very time consuming. Instead, the veto algorithm [177,179] is applied. Veto algorithm allows to generate a
probability distribution F (µ) using simpler over-estimating function G(µ). After the value of µ is generated,
according to G(µ), with µ < µmax, it is either kept, with probability dF (µ)/dµ

dG(µ)/dµ , or a new value is generated,

5In Eq. (5.1) ordering in µ is assumed, if angular ordering, as in CCFM, is applied then the ratio of parton densities would

change to x′Fa(x′,k′T ,µ
′/z)

xFb(x,kT ,µ′)
as discussed in [174].

68



5 PHENOMENOLOGY OF MULTI-JET PROCESSES
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b

Figure 21: Left: Schematic view of a parton branching process. Right: Branching process b→ a+ c.

but this time with µmax set to be equal to the previously generated value. The selection of µi−1 and the
branching splitting zi−1 follows the standard methods [177].

The splitting function Pab, as well as the argument µ̃ in the calculation of αs is chosen exactly as used
in the evolution of the parton density. In a parton shower one treats “resolvable” branchings, defined via a
cut in z < zM in the splitting function (see Eq. (3.3)) to avoid the singular behavior of the terms 1

1−z , and
branchings with z > zM are regarded as “non-resolvable” and are treated similarly as virtual corrections:
they are included in the Sudakov form factor ∆S .

The longitudinal momentum fraction xi−1 = xi
zi−1

is calculated by generating zi−1 according to the
splitting function. With zi−1 and µi−1 all variables needed for a collinear parton shower are obtained.

The calculation of the transverse momentum kT is sketched in Fig. 21 (right). The transverse momentum
qT i can be obtained by giving a physical interpretation to the evolution scale µi (see Fig. 21 right), and qT i
can be calculated in case of angular ordering (µ is associated with the angle of the emission) in terms of the
angle Θ of the emitted parton wrt the beam directions qT,c = (1− z)Eb sin Θ:

q2
T,i = (1− z)2µ2

i . (5.2)

Once the transverse momentum of the emitted parton qT is known, the transverse momentum of the
propagating parton can be calculated from

kT i−1 = kT i + qT i−1 (5.3)

with a uniformly distributed azimuthal angle φ is assumed for the vector components of k and q.
The whole procedure is iterated until one reaches a scale µi−1 < q0 with q0 being a cut-off parameter,

which can be chosen to be the starting evolution scale of the unintegrated distribution. However, it turns
out that during the backward evolution the transverse momentum kT can reach large values, even for small
scales µi−1, because of the random φ distribution. On average the transverse momentum decreases, and it
is of advantage to continue the parton shower evolution to a scale q0 ∼ ΛQCD ∼ 0.3 GeV, to allow enough
emissions to share the transverse momenta generated.

5.2 Single jet production

The single inclusive jet production is a process which can directly probe partonic content of the proton
without a need for large corrections from fragmentation functions. What makes it interesting is the possibility
to apply the appropriate formula already at the leading order in high energy factorization. This is to be
contrasted with collinear factorization, where the 2→ 1 emission vertex vanishes identically and one has to
account for higher order corrections, either at fixed order of αs, or with a parton shower.
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The single inclusive jet production process can be schematically written as

A+B 7→ a+ b→ jet +X , (5.4)

where A and B are the colliding hadrons, each of which provides a parton, respectively a and b. X corresponds
to undetected, real radiation and the beam remnants from the hadrons A and B are understood in the above
equation.

The longitudinal kinematic variables read

x1 =
1√
s
pT,jet e

yjet , x2 =
1√
s
pT,jet e

−yjet , (5.5)

where s = (pA + pB)2 is the total squared energy of the colliding hadrons, while yjet and pjet are the rapidity
and transverse momentum of the leading final state jet, respectively.

The hybrid, high energy factorization formula for the process (5.4), justified for configurations with
x1 � x2, at the leading ln (1/x) accuracy6, reads [182]

dσ

dyjetdpT,jet
=

1

2

π pT,jet
(x1x2s)2

∑

a,b,c

|Mab∗→c|
2
x1fa/A(x1, µ

2)Fb/B(x2, p
2
T,jet, µ

2) , (5.6)

where F is a generic notation for the unintegrated parton density, which depends in general also on the hard
scale µ. The factorization formula neglects contribution of gauge links, discussed in the previous sections.
It can be justified in the region where saturation effects are rather small. The matrix elements |Mab∗→c|2
can be obtained via application of the helicity-based formalism [104, 105, 183] for off-shell partons or the
parton reggezation approach [184]. The following channels contribute to the single jet production in HEF
approach

gg∗ → g , qg∗ → q , gq∗ → q , q̄q∗ → g . (5.7)

The explicit expressions for the corresponding matrix elements are collected in Appendix F.
We now turn to predictions for the transverse momentum spectra of the single inclusive forward jets at

the LHC. The calculations were performed at the center-of-mass energies of
√
s = 7 and 13 TeV. The event

selection was applied by requiring a leading jet with pt,jet > 35GeV in the rapidity window of 3.2 < |yjet| < 4.7,
following the cuts used in the CMS analyses of Refs. [185, 186]. For the on-shell partons we used the
distribution from the CT10 NLO set [28]. For the off-shell partons, Fb/B(x2, p

2
T,jet, µ

2), we chose the following
set of distributions, described in Section 3:

• KS nonlinear,

• KS linear,

• KShardscale nonlinear,

• KShardscale linear,

• DLC2016, which is the KMRW method with the double logarithm approximation applied for Sudakov
form factor [187].

All HEF predictions in this and in the following section were obtained with the forward program [188].
The code implements the hybrid high energy factorization for the single and double jet production and it is
capable of using both gluon and quark off-shell parton distributions.

As we see from the above list, all parametrizations, except that of DLC2016, provide only off-shell gluons
and neglect off-shell quarks by assuming that their relative contribution is much smaller. The DLC2016
distributions provide the full set of partons and this gives us unique opportunity to verify this assumption.

6At the NLO level, there exists an extension of this formula for single particle production [180,181].
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Figure 22: Single inclusive forward jet production. Comparison between different channels contributing to
the spectrum of jet’s transverse momentum. The results use DLC2016 [187] parametrization for the off-shell
partons.

In Fig. 22 we show predictions for various contributions to the single inclusive jet production obtained
using Eq. (5.6) with the DLC2016 off-shell partons. It is evident that the off-shell quark contribution can be
indeed effectively neglected and we can proceed just with the off-shell gluons in the initial state. The second
interesting observation is that the qg∗ → q channel gives larger contribution than gg∗ → g at high transverse
momentum while the two channels contribute comparably at lower pT,jet.

As the off-shell quark contributions are negligible, it is justified to use all of the off-shell gluon sets listed
above as an input for predictions of single inclusive jet spectra. The corresponding results are shown in Fig. 23,
where the upper panel shows the absolute distributions, whereas the two lower panels show theory-to-data
ratio. We observe good compatibility of the predictions and the 7 and 13-TeV CMS data [185, 186] across a
range of unintegrated gluon distributions. We believe that this is a consequence of the TMD factorization
applied to low-x physics [115], which states that the same gluon density (if saturation effects are negligible
in the considered phase space region) is to be used for the F2 structure function and for the single inclusive
gluon production.

5.2.1 Saturation

In this section we present calculations of the differential cross section for the production of single inclusive
jets as a function of transverse momentum and energy within the rapidity interval 5.2 < y < 6.6 in proton-
lead collisions at

√
sNN = 5.02 TeV. The chosen rapidity range corresponds to the acceptance of the Castor

calorimeter, installed only on one side of the nominal interaction point (−6.6 < η < −5.2) of the CMS
experiment [189], which has collected proton-proton and proton-lead collision data at the LHC at various
center-of-mass energies. In our setup, the phase space is defined such that in proton-lead collisions the proton
hosting the high-x initial state parton moves towards the negative rapidity hemisphere, where the Castor
detector resides. This allows to probe the structure of the lead ion, which moves away from Castor, and
hosts a very low-x parton. All results are presented in the center-of-mass frame and need to be boosted to
the laboratory frame for comparisons with data measurements.

All samples used in this section are obtained with the KaTie Monte Carlo event generator, which can
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Figure 23: Single inclusive forward jet production. Comparison of predictions for the transverse momen-
tum distributions of a jet with CMS data at 7 [185] and 13 TeV [186]. The bands correspond to different
gluon distributions used for calculations. The width of the bands comes from varying the factorization and
renormalization scales by factors 1

2 and 2 around the central value equal to µF = µR = pT,jet. In case of
KShardscale for 13 TeV, because of limited size of the available grid, we could vary the scale only by the
factors 1

2 and 3
2 . For better visibility, data and predictions with various unintegrated gluons were multiplied

by factors 10n, with n = 0, . . . , 4.
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Figure 24: Parton level predictions of KaTie for KS-linear, KS-nonlinear and KMRW-lead gluon densities.
Differential jet cross sections as a function of jet pT (left) and energy (right) are presented for proton-lead
interactions. The fine dotted lines represent the upper and lower uncertainty in the nonlinear suppression
factor.

produce tree-level matrix element calculations in HEF [190]. In this particular case, gg∗ → g and qg∗ → q

processes at
√
sNN = 5.02 TeV are generated with the initial gluon being off-shell. The minimum pT of

the final-state jet is set to 1.4 GeV. The renormalization and factorization scale is set to be the transverse
momentum of the final state jet. Finally, the aforementioned CT10 NLO is used as collinear PDF for the
on-shell parton, and the specific KS-linear, KS-nonlinear and KMRW-lead unintegrated gluon PDFs for the
off-shell parton. The resulting samples are analyzed with Rivet [191] where the jets are clustered with
FastJet [192] using the anti-kT algorithm with distance parameter equal to 0.5 [70]. To obtain the hadron
level samples, the output from KaTie is fed to the Cascade 2.4.13 Monte Carlo event generator [174] that
employs an adopted version of the Lund string fragmentation model (as used in Pythia) to account for
hadronization.

Transverse momentum and energy spectra The observable that conveniently reveals the partonic
dynamics in which we are interested is the inclusive jet transverse momentum spectrum: in particular, when
the jet is produced in the forward direction, its pT has to be sufficiently small for it to potentially carry
information about the saturation phenomenon. In Fig. 24 (left) we plot the parton level cross section as a
function of pT, while in Fig. 24 (right) it is presented as a function of the energy of the jet. Predictions obtained
using KaTie with KS-linear, KS-nonlinear and KMRW-lead parton densities are compared. The result with
the KS-nonlinear PDF is obtained when the nonlinear suppression term is multiplied by a parameter equal
to 0.75. Since this is a free parameter that needs input from data, additional scenarios, where the nonlinear
suppression term is multiplied by 0.5 and 1.0 are included as fine dotted curves in Fig. 24 (and all other
following figures in this subsection). Although this choice is arbitrary, it does indicate the sensitivity of the
observable if the nonlinear suppression is altered by ±33%. We see that, as expected, at lower pT and lower
energy the saturation effects can be substantial, since the KS-nonlinear result is suppressed as compared
to KS-linear. In addition we see that KMRW-lead, which follows from DGLAP evolution equations and
does not account for nonlinear effects during the evolution but accounts for nuclear shadowing [193], is
very close to KS-linear. In Fig. 25, we add hadronization effects by combining the output of KaTie with
Cascade (following methods developed in [194]), which leads to a significant decrease of the overall cross
section and slightly changes the shape of the distributions as well. Nevertheless, a clear difference in the
predictions remains at lower pT and energy values, which makes the observable suitable for comparisons with
measurements from data corrected to particle level.
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Figure 25: Hadron level predictions of KaTie+Cascade for KS-linear, KS-nonlinear and KMRW-lead gluon
densities. Differential jet cross sections as a function of jet pT (left) and energy (right) are presented for
proton-lead interactions. The fine dotted lines represent the upper and lower uncertainty in the nonlinear
suppression factor.

5.2.2 Nuclear modification ratio

In order to quantify the strength of nonlinearities as one goes from proton-proton to proton-lead, it is
convenient to calculate a quantity called the nuclear modification ratio RpA. For a generic observable O, it
is defined as

RpA =
σpPb(O)

Aσpp(O)
. (5.8)

On one hand, in absence of any effects like saturation in the low-x evolution equations, the ratio would be just
consistent with unity (since one considers gluon dominated observables). On the other hand, if saturation
effects are present, they would be visible to us in the nuclear modification ratio as a deviation from unity
within some range, for instance in the transverse momentum spectra of the measured jets. In the low-x
approach, the suppression is directly linked to a denser partonic system (and therefore larger contribution of
the nonlinear term) as one goes from proton to lead (since, roughly, Qs ∼ A1/3). In the DGLAP approach the
possible suppression is due to shadowing, which is implemented by fitting parton densities to data without
accounting for any additional dynamical effects that may happen when going from a proton to a nucleus7.

In Figs. 26 and 27 we compare parton and hadron level predictions of the nuclear modification ratios
as obtained using KS-nonlinear and KMRW-lead parton densities. It shows a significant suppression for
KS-nonlinear at low values of pT, which indicates that the saturation of the gluon density in lead is large
compared to the saturation in the proton. At high values of pT the results obtained with KS-nonlinear
and KMRW-lead converge, which shows that nonlinear suppression is negligible in this region. Both do not
converge to unity however, which can imply that other suppression effects coming from the nuclei are present.
The results obtained using the KMRW-lead gluon density exhibits a different, more constant, behavior as
it does not include saturation effects. However, the nuclear shadowing can be substantial, even at pT = 10

GeV, since at the considered energies the nuclear PDF is probed at x = 10−5.
The nuclear modification ratio as a function of the jet energy shows a similar behavior, although the effects

are somewhat washed out, leading to an overall different slope and normalization of the KS-nonlinear and
KMRW-lead predictions. Looking at the fine dotted curves in Figs. 26 and 27, it is seen that the uncertainty
due to saturation is large, indicating a high sensitivity of these observables to saturation effects. Even though

7In general, in absence of any nuclear effects and saturation, the small deviation from unity is due to the difference between
proton and neutron PDFs that contribute to a nuclear PDF.
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Figure 26: Parton level predictions of the nuclear modification ratio RpA as function of the jet pT (left)
and jet energy (right). The fine dotted lines represent the upper and lower uncertainty in the nonlinear
suppression factor.
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Figure 27: Hadron level predictions of the nuclear modification ratio RpA as function of the jet pT (left)
and jet energy (right). The fine dotted lines represent the upper and lower uncertainty in the nonlinear
suppression factor.

the variations can be significant, there is always a clear difference with respect to KMRW-lead, which does
not include such effects. Therefore a measurement of the nuclear modification factor of forward, low pT jets
is ideal to disentangle the linear effects from the nonlinear and to constrain the amount of suppression in the
cross section.

In order to better understand this suppression of the cross section, we also plot the ratio of the unintegrated
gluon densities for lead ions (UGDPb) and protons (UGDp) as a function of k2

⊥ in Fig. 28 (left), evaluated at
different values of x. We see that at larger values, x = 10−3, the suppression is much reduced and the ratio
converges quickly to unity. At very low values, x = 10−5, we see a similar behavior as reported before. This
is consistent, since the production of low pT jets within 5.2 < y < 6.6 reaches values of x as low as 10−6.

In addition, Fig. 28 (right) shows parton level predictions of RpA for jets within the default rapidity
range, 5.2 < y < 6.6, and for jets that are produced more centrally in 4.0 < y < 5.0, for both KS-nonlinear
and KMRW-lead parton densities. This confirms the dependence of the nonlinear behavior on the rapidity
regions probed in a collision, and shows that parton densities that do not incorporate nonlinear dynamics,
such as KMRW-lead, are less sensitive to rapidity selection.
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5.3 High Energy Factorization for dijets

5.3.1 SPS and DPS contributions

Dijets can be produced either in a single-parton scattering (SPS)

A+B 7→ a+ b→ jet1 + jet2 +X , (5.9)

where the partons a and b interact through a 2→ 2 process, or in a double parton scattering (DPS)

A+B 7→ a1 + b1 + a2 + b2 → jet1 + jet2 +X , (5.10)

in which each of the incoming hadrons provides two-parton pairs ai + bi, which in turn undergo two 2 → 1

scatterings. The DPS can be thought of as the single inclusive jet production process of Eq. (5.4) squared.

5.3.2 Results within HEF formalism

In general, in order to comply with the state of the art of theoretical development, description of the
SPS process needs corrections from the improved TMD factorization [82], as it gets contribution from the
so-called quadrupole configurations of color glass condensate (CGC) states and the latter are important in
the non-linear domain.

In the study here, however, we focus on the region of azimuthal distance between the two leading jets,
∆φ, where the bulk of linear and nonlinear KS densities [111] give comparable results [113] and our aim is
just to quantify the potential corrections coming from other physical effects like DPS contributions and final-
state parton shower. Encouraged by the good description of the single inclusive jet production, presented in
Section 5.2, we aim at evaluation of the DPS contribution to inclusive dijet production in order to assess its
relative impact with respect to SPS.

The formula for the SPS contribution to the forward dijet cross section reads [110,111]

dσSPS

dy1dy2dpT 1dpT 2d∆φ
=

pT 1pT 2

8π2(x1x2s)2

∑

a,c,d

x1fa/A(x1, µ
2) |Mag∗→cd|2Fg/B(x2, k

2
T )

1

1 + δcd
, (5.11)
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Figure 29: SPS and DPS contribution to forward dijet production for various cuts on transverse momentum
of a jet at the LHC at

√
s = 7 TeV.
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where
x1 =

1√
s

(|pT 1|ey1 + |pT 2|ey2) , x2 =
1√
s

(
|pT 1|e−y1 + |pT 2|e−y2

)
, (5.12)

are the fractions of incoming particles’ momenta carried by the partons participating in the hard interaction
and

k2
T = |pT1 + pT2|2 = p2

T 1 + p2
T 2 + 2pT 1pT 2 cos ∆φ (5.13)

is an imbalance of the transverse momentum of the two leading jets, which, in the HEF formalism is equal
to the off-shellness of the incoming gluon. The two leading jets are separated in the transverse plane by the
angle ∆φ.

The expressions for the matrix elements can be found in Refs. [110,111], while the parton densities at the
approximation we are working with are of the same kind as for the single inclusive jet production discussed
in subsection 5.2. Our aim is now to identify and quantify potential corrections to the HEF framework
encapsulated in Eq. (5.2).

One of the above may come from double parton scattering [187, 195–200]. In general, the cross section
for DPS involves parton density functions which take into account correlations of partons inside the hadrons
before the hard scattering [201–204]. However, recent study of Ref. [205] shows that a factorized assumption
for DPS is largely valid at high scales (Q2 > 102 GeV2). Following this observation, we can therefore write

dσDPS

dy1d2pT 1dy2d2pT 2
=

1

σeffective

dσ

dy1d2pT 1

dσ

dy2d2pT 2
, (5.14)

where σeffective = 15 mb, based on the recent measurement of the LHCb [206, 207] collaboration, which
confirmed previous results of D0 [208] and CDF [209]. The explicit expression for the DPS contribution in
the factorized approximation reads

dσDPS

dy1dy2dpT 1dpT 2d∆φ
=

1

σeff

π

8

pT 1

(x1x2s)2

pT 2

(x̄1x̄2s)2

×
(
|Mgg∗→g|

2
x1fg/A(x1) +

nf∑

i=1

|Mqg∗→q|
2
x1fq(i)/A(x1)

)

×
(
|M̄gg∗→g|

2
x̄1f̄g/A(x̄1) +

nf∑

i=1

|M̄qg∗→q|
2
x̄1f̄q(i)/A(x̄1)

)

×Fg∗/B(x2, p
2
T 1)F̄g∗/B(x̄2, p

2
T 2)θ(1− x1 − x̄1)θ(1− x2 − x̄2) ,

(5.15)

where, in order to be compatible with the SPS formula (5.11), we introduced an auxiliary azimuthal angle
between the final state jets, ∆φ. The notation follows that of Eq. (5.11) except that now, each of the incoming
particles provides a pair of partons, whose energy fractions are given by x1 and x̄1 for hadron A, and x2 and
x̄2 for hadron B. The theta functions guarantee that a pair of partons from a single hadron does not carry
more than 100% of the hadron’s energy.

The DPS contributions are in general expected to be strong in the low-pT region of phase space. In order
to quantify the role of DPS in forward-forward dijet production, we have calculated the DPS contribution to
the azimuthal-angle dependence. Of course, we expect that, in the approximation of Eq. (5.14), where the
correlations between incoming partons from different pairs are neglected, the contribution will be just of a
pedestal type, thus only changing the overall normalization.

In Fig. 29 we show the SPS and the DPS contributions to the azimuthal angle distributions for various cuts
on the hardest jet’s transverse momentum, set respectively at 35, 15, 10 and 5 GeV. We see that the relative
contribution of DPS increases with lowering the transverse momentum jet cut, but it is always significantly
smaller than SPS at the experimentally relevant value of 35 GeV. We have checked that the picture looks
very similar at 13 TeV.
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Figure 30: Transverse momentum distribution and azimuthal decorrelation in forward dijet production.
Comparison of predictions from high energy factorization, Eq. (5.11) with DLC2016 unintegrated gluon [187],
and Pythia MC generator. We checked that including MPI has negligible effect on these distributions.
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Figure 31: Comparison of results for forward dijet spectra obtained with different PDFs used in Pythia MC
generator: MRST NLO [210] and CT10 NLO [28].

5.3.3 HEF vs. collinear factorization

We now turn to the comparison of our HEF predictions for the forward dijet production with the results
obtained within collinear factorization8. To produce the latter, we have used the Pythia 8.2 MC generator.
To cluster parton level particles into jets, the anti-kT algorithm [70] was used, as implemented in the FastJet
package [192]. The cuts on the jets’ momenta were set to pT,1,2 > 20 GeV and the rapidity window 3.2 <

y1, y2 < 4.9 was imposed to select the jets. The jet radius was set to R = 0.5, as in the HEF calculation
discussed in preceding subsection.

Pythia was set up to generate events including the leading partonic sub-processes. For the comparison
with HEF, the CT10 NLO PDFs [28] were used. Runs were performed at two proton-proton collision ener-
gies: 7 and 13 TeV. For each energy, two sets of MC data were produced, distinguished by the final state
radiation (FSR) option turned on or off.

The comparison between the HEF and the collinear factorization results in shown in Fig. 30. We see that,
in the case in which FSR radiation is turned off, the two formalisms agree quite well in description of the
pT spectra in the whole range of considered values. In the case of the azimuthal angle distributions, shown
in the lower panel of Fig. 30, the results agree in the region of large and moderate angles and differ in the
region of small angles. We attribute the latter to the effect of different treatment of singularities in the two
frameworks. In HEF, matrix element diverges as the two outgoing partons become collinear, see Ref. [82].
This divergence is regularized by the jet algorithm, which is responsible for the kink around ∆φ = 0.5, seen
in the lower panel of Fig. 30. On the other hand, in the case of Pythia, the shape of the distribution is a
result of initial state radiation generated via parton shower matched with the collinear matrix element. Since
the collinear matrix elements have different singularity structure than the HEF matrix elements this leads to
different results at small ∆φ [82, 110].

In Fig. 31 we show a comparison between distributions obtained with Pythia but using two different
PDF sets. As we see, both sets give similar results, hence, the qualitative differences between Pythia and
HEF, seen in Fig. 30, cannot be attributed to a choice of PDFs.

8The preliminary estimate of the result in HEF at 7 TeV has been performed in [211].
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Powheg 2jet NLO noPS

1.6 1.8 2 2.2 2.4 2.6 2.8 3

10−3

10−2

10−1

1

Di-jet azimuthal decorrelation, 140 < p
leading
T < 200 GeV

∆φ [rad]

1 σ
d

σ
d

∆
φ

[r
ad

−
1
]

Figure 32: ∆φ distribution for high pT dijet production [212]. The solid (blue) histogram shows the prediction
using off-shell 2→ 2 matrix elements with unintegrated parton densities, the dashed (red) line is a 3-parton
configuration obtained with Powheg . Both predictions are without parton shower and hadronization.

In Fig. 30, we also observe that turning on the FSR in Pythia leads to change in normalization of both
the pT and ∆φ distributions. The spectra decrease by factor ∼ 2 for moderate and large pT , as well as ∆φ,
values. Low-pT and low-∆φ parts of the distributions are almost not affected by FSR. The observed difference
in normalization of the transverse momentum spectra can be explained by the energy loss of the leading hard
parton that happens readily via FSR parton shower emissions. For a significant fraction of events, this leads
to the situation in which the parton originating from the hard collision splits into two partons separated by
an angle sufficient to produce two lower-pT jets. This mechanism takes the high-pT events from the tail of
the spectrum without FSR and moves them to the region below the jet cut. Hence, they effectively do not
contribute to the observables shown in Fig. 30.

Finally, we mention that we have checked explicitly that the picture of Fig. 30 persists if Pythia events
are supplemented with multi-parton interactions (MPI). Hence, forward dijet production in the collinear
factorization framework is weakly sensitive to MPIs, which is consistent with the negligible effect of DPS in
HEF, which we demonstrated in Section 5.2.

5.3.4 Predictions including transverse momentum dependent parton showers

Let us now move to predictions for dijet production that include initial state parton showers. The cal-
culations were performed using off-shell matrix elements of 2 → 2 QCD processes and the unintegrated
distributions obtained with KMRW procedure, described in Section 3. The results of the parton level cal-
culation are fed via LHE files to the shower and hadronization interface of Cascade [174, 175] for the
transverse momentum dependent shower where the events in HEPMC format are stored for further process-
ing as via Rivet [191]. The results were compared to the LHC data at

√
s = 7 TeV [212] in the central

region. The events containing two leading jets, each with pT > 30 GeV and rapidity |y| < 1.1, were selected
and assigned into one of two regions, based on the largest transverse momentum pleading

T in the event, i.e.
110 < pleading

T < 140 and 140 < pleading
T < 200 GeV.

First, we show parton level results of azimuthal decorrelations of high pT dijet production. In Fig. 32
we compare predictions obtained from our calculation (without parton shower) with the one from Powheg
dijet (without parton shower). One can observe reasonable agreement between both parton-level calculations
at high ∆φ. The Powheg prediction shows a sharp drop at ∆φ = 2π/3, which is the kinematic limit for
a 3 parton configuration. The prediction using transverse momentum dependent shower shows a smooth
distribution to smaller values of ∆φ which is typical for a configuration where more partons are radiated
in the initial state. The distribution of our prediction depends entirely on the shape of the unintegrated
distributions. Thus, with a precise determination of the unintegrated PDFs, we expect the ∆φ distribution
to be well described, without any tuning and without any adjustment of additional parameters.
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Figure 33: ∆φ distribution of high pT dijet events for different regions of pleading
T : without parton shower

(noPS, dashed red line), with final state parton shower (FPS, dashed-dotted brown line), with initial trans-
verse momentum dependent shower and final state parton shower (IFPS, blue solid line). The factorization
scale µ2 = Q2

T + ŝ was chosen.
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Figure 34: ∆φ distribution as measured by [212] for different regions of pleading
T . The data are compared

with predictions using off-shell 2 → 2 matrix elements with unintegrated parton densities, an initial state
TMD parton shower, conventional final state parton shower and hadronization. Shown are predictions for
two different choices of the factorization scale, as discussed in the text.

In Fig. 32 we show the advantage in using unintegrated parton densities compared to a fixed order collinear
calculation: due to the resummation of multiple parton emissions in the unintegrated parton density, the
phase space for multi-jet production is covered, as seen in the tail to small ∆φ. Of course, the experimental
measurement is different from a purely 2-parton final state, even using unintegrated distributions, since the
jet clustering is based on multiple partons (hadrons). In Fig. 33 we show a comparison of the prediction
using unintegrated PDFs with and without initial state transverse momentum dependent parton showering
and including final state parton shower and hadronization (taken from Pythia [56]), with a final state parton
shower scale of µfps = 2p̂T being the average transverse momentum of the outgoing matrix element partons.
While, even without the parton shower, a tail towards small ∆φ is observed, the simulation of the parton
shower, both initial transverse momentum dependent and final state parton shower contributes to the shape
of the distribution and brings it close to the measurement.

In Fig. 34 we show predictions for the azimuthal decorrelation ∆φ for high pT dijets for different regions of
pleading

T using unintegrated parton densities with off-shell matrix elements, parton shower and hadronization
in comparison with measurements at

√
s = 7 TeV, in pp collisions, at the LHC [212]. We show predictions for

two different factorization scales: µ2 = Q2
T + ŝ, where QT is the vectorial sum of the initial state transverse

momenta and
√
ŝ is the invariant mass of the partonic subsystem and µ2 = p̂T

2. The first scale choice is

82



5 PHENOMENOLOGY OF MULTI-JET PROCESSES

motivated by angular ordering (see Ref. [213]), the second one is the conventional scale choice. The scale
choice motivated from angular ordering describes the measurements significantly better than the conventional
one.

It is important to note, that there are no free parameters left: once the unintegrated parton density is
determined, the initial state parton shower follows exactly the unintegrated parton distribution. The uninte-
grated parton distribution is the essential ingredient in the present calculation, and a precise determination
of the parton distribution over a wide range in x, kT and scale µ is an important topic. First steps towards
a precision determination of the unintegrated densities from HERA measurements have been performed in
Ref. [214,215].

5.4 iTMD factorization for three jets

In this subsection, we study inclusive three jet production using HEF and iTMD factorizations. Schemat-
ically, this process can be written as

A+B 7→ a+ b→ jet1 + jet2 + jet3 +X , (5.16)

with the longitudinal momentum fractions of the initiating partons parametrized with

x1 =
∑

i

|~pT i|√
s
eyi , x2 =

∑

i

|~pT i|√
s
e−yi , (5.17)

where ~pT i and yi are the transverse momenta and rapidities of the jets. Here we only present a preliminary
result, with only the gluon-gluon channel included. The cross section for the hybrid HEF reads [216]

dσAB→X =

∫
d2kT B
π

∫
dx2

x2

∫
dx1fg/A(x1, µ

2) |Mgg∗→ggg|2Fg∗/B(x2, kT B) , (5.18)

where kT B is the transverse momentum of the incoming off-shell gluon. As was discussed in Section 4, in
iTMD factorization, each color flow channel has different distribution. Therefore, the matrix element squared,
written using a vector of partial amplitudes |M|2 = ~A †C ~A, together with unintegrated gluon distribution
Fg∗/B(x2, kT B), is replaced by the TMD distribution matrix, defined through Eq. (4.81). For the gluon
channel only, we need to insert the result given by Eq. (4.95). Contributions with quarks would require
unknown for the current moment distributions F (3)

qg (4.34). In the large-Nc limit, the calculation of the gluon
channel for three jet production requires the same gluon distributions that appear in the dijet production, i.e.
F (1)
gg , F (2)

gg , F (6)
gg . In Ref. [135] these TMD distributions were calculated in the Gaussian approximation using

the KS gluon distribution [111] , as described in subsection 4.4, and we use them to perform calculations of
cross sections.

The calculations were performed for the center of mass energy
√
s = 7 TeV, with the following kinematic

cuts restricting the phase space to interesting events. First, the transverse momentum cut for the final jets

|~pTi | > pT cut , i = 1, 2, 3 , (5.19)

were set to pT cut = 20 GeV, also the following ordering of momenta was imposed, |~pT 1| > |~pT 2| > |~pT 3|.
The rapidities were restricted to the forward region

3.2 ≤ yi ≤ 4.9 . (5.20)

Further restriction is imposed by jet definition, and the usual anti-kT clustering algorithm is applied with
R = 0.5. The HEF calculations were performed using KaTie with CT10nlo collinear gluon distribution and
KS nonlinear unintegrated gluon distribution, and the appropriate reweighting was performed by replacing
the color matrix and KS distribution by the TMD distribution matrix, in the large-Nc limit given in the first
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row in Table 13. The estimations of the theoretical uncertainty are obtained by varying the factorization and
renormalization scales by factors 1

2 and 2 around the central value equal to the average transverse momentum
of the jets

µ =
pT 1 + pT 2 + pT 3

3
. (5.21)

We present the results for azimuthal decorrelations, i.e. the azimuthal angle between the hardest and the
softest jet

φ13 = |φ1 − φ3| , φ13 ∈ [0, 2π) , (5.22)

and the jet unbalanced transverse momentum

∆pT = |~pT 1 + ~pT 2 + ~pT 3| , (5.23)

which corresponds to the transverse momentum of the off-shell gluon, ∆pT =
∣∣∣~kT B

∣∣∣. The results are shown
in Fig. 35. The iTMD predictions dominate in the whole range of considered values, both for φ13 and ∆pT .
We can see, however, that that the difference between the two formalisms is smaller at smaller angles and
higher ∆pT . The results of iTMD are larger especially at higher angles and smaller ∆pT , as one would naively
expect.

These results are only preliminary, and further calculations are needed. As a first step, it is necessary
to check if the inclusion of the remaining channels change the above picture and what predictions would be
obtained for pA collisions. The potential correction might also come from the linearly polarized gluons [217].
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Figure 35: Differential cross section in difference of the azimuthal angles between the hardest and the softest
jet (left) and differential cross section in the unbalanced pT (right) for forward jets. The band represents the
theoretical uncertainty due to the scale variation.
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6 Summary

In this thesis we studied transverse-momentum dependent factorization frameworks in QCD. After pre-
senting numerous introductory topics that describe the theoretical background and defining the components
of the framework necessary for phenomenological analyses in Sections 1-3, we calculate transverse-momentum
dependent gluon distributions for multiparton processes in Section 4, and describe the processes of inclusive
one-, two- and three-jet production in Section 5.

In Section 4 we calculated the TMD gluon distributions for processes with five and six colored partons.
So far, in the literature, processes with four partons were considered. At leading order, our results are
sufficient to calculate three and four jet production in the gluon saturation regime, provided the two new-
found basic TMD gluon distributions are determined. This can be done using the B-JIMWLK equation, as
in [136]. Instead of calculating the structure of the operators for particular Feynman diagrams, we used the
color decomposition, which is the most efficient way of dealing with the multi-particle QCD amplitudes. In
particular, for processes with quarks, we used the color flow decomposition, which treats quarks and gluons
on equal footing. In addition, we formulated straightforward color flow Feynman rules for the gauge links,
which allow immediate derivation of the TMD operator for a given color flow. The color flow Feynman
rules are particularly convenient for large Nc analysis. We found a general answer for a process with an
arbitrary number of gluons, however in a certain approximation motivated by numerical studies of TMD
gluon distributions. In the large Nc limit, we find that only two structures contribute, for any number of
legs.

Before presenting multijet phenomenology in Section 5, the construction of initial-state parton shower
based on unintegrated parton distributions is described. Afterwards, we start with single inclusive jet pro-
duction. We demonstrated that the HEF framework describes well the single inclusive jet production and
the main uncertainty comes from the unintegrated parton distributions. In this context, we have observed
that the contribution from the off-shell quarks is negligible. Subsequently, we calculated transverse mo-
mentum and energy spectra of single inclusive forward jets in proton-lead collisions, in the rapidity region
of 5.2 < y < 6.6, which corresponds to the Castor detector acceptance at the CMS experiment. The
HEF calculations have been performed using the KaTie Monte Carlo event generator supplemented with
KS-linear, KS-nonlinear, and KMRW-lead parton densities, and interfaced to the Cascade Monte Carlo
event generator in order to account for hadronization effects. We observe that the energy and transverse
momentum spectra of KS-linear are overall consistent with KMRW-lead spectra. The nonlinear dynamics
as encoded in KS-nonlinear distributions predicts a suppression of the cross section for values of pT smaller
than 8 GeV. The energy spectrum, which can be measured in the Castor calorimeter, is affected by the
nonlinear effects in the whole range. We also calculated nuclear modification ratios that measure the change
of the dynamics as one increases the nuclear mass number. A clear difference between linear and nonlinear
evolutions is observed with decreasing pT or x, as expected from saturation effects. In order to improve on
this, one needs formal calculations with higher order accuracy both of the hard matrix elements [218], as
well as to account for first principles calculations of resummed higher order corrections to the gluon density
including effects like: collinear resummation [219], running coupling and quarks contribution relevant at
moderate and large x [214, 220]. This is also because the NLO corrections [221] introduce instabilities, as
pointed out in [222]. Furthermore, a gluon density valid in the whole kinematic regime would increase the
predictivity of the theory. Progress in the latter direction can be achieved once a program of calculating
transverse-momentum dependent splitting functions in kT -factorization is completed [223].

The analysis of inclusive dijet production started from calculating contributions to azimuthal angle distri-
butions coming from double parton scattering, constructed from “squaring” the single jet production process
in the HEF formalism. We shown that, for typical experimental cuts used in inclusive dijet production
processes, the double parton scattering effects can be safely neglected. Next, we performed comparisons of
predictions to dijet production calculated using HEF and collinear factorization. We observed that the effect
of the final state radiation is not negligible and it leads to a change of normalization of differential distributions
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in forward dijet production. Further improvements come from including initial-state transverse-momentum
dependent parton shower, based on unintegrated parton distributions. We calculated the azimuthal decor-
relation of high-pT dijets and found very good agreement with the measurement. The implementation of
unintegrated parton distribution functions together with the off-shell matrix element in calculations covers
already a larger phase space than is accessible in collinear higher order calculations. Including initial-state
transverse-momentum dependent parton showers together with the conventional final state parton showers
gives a remarkably good description of the measurements, which opens the floor for a rich phenomenology at
the LHC.

The combined set of tools, consisting of KaTie [190] parton-level event generator and Cascade [174]
Monte Carlo generator, forms a complete framework to perform calculations in high energy factorization.
KaTie produces matrix elements calculated in HEF and stores them in an LHE file, similar to the con-
ventional LHE files, but now containing also the transverse momenta of the initial partons. The LHE files
are read in by Cascade, which provide a newly developed initial-state transverse momentum dependent
parton shower, as well as optional final-state parton shower and hadronization. Cascade produces events
in HEPMC format [176], which can be further processed, e.g. using Rivet [191]. The set of unintegrated
parton distributions, which include all flavors and is valid over a wide range in x, kT and µ, was determined
with KMRW approach using mrwcalc [122] and implemented in [121].

Finally, the calculations of TMD gluon distribution, performed in Section 4, were used to compare the
predictions for three jet production in HEF and Improved TMD factorization.
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A Examples

A.1 Distribution in quark-gluon scattering
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Figure 36: Diagram contributing to quark-gluon scattering.

The expression for gluon distribution correlator in the quark-gluon scattering channel shown in Fig. 36 is

〈H|F a(0) |X〉 ifabc
(
U[0;+∞]

)bd (U[+∞;ξ]

)de
ifefg 〈X|F f (ξ) |H〉×

(
U[−∞;0]

)
ij
tcjk
(
U[0;+∞]

)
kl

(
U[+∞;ξ]

)
lm
tgmn

(
U[ξ;−∞]

)
ni

=

= ifabcifefg 〈H|F a(0) |X〉
(
U [+]

)be
〈X|F f (ξ) |H〉 × Tr

(
U [−]†tcU [+]tg

)
.

Denoting 〈H|F a(0) |X〉 〈X|F f (ξ) |H〉 by (φg)
af and using Eq. (4.4) to transform Wilson line in adjoint

representation to the fundamental representation

(
U [+]

)be
=

1

TF
Tr
(
tbU [+]teU [+]†

)

we get to

1

TF
(φg)

af
ifabcifefg Tr

(
tbU [+]teU [+]†

)
Tr
(
U [−]†tcU [+]tg

)
.

Next, we use commutation property of color matrices [ta, tb] = ifabctc to get rid of structure constants

1
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=
1

TF
(φg)

af
[
U [−]†
ij U

[+]
kl U [+]

op U [+]†
rm

]
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Let us now take care of products of color matrices. We rewrite the expression in the second bracket using
Fierz identity

T 2
F
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Multiplying by the part that was left out (T 2
F [X]) we have
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)
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(
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(
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The final formula is

T 2
F ([X](1)− [X](2)− [X](3) + [X](4)) = TF (φg)
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[
−Nc Tr

(
taU [+]tfU [−]†

)
−Tr

(
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(
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2
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(
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The color structure of the bare diagram with open indices a and f is

ifabctcijif
fbgtgji = −fabcffbg Tr (tctg)︸ ︷︷ ︸

TF δcg

= −TF fabcffbgδcg = −TF fabcffbc︸ ︷︷ ︸
Ncδaf

= −TFNcδaf

This result agrees with Ref. [97], however the color factor for the bare diagram which they have is −2TFNc,
and we have −TFNc. There is a difference in conventions by the factor of 1/TF (we have to multiply our
final result by TF ). The final expression for the gluon correlator is

Φ[U ]
g (x, kT ) =

∫
dξ−d2ξT

(2π)3
eik·ξ〈H|1

2
Tr
{
F (0)U [+]F (ξ)U [−]†
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A.2 Distribution in quark-gluon scattering - mixed diagram

(
Un

[ξ;−∞
)
oi

〈X|F f(ξ) |H〉

(
Un

[−∞;0]

)
ij

〈H|F a(0) |X〉

Figure 37: Diagram contributing to quark-gluon scattering (mixed channel).

Due to a large number of indices, the capital letters will denote the indices in the adjoint representation.
The expression for the gluon correlator in the channel shown in Fig. 37 reads
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=
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=
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E
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= −NcTF 〈H|Tr
[
F (0)U [+]F (ξ)U [−]†

]
|H〉 = −NcTF 〈H|Tr

[
F (ξ)U [−]†F (0)U [+]

]
|H〉

The color factor for the bare diagram is

ifABCtBijt
C
jkt

D
ki = tBij

[
tA, tB

]
jk
tDki = tBij

(
tAjmt

B
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D
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B
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D
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=
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=

= −NcTF Tr
(
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= −NcT 2

F δ
AD

The important thing to watch is the direction of color indices in the structure constants. In the amplitude
the indices are taken in clockwise direction, whereas in conjugated amplitude with anticlockwise direction.
The final answer is

Φ[U ]
g (x, kT ) =

∫
dξ−d2ξT

(2π)3
eik·ξ

1
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〈H|Tr

[
F (ξ)U [−]†F (0)U [+]

]
|H〉 .

A.3 Distribution in gluon-gluon scattering

(
Un

[ξ;−∞]

)GY

〈X|FE(ξ) |H〉

(
Un

[−∞;0]

)Y I

〈H|FA(0) |X〉

(
U[+∞;ξ]

)XD (
U[0;+∞]

)BX

(
U+∞;ξ]

)ZH (
U[0;+∞]

)JZ

AE

D X B

F C

Figure 38: Diagram contributing to gluon-gluon scattering.

The expression for the gluon correlator in the gluon-gluon scattering channel shown in Fig. 38 reads
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)XD
ifDEF 〈X|FE(ξ)|H〉×

×
(
U[−∞;0]

)Y I
if IJC

(
U[0;+∞]

)JZ (U[+∞;ξ]

)ZH
ifGHF

(
U[ξ;−∞]

)GY
=

= ΦAEifACB
(
U [+]

)BD
ifDEF if IJC

(
U [+]

)JH
ifGHF

(
U [−]†

)GI
=

=
ΦAE

T 3
F

ifACB Tr
(
tBU [+]tDU [+]†

)
ifDEF if IJC Tr

(
tJU [+]tHU [+]†

)
ifGHF Tr

(
tGU [−]†tIU [−]

)
=

=
ΦAE

T 3
F

Tr
(

[tA, tC ]U [+][tE , tF ]U [+]†
)

Tr
(
tJU [+]tHU [+]†

)
Tr
(

[tH , tF ]U [−]†[tJ , tC ]U [−]
)

=
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Color structure for the bare diagram (using fABC = −fBAC and fACDfBCD = Ncδ
AB):
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Next we divide by N2
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c and the final result is
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2
Tr

[
F (ξ)U [+]†F (0)

{
1

2

Tr
[
U [�]

]

Nc
U [−]

}]
+

1

2
Tr

[
F (ξ)U [−]†F (0)

{
1

2

Tr
[
U [�]†]

Nc
U [+] +

1

N2
c

U [−]

}]
|H〉 .
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B OPERATOR STRUCTURES FOR 5 PARTON PROCESSES

B Operator structures for 5 parton processes

g1g5 → g2g3g4 g1g5 → q2q̄3g4 g1q5 → g2g3q4 g1q̄5 → g2g3q̄4


A(1, 2, 3, 4, 5)
A(1, 2, 4, 3, 5)
A(1, 3, 2, 4, 5)
A(1, 3, 4, 2, 5)
A(1, 4, 2, 3, 5)
A(1, 4, 3, 2, 5)







A(2, 1, 4, 5, 3)
A(2, 1, 5, 4, 3)
A(2, 4, 1, 5, 3)
A(2, 4, 5, 1, 3)
A(2, 5, 1, 4, 3)
A(2, 5, 4, 1, 3)







A(4, 1, 2, 3, 5)
A(4, 1, 3, 2, 5)
A(4, 2, 1, 3, 5)
A(4, 2, 3, 1, 5)
A(4, 3, 1, 2, 5)
A(4, 3, 2, 1, 5)







A(5, 1, 2, 3, 4)
A(5, 1, 3, 2, 4)
A(5, 2, 1, 3, 4)
A(5, 2, 3, 1, 4)
A(5, 3, 1, 2, 4)
A(5, 3, 2, 1, 4)




g1q5 → q2q̄3q4 g1q̄5 → q2q̄3q̄4


A(2, 3, 4, 1, 5)
A(2, 1, 3, 4, 5)
A(2, 5, 4, 1, 3)
A(2, 1, 5, 4, 3)







A(2, 3, 5, 1, 4)
A(2, 1, 3, 5, 4)
A(2, 4, 5, 1, 3)
A(2, 1, 4, 5, 3)




Table 6: Definitions of the vector of partial amplitudes ~A for all five-parton processes. The subscripts in the
sub-process indication correspond to the momenta enumeration.

g1g5 → g2g3g4




1
2N2

c
+ 1

4 − 1
N2
c

− 1
N2
c

0 0 3
4

1
2N2

c
1
N2
c

− 2
N2
c

− 1
N2
c
− 1

2N2
c
− 1

2N2
c

1 1
N2
c

4
N2
c

− 2
N2
c

− 1
N2
c

1
N2
c

− 2
N2
c

1 − 2
N2
c

Nc − 1
4Nc

(
N2
c + 2

)
Nc
4 0 − 3Nc

4 0 −Nc2




g1g5 → q2q̄3g4




−N2
c

N2
A

0 − 1
NA

0 0
N4
c

N2
A

0
N2
c

NA
0 − 1

NA
0 0 0 0

0 −N2
c 1 0 0 0 0

0 −N
2
c

F
1
F 0

N2
c

F 0 0
−N2

c 0 1 N2
c 0 0 0

0 −N
2
c

F
1
F

N2
c

F 0 0 0




g1q5 → g2g3q4




1
N2
A

DN2
c

N2
A

0

− F
NA

2N2
c

NA
0

− 1
NA

N2
c

NA
0

1 0 0
1 −N2

c N2
c

1
F 0

N2
c

F




g1q5 → q2q̄3q4




1 0 0
0 1 0
0 0 1




Table 7: Matrices M of structures appearing in the five-parton processes (D = N2
c − 2, F = N2

c + 1). The
subscripts in the sub-process indication correspond to the momenta enumeration.
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C OPERATOR STRUCTURES FOR 6 PARTON PROCESSES

C Operator structures for 6 parton processes

g1g6 → g2g3g4g5 g1g6 → q2q̄3g4g5 g1q6 → g2g3g4q5 g1q̄6 → g2g3g4q̄5


A(1, 2, 3, 4, 5, 6)
A(1, 2, 3, 5, 4, 6)
A(1, 2, 4, 3, 5, 6)
A(1, 2, 4, 5, 3, 6)
A(1, 2, 5, 3, 4, 6)
A(1, 2, 5, 4, 3, 6)
A(1, 3, 2, 4, 5, 6)
A(1, 3, 2, 5, 4, 6)
A(1, 3, 4, 2, 5, 6)
A(1, 3, 4, 5, 2, 6)
A(1, 3, 5, 2, 4, 6)
A(1, 3, 5, 4, 2, 6)
A(1, 4, 2, 3, 5, 6)
A(1, 4, 2, 5, 3, 6)
A(1, 4, 3, 2, 5, 6)
A(1, 4, 3, 5, 2, 6)
A(1, 4, 5, 2, 3, 6)
A(1, 4, 5, 3, 2, 6)
A(1, 5, 2, 3, 4, 6)
A(1, 5, 2, 4, 3, 6)
A(1, 5, 3, 2, 4, 6)
A(1, 5, 3, 4, 2, 6)
A(1, 5, 4, 2, 3, 6)
A(1, 5, 4, 3, 2, 6)







A(2, 1, 4, 5, 6, 3)
A(2, 1, 4, 6, 5, 3)
A(2, 1, 5, 4, 6, 3)
A(2, 1, 5, 6, 4, 3)
A(2, 1, 6, 4, 5, 3)
A(2, 1, 6, 5, 4, 3)
A(2, 4, 1, 5, 6, 3)
A(2, 4, 1, 6, 5, 3)
A(2, 4, 5, 1, 6, 3)
A(2, 4, 5, 6, 1, 3)
A(2, 4, 6, 1, 5, 3)
A(2, 4, 6, 5, 1, 3)
A(2, 5, 1, 4, 6, 3)
A(2, 5, 1, 6, 4, 3)
A(2, 5, 4, 1, 6, 3)
A(2, 5, 4, 6, 1, 3)
A(2, 5, 6, 1, 4, 3)
A(2, 5, 6, 4, 1, 3)
A(2, 6, 1, 4, 5, 3)
A(2, 6, 1, 5, 4, 3)
A(2, 6, 4, 1, 5, 3)
A(2, 6, 4, 5, 1, 3)
A(2, 6, 5, 1, 4, 3)
A(2, 6, 5, 4, 1, 3)







A(5, 1, 2, 3, 4, 6)
A(5, 1, 2, 4, 3, 6)
A(5, 1, 3, 2, 4, 6)
A(5, 1, 3, 4, 2, 6)
A(5, 1, 4, 2, 3, 6)
A(5, 1, 4, 3, 2, 6)
A(5, 2, 1, 3, 4, 6)
A(5, 2, 1, 4, 3, 6)
A(5, 2, 3, 1, 4, 6)
A(5, 2, 3, 4, 1, 6)
A(5, 2, 4, 1, 3, 6)
A(5, 2, 4, 3, 1, 6)
A(5, 3, 1, 2, 4, 6)
A(5, 3, 1, 4, 2, 6)
A(5, 3, 2, 1, 4, 6)
A(5, 3, 2, 4, 1, 6)
A(5, 3, 4, 1, 2, 6)
A(5, 3, 4, 2, 1, 6)
A(5, 4, 1, 2, 3, 6)
A(5, 4, 1, 3, 2, 6)
A(5, 4, 2, 1, 3, 6)
A(5, 4, 2, 3, 1, 6)
A(5, 4, 3, 1, 2, 6)
A(5, 4, 3, 2, 1, 6)







A(6, 1, 2, 3, 4, 5)
A(6, 1, 2, 4, 3, 5)
A(6, 1, 3, 2, 4, 5)
A(6, 1, 3, 4, 2, 5)
A(6, 1, 4, 2, 3, 5)
A(6, 1, 4, 3, 2, 5)
A(6, 2, 1, 3, 4, 5)
A(6, 2, 1, 4, 3, 5)
A(6, 2, 3, 1, 4, 5)
A(6, 2, 3, 4, 1, 5)
A(6, 2, 4, 1, 3, 5)
A(6, 2, 4, 3, 1, 5)
A(6, 3, 1, 2, 4, 5)
A(6, 3, 1, 4, 2, 5)
A(6, 3, 2, 1, 4, 5)
A(6, 3, 2, 4, 1, 5)
A(6, 3, 4, 1, 2, 5)
A(6, 3, 4, 2, 1, 5)
A(6, 4, 1, 2, 3, 5)
A(6, 4, 1, 3, 2, 5)
A(6, 4, 2, 1, 3, 5)
A(6, 4, 2, 3, 1, 5)
A(6, 4, 3, 1, 2, 5)
A(6, 4, 3, 2, 1, 5)




g1g6 → q2q̄3q4q̄5 g1q6 → g2q3q̄4q5 g1q̄6 → g2q3q̄4q̄5


A(2, 3, 4, 1, 6, 5)
A(2, 1, 3, 4, 6, 5)
A(2, 1, 6, 3, 4, 5)
A(2, 3, 4, 6, 1, 5)
A(2, 6, 3, 4, 1, 5)
A(2, 6, 1, 3, 4, 5)
A(2, 5, 4, 1, 6, 3)
A(2, 1, 5, 4, 6, 3)
A(2, 1, 6, 5, 4, 3)
A(2, 5, 4, 6, 1, 3)
A(2, 6, 5, 4, 1, 3)
A(2, 6, 1, 5, 4, 3)







A(3, 4, 5, 1, 2, 6)
A(3, 1, 4, 5, 2, 6)
A(3, 1, 2, 4, 5, 6)
A(3, 4, 5, 2, 1, 6)
A(3, 2, 4, 5, 1, 6)
A(3, 2, 1, 4, 5, 6)
A(3, 6, 5, 1, 2, 4)
A(3, 1, 6, 5, 2, 4)
A(3, 1, 2, 6, 5, 4)
A(3, 6, 5, 2, 1, 4)
A(3, 2, 6, 5, 1, 4)
A(3, 2, 1, 6, 5, 4)







A(3, 4, 6, 1, 2, 5)
A(3, 1, 4, 6, 2, 5)
A(3, 1, 2, 4, 6, 5)
A(3, 4, 6, 2, 1, 5)
A(3, 2, 4, 6, 1, 5)
A(3, 2, 1, 4, 6, 5)
A(3, 5, 6, 1, 2, 4)
A(3, 1, 5, 6, 2, 4)
A(3, 1, 2, 5, 6, 4)
A(3, 5, 6, 2, 1, 4)
A(3, 2, 5, 6, 1, 4)
A(3, 2, 1, 5, 6, 4)




Table 8: Definition of the vector of partial amplitudes ~A for all six-parton processes. The subscripts in the
sub-process indication correspond to the momenta enumeration.
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C OPERATOR STRUCTURES FOR 6 PARTON PROCESSES

g1g6 → g2g3g4g5



1
4N2

c
+ 1

8 0 − F
N4
c

1
2N4

c

1
2N4

c

1
2N2

c
+ 7

8
1

4N2
c

0 1
N2
c

−N
2
c+2
N4
c

1
N4
c

1
N4
c

1
N2
c

+ 1 0

3
N2
c

1
N2
c

−N
2
c+2
N4
c

1
N4
c

1
N4
c

1
N2
c

+ 1 − 3
N2
c

N2
c

2
3N2

c

4 − 1
2

1
8

(
N2
c + 2

)
1
8

(
N2
c + 2

) N2
c

4 −N2
c

− 1
N2
c

4
N2
c

−N
2
c+4
N4
c

N2
c+4

2N4
c

N2
c+4

2N4
c

2
N2
c

+ 1 − 1
N2
c

6
N2
c

4
N2
c

−N
2
c+4
N4
c

N2
c+2
N4
c

2
N4
c

2
N2
c

+ 1 − 8
N2
c

4
N2
c

4
N2
c

−N
2
c+4
N4
c

2
N4
c

N2
c+2
N4
c

2
N2
c

+ 1 − 6
N2
c

N2
c

4
3N2

c

4 − 1
2

1
4

F
4

N2
c

4 − 3N2
c

4

8
N2
c+12 − 2

N2
c+12 − N2

c+8
N2
c (N2

c+12)
N2
c+4

N2
c (N2

c+12)

2(N2
c+2)

N2
c (N2

c+12)
N2
c+4

N2
c+12 − 2

N2
c+12

1
3 0 − 2

3N2
c

1
3N2

c

1
3

(
1
N2
c

+ 1
)

1
3 0

0 1
12

(
N2
c + 2

)
−N

2
c+8

12N2
c

1
3N2

c

1
3N2

c
+ 7

12
1
3

1
6




Table 9: Matrices M of structures appearing in the six-parton processes (part I) (F = N2
c +1). The subscripts

in the sub-process indication correspond to the momenta enumeration.
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C OPERATOR STRUCTURES FOR 6 PARTON PROCESSES

g1g6 → q2q̄3g4g5




N2
c

N3
A

0 − 1
NA

0 0
DN4

c

N3
A

0

−N2
c

N2
A

0 − 1
NA

0 0
N4
c

N2
A

0

−FN
2
c

N2
A

0 − 1
NA

0 0
2N4

c

N2
A

0
N2
c

NA
0 − 1

NA
0 0 −N4

c

NA

N4
c

NA
N2
c

NA
0 − 1

NA
0 0 0 0

N2
c

N4
c−1 0 − 1

NA
0 0 0

N4
c

N4
c−1

0 −N2
c 1 0 0 0 0

0 −N
2
c

F
1
F 0

N2
c

F 0 0
−N2

c 0 1 N2
c 0 0 0

0 −N
2
c

F
1
F

N2
c

F 0 0 0
−N2

c −N4
c F 0 0 0 0

N4
c

L
N2
c

L −FL 0 0 0 0

0
N2
c

K − F
K 0 −N

2
c

K 0
N4
c

K
−FN2

c 0 1 N2
c 0 N4

c 0

−N
2
c

F −N
4
c

F 1
N2
c

F 0 0 0
N4
c

K
N2
c

K − F
K −N

2
c

K 0 0 0

0 − FN2
c

3N2
c+1

F
3N2

c+1
N2
c

3N2
c+1

N2
c

3N2
c+1 0 0

N2
c

L 0 − 1
L

DN2
c

L 0 0 0

0
N2
c

K − 1
K

DN2
c

K 0 0 0
FN2

c

K 0 − F
K − 2N2

c

K 0 0 0

0 − FN2
c

3N2
c+1

F
3N2

c+1
2N2

c

3N2
c+1 0 0 0

0
N2
c

K − 1
K 0

DN2
c

K 0 0

0 − FN2
c

3N2
c+1

F
3N2

c+1 0
2N2

c

3N2
c+1 0 0

0
N2
c

L −FL 0 0 0
N4
c

L




Table 10: Matrices M of structures appearing in the six-parton processes (part II) (D = N2
c −2, F = N2

c +1,
K = N4

c − 2N2
c − 1, L = N4

c − N2
c − 1). The subscripts in the sub-process indication correspond to the

momenta enumeration.
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C OPERATOR STRUCTURES FOR 6 PARTON PROCESSES

g1q6 → g2g3g4q5




− 1
N3
A

N2
c (N4

c−3N2
c+3)

N3
A

0

F
N2
A

N2
c (N2

c−3)
N2
A

0

K
NA

−N
2
c (N2

c−3)
NA

0
3N2

c+1
1−N4

c

N2
c (N2

c+3)
N4
c−1 0

1
N2
A

DN2
c

N2
A

0

− F
NA

2N2
c

NA
0

− 1
NA

N2
c

NA
0

1 0 0
1 −N2

c N2
c

− 1
NA

2N2
c

NA
−N2

c

NA
F −2N2

c N2
c

− 1
L

N2
c

L
DN2

c

L
1 DN2

c −DN2
c

1 − 2N2
c

F
2N2

c

F

1 −N
2
c

F
N2
c

F

− F
K

FN2
c

K − 2N2
c

K
1
F 0

N2
c

F
1

1−N4
c

N2
c

NA

N2
c

1−N4
c

1
F −N

2
c

F
2N2

c

F

− 1
K 0

DN2
c

K

− 1
K

N2
c

K

N2
c (N2

c−3)
K

F
3N2

c+1 0
2N2

c

3N2
c+1

− F
K

N4
c

K −N
2
c

K




Table 11: Matrices M of structures appearing in the six-parton processes (part III) (D = N2
c −2, F = N2

c +1,
K = N4

c −2N2
c −1, L = N4

c −N2
c −1). The subscripts in the sub-process indication correspond to the momenta

enumeration.

g1g6 → q2q̄3q4q̄5 g1q6 → g2q3q̄4q5




N2
c

NA
0 − 1

NA
0 0 0 0

0 0 0 1 0 0 0
0 −N2

c 1 0 0 0 0

0 0 − 1
NA

0 0
N2
c

NA
0

0 0 0 0 1 0 0

0 0 − 1
NA

0 0 0
N2
c

NA







− 1
NA

N2
c

NA
0

0 0 1
1 0 0
0 1 0
1

4N2
c
− 1

4N2
c

0

0 − 1
4N2

c

1
4N2

c

0
N2
c

NA
− 1
NA

1
4 − 1

4 0
0 − 1

4
1
4




Table 12: Matrices M of structures appearing in the six-parton processes (part IV). The subscripts in the
sub-process indication correspond to the momenta enumeration.
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C OPERATOR STRUCTURES FOR 6 PARTON PROCESSES

C.1 g (k1) g (k6)→ g (k2) g (k3) g (k4) g (k5)

T1 =




Φ1 Φ2 Φ2 Φ3 Φ3 Φ∗4
Φ2 Φ1 Φ3 Φ∗4 Φ2 Φ3

Φ2 Φ3 Φ1 Φ2 Φ∗4 Φ3

Φ3 Φ∗4 Φ2 Φ1 Φ3 Φ2

Φ3 Φ2 Φ∗4 Φ3 Φ1 Φ2

Φ∗4 Φ3 Φ3 Φ2 Φ2 Φ1



, T2 =




Φ2 Φ5 Φ3 Φ6 Φ7 Φ∗8
Φ5 Φ2 Φ7 Φ∗8 Φ3 Φ6

Φ3 Φ7 Φ∗4 Φ∗8 Φ9 Φ10

Φ6 Φ∗8 Φ∗8 Φ10 Φ10 Φ11

Φ7 Φ3 Φ9 Φ10 Φ∗4 Φ∗8
Φ∗8 Φ6 Φ10 Φ11 Φ∗8 Φ10



, (C.1)

T3 =




Φ3 Φ7 Φ∗4 Φ∗8 Φ9 Φ10

Φ6 Φ∗8 Φ∗8 Φ10 Φ10 Φ11

Φ2 Φ5 Φ3 Φ6 Φ7 Φ∗8
Φ5 Φ2 Φ7 Φ∗8 Φ3 Φ6

Φ∗8 Φ6 Φ10 Φ11 Φ∗8 Φ10

Φ7 Φ3 Φ9 Φ10 Φ∗4 Φ∗8



, T4 =




Φ6 Φ∗8 Φ∗8 Φ10 Φ10 Φ11

Φ3 Φ7 Φ∗4 Φ∗8 Φ9 Φ10

Φ∗8 Φ6 Φ10 Φ11 Φ∗8 Φ10

Φ7 Φ3 Φ9 Φ10 Φ∗4 Φ∗8
Φ2 Φ5 Φ3 Φ6 Φ7 Φ∗8
Φ5 Φ2 Φ7 Φ∗8 Φ3 Φ6



,

T5 =




Φ∗4 Φ∗8 Φ3 Φ7 Φ10 Φ9

Φ∗8 Φ10 Φ6 Φ∗8 Φ11 Φ10

Φ3 Φ6 Φ2 Φ5 Φ∗8 Φ7

Φ7 Φ∗8 Φ5 Φ2 Φ6 Φ3

Φ10 Φ11 Φ∗8 Φ6 Φ10 Φ∗8
Φ9 Φ10 Φ7 Φ3 Φ∗8 Φ∗4



, T6 =




Φ∗8 Φ10 Φ6 Φ∗8 Φ11 Φ10

Φ∗4 Φ∗8 Φ3 Φ7 Φ10 Φ9

Φ10 Φ11 Φ∗8 Φ6 Φ10 Φ∗8
Φ9 Φ10 Φ7 Φ3 Φ∗8 Φ∗4
Φ3 Φ6 Φ2 Φ5 Φ∗8 Φ7

Φ7 Φ∗8 Φ5 Φ2 Φ6 Φ3



,

T7 = TM2 . (C.2)

TM2 denotes a mirror reflection of the matrix T2 with respect to the anti-diagonal, which can be written as a
similarity transformation

TM2 = JT2J ,

with

J =




0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0



.

The same relation holds between block matrices for color factors (Eq. E.4). Nonetheless, for convenience we
list explicitly elements of T7 matrix:

T7 =




Φ10 Φ∗8 Φ11 Φ10 Φ6 Φ∗8
Φ∗8 Φ∗4 Φ10 Φ9 Φ3 Φ7

Φ11 Φ10 Φ10 Φ∗8 Φ∗8 Φ6

Φ10 Φ9 Φ∗8 Φ∗4 Φ7 Φ3

Φ6 Φ3 Φ∗8 Φ7 Φ2 Φ5

Φ∗8 Φ7 Φ6 Φ3 Φ5 Φ2



.
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C.2 g (k1) g (k6)→ q (k2) q̄ (k3) g (k4) g (k5)

T1 =




Φ1 Φ2 Φ3 Φ4 Φ5 Φ5

Φ2 Φ2 Φ4 Φ6 Φ5 Φ5

Φ3 Φ4 Φ1 Φ2 Φ5 Φ5

Φ4 Φ6 Φ2 Φ2 Φ5 Φ5

Φ5 Φ5 Φ5 Φ5 Φ5 Φ5

Φ5 Φ5 Φ5 Φ5 Φ5 Φ5



, T2 =




Φ2 Φ5 Φ5 Φ7 Φ7 Φ8

Φ5 Φ5 Φ9 Φ10 Φ7 Φ7

Φ4 Φ11 Φ5 Φ7 Φ12 Φ13

Φ14 Φ15 Φ15 Φ16 Φ16 Φ17

Φ9 Φ9 Φ18 Φ19 Φ10 Φ10

Φ15 Φ9 Φ20 Φ21 Φ10 Φ16



, (C.3)

T3 =




Φ4 Φ11 Φ5 Φ7 Φ12 Φ13

Φ14 Φ15 Φ15 Φ16 Φ16 Φ17

Φ2 Φ5 Φ5 Φ7 Φ7 Φ8

Φ5 Φ5 Φ9 Φ10 Φ7 Φ7

Φ15 Φ9 Φ20 Φ21 Φ10 Φ16

Φ9 Φ9 Φ18 Φ19 Φ10 Φ10



, T4 =




Φ7 Φ7 Φ8 Φ22 Φ13 Φ23

Φ7 Φ7 Φ8 Φ8 Φ24 Φ13

Φ7 Φ7 Φ13 Φ23 Φ8 Φ22

Φ7 Φ7 Φ24 Φ13 Φ8 Φ8

Φ7 Φ7 Φ7 Φ7 Φ7 Φ7

Φ7 Φ7 Φ7 Φ7 Φ7 Φ7



, (C.4)

T5 =




Φ2 Φ5 Φ5 Φ7 Φ7 Φ8

Φ5 Φ5 Φ9 Φ10 Φ7 Φ7

Φ5 Φ9 Φ5 Φ7 Φ10 Φ7

Φ7 Φ10 Φ7 Φ5 Φ9 Φ5

Φ7 Φ7 Φ10 Φ9 Φ5 Φ5

Φ8 Φ7 Φ7 Φ5 Φ5 Φ2



, T6 =




Φ6 Φ15 Φ5 Φ7 Φ16 Φ24

Φ15 Φ20 Φ9 Φ10 Φ21 Φ16

Φ5 Φ9 Φ5 Φ7 Φ10 Φ7

Φ7 Φ10 Φ7 Φ5 Φ9 Φ5

Φ16 Φ21 Φ10 Φ9 Φ20 Φ15

Φ24 Φ16 Φ7 Φ5 Φ15 Φ6



, (C.5)

T7 =




Φ10 Φ16 Φ7 Φ8 Φ17 Φ13

Φ10 Φ10 Φ7 Φ7 Φ16 Φ12

Φ19 Φ21 Φ10 Φ7 Φ16 Φ7

Φ18 Φ20 Φ9 Φ5 Φ15 Φ5

Φ9 Φ9 Φ5 Φ5 Φ15 Φ11

Φ9 Φ15 Φ5 Φ2 Φ14 Φ4



, T8 =




Φ16 Φ10 Φ17 Φ13 Φ7 Φ8

Φ10 Φ10 Φ16 Φ12 Φ7 Φ7

Φ21 Φ19 Φ16 Φ7 Φ10 Φ7

Φ20 Φ18 Φ15 Φ5 Φ9 Φ5

Φ9 Φ9 Φ15 Φ11 Φ5 Φ5

Φ15 Φ9 Φ14 Φ4 Φ5 Φ2



, (C.6)

T ᵀ8 = TM2 , T9 =




Φ5 Φ5 Φ5 Φ5 Φ5 Φ5

Φ5 Φ5 Φ5 Φ5 Φ5 Φ5

Φ5 Φ5 Φ2 Φ2 Φ6 Φ4

Φ5 Φ5 Φ2 Φ1 Φ4 Φ3

Φ5 Φ5 Φ6 Φ4 Φ2 Φ2

Φ5 Φ5 Φ4 Φ3 Φ2 Φ1




= TM1 . (C.7)

C.3 g (k1) q (k6)→ g (k2) g (k3) g (k4) q (k5)

T1 =




Φ1 Φ2 Φ2 Φ3 Φ3 Φ4

Φ2 Φ1 Φ3 Φ4 Φ2 Φ3

Φ2 Φ3 Φ1 Φ2 Φ4 Φ3

Φ3 Φ4 Φ2 Φ1 Φ3 Φ2

Φ3 Φ2 Φ4 Φ3 Φ1 Φ2

Φ4 Φ3 Φ3 Φ2 Φ2 Φ1



, T2 =




Φ5 Φ6 Φ7 Φ8 Φ9 Φ8

Φ6 Φ5 Φ9 Φ8 Φ7 Φ8

Φ10 Φ11 Φ7 Φ8 Φ12 Φ8

Φ13 Φ14 Φ15 Φ8 Φ16 Φ8

Φ11 Φ10 Φ12 Φ8 Φ7 Φ8

Φ14 Φ13 Φ16 Φ8 Φ15 Φ8



, (C.8)
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T3 =




Φ10 Φ11 Φ7 Φ8 Φ12 Φ8

Φ13 Φ14 Φ15 Φ8 Φ16 Φ8

Φ5 Φ6 Φ7 Φ8 Φ9 Φ8

Φ6 Φ5 Φ9 Φ8 Φ7 Φ8

Φ14 Φ13 Φ16 Φ8 Φ15 Φ8

Φ11 Φ10 Φ12 Φ8 Φ7 Φ8



, T4 =




Φ13 Φ14 Φ15 Φ8 Φ16 Φ8

Φ10 Φ11 Φ7 Φ8 Φ12 Φ8

Φ14 Φ13 Φ16 Φ8 Φ15 Φ8

Φ11 Φ10 Φ12 Φ8 Φ7 Φ8

Φ5 Φ6 Φ7 Φ8 Φ9 Φ8

Φ6 Φ5 Φ9 Φ8 Φ7 Φ8



, (C.9)

T5 =




Φ5 Φ6 Φ7 Φ8 Φ9 Φ8

Φ6 Φ5 Φ9 Φ8 Φ7 Φ8

Φ7 Φ9 Φ7 Φ8 Φ17 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ9 Φ7 Φ17 Φ8 Φ7 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8



, T6 =




Φ18 Φ19 Φ7 Φ8 Φ20 Φ8

Φ19 Φ21 Φ9 Φ8 Φ22 Φ8

Φ7 Φ9 Φ7 Φ8 Φ17 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ20 Φ22 Φ17 Φ8 Φ23 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8



, (C.10)

T7 =




Φ19 Φ21 Φ9 Φ8 Φ22 Φ8

Φ18 Φ19 Φ7 Φ8 Φ20 Φ8

Φ20 Φ22 Φ17 Φ8 Φ23 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ7 Φ9 Φ7 Φ8 Φ17 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8



, T8 =




Φ21 Φ19 Φ22 Φ8 Φ9 Φ8

Φ19 Φ18 Φ20 Φ8 Φ7 Φ8

Φ22 Φ20 Φ23 Φ8 Φ17 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ9 Φ7 Φ17 Φ8 Φ7 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8



. (C.11)

C.4 g (k1) q̄ (k6)→ g (k2) g (k3) g (k4) q̄ (k5)

T1 =




Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8



, T2 =




Φ7 Φ7 Φ7 Φ7 Φ7 Φ7

Φ7 Φ7 Φ7 Φ7 Φ7 Φ7

Φ7 Φ7 Φ5 Φ5 Φ18 Φ10

Φ7 Φ7 Φ5 Φ1 Φ10 Φ2

Φ7 Φ7 Φ18 Φ10 Φ5 Φ5

Φ7 Φ7 Φ10 Φ2 Φ5 Φ1



, (C.12)

T3 =




Φ17 Φ17 Φ9 Φ9 Φ20 Φ12

Φ17 Φ23 Φ9 Φ15 Φ22 Φ16

Φ9 Φ9 Φ6 Φ6 Φ19 Φ11

Φ9 Φ15 Φ6 Φ2 Φ13 Φ3

Φ20 Φ22 Φ19 Φ13 Φ21 Φ14

Φ12 Φ16 Φ11 Φ3 Φ14 Φ4



, T4 =




Φ17 Φ23 Φ9 Φ15 Φ22 Φ16

Φ17 Φ17 Φ9 Φ9 Φ20 Φ12

Φ20 Φ22 Φ19 Φ13 Φ21 Φ14

Φ12 Φ16 Φ11 Φ3 Φ14 Φ4

Φ9 Φ9 Φ6 Φ6 Φ19 Φ11

Φ9 Φ15 Φ6 Φ2 Φ13 Φ3



, (C.13)

T5 =




Φ23 Φ17 Φ22 Φ16 Φ9 Φ15

Φ17 Φ17 Φ20 Φ12 Φ9 Φ9

Φ22 Φ20 Φ21 Φ14 Φ19 Φ13

Φ16 Φ12 Φ14 Φ4 Φ11 Φ3

Φ9 Φ9 Φ19 Φ11 Φ6 Φ6

Φ15 Φ9 Φ13 Φ3 Φ6 Φ2



. (C.14)

D Large Nc limit for the TMD gluon distributions

For reader’s convenience we list the large Nc expansions of the results presented in Section 4.5.
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g1g5 → g2g3g4




1
4 0 0 0 0 3

4 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 − 1

4N
3
c 0 0 0 0 0




g1g5 → q2q̄3g4




0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 −N2

c 0 0 0 0 0
0 −1 0 0 1 0 0
−N2

c 0 0 N2
c 0 0 0

0 −1 0 1 0 0 0




g1q5 → g2g3q4




0 1 0
−1 2 0
0 1 0
1 0 0
0 −N2

c N2
c

0 0 1




g1q5 → q2q̄3q4




1 0 0
0 1 0
0 0 1




Table 13: The large Nc limit of the matrices M from Table 7.

g1g6 → g2g3g4g5


1
8 0 0 0 0 7

8 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
N2
c

2
3N2

c

4 0 1
8N

2
c

1
8N

2
c

N2
c

4 −N2
c

0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
N2
c

4
3N2

c

4 0 0 1
4N

2
c

N2
c

4 − 3N2
c

4
0 0 0 0 0 1 0
1
3 0 0 0 1

3
1
3 0

0 1
12N

2
c 0 0 0 0 0




Table 14: The large Nc limit of the matrices M from Table 9.
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g1g6 → q2q̄3g4g5


0 0 0 0 0 1 0
0 0 0 0 0 1 0
−1 0 0 0 0 2 0
0 0 0 0 0 −N2

c N2
c

1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 −N2

c 0 0 0 0 0
0 −1 0 0 1 0 0
−N2

c 0 0 N2
c 0 0 0

0 −1 0 1 0 0 0
0 −N4

c 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
−N4

c 0 0 0 0 N4
c 0

0 −N2
c 0 0 0 0 0

1 0 0 0 0 0 0
0 − 1

3N
2
c 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 − 1

3N
2
c 0 0 0 0 0

0 0 0 0 1 0 0
0 − 1

3N
2
c 0 0 0 0 0

0 0 0 0 0 0 1




Table 15: The large Nc limit of the matrices M from Table 10.
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g1q6 → g2g3g4q5


0 1 0
0 1 0
N2
c −N2

c 0
0 1 0
0 1 0
−1 2 0
0 1 0
1 0 0
0 −N2

c N2
c

0 2 −1
N2
c −2N2

c N2
c

0 0 1
0 N4

c −N4
c

1 −2 2
1 −1 1
0 1 0
0 0 1
0 1 0
0 −1 2
0 0 1
0 0 1
1
3 0 2

3
0 1 0




Table 16: The large Nc limit of the matrices M from Table 11.

g1g6 → q2q̄3q4q̄5 g1q6 → g2q3q̄4q5




1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 −N2

c 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1







0 1 0
0 0 1
1 0 0
0 1 0
0 0 0
0 0 0
0 1 0
1
4 − 1

4 0
0 − 1

4
1
4




Table 17: The large Nc limit of the matrices M from Table 12.

E Color matrices

Below, we list the color factors for five and six parton processes. The convention for the enumerating of
the rows and columns, i.e. the order of the partial amplitudes are the same as in Section 4.5. These color
factors agree with [147,170], after a suitable permutation of partial amplitudes is done.

Let us remind, that the actual color factors to be used in factorization formula together with the TMD
matrices, are defined in Eq. (4.93). That is, the zero matrix elements have to be replaced by one.
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∅ → ggggg

C =
1

4
N3
cNA




1 1
2

1
2

1
4

1
4 0

1
2 1 1

4 0 1
2

1
4

1
2

1
4 1 1

2 0 1
4

1
4 0 1

2 1 1
4

1
2

1
4

1
2 0 1

4 1 1
2

0 1
4

1
4

1
2

1
2 1




(E.1)

∅ → qq̄ggg

C =
1

8

NA
N2
c




N2
A −NA −NA 1 1 F

−NA N2
A 1 F −NA 1

−NA 1 N2
A −NA F 1

1 F −NA N2
A 1 −NA

1 −NA F 1 N2
A −NA

F 1 1 −NA −NA N2
A



, (E.2)

with F = N2
c + 1.

∅ → qq̄rr̄g

C =
1

2
NA




1
Nc

0 − 1
Nc

− 1
Nc

0 1
Nc

− 1
Nc

− 1
Nc

− 1
Nc

− 1
Nc

Nc 0

− 1
Nc

− 1
Nc

0 Nc


 (E.3)

∅ → gggggg

C =
1

4
N4
cNA




C1 C2 C3 C4

C2 C1 C5 C6

Cᵀ3 C5 C1 C7

Cᵀ4 Cᵀ6 C7 C1


 , (E.4)

where

C1 =




1 1
2

1
2

1
4

1
4 0

1
2 1 1

4 0 1
2

1
4

1
2

1
4 1 1

2 0 1
4

1
4 0 1

2 1 1
4

1
2

1
4

1
2 0 1

4 1 1
2

0 1
4

1
4

1
2

1
2 1



, C2 =




1
2

1
4

1
4

1
8

1
8 0

1
4

1
2

1
8 0 1

4
1
8

1
4

1
8 0 0 a+ 1

8 a
1
8 0 0 a a a
1
8

1
4 a+ 1

8 a 0 0

0 1
8 a a 0 a



, (E.5)

C3 =




1
4

1
8 0 0 a+ 1

8 a
1
8 0 0 a a a
1
2

1
4

1
4

1
8

1
8 0

1
4

1
2

1
8 0 1

4
1
8

0 1
8 a a 0 a

1
8

1
4 a+ 1

8 a 0 0



, C4 =




1
8 0 0 a a a
1
4

1
8 0 0 a+ 1

8 a

0 1
8 a a 0 a

1
8

1
4 a+ 1

8 a 0 0
1
2

1
4

1
4

1
8

1
8 0

1
4

1
2

1
8 0 1

4
1
8



, (E.6)
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C5 =




0 0 1
4

1
8 a a+ 1

8

0 a 1
8 0 a a

1
4

1
8

1
2

1
4 0 1

8
1
8 0 1

4
1
2

1
8

1
4

a a 0 1
8 a 0

a+ 1
8 a 1

8
1
4 0 0



, C6 =




0 a 1
8 0 a a

0 0 1
4

1
8 a a+ 1

8

a a 0 1
8 a 0

a+ 1
8 a 1

8
1
4 0 0

1
4

1
8

1
2

1
4 0 1

8
1
8 0 1

4
1
2

1
8

1
4



, (E.7)

C7 =




a 0 a a 1
8 0

0 0 a a+ 1
8

1
4

1
8

a a a 0 0 1
8

a a+ 1
8 0 0 1

8
1
4

1
8

1
4 0 1

8
1
2

1
4

0 1
8

1
8

1
4

1
4

1
2



, (E.8)

with a = 3
2N2

c
.

∅ → qq̄gggg

C =
1

16

NA
N3
c




C1 C2 C3 C4

C2 C1 C5 C6

Cᵀ3 C5 C1 C7

Cᵀ4 Cᵀ6 C7 C1


 , (E.9)

where

C1 =




N3
A −N2

A −N2
A NA NA N4

c − 1

−N2
A N3

A NA N4
c − 1 −N2

A NA
−N2

A NA N3
A −N2

A N4
c − 1 NA

NA N4
c − 1 −N2

A N3
A NA −N2

A

NA −N2
A N4

c − 1 NA N3
A −N2

A

N4
c − 1 NA NA −N2

A −N2
A N3

A



, (E.10)

C2 =




−N2
A NA NA −1 −1 −N2

c − 1

NA −N2
A −1 −N2

c − 1 NA −1

NA −1 N4
c − 1 −N2

c − 1 L K

−1 −N2
c − 1 −N2

c − 1 K K −3N2
c − 1

−1 NA L K N4
c − 1 −N2

c − 1

−N2
c − 1 −1 K −3N2

c − 1 −N2
c − 1 K



, (E.11)

C3 =




NA −1 N4
c − 1 −N2

c − 1 L K

−1 −N2
c − 1 −N2

c − 1 K K −3N2
c − 1

−N2
A NA NA −1 −1 −N2

c − 1

NA −N2
A −1 −N2

c − 1 NA −1

−N2
c − 1 −1 K −3N2

c − 1 −N2
c − 1 K

−1 NA L K N4
c − 1 −N2

c − 1



, (E.12)

C4 =




−1 −N2
c − 1 −N2

c − 1 K K −3N2
c − 1

NA −1 N4
c − 1 −N2

c − 1 L K

−N2
c − 1 −1 K −3N2

c − 1 −N2
c − 1 K

−1 NA L K N4
c − 1 −N2

c − 1

−N2
A NA NA −1 −1 −N2

c − 1

NA −N2
A −1 −N2

c − 1 NA −1



, (E.13)
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C5 =




N4
c − 1 −N2

c − 1 NA −1 K L

−N2
c − 1 K −1 −N2

c − 1 −3N2
c − 1 K

NA −1 −N2
A NA −N2

c − 1 −1

−1 −N2
c − 1 NA −N2

A −1 NA
K −3N2

c − 1 −N2
c − 1 −1 K −N2

c − 1

L K −1 NA −N2
c − 1 N4

c − 1



, (E.14)

C6 =




−N2
c − 1 K −1 −N2

c − 1 −3N2
c − 1 K

N4
c − 1 −N2

c − 1 NA −1 K L

K −3N2
c − 1 −N2

c − 1 −1 K −N2
c − 1

L K −1 NA −N2
c − 1 N4

c − 1

NA −1 −N2
A NA −N2

c − 1 −1

−1 −N2
c − 1 NA −N2

A −1 NA



, (E.15)

C7 =




K −N2
c − 1 −3N2

c − 1 K −1 −N2
c − 1

−N2
c − 1 N4

c − 1 K L NA −1

−3N2
c − 1 K K −N2

c − 1 −N2
c − 1 −1

K L −N2
c − 1 N4

c − 1 −1 NA
−1 NA −N2

c − 1 −1 −N2
A NA

−N2
c − 1 −1 −1 NA NA −N2

A



, (E.16)

We find the following symmetry transformations

C3 = CM
ᵀ

6 , C7 = CM2 , (E.17)

where
AM = JAJ , (E.18)

with

J =




0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0



. (E.19)

∅ → qq̄rr̄gg

C =
1

4
NA

(
C1 C2

C2 C3

)
, (E.20)

where

C1 =




NA
N2
c

0 1
N2
c
− 1
N2
c

0 1
N2
c

0 NA
N2
c

0 0 1
N2
c

0
1
N2
c

0 NA
N2
c

1
N2
c

0 − 1
N2
c

− 1
N2
c

0 1
N2
c

NA
N2
c

0 1
N2
c

0 1
N2
c

0 0 NA
N2
c

0
1
N2
c

0 − 1
N2
c

1
N2
c

0 NA
N2
c




, (E.21)
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C2 =




−NAN2
c

1
N2
c

−NAN2
c

1
N2
c

−NAN2
c

1
N2
c

1
N2
c

−NAN2
c
−NAN2

c
−NAN2

c
−NAN2

c

1
N2
c

−NAN2
c
−NAN2

c
−NAN2

c

1
N2
c

1
N2
c

1
N2
c

1
N2
c

−NAN2
c

1
N2
c

−NAN2
c

1
N2
c

−NAN2
c

−NAN2
c
−NAN2

c

1
N2
c

1
N2
c

−NAN2
c
−NAN2

c
1
N2
c

1
N2
c

1
N2
c

−NAN2
c
−NAN2

c
−NAN2

c




, (E.22)

C3 = N2
cC1 . (E.23)
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F Matrix elements for 2→ 1 processes

The matrix elements squared for three-parton processes, used in the calculation of the single inclusive
forward jet distributions in Section 5.2 read

• gg∗ → g

|Mgg∗→g|
2

= 4g2
s

CA
N2
c − 1

(k · q)2

k2
T

,

• qg∗ → q

|Mqg∗→q|
2

= 4g2
s

CF
N2
c − 1

(k · q)2

k2
T

,

• gq∗ → q

|Mgq∗→q|
2

= g2
s

CF
N2
c − 1

(k · q) ,

• q̄q∗ → g

|Mq̄q∗→g|
2

= g2
s

CF
Nc

(k · q) .

In the above, k and q are the momenta of the off-shell and on-shell partons, respectively. kT is the
transverse component of the off-shell momentum, gs is a strong coupling and Ci is a colour factor of
the emitter: CF for a quark and CA for a gluon.
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