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Abstract

The main aim of this thesis is a theoretical analysis of selected processes with a hard

scale observed in the high-energy proton collisions at the LHC. These processes are con-

sidered in the limit of high energies available at the LHC, which allows a closer exam-

ination of the parton correlations inside the proton and, in consequence, leads to new

information on the partonic structure of hadrons. The analysis carried out in this thesis

concerns several problems. First, the Drell-Yan processes were analyzed in the formalism

of the color glass condensate. The obtained results were compared with those obtained in

the collinear approximation. The rest of the discussed issues concern the double parton

scattering. In particular, we analyzed the problem of the specification of initial conditions

for QCD evolution equations for double parton distributions, which satisfy non-trivial

momentum and valence quark number sum rules. Within the double parton scattering

studies, we analyzed the production of electroweak bosons W+W− and Z0Z0 taking into

account the so called splitting terms in the QCD evolution equations. The found results

show the importance of these terms for the predictions of the cross sections for the con-

sidered processes.

Streszczenie

Celem niniejszej pracy jest szczegółowa analiza teoretyczna wybranych procesów

z twardą skalą obserwowanych w wysokoenergetycznych zderzeniach protonów na akcel-

eratorze LHC. Procesy te są rozpatrywane w granicy wysokich energii, dostępnych na

LHC, co umożliwia dokładniejsze zbadanie korelacji między partonami wewnątrz pro-

tonu i w konsekwencji prowadzi do otrzymania nowej informacji na temat partonowej

struktury hadronów. Przeprowadzone w pracy analizy dotyczą kilku wybranych zagad-

nień. Po pierwsze, dokonana została analiza procesów Drella-Yana w formaliźmie szkła

kolorowego. Otrzymane wyniki zostały porównane z wynikami uzyskanymi w ujęciu

kolinearnym. Pozostałe analizowane zagadnienia dotyczą procesów podwójnego rozpra-

szania partonów. W szczególności, analizowane było zagadnienie specyfikacji warunków

początkowych dla równań ewolucji QCD rozkładów dwupartonowych, które spełniają

nietrywialne reguły sum: pędową i liczbową dla kwarków walencyjnych. W ramach

badań podwójnego rozpraszania partonów wykonana została analiza produkcji elektro-

słabych bozonów W+W− oraz Z0Z0 z uwzględnieniem członów typu splitting w równa-

niach ewolucji QCD. Otrzymane wyniki pokazują jak istotne są te człony dla przewidy-

wań przekrojów czynnych dla rozważanych procesów.
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Preface

In the last 60 years, studies of particle collisions gave the possibility to deepen the

knowledge of the structure of hadrons and high energy processes. Experiments conducted

at particle accelerators led to the discovery of the fundamental constituents of matter -

"elementary particles" and allowed to examine the interactions between them. A model

of matter, called the Standard Model, assumes the existence of elementary particles -

a total of six quarks and six leptons, interacting with each other through the exchange

of intermediate bosons: gluons which mediate the strong force, photon which carries the

electromagnetic force and W± and Z0 bosons mediating the weak force.

One of the basic issues of high energy physics are the interactions between hadrons.

For decades, physicists have been conducting intensive studies in this field to understand

the dynamics of hadron collisions and to confront existing theoretical models with ex-

perimental data. The technical progress in the construction of accelerator and detector

systems has allowed to analyze these processes at increasingly higher energies.

The Large Hadron Collider (LHC), built by the European Organization for Nuclear

Research (CERN) in the years 1998 - 2008, is currently the largest and the most power-

ful accelerator in the world. The LHC has been designed to collide two opposing proton

beams with the total collision energy equal to 14 TeV. The analyzes of the particle colli-

sions at such high energies provide important information on interaction of hadrons and

thus on the structure of matter. Many of the fundamental particles are produced only in

high energy collisions, thus it is hard or near impossible to study them in other ways.

In the year 2012, the last missing element of the Standard Model, the Higgs boson, was

discovered, which proved the physical potential of the LHC.

The processes with a hard scale at the LHC, which are the main subject of the re-

search proposed in this thesis, belong to the area of fundamental science. They concern

the basic building blocks of matter - quarks and gluons which are fundamental constituent

of hadrons in general and nucleons in particular. Our analysis is based on quantum chro-

modynamics (QCD), the fundamental theory of strong interactions.

The outline of the dissertation is the following.

Chapter 1 serves as a theoretical introduction in which we review basic facts con-

cerning the quantum chromodynamics and its applications such as color forces, quarks
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and gluons, deep inelastic scattering, the Feynman’s parton model and the phenomena of

parton saturation. We introduce here the parton distribution functions which are inten-

sively used in the description of the measured cross sections for high energy scattering

processes.

In Chapter 2, we present an analysis of the Drell-Yan lepton pair production at

forward rapidities at the LHC kinematics. In particular, we show that using the dipole

framework leads to a significant suppression of the DY cross section in comparison to the

collinear factorization result. This is due to saturation effects in a dipole cross section.

In Chapters 3 and 4, we perform theoretical studies of the double parton scattering

processes in the context of the LHC experiments. The key element in the description of

these processes are the double parton distribution functions (DPDFs) which describe cor-

relations between partons inside a hadron. Therefore, they provide the basic knowledge

of the partonic structure of a nucleon which goes beyond the description with the standard

single parton distribution functions, determined so far in the scattering experiments. In

particular, we concentrate on the QCD evolution equations of the double parton distribu-

tions, addressing the question of initial conditions for these equations. For this purpose,

we constructed a numerical program which solves the DPDFs evolution equations. The

observation of the double parton scattering processes at the Tevatron experiments strongly

suggests that the deep theoretical understanding of the double parton scattering is manda-

tory for the interpretation of experimental results from the LHC.

In Chapter 5, we present an application of the results from the previous section to

the analysis of the W+W− and Z0Z0 electroweak boson production in the double parton

scattering at the LHC. In particular, we quantify the role of splitting terms in the QCD

evolution equations for the double parton distribution functions. We find that these terms

give important contributions to the cross sections under the study.

The results discussed in this thesis are based on the following publications:

1. "Drell-Yan process at forward rapidity at the LHC",

Krzysztof Golec-Biernat, Emilia Lewandowska and Anna M. Stasto,

Phys. Rev. D82, 094010 (2010),

2. "The Drell-Yan processes at forward rapidities at the LHC",

Emilia Lewandowska, Acta Phys. Pol. B, Vol. 42 (2011) - No 7,
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3. "Initial conditions for evolution of double parton distributions",

Krzysztof Golec-Biernat and Emilia Lewandowska, Proceedings of Science,

PoS DIS2013 (2013) 075, arXiv:1311.7392 [hep-ph],

4. "How to impose initial conditions for QCD evolution of double parton distribu-

tions?", Krzysztof Golec-Biernat and Emilia Lewandowska,

Phys. Rev. D90, 014032 (2014),

5. "Double parton distribution functions and their QCD evolution equations",

Emilia Lewandowska, Acta Phys. Pol. B, Vol. 45 (2014) - No 7,

6. "Electroweak boson production in double parton scattering",

Krzysztof Golec-Biernat and Emilia Lewandowska, Phys. Rev. D90, 094032 (2014).
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Chapter 1

Introduction

1.1 Quarks and the strong interactions

In 1964, Murray Gell-Mann and George Zweig hypothesized the existence of cer-

tain elementary particles called quarks. At first, they assumed the existence of three

quarks, u, d and s, together with the corresponding antiparticles - called antiquarks. The

later experimental researches conducted over the strong interactions discovered of three

more quarks of different flavors, c, b and t, discovered in the years 1974, 1977 and 1995,

respectively. Quarks are the basic elementary particles and the fundamental constituents

of matter which make up hadrons: baryons which are built with three quarks (qqq) and

mesons formed by a quark antiquark pair (qq).

Quarks are point-like fermions with spin 1
2
, fractional baryon number A = 1

3
and

fractional electric charge +2
3
|e| or −1

3
|e|. The exact specification of the quark properties

is given in Table 1.1. Each quark has its antiquark which is characterized by the opposite

sign of additive quantum numbers, e.g. the electric charge Q, baryon number A or the third

component of isospin I3. Quarks do not exist in nature as free particles but are confined in

hadrons. All experiments, made by the analogy to the break up of a nucleus during which

its components, nucleons, are released, failed to observe free quark. Even in the highest

energy collisions, the free quarks were never directly observed in the detectors.

Quarks can be divided into two groups according to their mass (called current mass):

• light quarks: u,d,s with mass mq < 0.5 GeV,

• heavy quarks: c, t,b with mass mq > 1 GeV.

The individual quark masses are shown in Table 1.2. In addition, from the point of view

of electroweak interactions, all quarks are grouped into two-quark families, called gener-
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Table 1.1: The properties of quarks

Quantum numbers

Quark flavors A Q I I3

u (up) 1
3

+2
3

1
2

+1
2

d (down) 1
3
−1

3
1
2
−1

2

s (strange) 1
3
−1

3
0 0

c (charm) 1
3

+2
3

0 0

b (bottom, beauty) 1
3
−1

3
0 0

t (top, truth) 1
3

+2
3

0 0

ations,

(
u

d

)

,

(
c

s

)

,

(
t

b

)

,

wherein, only the first-generation quarks occur commonly (as constituent quarks) in na-

ture, e.g. in the proton (uud) and the neutron (ddu).

Quark structure of hadrons have to be considered as a proven fact. Experiments on

deep inelastic scattering (DIS) of leptons off hadrons are beautifully explained as scat-

tering of leptons on individual, point-like quarks. In the infinite momentum frame, the

duration of these collisions is too small for quarks to exchange gluons among themselves.

Consequently, quarks interacts with leptons as free particles.

The development of the quark theory caused a re-review of the existing forces in

nature. Due to the Pauli exclusion principle, which excludes the existence of identical

quarks in the same quantum state, the existence of the structure of the three quarks in

a baryon requires quarks with different quantum numbers. It turned out that quarks carry

Table 1.2: Quark masses

mu md ms

2 - 8 MeV/c2 5 - 15 MeV/c2 0.1 - 0.3 GeV/c2

mc mb mt

1.0 - 1.6 GeV/c2 4.1 - 4.5 GeV/c2 168 - 192 GeV/c2
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a color charge and are held in nucleons by a fundamental force - color force. The con-

cept of a color force, introduced in 1964 by O. W. Greenberg, allowed to fulfill the Pauli

exclusion principle for quarks in baryons. According to this theory, the interaction be-

tween quarks are determined by their color charge which allows to identify a quantum

state of each quark, called conventionally red, blue or green. As for the electric charge,

quarks have positive values of the color charge, while antiquarks have opposite, negative

value. The process of the transition of the quark color into a different color is done by

an emission of gluons. Such interactions between quarks are called strong interactions.

It was proven experimentally in 1980 at the high energy e+e− scattering experiments at

DESY that the strong interactions between quarks are carried out through the vector gauge

bosons of spin 1, gluons, which are massless, electrically neutral particles. However, they

carry color charge.

1.2 Fundamentals of QCD

Over the past 60 years, numerous theoretical and experimental studies in particle

physics allowed to formulate the theory of strong interactions, called quantum chromo-

dynamics (QCD). Quantum chromodynamics describes the interactions between quarks

and gluons within hadrons. It is based on mathematical methods used in quantum elec-

trodynamics (QED) and quantitatively describes the physics of quarks, gluons and their

compound systems.

One of the basic concepts of QCD is color - the charge of the strong interactions.

According to this theory, the elementary particles interact strongly by the exchange color

charges carried by intermediary gluons. Gluons not only mediate the color charges be-

tween quarks, they also interact with each other due to their color charges. This stays in

contrast to photons which do not carry electric charges, thus they do not interact directly

between themselves. The fact that gluons interact with each other makes the mathemat-

ical analysis of the color forces extremely difficult. The already mentioned absence of

free quarks and gluons in an isolated form in nature is a key concept of quantum chro-

modynamics, called color confinement. In recent years, quantum chromodynamics has

enabled the formulation of a number of phenomenological models describing the inter-

actions of elementary particles. It was also realized that the results of perturbative QCD

could be seen in numerous hadronic processes involving hard scales, much bigger than

the fundamental parameter of QCD, ΛQCD ∼ 300 MeV, that is in hard processes.

Quantum chromodynamics is a quantum field theory with a non-abelian local gauge

symmetry group. The three quark color fields, called customary: red, green and blue,

form a fundamental representation of the SU(3) gauge group. The eight gauge fields

corresponding to gluons are necessary for the local gauge symmetry and form the adjoint

representation of SU(3). The Lagrangian of QCD, required to be invariant under the
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SU(3) gauge group transformations, has the following form [1]

L =
3

∑
k=1

q̄k

{
iγµ ∂µ −mk

}
qk −

3

∑
k,l=1

8

∑
a=1

gs {q̄kγµ (T a)kl ql}Aa
µ −

1

4

8

∑
a=1

Ga
µν Gµν

a , (1.1)

in which gs is the strong interaction coupling constant, qk are quark color fields with mass

mk and Aa
µ are gluon fields. In addition, γµ are the Dirac matrices and Ta are generators

of the SU(3) group which fulfill the following commutation relations

[T a,T b] = i
8

∑
c=1

f abcT c . (1.2)

Here f abc, with a,b,c = 1,2, . . . ,8, are the structure constants of the group. The gauge

strength fields,

Ga
µν = ∂µAa

ν −∂νAa
µ −gs f abcAb

µAc
ν , (1.3)

contain the nonlinear part in gauge fields, responsible for self-interaction of gluons.

In 1973, F. Wilczek, D. Gross, and H. D. Politzer theoretically predicted asymptotic

freedom of the strong interactions by computing the effective coupling constant in QCD,

αs(Q
2) =

g2
s (Q

2)

4π
=

12π

(33−2n f ) ln(Q2/Λ2
QCD)

, (1.4)

where n f is the number of active quark flavors f and Q2 is the four-momentum transfer

squared and ΛQCD is the already mentioned internal scale of QCD. The effective coupling

constant of QCD is the decreasing function of Q2. Thus, for Q2 ≫ Λ2
QCD the coupling

constant is small, αs(Q
2)≪ 1. From Heisenberg uncertainty principle, this means that the

strength of the strong interactions is small at sufficiently small distances. Thus, quarks and

gluons interact as free particles at small distances, which is a property called asymptotic

freedom. It allows to apply perturbative methods to compute the QCD predictions, e.g. for

the deep inelastic scattering of leptons on hadrons where the values of Q2 are very large.

On the other hand, at large distances color confinement forces bind quarks and gluons in

hadrons. The precise nature of this phenomenon is yet to be understood analytically. The

perturbative methods are of no use in such a case because of large values of the strong

coupling constant at large distances.

1.3 Deep inelastic scattering

One of the most important tests of quantum chromodynamics is the issue of break-

ing of the Bjorken scaling of the nucleon structure functions, F1 and F2, in the deep in-
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k
k′

p

q

Figure 1.1: Deep inelastic lepton-proton scattering.

elastic scattering (DIS). Deep inelastic scattering is a high-energy process attempted from

1960s until the year 2007 which provides information about the structure of the hadrons.

In DIS, charged leptons (electrons, muons) or neutrinos are deflected on a hadron target.

In consequence of such a scattering, many new particles are created. The graphical illus-

tration of the deep inelastic electron-proton scattering is presented in Fig. 1.1 in which

a target proton is being probed "deep inside" by virtual photon emitted by the point-like

lepton. The target proton absorbs some kinetic energy of the electron, thus this process

can be called inelastic.

The kinematics of the DIS is characterize by the square of the four-momentum

transfer q, being the photon virtuality,

Q2 = −q2 =−(k− k′)2 , (1.5)

and by the invariant mass of the produced particles,

W 2 = (p+q)2 = M2 +2Ms+q2 , (1.6)

in which k and k′ are lepton incoming and outgoing four-momenta, and M and p are mass

and a four-momentum of the target proton (in the colliding mode). The standard variables

used in the description of DIS process are the Bjorken variable x and inelasticity y [2],

x =
Q2

2p ·q =
Q2

2M(E ′−E)
, (1.7)

y =
q · p
k · p = 1− E ′

E
, (1.8)

where the last equalities show these variables in the proton target rest frame (E and E ′

are energies of the incoming and outgoing lepton, respectively). These variables obey the
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equations

xy(s−M2) = Q2 , (1.9)

where s = (k+ p)2 is the Mandelstam invariant, equal to the total energy squared of the

incoming particles in their center-of-mass frame.

The structure of the target proton in DIS is encoded in the structure functions, F1

F2 and F3, which parametrize the DIS cross section integrated over momenta of all the

produced particles except the scattered lepton. In the case of a charged lepton scattering,

l p→ lX , the differential cross section has the following form

d2σ

dxdy
=

8πα2ME

Q4

[(
1+(1− y)2

2

)

2xF1 +(1− y)(F2−2xF1)−
(

M

2E

)

xyF2

]

, (1.10)

while for a neutrino (or antineutrino) scattering, ν p→ lX , the cross section can be rewrit-

ten as

d2σ

dxdy
=

G2
FME

π

[(

1− y− M

2E
xy

)

F2 + y2xF1± y
(
1− 1

2
y
)

xF3

]

, (1.11)

with the fine-structure constant α and GF being the Fermi constant equal to [2]

α−1 = 137.0359895(61) , (1.12)

GF = 1.16639(2)×10−5 GeV−2 . (1.13)

The sign (±) in the above formula equals (+) for the neutrino scattering and (−) for the

antineutrino scattering.

In 1967, James D. Bjorken suggested that for the very large values the four-momen-

tum transfer squared, Q2→ ∞, the structure functions depend only on one variable - the

Bjorken variable x,

Fi(x,Q
2)→ Fi(x) , i = 1,2,3 . (1.14)

This behavior, called the Bjorken scaling, was found in the first DIS data from SLAC.

1.4 The parton model

Parton model was proposed in 1969 by Richard Feynman as a way to analyze the

high-energy hadron collisions. According to this model, an inelastic scattering process

can be interpreted as an elastic scattering of a lepton on a free, point-like particle - parton.

Currently, partons are identified as quarks and gluons. Parton distributions, determined

16



e e′

q

p

Figure 1.2: The DIS process in the parton model.

experimentally under the studies of the parton model, provide detailed description of the

hadron structure and are widely used in processes occurring in high-energy collisions.

The Feynman’s parton model provides a physical interpretation of the Bjorken scal-

ing. In this model, the deep inelastic scattering can be considered in the limit of the

infinite momentum of the proton in which its mass is neglected. In this limit, the proton

four-momentum equals pµ ≈ (P,0,0,P) and P→ ∞. In such a case, cross section (1.10)

can be rewritten in the following form [2]

d2σ

dxdQ2
=

4πα2

Q4

[

(1+(1− y)2)F1 +
(1− y)

x
(F2−2xF1)

]

. (1.15)

According to Feynman, in the infinite momentum frame, the fast moving proton can

be treated as a flux of point-like partons each of which carries a momentum fraction ξ of

the proton four-momentum,

pµ
q = ξ pµ . (1.16)

The graphical illustration of the DIS process in parton model is shown in Fig. 1.2. Lepton

scattering takes place through the virtual photon exchange with the four-momentum q on

a single parton, without interfering with other. From the four-momentum conservation

(ξ p+q)2 = 0 ⇒ ξ =
−q2

2p ·q =
Q2

2p ·q ≡ x . (1.17)

Thus, the Bjorken variable equals the momentum fraction of the proton carried by the

struck quark. The cross section for such a scattering can be given as [2]

dσ̂

dxdQ2
=

4πα2

Q4
[1+(1− y)2] 1

2
e2

q δ (x−ξ ) , (1.18)
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Q2
0 Q2 > Q2

0

Figure 1.3: With the increase of the scale Q2 > Q2
0 a virtual photon starts to see a partonic

structure of the hadron.

in which the following relation for the structure functions has been used

F2 = xe2
q δ (x−ξ ) = 2xF1 . (1.19)

In the Feynman’s (naïve) parton model, the probability density that parton q carries

a fraction ξ of the total proton momentum is given by a function q(ξ ) to be determined

from experiments. Thus

q(ξ )dξ , 0 6 ξ 6 1 (1.20)

is the probability that the parton momentum fraction lies in the interval (ξ ,ξ +dξ ). The

structure functions are given in such a case as incoherent sum over all scattering possibil-

ities,

F2(x) = 2xF1(x) = ∑
i

xe2
q

∫ 1

0
dξ qi(ξ )δ (x−ξ ) = ∑

i

e2
q xq(x) , (1.21)

where i distinguishes different species of partons. We see that by measuring the structure

function F2, the parton distribution functions are determined. The relation F2 = 2xF1,

valid in the naïve parton model, is called the Callan-Gross relation. It was observed to

good accuracy at the first DIS data from SLAC.

1.5 Parton distribution functions

One of the achievements of perturbative QCD is the field theoretical justification

of the parton model realized by the factorization theorem of deep inelastic scattering.

Within this theory, the lepton-hadron DIS process can be consider as two independent

parts: a short distance part which is perturbatively calculable and a long distance part to be

determined experimentally. In terms of quantum chromodynamics, partons are identified

as both quarks and gluons in contrast to the naïve parton model in which gluons are
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Figure 1.4: The dependence of the structure function F2 on Q2 for fixed values of x,

obtained by the H1 Collaboration at DESY.

neglected. QCD improves the naïve parton model by taking into account the emission

of gluons, which violates the Bjorken scaling by introducing dependence of the structure

functions on the logarithm of the hard scale Q2 [1]. The violation of the Bjorken scaling

was observed experimentally in 1973.

Taking into account the gluon emission, shown in Fig. 1.3, the structure function

takes the following form

F2(x,Q
2)

x
= ∑

q,q

e2
q

∫ 1

x

dy

y
q(y)

[

δ (1− x

y
)+

αs

2π
Pqq

(
x

y

)

log

(
Q2

µ2

)]

, (1.22)

where Pqq is a splitting function, computed perturbatively in QCD. For Q2≫ Λ2
QCD, i.e.

in the deep inelastic regime, the strong coupling constant αs(Q
2) decreases which allows

19



to apply perturbative calculations in QCD. Eq. (1.22) can be written as

F2(x,Q
2)

x
= ∑

q,q

e2
q

(
q(x)+∆q(x,Q2)

)
, (1.23)

where a change in the parton densities is given by

∆q(x,Q2)≡ αs

2π
log(

Q2

µ2
)
∫ 1

x

dy

y
q(y)Pqq

(
x

y

)

. (1.24)

The gluon emission from quarks implies that with the increase of the hard scale Q2 a vir-

tual photon starts see a partonic structure of the hadron, composed of point-like quarks

and gluons. Defining the quark density distribution in the leading logarithmic limit,

q(x,Q2) = q(x)+∆q(x,Q2) , (1.25)

the following integro-differential equation can be obtained

d

d logQ2
q(x,Q2) =

αs

2π

∫ 1

x

dy

y
q(y,Q2)Pqq

(
x

y

)

. (1.26)

The above equation is known as the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

evolution equation [3, 4, 5] (for nonsinglet quark distributions). It implies that quark car-

rying momentum fraction x could have come from a parent quark with a larger momen-

tum, y > x, which has radiated a gluon. The probability of this process per unit of logQ2

is proportional to αsPqq(x/y). The full description of the PDFs also includes the evolution

of the gluon distribution function together with the distributions of sea quarks (quark-

antiquark pairs created from vacuum). Although these components of the proton do not

provide its quantum numbers, they constitute more than 50% of proton’s momentum.

The DGLAP evolution equations are widely used in global determinations of parton

distribution functions which also include the distribution of gluons. Thus, QCD predicts

the violation of the Bjorken scaling and allows to calculate the dependence of the structure

function F2(x,Q
2) on the hard scale Q2,

F2(x,Q
2) = ∑

q,q

e2
q xq(x,Q2) , (1.27)

where the quark/antiquark distribution functions acquired dependence on the hard scale

Q2 at which the proton is probed by the virtual photon emitted by the incident electron.

The experimental results on the structure function F2(x,Q
2), obtained by the H1 Collab-

oration, are shown in Fig. 1.4. For x ≈ 0.25, the structure function is found to scale and

does not depend on Q2 at this particular value of x. However, for other values of x, the

structure function increases (for x < 0.25) or decreases (for x > 0.25) with Q2. This be-

havior can be explained by the DGLAP evolution equations once the initial conditions for
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Figure 1.5: The F2 data from the H1 and ZEUS collaborations. The proton structure

function strongly increases with the decreasing Bjorken variable x.

them are determined from fits to the data (see solid lines in Fig. 1.4).

1.6 Parton saturation

The essential observation at the theoretical progress in the physics of hadron inter-

actions at high energy is the fact that the proton structure function, in the region of the

small Bjorken variable x≪ 1, strongly increases with decreasing x for fixed values of Q2,

F2(x,Q
2)∼ x−λ , (1.28)

with λ = 0.2÷0.3. The experimental confirmation of this result is shown in Fig. 1.5. This

strong rise, however, cannot go on indefinitely and eventually saturates due to the fact

that the structure of hadron at small-x limit is dominated by dense field of low momentum

gluons. This phenomena of increasing parton densities (sea quarks and gluons) at high

energy is known as parton saturation.

Measurements conducted by many experiments on deep inelastic scattering allowed

to determine the distributions of quarks and gluons. The results of the H1 and ZEUS

experiments, presented in Fig. 1.6, clearly show the dominance of the gluon distributions

xg(x,Q2) in the small-x limit while for the larger values of x→ 1 - the contribution of

valence quarks is significant. Thus, it is the gluon distribution which should saturate first
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the small-x limit, the contribution of the sea quarks and gluons is significant.

at small x since it grows faster then the quark density. Thus, is the driving force towards

saturation.

Saturation effects introduce into the measured cross sections an internal momentum

scale, known as saturation scale Qs. It is given in terms of the gluon distribution,

Q2
s = αs(Qs)Nc

1

πR2
xg(x,Q2

s ) , (1.29)

where the variable R is the hadron radius and αsNc is the color charge squared of a sin-

gle gluon. The saturation scale grows with the center-of-mass energy,
√

s, i.e. with the

decreasing Bjorken variable x,

Q2
s ∼ sλ ∼ x−λ . (1.30)

Therefore, for high energy hadron collisions, the saturation scale becomes large

Q2
s (s)≫ Λ2

QCD , (1.31)

which leads to small values of the QCD coupling constant,

αs(Q
2
s )≪ 1 . (1.32)

As a result, the computation of saturation effects in QCD can be approached from the
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Figure 1.7: Dipole model of the DIS process at small-x limit.

perturbative side. The most physically appealing description of saturation effects in DIS

at small x is provided by color dipole models.

1.7 Color dipole models of DIS

The main assumption of the color dipole models concerns the decay of photon into

qq pair due to gluon exchange, see Fig. 1.7 for a graphical illustration of this process. The

proton still carries most of the total energy, while the virtual photon has just enough energy

to dissociate long before the scattering into a quark-antiquark dipole. In the kinematic

range of small-x, the virtual photon - proton cross section factorizes into a convolution of

the photon light-cone wave functions ΨT,L and the dipole cross section σqq, describing

the interaction of the incoming quark-antiquark pair with strong gluon fields of the target

hadron. Both quantities are functions of transverse separation r⊥ of the qq pair.

The proton structure function can be given in terms of the virtual photon-proton

cross sections [7, 8, 9, 10]

F2(x,Q
2) = FT (x,Q

2)+FL(x,Q
2) , (1.33)

with

FT,L(x,Q
2) =

Q2

4π2αem
σT,L(x,Q

2) , (1.34)

where σT,L are the γ∗p cross sections which depend on the transverse dipole size r⊥ and

the longitudinal momentum fraction z of the photon’s longitudinal momentum carried by

the quark with flavor f . They are given by the formula

σT,L(x,Q
2) =

∫

d2r⊥

∫ 1

0
dz|ΨT,L(r⊥,z,Q

2)|2 σqq̄(x,r⊥) , (1.35)

where the wave functions ΨT,L for the transversely (T) and longitudinally (L) polarized
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photons can be interpreted as probabilities for γ∗ to fluctuate into the qq̄ dipole,

|ΨT (r⊥,z,Q
2)|2 =

6αem

4π2 ∑
f

e2
f

{

[z2 +(1− z)2]µ2K2
1 (µr)+m2

f K2
0 (µr)

}

, (1.36)

|ΨL(r⊥,z,Q
2)|2 =

6αem

4π2 ∑
f

e2
f

{

4Q2z2(1− z)2K2
0 (µr)

}

, (1.37)

in which µ2 = z(1− z)Q2 +m2
f and K0,1 are the Mc Donald-Bessel functions.

The dipole cross section σqq̄ in eq. (1.35) characterizes the interaction of the quark-

antiquark dipole with the proton through gluon exchanges dominating in the small-x re-

gion. It encodes all the information about hadronic interactions and can be computed

from the dipole-proton scattering amplitude A(x,r⊥,∆) as follows

σqq̄(x,r⊥) = 2 Im A(x,r⊥,∆ = 0) = 2

∫

d2b⊥N(x,r⊥,b⊥) . (1.38)

The imaginary part of the forward dipole-proton scattering amplitude, N(x,r⊥,b⊥), is

interpreted as the probability for the qq̄ dipole to scatter off the proton and can be given

in terms of the gluon distribution at the scale Q2 ∼ 1/r2
⊥≫ Λ2

QCD,

N(x,r⊥,b⊥)∼ αs r2
⊥ xg(x,1/r2

⊥) . (1.39)

For larger values of dipole sizes, the dipole-proton scattering amplitude can be modeled

using ideas of parton saturation hoping that more precise QCD based calculations will

support the general picture encoded in the models of parton saturation.

Several models with gluon saturation effects have been proposed. In the historically

first Golec-Biernat - Wuesthoff (GBW) model [7], the dipole cross section is assumed in

the form

σqq(x,r⊥) = σ0 (1− e−r̂2

) , (1.40)

where r̂ = r⊥/2R0(x). The quantity R0, called in [7] saturation radius, plays the role of

the saturation scale, R0(x) = 1/Qs(x), and is assumed in the form

R0(x) = (x/x0)
λ/2 (1.41)

in units of GeV−1. The parameters of the model, σ0 = 23 mb, λ = 0.29 and x0 = 3 ·10−4

have been determined from the fit to HERA data on F2 for x < 0.01. At the limit of

the small Q2, saturation in the σqq sets in for r⊥ ∼ 2R0, σqq ∼ σ0, which allows a good

description of the structure function F2 in the small Q2 regime. In this regime, the photon-

proton cross sections (1.35) for the transverse polarized (T) photons gives σT ∼ σ0. For

large Q2, the dominant contribution reflects small dipole configurations with r⊥ ∼ 2/Q≪
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Figure 1.8: Predictions for the structure function Fcc̄
2 in the BGKS saturation model (BGK

model + heavy quarks) (from [11]).

R0, due to the relation σT ∼ 1/Q2, which leads to the Bjorken scaling for F2 for the

contribution from the small dipoles.

Along with obtaining more precise experimental data it has been observed that the

GBW model characterizes the region of the photon virtuality Q2 < 20 GeV2 only. For

larger values of the photon virtuality one should take into account the gluon distributions

that satisfy the DGLAP evolution equations. These improvements, altogether with the

contribution of heavy quarks c and b, have been included in Bartels - Golec-Biernat -

Kowalski (BGK) [12, 13] and Golec-Biernat - Sapeta (GS) [11] models. In these models

the dipole cross section was assumed in the form

σqq(x,r⊥) = σ0

{

1− exp(−π2r2
⊥αs(µ

2)xg(x,µ2)/3σ0)
}

, (1.42)
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with the scale

µ2 =
C

r2
⊥
+µ2

0 , (1.43)

where the parameters C, µ2
0 and σ0 were determined from a fit to DIS data. The gluon

density g(x,µ2) is evolved with the leading order DGLAP evolution equation in which

quarks are neglected due to the gluon dominance in the small-x limit. At the initial scale

Q2
0 = 1 GeV2, the gluon density is given by

xg(x,Q2
0) = Ag x−λg(1− x)5.6 , (1.44)

with parameters Ag and λg determined from the fit to the HERA DIS data at x < 0.01.

The exponent 5.6 is taken from parametrizations of the parton distribution functions for

large values of x. The main motivation for the form (1.42) of the dipole cross section is

its proper limit (1.39) for small transverse sizes of color dipoles, r⊥≪ 1/Q,

σqq(x,r⊥)≃
π2

3
r2
⊥αs xg(x,µ2) . (1.45)

On other hand, for large dipoles, r⊥≫ 1/Q, the dipole cross section saturates to a con-

stant value σ0. In contrast to the GBW dipole cross section, the rise in 1/x has become

dependent on r⊥ and, in consequence, the DGLAP evolution strengthens the rise in 1/x

with increasing Q2, which is necessary to describe the small-x data for large values of Q2.

To summarize, the GBW model describes well the structure function F2 at small

values of the photon virtuality (< 20 GeV2), while the BGK model improves these results

and the small-r⊥ part of the dipole cross section by incorporating the DGLAP evolution

equations. The final improvement of both discussed saturation models has been provided

by the GBS model [11] by adding the heavy quark (charm and beauty) contributions in

the theoretical formula for F2. It can be clearly seen in Fig. 1.8 that predictions of the

GBS model are consistent with the H1 and ZEUS experimental data.

1.8 The Balitsky-Kovchegov equation

The calculation of the color dipole scattering amplitude can be also attempted di-

rectly from QCD by solving the Balitsky-Kovchegov (BK) evolution equation [14, 15,

16]. At the high energies and small values of the Bjorken x, the increase of the gluon dis-

tribution leads to a major complication with computing tools of perturbation theory. The

QCD applies well to the events with small parton distributions, however in the parton sat-

uration regime, the non-perturbative features occurs and only weak coupling methods can

be used. In order to organize the calculations of processes in this region, a new effective

26



theory has been developed known as the color glass condensate (CGC) [10, 17].

The CGC theory is based on the division of partons in a hadron into fast and slow

ones. The high energy kinematics, which is used in CGC, simplify the description of the

fast partons by exploiting the fact that their dynamics is slowed down by Lorentz time

dilation and thus they can be viewed as static. Partons with momenta larger than the

separation scale λ+ = xP+ (given by the fixed hadron light-cone momentum P+) are fast,

while partons with small momenta k+ < λ+ are slow. The fast partons are nearly frozen

in light-cone time x+, and can be treated as static gluon color sources ρa(x−,x⊥) for slow

partons. An average over color sources can be calculated by using 2-point equal time

correlation function [18]

〈

Aµ(x
+,x⊥)Aν(x

+,y⊥)
〉

x
=

∫

DρWx[ρ]Aµ [ρ]Aν [ρ] , (1.46)

in which the low x gluons are described by gauge fields Aa
µ [ρ] and a weight Wx[ρ] depends

on the separation scale λ+. The basic relation of the CGC reflects a renormalization group

equation for the weight Wx[ρ] and is known as the JIMWLK equation [18]

∂Wx[ρ]

∂Y
= 1

2

∫

x⊥,y⊥

δ

δρa(x⊥)
χab(x⊥,y⊥)

δ

δρb(y⊥)
Wx[ρ] , (1.47)

where Y = ln(1/x) is rapidity and χab is a positive definite kernel depending on the color

sources via the Wilson line,

V (x⊥) = P exp
{

ig

∫

dx−A+
a (x
−,x⊥)

}

, (1.48)

in which A+[ρ] is a solution of the Yang-Mills equation in the covariant gauge,

∇2
⊥A+ =−ρ , (1.49)

with ρ being the color charge density. In the CGC formalism, the saturated gluons form

a collective state described by strong classical color fields, Aa ∼ 1/g, leading to highly

nonlinear phenomena. This is the reason why it is very difficult to find a general solution

to the JIMWLK equation and various approximations have to be developed.

In one of them, the BK equation has been derived. This is an evolution equation for

the the S-matrix element for the color dipole-proton scattering S(x,r⊥,b⊥), defined as as

an average of the path ordered exponentials (1.48) over classical gluon fields in the proton

that form the CGC,

S(Y,x⊥,y⊥)≡
1

Nc

〈

Tr
(

V †(x⊥)V (y⊥)
)〉

Y
, (1.50)

where the trace is performed over color indices. The dipole scattering amplitude from the
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previous section, N(x,r⊥,b⊥), can be written through the S-matrix element as

N(x,r⊥,b⊥)≡ 1−S(Y,x⊥,y⊥) , (1.51)

where (x⊥,y⊥) are two-dimensional vectors of the transverse position of the dipole ends.

Thus, the dipole transverse size r⊥ = x⊥− y⊥, the impact parameter b⊥ = (x⊥+ y⊥)/2

and the dipole cross section

σqq̄(x,r⊥) = 2

∫

d2b⊥ (1−S(Y,x⊥,y⊥)) . (1.52)

The S-matrix element obeys the non-linear evolution equation in rapidity Y [14, 15, 16],

called the BK equation,

∂

∂Y
S(Y,x⊥,y⊥) = −ᾱs

∫
d2z⊥
2π

(x⊥− y⊥)2

(x⊥− z⊥)2(y⊥− z⊥)2
(1.53)

×
(

S(Y,x⊥− y⊥)−S(Y,x⊥− z⊥)S(Y,z⊥− y⊥)
)

,

where the strong coupling ᾱs = (Ncαs)/π is fixed in the original derivation. The BK

has been formulated in the leading ln(1/x) and large Nc approximations. The kernel of

the this equation has the property of conformal symmetry and is invariant with respect to

scale change, translations, rotations and inversions. Due to its simplicity, the BK equation

is well suited for numerical and analytic studies of the evolution in the parton saturation

regime.

Based on the solutions to the BK equation, the following parametrization of the

dipole cross section has been proposed by Iancu, Itakura and Munier (IIM model) [10, 17],

σqq(x,r⊥) = 2πR2×
{

N0

(
r⊥Qs

2

)2(γs+
1

κλY
ln 2

r⊥Qs
)

for r⊥Qs ≤ 2 ,

1− e−a ln2(br⊥Qs) for r⊥Qs > 2 ,
(1.54)

where the saturation scale

Qs = Qs(x) = (x0/x)λ/2 GeV . (1.55)

The parameters R= 0.572 fm, λ = 0.22, x0 = 1.63 ·10−5, a = 0.615, b = 1.006, N0 = 0.7,

κ = 9.9 and γs = 0.7376 and were obtained from the fit to the small x DIS data.

1.9 Geometric scaling

The GBW model of deep inelastic scattering at small-x limit predicts a geometric

scaling of the total photon-proton cross section. At this regime, the dipole cross sec-
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Figure 1.9: Experimental data on the total photon-proton cross section as a function of

the scaling variable τ = Q2/Q2
s (x), [19].

tion σqq̄ depends only on the dimensionless quantity r⊥Qs(x), where the saturation scale

Qs(x) = 1/R0(x),

σqq̄(x,r⊥) = σqq (r⊥Qs(x)) . (1.56)

As a result, γ∗p cross section is a function of the ratio Q2/Q2
s ,

σT,L(x,Q
2) = σT,L

(
Q2

Q2
s (x)

)

. (1.57)

This behavior is called geometric scaling. The implications of geometric scaling have

been confronted with experimental data in [19] and are shown in Fig. 1.9. It is clearly

seen that the data exhibit geometric scaling over a very broad region of Q2.

The BK equation also predicts geometric scaling. It can be solved at large transverse

distance, r⊥≫ Qs(Y ), where the scaling property was found

S(Y,r⊥) = f (r⊥Qs(Y )) . (1.58)
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Furthermore, the scaling in the BK evolution equation implies the following dependence

of the saturation scale on rapidity

Q2
s (Y ) = Λ2 ecᾱsY , (1.59)

where c is a constant and Λ ∼ ΛQCD. Parametrization (1.54) takes these facts into ac-

count. In the saturation regime, Q2≪Q2
s , there is only one intrinsic scale - the saturation

momentum and all physical quantities should be expressed as a dimensionless function

of Q2/Q2
s times some power of Q2

s giving the right dimension. Moreover, 1/Qs is the

typical transverse size of the saturated gluons. Thus, geometric scaling is a phenomenon

resulting from parton saturation.
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Chapter 2

Drell-Yan processes

In 1970, S. D. Drell and T.-M. Yan [20], showed that parton model assumptions

based on deep inelastic scattering also apply to certain processes in hadron-hadron colli-

sions. An example of such a process is a production of lepton pair l+l− with annihilation

of quark-antiquark pair qq, also known as the Drell-Yan process.

The production of the Drell-Yan lepton pair is one of the most important processes

of high-energy physics which allows the description of the hadron collisions in terms of

the parton model. The analysis of the Drell-Yan process provide data about the structure

of hadrons and parton distributions. These functions are essential for calculations of the

cross sections for many processes occurring at hadron collisions. This chapter contains

an analysis of the Drell-Yan process in two approaches - based on the collinear factoriza-

tion and on the dipole model formalism. Particularly important is the comparison of the

obtained results from the point of view of parton saturation, encoded in the form of the

dipole cross section in the dipole approach. We show that the Drell-Yan cross section in

the dipole approach is significant smaller than that in the collinear approach.

2.1 Lepton pair production in the collinear approach

The parton model assumes that a cross section for the Drell-Yan process can be

presented in terms of parton distribution functions for quarks q f (x) and antiquarks q f (x)

obtained from the deep inelastic scattering. In this notation, the lowest order cross section

σDY of the Drell-Yan process with a large invariant mass squared M2,

M2 = (pl+ + pl−)
2≫ 1 GeV2 , (2.1)
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Figure 2.1: Drell-Yan process - quark-antiquark annihilation into lepton pair.

is given as follows

σDY = ∑
f

∫

dx1dx2q f (x1)q f (x2)σ̂qq→l+l− , (2.2)

where x1 and x2 are parton longitudinal momentum fractions. σ̂qq→l+l− is a subprocess

cross section which characterizes annihilation of quark-antiquark pair into lepton pair

with emission of virtual photon γ∗ with virtuality Q2 = M2 > 0,

qq̄ → γ∗ → l+l− . (2.3)

In analogy to deep inelastic scattering and Bjorken limit (sec. 1.3), cross section (2.2) is

valid for the domain of the asymptotic scaling: M2,s→ ∞ with
M2

s
fixed. The graphical

illustration of the Drell-Yan process is shown in Fig. 2.1.

The conducted measurements of the Drell-Yan cross sections showed the compati-

bility of the experimental data with theoretical predictions based on eq. (2.2). This con-

firmed the validity of the parton model, which also holds for gluon corrections imposed

by quantum chromodynamics. The collinear singularities occurring in corrections for

Drell-Yan cross section can be absorbed into renormalized parton distributions. After

taking into consideration the leading corrections, cross section (2.2) can be rewritten in

formalism of the scale-dependent parton distributions q f (x,M
2), q f (x,M

2):

σDY = ∑
f

∫

dx1dx2q f (x1,M
2)q f (x2,M

2)σ̂qq→l+l− (2.4)

= ∑
f

∫

dx1dx2q f (x1,M
2)q f (x2,M

2)×
[
σ̂0 +aσ̂1 +a2σ̂2 + ...

]

qq→l+l− ,
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in which the factor a =
αs(M

2)

2π
.

As it has been shown in [2], the cross section for qq̄ annihilation into lepton pair of

mass M can be given in the lowest order as

dσ̂(qq→ l+l−)
dM2

=
σ0

Nc
e2

f δ (ŝ−M2) , (2.5)

with σ0 =
4πα2

3M2
in which α−1 = 137.036 is the fine structure coupling constant. Factor

Nc in eq. (2.5) is the number of quark colors, e f is the quark charge, while
√

ŝ is the

qq collision energy given by four-momenta p1 and p2 of the incoming partons and the

center-of-mass energy
√

s of the hadron-hadron collision:

ŝ = (p1 + p2)
2 = x1x2s, (2.6)

p1 =

√
s

2
(x1,0,0,x1), p2 =

√
s

2
(x2,0,0,−x2).

Substituting eq. (2.5) into (2.4), we find the following formula of the Drell-Yan cross

section in the parton model approach, [2]:

dσDY

dM2
=

∫ 1

0
dx1dx2 ∑

f

{q f (x1)q f (x2)+(q↔ q̄)}× dσ̂(qq̄→ l+l−)
dM2

(2.7)

=
σ0

Nc

∫ 1

0
dx1dx2δ (x1x2s−M2)×

[

∑
f

e2
f {q f (x1)q f (x2)+(q↔ q̄)}

]

.

The parton momentum fractions x1 and x2 are expressed with the help of the rapidity y of

the lepton pair

x1 =

√

M2

s
exp(y), x2 =

√

M2

s
exp(−y) . (2.8)

In this notation, relation (2.7) can be rewritten as a double-differential cross section

d2σDY

dM2dy
=

σ0

Ncs

[

∑
f

e2
f {q f (x1)q f (x2)+(q↔ q̄)}

]

, (2.9)

which allows the direct measurement of the quark and antiquark distribution functions of

the colliding hadrons.

According to the naïve parton model, distribution functions q f (x) and q f (x) are

independent of the invariant mass M2. Thus, the Drell-Yan cross section (2.7) (multiplied

33



a) b) c) d)

Figure 2.2: Leading order (a) and next-to-leading order (b-d) diagrams of the Drell-Yan

process.

by M4) scales with respect to the variable M2/s:

M4 dσDY

dM2
=

4πα2

3Ncs
M2

∫ 1

0
dx1dx2δ (x1x2−

M2

s
)×

[

∑
f

e2
f {q f (x1)q f (x2)+(q↔ q̄)}

]

=
4πα2

3Nc

M2

s
F

(
M2

s

)

, (2.10)

which formula exhibit scaling analogous to the Bjorken scaling of the DIS structure func-

tions.

2.2 Perturbative corrections to the Drell-Yan cross sec-

tion

As it has already been mentioned, effects of the quantum chromodynamics impose

perturbative corrections O(αs) to the parton model cross section of the Drell-Yan process.

The calculation of O(αs) is analogous to the corresponding corrections to the structure

function F2. In particular, the key point here is to consider:

• corrections to the leading order (LO) contribution (shown in Fig. 2.2) from virtual

gluons,

• next-to-leading (NLO) corrections obtained from real gluons in scattering process

q+q→ γ∗+g (see Fig. 2.2 b,c),

• and NLO corrections from quark(antiquark)-gluon scattering q+ g→ γ∗+ q (see

Fig. 2.2 d).

In the case of perturbation corrections to higher orders, e.g. O(α2
s ), one should also

take into account the dependence on the type of the colliding objects. In general, those

corrections should be much smaller than O(αs). After taking into account the leading

order QCD corrections to the Drell-Yan cross section, eq. (2.10) can be rewritten in the
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following form [2]:

M4 dσDY

dM2
=

4πα2

3Ns
M2

∫ 1

0
dx1dx2dzδ (x1x2z−M2

s
) (2.11)

×
[

∑
f

e2
f {q f (x1,M

2)q f (x2,M
2)+(q↔ q)}

(

δ (1− z)+
αs(M

2)

2π
Dq(z)

)

+ ∑
f

e2
f {g(x1,M

2)(q f (x2,M
2)+q f (x2,M

2))+(q,q↔ g)}× αs(M
2)

2π
Dg(z)

]

,

where g(x,M2) is the gluon distribution and the coefficient functions Dq and Dg are given

by the relations [21, 22, 23, 24]

Dq(z) = CF

[

4(1+ z2)

(
ln(1− z)

1− z

)

−2
1+ z2

1− z
lnz+δ (1− z)

(
2π2

3
−8

)]

,

Dg(z) = TR

[

(z2 +(1− z)2) ln
(1− z)2

z
+

1

2
+3z− 7

2
z2

]

, (2.12)

where CF = 4/3 and TR = 1/2.

Experiments on the Drell-Yan process are mainly based on the measurement of the

double differential cross section d2σ/dM2dy in a limited range of rapidity, as well as the

cross section d2σ/dM2dxF which depends on the longitudinal momentum fraction of the

lepton pair xF . The variable xF is known as the Feynman’s variable and can be expressed

by the parton momentum fractions x1 and x2 as follows

xF =
2√
s
(pl+ + pl−)≈ x1− x2. (2.13)

In the lowest approximation, the energy-momentum conservation (x1 pl+ + x2 pl−)
2 = M2

leads to relation

x1x2 =
M2

s
. (2.14)

Using relations (2.13) and (2.14), the LO Drell-Yan cross section can be written in the

following way

d2σLO

dM2dxF
=

4πα2

3NM4

x1x2

(x1 + x2)
∑

f

e2
f

[
q f (x1,M

2)q̄ f (x2,M
2)+ q̄ f (x1,M

2)q f (x2,M
2)
]

(2.15)

with the parton momentum fractions given by the kinematic variables xF , M2 and s

x1 =
1

2

(√

x2
F +4(M2/s)+ xF

)

, x2 =
1

2

(√

x2
F +4(M2/s)− xF

)

. (2.16)
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Figure 2.3: The Drell-Yan process in the framework of the dipole model.

In the NLO approximation, additional emission of a parton into the final state has to

be taken into account. Thus, the energy momentum conservation includes fraction z < 1

of the original parton momentum carried by quark: (x1 pl+ + zx2 pl−)
2 = M2, which leads

to the relation

x1x2 =
M2

zs
, (2.17)

with parton momentum fractions equal

x1 =
1

2
(
√

x2
F +4(M2/zs)+ xF), x2 =

1

2
(
√

x2
F +4(M2/zs)− xF). (2.18)

In this approximation, the Drell-Yan cross section is proportional to the strong coupling

constant αs,

d2σNLO

dM2dxF
=

4πα2

3NM4

αs(M
2)

2π

∫ 1

zmin

dz
x1x2

x1 + x2
∑

f

e2
f (2.19)

×
{

q f (x1,M
2) q̄ f (x2,M

2)Dq(z)

+ g(x1,M
2) [q f (x1,M

2)+ q̄ f (x2,M
2)]Dg(z)+(x1↔ x2)

}

,

where zmin = M2/s(1− xF) and coefficient functions Dq and Dg are given by eqs. (2.12).

Thus, the final formula for the Drell-Yan cross section in the collinear approximation up

to order O(αs) is given by the following sum

d2σDY

dM2dxF

=
d2σLO

dM2dxF

+
d2σNLO

dM2dxF

. (2.20)

2.3 Drell-Yan processes in the dipole picture

The Drell-Yan cross section can also be computed in the rest frame of one of the

hadrons. This allows the formulation of the Drell-Yan process in the dipole picture. The

original description has been proposed in [25, 26] with details of the calculations pre-

sented in [27]. This process has also been reexamined in [28] and later on in [29, 30]

within the framework of the color glass condensate which well suited to studies of parton

36



saturation effects in the DY processes. In the dipole picture, the Drell-Yan process can be

seen as a scattering of the quark (or antiquark) from the fast moving proton on the target

at rest. In this approach, a fast quark interacts with a strong gluon field of the target and

emits a virtual photon which later on decays into the lepton pair. The emission of the

virtual photon may be treated as a bremsstrahlung and occurs before or after scattering on

the target, see Fig. 2.3. As a result, the Drell-Yan cross section is viewed as a product of

two quark amplitudes, testing the gluonic field at two different transverse positions, and

can be described by the same dipole cross section as in the DIS.

In the target rest frame, the Drell-Yan process is considered in a kinematic regime of

the small-x wherein the mass of the lepton pair M is much smaller than the center-of-mass

energy
√

s and larger than the QCD scale ΛQCD:

Λ2
QCD≪M2≪ s .

In the small-x limit, in which the momentum fraction carried by the fast incoming parton

x1 is much larger than the second one,

x1 ∼ 1, x2 =
M2

sx1
≪ 1 , (2.21)

the Drell-Yan cross section can be given in terms of the incoming quark/antiquark distri-

butions in the proton [28]

d2σDY

dM2dxF
=

α

6πM2

x1

x1 + x2
∑

f

e2
f

∫ 1

x1

dz

z2

[

q f (
x1

z
,M2)+q f (

x1

z
,M2)

]

(2.22)

× σT,L
f (qp→ γ∗X) .

Using the proton structure function F2, relation (2.22) can be rewritten as

d2σDY

dM2 dxF

=
αem

6πM2

1

x1 + x2

∫ 1

x1

dz

z
F2

(
x1

z
,M2

)

σT,L
f (qp→ γ∗X) , (2.23)

in which factor αem/6πM2 characterizes photon decay into lepton pair and

F2

(
x1

z
,M2

)

= ∑
f

Q2
f

x1

z

[

q f (
x1

z
,M2)+q f (

x1

z
,M2)

]

. (2.24)

The cross section σ(qp→ γ∗X) in eq. (2.23) describes the emission of a virtual photon γ∗

with the momentum fraction z of the fast quark and is given in the dipole picture as [28]

σT,L
f (qp→ γ∗X) =

∫

d2r⊥W
T,L
f (z,r⊥,M

2,m f )σqq(x2,zr⊥), (2.25)

where (T,L) refer to the transverse and longitudinal polarization of the virtual photon and
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r⊥ is the photon-quark transverse separation. The wave functions for the transverse and

longitudinal virtual photon polarization can be calculated in perturbation theory,

W T
f =

α

π2

{
[1+(1− z)2]η2K2

1 (ηr⊥)+m2
f z4K2

0 (ηr⊥)
}
, (2.26)

W L
f =

2α

π2
M2(1− z)2K2

0 (ηr⊥) ,

in which K0,1 are the Bessel-Mc Donald functions and the auxiliary variable η , depending

on the quark mass m f , is given by

η2 = (1− z)M2 + z2m2
f . (2.27)

The dipole cross section, σqq in eq. (2.25), is known from the DIS analyses, described in

detail in Chapter 1.

2.4 Numerical results

The cross section for the Drell-Yan process has been measurement by many exper-

iments, with a wide choice of targets and energies, and obtained results were compared

with theoretical predictions. As an example of such a comparison are the results of an

experiment conducted by the E605 collaboration [31] in which they measured the Drell-

Yan cross section d2σ/dM2dy for pCu→ µ+µ− process at the energy
√

s = 38.8GeV.

It has been shown in Fig. 2.4, that there is a excellent agreement between theoretical

assumptions obtained from the next-to-leading order MRS(A) parton distributions and

experimental data.

In our research, we analyze the Drell-Yan lepton pair production at forward rapidi-

ties at the LHC energy
√

s = 14 TeV. In particular, we compare the Drell-Yan cross

sections computed in the two approaches described in this chapter,

• the collinear factorization approach in the NLO, see eq. (2.20),

• the dipole approach, see eq. (2.23),

with the intention to study the possibility to see saturation effects in the DY processes,

described in the dipole approach by the dipole cross section. In our calculations, we used

the following models of dipole cross section, σqq,

• the GBW model [7, 8], given by eq. (1.40),

• the GS model [11], given by eq. (1.42),

• the IIM model [10, 17], given by eq. (1.54).
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Figure 2.4: The Drell-Yan cross section d2σ/dM2dy measured by the E605 collaboration

[31] at the energy
√

s = 38.8 GeV against the theoretical prediction.

In Fig. 2.5 we present a comparison of the collinear factorization approach with the

dipole approach against the existing data from the Fermilab E772 Collaboration [34]. We

used the NLO CTEQ6.6M parton distribution functions [35] in the collinear factorization

and the GBW model [7] for the dipole cross section. It is clearly seen that for different

values of the Feynman variable xF , the E772 experimental data are above the results from

both approaches. A similar result was found for the NLO MSTW08 parton distributions

[36]. As far as the dipole approach is concerned, for the energy
√

s = 38.8 GeV and the

indicated values of M and xF , the fraction of the slow parton momentum, x2 ≈ 0.01−0.1,

is slightly beyond the applicability of this approach. Nevertheless, the presented results

show that both predictions are in the right ballpark.

In Fig. 2.6 we show the predictions for the Drell-Yan cross section as a function

of the center-of-mass energy
√

s at fixed xF = 0.15 for three values of the lepton pair

mass M = 6,8,10 GeV. At the LHC energy, the GBW dipole model with saturation

give results which are significantly below the collinear factorization predictions with the

NLO CTEQ6.6M parton distributions. The same results are shown in the linear scale

in Fig. 2.7, in which the CTEQ6.6M and MSTW08 parton distributions are used in the

collinear factorization approach and the GBW (dipole-GBW) and GS (dipole-GS) dipole

cross sections are substituted into the dipole approach formulae. The IIM dipole cross sec-

tion gives results which are very close to the GBW one. At the LHC energy, the fraction

x2 ≈ 3 · 10−6 lies in the small x domain which has not been explored experimentally yet

for the DY processes and we clearly see that saturation effects encoded in the dipole cross

section give results which are systematically below the collinear factorization predictions.

These results are awaiting experimental verification at the LHC.
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DY data from E772: E = 38.8 GeV
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Figure 2.5: The Drell-Yan cross section in the collinear and dipole formulas against the

E772 Collaboration data from Tevatron, [32, 33].
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DY cross section for xF = 0.15
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Figure 2.6: The Drell-Yan collinear and dipole cross section predicted for the LHC ener-

gies and three values of the lepton pair mass M = 6,8,10 GeV, [32, 33].
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DY cross section for xF = 0.15 and M=10 GeV
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Figure 2.7: The Drell-Yan cross section from the collinear and dipole approaches for fixed

xF = 0.15 and lepton pair mass M = 10 GeV, [32, 33].
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Chapter 3

Double parton scattering

The standard approach of the hard processes usually assumes that only a single par-

ton scattering (SPS) occurs in the hadron collision. However, the experiments at CERN,

conducted back in the 80’s by the AFS collaboration [37], allowed us to observe a double

parton scattering (DPS). This type of scattering is one of the processes of the multi parton

interactions (MPI) and occurs when in one hadron-hadron collision two independent hard

interactions take place (Fig. 3.1). The multi parton interactions allow us to gain new data

about hadron structure and correlations between partons within them. Therefore, they

are an important issue for the high energy collisions available on the LHC. The parton

scattering processes are described by the corresponding parton distributions:

• single parton distribution functions (SPDFs) for the single parton scattering, where

the final state of the hadron-hadron collision has been produced from only one hard

interaction,

• and multi parton distributions, which characterize the multi parton interactions. In

this work we will analyze the special case of the MPI: double parton scattering,

described by the double parton distribution functions (DPDFs).

The double parton scattering has been the subject of numerous theoretical [38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50] and phenomenological analyses [51, 52, 53, 54,

Figure 3.1: In the single parton scattering only one hard subprocess occurs, while in the

double scattering - two hard interactions take place.

43



l1 ... ln l′n ... l′1

p p
ξ1 ... ξn ξ′n ... ξ′1

Figure 3.2: Graphical illustration of the n-parton correlation function.

55, 56]. The experimental evidence of the double parton scattering has been presented

in [37, 57, 58, 59, 60, 61]. The most important research of the double scattering are the

experiments on pp collisions at the energy of
√

s = 63 GeV made by ASF Collabora-

tion, as well as pp̄ collisions conducted by CDF [58] and D0 [59] groups at the energies

of
√

s = 1.8 TeV and
√

s = 1.96 TeV. Recent research carried out by the ATLAS [60]

and CMS [61] Collaborations allow the measurements of double parton scattering at the

energy of 7 TeV.

The specific objective of this chapter is the understanding of double parton scat-

tering processes within a rigorous approach based on quantum chromodynamics. More

specifically, the key element in this plan are the double parton distributions which un-

dergo QCD evolution equations. These distributions fulfill crucial and highly nontrivial

sum rules which have to be built in the solutions of the evolution equations through initial

conditions. From a broader perspective, these studies extend our knowledge on partonic

structure of a nucleon, providing information on correlations between partons.

3.1 Parton correlation functions

In order to derive the formula for double parton distributions we have to first define

the correlation functions which inform us about the structure of the interactions between

partons. In the lowest order analysis of the proton-proton collision, the n-parton correla-

tion function takes the following form in the momentum space [46]

Φ̃(l1, . . . , ln, l
′
1, . . . , l

′
n) =

n

∏
i=1

∫
d4ξi

(2π)4

d4ξ ′i
(2π)4

eiξili−iξ ′i l′i (3.1)

× 〈p| T̄ [φ(ξ ′1)...φ(ξ ′n)] T [φ(ξ1)...φ(ξn)] |p〉 .

The letters T, T̄ denote time and anti-time ordering of the hermitian parton fields φ while

ξi,ξ
′
i and li, l

′
i are parton positions and four-momenta, see Fig. 3.2. From translation

invariance, we can shift the variables in the matrix element and obtain parton correlation
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function with the position argument of the first field to be equal zero, ξ ′1 = 0,

Φ̃(l1, . . . , ln, l
′
1, . . . , l

′
n) =

∫
d4ξ ′n
(2π)4

e
iξ ′n(

n

∑
i=1

li−
n

∑
i=1

l′i)
(3.2)

n

∏
i=1

∫
d4ξi

(2π)4
eiξili

n−1

∏
i=1

∫
d4ξ ′i
(2π)4

e−iξ ′i l′i

× 〈p| T̄ [φ(0)...φ(ξ ′n−1)] T [φ(ξ1)...φ(ξn)] |p〉 .

The Dirac delta function, obtained in the first term of eq. (3.2), imposes the momentum

conservation

n

∑
i=1

li =
n

∑
i=1

l′i , (3.3)

which reduce the number of independent momenta. Thus, the final form of the n-parton

correlation function is given by relation

Φ(l1, . . . , ln, l
′
1, . . . , l

′
n−1) =

n

∏
i=1

∫
d4ξi

(2π)4
eiξili

n−1

∏
i=1

∫
d4ξ ′i
(2π)4

e−iξ ′i l′i (3.4)

× 〈p| T̄ [φ(0)...φ(ξ ′n−1)] T [φ(ξ1)...φ(ξn)] |p〉 .

From the formula for n partons, the double parton correlation function for n = 2 can

be found

Φ(l1, l2, l
′
1) =

∫
d4ξ1

(2π)4

d4ξ2

(2π)4

d4ξ ′1
(2π)4

eiξ1l1−iξ ′1l′1 eiξ2l2 (3.5)

× 〈p| T̄ [φ(0)φ(ξ ′1)] T [φ(ξ1)φ(ξ2)] |p〉.

Let us reparametrize the parton four-momenta

l1 = k1−
q1

2
, l2 = k2−

q2

2
, l′1 = k1 +

q1

2
, l′2 = k2 +

q2

2
, (3.6)

where the momentum conservation (3.3) gives

q1 =−q2 ≡ q . (3.7)

Now, we have

Φ(k1,k2,q) =
∫

d4ξ1

(2π)4

d4ξ2

(2π)4

d4ξ ′1
(2π)4

ei(ξ1−ξ ′1)k1−i(ξ1+ξ ′)1
2

q eiξ2(k2+
1
2

q) (3.8)

× 〈p| T̄ [φ(−1
2
ξ2)φ(ξ

′
1− 1

2
ξ2)] T [φ(ξ1− 1

2
ξ2)φ(

1
2
ξ2)] |p〉 ,

where, from translation invariance, we shift arguments in the matrix element by −ξ2/2.
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Figure 3.3: Position and momentum arguments in the double parton correlation function.

Introducing new position variables

y− 1
2
z1 = ξ ′1− 1

2
ξ2 , y+ 1

2
z1 = ξ1− 1

2
ξ2 , z2 = ξ2 , (3.9)

we finally obtain

Φ(k1,k2,q) =
∫

d4z1

(2π)4

d4z2

(2π)4

d4y

(2π)4
eiz1k1 eiz2k2 e−iyq (3.10)

× 〈p| T̄ [φ(−1
2
z2)φ(y− 1

2
z1)] T [φ(y+ 1

2
z1)φ(

1
2
z2)] |p〉 .

The graphical illustration of the assignment of position and momentum arguments in the

double parton correlation function is shown in Fig. 3.3.

3.2 Double parton distributions

The correlation function (3.10) is a starting point for a definition of double parton

distributions of hadrons. Let us introduce a frame in which the colliding hadrons are

collinear and move very fast. The plane perpendicular to the collision axis defines trans-

verse directions which allow to introduce the light cone coordinates for parton momenta

ki = (k+i ,k
−
i ,ki) , q = (q+,q−,q) , (3.11)

where k±i = k0
i ±k3

i , q±= q0±q3 and ki and q are two dimensional transverse vectors. We

define the double parton distribution by integrating out the minus components of parton

momenta in correlation function (3.10),

F(x1,x2,k1,k2,q) = (2π)3 p+k+1 k+2

∫

dk−1 dk−2 dq−Φ(k1,k2,q)
∣
∣
∣
k+i =xi p

+,q+=0
. (3.12)

Notice that we introduced parton plus-momentum fractions xi with respect to the large

incoming hadron momentum p+ and set the plus component of q to zero. Thus, the double

parton distribution depends on two momentum fractions, x1 and x2, and three transverse
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momenta, k1, k2 and q.

In order to better understand this definition, let us rewrite correlation function (3.10)

in the light cone notation. For the right-moving partons, we obtain

Φ(k1,k2,q) =
∫

dy+dy−d2y
(2π)4

e−i(y+q−+y−q+−y·q)

×
∫

dz+1 dz−1 d2z1

(2π)4

dz+2 dz−2 d2z2

(2π)4
ei(z+1 k−1 +z−1 k+1 −z1·k1) ei(z+2 k−2 +z−2 k+2 −z2·k2)

× 〈p| T̄ [φ(−1
2
z2)φ(y− 1

2
z1)] T [φ(y+ 1

2
z1)φ(

1
2
z2)] |p〉 . (3.13)

Substituting this form into eq. (3.12), integrating over dk−1 dk−2 and executing all of the

delta functions, we find the following expression

F(x1,x2,k1,k2,q) = 2p+ k+1 k+2

∫

dy−d2y eiy·q

×
∫

dz−1
2π

dz−2
2π

eix1 z−1 p+ eix2 z−2 p+
∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1·k1 e−iz2·k2

× 〈p| T̄ [φ(−1
2
z2)φ(y− 1

2
z1)] T [φ(1

2
z2)φ(y+

1
2
z1)] |p〉 , (3.14)

where the spatial plus-components in the matrix element vanish, z+1 = z+2 = y+ = 0. With

vanishing plus-components the fields in the matrix element are space-like separated so

they commute and may be written in any order. Therefore, eq. (3.14) can be written as

F(x1,x2,k1,k2,q) = 2p+
∫

dy−d2y eiy·q

×
∫

dz−1
2π

dz−2
2π

eix1 z−1 p+ eix2 z−2 p+
∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1·k1 e−iz2·k2

× 〈p| O(0,z2)O(y,z1) |p〉 , (3.15)

where O are bilinear parton operators

O(y,z) = φ(y− 1
2
z) i

2
(
−→
∂ +−←−∂ +)φ(y+ 1

2
z)
∣
∣
∣
y+=z+=0

. (3.16)

Integrating over transverse momenta k1 and k2, we find the quasi-collinear double parton

distribution

F(x1,x2,q) =
∫

d2k1d2k2 F(x1,x2,k1,k2,q) (3.17)

= 2p+
∫

dy−d2yeiy·q
∫

dz−1
2π

dz−2
2π

eix1 z−1 p+ eix2 z−2 p+〈p|O(0,z2)O(y,z1) |p〉,

where z1 = z2 = 0 (but y 6= 0) for spatial arguments of the bilinear operators. This distri-

bution enters the DPS cross section formula in the collinear approximation, discussed in

the next section.
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It is interesting to notice that for a single parton (n = 1), relation (3.17) reduces to

the standard definition of the collinear parton distribution function

F(x) = 2p+
∫

dz−

2π
eix z−p+〈p|O(0,z−) |p〉 , (3.18)

where now O(0,z−) is the light-cone operator.

It has also been proposed in [46] to introduce the double parton distribution that

depends on the transverse momenta variables, k1,2, and x being the Fourier conjugate

variable to the transverse momentum q,

F(x1,x2,k1,k2,x) =
∫

d2q
(2π)2

e−ix·q F(x1,x2,k1,k2,q)

=
∫

dz−1
2π

dz−2
2π

eix1 z−1 p+ eix2 z−2 p+
∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1·k1 e−iz2·k2

× 2p+
∫

dy−〈p| O(0,z2)O(y,z1) |p〉 . (3.19)

This distribution has features of a Wigner function. Namely, integrating over k1 and k2,

we obtain

F(x1,x2,x) =
∫

d2k1d2k2 F(x1,x2,k1,k2,x) , (3.20)

which is a probability to find two partons in a hadron with plus-momentum fractions x1,2,

separated by a transverse vector x. Similarly, after integrating over x, the distribution

F(x1,x2,k1,k2) =
∫

d2x F(x1,x2,k1,k2,x) (3.21)

is a probability to find two partons with the momentum fractions x1,2 and transverse mo-

menta k1,2.

For simplicity of presentation, the definitions of the parton distributions were pro-

vided in the simplest possible case where partons are scalar particles with no internal

quantum numbers. In the case of quantum chromodynamics with quark and gluon color

fields everything gets more complicated. Such issues like spin, color or gauge invariance

have to be carefully examined. For details, we refer the reader to review [46] where more

references can also be found.

3.3 Double parton scattering cross sections

The double parton distributions presented in the previous section can be used to

evaluate a cross section for the double parton scattering in hadron-hadron collisions. The

relevant graph for the computation with assignment of particle momenta is shown in
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Figure 3.4: The cross section for double hard scattering of two pairs of partons.

Fig. 3.4. The wavy lines denote two final state particle produced in double scattering

of two pairs of partons. Their momenta, q1,2, are on mass shell which is denoted by the

final-state cut line. The lower blob is associated with the right-moving hadron (with mo-

mentum p) while the upper blob with the left-moving hadron (with momentum p̄) while

the scattering partons are denoted by the solid lines. The assignment of parton momenta

corresponds to that in Fig. 3.2 for n = 2. Notice that the four-momentum conservation is

imposed at each vertex. Thus

li + l̄i = qi = l′i + l̄′i , i = 1,2 . (3.22)

In addition, the global momentum conservation for all final state particles holds,

p+ p̄ = q1 +q2 +
m

∑
j=1

pX , j +
m̄

∑
j=1

pX̄ , j . (3.23)

The cross section computation is performed in a kinematic frame, where the colliding

hadrons are moving fast to the right (p) and to the left ( p̄) with transverse momenta

p = p̄ = 0. Thus, each momentum is given in light-cone coordinates, see eq. (3.11). In

addition, the parton momenta, li, l
′
i , l̄i, l̄

′
i , are reparametrized as in Fig. 3.3,

l1 = k1− 1
2
q , l2 = k2 +

1
2
q , l′2 = k2− 1

2
q , l′1 = k1 +

1
2
q (3.24)

and similarly for the upper parton momenta. So we have two sets of momenta, (k1,k2,q)

for the lower blob partons and (k̄1, k̄2, q̄) for the upper blob partons. From the momentum

conservation (3.22),

q+ q̄ = 0 . (3.25)

The plus-components of k momenta are parametrized with momentum fractions

k+i = xi p+ , k̄i = x̄i (p̄)− , i = 1,2 , (3.26)
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where p+ is a large component of the right-moving hadron momentum while p̄− is a large

component of the left-moving hadron momentum. The derivation of the DPS cross section

is rather lengthy, and we refer the reader to review [46] for details. We emphasize here

only the most important points.

In order to obtain a formula in a collinear factorization form, which is convolution

of two hard scattering partonic cross sections and two double parton distributions, several

kinematic assumptions have to be made. Thus, we assume the following.

• The largest scale (or scales) in the process is a hard scale Q which of the order of fi-

nal state particle masses, Q2∼ q2
i , while the hadronic scale (of the order of hadronic

mass M), which characterizes non-perturbative interactions, is much smaller than

the hard scale, Λ≪ Q.

• All transverse momenta are of the order of the hadronic scale,

|ki| ∼ |ki| ∼ |qi| ∼ |q| ∼ Λ . (3.27)

From this we have for the longitudinal components of the produced particles

q+i ∼ q−i ∼ Q , (3.28)

and for the fast moving incoming hadrons

p+ ∼ (p̄)− ∼ Q , p− ∼ (p̄)+ ∼ Λ2/Q . (3.29)

• The scattering partons have small virtualities of the order of Λ2. To achieve this for

the parton momentum fractions xi, x̄i ∼ 1, we have to assume the following

k+i ∼ Q , k−i ∼ q− ∼ Λ2/Q , (3.30)

(k̄)−i ∼ Q , (k̄)+i ∼ q+ ∼ Λ2/Q . (3.31)

We see that q± are small components.

Using these approximations, we can arrive at the following collinear factorization formula

with the momentum dependent parton distributions F(xi,ki,q) and F(x̄i, k̄i,−q) [46],

dσ

dx1dx2 dx̄1dx̄2 d2q1d2q2
=

N

2
σ̂1(x1x̄1s) σ̂2(x2x̄2s)

×
∫

d2k1 d2k̄1 δ (2)(q1−k1− k̄1)
∫

d2k2 d2k̄2 δ (2)(q2−k2− k̄2)

×
∫

d2q
(2π)2

F(x1,x2,k1,k2,q)F(x̄1, x̄2, k̄1, k̄2,−q) , (3.32)
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Figure 3.5: The graphical illustration of the cross section (3.36).

where N is a symmetry factor (equal 1 if two hard scattering final state particles are

identical or 2 otherwise) and σ̂1,2 are hard scattering cross sections.

Integrating eq. (3.32) over transverse momenta q1,2, we perform two Dirac delta

functions, which allows to integrate the double parton distributions over k transverse mo-

menta. In this way, we obtain the cross section with the quasi-collinear double parton

distributions (3.17),

dσ

dx1dx2 dx̄1dx̄2
=

N

2
σ̂1(x1x̄1s) σ̂2(x2x̄2s)

×
∫

d2q F(x1,x2,q)F(x̄1, x̄2,−q) . (3.33)

Formula (3.32) can be also be written with the parton distribution functions, F(xi,ki,x)

and F(x̄i, k̄i,x), provided the Fourier transform (3.19) exists,

dσ

dx1dx2 dx̄1dx̄2 d2q1d2q2
=

m

2
σ̂1(x1x̄1s) σ̂2(x2x̄2s)

×
∫

d2k1 d2k̄1 δ (2)(q1−k1− k̄1)
∫

d2k2 d2k̄2 δ (2)(q2−k2− k̄2)

×
∫

d2x F(x1,x2,k1,k2,x)F(x̄1, x̄2, k̄1, k̄2,x) . (3.34)

Integration over transverse momenta q1,2 leads to the following cross section in the collinear

approach

dσ

dx1dx2 dx̄1dx̄2
=

N

2
σ̂1(x1x̄1s) σ̂2(x2x̄2s)

×
∫

d2x F(x1,x2,x)F(x̄1, x̄2,x) , (3.35)

in which the quasi-collinear double parton distributions, F(xi,x), are defined by eq. (3.20).

The cross section (3.35) has a simple geometric interpretation in impact parameter

space if we additionally introduce an impact parameter b into the distributions F(xi,x),
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see [46] for details of this procedure. In such a case

dσ

dx1dx2 dx̄1dx̄2
=

N

2
σ̂1(x1x̄1s) σ̂2(x2x̄2s)

×
∫

d2x
∫

d2b d2b̄ F(x1,x2,x,b)F(x̄1, x̄2,x, b̄) , (3.36)

and the variable x can be treated as the average distance between the two scattering par-

tons, while b and b̄ are the average distances between the parton and the right-moving or

left-moving hadron respectively. The graphical visualization of the cross section (3.36) is

shown in Fig. 3.5.

The presented formulas correspond to the naïve Feynman parton model. In particu-

lar, the double parton distributions do not depend on hard scales. This is the consequences

of the assumption that transverse momenta of the final state particles, |qi|, are of the order

of the hadronic scale Λ. If we allow for perturbatively large transverse momenta,

Λ ≪ |qi| ≪ Q , (3.37)

a new domain of phase space opens which allows for emissions of quarks or gluons from

parton lines. The perturbative resummation of such emissions, in which large logarithms

log(|q|/Λ) are involved, can be done with QCD evolution equations. In this case, parton

distributions acquire the dependence on a hard scale (or scales) which is governed by the

evolution equations. We refer the reader to paper [46] for the details of their derivation.

In the next chapter we introduce the evolution equations for single and double parton

distributions in a way which is most suited from the point of view of phenomenological

applications presented in Chapter 5.

52



Chapter 4

QCD evolution of parton distributions

4.1 QCD evolution of single parton distributions

The detailed analysis of the single parton distribution functions (SPDFs) provides

important data on the structure of hadrons and allows to better understand processes oc-

curring in high-energy collisions. The behavior of the SPDFs is determined using appro-

priate QCD evolution equations. A general formula of the QCD evolution equations can

be given as follows

∂tD f (x, t) = ∑
f ′

∫ 1

0
duK f f ′(x,u, t)D f ′(u, t) , (4.1)

where function D f (x, t) denotes the single parton distributions both for quarks and anti-

quarks of flavor f = qi,qi and for gluons f = G . The variables x and u, in eq. (4.1), are

parton longitudinal momentum fractions with respect to the total nucleon momentum and

t is an evolution parameter, t = ln(Q2/Q2
0).

The kernels K f f ′ characterize a real and virtual parton emission (see Fig. 4.1)

and can be computed perturbatively as a series in powers of the strong coupling constant

αs = αs(t),

K f f ′ = αs K
(0)

f f ′ +α2
s K

(1)
f f ′ + . . . . (4.2)

A general form of K f f ′ is known in QCD as

K f f ′(x,u, t) = K
R

f f ′(x,u, t)−δ (u− x)δ f f ′K
V
f (x, t) , (4.3)

with the real part K R
f f ′ which characterizes a real parton emission with the change of the

flavor: f ′→ f and the change of the longitudinal momentum fraction: u→ x with u≥ x,
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Figure 4.1: The graphical illustration of integral kernels in eq. (4.3), which characterize

a real and virtual parton emission.

see the left plot in Fig. 4.1. Thus

K
R

f f ′(x,u, t) = 0 for u < x . (4.4)

The function K V
f in eq. (4.3) describes a virtual emission, see the right plot in Fig. 4.1,

and is computed from the momentum sum rule, valid for all values of t,

∑
f

∫ 1

0
dxxD f (x, t) = 1 . (4.5)

The normalization to unity means that partons carry all nucleon momentum. Condition

(4.5) is equivalent to the following relation

∑
f

∫ 1

0
dxxK f f ′(x,u, t) = 0 . (4.6)

After substituting eq. (4.3) into eq. (4.6), we obtain for the virtual part of the kernel (4.3)

uK
V
f ′ (u, t) = ∑

f

∫ 1

0
dxxK

R
f f ′(x,u, t) , (4.7)

or changing the notation: x↔ u and f ↔ f ′,

xK
V
f (x, t) = ∑

f ′

∫ 1

0
duuK

R
f ′ f (u,x, t) . (4.8)

In this way we arrive at

∂tD f (x, t) = ∑
f ′

∫ 1

0
du

{

K
R

f f ′(x,u, t)−δ (u− x)δ f f ′K
V
f (x, t)

}

D f ′(u, t) (4.9)

= ∑
f ′

∫ 1

0
duK

R
f f ′(x,u, t)D f ′(u, t)−D f (x, t)∑

f ′

∫ 1

0

du

x
uK

R
f ′ f (u,x, t) .
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Using relation (4.3), we write the most general form of the evolution equations which

obey the momentum sum rule (4.5)

∂tD f (x, t) = ∑
f ′

{∫ 1

x
duK

R
f f ′(x,u, t)D f ′(u, t)−D f (x, t)

∫ x

0

du

x
uK

R
f ′ f (u,x, t)

}

. (4.10)

The QCD evolution equations can be interpreted as master equations for the Markov

stochastic processes. Let us assume that D f (x, t) is a probability distribution to find a par-

ton f with a momentum fraction x at a scale t. An infinitesimal change of the scale,

t → t + δ t, allows the parton ( f ,x) to be produced from a decay of the partons ( f ′,u).

And thus, the following master equation can be written

D f (x, t +δ t) = δ t ∑
f ′

∫ 1

0
duK

R
f f ′(x,u, t)D f ′(u, t) , (4.11)

where δ t K R
f f ′(x,u, t) is a conditional probability of the parton transition ( f ′,u)→ ( f ,x)

in the time interval δ t. We should add to this equation the term

(

1−δ t K V
f (x, t)

)

D f (x, t) , (4.12)

where δ t K V
f (x, t) is the transition probability that the parent parton ( f ,x) will decay to

any parton state when the scale is changed by δ t. The above term describes the probability

that nothing will happen with the parton ( f ,x) after the change of the scale by δ t. We

finally obtain the following master equation

D f (x, t +δ t) = δ t ∑
f ′

∫ 1

0
duK

R
f f ′(x,u, t)D f ′(u, t)+

(

1−δ t K V
f (x, t)

)

D f (x, t) . (4.13)

After taking the limit δ t→ 0 the above equation can be written as a differential equation

∂tD f (x, t) = ∑
f ′

∫ 1

0
du

{

K
R

f f ′(x,u, t)−δ (u− x)δ f f ′K
V
f (x, t)

}

D f ′(u, t) , (4.14)

which is the evolution equation (4.1) with the kernel (4.3).

The general form of the evolution equations (4.10) can be examined in the case of

the DGLAP equations (see eq. 1.26). The evolution variable is related to the parton trans-

verse momentum, which is ordered along the chain of partons in subsequent emissions.

The real emission kernels have the following form

K
R

f f ′(x,u, t) =
1

u
Pf f ′

(
x

u
, t

)

Θ(x < u) , (4.15)

where Pf f ′ are called splitting functions and the theta function results from conservation
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of the parton longitudinal momentum. After substituting eq. (4.15) in eq. (4.10) we obtain

∂tD f (x, t) = ∑
f ′

∫ 1

x

du

u
Pf f ′

(
x

u
, t

)

D f ′(u, t)−D f (x, t)∑
f ′

∫ x

0

du

x

u

x
Pf ′ f

(
u

x
, t

)

. (4.16)

Changing the variables z = x/u in the first integral and z = u/x in the second one, we

arrived at the equations

∂tD f (x, t) = ∑
f ′

∫ 1

x

dz

z
Pf f ′(z, t)D f ′

(
x

z
, t

)

−D f (x, t)∑
f ′

∫ 1

0
dzzPf ′ f (z, t) . (4.17)

The diagonal splitting functions Pf f (z, t) have a simple pole at z = 1. This singular-

ity is removed by the virtual term and the final form of the evolution equations reads

∂tD f (x, t) =
∫ 1

x

dz

z
Pf f (z, t)

{

D f

(
x

z
, t

)

− z2D f (x, t)

}

−D f (x, t)
∫ x

0
dzzPf f (z, t)

+ ∑
f ′ 6= f

{∫ 1

x

dz

z
Pf f ′(z, t)D f ′

(
x

z
, t

)

−D f (x, t)
∫ 1

0
dzzPf ′ f (z, t)

}

. (4.18)

The combination of the parton distributions in the first integral (equal to zero for z = 1)

cures the splitting function singularity.

The splitting functions are computed perturbatively in QCD and are given as a series

in powers of the strong coupling constant αs,

Pf f ′(z, t) =
αs(t)

2π
P
(0)
f f ′(z)+

(
αs(t)

2π

)2

P
(1)
f f ′(z)+ . . . , (4.19)

where t = ln(µ2/µ2
0 ), and µ is a factorization scale which separates long-distance QCD

effects from short-distance ones. In addition, the splitting functions are quark flavor inde-

pendent and the following relations are valid for f , f ′ ∈ {qi,qi,G}i=1,...n f

Pqiq j
= Pqiq j

≡ δi jP
V
qq + PS

qq ,

Pqiq j
= Pqiq j

≡ δi jP
V
qq + PS

qq ,

PqiG = PqiG
≡ PqG ,

PGqi
= PGqi

≡ PGq . (4.20)

There is also PGG(z) splitting function for the gluon-to-gluon transition.

In the leading logarithmic approximation (LLA) we keep the first term in expansion

(4.19),

Pf f ′(z, t) =
αs(t)

2π
P
(0)
f f ′(z) , (4.21)
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and additionally

PV
qq = PV

qq , PS
qq = PS

qq = 0 . (4.22)

Thus, the non-zero splitting functions read

P
(0)
qq (z) = CF

1+ z2

1− z
= PV

qq(z) , (4.23)

P
(0)
Gq (z) = CF

1+(1− z)2

z
= P

(0)
qq (1− z) , (4.24)

P
(0)
qG (z) = TR [z

2 +(1− z)2] = P
(0)
qG (1− z) , (4.25)

P
(0)
GG(z) = 2CA

[
z

1− z
+

1− z

z
+ z(1− z)

]

= P
(0)
GG(1− z) , (4.26)

where the SU(Nc) gauge group coefficients read

CF =
N2

c −1

2Nc
, CA = Nc , TR =

1

2
. (4.27)

The strong coupling constant αs(t) can be absorbed into the definition of a new evolution

parameter

t =
6

33−2n f

ln
ln(µ2/Λ2

QCD)

ln(µ2
0/Λ2

QCD)
, (4.28)

where n f in the number of active quark flavors and ΛQCD is the basic dimensionfull para-

meter of QCD.

Thus eqs. (4.18) take the following form for quark/antiquark and gluon distributions

(we omit the superscript (0))

∂t qi(x, t) =
∫ 1

x

dz

z

{

Pqq(z)qi

(
x

z
, t

)

+PqG(z)G

(
x

z
, t

)}

− qi(x, t)
∫ 1

0
dzz

[
Pqq(z)+PGq(z)

]
,

∂t G(x, t) =
∫ 1

x

dz

z

{

PGG(z)G

(
x

z
, t

)

+PGq(z)Σ

(
x

z
, t

)}

− G(x, t)
∫ 1

0
dzz

[
PGG(z)+2n f PqG(z)

]
, (4.29)

where i = 1,2, . . .2n f denotes quark flavor (including antiflavor: qn f+i ≡ qi). We also
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introduced a short hand notation for the singlet quark distribution

Σ(x, t) =
n f

∑
i=1

{qi(x, t)+qi(x, t)} . (4.30)

The singularity at z = 1 in the splitting functions Pqq and PGG in the real emission terms

are cured as in eq. (4.18)

∂t qi(x, t) =
∫ 1

x

dz

z
Pqq(z)

{

qi

(
x

z
, t

)

− z2qi(x, t)

}

− qi(x, t)
∫ x

0
dzzPqq(z)

+
∫ 1

x

dz

z
PqG(z)G

(
x

z
, t

)

−qi(x, t)
∫ 1

0
dzzPGq(z) ,

∂t G(x, t) =
∫ 1

x

dz

z
PGG(z)

{

G

(
x

z
, t

)

− z2G(x, t)

}

− G(x, t)
∫ x

0
dzzPGG(z)

+
∫ 1

x

dz

z
PGq(z)Σ

(
x

z
, t

)

− G(x, t)
∫ 1

0
dzz2n f PqG(z) . (4.31)

4.2 Evolution equations for double parton distributions

The main objects in the description of double parton scattering in the collinear ap-

proximation are the parton distribution functions (DPDFs), D f1 f2(x1,x2,Q1,Q2,q), intro-

duced in Chapter 3. They provide new information on correlations between partons in

a hadron. In the discussion of their evolution with hard scales, Q1 and Q2, we set the

relative transverse momentum q = 0, postponing the discussion on the q dependence of

the DPDFs until Chapter 5. Thus, our basic object for a discussion is the set of functions

D f1 f2(x1,x2,Q1,Q2)≡ D f1 f2(x1,x2,Q1,Q2,q = 0) , (4.32)

where the parton flavors f1, f2 include both quarks and gluons.The DPDFs depend on the

collinear variables - the parton longitudinal momentum fractions x1,x2, which sum cannot

exceed the total momentum of the hadron:

x1 + x2 ≤ 1 . (4.33)

For x1 + x2 > 1, we extend DPDFs into the unphysical domain demanding that

D f1 f2(x1,x2, t1, t2) = 0 for x1 + x2 > 1 . (4.34)

The DPDFs also depend on two factorization scales, Q1 and Q2, fixed by two independent

hard processes in which the two partons take part. In the standard, naïve approach, it is
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usually assumed that the DPDFs are products of two single PDFs, D f (x,Q),

D f1 f2(x1,x2,Q1,Q2) = D f1(x1,Q1)D f2(x2,Q2)Θ(1− x1− x2). (4.35)

It is important to emphasize that this factorized form cannot be generally true, since the

correlation imposed by condition (4.33) is usually not built in eq. (4.35). Thus, this ap-

proximation is sufficient only for small values of parton momentum fractions. This issue

will be discussed in Section 4.5.

The QCD evolution of the double parton distribution functions is a two step process:

• the DPDFs with equal scales are evolved from the initial scale Q0 up to the smaller

scale Q1, treating both momentum fractions symmetric:

D f1 f2(x1,x2,Q0,Q0) → D f1 f2(x1,x2,Q1,Q1), (4.36)

• the evolution from Q1 to Q2 is preformed with respect to the momentum fraction x2

while keeping x1 fixed:

D f1 f2(x1,x2,Q1,Q1) → D f1 f2(x1 = fixed,x2,Q1,Q2) . (4.37)

We start with the evolution equation for the first step (4.36) by introducing evolution

parameter t = ln(Q2/Q2
0). In this notation, the QCD evolution equations for the DPDFs

in the leading logarithmic approximation (LLA) are given by

∂tD f1 f2(x1,x2, t) = ∑
f ′

∫ 1−x2

0
duK f1 f ′(x1,u, t)D f ′ f2(u,x2, t)

+ ∑
f ′

∫ 1−x1

0
duK f2 f ′(x2,u, t)D f1 f ′(x1,u, t)

+ ∑
f ′

K
R

f ′→ f1 f2
(x1,x1 + x2, t)D f ′(x1 + x2, t) . (4.38)

A graphical illustration of the three terms in eq. (4.38) is shown in Fig. 4.2. The kernels

K f f ′ in the first two integrals are the single parton distribution evolution kernels (4.3).

The real emission part of kernel (4.3) is given in terms of the LLA splitting functions

K
R

f f ′(x,u, t) =
αs(t)

2π

1

u
P
(0)
f f ′

(x

u

)

Θ(x < u) . (4.39)

The third term in eq. (4.38) characterizes the parton splitting

( f ′,x1 + x2)→ ( f1,x1)+( f2,x2) , (4.40)

59



u

x1 x2

u

x1 x2 x1 x2

x1 + x2

+ +

Figure 4.2: An example of the graphical illustration of the three terms in the evolution

equation (4.38).

thus, it contains the SPDFs which obeys the DGLAP evolution equation in the LLA

∂tD f (x, t) = ∑
f ′

∫ 1

0
duK f f ′(x,u, t)D f ′(u, t) . (4.41)

In this way, the evolution equations for the single and double parton distributions form

a closed set of equations, given by eqs. (4.38) and (4.41). The last term in eq. (4.38),

which will be called from now on as splitting term, is also symmetric with respect to the

interchange x1↔ x2,

∑
f ′

K
R

f ′→ f1 f2
(x1,x1 + x2, t)D f ′(x1 + x2, t) = ∑

f ′
K

R
f ′→ f1 f2

(x2,x1 + x2, t)D f ′(x1 + x2, t) ,

(4.42)

in which the real emission splitting functions obey the following relations

∑
f1

K
R

f ′→ f1 f2
= K

R
f2 f ′ , ∑

f2

K
R

f ′→ f1 f2
= K

R
f1 f ′ . (4.43)

Let us finally notice that the upper integration limits in eq. (4.38) reflect condition (4.33)

for the parton momentum fractions, saying that the sum of two partons momenta cannot

exceed the total momentum of a hadron.

The second evolution step (4.37) is realized by the DGLAP type evolution equations

with respect to the second variable x2, while keeping the momentum fraction x1 and the

evolution parameter t1 = t fixed:

∂t2D f1 f2(x1,x2, t, t2) = ∑
f ′

∫ 1−x1

0
duK f2 f ′(x2,u, t)D f1 f ′(x1,u, t, t2) . (4.44)

To derive the explicit form of the evolution equations for the DPDFs, we substitute

60



the LLA form (4.39) of the DGLAP kernels into the evolution equations (4.38):

∂tD f1 f2(x1,x2, t) =

∑
f ′

{
∫ 1−x2

x1

du

u
P
(0)
f1 f ′

(
x1

u

)

D f ′ f2(u,x2, t)−D f1 f2(x1,x2, t)
∫ x1

0

du

x1

u

x1
P
(0)
f ′ f1

(
u

x1

)

+
∫ 1−x1

x2

du

u
P
(0)
f2 f ′

(
x2

u

)

D f1 f ′(x1,u, t)−D f1 f2(x1,x2, t)
∫ x2

0

du

x2

u

x2
P
(0)
f ′ f2

(
u

x2

)}

+∑
f ′

1

x1 + x2
Pf ′→ f1 f2

(
x1

x1 + x2

)

D f ′(x1 + x2, t) , (4.45)

where the strong coupling constant αs(t) is absorbed into the definition of the evolution

parameter (4.28). Changing the integration variables, z = x1,2/u in the real emission

integrals and z = u/x1,2 in the virtual emission integrals, we finally find

∂tD f1 f2(x1,x2, t) =

∑
f ′

{
∫ 1

x1
1−x2

dz

z
P
(0)
f1 f ′(z)D f ′ f2

(
x1

z
,x2, t

)

−D f1 f2(x1,x2, t)
∫ 1

0
dzzP

(0)
f ′ f1

(z)

+
∫ 1

x2
1−x1

dz

z
P
(0)
f2 f ′(z)D f1 f ′

(

x1,
x2

z
, t

)

−D f1 f2(x1,x2, t)
∫ 1

0
dzzP

(0)
f ′ f2

(z)

}

+∑
f ′

1

x1 + x2
Pf ′→ f1 f2

(
x1

x1 + x2

)

D f ′(x1 + x2, t) . (4.46)

The evolution equations for the SPDFs in the third term above, D f (x, t), are given by

∂tD f (x, t) = ∑
f ′

∫ 1

x

dz

z
P
(0)
f f ′(z)D f ′

(
x

z
, t

)

−D f (x, t)∑
f ′

∫ 1

0
dzzP

(0)
f ′ f (z) . (4.47)

The simple pole singularity at z = 1 in the diagonal splitting functions P
(0)
f f is regularized

by the virtual emission terms in the same way as in the DGLAP evolution equations for

the SPDFs, see the previous section for more details.

The presented formulae form a basis for the construction of the numerical program

which solves the evolution equations for the DPDFs and SPDFs. We did it using the

method with an expansion in Chebyshev polynomials, described in detail in Appendix A.
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4.3 Momentum sum rule for double parton distributions

It is well known that the single parton distributions obey momentum and valence

quark number sum rules which are conserved under the DGLAP evolution. Correspond-

ing sum rules also exist for the double parton distributions.

The momentum sum rule for double parton distribution functions is given by the

following formula

∑
f1

∫ 1−x2

0
dx1 x1D f1 f2(x1,x2, t) = (1− x2)D f2(x2, t), (4.48)

where D f2(x2, t) is a single PDF. The physical interpretation of eq. (4.48) is motivated

by the observation that fixing parton ( f2,x2) leads to the conditional probability to find

parton ( f1,x1) in the colliding hadron,

D f1(x1|x2; t) =
D f1 f2(x1,x2, t)

D f2(x2, t)
. (4.49)

Thus, after dividing both sides of eq. (4.48) by D f2(x2, t), we obtain the relation which

says that partons ( f1,x1) carry only the fraction (1− x2) of the total nucleon momentum

while the missing fraction x2 is carried by the known second parton. It is important to

notice that after imposing the parton exchange symmetry,

D f1 f2(x1,x2) = D f2 f1(x2,x1) , (4.50)

the same rule applies to the opposite situation when the parton ( f1,x1) is fixed,

∑
f2

∫ 1−x1

0
dx2 x2 D f1 f2(x1,x2, t) = (1− x1)D f1(x1, t) . (4.51)

Both the conditions, (4.48) and (4.51), are consistent with the QCD evolution equations

(4.38) in the LLA form (4.46), once they are imposed on the initial conditions for these

equations at some scale t0.

Let us multiply both sides of eq. (4.48) by x2/(1− x2). Then, after summing over

all flavors f2 and integrating over x2, we find

∑
f1, f2

∫ 1

0
dx2

∫ 1−x2

0
dx1

x1x2

1− x2
D f1 f2(x1,x2, t) = ∑

f2

∫ 1

0
dx2 x2 D f2(x2, t) . (4.52)

From the momentum sum rule for the SPDFs (4.5), the last integral equals 1. Thus, the
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momentum sum rule for the DPDFs reads

∑
f1, f2

∫ 1

0
dx2

∫ 1−x2

0
dx1

x1x2

1− x2
D f1 f2(x1,x2, t) = 1 (4.53)

and, from eq. (4.51), similarly for the variable x1,

∑
f1, f2

∫ 1

0
dx1

∫ 1−x1

0
dx1

x1x2

1− x1
D f1 f2(x1,x2, t) = 1 . (4.54)

In order to prove the momentum sum rule (4.48) we will show that the function

D f2(x2, t) on the r.h.s of this relation is indeed the SPDF which obeys the evolution equa-

tion (4.14). To this end, let us differentiate both sides of eq. (4.48) over t,

(1− x2)∂tD f2(x2, t) = ∑
f1

∫ 1

0
dx1x1 ∂tD f1 f2(x1,x2, t) , (4.55)

where we set the upper integration limit to 1 by extending the DPDFs into the non-

physical domain through condition (4.34). Using eq. (4.38), we find the following relation

(1− x2)∂tD f2(x2, t) = ∑
f1

∫ 1

0
dx1x1

{

∑
f ′

∫ 1

0
duK f1 f ′(x1,u)D f ′ f2(u,x2, t)

+∑
f ′

∫ 1

0
duK f2 f ′(x2,u)D f1 f ′(x1,u, t)

}

+ ∑
f1

∫ 1

0
dx1x1 ∑

f ′
K f ′→ f1 f2(x1,x2)D f ′(x1 + x2, t) . (4.56)

Changing the order of integrations and summations in the first integral over x1, we obtain

(1− x2)∂tD f2(x2, t) = ∑
f ′

∫ 1

0
du

{

∑
f1

∫ 1

0
dx1x1K f1 f ′(x1,u)

}

D f ′ f2(u,x2, t)

+ ∑
f ′

∫ 1

0
duK f2 f ′(x2,u)

{

∑
f1

∫ 1

0
dx1x1 D f1 f ′(x1,u, t)

}

+ ∑
f ′

∫ 1

0
dx1x1 ∑

f1

K f ′→ f1 f2(x1,x2)D f ′(x1 + x2, t) . (4.57)

The integral in the first line vanishes from eq. (4.6). Using the sum rule (4.48) in the

second line and relations (4.43) in the third one, we rewrite the above equation in the
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following form

(1− x2)∂tD f2(x2, t) = ∑
f ′

∫ 1

0
du(1−u)K f2 f ′(x2,u, t)D f ′(u, t)

+ ∑
f ′

∫ 1

0
dx1 x1 K

R
f2 f ′(x2,x1 + x2, t)D f ′(x1 + x2, t) . (4.58)

Substituting kernel (4.3) in the first integral and changing the integration variable, u→
x1 = u− x2, in the second one, we find after dividing both sides by (1− x2),

∂tD f2(x2, t) = ∑
f ′

∫ 1

0
du

1−u

1− x2

{

K
R

f2 f ′(x2,u, t)−δ (u− x2)δ f2 f ′K
V
f2
(x2)

}

D f ′(u, t)

+ ∑
f ′

∫ 1

x2

du
u− x2

1− x2
K

R
f2 f ′(x1,u, t)D f ′(u, t) . (4.59)

From the relation

K
R

f f ′(x,u, t) = 0 for u < x (4.60)

we find, that the lower integration limit in the second integral can be set to zero. Thus,

after a simple algebra, we obtain the evolution equation (4.14) for the single parton dis-

tributions

∂tD f2(x2, t) = ∑
f ′

∫ 1

0
du

{

K
R

f2 f ′(x2,u, t)−δ (u− x2)δ f2 f ′K
V
f2
(x2)

}

D f ′(u, t) . (4.61)

4.4 Valence quark number sum rules

The DPDFs also obey valence quark number sum rules which are more complicated

than those for the SPDFs:

∫ 1

0
dx

{
Dqi

(x, t)−Dq̄i
(x, t)

}
= Ni . (4.62)

The analogous sum rule depends on the second parton flavor f2 [41, 62],

∫ 1−x2

0
dx1

{

Dqi f2(x1,x2, t)−Dq̄i f2(x1,x2, t)
}

=







Ni D f2(x2, t) for f2 6= qi, q̄i

(Ni−1)D f2(x2, t) for f2 = qi

(Ni +1)D f2(x2, t) for f2 = q̄i .

(4.63)
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A similar relation holds true with respect to the first parton, ( f1,x1),

∫ 1−x1

0
dx2

{

D f1qi
(x1,x2, t)−D f1q̄i

(x1,x2, t)
}

=







Ni D f1(x1, t) for f1 6= qi, q̄i

(Ni−1)D f1(x1, t) for f1 = qi

(Ni +1)D f1(x1, t) for f1 = q̄i .

(4.64)

The valence quark number sum rules for DPDFs can be simply derived now. For example,

for f2 6= q j, q̄ j, we find from the first relation (4.63):

∫ 1

0
dx2

∫ 1−x2

0
dx1

{

Dqiq j
(x1,x2, t)−Dq̄iq j

(x1,x2, t)−Dqiq̄ j
(x1,x2, t)+Dq̄iq̄ j

(x1,x2, t)
}

= Ni

∫ 1

0
dx2

{
Dq j

(x2, t)−Dq̄ j
(x2, t)

}
= Ni N j , (4.65)

where we used the sum rule (4.62) in the last equality. A similar relation can be found

from the two last relations (4.63) for Ni 6= 1:

∫ 1

0
dx2

∫ 1−x2

0
dx1

{ Dqiqi
(x1,x2, t)−Dq̄iqi

(x1,x2, t)

Ni−1
− Dqiq̄i

(x1,x2, t)−Dq̄iq̄i
(x1,x2, t)

Ni +1

}

=
∫ 1

0
dx2

{
Dqi

(x2, t)−Dq̄i
(x2, t)

}
= Ni . (4.66)

Let us stress again that the valence quark number sum rules (4.62) and (4.63) are con-

served by the DPDFs and SPDFs evolution equations once they are imposed on the initial

conditions at some scale t0.

4.5 Specification of initial conditions

In order to solve the evolution equations for the DPDFs (4.38), both initial distri-

butions: D f1 f2(x1,x2, t0) and D f (x, t0), have to be specified at some initial value t0. In

view of the importance of the momentum and valence quark number sum rules, the nat-

ural question arises how to provide initial conditions which obey these rules. One of the

solution is to specify DPDFs and then generate SPDFs in accordance with eqs. (4.48) and

(4.63). However, this is not practical since at present the DPDFs are not constrained by

experimental data, in contrast to the SPDFs which are very well known from global fit

analyses done by many groups. Therefore, we reverse the logic and will try to build the

initial DPDFs from the known SPDFs.

In the literature, the following symmetric ansatz is often discussed [40, 41]

D f1 f2(x1,x2, t0) = D f1(x1, t0)D f2(x2, t0)
(1− x1− x2)

2

(1− x1)2+n1(1− x2)2+n2
(4.67)
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Figure 4.3: The ratio of the r.h.s to the l.h.s of eq. (4.48) (left) and of eq. (4.63) (right) for

the input distributions (4.67) as a function x2 for f2 = g,d,u, ū. The violation of the sum

rules is indicated by the departure of the ratios from 1.

with n1,2 = 0.5 for valence parton distributions. Although the form (4.67) is parton ex-

change symmetric and positive definite, it does not fulfill the sum rule relations (4.48)

and (4.63). We illustrate this effect in Fig. 4.3 by showing the ratio of the r.h.s to l.h.s

of eq. (4.48) (left panel) and of eq. (4.63) (right panel) as the function of x2 for the fla-

vors f2 = g,d,u, ū. If the sum rule relations hold true these ratios should be equal to

1 for all values of x2. This is almost the case for the momentum sum rule but the va-

lence quark number rule is strongly violated for such an ansatz. The valence number

ratios for f2 = u, ū at small x2 can be explained by the values (Nu− 1)/Nu = 0.5 and

(Nu +1)/Nu = 1.5 (with Nu = 2), respectively, obtained for the symmetric ansatz.

Now, the question arises whether it is possible to construct initial conditions for

QCD evolution of the DPDFs which exactly fulfill the momentum and quark number sum

rules and are built out of the known SPDFs. It is easy to check that the following ansatz,

proposed in [63, 64], satisfies eq. (4.48) and the first relation in eq. (4.63)

D f1 f2(x1,x2, t0) =
1

1− x2
D f1

(
x1

1− x2
, t0

)

D f2(x2, t0) , (4.68)

where the condition x1 +x2 ≤ 1 is implicit. However, the last two valence quark relations

(4.63) are not satisfied. In order to fulfill them, we have to correct ansatz (4.68) for the

same quark flavors or antiflavors, f2 = qi or f2 = qi,

D f1 f1(x1,x2, t0) =
1

1− x2

(

D f1

(
x1

1− x2
, t0

)

− 1

2

)

D f1(x2, t0) , (4.69)

D f1 f̄1
(x1,x2, t0) =

1

1− x2

(

D f1

(
x1

1− x2
, t0

)

+
1

2

)

D f̄1
(x2, t0) . (4.70)
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Figure 4.4: The momentum sum rule (4.48) as a function of the evolution scale for input

(4.68). The momentum sum rule for SPDFs is also shown. The lowest curve illustrates

the importance of the third (splitting) term in evolution equations (4.38).

The additional factors with±1/2 account for the factors with±1 on the r.h.s of eqs. (4.63)

and do not spoil the already fulfilled momentum sum rule (4.48). However, the proposed

ansatz is not symmetric with respect to the exchange of partons,

D f1 f2(x1,x2, t0) 6= D f2 f1(x2,x1, t0) . (4.71)

In addition, the quark distributions Dqiqi
(x1,x2) and Dq̄iq̄i

(x1,x2) are not positive definite

in the whole physical domain: x1 + x2 ≤ 1. This situation is summarized in Table 4.1.

Properties Symmetric ansatz Our ansatz

Parton symmetry yes no

Positivity yes no

Sum rules no yes

Table 4.1: Properties of the two discussed in the text initial conditions.

In Fig. 4.4 we show how the momentum sum rule (4.53) is preserved by our numer-

ical program. The 1% deviation from unity results from numerical inaccuracies. We also

show the momentum sum rule for the SPDFs. The lowest curve illustrates the role of the

splitting terms in the evolution equations (4.38). Without this terms, the momentum sum

rule for the DPDFs is strongly violated.

In Fig. 4.5 we show the graphical comparison of the two inputs as functions of x1
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DPDFs for x2=10-3 and Q2=2 GeV2
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Figure 4.5: The initial DPDFs, x1x2D f1 f2(x1,x2), as functions of x1 for fixed x2 = 10−3

and the input scale Q2
0 = 2 GeV2. The two input distributions (4.67) (sym) and (4.68)

(our) are plotted.

with fixed x2 = 10−3, using the MSTW08 LO [36] parametrization of the SPDFs taken

at the scale Q2
0 = 2 GeV2. For such a small x2, both ansatze give practically the same

distributions with gluons, Dgg and Dgu. However, this is not the case for the pure quark

distributions, Duu and Duū, which are significantly different in the large x1 region. As

expected, Duu from eq. (4.69) is negative for x1 > 0.6. Notice also that the modifications

given by eqs. (4.69) and (4.70) lead to non-zero values of the distributions D fi fi and D fi f̄i

at the kinematic boundary: x1 + x2 = 1.

4.6 Effects of QCD evolution of the DPDFs

In order to study evolution of the DPDFs we use the constructed numerical pro-

gram based on the Chebyshev polynomial expansion, described in detail in Appendix A.

We solve simultaneously eqs. (4.31) and (4.46), starting from the two initial conditions

specified in the previous section. In Fig. 4.6 we show the DPDFs from Fig. 4.5, evolved

up to the scale Q2 = 100 GeV2, while in Fig. 4.7 we present a graphical comparison of
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DPDFs (x1, x2=10-3, Q2=100 GeV2)
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Figure 4.6: The DPDFs as in Fig. 4.5 but evolved to Q2 = 100 GeV2.

the initial and evolved double parton distributions, shown on previous plots. We clearly

see that the evolved distributions Dgg and Dgu give exactly the same results in the whole

domain of x1 while the distributions Duu and Duū are different for large values of x1. As

expected, Duu from our input stays negative for x1 > 0.6. On the other hand, for small

values of parton momentum fractions, x1,x2≪ 1, both distributions tend to the same,

factorized form

D f1 f2(x1,x2,Q)≈ D f1(x1,Q)D f2(x2,Q) . (4.72)

To study the question of the factorization (4.72) in more detail, we plot in Fig. 4.8

the ratio

R f1 f2 =
D f1 f2(x1,x2,Q

2)

D f1(x1,Q2)D f2(x2,Q2)
(4.73)

as a function of x1 for fixed x2 = 10−3 and Q2 = 100 GeV2. As we can see, the effect of the

violation of factorization for small values of x1 and x2 is only seen for the distribution Duū.

This is due to the third term in the evolution equations (4.38) which characterize parton

splitting. In particular, the violation is significant only for the splitting g→ qq̄, due to
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DPDFs for x2=10-3 and Q2=100 GeV2
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Figure 4.7: Comparison of the initial and evolved DPDFs for the symmetric (dashed

curves) and our (asymmetric) (solid curves) inputs.

a large value of the gluon distribution g(x) at small x. For the distributions Dgg, Dgu, Duu,

the factorization holds very well once one of the parton momentum fractions (or both) are

small. The same conclusions are valid for the others quark flavors.

To summarize, our goal to construct the DPDFs initial distributions which are built

out of the existing SPDFs and fulfill the new sum rules to reduce arbitrariness in the

DPDFs evolution is not fully successful. The lack of the parton exchange symmetry and

the negative values for some of them for large values of the parton momentum fractions

make them rather unsatisfactory for practical purposes.
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Figure 4.8: The ratio (4.73) for the symmetric (4.67) (dashed line) and our (4.68) (solid

line) inputs evolved to Q2 = 100 GeV2 as functions of x1 for fixed x2 = 10−3.
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Chapter 5

Electroweak bosons production in

double parton scattering

A crucial prediction of the Standard Model is the existence of vector bosons W and

Z mediating in the weak interactions. In 1983, experiments of the UA1 [65] and UA2

[66] Collaborations, conducted at the CERN pp̄ collider SPS, allow to experimentally

confirm theoretical predictions concerning them with high accuracy. The electroweak W

and Z boson production is one of the most valuable processes in the particle physics which

allows to determine the important data on the hadronic structure.

For better understanding of this process, we analyze in this chapter the W+W− and

Z0Z0 electroweak boson production in terms of the simplest multi-parton process - the

double parton scattering. We study the vector boson production in DPS by using the QCD

evolution equations for the DPDFs. In particular, we analyze the role of the splitting terms

in these evolution equations and show their significance for the computed cross sections.

5.1 W and Z bosons production

The vector bosons W± and Z0 can be produced from annihilation of two quarks

in a hadronic collision. They have particular small decay widths: ΓW = 2.085 GeV and

ΓZ = 2.4952 GeV, in comparison to their masses

MW = 80.385 GeV , (5.1)

MZ = 91.1876 GeV . (5.2)

The lowest-order diagrams for the W± and Z0 boson production in the single parton scat-

tering are shown in Fig. 5.1.
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Figure 5.1: Lowest order diagrams for the production of the vector bosons W± and Z0.

In the collinear approximation, the cross section of the elementary process,

qq̄′→W/Z→ lX ,

is given by the parton distribution functions q f and q f , known from Feynman’s parton

model (see Section 1.4),

σ = ∑
f

∫

dxdzq f (x)q′f (z) σ̂qq̄′→W/Z . (5.3)

In addition,

x =
MW/Z√

s
ey , z =

MW/Z√
s

e−y , (5.4)

are the parton longitudinal momentum fractions given in terms of the boson rapidity y.

The subprocess cross sections σ̂qq̄′→W/Z has the following form [2]

σ̂qq̄′→W =
π

3

√
2GF M2

W |Vqq′|2 δ (ŝ−M2
W ) , (5.5)

σ̂qq̄′→Z =
π

3

√
2GF M2

Z (V
2
q +A2

q)δ (ŝ−M2
Z) , (5.6)

where GF is the Fermi constant (1.13), Vqq′ is an appropriate element of the Cabibbo-

Kobayashi-Masakawa (CKM) matrix [67, 68],

V =






Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




 , (5.7)

and Vq,Aq are the couplings of the fermions to the Z boson, given by [2]

Vu,c,t = +0.191 , Au,c,t =+1
2
, (5.8)

Vd,s,b = −0.345 , Ad,s,b =−1
2
. (5.9)
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Figure 5.2: The theoretical predictions for the W and Z cross sections compared with the

UA1, UA2, D0 and CDF experimental data [2].

The cross section of the electroweak bosons production has been measured by many

experiments and collaborations. Fig. 5.2 shows a comparison of the W and Z cross section

(multiplied by branching ratios σW/Z ·BR) , measured in pp̄ collisions by UA1 [69], UA2

[70], D0 [71] and CDF [72] Collaborations, with theoretical predictions. The leptonic

branching ratios are known from the Standard Model and are equal to

BR(W → lν) = 0.1084 , (5.10)

BR(Z→ l+l−) = 0.0336 , (5.11)

while the parton distribution functions are from the MRS(A’) set [73] with the factoriza-

tion scale µ = MW,Z . It is clearly seen that the agreement between theoretical predictions

and experimental data is very good.

The production of the electroweak bosons W± and Z0 can be characterizes by the

differential cross section in rapidity, y = 1
2

ln(x1/x2). In this case, the cross section for the

W± boson production is given in terms of the convolution of the elementary cross section

(5.5) and the parton distribution functions

dσW±

dy
= σW

0 ∑
qq′
|Vqq′|2

{
q(x1,µ)q̄

′(x2,µ) + q̄(x1,µ)q
′(x2,µ)

}
, (5.12)

with the factorization scale µ = MW and

σW
0 =

2πGF

3
√

2

M2
W

s
. (5.13)
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Figure 5.3: Production of the electroweak bosons in double parton scattering.

For the Z boson production, the cross section is obtained from eq. (5.12) by replacing

|Vqq′|2 → δqq′(V
2
q +A2

q) , (5.14)

and changing the mass MW →MZ .

5.2 Simplified DPS cross section

The production of the W± and Z0 bosons can be also analyzed for the double parton

scattering. The graphical illustration of the electroweak bosons production in DPS is

shown in Fig. 5.3. The hard scale Q in such a case is equal to the boson mass Q = MW,Z ,

while the parton longitudinal momentum fractions x1,x2 and z1,z2 can be related in the

collinear approach to the produced boson rapidities, y1,y2, as follows

x1,2 =
Q√

s
ey1,2 , z1,2 =

Q√
s

e−y1,2 . (5.15)

Using relation (5.15) and the following conditions for the momentum fractions

x1,2 ≤ 1 , z1,2 ≤ 1 , (5.16)

(x1 + x2) ≤ 1 , (z1 + z2) ≤ 1 , (5.17)

the allowed values of rapidities can be specified

− ln

√
s

Q
≤ ymax ≤ ln

√
s

Q
. (5.18)

We consider the W+W− and Z0Z0 boson production in the proton-proton scattering

at the LHC center-of-mass energy
√

s = 14 TeV. In Fig. 5.4 (left), we show the rapid-

ity plane for the W+W− boson production, where the solid lines correspond to constant

values of (5.17) while the dashed lines represent the constant ratios x2/x1 = z1/z2. The

middle point corresponds to fully symmetric momentum fractions xi = zi ≈ 0.5 ·10−2.
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Figure 5.4: Kinematic plane for W+W− production in DPS at the LHC energy 14 TeV

(left) and cross section (5.20) for this process (right).

In the standard approach, the estimation of the DPS cross section σAB is usually

factorized into a product of the two single parton scattering cross sections σA and σB

σAB =
N

2

σAσB

σe f f

, (5.19)

with a symmetry factor N equal 1 for A = B and 2 otherwise, and an effective cross

section, σe f f ≈ 15 mb, estimated by the CDF and D0 Collaborations from the DPS data

[57, 58, 59]. In this approach, the DPS cross section for the W+W− bosons production

can be computed using the single scattering cross sections (5.12)

σW+W−

dy1dy2
=

1

σe f f

dσW+

dy1

dσW−

dy2
. (5.20)

The results of such a computation are shown in Fig. 5.4 (right) where we present the

DPS cross section (5.20) obtained using three quark flavors u,d,s and the MSTW08(LO)

parametrization of the single PDFs [36].

Formula (5.19) is only an approximation. A full description of DPS cross sections

in the collinear approximation with the double parton distributions is presented in the next

section.
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5.3 DPS cross section with DPDFs

The double parton scattering allows to gain information on parton correlations by

measuring the double parton scattering cross section in high energy collisions of two

hadrons. The inclusive DPS cross section in the collinear approximation is given by the

following formula with the DPDFs [46, 44], see also eq. (3.33) for scalar partons,

σAB =
N

2
∑

f1 f2 f ′1 f ′2

∫

dx1dx2 dx′1dx′2 σ̂A
f1 f ′1

(x1,x
′
1,Q1) σ̂B

f2 f ′2
(x2,x

′
2,Q2) (5.21)

×
∫

d2q
(2π)2

D f1 f2(x1,x2,Q1,Q2,q)) D f ′1 f ′2
(x′1,x

′
2,Q1,Q2,−q) ,

where A and B denote the two hard parton states, N is a symmetry factor (equal 1 for A=B

and 2 otherwise) and q is the relative transverse momentum discussed in Sec. 5.3.2.

For equal hard scales, Q1 = Q2 ≡ Q, the DPDFs evolve with a hard scale Q ac-

cording to the evolution equations (4.46) and (4.47). Using the results of Chapter 4 and

our numerical program which solves the evolution equations, we are ready to analyze the

DPS production of electroweak boson pairs in detail. Two related questions are particu-

larly interesting:

• how the simplified cross section (5.19) compares with more accurate formula (5.21),

• how important are the splitting terms in the evolution equations (4.46) for the ob-

tained results.

In order to answer the latter question it is useful to reformulate the evolution equations

for DPDFs in the double Mellin moment space. This will allow to easily separate two

contributions to the DPDFs, shown in a simplified form in Fig. 4.2. The first contribution

comes from partonic emissions from one of the two partons while the remaining one

acts as a spectator. The second contribution is the splitting contribution in which parton

emissions come from two partons originating from a single one. This is the contribution

which is described by the splitting terms in the evolution equations (4.46).

5.3.1 Evolution equations for Mellin momens of DPDFs

We rewrite evolution equations (4.46) for equal scales with the help of the double

Mellin moments of the DPDFs,

D̃ f1 f2(n1,n2, t) =
∫ 1

0
dx1

∫ 1

0
dx2 x

n1

1 x
n2

2 θ(1− x1− x2)D f1 f2(x1,x2, t) , (5.22)

where the theta function imposes the basic momentum fraction constraint (4.33). Notice

that we keep q = 0 for the DPDFs. Neglecting for simplicity of the notation the nega-
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tive virtual correction terms in eqs. (4.46), we can write these equations in the following

equivalent form

∂t D(x1,x2, t) =
∫ 1

0
dy

∫ 1

0
dzδ (x1− yz)θ(1− z− x2)P(y)D(z,x2, t)

+
∫ 1

0
dy

∫ 1

0
dz δ (x2− yz) θ(1− x1− z)P(y)D(x1,z, t)

+
1

x1 + x2
P

(
x1

x1 + x2

)

D(x1 + x2, t) , (5.23)

where we used a matrix notation in flavors, e.g. (D) f1 f2 = D f1 f2 . Integrating both sides of

this equation as in eq. (5.22), we find the equation with two homogeneous terms and one

non-homogeneous term

∂t D̃(n1,n2, t) = A1 +A2 +B . (5.24)

The first homogeneous term, A1, is given by

A1 =
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dy

∫ 1

0
dz δ (x1− yz)θ(1− z− x2)θ(1− x1− x2)

× x
n1

1 x
n2

2 P(y)D(z,x2, t)

=
∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
dx2 θ(1− z− x2) θ(1− yz− x2)(yz)n1 x

n2

2 P(y)D(z,x2, t) ,

where we performed integration over x1 with the help of the delta function in the third

line. The second theta function does not impose additional constraint and can be skipped.

Thus

A1 =
[∫ 1

0
dyyn1 P(y)

]

·
[∫ 1

0
dz

∫ 1

0
dx2 zn1 x

n2

2 θ(1− z− x2)D(z,x2, t)
]

= γ(n1) · D̃(n1,n2, t) , (5.25)

where the known matrix of anomalous dimensions read

γ(n) =
∫ 1

0
dxxn P(x) . (5.26)

In the same way we find a similar relation for the second homogeneous term,

A2 = D̃(n1,n2, t) · γ T(n2) . (5.27)

The transformation of the non-homogeneous term is slightly more complicated,

B =
∫ 1

0
dx1

∫ 1

0
dx2 θ(1− x1− x2)x

n1

1 x
n2

2

1

x1 + x2
P

(
x1

x1 + x2

)

D(x1 + x2, t). (5.28)
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After changing variables, x2→ z = x1 + x2, we find the following relation

B =
∫ 1

0
dx1 x

n1

1

∫ 1

x1

dz(z− x1)
n2

1

z
P(x1/z)D(z, t)

=
∫ 1

0
dx1 x

n1

1

∫ 1

0
dy

∫ 1

0
dzδ (x1− yz)(z− x1)

n2 P(y)D(z, t) . (5.29)

Preforming the integration over x1 with the delta function, we find

B =
∫ 1

0
dy

∫ 1

0
dz(yz)n1 (z− yz)n2 P(y)D(z, t)

=
[∫ 1

0
dyyn1 (1− y)n2 P(y)

]

·
[∫ 1

0
dzzn1+n2D(z, t)

]

= γ̃(n1,n2) · D̃(n1 +n2, t) , (5.30)

where

γ̃(n1,n2) =
∫ 1

0
dyyn1 (1− y)n2 P(y) . (5.31)

From eqs. (5.25), (5.27) and (5.30), we can finally obtain the following form of the evo-

lution equation in the Mellin moments representation

∂t D̃(n1,n2, t) = γ(n1) D̃(n1,n2, t) + D̃(n1,n2, t)γT (n2)
︸ ︷︷ ︸

homogeneous terms

+ γ̃(n1,n2) D̃(n1 +n2, t)
︸ ︷︷ ︸

non-homogeneous term

. (5.32)

Notice that the non-homogeneous term corresponds to the parton splitting contribution to

the DPDFs. Let us notice that D̃(n1+n2, t) is a vector of the Mellin moments of the single

PDFs,

D̃ f (n, t) =
∫ 1

0
dxxn D f (x, t) . (5.33)

The evolution equation for them can be found in a similar way. We obtain the equation

∂t D̃(n, t) = γ(n) D̃(n, t) , (5.34)

which has a simple solution

D̃(n, t) = eγ(n) t D̃0(n) , (5.35)

where D̃0(n) is an initial condition.

The general solution to the evolution equation (5.32) is the sum of the general solu-
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Figure 5.5: Schematic illustration of two contributions in eq. (5.39).

tion to the homogeneous part and a particular solution to the non-homogeneous part. The

homogeneous equation has the following general solution

D̃(n1,n2, t) = eγ(n1) t A(n1,n2)eγ T(n2) t . (5.36)

A particular solution to the non-homogeneous equation can be found by making A(n1,n2)

time dependent and substituting such an ansatz to the full equation (5.32). Then, we find

the equation

∂t A(n1,n2, t) = e−γ(n1) t γ̃(n1,n2) D̃(n1 +n2, t)e−γ T(n2) t , (5.37)

which can be easily solved

A(n1,n2, t) = D̃0(n1,n2) +
∫ t

0
dt ′ e−γ(n1) t ′ γ̃(n1,n2) D̃(n1 +n2, t

′)e−γ T(n2) t ′ , (5.38)

where D̃0(n1,n2) is an initial condition for the DPDFs. Substituting (5.38) into (5.36), we

obtain the final form of the solution

D̃(n1,n2, t) = eγ(n1) t D̃0(n1,n2)eγ T(n2) t

+
∫ t

0
dt ′ eγ(n1)(t−t ′) γ̃(n1,n2) D̃(n1 +n2, t

′)eγ T(n2)(t−t ′) . (5.39)

Relation (5.39) is the sum of two contributions. The first term describes two independent

DGLAP evolutions up to the scale Q of two partons emerging from a hadron at the initial

scale Q0 (t = 0). The second term describes the emergence of the two partons from the

splitting of a single parton at the scale Q′ (corresponding to t ′) which then independently

evolve up to the scale Q. Notice that the splitting occurs at any value of Q′ ∈ [Q0,Q]. The

graphical illustration of these two terms is given in Fig. 5.5.

With eq. (5.39) it is easy to compute the two contributions to the solution of the

evolution equations for DPDFs. To find the homogeneous part, we solve these equations

without the splitting terms for initial conditions imposed at some initial scale. The non-
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homogeneous, splitting contribution can be found by solving the full evolution equations

for initial conditions which are equal to zero at the same initial scale.

The preformed analysis allows us to present the solution for two different scales,

say Q1 < Q2 (t1 < t2),

D̃(n1,n2, t1, t2) = eγ(n1) t1 D̃0(n1,n2,q)eγ T(n2) t2

+

min{t1,t2}∫

0

dt ′ eγ(n1)(t1−t ′) γ̃(n1,n2) D̃(n1 +n2, t
′)eγ T(n2)(t2−t ′) . (5.40)

The evolution equations which correspond to this case have been derived in [42]. The

x-space representation of eqs. (5.39) and (5.40) is obtained from the inverse Mellin trans-

formation and can be found in [44, 74].

5.3.2 Relative momentum dependence

The form (5.39) of the solution is the basis of the proposition of Ryskin and Sni-

girev [44] regarding the dependence of the DPDFs on the relative momentum q. This

dependence is not specified by the evolution equations and is a matter of a physically

motivated modeling. The basic idea is that for two partons originating from a nucleon, q

reflects their correlation inside the nucleon, described by a non-perturbative form factor

F2g(q) =
1

(
1+q2/m2

g

)2
, (5.41)

known as the two-gluon nucleon form factor with mg ≈ 1.5 GeV being an effective gluon

mass. Therefore, the first term in eq. (5.39) has been postulated in [44] with the factorized

q-dependence,

D̃(1)(n1,n2, t,q) = eγ(n1) t D̃0(n1,n2)eγT(n2) t F2
2g(q) . (5.42)

In principle, the form factor could depend on parton flavors, however, this dependence is

not taken into account.

On the other hand, if the two partons originate from a point-like parton through its

splitting, such a correlation (and the form factor) no longer exists. The q-dependence has

been introduced in the splitting term in eq. (5.39) through the lower integration limit

D̃(2)(n1,n2, t,q) =
∫ t

t0(q)
dt ′ eγ(n1)(t−t ′) γ̃(n1,n2) D̃(n1 +n2, t

′)eγT(n2)(t−t ′) , (5.43)
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Figure 5.6: Schematic q-dependence of the DPDFs according to [44].

where

t0(q) =







0 if |q| ≤ Q0

t(q) if Q0 < |q| ≤ Q

(5.44)

and t(q) is given by

t(q) ≡
∫ q2

Q2
0

αs(µ
2)

2π

dµ2

µ2
=

1

b
ln

ln(q2/Λ2
QCD)

ln(Q2
0/Λ2

QCD)
, (5.45)

with b = (33−2n f )/6. Thus, for |q|> Q0, |q| is the scale from which the splitting starts,

see Fig. 5.6. For |q|< Q0, the relative loop momentum is small and may be neglected due

to strong ordering in transverse parton momenta in the DGLAP approximation. Notice

that |q| ≤ Q, which means that Q is the largest scale in the problem.

Summarizing, after the transformation into the x-space, the DPDFs can be written

as a sum of the two discussed contributions

D(x1,x2, t,q) = D(1)(x1,x2, t,q) + D(2)(x1,x2, t,q) , (5.46)

which in the Mellin moment space are given by eqs. (5.42) and (5.43).

5.3.3 Contributions to the DPS cross section

We are now ready to conclude our analysis of the W+W− and Z0Z0 production in

DPS using the double parton distribution functions [75]. Coming back to cross section

(5.21) with AB being the above mentioned boson pairs, we can write it in terms of the two

components in eq. (5.46) as the following sum of the three contributions

σAB = σ
(11)
AB + σ

(12+21)
AB + σ

(22)
AB , (5.47)
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Figure 5.7: The (11) and (12+21) contributions to the W+W− production cross section

(5.47) and their sum. Contours of constant values are shown below.

where for i, j ∈ {1,2}

σ
(i j)
AB =

N

2
∑
flav

∫

dx1dx2 dx′1dx′2 σ̂A
f1 f ′1

(x1,x
′
1,Q) σ̂B

f2 f ′2
(x2,x

′
2,Q)

×
∫

d2q
(2π)2

D
(i)
f1 f2

(x1,x2, t,q) D
( j)
f ′1 f ′2

(x′1,x
′
2, t,−q) . (5.48)

Each term in the above equation has a clear interpretation: σ
(11)
AB is a contribution without

parton splitting in the DPDFs evolution equations, the mixed contribution σ
(12+21)
AB has

a single parton splitting from only one hadron side while σ
(22)
AB is the double splitting

contribution with two parton splittings from both hadrons each.

The double splitting contribution σ
(22)
AB was a matter of intensive debate in past years

[45, 43, 76, 46, 77, 78] and was classified rather as the single parton scattering process,

entirely characterized by the SPDFs. Since the double splitting contribution needs careful

diagrammatic analysis, we do not consider it in our analysis.

In the presented analysis, the differential cross section (5.47) in boson rapidities

Y1,2 was computed with A = W+ and B = W−. For this purpose, we used our numerical

program which solves the evolution equations for DPDFs. For initial conditions, we used

prescription (4.67) from [41] in which the DPDFs are products of single parton distribu-

tions (from the parametrization [36]) multiplied by a correlation factor in parton momen-

tum fractions x1,2. To perform decomposition (5.46), we first found the solution to the
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Figure 5.8: The (11) and (12+21) contributions to Z0Z0 production cross section (5.47)

and their sum. Contours of constant values are shown below.

homogeneous evolution equations with the initial condition form [41], D(hom). Next, we

found the solution to the non-homogeneous equation with zero initial conditions, D(nhom).

The two components in eq. (5.46) can written with the help of the found solutions

D(1)(x1,x2,Q,q) = D(hom)(x1,x2,Q)F2
2g(q) , (5.49)

D(2)(x1,x2,Q,q) = D(nhom)(x1,x2,Q)−D(nhom)(x1,x2, |q|) , (5.50)

where the subtraction in the second equation accounts for the lower integration limit in

eq. (5.43). The first two components of the cross section (5.47) are shown in Fig. 5.7. We

see that the single splitting contribution, σ
(12+21)
WW , is of the same order that the standard

contribution, σ
(11)
WW . Notice also the change in the correlation pattern in rapidity due to

the splitting contribution, shown in the plots with contours of constant values of the cross

sections.

We repeat our analysis for the Z0Z0 boson production in DPS obtaining qualitatively

the same results, see Fig. 5.8. In this case, the splitting contribution is peaked around

y1 ≃ y2 ≈ 0, which is due to the configuration with parton momentum fractions x1 ≃
x2 ∼ 10−2 for which the splitting contribution is determined by the strongly rising single

gluon distribution, driving the splitting g → qq. The relevance of the single splitting

contribution is shown in Table 5.1 where values of the total cross sections for the discussed

contributions are shown. They were calculated after the integration over the allowed

values of bosons rapidities.
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in [fb] σ
(11)
tot σ

(12+21)
tot σ

(12+21)
tot /σ

(11)
tot

W+W− 256 97 0.38

Z0Z0 61 22 0.36

Table 5.1: Components of the DPS cross sections for the electroweak boson production.

5.3.4 Discussion of the splitting contribution

In order to understand to the origin of the significance of the single splitting con-

tribution for the computed cross sections, reflected for example in Table 5.1, we plot the

cross section dσW+W−/dy1dy2dq2 as a function of q2 for the standard and splitting con-

tributions at y1 = y2 = 0, see Fig. 5.9. We see that both contributions are suppressed for

large values of q2 because of the presence of the form factor F2g(q) in the homogeneous

part of the DPDFs, see eq. (5.49). The standard contribution, σ (11), is stronger suppressed

that the single splitting one, σ (12+21), because it is proportional to

∫
d2q
(2π)2

F4
2g(q) =

m2
g

28π
, (5.51)

while the single splitting contribution is proportional to

∫
d2q
(2π)2

F2
2g(q) =

m2
g

12π
. (5.52)

We checked that an additional dependence on q in the non-homogeneous part of the

DPDFs is negligible. Thus, from the pure q-dependence, the standard contribution is

smaller by the factor

12π/28π ≈ 0.43 . (5.53)

However, the significant enhancement of the single splitting contribution due to weaker

q2-dependence is compensated by a smaller size of the non-homogeneous component of

the DPDFs, D(2), in comparison to the homogeneous component, D(1). Roughly speaking,

in σ (11) the DPDFs are proportional to (x−λ )4 with λ ∼ 0.3− 0.5 (at x < 0.1) while in

σ (12+21) they are only proportional to (x−λ )3. More precisely, the ratio of the DPDFs

taken for y1 = y2 = 0 in the two contributions can be found from the values of the cross

sections at q2 ≈ 0 in Fig. 5.9,

DPDF(11) : DPDF(12+21) ≈ 3.7 . (5.54)
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Figure 5.9: The q2-dependence of dσW+W−/dy1dy2dq2 at y1 = y2 = 0 for the indicated

contributions. The upper limit for q2 equals M2
W .

From ratios (5.53) and (5.54) we find that for the differential cross sections at y1 = y2 = 0,

we have

dσ (12+21) : dσ (11) = 0.63 . (5.55)

This ratio is bigger than those for the total cross sections in Table 5.1, but it stays in the

right ballpark. Thus, the single splitting contribution should be present in all analyses of

the DPS processes.

The presented analysis of the DPS electroweak boson production can also be quanti-

fied with the help of the effective cross section. Let us recall, that in the simplified analysis

with eq. (5.19), σeff is a constant, approximately equal to 15 mb, which sets the right scale

for the computed cross sections. In our analysis with the DPDFs, this scale enters through

the value of the effective gluon mass in the two-gluon form factor, mg ≈ 1.5 GeV. How-

ever, formula (5.19) no longer holds. How strongly it is violated can be shown by plotting

the effective cross section defined now as the ratio

σeff =
N

2

(dσA/dy1)(dσB/dy2)

dσAB/dy1dy2
. (5.56)

In the simplified case this would a constant equal to 15 mb but in general σeff depends on

boson rapidities (y1,y2).

We performed the computations for two cases: σAB = σ
(11)
AB and σAB = σ

(11)
AB +

σ
(12+21)
AB for the W+W− and Z0Z0 production at the LHC. The results are shown in

87



σeff in units of 15 mb for W+W-

Y 1

Y
2

σ
ef

f(1
1)

Y 1

Y
2

σ
ef

f(1
1+

12
)

Y 1

Y
2 Y 1

Y
2

Y1

Y
2

Y1

Y
2

-5
-2.5

0
2.5

5

-5

-2.5

0

2.5

5

1
1.1
1.2
1.3
1.4
1.5
1.6

-5
-2.5

0
2.5

5

-5

-2.5

0

2.5

5

0.6
0.7
0.8
0.9

1
1.1
1.2

-4

-2

0

2

4

-5 -2.5 0 2.5 5

-4

-2

0

2

4

-5 -2.5 0 2.5 5

Figure 5.10: σeff in units of 15 mb for W+W− production as a function of boson rapidities

for two models of the DPS cross sections, see in the text. The lines of constant values are

shown below.

Figs. 5.10 and 5.11. For better visibility, we cut the maximal values to 1.6 or 1.2 at

the edges of the phase space. We see that with the standard contribution to the DPS cross

section, the factorization property is to good approximation valid in for central rapidities

(small values of momentum fractions, see Fig. 5.4). However, approaching kinematic

boundaries x1 + x2 = z1 + z2 = 1 with comparable momentum fractions, the violation of

factorization becomes stronger. This picture changes after adding the single splitting con-

tribution. Now, the violation of factorization is significant even for central rapidities. The

effective cross section is smaller than 15 mb and stays in between 60%-80% of this value.

5.3.5 Experimental status and outlook

In recent years, analyses of the double parton scattering have been performed by

the LHC experimental groups. The CMS [61] and ATLAS [60] Collaborations measured

the DPS using W +2-jet events in the proton-proton collisions at the LHC center-of-mass
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Figure 5.11: The same as in Fig. 5.10 but for the Z0Z0 production.

energy
√

s= 7 TeV. The results of these measurements allow to determine the value of the

effective cross section which characterizes the effective transverse area of hard partonic

interactions in collisions between protons. The measured value of the effective cross

section were estimated to be σeff = 20.7±0.8 (stat.)±6.6 (syst.) mb by CMS and σeff =

15 ± 3 (stat.)+5
−3

(syst.) mb by ATLAS. The CMS and ATLAS results are in reasonable

agreement with the measurements from Tevatron conducted by the D0 Collaboration with

jet events in the pp̄ collisions at the energy
√

s = 1.96 TeV [79]. It was found that σ incl
eff =

12.7± 0.2 (stat.)± 1.3 (syst.) mb for γ + 3-jet events and σHF
eff = 14.6± 0.6 (stat.)±

3.2 (syst.) mb for γ +b/c-jet + 2-jet final states.

The LHCb Collaboration also measured the DPS events with the J/Ψ meson and

open charm (C) hadron or double same-charge charm hadrons (CC) [80]. The extracted

values of the effective cross section are in agreement with the results from Tevatron, CMS

and ATLAS, see Fig. 5.12. Although the results from the CC sample give higher values

of σeff, they are still in reasonable agreement with the rest of the measurements. Double

open-charm production, which allows to study different properties of double parton scat-

tering, is the subject of further research conducted by the LHCb Collaboration, see [81]
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Figure 5.12: Ratios RC1C2
≡ α ′

σC1
×σC2

σC1C2

measured by LHCb (points) in comparison with

the DPS cross-section measured at Tevatron (shaded area) [80]. For the J/Ψ C and CC

production these ratios have a clear interpretation as the effective cross-section.

and [82] for theoretical predictions. There are also studies suggesting the relevance of

double parton scattering for Higgs measurements at the LHC [83]. The current state of

the DPS experimental data has been summarized in [84].

The experiments carried out by the CMS, ATLAS, D0 and LHCb Collaborations

revealed the increased significance of the double parton scattering in high energy proton-

proton collisions. The discussion of experimental results is still preformed with the sim-

plified formula (5.19) for the DPS, using the notion of the effective cross section. How-

ever, with higher energy,
√

s = 14 TeV, and higher luminosity, the LHC measurements

will be sensitive to more subtle results on the DPS, discussed in this thesis.
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Summary

In this thesis, we presented results of two original analyses of high energy scatter-

ing processes with hard scales which can be measured at the LHC at CERN. They are

selected in such a way that they provide new information on the quark-gluon (partonic)

structure of the proton. The main theoretical tool to study these processes is quantum

chromodynamics (QCD) - the basic theory of strong interactions.

The continuous progress in the construction of modern high energy accelerators,

like HERA, Tevatron, RHIC and the LHC, has opened a possibility to study the structure

of hadrons in the kinematic range of small values of the Bjorken variable x. In this range

parton densities become so high that they saturate and the methods of perturbative QCD

used to describe such effects reach the limits of applicability. One of the most charac-

teristic processes which allows to study the small x regime at hadronic colliders is the

Drell-Yan production of lepton pairs from the scattering of strongly interacting quarks

and gluons. In Chapter 2, we performed the analysis of the Drell-Yan production for the

LHC energy, using the color dipole approach which naturally includes parton saturation

effects at small x. We showed that these effects lead to the suppression of the Drell-Yan

cross section in comparison to the predictions from the collinear factorization approach

in which parton saturation effects are not taken into account.

The large center-of-mass energy of the LHC also allows to gain information on par-

ton correlations in the proton through the double parton scattering processes, described

in Chapters 3 and 4. These correlations are encoded in double parton distribution func-

tions (DPDFs) which are more general than single parton distribution functions (PDFs),

studied so far in the high energy scattering experiments. The DPDFs evolve with hard

scales of the DPS processes, which dependence is described by QCD evolution equations

analogous to the well know DGLAP evolution equations for the PDFs. For the purpose

of our studies, we constructed a numerical program which solves the evolution equations

for DPDFs in the leading logarithmic approximation. The Chebyshev expansion method

which we used for the construction is presented in Appendix A.

There are interesting new sum rules which obey the new evolution equations. In

Chapter 4, we present an attempt to build initial conditions for the DPDFs evolution

which obey the new sum rules and are built out of the existing single PDFs to reduce
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arbitrariness in the specification of such initial conditions. The form which we found

obeys the new momentum and valence quark number sum rules but fails to be symmetric

with respect to the interchange of two partons. This leads to negative values of some

DPDFs in the region of large momentum fractions (> 0.5). Our studies showed the limits

of phenomenologically motivated approach to the description of the DPDFs.

Two partons in a hadron, which take part in the DPS, can originate directly from

the hadron or can be produced from a single parton through its splitting. These two

mechanisms are taken into account in the evolution equations for the DPDFs. It is an

interesting question how important the splitting contribution is for the DPS cross sections.

Up till now, a rigorous analysis of such a contribution has not been performed. In Chapter

5, we present such an analysis for the W+W− and Z0Z0 electroweak boson production in

double parton scattering. We found that the splitting contribution plays an important role

for the DPS cross sections, making the standard way of their estimation no longer valid.
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Appendix A

Chebyshev polynomial method

The Chebyshev polynomial method allows to construct an efficient numerical pro-

gram which solves evolution equations for parton distributions by reducing the system of

integro-differential equations to a set of ordinary differential equations.

A.1 Chebyshev polynomial expansion

In general, any function f (x̄) with x̄ ∈ [−1,1] can be approximated by a finite num-

ber N of Chebyshev polynomials in the following [85]

f (x̄)≃
N

∑
k=1

vkck Tk−1(x̄) , (A.1)

where vk = 1 except v1 = 1/2 and the Chebyshev polynomials T are defined by

Tk−1(x̄) = cos((k−1)arccos x̄) , k = 1,2, . . . . (A.2)

The expansion coefficients ck in eq. A.1 are given by

ck =
2

N

N

∑
n=1

f (x̄n)Tk−1(x̄n) , (A.3)

in which variables x̄n are zeros of the Nth polynomial, TN(x̄n) = 0,

x̄n = cos

(
π(n−1/2)

N

)

, n = 1,2, . . . ,N. (A.4)

From the definition of the Chebyshev polynomials [85], we find the following relation

Tk−1(x̄n) = cos

(
π(k−1)(n−1/2)

N

)

. (A.5)
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For a function f (x) with x ∈ [a,b], we need a one-to-one transformation

x̄ = X̄ (x) ∈ [−1,1] , (A.6)

with the inverse transformation

x = X (x̄) ∈ [a,b] . (A.7)

Defining the function f̄ such that f (x) = f̄ (x̄), we find

f (x)≃
N

∑
k=1

vk ck Tk−1(x̄) . (A.8)

The expansion coefficients are given by

ck =
2

N

N

∑
n=1

f (xn)Tk−1(x̄n) , (A.9)

with xn = X (x̄n) being the images of the Chebyshev nodes (A.4) in the interval [a,b].

The generalization to functions of two variables (x,y) ∈ I ⊂ R2 needs the invertible

transformation to the set of points (x̄, ȳ) ∈ [−1,1]× [−1,1],

x̄ = X̄(x,y) , ȳ = Ȳ (x,y) , (A.10)

with the inverse

x = X(x̄, ȳ) , y = Y (x̄, ȳ) . (A.11)

Now

f (x,y)≃
N

∑
k=1

M

∑
l=1

vkvl dkl Tk−1(x̄)Tl−1(ȳ) , (A.12)

with the coefficients

dkl =
2

N

2

M

N

∑
n=1

M

∑
m=1

f (xnm,ynm)Tk−1(x̄n)Tl−1(ȳm) , (A.13)

where xnm and ynm are the images of the Chebyshev nodes xn and ym, given by eq. (A.4)

with N and M, respectively,

xnm = X(x̄n, ȳm) , ynm = Y (x̄n, ȳm) . (A.14)
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For the inverse relation, we have

x̄n = X̄(xnm,ynm) , ȳm = Ȳ (xnm,ynm) . (A.15)

A.2 Solving evolution equations

Let us apply the Chebyshev polynomial expansion to the prototype evolution equa-

tion, see eq. (4.47) for the comparison,

∂t f (x, t) =
∫

K(x,u) f (x/u, t)du − f (x, t)k(x) , (A.16)

where K(x,u) and k(x) are known functions and x ∈ [0,1]. Thus, the coefficients ck in the

Chebyshev approximation formula (A.8) depend on time

ck(t) =
2

N

N

∑
n=1

f (xn, t)Tk−1(x̄n) , (A.17)

where xn are the images of the Chebyshev nodes (A.4) through a one-to-one transforma-

tion,

xn = X (x̃n) , x̃n = X̄ (xn) ∈ [−1,1] . (A.18)

In order to compute them we differentiate both sides of eq. (A.17) with respect to t and

use eq. (A.16),

∂tck =
2

N

N

∑
n=1

∂t f (xn, t)Tk−1(x̄n)

=
2

N

N

∑
n=1

{∫

K(xn,u) f (xn/u, t)du − f (xn, t)k(xn)

}

Tk−1(x̄n) . (A.19)

Approximating the function under the integral by the Chebyshev expansion,

f (xn/u, t)≃
N

∑
l=1

vl cl(t)Tl−1(X̄ (xn/u)) , (A.20)

we find the set of linear differential equations

∂tck =
N

∑
l=1

Akl cl(t) , k = 1,2, . . . ,N (A.21)
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with the matrix A

Akl =
2

N
vl

N

∑
n=1

{∫

K(xn,u)Tl−1(X̄(xn/u))du − k(xn)Tl−1(x̄n)

}

Tk−1(x̃n) . (A.22)

Equations (A.22) can be easily solved with efficient numerical methods once initial con-

ditions ck(0) are specified.

Analogously, the method for the double parton distribution functions can be illus-

trated with the following prototype equation, see eq. (4.46) for the comparison,

∂tF(x,y, t) =
∫

K(x,y,u)F(x/u,y, t)du − F(x,y, t)k(x,y)

+ P(x,y) f (x+ y, t) , (A.23)

where K(x,y,u), k(x,y) and P(x,y) are known functions, f (x+ y, t) obeys eq. (A.16) and

(x,y) ∈ [0,1]× [0,1], The expansion coefficients dkl in the Chebyshev expansion (A.12)

depend on time

dkl(t) =
2

N

2

M

N

∑
n=1

M

∑
m=1

F(xnm,ynm, t)Tk−1(x̄n)Tl−1(ȳm) , (A.24)

where (xnm,ynm) and (xn,ym) obey relations (A.14) and (A.15). Differentiating both sides

with respect to t, and using eq. (A.23), we find

∂tdkl =
2

N

2

M

N

∑
n=1

M

∑
m=1

∂tF(xnm,ynm)Tk−1(x̄n)Tl−1(ȳm)

=
2

N

2

M

N

∑
n=1

M

∑
m=1

{
∫

K(xnm,ynm,u)F(xnm/u,ynm, t)du−F(xnm,ynm, t)k(xnm,ynm)

+ P(xnm,ynm) f (xnm + ynm, t)

}

Tk−1(x̄n)Tl−1(ȳm) . (A.25)

Approximating the functions under the integral

F(xnm/u,ynm, t) =
N

∑
k′=1

M

∑
l′=1

vk′ vl′ dk′l′ Tk′−1(X̄(xnm/u,ynm))Tl′−1(Ȳ (xnm/u,ynm)) (A.26)

and

f (xnm + ynm, t)≃
N

∑
j=1

v j c j(t)Tj−1(X̄ (xnm + ynm)) , (A.27)
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and substituting into eq. (A.25), we obtain the following set of linear differential equations

∂tdkl =
N

∑
k′=1

M

∑
l′=1

Bkl|k′l′ dk′l′(t) +
N

∑
j=1

Ckl j c j(t) , (A.28)

where k = 1,2, . . . ,N and l = 1,2, . . . ,M. The matrix B is given by

Bkl|k′l′ =
2

N

2

M
vk′vl′

N

∑
n=1

M

∑
m=1

{
∫

K(xnm,ynm,u)Tk′−1(X̄(xnm/u,ynm)) (A.29)

× Tl′−1(Ȳ (xnm/u,ynm))du− k(xnm,ynm)Tk′−1(x̄n)Tl′−1(ȳm)

}

Tk−1(x̄n)Tl−1(ȳm),

while the matrix C reads

Ckl j =
2

N

2

M
v j

N

∑
n=1

M

∑
m=1

P(xnm,ynm)Tk−1(x̄n)Tl−1(ȳm)Tj−1(X̄ (xnm + ynm)) . (A.30)

Eqs. (A.28) are solved together with eqs. (A.21) after specifying initial conditions ck(0)

and dkl(0).

The presented method allows to compute the matrices A , B and C in advance and

provide them as an input for the numerical procedure. This is the main advantage of this

method which leads to a significant reduction of the computation time.
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