
Department of Theory of Structure of Matter
Division of Theoretical Physics

The Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

Kraków, Poland

Collective dynamics of polarized
spin-half fermions in relativistic

heavy-ion collisions

Rajeev Singh

Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of
Philosophy in Physics.

Supervisor Coordinator
dr. hab. prof. IFJ PAN Radoslaw Ryblewski

Co-Supervisor
dr. Arpan Das ...

2018 – 2022





To my parents





Abstract

Standard relativistic hydrodynamics, through the years, has been extremely successful
in describing the properties of the strongly-interacting matter produced in the heavy-ion
collision experiments. Recently, there has been a significant theoretical advancement in
this field to explain a new phenomenon of spin polarization of hadrons emitted in these
processes. Although current models have successfully explained some of the experimental
data based on the coupling between spin polarization and vorticity of the medium, they still
lack a clear understanding of the differential measurements. This is commonly interpreted
as an indication that the spin needs to be treated as an independent degree of freedom whose
dynamics is not entirely bound to flow circulation. In particular, if the spin is a macroscopic
property of the system, in equilibrium its dynamics should follow hydrodynamic laws.

In this thesis, we develop a framework of relativistic perfect-fluid hydrodynamics which
includes spin degrees of freedom from the quantum kinetic theory for Dirac fermions and
use it for modeling the dynamics of matter produced in relativistic heavy-ion collisions.
Following experimental observations, we assume that the polarization effects are small and
derive conservation laws for the net-baryon current, the energy-momentum tensor, and the
spin tensor based on the so-called de Groot–van Leeuwen–van Weert definitions of these
currents.

Subsequently, we present various properties of the spin polarization tensor and its
components, analyze the propagation properties of the spin polarization components, and
derive the spin-wave velocity for arbitrary statistics. We find that only the transverse spin
components propagate, analogously to the electromagnetic waves.

Finally, using our hydrodynamic framework, we study the spacetime evolution of the
spin polarization for the systems respecting certain spacetime symmetries and calculate
the mean spin polarization per particle, which can be compared to the experimental data.
We find that, for some observables, our spin polarization results agree qualitatively with
the experimental findings and other model calculations. Considering the importance of
electromagnetic fields in the heavy-ion collisions, we also analyze the effect of external
electric fields on the dynamics of spin polarization in the Bjorken-expanding background.
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Streszczenie

Standardowa hydrodynamika relatywistyczna przez lata była niezwykle skuteczna w opisy-
waniu właściwości silnie oddziałującej materii produkowanej w eksperymentach zderzeń
ciężkich jonów. W ostatnim czasie nastąpił znaczny postęp teoretyczny w tej dziedzinie,
mający na celu wyjaśnienie nowego zjawiska jakim jest polaryzacja spinowa hadronów emi-
towanych w tych procesach. Chociaż obecne modele z powodzeniem wyjaśniają niektóre
dane eksperymentalne tłumacząc je sprzężeniem między polaryzacją spinu a wirowością
ośrodka, nadal brakuje jasnego zrozumienia danych różniczkowych. Jest to powszechnie
interpretowane jako wskazówka, że spin należy traktować jako niezależny stopień swobody,
którego dynamika nie jest sztywno związana z cyrkulacją przepływu materii. W szczegól-
ności, jeśli spin jest makroskopową właściwością układu, w równowadze jego dynamika
powinna być zgodna z prawami hydrodynamicznymi.

W tej pracy przedstawiamy formalizm relatywistycznej hydrodynamiki płynu doskon-
ałego obejmującej spinowe stopnie swobody otrzymanej w oparciu z kwantową teorię kine-
tyczną dla fermionów o spinie 1/2 i wykorzystujemy ją do modelowania dynamiki materii
wytwarzanej w relatywistycznych zderzeniach ciężkich jonów. W oparciu o obserwacje
eksperymentalne przyjmujemy, że efekty polaryzacji są małe i wyprowadzamy prawa za-
chowania dla prądu barionowego, tensora energii-pędu i tensora spinu w używając definicji
tych prądów zaproponowane przez de Groota, van Leeuwena i van Weerta .

W dalszej części przeprowadzamy analizę właściwości tensora polaryzacji i jego skład-
owych, badamy właściwości propagacyjne składowych polaryzacji i wyprowadzamy pręd-
kość fali spinowej dla dowolnych statystyk kwantowych. Pokazujemy, że poprzeczne skład-
owe polaryzacji podlegają propagacji, analogicznie do fal elektromagnetycznych.

Wreszcie, korzystając z naszego formalizmu hydrodynamicznego, badamy czasoprze-
strzenną ewolucję polaryzacji dla systemów respektujących pewne symetrie czasoprze-
strzenne oraz wyznaczamy średnią polaryzację spinu cząstek na hiperpowierzchni wymroże-
nia, którą możemy porównać z danymi eksperymentalnymi. Stwierdzamy, że w przypadku
niektórych obserwabli, nasze wyniki są jakościowo zgodne z wynikami eksperymentów i
innymi obliczeniami modelowymi. Biorąc pod uwagę znaczenie pól elektromagnetycznych
w zderzeniach ciężkich jonów, analizujemy również wpływ zewnętrznych pól elektrycznych
na dynamikę polaryzacji spinu przy założeniu ekspansji Bjorkena.
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Notation

In this Thesis the following notations/conventions have been adopted:

• “Mostly minus” signature for the spacetime metric, unless specified otherwise

gαβ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (1)

where gµνgµν = 4 and xµ = (t, x, y, z) in the Cartesian coordinate.

• For the scalar (dot) product of four-vectors: a · b = aαbα = gαβa
αbβ = a0b0 − a · b,

where bold font denotes three-vectors.

• For Levi-Civita symbol ϵαβγδ: ϵ0123 = 1 = −ϵ0123.

• We denote symmetrization by A(µν) =
1
2
(Aµν + Aνµ).

• To represent anti-symmetrization we use A[µν] =
1
2
(Aµν − Aνµ).

• We represent commutator and anti-commutator between A and B as [A,B] = AB−
BA and {A,B} = AB +BA, respectively.

• Dual of any tensor is denoted by a star and obtained by contracting it with the
Levi-Civita symbol as

A
⋆αβ =

1

2
ϵαβγδ Aγδ . (2)

• /A = γµAµ represents Feynman slashed notation.

• ⟨: A :⟩ denotes ensemble (statistical) average of the normal ordered quantity A.

• Directional derivatives along basis vectors are denoted as Uα∂α ≡ ( )
•

, Xα∂α ≡ ( )
■

,
Y α∂α ≡ ( )

□

, Zα∂α ≡ ( )
⃝

.

• Divergence of a four-vector A is written as ∂αAα ≡ θA.

• Einstein summation convention is assumed unless mentioned otherwise.

Throughout the work we assume natural units i.e. c = ℏ = kB = 1, unless mentioned
otherwise. Here c, ℏ, and kB is speed of light, reduced Planck constant and Boltzmann
constant, respectively.
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1

Introduction

“What is not started
will never get finished.”

– Johann Wolfgang von Goethe

Understanding the origin of our universe, its physical properties, its composition, etc.
are among the primary goals of modern science. According to the standard model of
cosmology, the theory of the Big Bang proposed by G. Lemaître [1] in the year 1927 1, has
been considered the most reliable framework to date to study the evolution of the universe.
Extrapolated back in time the Big Bang model gives us crucial information about its origin.
According to this model, our universe is expanding and it was much hotter and much
smaller in the beginning. The experimental validation of its expansion came after galaxy
red-shift measurements by E. Hubble in 1929 [10]. His observational evidence along with
the cosmic microwave background [11] and Big Bang nucleosynthesis [12,13] became the key
milestones of modern cosmology. To explore the physical properties and the matter content
of our universe, physicists have considered different approaches. One of the approaches is
the direct astrophysical and astronomical observation, meaning observation at large length
scales using telescopes probing different electromagnetic (EM) wavelengths. The other
approach is to reproduce the conditions which existed during the very early stages of the
universe in terrestrial laboratories producing hot and dense medium in relativistic heavy-
ion collisions [14,15].

According to the thermal history of our universe, its temperature and its age, at the
very beginning, during the Planck era, were of the order of 1019 GeV and 10−43 s, respec-
tively [16]. The universe, being in a very hot and dense early stage, then cooled and diluted
due to its expansion. It has been speculated that due to the cooling, our universe also went
through several phase transitions, for instance, grand unification 2, electroweak and QCD
(quantum chromodynamics) phase transitions, etc. at different time scales [17,18]. Among

1Historically speaking, A. Friedmann was the first who came up with the idea that the Universe can be
dynamic [3] after finding the solutions of A. Einstein’s field equations. However, he did not link his findings
to any astronomical observations. There were many attempts to obtain the dynamic universe solution from
Einstein’s equations but none of them suggested that the universe is expanding [4]. It was K. Lundmark in
1924, who estimated extra-galactic distances and suggested that galaxies are red-shifted [5]. Then in 1927,
G. Lemaître discovered new dynamical solutions to Einstein’s equations and obtained the relationship
between linear velocity and distance, which he then linked to astronomical observations. This solution was
also independently discovered later by H. P. Robertson [6] and A. G. Walker [9].

2This is a phase transition where the strong force got disentangled from the weak and electromagnetic
forces.
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1 Introduction

these phase transitions, the dynamics of the QCD one is the most important for our current
discussion. QCD transition which can also be understood as the transition from the decon-
fined quark-gluon matter, more commonly known as the quark-gluon plasma (QGP), to
confined hadronic matter occurred when the temperature was of the order of T ∼ ΛQCD ≈
200 MeV and the age of the universe was a few microseconds (∼ 10−6 s) after the Big
Bang [18]. It turns out that the QCD transition is the only phase transition of the early
Universe history that can be studied in the relativistic heavy-ion collision experiments. Due
to the direct experimental access, we can explore various aspects of the dynamics of QCD
phase transition, which is otherwise not possible. We should emphasize that the study
of the QCD phase transition dynamics is also crucial for the existence of nuclear matter
in the universe. As the universe cooled across the QCD transition scale, bound states of
elementary particles such as baryons were formed out of quark-gluon matter. Subsequent
evolution of the universe and due to the big bang nucleosynthesis, protons and neutrons
combined to form certain species of atomic nuclei. Today most of the observed matter in
our universe is in the form of atomic nuclei. Therefore, understanding the QCD dynamics
in the early universe is of paramount importance. Moreover, large compact objects, such
as neutron stars may also help us to understand the properties of matter under extreme
conditions. These compact objects can also contain various phases of QCD matter e.g.
QGP, hadronic matter, etc. Since we cannot access the QCD plasma of the early universe
or the interior of astrophysical objects directly, relativistic heavy-ion collision experiments
across a wide range of collision energies provide us a unique opportunity to explore the
QCD dynamics [19–22].

1.1 Quark-gluon plasma

The dynamics of strongly-interacting matter namely quark-gluon matter and the hadronic
matter is governed by the fundamental theory of QCD. Two key aspects of the QCD are
asymptotic freedom and color confinement. The QCD coupling constant becomes very small
at the high energy scale or a large momentum transfer scale in microscopic collisions. This
phenomenon is known as the asymptotic freedom [23,24] which can be shown analytically
using the methods of perturbative QCD and has been well tested in deep inelastic scattering
experiments. Interestingly, the momentum dependence of the QCD coupling also indicates
that in the low energy scale of ΛQCD, this coupling is rather large leading to the breakdown
of the perturbative QCD techniques. Such non-perturbative nature at the low energy scale
is very interesting and it can be argued to be associated with the non-abelian nature of
the QCD gauge fields. Due to this non-abelian nature, gluons can self-interact leading to
the phenomenon of color confinement which prevents us to observe directly the ‘colored’
partons, i.e. quarks, antiquarks, and gluons. These colored partons are confined within
color singlet (color neutral) hadrons 3 which can be observed in the experiments.

Fundamental properties of QCD are also manifested in its phase transition dynamics. In
the QCD medium, at a very high temperature (T ≫ ΛQCD) or high baryon number density
(N ≫ Λ3

QCD)
4, partons are expected to be liberated from individual hadrons and form

3Hadrons can be considered as the low-energy states of QCD, although a framework describing color
confinement from a microscopic point of view is still lacking. Nevertheless, various lattice QCD numerical
calculations unambiguously predict the existence of various hadronic states starting from the fundamental
QCD Lagrangian.

4Understanding the extreme properties has always been important in paving the way to discover new
states of matter [25]. The first exploration of the properties of matter at high densities was performed by
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1.1 Quark-gluon plasma

a deconfined phase of quarks and gluons. In this deconfined medium, partons can move
across length scales that are larger than the confinement length scale i.e., the mean size of
hadrons. The transition from the confined hadronic phase to the deconfined QGP phase is
known as the confinement-deconfinement phase transition. We should note that, although
the confinement-deconfinement transition was predicted as a true phase transition, lattice
QCD calculations (with physical quark masses) showed that this is not a phase transition
but rather a crossover. Such conclusions can be drawn by considering the variation of
the thermal expectation value of the Polyakov loop with various physical scales. The
thermal expectation value of the Polyakov loop can be considered as an order parameter of
the confinement-deconfinement transition [29–31]. At vanishing baryon chemical potential
with physical quark masses, the thermal expectation value of the Polyakov loop changes
continuously from the confined phase to the deconfined phase with temperature. On the
other hand in the pure gauge sector, QCD phase transition is of first order [32].

Apart from the SU(3)c gauge symmetry, QCD Lagrangian can also have other global
symmetries. One such symmetry of the massless QCD Lagrangian is the chiral symme-
try, denoted as SU(3)V ⊗ SU(3)A with V and A representing the vector and axial-vector
transformation in the fermionic sector of the QCD Lagrangian. In the high energy scale
(≫ ΛQCD), one can safely neglect masses of light quarks (including strange quark). The
chiral symmetry of QCD is exact only in the vanishing quark mass limit, however, in reality,
chiral symmetry is only an approximate symmetry. Note that, if we only consider u and d
quarks, the physical masses of these quarks can be neglected in comparison to ΛQCD scale.
Thus, in the non-strange light quark sector, chiral symmetry is physically motivated. If
chiral symmetry is a symmetry of nature then one would expect parity doublets of observed
hadrons, which are not observed 5. This implies that, although the chiral symmetry is the
symmetry of the QCD Lagrangian, in the QCD vacuum this symmetry is not manifested.
Hence, the chiral symmetry is ‘spontaneously’ broken, SU(3)V ⊗ SU(3)A → SU(3)V. For
two light-flavor quarks (u and d) case, pions are the Goldstone bosons of the sponta-
neous chiral symmetry breaking [33, 34]. Spontaneous breaking of chiral symmetry can
be argued in various QCD-inspired effective models due to the presence of non-vanishing
quark-antiquark scalar condensate (chiral condensate) which is an order parameter of the
chiral phase transition [35, 36]. Various QCD effective model calculations indicate that in
the high temperature and/or high chemical potential limit the chiral condensate has a van-
ishing value. This phase is called the chirally symmetric, or chirally restored, phase. On
the other hand, in the low-temperature limit, chiral condensate can have a non-vanishing
value. This phase is known as the chiral symmetry broken phase. The quark matter phase
is expected to be a chiral symmetry restored phase and in the hadronic phase, the chiral
symmetry is spontaneously broken. Spontaneous breaking of chiral symmetry also gives
rise to non-perturbative corrections to the masses of quarks and hadrons [33]. One should
emphasize that the chiral symmetry group is only defined in the fermionic sector of the
QCD Lagrangian. On the other hand, the local SU(3)c symmetry deals with color gauge
fields. Hence, it is not expected that the chiral phase transition and the confinement-
deconfinement transitions are connected. However, lattice QCD calculations suggest that
the chiral transition temperature and confinement-deconfinement transition temperature
coincide indicating that these two transitions can be connected [37].

J. R. Oppenheimer and G. M. Volkoff [26] in the context of star formation, followed by the investigations
in other areas of physics [27,28].

5Pions have specific parity, and pions with opposite parity have not been observed in low energy
experiments.
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Based on the concept of asymptotic freedom, J. C. Collins and M. J. Perry in 1975 [38]
proposed the idea of superdense matter in the interiors of neutron star and noted that there
is a qualitative difference between QCD at high temperature (and/or density) and QCD
at low temperature (and/or density). In the same year, N. Cabibo and G. Parisi gave a
schematic phase diagram of baryonic matter and suggested that Hagedorn temperature [39]
might be the temperature of phase transition between the quark matter and hadronic
matter [40]. They also noted that hadronic matter, at high temperature and/or density,
should have a phase transition into a new state where quarks are deconfined. E. V. Shuryak
called this new phase of deconfined matter quark-gluon plasma [41, 42].

The idea of investigating the characteristics of highly dense and hot matter in laboratory
conditions came in 1970’s [43–45] after the study of supernovae and neutron stars. This
led to the idea that the collisions of heavy-ions at very high energy may be able to produce
dense matter like the QGP giving birth to a new field of physics, namely relativistic heavy-
ion collisions [46–55]. To mimic the conditions existing in the very early universe, the
experimental study of the QGP properties was initiated using ultra-relativistic collisions
of heavy-ions [14, 15, 56] in facilities like Conseil Européen pour la Recherche Nucléaire
(CERN), founded in 1952, and Brookhaven National Laboratory (BNL), founded in 1947.

1.1.1 Search for QGP and its possible signatures

Significant efforts have been put forward through the years to understand the phase tran-
sition dynamics of QCD in heavy-ion collision experiments e.g. at CERN (SPS, LHC) and
BNL (AGS, RHIC). Fixed target experiments at AGS and SPS where one collides Au + Au
at up to 11 GeV per nucleon beam energy (AGS) and Pb + Pb at up to 160 AGeV (SPS)
indicated the possible existence of a new form of hot and dense state of QCD matter. In
these low-energy heavy-ion collision experiments the target and the projectile nuclei cannot
pass through each other due to the nuclear stopping and strong QCD coupling. Such low-
energy collisions provide an opportunity to systematically study the baryon-rich matter
or the QGP at high baryon density which is expected to exist in the interior of neutron
stars. On the other hand, with the help of the heavy-ion collision program at RHIC (BNL)
with the collision energy up to

√
sNN = 200 GeV and at LHC (CERN) with the center of

mass collision energy per nucleon
√
sNN = 2.76 TeV and higher, we can explore the QCD

dynamics at temperature and baryon chemical potential relevant for understanding the
QCD phase transition dynamics in the early universe.

Figure 1.1 shows the possible evolution stages of the matter created in the ultra-
relativistic collisions. Contrary to a fixed target experiment, in collider experiments heavy-
ion beams collide at a very high energy scale where QCD coupling is relatively small and,
due to the nuclear transparency, the target and projectile nuclei almost pass through each
other [58]. Therefore, in the high-energy collider experiments, the interaction region re-
mains almost baryon free. Despite the nuclear transparency at ultra-relativistic energies,
when the highly Lorentz contacted nuclei pass through each other, a large amount of en-
ergy density can be deposited in the reaction zone forming secondary partons. Due to a
large number of rescatterings, these secondary partons redistribute energy among them-
selves to produce a (locally) thermally equilibrated plasma which is expected to be the
QGP phase, which then expands due to high internal pressure. Because of the expansion,
after some time, the fireball cools down and it undergoes the quark-hadron transition to
form a hadronic medium at freeze-out 6. These intermediate stages are not observed in

6Freeze-out is the stage where the interaction between particles stops and final hadrons are freely
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1.1 Quark-gluon plasma

Figure 1.1: Schematic picture of the evolution stages of ultra-relativistic heavy-ion collision.
Time in the horizontal axis has the unit of fm/c and Q2 denotes four-momentum transfer
squared [57].

the experiments. Moreover, in detectors, we observe quantities such as momentum spectra
and multiplicities of hadrons, but not their actual positions [60–62].

Since QGP is a color-charged medium with a very short lifetime (of the order of fem-
tometers), it can not be detected in the experiments directly. Thus, one needs to propose
physical observables which can provide information about the QGP indirectly. Some sig-
natures of the QGP formation which are commonly studied are:

• Hard thermal dilepton and photon radiation [63, 64] Direct photon radiation
and dileptons such as e+, e− and µ+, µ− contain the thermodynamic information of
the QGP fireball. Even though they are difficult to interpret, they are probably the
best observables to study the relativistic collisions of heavy-ions as they penetrate
the matter easily and are not affected by the process of hadronization. They are also
helpful in providing the initial stage information as their momentum distributions
depend on the partons temperature. Since the temperature of the QGP phase is
supposed to be higher than the hadronic phase, there should be an increase in higher
transverse momenta due to the momentum of direct photons.

• Quarkonia suppression [65–67] As heavy quarks are produced in the initial hard
scattering processes, these quarks witness the entire evolution of the strongly-interacting
matter produced in the heavy-ion collisions. Heavy quarks and antiquarks interact to
produce bound states which are known as quarkonia, for instance, the bound states
of charm and anti-charm (charmonia) and bottom and anti-bottom (bottomonia)
quarks 7. It was proposed in 1986 that suppression of J/ψ (bound state of c and c̄)
can be used as a probe for QGP. The key concept can be understood as follows: c
and c̄ are produced at a very early stage of QGP formation. The high gluon density
in the deconfined matter, due to the color deconfinement, causes Debye screening
of c and c̄ effective interaction. This Debye screening can be characterized by the
Debye mass or Debye screening length scale which depends on the temperature of

streaming to the detector. There are two types of freeze-outs: thermal and chemical. Thermal or kinetic
freeze-out is the stage where final hadrons stop interacting completely, whereas, chemical freeze-out is the
stage where there are no inelastic collisions between the particles [54]. Some experimental data can be
explained with the so-called single-freeze-out model where these two types of freeze-outs coincide [59].

7Top quarks form bound state but they have a very short lifetime and thus decay quickly.
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the medium. Whenever the Debye screening length becomes smaller than the radius
of charmonium, the charm quarks and antiquarks cease to interact with each other
giving rise to the decay and hence suppression of charmonium states. Moreover, such
Debye screened c and c̄ particles may form hadrons, like D and D̄ mesons, with their
light quark partners. Since the Debye screening length is sensitive to the tempera-
ture of the medium, different quarkonia states having different binding energies will
dissociate in the medium at different temperatures. Hence, quarkonia suppression
can also be considered a ‘thermometer’ for the QGP.

• Strangeness enhancement [68, 69] Enhancement in the strange quark production
relative to the up and down quarks in the heavy-ion collisions has been proposed in
the year 1982 as a probe to study QGP properties as more pairs of ss̄ are supposed
to be produced in the QGP because of high energy density and fusion of gluons
contributing almost of 80% to the production of strange quarks. Note that collid-
ing nuclei do not contain strange quarks, therefore all strangeness must be created
during the collisions. We should emphasize that the strangeness production mecha-
nism in a hadronic medium can be significantly different from the one in the QGP.
Since strangeness is conserved in QCD, strange particles and antiparticles must be
produced in a pairs. Therefore, the threshold for strange hadron production in a
hadronic medium is rather high compared to others, e.g., the threshold energy of
strangeness production in a pion nucleon scattering π +N → Λ +K is ∼ 540 MeV.
On the other hand, in the QGP medium, due to the chiral symmetry restoration [70],
the constituent quark masses can be replaced by the current mass. Therefore, above
the chiral symmetry restoration threshold, strange–anti-strange quark pair produc-
tion gets reduced, enhancing the strangeness production in the deconfined partonic
medium. Assuming that the produced strange particles and antiparticles take part
in the hadronization, the strangeness abundance in the partonic phase should be im-
printed in the relative yield of the strange and non-strange hadrons. As compared to
the e+−e− collision or proton-proton collision, in the heavy-ion collisions strangeness
enhancement has been, indeed, observed [71].

• Jet quenching [72, 73] Jets originating from the initial hard scattering of partons
can be considered as an important probe for the hot and dense QGP matter created
in heavy-ion collisions. Jets are composed of highly collimated and correlated par-
tons having large transverse momentum (pT ) (transverse to the beam direction) and
are mostly produced back to back due to the conservation of energy and momentum
(although three and four jet events can also take place). These high pT particles lose
their energy through collinear radiation. Jets produced at the initial stage traverse
through the thermalized medium before escaping the QGP. While passing through
the medium, they lose their energy much more significantly than the ones traversing
hadronic matter, as jet energy loss or parton energy loss can be significantly different
in the medium from energy loss in the vacuum. As a result, jets that are produced
at the edge of the QGP fireball can escape easily, while jets emitted in the opposite
direction traverse a longer length through the thermalized medium and undergo sig-
nificant medium modification. Such phenomenon is known as ‘jet quenching’ in a
medium. Medium effects on jets can also be quantified by the jet nuclear modifica-
tion factor (jet-RAA). Quantitatively, values of jet-RAA less than one imply medium
modification. The experimentally observed ‘jet-quenching’ indicates the formation of
a partonic medium [74,75].
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1.2 Spin polarization of Λ(Λ̄) hyperons

Evidences provided by CERN [76], in 2000, and by RHIC at BNL [77,78], in 2005, confirmed
the production of a new state of hot and dense matter. This was possible due to both high-
quality experimental data, coming from the experiments, and theoretical models, which
gave a precise quantitative description. Opposite to theoretical expectations, it was shown
that this new state of matter behaves as a strongly-coupled system whose evolution follows
the dynamics of a perfect fluid [79, 80] 8. This is due to the very small kinematic shear
viscosity (η/s) obtained from the transverse momentum spectra of the charged particles;
here η is the dynamic shear viscosity coefficient and s is the entropy density. In fact,
η/s of the QGP, which, by the way, is the smallest value observed in nature, is also very
close to the so-called Kovtun-Son-Starinet bound, η/s = 1/(4π) [84, 85], derived using
gauge-gravity correspondence [86].

1.2 Spin polarization of Λ(Λ̄) hyperons

Recently, new directions in heavy-ion collision physics have opened up after the speculation
that the non-central relativistic collisions can be the source of a large magnetic field and
angular momentum. The presence of a large magnetic field (of the order of Λ2

QCD) can give
rise to charge-parity violating effects, e.g., chiral magnetic effect [87,88], etc. which are not
yet confirmed by the experiments. Moreover, non-central nuclear collisions at high energies
can induce, in quark-gluon matter, a large angular momentum (∼ 105ℏ) [89] which leads
to measurable spin polarization of the emitted hadrons [90].

ΛΛ̄y

x

z

Impact parameter

Figure 1.2: (Color online) Schematic diagram of the initial angular momentum orientation
in non-central heavy-ion collision [91].

In 2005, it was proposed [92] that the spatial inhomogeneity of the colliding system
in non-central heavy-ion collisions leads to the deposition of large initial orbital angular
momentum in the produced matter along the direction orthogonal to the reaction plane
(y-axis), whose significant fraction may be transferred in partonic collision processes to the

8See Refs. [81–83] for the studies related to the strongly-interacting systems in the area of condensed
matter physics.
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spin of the QGP constituents, see Fig. 1.2. As a result, due to angular momentum conser-
vation, it may lead to polarization of quarks and antiquarks, which can be subsequently
transferred to the hadrons resulting in their global spin polarization along y direction.

A macroscopic interpretation of this phenomenon was provided in 2008 using the hydro-
dynamic considerations [89]. According to it, the spatial inhomogeneities, arising from the
initial orbital angular momentum, lead to the generation of fluid vorticity. The particles
emerging from such a vortical system, through the so-called spin-vorticity coupling, should
exhibit a global polarization along the same direction 9.

Figure 1.3: (Color online) Schematic diagram of a Au + Au collision (not to scale) where
Ĵsys is the direction of the angular momentum of the collision, see Ref. [90].

Among various spin-polarizable hadrons, weakly decaying Λ(Λ̄) hyperons are of special
interest for quantitative estimation of the vorticity-driven polarization. In the parity-
violating decay of the Λ particle the outgoing proton is preferentially emitted along the
spin direction of its parent particle, see Fig. 1.3. Hence, measuring the direction of the
proton’s momentum in the hyperon’s rest frame can provide information about the spin
polarization of the hyperon. Such ‘self-analyzing’ weak-decay channel of Λ(Λ̄) hyperons
makes them excellent probes for the polarization measurements.

The first positive experimental observation of global spin polarization 10 of Λ(Λ̄) hyper-
ons 11 published by STAR Collaboration [90,96] provided experimental evidence of vortical
structure of the QGP. Using the spin-vorticity coupling, which holds for spin-polarized
systems in thermal equilibrium [97], the experimentally observed value of polarization, see
Fig. 1.4, leads to prediction of the value of vorticity of the order of 1021 s−1 which is much
larger than the vorticity of any other physical system. From the Fig. 1.4 one may notice
that the magnitude of the average global spin polarization of both Λ and Λ̄ increases with

9Interestingly, a non-relativistic analog of such a mechanism has been observed in experiments by A.
Einstein and W. de Haas [93], and S. J. Barnett [94].

10Here ‘global’ means the average polarization in the event with respect to the direction of the global
orbital angular momentum of the colliding system, see Fig. 1.2.

11The discovery of Ξ and Ω hyperon global polarization was also reported recently [95].
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Figure 4: The average polarization PH (where H=Λ or Λ) from 20-50% central Au+Au collisions

is plotted as a function of collision energy. The results of the present study (
√

sNN < 40 GeV)

are shown together with those reported earlier6 for 62.4 and 200 GeV collisions, for which only

statistical errors are plotted. Boxes indicate systematic uncertainties.

(∼ 3.5%).

The fluid vorticity may be estimated from the data using the hydrodynamic relation22

ω = kBT
(
P Λ′+P Λ′

)
/~, (3)

where T is the temperature of the fluid at the moment when particles are emitted from it. The

subscripts (Λ′ and Λ′) in equation 3 indicate that these polarizations are for “primary” hyperons

emitted directly from the fluid. However, most of the Λ and Λ hyperons at these collision ener-

9

Figure 1.4: (Color online) Average global spin polarization for Λ(Λ̄) hyperons in 20-50%
centrality Au + Au collisions as a function of collision energy [90].

the decrease in the collision energy which naturally makes the low- and mid-energy re-
actions of special interest. The differences between particle and antiparticle polarization
may be explainable by their interaction with the initial electromagnetic fields supposedly
generated in early stages, however, they are not yet quantitatively described theoretically.

This measurement has opened up new directions in the studies of QGP [91, 98–105],
providing opportunities to gain new physics insights such as chiral dynamics of strongly-
interacting and deconfined matter [106, 107]. New phenomena such as chiral vortical ef-
fect [108–118], due to vortical structure of QGP, analogous to the chiral magnetic ef-
fect [87, 88,119–127] generated huge interests.

Apart from global vorticity along the direction of the total angular momentum, namely
the y-component, the matter produced in the heavy-ion collisions may also exhibit local
vortical structures which can lead to non-vanishing values of other components of polar-
ization. Of particular interest is the longitudinal polarization, meaning the component of
polarization along the beam direction (z-axis), as it probes the vorticity of the velocity
field generated in the transverse plane, see Fig. 1.5. Indeed, the measurements of Λ(Λ̄)
longitudinal polarization [130] confirm this reasoning. Figure 1.6 shows the cosine of the
polar angle of the daughter particle in the rest frame of its parent particle that is averaged
over all Λ(Λ̄) particles. One may notice the quadrupole dependence of the longitudinal
polarization which matches the one for longitudinal vorticity resulting from the elliptic
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Figure 1.5: (Color online) Schematic view of the flow structure in the transverse plane
which may generate longitudinal polarization [128,129].

Figure 1.6: (Color online) Cosine of the polar angle of the proton in the rest frame of the
parent Λ(Λ̄) that is averaged over all Λ(Λ̄) particles as a function of azimuthal angle (ϕ)
relative to second-order event plane (ψ) [130]. Note the correlation with flow structure in
Fig. 1.5 represented by “+” sign.
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flow structure in Fig. 1.5. While theoretical calculations based on transport models [131]
confirm observed signal, hydrodynamic models using spin-vorticity coupling did not predict
it correctly [128,132,133]. Note that due to symmetry longitudinal component of averaged
polarization is supposed to be zero.

Spin polarization 12 of the Λ(Λ̄) hyperons has also been observed in the lowest [137] and
the highest energies [138,139] which became the subject of intense investigations [140–144].

1.3 Relativistic hydrodynamics

If due to initial multi-particle scattering, thermalization can be achieved locally in the early
stages of heavy-ion collisions and the interaction among quarks and gluons is strong enough
to maintain local thermodynamic equilibrium (LTE), then the space-time evolution of the
strongly-interacting matter can be described by hydrodynamic principles [54,55,145–153].

Contrary to microscopic quantum field theory (QFT), hydrodynamics is an effective
theory defined at a length scale larger than the mean free path of microscopic particles, but
smaller than the system size. Such scale differences can be argued if the microscopic and the
macroscopic length scales associated with the system are sufficiently separated. Generically
a hydrodynamic model describes the space-time evolution of macroscopic thermodynamic
variables, such as local energy density, pressure, temperature, fluid-flow velocity, etc. In
fluid or hydrodynamic description the system is expected to be continuous. If we neglect
any non-equilibrium effects then every fluid cell (infinitesimal volume element) is assumed
to be in LTE throughout its evolution. This implies, that each fluid element must be
large enough (compared to the microscopic scales) to properly define the thermodynamic
variables including the notion of thermal equilibrium, and, at the same time, must be small
enough to ensure the continuum limit. Although relativistic hydrodynamics is an effective
approach, detailed knowledge of the microscopic dynamics enters it through the equation
of state (EoS) relating pressure, energy density, and net baryon density.

Hydrodynamic models have been used to describe collective dynamics of different physi-
cal systems including cosmological and astrophysical plasma [154], the strongly-interacting
plasma produced in heavy-ion collision experiments, etc. Relativistic hydrodynamics has
been extensively studied to model the bulk evolution of the strongly-interacting medium
produced in relativistic heavy-ion collisions and turned out to be successful in describing
multiple collective phenomena. Both ideal, as well as dissipative frameworks, have been
developed to explain the observed hadron spectra in experiments. Considering its successes
it is fair to say that the hydrodynamic framework along with the description of the initial
state and the prescription for hadronization constitutes the ‘standard model’ of heavy-ion
collision physics.

In this Thesis, we will not discuss dissipative phenomena, explicitly, but a few comments
on dissipative hydrodynamics are in order here. Although the relativistic generalization of
the ideal hydrodynamic framework is rather straightforward, the generalization of dissipa-
tive non-relativistic hydrodynamics for a relativistic system is a non-trivial task and it is a
timely research topic in high-energy physics. A relativistic generalization of Navier-Stokes
(NS) theory was proposed by Eckart [155] and Landau [156] independently. Eckart’s and
Landau’s theories are also known as first-order theories of dissipative hydrodynamics as the
dissipative current can be expressed as a first-order gradient of the fundamental fluid vari-

12Study of spin physics and vorticity in the context of relativistic heavy-ion collisions may also help in
clear understanding of spin-orbit coupling in the field of spintronics [134–136].
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ables, i.e. temperature, chemical potential (associated with any global conserved charge),
and fluid four-velocity. However, the relativistic NS frameworks as given by Eckart and
Landau are plagued with acausality and instability problems [157,158]. The reason for the
acausality is that in the NS formalism, the dissipative currents are linearly proportional
to gradients of temperature, chemical potential, and velocity giving rise to parabolic dif-
ferential equations which do not preserve causality which, in turn, can be the source of
instability. The second-order generalization of the NS framework as put forward in various
studies solves the problem of acausality by introducing a ‘time delay’ between the gradi-
ents of the primary fluid-dynamical variables and resulting dissipative currents. In such
a theory, apart from temperature, chemical potential, and fluid four-velocity one also has
to consider various dissipative quantities as dynamic variables satisfying evolution equa-
tions describing their relaxation towards the NS limit. In this improved framework, the
hydrodynamic equations are generically hyperbolic preserving causality. A more detailed
discussion on the development of second-order dissipative hydrodynamics can be found in
Refs. [150,159,160]

In the present work, we focus on the perfect-fluid hydrodynamic framework and its
possible generalization to include the space-time evolution of spin degrees of freedom.
Therefore, we first discuss briefly the salient features of standard perfect-fluid hydrody-
namics without spin for completeness. The details of perfect-fluid hydrodynamics with
spin will be discussed in subsequent chapters of this Thesis.

1.3.1 Kinetic-theory-wise formulation of hydrodynamics

A covariant hydrodynamic theory can be formulated using the macroscopic conservation
laws. On the macroscopic level, a many-particle system can be expressed in terms of cur-
rents such as the energy-momentum tensor, number current associated with any conserved
quantity, etc. Using the single-particle distribution function (f(x, p)) we can write the
energy-momentum tensor (T µν), and number current (Nµ) in the following manner,

T µν =

∫
dP pµ pν f(x, p) , (1.1)

Nµ =

∫
dP pµ f(x, p) , (1.2)

where dP = d3p/((2π)3Ep) is the momentum integration measure with Ep =
√

p2 +m2

denoting the on-shell particle energy. It can easily be proved that the momentum inte-
gration measure dP is a Lorentz-invariant quantity and the distribution function f(x, p)
transforms as a Lorentz scalar. Physically, the components T 00, T 0i, T i0, and T ij can be
interpreted as the energy density, energy flow, momentum density, and momentum flow,
respectively. Similarly, N0 is the particle number density, and N i is the particle num-
ber current. In relativistic kinetic theory, Nµ and T µν can be considered as the first and
the second moment in momentum space of the distribution function [161, 162]. It should
be emphasized that to define the energy-momentum tensor (1.1) one implicitly assumes
that the system is dilute such that the interaction energy among different particles can be
neglected as compared to their kinetic energy.

Equations (1.1) and (1.2) can be generalized to a multi-component system in a straight-
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forward way [161],

T µν =
N∑

k=1

∫
d3pk

(2π)3p0k
pµk p

ν
k fk(x, pk) , (1.3)

Nµ =
N∑

k=1

∫
d3pk

(2π)3p0k
pµk fk(x, pk) . (1.4)

Here k = 1, 2, . . . , N denotes different particle component of the system, e.g., if we con-
sider a hadronic medium then k runs over particle species. A priori the conservation of
T µν and Nµ is not evident from Eqs. (1.1) and (1.2). Conservation of these macroscopic
currents can be obtained using the evolution equation for the distribution function within
the framework of relativistic kinetic theory. Assuming only binary collisions along with the
hypothesis of molecular chaos, the kinetic equations determining dynamics of distribution
functions fk(x, pk) can be expressed as,

pµk∂µfk(x, pk) =
1

2

N∑

i,j,l=1

∫
d3pl

(2π)3p0l

d3pi
(2π)3p0i

d3pj
(2π)3p0j

(fifjWij→kl − fkflWkl→ij) . (1.5)

From the above equation, one can identify the collision term for the process kl→ ij,

Ckl ≡
1

2

N∑

i,j=1

∫
d3pl

(2π)3p0l

d3pi
(2π)3p0i

d3pj
(2π)3p0j

(fifjWij→kl − fkflWkl→ij) , (1.6)

whereWkl→ij is the transition rate for the collision process kl → ij which includes both elas-
tic and inelastic scattering processes. The factor of 1/2 in the front takes into account the
identical particles in the final state. By the virtue of conservation of energy and momentum
in microscopic collisions, the collision term Ckl satisfies the following relations [161],

N∑

k,l=1

∫
d3pk

(2π)3p0k
Ckl(x, pk) = 0 , (1.7)

N∑

k,l=1

∫
d3pk

(2π)3p0k
pµk Ckl(x, pk) = 0 . (1.8)

Once we identify the properties of the collision terms, the conservation of the number
current can be obtained in a straightforward way,

∂µN
µ =

N∑

k=1

∫
d3pk

(2π)3p0k
pµk∂µfk(x, pk) =

N∑

k,l=1

∫
d3pk

(2π)3p0k
Ckl(x, pk) = 0 . (1.9)

Similarly, the conservation of the energy-momentum tensor is expressed as

∂µT
µν =

N∑

k=1

∫
d3pk

(2π)3p0k
pµkp

ν
k∂µfk(x, pk) =

N∑

k,l=1

∫
d3pk

(2π)3p0k
pνk Ckl(x, pk) = 0 .

In general, T µν and Nµ can be decomposed into ideal and dissipative parts. Since this The-
sis is based particularly on the perfect-fluid hydrodynamics, we discuss the latter without
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spin as a warm-up. The energy-momentum tensor and the number current for a perfect-
fluid (single component) can be expressed as,

T µν
eq =

∫
dP pµ pν feq(x, p) , (1.10)

Nµ
eq =

∫
dP pµ feq(x, p) , (1.11)

where feq(x, p) is the distribution function in local equilibrium, hence, the suffix ‘eq’. An
ideal fluid is defined assuming that all fluid elements must be locally exactly in thermody-
namic equilibrium. Therefore, we can define the local temperature T (x), chemical potential
µ(x), and fluid four-velocity Uµ(x) (normalized as UµUµ = 1). Now our task is to write
the conserved energy-momentum tensor and number current in terms of T , µ and Uµ. As
T µν
eq is symmetric in its indices, it can be decomposed in terms of Uµ and gµν whereas Nµ

eq

can be expressed only in terms of Uµ as [147,163],

T µν
eq = c1 U

µ Uν + c2 g
µν , Nµ

eq = c3 U
µ . (1.12)

The coefficients c1, c2, c3 can be uniquely determined by considering the expression of
the energy-momentum tensor in the local rest frame (LRF) of the fluid element where
Uµ = (1, 0, 0, 0). In the LRF there is no flow of energy and the momentum flux is isotropic.
Moreover, in this frame, there is no particle three current. Therefore, LRF characterizes a
static equilibrium. It can be easily observed that, in LRF, the energy-momentum tensor,
and number four-current take the following forms [147,163]

T µν
LRF =




E 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


 , Nµ

LRF =




N
0
0
0


 , (1.13)

respectively, where E , P , and N is the energy density, pressure and number density, re-
spectively. Equations (1.12) and (1.13) allow us to identify the coefficients c1, c2, and c3
as,

c1 = E + P , c2 = −P , c3 = N . (1.14)

Therefore, the conserved currents of the perfect fluid (1.12) can be written as,

T µν
eq = (E + P) Uµ Uν − Pgµν , Nµ

eq = N Uµ . (1.15)

Using Eqs. (1.10), (1.11), and (1.15) one can obtain the energy density, pressure and
number density in terms of the equilibrium distribution function as

E =

∫
dP (U · p)2 feq(x, p) , (1.16)

P =
1

3

∫
dP
(
(U · p)2 −m2

)
feq(x, p) , (1.17)

N =

∫
dP (U · p) feq(x, p) . (1.18)

Note that, E , P , and N are local functions of T , µ, and Uµ. The space-time evolution of
these quantities is governed by the conservation laws

∂µT
µν
eq = 0 , ∂µN

µ
eq = 0 . (1.19)
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1.4 Theoretical efforts to explain spin polarization

It is a common practice to split the conservation equation of the energy-momentum tensor
into two parts, one along the direction of Uµ and another orthogonal to Uµ. Therefore,
taking the projection of conservation law of energy-momentum tensor parallel and orthog-
onal to the fluid four-velocity together with the conservation of particle four-current, we
find the equations of motion of the perfect-fluid hydrodynamics

Uν∂µT
µν
eq ≡ Uµ∂µE + (E + P)∂µUµ = 0 , (1.20)

∆α
ν∂µT

µν
eq ≡ (E + P)Uµ ∂µU

α −∆αβ∂βP = 0 , (1.21)
∂µN

µ
eq ≡ Uµ∂µN +N∂µUµ = 0 , (1.22)

where ∆µν = gµν − (UµUν)/U · U is the spatial projection operator orthogonal to U .
It is important to emphasize that the conservation of the energy-momentum tensor and
number four-current provide five evolution equations for six unknowns E , P , N , and three
independent components of Uµ (note normalization constraint of U). Therefore, to close
the system of equations we need an EoS relating different state variables, i.e. P = P(E ,N ).
Once the EoS is properly defined, ideal hydrodynamic equations can be used to obtain the
space-time evolution of energy density, pressure, number density, and fluid four-velocity.

1.4 Theoretical efforts to explain spin polarization

Spin polarization is one of the most interesting properties of the QGP measured recently,
allowing to probe its quantum properties directly. With the arrival of spin polarization
data, discussed in Sec. 1.2, it became necessary to develop theoretical models for the
qualitative and quantitative interpretation of the data. This in turn gives a hope on better
understanding of the vorticity as well as spin dynamics in the QGP. This thesis focuses on
this particular problem.

The first formal understanding of the spin polarization phenomena came from the ‘spin-
thermal models’. These models assume that a large orbital angular momentum created in
the non-central collisions induces vorticity in the QGP, which, if the spin is thermalized
together with other degrees of freedom, gives rise to the spin polarization of the particles
due to the so-called spin-vorticity coupling, with the vorticity quantified by the so-called
thermal vorticity, ϖµν = −(1/2)(∂µβν − ∂νβµ) [97] where βµ = Uµ/T .

Based on these assumptions several hydrodynamic and transport models have been used
to study the global polarization and the azimuthal angle dependence of the longitudinal
spin polarization in heavy-ion collisions [97, 132, 164–176]. These models are successful in
describing the center of mass-energy dependence of the global polarization measurements,
see Fig. 1.4. Within a hydrodynamic framework, addressing the spin-vorticity coupling is
straightforward as gradients of the flow can be obtained naturally. On the other hand,
transport models which describe microscopic particle dynamics can also be used to obtain
flow gradients by considering suitable coarse-graining procedures.

The ‘spin-thermal’ models which explain the global polarization data within the sys-
tematic uncertainty range, fail to explain the azimuthal angle dependence of longitudinal
polarization shown in Fig. 1.6. In fact, theoretical model prediction is opposite (having
opposite sign) to the data, see Refs. [128, 131–133, 177]. This disagreement may indicate
that the assumptions of local thermodynamic equilibrium for spin degrees of freedom may
not be fully satisfied under those extreme conditions or spin polarization may not be solely
determined by the thermal vorticity in equilibrium. A possible explanation of this puzzle
was proposed recently by including the thermal shear component, ξµν = (1/2)(∂µβν+∂νβµ),
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along with the thermal vorticity component [178–183], however, enforcing strong assump-
tions such as neglecting temperature-gradients at the freeze-out which may only be true
for the high-energy collisions or correcting the masses of the particles of interest.

The lack of theoretical understanding of the longitudinal spin polarization motivates
us to consider new hydrodynamic and kinetic theory approaches where spin polarization is
an independent dynamical variable, not necessarily respecting the spin-vorticity coupling.
The development of such approaches is currently under intense investigation, see Sec. 1.6.

In this Thesis, we will discuss one such approach where the spin degrees of freedom
are incorporated into standard relativistic perfect-fluid hydrodynamics treating spin as a
dynamical quantity like other standard hydrodynamic variables such as temperature and
baryon chemical potential and use this formalism to study various physical systems.

1.5 Pseudogauge transformation

Before diving into the details of hydrodynamics with spin, we would first like to convey
that treating spin as a dynamical quantity requires extra care, meaning that, in addition
to the conservation of energy-momentum tensor, we also need to include the evolution of
the spin through the conservation of total angular momentum.

More specifically, from the knowledge of QFT [184,185], it is known that, for a system
with spin, total angular momentum tensor (Ĵλ,µν) consist of both the orbital (L̂λ,µν) and
spin (Ŝλ,µν) contributions, namely

Ĵλ,µν = L̂λ,µν + Ŝλ,µν = xµT̂ λν − xνT̂ λµ + Ŝλ,µν , (1.23)

which, with the help of total angular momentum conservation [161,185],

∂λĴ
λ,µν = ∂λL̂

λ,µν + ∂λŜ
λ,µν = T̂ µν − T̂ νµ + ∂λŜ

λ,µν = 0 , (1.24)

leads to

∂λŜ
λ,µν = T̂ νµ − T̂ µν . (1.25)

From the above relation, one may conclude that, although the total angular momentum is
conserved, neither the spin tensor nor the orbital angular momentum tensor is separately
conserved. Physically it means that orbital angular momentum can be transformed to
spin angular momentum and vice versa (spin-orbit coupling). However, the forms of the
energy-momentum tensor T µν and spin tensor Sλµν in Eq. (1.25) are not uniquely defined by
Noether’s theorem. One can, in principle, construct various forms of the energy-momentum
tensor and the spin tensor through the so-called pseudogauge transformation [100,186–188]
such that the total energy, momentum, and angular momentum are preserved.

In particular, Eq (1.25) holds for the system of massive spin-1/2 fermions where we use
the Dirac Lagrangian for the free fields 13

LD(x) =
i

2
ψ̄(x)
←→
/∂ ψ(x)−mψ̄(x)ψ(x) , (1.26)

with ψ and ψ̄ ≡ ψ†γ0 being the Dirac field operator and its adjoint, respectively, and
Noether theorem to arrive at [184]

∂µT̂
µν
Can = 0 , ∂λĴ

λ,µν
Can = 0 , (1.27)

∂λŜ
λ,µν
Can = T̂ νµ

Can − T̂ µν
Can . (1.28)

13 /∂ represents the Feynman slashed notation with /∂ = γµ ∂µ and
←→
/∂ ≡

−→
/∂ −
←−
/∂ .
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1.5 Pseudogauge transformation

Here, by the label ‘Can’ we denote canonical procedure of obtaining the currents. One can
check that the resulting energy-momentum tensor

T̂ µν
Can =

i

2
ψ̄ γµ

←→
∂ ν ψ − gµνLD , (1.29)

is asymmetric, whereas the spin tensor Ŝλ,µν
Can is defined as 14

Ŝλ,µν
Can =

i

8
ψ̄

{
γλ,
[
γµ, γν

]}
ψ = −1

2
ϵλµνα ψ̄ γα γ5 ψ , (1.30)

where we adopt the convention ϵ0123 = 1 and γ5 matrix is defined in terms of the other
Dirac gamma matrices, γ5 ≡ γ5 = i γ0 γ1 γ2 γ3.

One may construct a new pair of ‘improved’ energy-momentum and spin tensors in
such a way that the improved energy-momentum tensor is symmetric, and, as a result, the
improved spin tensor is separately conserved. The new pair of tensors may be obtained
from the canonical one by means of the pseudogauge transformation [91,100,161,187]

T̂ µν = T̂ µν
Can +

1

2
∂λ(Π̂

λ,µν + Π̂ν,µλ + Π̂µ,νλ) ,

Ŝλ,µν = Ŝλ,µν
Can − Π̂λ,µν + ∂ρΥ̂

µν,λρ , (1.31)

where the super-potentials Π̂λ,µν and Υ̂µν,λρ satisfy

Π̂λ,µν = −Π̂λ,νµ , Υ̂µν,λρ = −Υ̂νµ,λρ = −Υ̂µν,ρλ . (1.32)

In principle, one may have several different choices of Π̂ and Υ̂, nevertheless the im-
proved tensors do not change the total four-momentum and total angular momentum and
Eqs. (1.27) are still valid with these improved tensors.

We mention some well-explored pseudogauge choices relevant for theoretical modeling
of the medium produced in heavy-ion collisions:

• The first trivial choice is Π̂λ,µν = Υ̂µν,λρ = 0. This gives back the canonical currents,
Eqs. (1.29) and (1.30).

• Another choice is the well-known Belinfante–Rosenfeld (BR) pesudogauge [189–191]
where Π̂λ,µν = Ŝλ,µν

Can and Υ̂µν,λρ = 0. In this case, energy-momentum tensor and spin
tensor become [188]

T̂ µν
BR =

i

2
ψ̄γµ
←→
∂ νψ − i

16
∂λ

(
ψ̄
{
γλ,
[
γµ, γν

]}
ψ
)
, Ŝλ,µν

BR = 0 , (1.33)

respectively. The above tensors are particularly important from the point of view
of General Relativity (GR). Since in GR, the symmetric energy-momentum tensor
is considered to be the source of the gravitational field, its canonical form cannot
be used [187]. Symmetric energy-momentum tensor is also natural in GR as it can
be obtained using the variation of the Einstein-Hilbert action with respect to the
spacetime metric. However, the formalism of GR based on the Einstein-Hilbert action
is not suitable to capture the spin dynamics.

14Here, {A, B} = A B + BA and [A,B] = A B – B A.
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• The third choice is Hilgevoord–Wouthuysen (HW) form of the pseudogauge [100,
192, 193] where Π̂λ,µν = M [µν]λ − gλ[µM ν]ρ

ρ with Mλµν ≡ i
4m
ψ̄σµν←→∂ λψ and Υ̂µν,λρ =

− 1
8m
ψ̄(σµνσλρ + σλρσµν)ψ, which yields

T̂ µν
HW = T̂ µν

Can +
i

2m

(
∂νψ̄σµβ∂βψ + ∂αψ̄σ

αµ∂νψ
)
− i

4m
gµν∂λ

(
ψ̄σλα←→∂ αψ

)
,

Ŝλ,µν
HW = Ŝλ,µν

Can −
1

4m

(
ψ̄σµνσλρ∂ρψ + ∂ρψ̄σ

λρσµνψ
)
. (1.34)

• Finally we come to de Groot–van Leeuwen–van Weert (GLW) pseudogauge [91,161]
where Π̂λ,µν = i

4m
ψ̄(σλµ←→∂ ν − σλν←→∂ µ)ψ and Υ̂µν,λρ = 0, which give

T̂ µν
GLW = − 1

4m
ψ̄
←→
∂ µ←→∂ νψ ,

Ŝλ,µν
GLW = ψ̄

[
σµν

4
− 1

8m

(
γµ
←→
∂ ν − γν←→∂ µ

)]
γλψ + h.c , (1.35)

where σµν = (i/2) [γµ, γν ] is the Dirac spin operator. HW and GLW pseudogauges
provide symmetric energy-momentum tensors, and therefore, one may obtain con-
served spin tensors 15.

1.6 Objective of the Thesis

Different pseudogauge choices can give rise to different hydrodynamic frameworks for spin-
polarized media. Although these frameworks can be formulated from equivalent (through
pseudogauge) sets of the energy-momentum and the spin tensors, the resulting dynamical
evolution of spin may not be equivalent, particularly in the local thermal equilibrium,
as, in particular, densities of the hydrodynamic quantities change. This can be observed
in the following manner. In the case of BR pseudogauge, the energy-momentum tensor is
symmetric and there is no explicit presence of spin, hence, there is no independent evolution
of the spin degree of freedom. Nevertheless, in this case, one can still completely determine
the polarization as the latter is bound to the evolution of velocity gradients. This reasoning
has been used in ‘spin-thermal’ framework of Refs. [97,179] where spin polarization arises
through spin-vorticity coupling.

On the other hand, the canonical energy-momentum tensor is asymmetric, hence the
spin tensor is not separately conserved. Finally, in the case of GLW and HW, the energy-
momentum tensor is symmetric by construction making the spin tensor conserved inde-
pendently. These pseudogauges can be used to formulate hydrodynamics with spin. The
constitutive relations and the hydrodynamic equations can be different in these frameworks,
therefore, a priori, it is not evident whether these frameworks can be considered equivalent
and well-defined as a boundary value problem, particularly as a set of partial differential
equations with some initial conditions. Note that, in the context of hyperon polarization
observed in the heavy-ion collision experiments, physical implications of the pseudogauge
transformation of the energy-momentum tensor and the spin tensor have been extensively
discussed [91,100,187,194,196,197].

As relativistic hydrodynamics is a classical theory, the natural starting point for a
proper formulation of hydrodynamics with spin is to define the energy-momentum and

15Some more forms of pseudogauge and its details can be found in Refs. [100,187,194,195].
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1.6 Objective of the Thesis

the spin currents as ensemble averages of their respective normal-ordered QFT operators,
namely

T µν = ⟨: T̂ µν :⟩ , Sλ,µν = ⟨: Ŝλ,µν :⟩ . (1.36)

In the framework of hydrodynamics with spin, in addition to the conservation of energy-
momentum, we also need to incorporate conservation of total angular momentum

∂µT
µν = 0 , ∂λS

λ,µν = T νµ − T µν . (1.37)

The evolution of the spin tensor will introduce six additional dynamical equations in ad-
dition to the standard hydrodynamic ones.

Having stated different intricacies and conceptual difficulties arising when developing
hydrodynamics with spin, in the following we consider the GLW definition of the energy-
momentum tensor and the spin tensor. One of the important features of this pseudogauge,
as mentioned earlier, is that the spin tensor is separately conserved because the energy-
momentum tensor is symmetric, see Eq. (1.37). Therefore, various components of the
energy-momentum tensor and the spin tensor evolve separately, making this framework
much simpler to handle mathematically as well as numerically 16.

The first proposition of relativistic hydrodynamics with spin as a dynamical quan-
tity 17 was made in 2017 by W. Florkowski et.al. in Ref. [231] using the kinetic the-
ory approach. This formalism [231–234] was further extended to derive the constitutive
relations for the net baryon density, the energy-momentum tensor, and the spin ten-
sor [235, 236] using the Wigner function formalism [161, 198, 237, 238] and semi-classical
expansion method [239–243] based on the GLW pseudogauge. Numerical modelling of the
spin polarization was then investigated in Refs. [244–248] using different hydrodynamic
backgrounds. Further extensions to include dissipative effects using relaxation time ap-
proximation were performed in Refs. [249–252], for a recent review see Ref. [91]. Keeping
the experimental results [90,96] in mind, the spin polarization effects in Refs. [231,232,235]
were considered small, leading to decoupling of background dynamics (energy, momentum
and baryon number) from the spin dynamics. Moreover in this framework, the spin polar-
ization is assumed to appear in zeroth-order in the semi-classical expansion of the Wigner
function satisfying quantum kinetic equations. The crucial aspect of such a kinetic theory
is the presence of a second-rank antisymmetric spin chemical potential in the equilibrium
distribution function which plays a role of an extra Lagrange multiplier (more precisely
six Lagrange multipliers) responsible for angular momentum conservation in the relativis-
tic regime. This is the striking difference between this framework and the “spin-thermal
models”, as generically, the spin chemical potential is not necessarily related to the ther-
mal vorticity appearing in the spin-thermal models. Recently, propagation properties of
the components of spin polarization tensor have also been investigated [253] through the
method of linear mode analysis [224,254–258].

16We note that use of HW pseudogauge is also possible and it leads to equivalent hydrodynamic frame-
work as long as we consider only local collisions between the particles. Otherwise, these two frameworks
are different, see Refs. [198, 199] for the details of the framework based on HW pseudogauge considering
non-local collisions.

17Many alternative approaches incorporating spin into hydrodynamics were also developed. They used
effective theory [197, 200–203], entropy-current analysis [204–209], statistical operator method [210], non-
local collisions [198, 199, 211–216], chiral kinetic theory [211, 217–220], methods of holography [197, 221–
225], anomalous (with triangle anomaly) hydrodynamics [108,226], the Lagrangian method [227,228], and
perturbative scattering techniques [229,230].
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This Thesis focuses on the developments of relativistic perfect-fluid hydrodynamics
with spin based on the GLW pseudogauge and modelling of the dynamics of spin-polarized
matter using this framework; for the specific list of publications on which this Thesis is
based see Sec. 1.8.
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1.7 Overview of the Thesis

• The quantum kinetic-theory formulation of relativistic perfect-fluid hydrodynamics
with spin from the collisionless transport equation for the Wigner function for spin-
half fermions using GLW pseudogauge (1.35) and assuming a small spin polarization
limit was developed in Ref. [235]. As this pseudogauge makes the energy-momentum
tensor symmetric, the spin tensor is conserved independently, leading to the decou-
pling of the orbital angular momentum from spin angular momentum.

However, as shown in Refs. [198, 199], the non-local collisions at the microscopic
scale, which were neglected in Ref. [235], may give rise to coupling between the spin
and orbital parts of the total angular momentum through antisymmetric parts of
the energy-momentum tensor, see Eq. (1.25). Hence, to address vorticity sourcing
of polarization, it is necessary to include such collisional effects in the formalism.
This extension of the framework of Ref. [235] is presented in Chapter 2. It provides
a pedagogical introduction to the Wigner function formalism for spin-1/2 massive
particles and the semi-classical expansion method, followed by the derivation of the
Boltzmann-like spin-kinetic equations using the equations of motion for the compo-
nents of the Wigner function. For this derivation, we do not assume any specific
constraints on the collision terms and consider that the spin polarization effects can
appear at both the zeroth (ℏ0) and first (ℏ1) order in ℏ. The physical meaning of this
assumption is that the spin polarization effects can have both classical and quantum
origins, respectively.

• Chapter 3 briefly reviews the formalism of perfect-fluid relativistic hydrodynamics
with spin presented in Ref. [235]. The assumption that the system is in the local equi-
librium state, makes the collision terms vanish which corresponds to the zeroth-order
of the semi-classical expansion. Such a system can be described by the equilibrium
Wigner function, expressed in terms of the Dirac spinors. Due to the spinor repre-
sentation of the Wigner function, using the Clifford algebra, the Wigner function can
be decomposed into irreducible components which transform in specific ways under
the Lorentz transformation. Interestingly, these irreducible components can be used
to derive the relations constituting the perfect-fluid hydrodynamics with spin.

In this chapter we explicitly calculate these components, using an ansatz for the spin-
dependent phase-space distribution function, which are subsequently used to derive
the conservation laws for the net baryon current, energy-momentum tensor, and spin
tensor based on the GLW pseudogauge. These conservation laws are used in the
following chapters to study the dynamics of spin polarization of Λ(Λ̄) hyperons.

An alternative approach to formulating our framework is based on the classical de-
scription of spin [91]. It is compelling to observe that the constitutive relations for
the net baryon current, energy-momentum tensor, and spin tensor obtained this way
in the small spin polarization limit match the relations derived using the above-
mentioned Wigner function approach. The results mentioned in this chapter form
the basis for the later parts of the Thesis.

• In Chapter 3, the spin tensor was derived, for simplicity, using classical Boltzmann
statistics. However, to study the polarization of particles obeying quantum statistics,
the spin tensor needs to be generalized. This is done in Chapter 4. Using wave
propagation analysis, this extended spin tensor is used to study the behavior of the
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spin polarization components after they are perturbed in the longitudinal direction
and to derive the dispersion relation of spin wave velocity. Then we obtain spin
wave velocity in two special cases of distribution: Maxwell-Jüttner and Fermi-Dirac.
We observe that, for the Fermi-Dirac gas, the spin wave velocity is related to sound
velocity in the degenerate limit.

• Using the spin hydrodynamic formalism developed in Chapter 3, one may deter-
mine the spacetime evolution of the thermodynamic and hydrodynamic parameters.
However, these are not suitable to be compared with the experimental spin polariza-
tion measurements. To make such a comparison feasible we have to calculate the spin
polarization of particles at the freeze-out surface. For this purpose, in Chapter 5 we
provide the details required to compute the momentum-dependent and momentum-
averaged mean spin polarization per particle using Pauli-Lubański four-vector. These
expressions are then used in Chapter 6 to numerically model the spin polarization
of Λ(Λ̄) hyperons.

• Chapter 6 starts with the derivation of the equations of motion for the conservation
laws of net baryon current, energy-momentum tensor, and spin tensor presented in
Chapter 3 which are then used to study the spin polarization dynamics of the
systems respecting certain spacetime symmetries.

We begin our study with the Bjorken model which is commonly employed in the
phenomenology of heavy-ion collisions. We determine the time evolution of tem-
perature, baryon chemical potential, and spin components and calculate mean spin
polarization at the freeze-out. In the following sections, we relax the symmetry of
boost-invariance, keeping homogeneity in the transverse plane in order to capture
some non-trivial dynamics of realistic systems produced in the low- and mid-energy
heavy-ion collisions. Our spin polarization results for the non-boost-invariant case
qualitatively agree with other model calculations and experimental data.

• As electromagnetic fields may be present in the early stages of relativistic collisions
of heavy-ions, they may have some effects on the physical observables. In particular,
it is suggested that the splitting of Λ and Λ̄ spin polarization seen in experiments
may have a source in the interaction of the produced polarized matter with elec-
tromagnetic fields. To find how these fields affect the evolution of spin polarization
within our framework, we incorporate them into our formalism. Chapter 7 studies
the background and spin dynamics in the presence of an external electric field for
Bjorken-expanding matter and finds that its presence may play a significant role in
spin polarization evolution.

• Chapter 8 discusses the dynamics of a longitudinally boost-invariant system with
inhomogeneous expansion in the transverse direction which respects the so-called
Gubser conformal symmetry, assuming that the system is cylindrically-symmetric
with respect to the beam direction. Using Gubser’s prescription we find transfor-
mation rules that the conservation laws, derived in Chapter 3, must respect to be
conformally invariant. We find that, while the energy-momentum tensor and net
baryon current preserve conformal symmetry, the spin tensor breaks it explicitly.
However, this breaking does not spoil the conformal invariance of the background
as the background and spin dynamics are decoupled due to the assumption of small
spin polarization. This allows us to find approximate novel solutions for the spin.
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• Chapter 9 closes the Thesis with a brief summary.
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Kinetic theory for Dirac fermions

“Mathematics reveals its secrets
only to those who approach it

with pure love, for its own beauty.”
– Archimedes

Hydrodynamics, being a macroscopic, long-wavelength limit of the theory describing sys-
tems near equilibrium, follows directly from the continuity equations of conserved quanti-
ties, such as energy, momentum, and charge, supplemented by the second law of thermo-
dynamics and the equation of state. However, the spacetime evolution of the dissipative
quantities rests upon the specifics of how the system approaches thermal distribution and
requires a correct and explicit description of the processes within the underlying micro-
scopic theory, such as kinetic theory [161,271,272].

Properties of a many-body system depend, in particular, on the details of particle in-
teractions (collisions) and external forces (constraints). To describe the system dynamics
near equilibrium, we need to express these quantities in the language of macroscopic state
variables, such as temperature, charge density, and fluid velocity. Within the classical
relativistic kinetic theory, this description can be formulated using the single-particle dis-
tribution function f(x, k) that describes the mean number of particles with four-momentum
k at space-time position x. Specific form of f(x, k) follows from the kinetic (transport)
equation which describes its phase-space evolution. Conserved quantities can then be eval-
uated through the moments of f(x, k) in momentum space, see Section 1.3 for more details
on the introductory level.

However, for the description of the quantum mechanical systems the classical distri-
bution function, due to Heisenberg’s uncertainty principle, is not properly defined [273].
Instead, we use the Wigner function which represents the quantum analog of the classical
distribution function. Wigner function is a quasi-probability distribution function that,
unlike the classical distribution function, may also give rise to negative probabilities that
disappear in the classical limit. However, at the leading order of spatial gradients, the
Wigner function can be related to the classical distribution [274]. Densities of macro-
scopic quantities can be then obtained from the Wigner function after integrating over the
momentum variable k [240].

With the motivation of explaining spin polarization of Λ (Λ̄) hyperons in mind [90,275],
the authors of Ref. [235] formulated a framework of relativistic hydrodynamics with spin
using the collisionless transport equation for the Wigner function with the assumption of
small spin polarization. This assumption derives its motivation from the actual magnitude
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2 Kinetic theory for Dirac fermions

of the hyperon spin polarization observed in the experiments [90, 275]. The developed
formalism is based on the specific form of the energy-momentum tensor and the spin tensor
resulting from GLW pseudogauge [161], see Sec. 1.5. The spin tensor in this framework
is conserved independently due to the symmetric form of the energy-momentum tensor.
Thus the evolution of spin polarization is governed only by the conservation of spin tensor.

However, in general, antisymmetric parts of the energy-momentum tensor, due to non-
local collisions of particles, may not vanish which allows the coupling between the spin an-
gular momentum and orbital angular momentum (even though energy-momentum tensor
and total angular momentum are conserved separately). A general framework of relativistic
hydrodynamics with spin starting from the microscopic quantum kinetic theory and consid-
ering both local and non-local collisions may allow having such an interaction [198,211–214].
This spin-orbit interaction can give rise to the dissipative phenomena 1 [204] which were
not taken into account in Ref. [235].

In this chapter, we study such a case by extending the analysis done in Ref. [235] to
include local and non-local collisions between particles in a way proposed in Refs. [198,199].
After discussing the details on the Wigner function approach and semi-classical expansion
we derive equations of motion for the components of the Wigner function. Our work
generalizes the results of Refs. [198, 199] 2 and considers that spin effects may have their
origin at both the classical and quantum levels (zeroth and first-order in ℏ). This means
that both the zeroth and the first-order axial-vector components of the Wigner function,
in our approach, are non-vanishing. We then derive the general form of a Boltzmann-like
spin-kinetic equation that may serve as a starting point in formulating a general formalism
of relativistic hydrodynamics with spin. Details of this chapter are based on the Ref. [D1].

2.1 Covariant Wigner function and its transport equa-
tion

Let us start by introducing the definition of the Wigner function 3 for spin-1/2 particles
having mass m (Dirac fermions) as 4 [161,237,240]

Wαβ(x, k) =

∫
d4y

(2πℏ)4
e−

i
ℏk·y⟨: ψ̄β(x+)ψα(x−) :⟩ . (2.1)

Here ψ and ψ̄ ≡ ψ†γ0 are the Dirac field operator and its adjoint, respectively, whereas
x+ = x+ y/2 and x− = x− y/2 denote two spacetime points with x as the center position
and y as the relative position. In Eq. (2.1), ⟨: QW :⟩ means ensemble (statistical) average
of the normal ordered quantity QW .

The Dirac equation for the system of spin-1/2 particles with interactions is defined

1In the context of non-relativistic spin hydrodynamic formalism, see Refs. [135,276,277].
2The authors of Refs. [198,199] assumed that spin effects arise at the level of ℏ, hence, they only consider

the first-order axial-vector component non-vanishing making spin a dissipative effect.
3This chapter deals with the semi-classical expansion of the Wigner function that can also be interpreted

as an expansion in ℏ. Thus we put ℏ explicitly in the definition of the Wigner function. Although, in this
work, we use Wigner function formalism for massive spin-1/2 particles, this method can also be used to
develop respective kinetic theory for chiral fermions [111,220,278–281].

4Note that α and β in Eq. (2.1) represent the spinor indices.
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2.1 Covariant Wigner function and its transport equation

as 5 [161]

(
i ℏ /∂ −m

)
ψ(x) = ℏ ρ(x) = −∂LI

∂ψ̄
, (2.2)

where LI(x) is the interaction Lagrangian density 6. Using the total Lagrangian density

L(x) = LD(x) + LI(x)

with

LD(x) =
iℏ
2
ψ̄(x)
←→
/∂ ψ(x)−mψ̄(x)ψ(x) , (2.3)

being the Lagrangian density for the free field and
←→
/∂ ≡

−→
/∂ −
←−
/∂ , the following transport

equation can be derived [161,237],
(
iℏ
/∂

2
+ /k −m

)
W (x, k) = ℏ C [W (x, k)] , (2.4)

with

Cαβ [W (x, k)] ≡
∫

d4y

(2πℏ)4
e−

i
ℏk·y⟨: ρα(x−)ψ̄β(x+) :⟩ , (2.5)

being the collision kernel which vanishes in the global equilibrium 7.
As the Wigner function is a 4×4 complex matrix, it is difficult to provide some physical

insights about the dynamics of the Wigner function and its components by working directly
with Eq. (2.1). Instead, it is more convenient to perform the decomposition of Eq. (2.1) in
terms of 16 independent generators of the Clifford algebra as follows [184] 8

W (x, k) =
1

4

[
1F (x, k) + i γ5 P (x, k) + γµ Vµ(x, k) + γ5 γµAµ(x, k) + Σµν Sµν(x, k)

]
, (2.6)

where Σµν ≡ (1/2)σµν ≡ (i/4)[γµ, γν ] is the Dirac spin operator and F (x, k), P (x, k),
Vµ(x, k), Aµ(x, k), and Sµν(x, k) are the 16 independent components of the Wigner function.
To obtain the latter we first need to multiply the Wigner function W (x, k) by the matrices:
ΓX ∈ {1,−iγ5, γµ, γµγ5, 2Σµν} where X ∈ {F, P, V,A, S}, respectively, and then calculate
its trace. Using the decomposition (2.6) along with the conjugation relation

W (x, k) = γ0W (x, k)† γ0 , (2.7)

(which is also followed by the Clifford algebra generators), it can be observed that the
Wigner function components are real.

Under Lorentz transformations the components F , P , Vµ, Aµ, and Sµν transform as a
scalar, pseudo-scalar, vector, axial-vector, and an antisymmetric tensor, respectively [240].

5 /∂ represents the Feynman slashed notation with /∂ = γµ ∂µ. Note that ℏ is always present with the
gradient, hence ℏ expansion is effectively a gradient expansion.

6We assume that LI(x) does not contain derivatives of the fields.
7In this thesis, the collision term describes the non-equilibrium system giving rise to the quantum

corrections to the zeroth-order Wigner function. These corrections appear beyond zeroth-order in ℏ (ℏ0).
8The Clifford (geometric) algebra decomposition is a widely used expansion method, for instance, to

derive the transport equations for abelian plasmas [240, 242], the quark-gluon plasma [239, 282], chiral
models [243], and spin polarization [91,198,199,235,281,283–287].
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2 Kinetic theory for Dirac fermions

Moreover, F and P can be interpreted as the mass and pseudo-scalar condensate, re-
spectively, whereas, fermion number current density and the polarization density can be
represented by Vµ and Aµ, respectively. Finally, we can interpret the six independent
components of Sµν as electric (S0i) and magnetic (Sij) dipole moments.

Using Eq. (2.6) in Eq. (2.4) gives a set of coupled equations of motion for the Wigner
function coefficients F , P , V µ, Aµ, and Sµν , where the real parts of these equations are

kµVµ −mF = ℏDF , (2.8)

−ℏ
2
∂µAµ −mP = ℏDP , (2.9)

kµF −
ℏ
2
∂νSνµ −mVµ = ℏDV,µ , (2.10)

ℏ
2
∂µP − kβS

⋆
µβ −mAµ = ℏDA,µ , (2.11)

ℏ ∂[µVν] − ϵµναβkαAβ −mSµν = ℏDS,µν , (2.12)

whereas the imaginary parts read 9

ℏ
2
∂µVµ = ℏ CF , (2.13)

kµAµ = ℏ CP , (2.14)
ℏ
2
∂µ F + kνSνµ = ℏ CV,µ , (2.15)

−kµP −
ℏ
2
∂βS
⋆
µβ = ℏ CA,µ , (2.16)

−2 k[µVν] −
ℏ
2
ϵµναβ∂

αAβ = ℏ CS,µν . (2.17)

The quantities DX and CX denote the collision terms for the real parts and the imaginary
parts of the kinetic equations, respectively, that can be evaluated using

DX = ℜTr
[
ΓXC[W (x, k)]

]
and CX = ℑTr

[
ΓXC[W (x, k)]

]
.

2.2 Semi-classical expansion

As one can observe that Eqs. (2.8)–(2.17) are coupled which makes them rather difficult to
interpret physically. However, this complexity can be decreased after using the method of
semi-classical expansion in ℏ where the terms with zeroth power in ℏ match with the classi-
cal terms and higher order terms in ℏ can be interpreted as the quantum corrections [273].
In the ℏ expansion method Eqs. (2.8)–(2.17) give rise to a set of coupled hierarchical equa-
tions at different orders of ℏ. This can be achieved by expanding components of the Wigner
function and the collision terms in powers of ℏ as X =

∑
n ℏnX(n), CX =

∑
n ℏnC

(n)
X , and

DX =
∑

n ℏnD
(n)
X . In the following we expand Eqs. (2.8)–(2.17) up to second-order in ℏ.

9One should note here that Eq. (2.13) has ℏ on both sides of the equation. Thus, one may also consider
this equation at the zeroth-order by removing ℏ from both sides. However, we consider it to be at the
first-order keeping ℏ [240].
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2.2 Semi-classical expansion

2.2.1 Zeroth order

Below are the real parts of the equations of motion (2.8)–(2.17) in the zeroth-order in
ℏ [240]

kµV (0)
µ −mF (0) = 0 , (2.18)

mP (0) = 0 , (2.19)
kµF

(0) −mV (0)
µ = 0 , (2.20)

kβS
⋆(0)
µβ +mA(0)

µ = 0 , (2.21)

ϵµναβk
αAβ(0) +mS(0)

µν = 0 . (2.22)

Eq. (2.19) tells that zeroth-order pseudo-scalar component P (0) always vanishes for massive
spin-half particles [235,240,288].

The imaginary parts in the zeroth-order of ℏ are

kµA(0)
µ = 0 , (2.23)

kνS(0)
νµ = 0 , (2.24)

kµP
(0) = 0 , (2.25)

k[µV
(0)
ν] = 0 . (2.26)

If one looks closely the Eqs. (2.18)–(2.26), it can be observed that all the Wigner function
components can be written in terms of F (0) and A

(0)
µ . Thus, we can safely assume these

components as the basic independent ones 10 , provided the orthogonality condition (2.23)
of A(0)

µ is fulfilled [240].

2.2.2 First order

Reals parts of the equations (2.8)–(2.17) in the first-order in ℏ are

kµV (1)
µ −mF (1) = D(0)

F , (2.27)

−1

2
∂µA(0)

µ −mP (1) = D(0)
P , (2.28)

kµF
(1) − 1

2
∂νS(0)

νµ −mV (1)
µ = D(0)

V,µ , (2.29)

1

2
∂µP

(0) − kβS⋆(1)µβ −mA(1)
µ = D(0)

A,µ , (2.30)

∂[µV
(0)
ν] − ϵµναβkαAβ(1) −mS(1)

µν = D(0)
S,µν , (2.31)

10This assumption is only true for the kinetic theory of massive spin-1/2 particles and is not valid for the
case of massless particles [220,281].
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2 Kinetic theory for Dirac fermions

whereas the imaginary parts give

1

2
∂µV (0)

µ = C(0)F , (2.32)

kµA(1)
µ = C(0)P , (2.33)

1

2
∂µF

(0) + kνS(1)
νµ = C(0)V,µ , (2.34)

−kµP (1) − 1

2
∂βS
⋆(0)
µβ = C(0)A,µ , (2.35)

−2 k[µV (1)
ν] −

1

2
ϵµναβ∂

αAβ(0) = C(0)S,µν . (2.36)

While going from the zeroth-order to the first-order, we observe from Eq. (2.33) that the
presence of collisions prevent the first-order axial-vector coefficient A(1) to be orthogonal
to k, cf. Eq. (2.23).

2.2.3 Second order

It is necessary to go to the second-order equations of motion for the derivation of the kinetic
equations for the first-order Wigner function components. In this case the real parts yield

kµV (2)
µ −mF (2) = D(1)

F , (2.37)

−1

2
∂µA(1)

µ −mP (2) = D(1)
P , (2.38)

kµF
(2) − 1

2
∂νS(1)

νµ −mV (2)
µ = D(1)

V,µ , (2.39)

1

2
∂µP

(1) − kβS⋆(2)µβ −mA(2)
µ = D(1)

A,µ , (2.40)

∂[µV
(1)
ν] − ϵµναβkαAβ(2) −mS(2)

µν = D(1)
S,µν , (2.41)

while the imaginary parts give

1

2
∂µV (1)

µ = C(1)F , (2.42)

kµA(2)
µ = C(1)P , (2.43)

1

2
∂µF

(1) + kνS(2)
νµ = C(1)V,µ , (2.44)

−kµP (2) − 1

2
∂βS
⋆(1)
µβ = C(1)A,µ , (2.45)

−2 k[µV (2)
ν] −

1

2
ϵµναβ∂

αAβ(1) = C(1)S,µν . (2.46)

2.3 Mass-shell conditions

In order to describe the physical system, the components of the Wigner function must
satisfy the mass-shell conditions. We shall derive below the conditions to be satisfied by
the zeroth and first-order components of the Wigner function.
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2.3 Mass-shell conditions

2.3.1 Zeroth order

Eq. (2.19), as mentioned before, depicts that the zeroth-order pseudo-scalar component
always satisfies

P (0) = 0 ,

whereas Eq. (2.20) gives an important relation between the zeroth-order vector coefficient
V

(0)
µ and the zeroth-order scalar coefficient F (0) [235,240,288]

V (0)
µ =

kµ
m
F (0) . (2.47)

Multiplying Eq. (2.26) with kµ and then using Eqs. (2.18) and (2.20), we arrive at the
constraint equation for the zeroth-order vector coefficient

k2 V (0)
µ = m2 V (0)

µ . (2.48)

Similarly, plugging Eq. (2.47) in Eq. (2.18) we obtain constraint equation for the zeroth-
order scalar coefficient [288]

k2 F (0) = m2 F (0) . (2.49)

Within the framework of quantum kinetic theory [289], the axial-vector coefficient Aµ

[198, 286] holds an important place as spin polarization effects appear through Aµ. In the
current chapter, for generality, we assume that the spin polarization effects can appear
at, both, the zeroth and the first-order in ℏ 11. Thus, non-zero Aµ

(0) implies non-vanishing
zeroth-order tensor coefficient S(0)

µν through the relation [235,240]

S(0)
µν = − 1

m
ϵµναβ k

αAβ
(0) , (2.50)

(see Eq. (2.22)), whereas the dual form of S(0)
µν is

S
⋆µν
(0) =

1

m

(
kµAν

(0) − kνAµ
(0)

)
. (2.51)

The above relation is crucial to obtain the constraint equation for A(0)
µ . We first put

Eq. (2.51) in Eq. (2.21) and then employ Eq. (2.23) to get [288]

k2A(0)
µ = m2A(0)

µ . (2.52)

In a similar way, substituting Eq. (2.50) in Eq. (2.22), and then plugging Eq. (2.24) we
arrive at the constraint equation for S(0)

µν

k2 S(0)
µν = m2 S(0)

µν . (2.53)

Form the discussion above, we observe that all the zeroth-order coefficients of the Wigner
function need to fulfill the on-shell condition (k2 = m2) for a non-trivial solution with
k being the kinetic momentum. We find that the Eqs. (2.47), (2.50) and (2.51) not only
satisfy Eqs. (2.18)–(2.26) provided Eq. (2.23) is fulfilled, but also can be expressed in terms

11Our assumption is more general in contrast to Refs. [198, 199]. Refs. [198, 199] consider that spin is a
dissipative effect coming from first-order in ℏ, hence, they assume Aµ(0) = 0, whereas we consider that spin
polarization can have both classical and quantum counterparts.
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2 Kinetic theory for Dirac fermions

of independent components F (0) and A
(0)
ν [235, 240] whose on-shell conditions, (2.49) and

(2.52), give rise to [288]

F (0) = δ(k2 −m2)F (0) , A(0)
µ = δ(k2 −m2)A(0)

µ . (2.54)

F (0) and A(0)
µ are scalar and axial-vector functions, respectively, which are non-singular at

k2 = m2.

2.3.2 First order

The first-order forms of the pseudo-scalar, vector and tensor coefficients can be obtained
from Eqs. (2.28), (2.29) and (2.31), respectively, as

P (1) = − 1

2m

[
∂µA(0)

µ + 2D(0)
P

]
, (2.55)

V (1)
µ =

1

m

[
kµF

(1) − 1

2
∂νS(0)

νµ −D(0)
V,µ

]
, (2.56)

S(1)
µν =

1

m

[
∂[µV

(0)
ν] − ϵµναβkαA

β
(1) −D

(0)
S,µν

]
, (2.57)

with the dual of S(1)
µν written as,

S
⋆(1)
µβ =

1

m

[
1

2
ϵµβσρ ∂

[σV
ρ]
(0) + 2 k[µA

(1)
β] −

1

2
ϵµβσρDσρ

S(0)

]
. (2.58)

To obtain the constraint condition for first-order axial-vector coefficient, we first put
Eqs. (2.19) and (2.58) in Eq. (2.30) and then use Eqs. (2.33) and (2.47) to arrive at

(k2 −m2)A(1)
µ = kµ C(0)P −

1

2
ϵµβσρ k

β Dσρ
S(0) +mD(0)

A,µ . (2.59)

Multiplying Eq. (2.29) with kµ and then using Eqs. (2.27) and (2.50) gives the constraint
equation of the first-order scalar coefficient

(
k2 −m2

)
F (1) = kµD(0)

V,µ +mD(0)
F . (2.60)

Contracting Eq. (2.36) with kµ and then using Eqs. (2.22), (2.27) and (2.29) we arrive at
the constraint equation for first-order vector coefficient

(
k2 −m2

)
V ρ
(1) = mDρ

V (0) + kρDF (0) − kλ CλρS(0) . (2.61)

To obtain the constraint equation for first-order pseudo-scalar coefficient we proceed as
follows: we first multiply Eq. (2.35) by kρ and Eq. (2.28) by m, and then subtract the
resulting equations. Subsequently we use this equation in Eq. (2.21) to get

(k2 −m2)P (1) = −kρ CρA(0) +mD(0)
P . (2.62)

Combining Eqs. (2.19), (2.30) and (2.31) and performing some algebraic manipulations we
obtain

2m∂[ρV
λ]
(0) − ϵαρλσϵαγδβkσkβS

γδ
(1) + 2ϵρλσαkσD(0)

A,α − 2m2Sρλ
(1) = 2mDρλ

S(0) . (2.63)
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2.4 General kinetic equation

Contracting the Levi-Civita tensors 12 in Eq. (2.63) and then using Eqs. (2.34) and (2.20)
one obtains the constraint equation for first-order tensor coefficient Sρλ

(1)

(
k2 −m2

)
Sρλ
(1) = 2 k[ρCλ]V (0) +mDρλ

S(0) − ϵρλσα kσD
(0)
A,α . (2.64)

From Eqs. (2.59)–(2.62) and (2.64), one can observe that, in the absence of collisions, all
the first-order coefficients remain on-shell.

2.4 General kinetic equation

In this section we will obtain the general Boltzmann-like kinetic equation which can be
used for the formulation of a general spin hydrodynamic formalism. For that purpose we
start with formulating the kinetic equations for the Wigner function components at the
zeroth and first-order in ℏ.

Using Eqs. (2.32) and (2.47) the kinetic equation for the zeroth-order scalar coefficient
is expressed as

kµ∂µF
(0) = 2m C(0)F , (2.65)

whereas combining Eqs. (2.42) and (2.56) we arrive at the kinetic equation for the first-
order scalar coefficient

kµ∂µF
(1) = 2m C(1)F + ∂µD(0)

V,µ . (2.66)

Similarly, the kinetic equation for the zeroth-order axial-vector coefficient can be obtained
by combining Eqs. (2.28), (2.35) and (2.51)

kβ∂βA
(0)
µ = 2m C(0)A,µ − 2 kµD(0)

P , (2.67)

while using Eqs. (2.38) and (2.58) in Eq. (2.45) we obtain the kinetic equation for the
first-order axial-vector coefficient

kβ∂βA
(1)
µ = 2m C(1)A,µ − 2 kµD(1)

P −
1

2
ϵµβγδ ∂

β Dγδ
S(0) . (2.68)

At this point it is important to highlight again the difference of the assumptions and
considerations taken in Refs. [198,199] and this work, where we consider the most general
structure of the equations without any assumptions on the collision terms:

• In this work we have assumed that both zeroth (A(0)
µ ) and first-order (A(1)

µ ) axial-
vector components are non-zero, which means that spin polarization effects can
appear at both the classical (ℏ0) and quantum level (ℏ1), which is fundamentally
different from the considerations in Refs. [198, 199] where they consider that spin
effects arise at order ℏ, thus considering only first-order axial-vector component non-
vanishing.

• Moreover, Refs. [198, 199] assumed zeroth-order collision terms corresponding to
pseudo-scalar, axial-vector, and tensor components vanishing, i.e., C(0)P = 0, Cµ(0)A = 0,
Cµν(0)S = 0, D(0)

P = 0, Dµ(0)
A = 0, and Dµν(0)

S = 0. These assumptions may also have
some effect on the mass-shell conditions of the Wigner function components.
However, we put no constraints on the collision terms, hence they are, in general, all
non-vanishing, leading to P (1) ̸= 0, (k2 −m2)A

(1)
µ ̸= 0, and kµAµ = O(ℏ).

12ϵµλγδϵναβδ =
[
−gµνgλαgγβ + gµνg

λ
βg
γ
α + gµαg

λ
νg
γ
β − gµαgλβgγν − gµβgλνgγα + gµβg

λ
αg

γ
ν

]
.
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2 Kinetic theory for Dirac fermions

We use Eqs. (2.65) and (2.66) to obtain the kinetic equation for the scalar coefficient

kµ∂µF̃ = 2m C̃F , (2.69)

where we introduced the following notation

F̃ = F (0) + ℏF (1) ,

C̃F = C(0)F + ℏ
(
C(1)F +

1

2m
∂µD(0)

V,µ

)
. (2.70)

Using Eqs. (2.67) and (2.68), we arrive at the analogous kinetic equation for axial-vector
component

kβ∂βÃµ = 2m C̃A,µ , (2.71)

where we used

Ãµ = A(0)
µ + ℏA(1)

µ ,

C̃A,µ = C(0)A,µ + ℏ C(1)A,µ −
kµ
m

(
D(0)

P + ℏD(1)
P

)
− ℏ

4m
ϵµβγδ ∂

βDγδ
S(0) . (2.72)

We now define single-particle distribution function extended to spin phase-space as [91,
198,290–292]

f(x, k, s) =
1

2

(
F̃ (x, k)− s · Ã(x, k)

)
, (2.73)

where sα denotes the spin four-vector. The above relation will allow us to connect the
quantum description of spin to a classical description which, then, can be used for devel-
oping hydrodynamical equations. It also incorporates the dynamics of the kinetic equa-
tions (2.69) and (2.71) into one Boltzmann-like equation, see Eq. (2.81), which may lead
to a more general interpretation of the conservation laws.

Performing the proper averages in the spin space it is possible to invert Eq. (2.73) to
get the scalar and axial vector components of the Wigner function. Namely, we can write

F̃ (x, k) =

∫
dS(k) f(x, k, s) , Ãµ(x, k) =

∫
dS(k) sµ f(x, k, s) , (2.74)

with the covariant spin measure defined as [198,199]
∫

dS(k) ≡ 1

π

√
k2

3

∫
d4s δ(s · s+ 3) δ(k · s) . (2.75)

Note that the spin measure is consists of two delta functions which are responsible for
the normalization of s and orthogonal condition between k and s. The factor outside the
integral takes care of the following normalization

∫
dS(k) = 2 , (2.76)

which takes into account the spin degeneracy for the spin-1/2 particles. Using Eq. (2.76)
and other identities for the spin measure [198,199]

∫
dS(k) sµsν = −2

(
gµν − kµkν

k2

)
,

∫
dS(k) sµ = 0 , (2.77)
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2.4 General kinetic equation

we can verify the relation between F̃ (x, k) and f(x, k, s) in Eq. (2.74). To establish the
relation between Ãµ(x, k) and f(x, k, s) we proceed as follows: using Eq. (2.73) in Eq. (2.74)
we have

∫
dS(k) sµ f(x, k, s) = Ãµ(x, k)− kµ

k2

(
k · Ã

)
, (2.78)

where, using Eqs. (2.23) and (2.33), we find that k · Ã = ℏ C(0)P . On the other hand, using
Eqs. (2.11) and (2.14) one gets

kµ∂µP = 2m CP + 2 kµDA,µ , (2.79)

which, in the zeroth-order, gives

m C(0)P + kµD(0)
A,µ = 0 . (2.80)

Above we have used the knowledge that P (0) = 0. Since D(0)
A,µ is an axial-vector under

the Lorentz transformation, it can be written as D(0)
A,µ = sµ δA, with δA being a scalar

function. Using the orthogonality condition k · s = 0 and Eqs. (2.75) and (2.80), we obtain
C(0)P = 0 13. To summarize, Eqs. (2.74) give the correct relations 14 between the Wigner
function components and the distribution function f(x, k, s).

Combining Eqs. (2.69), (2.71) and (2.73) we get the general Boltzmann equation as
follows

kµ∂µ f(x, k, s) = mC(f) = m
(
C̃F − s · C̃A

)
, (2.81)

where C(f) is the collision term. Quasiparticle approximation allows us to write f(x, k, s)
as f(x, k, s) = mδ(k2 −M2)f(x, k, s) where δ(k2 −M2) represents the on-shell singularity
for the quasiparticle having mass M 15 with the non-singular function f(x, k, s) [161,198].

We would like to emphasize here that the Eq. (2.81) is a general kinetic equation
considering spin effects both at the zeroth and first-order in ℏ that may serve as a starting
point in formulating a general framework for relativistic hydrodynamics with spin.

13Another possibility to obtain relation between Ãµ(x, k) and f(x, k, s) in Eq. (2.74) is to define Eq. (2.73)
with only the components of Ãµ which are orthogonal to kµ, i.e. (gµν − kµkν/k2)Ãν . This actually does
not change Eq. (2.73), since sµ is orthogonal to kµ, so the parallel components vanish and we obtain the
second relation in Eq. (2.74). (Thanks to Nora Weickgenannt for pointing this out.)

14These relations are important as macroscopic currents such as energy-momentum and spin tensors are
expressed in terms of the Wigner function components [91,100].

15M includes quantum corrections to the particle mass m, however these corrections do not contribute
to the Boltzmann equation [198,199].
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2 Kinetic theory for Dirac fermions
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3

Formulation of perfect-fluid hydro-
dynamics with spin

“You see, one thing is,
I can live with doubt,

and uncertainty, and not knowing.
I think it’s much more interesting to live,

not knowing, than to have answers which might be wrong.”
– Richard Feynman

In the previous chapter, we have derived equations of motion for the Wigner function
components in the presence of collisions which, using the semi-classical expansion, led us
to the general kinetic equation for the distribution function in the phase-space extended to
spin. Using such a quantum kinetic theory approach one can in principle obtain a general
dissipative spin hydrodynamic equations.

In this chapter, we develop perfect-fluid hydrodynamics for a spin-polarized system of
Dirac fermions in equilibrium using the GLW framework and assuming that the collisional
kernels are vanishing completely, which is a natural expectation for equilibrium. This can
be achieved by explicitly calculating the equilibrium Wigner function 1 using an ansatz
for the spin-dependent phase-space distribution functions for spin-1/2 particles. Various
hydrodynamic currents, e.g. the energy-momentum tensor, net baryon current, spin-tensor,
etc. can be obtained by expressing them in terms of different components of the Wigner
function in the Clifford algebra basis. Conservation laws of these currents lead us to the
formulation of hydrodynamic equations of interest [235].

Subsequently, we show that such spin-hydrodynamic equations can also be obtained
starting from the classical transport theory in the phase-space extended to spin. In Ref. [91]
such a framework has been obtained using the spin-dependent equilibrium distribution
function where one inherently considers the classical description of spin. Interestingly, the
constitutive relations for the net baryon current, energy-momentum tensor, and spin tensor
match in these two cases [235]. The same results from the two completely independent
approaches put the GLW framework on a firm mathematical footing.

1Equilibrium means the leading (or zeroth) order in ℏ.
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3 Formulation of perfect-fluid hydrodynamics with spin

3.1 Wigner function approach

In this section, employing an ansatz for a phase-space distribution function in the spin
representation, we construct the equilibrium Wigner function which we subsequently use
to derive the conservation laws for net baryon current, energy-momentum tensor, and spin
tensor, constituting perfect-fluid hydrodynamics with spin.

3.1.1 Equilibrium Wigner function

Let us start with the transport equation for the Wigner function (2.4), and assume that
the system reaches equilibrium state. In such a situation, the collision kernel on the right-
hand side of Eq. (2.4) is expected to vanish, meaning that the rest energy of the particles
dominates over the mean interaction energy. In this case the respective transport equation
takes the form 2

(
iℏ
/∂

2
+ /k −m

)
Weq(x, k) = 0 , (3.1)

where we introduced the label “eq” to indicate the equilibrium form of the respective Wigner
function. Moreover, in the case of global equilibrium one may expect the microscopic
non-uniformities in the system to vanish, allowing the gradient term in Eq. (3.1) to be
neglected. From the discussion in Section 2.2 we know that this situation corresponds to
the zeroth-order of the semi-classical expansion, where the momenta of the particles satisfy
the mass-shell condition.

As shown by de Groot, van Leeuwen, and van Weert (GLW) [161] the restrictions
discussed above are satisfied by the Wigner function of the form

Weq(x, k) = W+
eq(x, k) +W−

eq(x, k) ,

with the particle and antiparticle contributions given by,

W+
eq(x, k) =

1

2

∑

r,s

∫
dP δ(4)(k − p)U r(p) Ū s

(p) f+
rs(x, p) , (3.2)

W−
eq(x, k) = −1

2

∑

r,s

∫
dP δ(4)(k + p)Vs(p) V̄r

(p) f−
rs(x, p) , (3.3)

respectively 3 . Here, dP = d3p/((2π)3Ep) is the invariant momentum integration measure
with Ep =

√
p2 +m2 denoting the on-shell particle energy, Ur(p) and Vr(p) denote the

Dirac bispinors with the normalizations Ūr(p)Us(p) = 2mδrs and V̄r(p)Vs(p) = −2mδrs
while indices r and s represent the spin states.

For the equilibrium Wigner function Weq(x, k) to satisfy the conjugation relation (2.7),
the phase-space distribution functions f±

rs(x, p) have to be Hermitian matrices. They can
be written as [164]

[
f+(x, p)

]
rs
≡ f+

rs(x, p) =
1

2m
Ūr(p)X+ Us(p) ,

[
f−(x, p)

]
rs
≡ f−

rs(x, p) = − 1

2m
V̄s(p)X− Vr(p) . (3.4)

2From the transport equation for the Wigner function one may notice that the gradient expansion is
effectively a ℏ expansion.

3Note the Dirac delta functions in the equilibrium Wigner function definitions, suggesting that these
definitions describe classical motion, i.e., particle energy is always on the mass shell.
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3.1 Wigner function approach

In Eq. (3.4), X± are 4× 4 matrices defined as the products of the Maxwell-Jüttner distri-
butions [293] 4 and matrices M± [231]

M± = exp

[
±1

2
ωµν(x) Σ

µν

]
, (3.5)

namely,

X± = exp [±ξ(x)− βµ(x) pµ] M± . (3.6)

The quantity βµ(x) is the ratio of the fluid four-velocity Uµ(x) 5 and the local temperature
T (x), βµ = Uµ/T , and ξ(x) is the ratio of the baryon chemical potential µB(x) and
the temperature, ξ = µB/T

6. The rank-two antisymmetric tensor ωµν(x), also known
as the spin polarization tensor 7, introduces into the theory, apart from the standard
ones, six extra Lagrange multipliers, which, given ωµν(x) being to conjugated to the Dirac
spin operator Σµν = (i/4) [γµ, γν ] (generators of Lorentz transformation of spinors), are
responsible for angular momentum conservation in the system. One should stress here
that the quantity ωµν(x) in Eq. (3.5) is, assumed to be, in general, different from the
thermal vorticity, ϖµν = −(1/2)(∂µβν − ∂νβµ) originally used in Ref. [164], allowing us
to construct the closed 8 perfect-fluid hydrodynamic framework based on the conservation
equations.

As shown in Ref. [231] expressions Eq. (3.5) can be put into the form

M± =
1

2

[
2 cosh(ζ)± sinh(ζ)

ζ
ωµνΣ

µν

]
, (3.7)

where the quantity

ζ =
1

2
√
2

√
ωµνωµν , (3.8)

is assumed to be real 9.
In this Thesis, following experimental observations of small values of polarization, we

consider the limit ωµν ≪ 1 (in other words, ζ → 0), where Eq. (3.7) reduces to

M± = 1± 1

2
ωµν Σ

µν .

4Note that for simplicity, instead of Fermi-Dirac statistics used in Ref. [164], herein we consider the
classical Boltzmann statistics.

5Due to normalization condition, U · U = 1, the four-velocity vector has only three independent com-
ponents. Hence, one may write Uµ(x) = γ(1,v) where v is the three-velocity and γ = 1/

√
1− v2 is the

Lorentz factor.
6Note that for Λ(Λ̄) hyperon, µB = 3µQ, with µQ being the quark chemical potential [54].
7Note that in literature instead of ωµν one often uses the tensor Ωµν = Tωµν , which, by analogy to the

baryon chemical potential, µB = Tξ, is called the spin chemical potential.
8By closed, we have in mind that the number of conservation equations matches the number of Lagrange

multipliers.
9In Refs. [231, 232] it was shown that the thermodynamic consistency requires the spin polarization

tensor to satisfy the following constraints

ωµνωµν ≥ 0 , ω⋆µνωµν = 0. (3.9)

Violating above conditions may result in imaginary ζ which leads to the negative values of the thermo-
dynamic quantities. However, one should notice that such constraints are not necessary in the small
polarization limit ωµν ≪ 1 in which case one can directly Taylor expand Eq. (3.5).
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3 Formulation of perfect-fluid hydrodynamics with spin

However, in order to keep our discussion general, in what follows, we use Eq. (3.7), con-
sidering the small polarization limit only in the final formulas.

Putting Eqs. (3.4) in Eq. (3.2) and Eq. (3.3), we find

W±
eq(x, k) =

1

4m

∫
dP δ(4)(k ∓ p)(/p±m)X±(/p±m) , (3.10)

respectively. With the help of Eq. (3.7) we can further rewrite the above equation as

W±
eq(x, k) =

1

4m

∫
dP e−β·p± ξ δ(4)(k ∓ p)

×
[
2m(m± /p) cosh(ζ)±

sinh(ζ)

2ζ
ωµν(/p±m)Σµν(/p±m)

]
. (3.11)

It is instructive to decompose the Wigner function (3.11) using the Clifford algebra expan-
sion in analogous way as in Eq. (2.6) to obtain equilibrium Wigner function components.
In this case one obtains [235]

F±
eq(x, k) = tr [W±

eq(x, k)] = 2m cosh(ζ)

∫
dP e−β·p±ξ δ(4)(k ∓ p) , (3.12)

P±
eq(x, k) = −i tr [γ5W±

eq(x, k)] = 0 , (3.13)

V ±
eq,µ(x, k) = tr [γµW

±
eq(x, k)] = ± 2 cosh(ζ)

∫
dP e−β·p±ξ δ(4)(k ∓ p) pµ , (3.14)

A±
eq,µ(x, k) = tr [γµ γ

5W±
eq(x, k)] = −sinh(ζ)

ζ

∫
dP e−β·p±ξ δ(4)(k ∓ p)ω⋆µν pν , (3.15)

S±
eq,µν(x, k) = 2 tr [Σµν W

±
eq(x, k)] = ±sinh(ζ)

mζ

∫
dP e−β·p±ξ δ(4)(k ∓ p)

×
[
(pµωνα − pνωµα) p

α+m2ωµν

]
. (3.16)

One can easily check that, for arbitrary form of the fields ξ, β, and ωµν , the coefficient
functions defined in Eqs. (3.12)–(3.16) satisfy the following constraints

kµ V ±
eq,µ(x, k) = mF±

eq(x, k) , kµ F
±
eq(x, k) = mV ±

eq,µ(x, k) , (3.17)

P±
eq(x, k) = 0 , kµA±

eq, µ(x, k) = 0 , kµ S±
eq, µν(x, k) = 0 , (3.18)

kβ S
⋆±
eq,µβ(x, k) +mA±

eq, µ(x, k) = 0 , ϵµναβ k
αA±β

eq (x, k) +mS±
eq, µν(x, k) = 0.(3.19)

From Eqs. (3.17)–(3.19) we can notice that the equilibrium coefficient functions follow
constraints of the same form as the ones satisfied by the zeroth-order components of Wigner
function, c.f. Eqs. (2.18)–(2.26). It suggests that the equilibrium Wigner functions (3.11)
are the good candidates for the zeroth-order Wigner function components, allowing us to
write [235]

F (0) = Feq , P (0) = 0 , V (0)
µ = Veq,µ ,

A(0)
µ = Aeq,µ , S(0)

µν = Seq,µν . (3.20)

In the following sections, these components will serve as a starting point to construct the
perfect-fluid hydrodynamics with spin formalism for spin-polarized particles.

58



3.1 Wigner function approach

3.1.2 Conservation laws

In the absence of collisions, the zeroth-order scalar and axial-vector coefficients of the
Wigner function defined by Eqs. (3.20) satisfy kinetic equations (2.65) and (2.67) found
at the first-order of the semi-classical expansion 10, with the vanishing collision kernels,
CX = DX = 0, supplemented with the constraint (2.23). Hence, we have

kµ∂µFeq(x, k) = 0 , kµ∂µA
ν
eq(x, k) = 0 , kν A

ν
eq(x, k) = 0 , (3.21)

where kinetic momentum k is supposed to be on the mass shell. First-order contributions
to other coefficients of Wigner function can be written as

P (1) = − 1

2m
∂µAeq,µ ,

V (1)
µ = − 1

2m
∂ν Seq,νµ ,

S(1)
µν =

1

2m
(∂µ Veq,ν − ∂νVeq,µ) . (3.22)

Similarly to the treatment of spinless particles [235,272,294], left-hand sides of collisionless
Boltzmann-like kinetic equations (3.21) are satisfied exactly in the global equilibrium. In
this case, using (3.12) and (3.15), one can show that Eqs. (3.21) are satisfied if βα is a
Killing field fulfilling ∂αββ + ∂ββα = 0, and ξ and ωαβ are constants. One should stress
here that ωµν is not necessarily equal to thermal vorticity ϖµν , although both are constant
in the global equilibrium. The difference between ωµν and ϖµν in global equilibrium is
understood on general grounds for conservative systems provided energy-momentum tensor
is asymmetric and spin tensor does not vanish [235]. As a matter of fact, the presence of
non-local collisions may make the energy-momentum tensor asymmetric giving rise to the
spin-orbit coupling which in global equilibrium results in ϖµν = ωµν [198,199] [D1].

In local equilibrium, only certain moments (integrals) in momentum space of Eqs. (3.21)
are satisfied. In particular, following the standard hydrodynamic treatment of relativistic
rarefied spinless gases [235, 272, 294], one may show that the zeroth and first moments
of the transport equations (3.21) (related to collisional invariants of baryon charge and
four-momentum, respectively), lead to the net baryon current and energy-momentum ten-
sor conservation laws. However, for spin polarized particles considered in this Thesis, the
precise form of the collisional kernel is so far unknown, hence it is unclear which type of
the moment one should consider to impose the angular momentum conservation in the
collisions. Hence, in the following sections we will follow somewhat different methodology.
We will use a so-called phenomenological approach to formulate conservation law for cur-
rents defined by the moments of the Wigner function. In particular, we will formulate the
conservation equation for the spin current (the spin part of the total angular momentum
rank-three tensor) which, as it was shown in Ref. [235], agrees with a certain moment of
the equation for the axial coefficient of the equilibrium Wigner function.

3.1.2.1 Net baryon current

Equilibrium Wigner function, Weq(x, k), allows us to write the macroscopic form of net
baryon current, with particle (W+

eq(x, k)) and antiparticle (W−
eq(x, k)) contributions, as a

10Following Eqs. (2.33), (2.66) and (2.68), we observe that the zeroth-order and first-order coefficients
decouple in the absence of particle interactions, hence, in the following, we can safely assume F (1)(x, k) =

A
(1)
µ (x, k) = 0.
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3 Formulation of perfect-fluid hydrodynamics with spin

momentum integral [161]

Nα(x) = ⟨: ψ̄ γα ψ :⟩ ,

= tr

∫
d4k γα

(
W+

eq(x, k)−W−
eq(x, k)

)

=

∫
d4k

(
V +,α
eq (x, k)− V −,α

eq (x, k)
)
, (3.23)

where the right hand side of the first line depicts the ensemble (statistical) average of
the, normal-ordered, microscopic net baryon current, whereas tr (trace), in the second
line, provides the expectation value (in other words, statistical average) of the microscopic
quantity.

Using Eq. (3.17) in Eq. (3.23) one gets

Nα(x) =
1

m

∫
d4k kα

(
F+
eq(x, k)− F−

eq(x, k)
)
. (3.24)

Substituting Eq. (3.12) into Eq. (3.24) we obtain the net baryon current as [91, 231,235]

Nα(x) =
1

m

∫
d4k kα

(
F+
eq(x, k)− F−

eq(x, k)
)

= 4 cosh(ζ) sinh(ξ)

∫
dP pα e−β·p

= N Uα . (3.25)

The quantity N in the above equation represents the net baryon density written as

N = 4 cosh(ζ) sinh(ξ)N(0)(T ) , (3.26)

where N(0)(T ) is the number density of spinless and neutral classical massive particles for
an ideal relativistic Boltzmann gas defined as [54,91,235]

N(0)(T ) =

∫
dP (U · p) e−β·p =

1

2π2
T 3z2K2(z) . (3.27)

Here, z is defined as the ratio of the particle mass m and the temperature T , z ≡ m/T 11,
and Kn denotes the modified Bessel function of the second kind [295]

Kn(z) =
zn

(2n+ 1)!!

∫ ∞

1

dx (x2 − 1)n−
1/2 e−xz . (3.28)

One can observe that the factor sinh(ξ) =
(
eξ − e−ξ

)
/2 in Eq. (3.26) denotes the presence

of both particles and antiparticles in the system, and the quantity cosh(ζ) =
(
eζ + e−ζ

)
/2

represents the presence of both spin-up and spin-down particles.
Since the baryon current must be conserved, we write

∂αN
α(x) = 0 . (3.29)

11The variable ‘z’ can also be interpreted as a controlling parameter for temperature, meaning that,
for the fixed mass, temperature can be varied in order to go from relativistic (high temperature) limit to
non-relativistic (low temperature) limit.
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3.1 Wigner function approach

3.1.2.2 Energy-momentum tensor

Similarly to the definition of the net baryon current, using Eq. (1.35), we can also define
the macroscopic (non-interacting) energy-momentum tensor by taking trace of the second
moment of the equilibrium Wigner function for particle and antiparticle as, see page 116
in Ref. [161]

T µν
GLW(x) = ⟨: T̂ µν

GLW :⟩ ,

=
1

m
tr

∫
d4k kµ kν

(
W+

eq(x, k) +W−
eq(x, k)

)
,

=
1

m

∫
d4k kµ kν

(
F+
eq(x, k) + F−

eq(x, k)
)
. (3.30)

where we use the assumption that F (1)(x, k) = 0. Using Eq. (3.12) in Eq. (3.30) we obtain
the perfect-fluid form of the energy-momentum tensor as [91, 231,235]

T µν
GLW(x) =

1

m

∫
d4k kµ kν

(
F+
eq(x, k) + F−

eq(x, k)
)
, (3.31)

= 4 cosh(ζ) cosh(ξ)

∫
dP pµpνe−β·p ,

= (E + P)UµUν − P gµν , (3.32)

where the energy density (E) and pressure (P) are, respectively, given as

E = 4 cosh(ζ) cosh(ξ) E(0)(T ) , P = 4 cosh(ζ) cosh(ξ)P(0)(T ) . (3.33)

Similarly to the number density, we define the energy density (E(0)(T )) and pressure
(P(0)(T )) for Boltzmann gas as [54, 91,235]

E(0)(T ) =

∫
dP (U · p)2e−β·p =

1

2π2
T 4 z2 [zK1 (z) + 3K2 (z)] , (3.34)

P(0)(T ) = −1

3

∫
dP
[
p · p− (U · p)2

]
e−β·p =

1

2π2
T 4 z2K2 (z) , (3.35)

respectively. From Eq. (3.35) and Eq. (3.27), we notice that,

P(0)(T ) = TN(0)(T ) , (3.36)

which is the equation of state (EoS) for the ideal relativistic Boltzmann statistics. Again,
since we assume the energy-momentum tensor to be conserved, we write

∂αT
αβ
GLW(x) = 0 . (3.37)

3.1.2.3 Spin tensor

The GLW form of the spin tensor is defined as the momentum average of the microscopic
spin density (1.35) [161] 12

Sα,βγ
GLW = ⟨: Ŝα,βγ

GLW :⟩ ,

=
ℏ
4

∫
d4k tr

[({
σβγ, γα

}
+

2i

m

(
γ[βkγ]γα − γαγ[βkγ]

))

×
(
W+

eq(x, k) +W−
eq(x, k)

)
]
. (3.38)

12Note that we explicitly placed the Planck constant ℏ in Eq. (3.38) due to dimensional reason. Here
{A,B} = AB +BA and A[µBν] = 1

2 [A
µBν −AνBµ].
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3 Formulation of perfect-fluid hydrodynamics with spin

Putting particle and antiparticle contributions from Eq. (3.11) in Eq. (3.38), performing
the trace and carrying out the momentum integration we get

Sα,βγ
GLW =

C
m2

∫
dP e−β·ppα

(
m2ωβγ + 2 pµp[βωγ]

µ

)
= Sα,βγ

PH + Sα,βγ
∆ , (3.39)

where we identify [231,235]

Sα,βγ
PH = C N(0)U

αωβγ , (3.40)

Sα,βγ
∆ = C

[
A(0) U

αU δU [βω
γ]
δ + B(0)

(
U [β∆αδω

γ]
δ + Uα∆δ[βω

γ]
δ + U δ∆α[βω

γ]
δ

)]
, (3.41)

with the thermodynamic coefficients expressed as

B(0) = − 2

z2
E(0) + P(0)

T
, A(0) = 2N(0) − 3B(0) . (3.42)

Here, we introduce C ≡ ℏ cosh(ξ) sinh(ζ)/ζ 13 and ∆µν = gµν − (UµUν)/(U · U) which is
the operator projecting onto the plane orthogonal to Uµ. One may interpret Sα,βγ

∆ as the
correction to the phenomenological part (Sα,βγ

PH ).
We can write the spin tensor (3.39) in a more compact way as [D3, D6]

Sα,βγ
GLW = Uα

(
A1 ω

βγ +A2 U
[β ω

γ]
δ U

δ
)
+A3

(
U [β ωγ]α + gα[β ω

γ]
δ U

δ
)
, (3.43)

with the thermodynamic coefficients having the forms

A1 = C
(
N(0) − B(0)

)
, A2 = C

(
A(0) − 3B(0)

)
, A3 = C B(0) . (3.44)

Since the energy-momentum tensor (3.32) is completely symmetric, the conservation of
total angular momentum [161,185],

∂αJ
α,βγ = T βγ

GLW − T γβ
GLW + ∂αS

α,βγ
GLW = 0 , (3.45)

implies that the spin tensor is independently conserved [235],

∂αS
α,βγ
GLW(x) = T γβ

GLW − T βγ
GLW = 0 . (3.46)

Equations (3.29), (3.37), and (3.46), represent closed set of evolution equations consti-
tuting the formulation of perfect-fluid hydrodynamics with spin. Note that in all above
conservation laws, the small polarization limit (ωαβ ≪ 1), which we consider throughout
the remaining parts of the thesis, is implemented by ζ → 0. Taking this limit prevents
the coupling between the dynamics of perfect-fluid background, represented through the
energy-momentum and baryon number conservation laws, and spin. Thus, the evolution of
spin polarization is determined solely through the conservation of total angular momentum
(in practice, conservation of spin tensor) 14.

13Note that C is not related to the collisional kernels discussed in the previous chapter.
14Note that the spin tensor (3.39) diverges in the m→ 0 limit, breaking conformal symmetry explicitly,

however, one may obtain approximate solutions for spin treating mass as a very small parameter. See
Chapter 8 for extensive discussions on this matter.
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3.2 Classical approach

3.2 Classical approach

In this section we present a complementary method to derive the constitutive relations
for the net baryon current (3.25), energy-momentum tensor (3.32), and spin tensor (3.39)
using an approach based on the classical single-particle distribution function in a phase
space extended to spin. Such a distribution function may arise from the quantum kinetic
considerations as discussed in Section 2.4.

3.2.1 Spin-dependent distribution function in equilibrium

We consider classical single-particle distribution function for particles and antiparticles in
a phase space consisting of space-time position (xµ), four-momentum (pµ), and spin (sµ).
Identifying the collisional invariants of the local Boltzmann equation one finds [91],

f±
eq(x, p, s) = exp (−β(x) · p± ξ(x)) exp

{
1

2
ωµν(x)s

µν

}
, (3.47)

where sµν = (1/m)ϵµναβpαsβ is the internal angular momentum tensor [184, 296]. In
Eq. (3.47) the tensor ωµν plays the role of the spin polarization tensor, encountered in
the quantum statistical approach (3.5), and arises due to the spin angular momentum
conservation considered herein.

Equation (3.47) gives the distribution function in terms of position x and momentum
p coordinates only, once averaged over spin,

∫
dS f±

eq(x, p, s) = f±
eq(x, p) , (3.48)

where the spin integration measure dS is defined as follows 15 [91].

dS =
m

πs
d4s δ(s · s+ s2) δ(p · s) . (3.49)

Here, unlike in Eq. (2.75), p is the on-shell kinetic four-momentum of the particle. For
spin-half particles the length of the spin vector is given by s2 = 1

2

(
1 + 1

2

)
= 3

4
, which can

also be related to the respective value of the Casimir operator.
In the remaining part of this section we provide definitions of the conserved currents in

terms of the moments of the distribution function (3.47), which ought to satisfy macroscopic
balance equations describing conservation laws.

3.2.2 Net baryon current

The net baryon current in equilibrium can be obtained using the formula [91]

Nµ(x) =

∫
dP dS pµ

[
f+
eq(x, p, s)−f−

eq(x, p, s)
]
. (3.50)

Putting the equilibrium function (3.47) in Eq. (3.50) leads to

Nµ(x) = 2 sinh(ξ)

∫
dP pµe−p·β

∫
dS exp

(
1

2
ωαβ s

αβ

)
. (3.51)

15Note that in the spin measure (3.49) we choose a different normalization of the spin four-vector as
compared to (2.75) defined in Chapter 2. We note that the choice of the normalization convention in the
spin measure definition does not affect our results, up to an overall constant factor.
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3 Formulation of perfect-fluid hydrodynamics with spin

In our approach we consider the case of small values of the spin polarization tensor ωµν ,
which allows us to expand the last exponential term up to the first-order in ω. Proceeding
this way we get

Nµ = 2 sinh(ξ)

∫
dP pµ e−p·β

∫
dS

(
1 +

1

2
ωαβs

αβ

)
, (3.52)

which, after performing the spin and momentum integration, yields [91]

Nµ = N Uµ . (3.53)

The resulting net baryon current matches exactly the one derived using the Wigner function
approach, in the small polarization limit, see Eq. (3.25) in Sec. 3.1.2.1.

3.2.3 Energy-momentum tensor

The symmetric energy-momentum tensor is defined by the following average [91],

T µν =

∫
dP dS pµpν

[
f+
eq(x, p, s) + f−

eq(x, p, s)
]
, (3.54)

Substituting the distribution function (3.47) in Eq. (3.54) we obtain

T µν = 2 cosh(ξ)

∫
dP pµpν e−p·β

∫
dS exp

(
1

2
ωαβs

αβ

)
, (3.55)

where, again, employing the small polarization limit and performing the integrations, leads
to the same formula as the one obtained in Sec. 3.1.2.2, see Eq. (3.32).

3.2.4 Spin tensor

Spin tensor is defined as follows [91]

Sλ,µν =

∫
dP dS pλ sµν

[
f+
eq(x, p, s) + f−

eq(x, p, s)
]
, (3.56)

= 2 cosh(ξ)

∫
dP pλ exp (−p · β)

∫
dS sµν exp

(
1

2
ωαβs

αβ

)
, (3.57)

where, in the second line, we substituted the distribution function from Eq. (3.47). Per-
forming the integral over the spin in Eq. (3.57), to the first order in ωµν , gives

∫
dS sµν exp

(
1

2
ωαβs

αβ

)
=

∫
dS sµν

(
1 +

1

2
ωαβs

αβ

)

=
2

3m2
s2
(
m2ωµν + 2pαp[µων]

α

)
. (3.58)

Putting Eq. (3.58) back in Eq. (3.57) we obtain

Sλ,µν =
4

3m2
s2 cosh(ξ)

∫
dP pλ e−p·β (m2ωµν+2 pα p[µων]

α

)
, (3.59)

which after doing momentum integration leads to [91,235]

Sλ,µν = C
(
N0(T )U

λωµν + Sλ,µν
∆

)
. (3.60)
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3.2 Classical approach

The above result agrees with the spin tensor Sλ,µν
GLW derived in Sec. 3.1.2.3, see Eq. (3.39).

For the forthcoming discussions it is useful to consider the spin tensor (3.39) in the
large mass (z ≫ 1 or m ≫ T ) regime, which is equivalent to neglecting the relativistic
corrections in Eq. (3.39). This is particularly interesting in the context of low-energy heavy-
ion experiments where the mass of the particles (Λ hyperons) is much higher than the
system’s temperature. Within this limit the thermodynamic coefficient B(0) ∼ −T 3e−z

√
z

is small compared to N(0) ∼ T 3e−zz3/2 and thus can be neglected. Therefore, Eq. (3.39)
takes the form [D3] [232]

Sα,βγ
z≫1 = cosh(ξ)N(0) U

α
[
ωβγ + 2U δ U [βω

γ]
δ

]
. (3.61)
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4

Propagation properties of spin polar-
ization

“All truths are easy to understand
once they are discovered.

The point is to discover them.”
– Galileo Galilei

In this chapter, we study the propagation properties of the spin polarization components of
spin hydrodynamics developed in the previous chapter through linear perturbation analysis.
The idea behind this analysis is to observe the behavior of the spin components and their
dependence on the thermodynamic parameters after they are perturbed in the longitudinal
direction. We find that the longitudinal spin components do not propagate, however,
the transverse spin components propagate in an analogous way to electromagnetic waves.
Material presented here may be found in Refs. [D2] and [D3].

4.1 Properties and parameterizations of the spin polar-
ization tensor

As the spin polarization tensor ωµν is a second-rank antisymmetric tensor it is convenient
to decompose it with respect to fluid four-velocity Uµ in terms of two electric-like (κµ) and
magnetic-like (ωµ) four-vectors as follows 1 [231]

ωµν = κµUν − κνUµ + ϵµναβ U
αωβ , (4.1)

with the following properties arising from it:

• Components of four-vectors κµ and ωµ parallel to Uµ have no contribution to the
right-hand side of Eq. (4.1). Hence, κµ and ωµ satisfy the following constraints

κ · U = 0 , ω · U = 0 . (4.2)
1We use terms “electric-like” and “magnetic-like” with respect to four-vectors κµ and ωµ to highlight

their similarity to the components present in analogous decomposition of the Faraday tensor in electro-
magnetism [297]

Fµν = EµUν − EνUµ + ϵµναβU
αBβ .
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4 Propagation properties of spin polarization

• One can obtain κµ and ωµ from ωµν using the relations

κµ = ωµα U
α , ωµ =

1

2
ϵµαβγ ω

αβ Uγ . (4.3)

• Each of the four-vectors, κµ and ωµ, have three independent components. Hence,
they together constitute same number of independent components as ωµν .

For mathematical convenience we introduce a basis I ∈ {U,X, Y, Z} formed by a set of
mutually orthogonal four-vectors: U , X, Y , and Z satisfying the following normalization
conditions

U · U = 1 , X ·X = Y · Y = Z · Z = −1 . (4.4)

The four-vectors X, Y and Z span the space transverse to U and may be obtained
by canonical boost transformation with four-velocity U of the local-rest-frame (LRF)
forms [298–300]

Xα
LRF =

(
0, 1, 0, 0

)
, Y α

LRF =
(
0, 0, 1, 0

)
, Zα

LRF =
(
0, 0, 0, 1

)
. (4.5)

Using the four-vector basis, κµ and ωµ can be decomposed in terms of Lorentz-scalar spin
coefficients Cκ = (CκX , CκY , CκZ) and Cω = (CωX , CωY , CωZ)

2 as follows

κα = CκXX
α + CκY Y

α + CκZZ
α , ωα = CωXX

α + CωY Y
α + CωZZ

α . (4.6)

Decompositions (4.6) allow us to rewrite the spin polarization tensor Eq. (4.1) in the form

ωαβ = 2
(
CκXX[αUβ] + CκY Y[αUβ] + CκZZ[αUβ]

)

+ ϵαβγδ U
γ
(
CωXX

δ + CωY Y
δ + CωZZ

δ
)
. (4.7)

In the laboratory (LAB) frame one can have different parameterization 3 of the spin polar-
ization tensor consisting of electric-like, e = (e1, e2, e3), and magnetic-like, b = (b1, b2, b3),
components as [232]

ωαβ =




0 e1 e2 e3

−e1 0 −b3 b2

−e2 b3 0 −b1
−e3 −b2 b1 0


 . (4.8)

4.2 Spin tensor for general statistics

The spin tensor in Eq. (3.60) has been derived using the equilibrium distribution function
(3.47) for the Maxwell-Jüttner (MJ) statistics. In what follows, we extend the spin tensor to
other statistics so that we can study the polarization of other species of particles produced
in the experiments. For that purpose, we first extend the definition of the distribution
function (3.47).

Let us start by considering the general distribution function

fσ
eq ≡ fσ

eq(yσ) , (4.9)

2Note that, all the spin components are dimensionless and are functions of spacetime coordinates.
3We followed the sign conventions of Ref. [297].
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4.3 Spin tensor for general statistics

with

yσ = yσ;0 + yspin , yσ;0 = βp · U − σ ξ , yspin = −1

2
ωµνsµν , (4.10)

where β is the inverse of temperature and σ = +1(−1) represent particles (antiparticles).
Assuming yspin ≪ yσ;0 we have

fσ
eq(yσ) = fσ

eq(yσ;0) + fσ′
eq(yσ;0)yspin + . . . , (4.11)

where the derivative is done at vanishing spin polarization

f ′σ
eq(yσ;0) = −σ

(
∂fσ

eq

∂ξ

)

β

=
1

p · U

(
∂fσ

eq

∂β

)

ξ

. (4.12)

Thus the spin tensor (3.59) can be written for an arbitrary statistics as

Sλ,µν = − 2s2

3m2

∑

σ=±

∫
dP pλf ′σ

eq

(
m2ωµν+2pαp[µων]

α

)
, (4.13)

where we can write the integral of pλfσ′
eq as

2
∑

σ=±

∫
dP pλfσ′

eq = a1 U
λ , with a1 = −

(
∂N
∂ξ

)

β

. (4.14)

Factor 2 appears due to spin degeneracy.
Furthermore, the integral of pλpαpµf ′σ

eq can be decomposed as

2
∑

σ=±

∫
dPfσ′

eq p
λpαpµ = a2 U

λUαUµ + b2(U
λ∆αµ + Uα∆λµ + Uµ∆λα) , (4.15)

where thermodynamic coefficients a2 and b2 can be evaluated by contracting the above
expression with UλUαUµ and Uλgαµ. In this way one gets

a2 =

(
∂E
∂β

)

ξ

, a2 + 3b2 = −m2

(
∂N
∂ξ

)

β

, (4.16)

respectively.
Using Eqs. (4.14) and (4.15) in Eq. (4.13) and comparing with Eq. (3.60) shows that

a1 = −(3/s2)(A1 +A3), a2 = (3m2/2s2)(A3 − 2A1), and b2 = −(3m2/2s2)A3. Hence, one
can have yet another decomposition of Eqs. (3.40) and (3.41) as

Sα,βγ
PH = (A1 +A3)U

αωβγ , (4.17)

Sα,βγ
∆ = (2A1 −A3)U

αU δU [βω
γ]
δ +A3

(
∆αδU [βω

γ]
δ + Uα∆δ[βω

γ]
δ + U δ∆α[βω

γ]
δ

)
,(4.18)

where A1 and A3 for general statistics are

A1 =
s2

9

[(
∂N
∂ξ

)

β

− 2

m2

(
∂E
∂β

)

ξ

]
, A3 =

2s2

9

[(
∂N
∂ξ

)

β

+
1

m2

(
∂E
∂β

)

ξ

]
. (4.19)

One can check that above equations reduce to Eqs. (3.44) for MJ statistics.
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4 Propagation properties of spin polarization

4.3 Dispersion relation of spin wave velocity

As mentioned in Chapter 3, due to the assumption of small polarization, conservation laws
for net baryon current (3.29) as well as for energy and momentum (3.37) are independent
of the spin dynamics [91,235], hence, may be treated as a a perfect-fluid background for the
latter. As a result, the analysis of propagation of perturbations at the level of background
will lead to a widely known spectrum of sound waves where the sound speed is defined
as [154,162,254,255]

c2s =

(
∂P
∂E

)

N
+
N
E + P

(
∂P
∂N

)

E
, (4.20)

In consequence, the propagation of perturbations at the level of spin tensor conservation
law can be studied independently.

We will start with the spin tensor decomposition, derived for the general statistics,
shown in Eqs. (4.17) and (4.18) along with the thermodynamic coefficients (4.19). At the
level of spin tensor, background fluid is at rest, hence Uµ = gtµ. In addition, we also
consider that the system is homogeneous in the transverse plane. Due to the small polar-
ization limit considered we can also assume that the background fluid can be unpolarized.
Therefore, Eqs. (4.17) and (4.18) reduce to

Sα,µν
PH = (A1 +A3) g

tα ωµν ,

Sα,µν
∆ = 2 (A1 − 2A3) g

tα gt[µων]t +A3

(
gt[µων]α + gα[µων]t − gtαωµν

)
, (4.21)

and their divergence read

∂αS
α,µν
PH = (A1 +A3) ∂tω

µν ,

∂αS
α,µν
∆ = (2A1 − 3A3) g

t[µ ∂tω
ν]t +A3

(
∂[µων]t − ∂tωµν + gt[µ∂zω

ν]z
)
. (4.22)

Considering cases such as {µ = 0, ν = i} and {µ = i, ν = j}, and using the fact that
Sα,βγ
GLW = Sα,βγ

PH + Sα,βγ
∆ , see Eq. (3.39), we obtain

∂αS
α,ti
GLW = ∂αS

α,ti
PH + ∂αS

α,ti
∆ = A3

(
∂tω

ti +
1

2
∂zω

iz

)
,

∂αS
α,ij
GLW = ∂αS

α,ij
PH + ∂αS

α,ij
∆ = A1 ∂tω

ij +A3 ∂
[iωj]t . (4.23)

Using Eq. (4.7) one can write the spin polarization tensor in the fluid rest frame as

ωti = −Cκi , ωij = −ϵtijkCωk , (4.24)

and the conservation law for spin, ∂αSα,βγ
GLW(x) = 0, gives

∂tCκX −
1

2
∂zCωY = 0 , ∂tCωY +

A3

2A1

∂zCκX = 0 ,

∂tCκY +
1

2
∂zCωX = 0 , ∂tCωX −

A3

2A1

∂zCκY = 0 . (4.25)

Since ∂tCκZ = ∂tCωZ = 0, we find that the longitudinal spin components do not prop-
agate. Hence, the spin degrees of freedom propagate as transverse waves analogous to
electromagnetic waves [253,297].
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4.3 Dispersion relation of spin wave velocity

All four transverse spin components follow the same wave-like equation as
(
∂2t − c2spin ∂2z

)
CκX = 0 ,

(
∂2t − c2spin ∂2z

)
CκY = 0 ,(

∂2t − c2spin ∂2z
)
CωX = 0 ,

(
∂2t − c2spin ∂2z

)
CωY = 0 , (4.26)

where the cspin is the speed of the spin wave expressed as

c2spin = −1

4

A3

A1

=
1

4

(∂E/∂T )ξ − z2 (∂N /∂ξ)T
(∂E/∂T )ξ + z2

2
(∂N /∂ξ)T

, (4.27)

which in the high temperature (z → 0) limit gives cspin = 1/2. We emphasize that the
relation for cspin in Eq. (4.27) holds true for an arbitrary statistics.

4.3.1 The case of Maxwell-Jüttner distribution

We now move on to find the form of Eq. (4.27) for Maxwell-Jüttner (MJ) statistics. In this
case the distribution reads

fσ
eq =

gs
(2π)3

e−βU ·p+σξ , (4.28)

with gs = 2 representing the spin degeneracy. The net baryon current (Nµ) and energy-
momentum tensor (T µν) can be evaluated in the following way

Nµ =
∑

σ

σ

∫
dP pµfσ

eq , T µν =
∑

σ

∫
dP pµpνfσ

eq . (4.29)

Above equations reproduce the relations given in Eqs. (3.53) and (3.55), respectively. The
derivatives of net baryon density (N ) and energy density (E) with respect to ξ and β give,
respectively

(
∂N
∂ξ

)

β

=
2m2T

π2
cosh(ξ)K2(z) ,

(
∂E
∂β

)

ξ

= −2m3T 2

π2
cosh(ξ) [zK2(z) + 3K3(z)] . (4.30)

Thus, A1 and A3 in Eq. (4.19) for the MJ statistics are

A1 =
4s2mT 2

3π2
cosh(ξ)

[
K3(z) +

z

2
K2(z)

]
,

A3 = −4s2mT 2

3π2
cosh(ξ)K3(z) , (4.31)

in agreement with Eqs. (3.44) where s2 = 3/4. Substituting the above equations in
Eq. (4.27) gives c2spin for (ideal) MJ gas

c2spin

∣∣∣
MJ

= −1

4

A3

A1

=
1

4

[
K3(z)

K3(z) +
z
2
K2(z)

]
, (4.32)

which depends only on the parameter z = m/T , see Fig. 4.1.
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cspin MJ
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Figure 4.1: (Color online) The speed of the spin wave cspin for MJ statistics as a function
of z = m/T together with their respective asymptotic forms.

4.3.1.1 Asymptotic limit

To understand the asymptotic behavior of cspin
∣∣
MJ

, it is useful to discuss its asymptotic
properties for the non-relativistic (z ≫ 1) and ultra-relativistic (z ≪ 1) cases.

The modified Bessel functions can be expanded in the following way for large values of
z [295]

Kν(z) =

√
π

2z
e−z

∞∑

k=0

ak(ν)

zk
, with ak(ν) =

(
1
2
− ν
)
k

(
1
2
+ ν
)
k

(−2)kk! . (4.33)

Thus,

K2(z) =

√
π

2z
e−z

(
1 +

15

8z
+

105

128z2
+ . . .

)
,

K3(z) =

√
π

2z
e−z

(
1 +

35

8z
+

945

128z2
+ . . .

)
. (4.34)

Using Eqs. (4.34) in Eq. (4.32) we obtain cspin
∣∣
MJ

for large values of z

cspin

∣∣∣
MJ(z≫1)

≃ 1√
2z
. (4.35)

Similarly, the modified Bessel functions of the second kind Kn(z) can be expanded for
small values of z as [295]

Kn(z) =
1

2

(z
2

)−n
n−1∑

k=0

(n− k − 1)!

k!

(
−z

2

4

)k

+ (−1)n+1 ln
(z
2

)
In(z)

+
(−1)n

2

(z
2

)n ∞∑

k=0

[ψ(k + 1) + ψ(n+ k + 1)]
(z2/4)k

k!(n+ k)!
, (4.36)
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4.3 Dispersion relation of spin wave velocity

with ψ(z) = Γ′(z)/Γ(z) being the digamma function, whereas In(z) are the modified Bessel
functions of the first kind

In(z) =
(z
2

)n ∞∑

k=0

(z2/4)k

k!(n+ k)!
. (4.37)

Leading order terms of K2(z) and K3(z) come from the first term of Eq. (4.36),

K2(z) =
2

z2
− 1

2
+O(z2) , K3(z) =

8

z3
− 1

z
+O(z) , (4.38)

which, after using in Eq. (4.32), gives cspin
∣∣
MJ

for small values of z

cspin

∣∣∣
MJ(z≪1)

=
1

2

[
1− z2

16
+O(z4)

]
. (4.39)

Figure 4.1 shows the comparison between the exact cspin
∣∣
MJ

(4.32) and its asymptotic
expressions (4.35) and (4.39). It can be observed, as expected, that at z = 0 the magnitude
of cspin = 1/2 which eventually vanishes for large values of z.

4.3.2 The case of Fermi-Dirac distribution

Fermi-Dirac (FD) gas is modelled using the distribution [301,302]

fσ
eq =

gs
8π3

1

e(βp·U −σξ) + 1
. (4.40)

In this case the net baryon density N , energy density E , and pressure P are evaluated,
respectively, as [303]



N
E
P


 =

1

π2

∑

σ

∫ ∞

m

dE p



σE
E2

1
3
p2


 1

e(βE−σξ) + 1
, (4.41)

where p is the momentum of the particle. For ξ < z = βm we can expand Fermi-Dirac
factor [e(βE−σξ) + 1]−1 as

1

e(βE−σξ) + 1
=

∞∑

ℓ=1

(−1)ℓ+1e−(ℓβE− ℓσξ) , (4.42)

which then allows N and E to have the forms

N =
2m2T

π2

∞∑

ℓ=1

(−1)ℓ+1

ℓ
sinh(ℓξ)K2(ℓz) ,

E =
2m2T 2

π2

∞∑

ℓ=1

(−1)ℓ+1

ℓ2
cosh(ℓξ) [ℓzK1(ℓz) + 3K2(ℓz)] , (4.43)

respectively. Putting ℓ = 1 in Eq. (4.43) gives the results for the MJ statistics given in
Eqs. (3.26) and (3.33). The derivatives of E with respect to β, and of N with respect to ξ
are

(
∂E
∂β

)

ξ

= − 1

π2β

∑

σ

∫ ∞

m

dE E2
3p+ E2

p

e(βE−σξ) + 1
,

(
∂N
∂ξ

)

β

=
1

π2β

∑

σ

∫ ∞

m

dE
p+ E2

p

e(βE−σξ) + 1
. (4.44)
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4 Propagation properties of spin polarization

However, for the case when |ξ| < z, the above integrals can be calculated using Eq. (4.42)
allowing A1 and A3 to take the forms

A1 =
4s2mT 2

3π2

∞∑

ℓ=1

(−1)ℓ+1

ℓ
cosh(ℓξ)

[
K3(ℓz) +

ℓz

2
K2(ℓz)

]
,

A3 = −4s2mT 2

3π2

∞∑

ℓ=1

(−1)ℓ+1

ℓ
cosh(ℓξ)K3(ℓz) . (4.45)

These results reduce to Eqs. (4.31) for ℓ = 1. Therefore, for FD gas c2spin becomes 4

c2spin

∣∣∣
FD

= −1

4

A3

A1

=
1

4

∑∞
ℓ=1

(−1)ℓ+1

ℓ
cosh(ℓξ)K3(ℓz)∑∞

ℓ=1
(−1)ℓ+1

ℓ
cosh(ℓξ)

[
K3(ℓz) +

ℓz
2
K2(ℓz)

] . (4.46)
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Figure 4.2: (Color online) The speed of the spin wave cspin for FD statistics as a function
of z = m/T together with their respective asymptotic forms.

4.3.2.1 Asymptotic limit

Now let us derive the non-relativistic and relativistic limits for cspin
∣∣
FD

. In the non-
relativistic limit we use large z expansion (4.34) where the terms with ℓ > 1 are replaced
by Kn(ℓz) ∼ e−ℓz/

√
ℓz. Thus for large z values the expression of cspin

∣∣
FD(z≫1)

agrees with
cspin

∣∣
MJ(z≫1)

, see Eq. (4.35).

In the relativistic limit we use Eq. (4.38). Using the notation Sn =
∑∞

ℓ=1
(−1)ℓ+1

ℓn
cosh(ℓξ),

the coefficients A1 and A3 can be expressed as

A1 =
32s2T 4

3π2m2

[
S4 +O(z4)

]
, A3 = −32s2T 4

3π2m2

[
S4 −

z2

8
S2 +O(z4)

]
. (4.47)

4Eq. (4.46) is true for |ξ| < z. For |ξ| > z, it diverges and then the asymptotic expression in Eq. (4.48),
obtained in the following section, must be used.
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4.3 Dispersion relation of spin wave velocity

Now using S4 = (7π4 + 30π2ξ2 + 15ξ4)/720 and S2 = (π2 + 3ξ2)/12, we obtain c2spin for the
relativistic case as

c2spin

∣∣∣
FD(z≪1)

=
1

4

[
1− z2

8

S2

S4

+O(z4)

]

=
1

4

[
1− 15z2

2

π2 + 3 ξ2

7π4 + 30 π2 ξ2 + 15 ξ4
+O(z4)

]
. (4.48)

Figure 4.2 shows the comparison between the exact cspin
∣∣
FD

(4.46) and its asymptotic
expressions (4.35) and (4.48). Here, also at z = 0, cspin = 1/2 which vanishes for large z.
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Figure 4.3: (Color online) Comparison between cspin
∣∣
MJ

and cspin
∣∣
FD

for various values of
ξ. The MJ results are obtained using Eq. (4.32), while the FD results are obtained using
Eqs. (4.46) and (4.48) when z > |ξ| and z < |ξ|, respectively.

Figure 4.3 shows the comparison between the exact expressions of cspin
∣∣
MJ

and cspin
∣∣
FD

for different values of ξ. In summary it is observed that cspin is monotonically decreasing
with z from 0 to 1

2
where the lower bound is for low temperature limit (non-relativistic

limit) while the upper bound is for high temperatures.

4.3.2.2 Degenerate limit

An another interesting case which is relevant for the FD statistics is the degenerate limit,
i.e. low temperature and high baryon density regime (T → 0 and µB > m), in which we
have

N =
p3F
3π2

, E =
1

8π2

[
pF µB (p2F + µ2

B) +m4 ln

(
m

pF + µB

)]
, (4.49)

with pF =
√
µ2
B −m2. In this case E ≡ E(µB), and the derivatives of E and N with respect

to β and ξ, respectively, are
(
∂E
∂β

)

ξ

= −µB

β

∂E
∂µB

= −µ
3
B

√
µ2
B −m2

π2β
,

(
∂N
∂ξ

)

β

=
µB

√
µ2
B −m2

π2β
= − 1

µ2
B

(
∂E
∂β

)

ξ

. (4.50)
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4 Propagation properties of spin polarization

Hence, using above equations in Eq. (4.27) leads to the expression of cspin in the degenerate
limit

c2spin

∣∣∣
FD(deg)

=
1

4

(
ξ2 − z2
ξ2 + z2/2

)
, (4.51)

which is valid when ξ ≫ z or in other words µB ≫ m. Moreover, for the degenerate gas
the expression of pressure can be written as

P =
1

24π2

[
pF µB

(
5 p2F − 3µ2

B

)
− 3m4 ln

m

pF + µB

]
, (4.52)

which gives us the expression for the sound speed

c2s

∣∣∣
deg

=
∂P
∂E =

1

3

(
ξ2 − z2
ξ2

)
. (4.53)

Interestingly, we can establish a relationship between the spin wave velocity (4.51) and the
sound velocity (4.53) for the degenerate FD gas as

c2spin

∣∣∣
FD(deg)

=
1

2




c2s

∣∣∣
deg

1− c2s
∣∣∣
deg


 . (4.54)

4.4 Linear and circular polarization of spin waves

For Eqs. (4.25) one can obtain the linearly polarized solutions for the components Cκ and
Cω with C0 as the real amplitude of the wave

Cκ = C0Re
[
e−ik(cspint−z)

]
(ê1 cos(θ) + ê2 sin(θ)) ,

Cω = 2 cspinC0Re
[
e−ik(cspint−z)

]
(ê1 sin(θ)− ê2 cos(θ)) , (4.55)

where θ is the inclination angle with respect to the x-axis. One can find the relation

Cω = 2 cspin n̂× Cκ , (4.56)

with n̂ = ê3 being the direction of the wave propagation. One can observe that the
Eq. (4.56) is analogous to H = c n̂×D from electromagnetism [297] with c denoting the
speed of light.

Consequently, circularly polarized waves read

Cκ;R/L =
1√
2
C0Re

[
e−ik(cspint−z) (ê1 cos(θ)± iê2 sin(θ))

]
,

Cω;R/L =
√
2C0 cspinRe

[
e−ik(cspint−z) (ê1 sin(θ)∓ iê2 cos(θ))

]
, (4.57)

which also satisfies Eq. (4.56).
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5

Spin polarization of emitted parti-
cles

“Don’t only practice your art,
but force your way into its secrets;

art deserves that, for it and
knowledge can raise man to the Divine.”

– Ludwig van Beethoven

In Chapter 3 we formulated the framework of relativistic perfect-fluid hydrodynamics with
spin where the evolution of the background parameters is obtained through the conservation
of net baryon current (3.29) and energy-momentum tensor (3.37), and the evolution of the
spin polarization components is obtained through the conservation of spin tensor (3.46).
Starting with certain initial conditions specified at a fixed space-like hypersurface, from the
above hydrodynamic equations we may determine the dynamics of the thermodynamic and
hydrodynamic fields in the future spacetime region. However, it is known very well, that
when the system expands and dilutes, the mean free path of its constituents (particles)
increases which gives rise to the decoupling of the particles. Eventually, the interactions
are so weak that their momenta and spin get ‘frozen’. This process is commonly known as
freeze-out. Using the values of hydrodynamic fields at the freeze-out we can calculate the
mean spin polarization per particle which can be compared with the experimental results.

In this chapter, we present details required to calculate the momentum-dependent and
momentum-averaged mean spin polarization that will be used further for the numerical
modeling of spin polarization of Λ(Λ̄) hyperons in the subsequent chapters. Parts presented
in this chapter may be found in Ref. [D3].

5.1 Pauli-Lubański four-vector

To obtain the information about the spin of individual particles at the freeze-out we need
to introduce Pauli-Lubański (PL) four-vector, defined as [304,305]

Πµ = −1

2
ϵµναβ J

να pβ , (5.1)

where p is the particle four-momentum and Jνα is total angular momentum which can be
calculated by averaging the total angular momentum density over the three-dimensional
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volume

Jµν =

∫
dΣλ J

λ,µν . (5.2)

Decomposing Jνα in Eq. (5.1) in terms of orbital (xνpα− xαpν) and spin (Sνα) parts gives

Πµ = −1

2
ϵµναβ (xνpα − xαpν + Sνα) pβ ,

= −1

2
ϵµναβ (xνpα − xαpν) pβ − 1

2
ϵµναβS

να pβ ,

= −1

2
ϵµναβS

να pβ , (5.3)

where, due to the presence of Levi-Civita symbol, orbital part vanishes and PL four-vector
is linked directly to the spin angular momentum, describing spin states of the particle.
Obviously, p in Eq. (5.3) is orthogonal to Π.

5.2 Phase-space density of the Pauli-Lubański four-vector

As the QGP is strongly-coupled we use relativistic hydrodynamics as an effective framework
to describe its properties. However, due to expansion the interactions between the fluid
constituents gradually cease making the system weakly coupled. The adequate description
of the subsequent dynamics of the particles is provided by transport theory. To make
this transition possible one is required to provide a prescription to describe the process of
transforming the fluid elements to particles at the switching hypersurface Σ. A commonly
used approach is the so-called Cooper-Frye formula [306], which is based on the assumption
of the continuity of the particle current at Σ, see for instance Ref. [307] for details.

Below we develop a respective freeze-out procedure for the spin of the particles using a
similar reasoning to the one of Cooper-Frye approach. Using Eq. (5.1) we first calculate,
using the invariant total angular momentum density (Jλ,να), the phase-space density of the
PL four-vector in the volume ∆Σ and divide this quantity by the momentum density of all
particles and antiparticles produced at the surface ∆Σ. This ratio provides the information
of average spin polarization per particle at the freeze-out hypersurface.

The phase-space density of PL four-vector in the volume ∆Σ is written as [164,232]

Ep
d∆Πµ(x, p)

d3p
= −1

2
ϵµναβ ∆Σλ(x)Ep

dJλ,να(x, p)

d3p

pβ

m
. (5.4)

Here, Jλ,να = Lλ,να+Sλ,να = xνT λα−xαT λν +Sλ,να. Levi-Civita symbol forces the orbital
part (Lλ,να) to vanish and we obtain

Ep
d∆Πµ(x, p)

d3p
= −1

2
ϵµναβ ∆Σλ(x)Ep

dSλ,να(x, p)

d3p

pβ

m
. (5.5)

The term Ep dS
λ,να/d3p on the right hand side of the Eq. (5.5), within the GLW formula-

tion, using Eq. (3.39), can be written as [235]

Ep
dSλ,να

GLW(x, p)

d3p
=

cosh(ξ)

(2π)3
e−β·ppλ

(
ωνα +

2

m2
p[νωα]

δ p
δ

)
. (5.6)
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5.3 Mean spin polarization per particle

Note that ζ → 0 has been assumed herein and ℏ = 1. Putting Eq. (5.6) in Eq. (5.5), we
get the phase-space density as

Ep
d∆Πµ(x, p)

d3p
= − cosh(ξ)

2m(2π)3
ϵµναβ ∆Σλp

λe−β·p
(
ωναpβ +

2

m2
p[νωα]

δ p
δpβ
)
,

= −cosh(ξ)

(2π)3m
∆Σλp

λe−β·p
(
ω⋆µβp

β +
1

m2
ϵµναβp

[νωα]
δ p

δpβ
)
. (5.7)

In the above equation, the second term in the bracket will vanish due to the Levi-Civita
symbol and we also used 1

2
ϵµναβ ω

να = ω⋆µβ. Thus we obtain 1

Ep

dΠ*
µ(p)

d3p
= − 1

(2π)3m

∫
cosh(ξ)∆Σλ p

λ e−β·p (ω⋆µβp
β)* , (5.8)

which has to be integrated over volume ∆Σλ to obtain momentum density of the total
value of the PL four-vector. The asterisk ( )* indicates that the quantity is boosted to
the particle rest frame (PRF) 2 [232,308].

The four-momentum pα = (Ep, px, py, pz) can be parametrized as

Ep = mT cosh(yp) , px = pT cos(ϕp) , py = pT sin(ϕp) , pz = mT sinh(yp) , (5.9)

where mT is the transverse mass, yp is the momentum rapidity, pT is the transverse momen-
tum, and ϕp is the azimuthal angle. Using trigonometric formulae, from the momentum
parameterization (5.9), we can get known relations for pT and mT

pT =
√
p2x + p2y , mT =

√
E2

p − p2z =
√
m2 + p2T . (5.10)

5.3 Mean spin polarization per particle

To calculate the average spin polarization per particle we first need to define the total
particle number current as [232]

N µ(x) =

∫
dP dS pµ

[
f+
eq(x, p, s)+f

−
eq(x, p, s)

]
, (5.11)

where using the equilibrium function (3.47), after some algebraic manipulations, in the
limit of ωαβ ≪ 1 we get

N µ(x) = 2 cosh(ξ)

∫
dP pµ e−p·β

∫
dS

(
1 +

1

2
ωαβs

αβ

)
,

= 4 cosh(ξ)

∫
dP pµ e−p·β , (5.12)

1The spin tensor (and total angular momentum) is a charge-conjugation even operator, therefore in
thermodynamic equilibrium, thermal effects cannot distinguish between the internal (spin) charge of the
particles and the antiparticles. Hence, the direction of the spin polarization vector of particles and an-
tiparticles will be same, which is not the case if we introduce electromagnetic fields in the system.

2In the experiments, Λ(Λ̄) hyperon spin polarization is measured in the rest frame of the decaying
particle, hence to have a comparison of our results with the experimental data, we must Lorentz transform
the quantity ω⋆µβpβ to the PRF.
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where we have used the identities
∫
dS = 2 and

∫
dS sαβ = 0 [91]. Note that, Eq. (5.11)

is the total particle current, i.e., sum of the number of particles and antiparticles, which
is different from the net baryon current (3.50), that is coming from the subtraction of the
number of baryons and number of anti-baryons.

The momentum density of all particles and antiparticles being emitted from the hyper-
surface can be written as [235]

Ep
dN (p)

d3p
=

4

(2π)3

∫
cosh(ξ)∆Σλ p

λ e−β·p . (5.13)

Then the ratio of the total PL four-vector (5.8) and the momentum density of particles
and antiparticles (5.13) gives us the average spin polarization per particle as a function of
momentum coordinates defined as

⟨πµ⟩p =
Ep

dΠ*
µ (p)

d3p

Ep
dN (p)
d3p

. (5.14)

It should be noted that ⟨πµ⟩p⟨πµ⟩p is a Lorentz invariant quantity and the time component
of ⟨πµ⟩p must vanish as in PRF, ⟨πµ⟩pp

µ

* = ⟨π0⟩pm = 0. After integrating over momentum
variables we arrive at the momentum averaged spin polarization as

⟨πµ⟩ =

∫
dP ⟨πµ⟩pEp

dN (p)
d3p∫

dPEp
dN (p)
d3p

≡
∫
d3p

dΠ*
µ (p)

d3p∫
d3p dN (p)

d3p

. (5.15)

The second equality in Eq. (5.15) is obtained using Eqs. (5.13) and (5.14). Results coming
from Eqs. (5.14) and (5.15) will be compared with the experimental data.
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6

Modeling of the spin polarization dy-
namics

“An equation for me has no meaning
unless it expresses a thought of God.”

– Srinivasa Ramanujan

After formulating relativistic perfect-fluid hydrodynamics with spin in Chapter 3, in the
present chapter we will make use of it to study the dynamics of transversely homogeneous
spin-polarizable matter with boost-invariant and boost-invariance-violating longitudinal
(with respect to beam) expansion. For this purpose, we first tensor decompose the equa-
tions of motion for the background and spin. Subsequently, we use them to study different
physical systems and draw some conclusions for spin polarization observables introduced
in Chapter 5.

6.1 Basis-vector decomposition of evolution equations

In this section we tensor decompose conservation laws for background and spin derived
in Chapter 3 using the four-vector basis introduced in Section 4.1. Resulting evolution
equations will be subsequently used in the following sections to study spin polarization
dynamics of systems respecting certain spacetime symmetries. Details of this section are
based mainly on Ref. [D3].

6.1.1 (3+1)–dimensional parametrization of the four-vector basis

One can write a general (3+1)–dimensional parametrization of the fluid flow four-vector
in Minkowski coordinates (µ) in the following form [298–300]

Uµ =
(
U0 cosh(Φ), Ux, Uy, U0 sinh(Φ)

)
, (6.1)

with the quantities U0, Ux, and Uy defined as

U0 = cosh(θ⊥) , Ux = U⊥ cos(φ) , Uy = U⊥ sin(φ) , (6.2)

respectively. Here, Φ, θ⊥, φ are functions of τ, x, y, η in the Milne coordinate system, where
τ =
√
t2 − z2 is the longitudinal proper time and η = 1

2
ln [(t+ z)/(t− z)] is the space-time
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6 Modeling of the spin polarization dynamics

rapidity. We adopt convention where the longitudinal fluid rapidity Φ = ϑ(τ, x, y, η) + η
with ϑ denoting the deviation of longitudinal fluid rapidity from the boot-invariant one; we
will come back to the discussion of the boot-invariant expansion in Section 6.2. Our choice
makes the parametrization (6.1) convenient for describing systems rapidly evolving along
the longitudinal (z) direction. Such a situation takes place in ultra-relativistic heavy-
ion collision experiments, where the particle production in central rapidity (also known
as midrapidity) region is approximately boost-invariant along z (beam) direction [309],
meaning ϑ ≈ 0.

Using trigonometric relations we find that U0 =
√

1 + U2
x + U2

y and U⊥ =
√
U2
x + U2

y =
sinh(θ⊥). The remaining three basis vectors which span the space transverse to U have the
form

Xµ =

(
U⊥ cosh(Φ),

U0Ux

U⊥
,
U0Uy

U⊥
, U⊥ sinh(Φ)

)
,

Y µ =

(
0, −Uy

U⊥
,
Ux

U⊥
, 0

)
, (6.3)

Zµ =
(
sinh(Φ), 0, 0, cosh(Φ)

)
,

which, as mentioned in Chapter 4, result from canonical boost transformation Λµ
ν (U

λ)
(with U given in (6.1)) applied to LRF forms (4.5).

Before moving ahead, it is also convenient to introduce some notation for the directional
derivatives and divergences of the basis vectors, which will turn out handy in subsequent
sections. In particular, directional derivatives for the flow Uα (6.1) and space-like basis
vectors Xα, Y α and Zα (6.3) are denoted as

Uα∂α = U · ∂ ≡ ( )
•
, Xα∂α = X · ∂ ≡ ( )

■

,

Y α∂α = Y · ∂ ≡ ( )
□

, Zα∂α = Z · ∂ ≡ ( )
⃝

, (6.4)

while the divergences of the basis vectors are written as

∂αU
α = ∂ · U ≡ θU , ∂αX

α = ∂ ·X ≡ θX ,

∂αY
α = ∂ · Y ≡ θY , ∂αZ

α = ∂ · Z ≡ θZ . (6.5)

Derivatives with respect to the Cartesian coordinates, t, x, y, and z, used above, are related
to the ones with respect to Milne coordinates through the following matrix equation [D6]




∂t
∂x
∂y
∂z


 =




cosh(η) 0 0 − sinh(η)
0 1 0 0
0 0 1 0

− sinh(η) 0 0 cosh(η)







∂τ
∂x
∂y
1
τ
∂η


 . (6.6)

6.1.2 Perfect-fluid background

6.1.2.1 Net baryon density conservation

Substituting expression for the net baryon current, see Eq. (3.25), in the net baryon density
conservation law ∂αN

α(x) = 0, see Eq. (3.29), we obtain the following equation of motion

Uα∂αN +N ∂αU
α = N• +N θU = 0 , (6.7)
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6.1 Basis-vector decomposition of evolution equations

where we used the notation listed in Eqs. (6.4) and (6.5). The net baryon density N is
expressed by Eq. (3.26), and, in general, depends on T , µB and m (recall that in the small
polarization limit, which we will consider henceforth, we take ζ → 0).

6.1.2.2 Energy and linear momentum conservation

Contracting energy and linear momentum conservation law, ∂αTαβ
GLW(x) = 0, see Eq. (3.37),

with fluid four-vector Uβ and then using perfect-fluid form of energy-momentum tensor
(Tαβ

GLW(x) = (E + P)UαUβ − Pgαβ), see Eq. (3.32), we obtain

Uα∂α E + (E + P) ∂αUα = E•+ (E + P) θU = 0 , (6.8)

where the energy density E and pressure P are given by Eqs. (3.33). The implicit relation
between equilibrium thermodynamic quantities (N , E , P) expressed by their dependence on
T , µB and m, defines equation of state for the system and employs the small polarization
limit. It is equivalent to keeping terms in above equations of leading order in ωµν or
equivalently setting the limit ζ → 0. Effectively, it removes ω from the energy-momentum
and net-baryon density conservation laws and makes the background insensitive to the
polarization dynamics.

Equation (6.8) has to be supplemented with its transverse counterpart; contracting
Eq. (3.37) with the transverse projector (∆µ

β = gµβ −
UµUβ

U ·U ) and using Eq. (3.32) gives a
set of three additional equations of motion

(E + P) Uβ∂βU
α −∆αβ∂βP = (E + P) Uα

• −
(
∂α − UαUβ∂β

)
P = 0 , (6.9)

which, by taking non-relativistic limit, may be interpreted as a relativistic generalization
of the Euler equation [147]. In subsequent sections, we will solve five partial differen-
tial equations given by Eqs. (6.7)–(6.9) for five unknowns, T , µB, and three independent
components of Uµ, in order to determine collective background on top of which we will
study the dynamics of spin polarization. One should stress here, that, in practice, the
small polarization limit makes Eqs. (6.7)–(6.9) to represent state of the art formulation of
relativistic perfect-fluid hydrodynamics for baryon-charged fluids [307].

6.1.3 Collective dynamics of spin polarization

As discussed in Chapter 4, due to the antisymmetry of the spin polarization tensor ω, it is
convenient to work with its parametrization (4.1) in terms of electric-like and magnetic-like
components, Cκ and Cω, which behave as scalars under Lorentz boosts and rotations. To
derive equations of motion for the components Cκ and Cω, we will use the form of the spin
tensor given by Eq. (3.43) with the general spin polarization tensor decomposition (4.7)
in the angular momentum conservation law (3.46). The final equations of motion will be
then obtained by projecting (3.46) on the basis tensors: UβXγ, UβYγ, UβZγ, YβZγ, XβZγ

and XβYγ.

The spin tensor (3.43) may be expressed in terms of basis four-vectors I, by contracting
it with all their possible combinations. This leads to its following form

Sα,βγ
GLW =

∑

i=x,y,z

Sα,βγ
αi

+ Sα,βγ
βi

, (6.10)
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where

Sα,βγ
αx

= 2 αx1 U
α U [βXγ] + αx2 Y

α Y [βXγ] + αx2 Z
α Z [βXγ] , (6.11)

Sα,βγ
αy

= 2 αy1 U
α U [βY γ] + αy2X

α X [βY γ] + αy2 Z
α Z [βY γ] , (6.12)

Sα,βγ
αz

= 2 αz1 U
α U [βZγ] + αz2X

α X [βZγ] + αz2 Y
α Y [βZγ] , (6.13)

Sα,βγ
βx

= 2 βx1

(
Y α U [βZγ] + Zα Y [βUγ]

)
− 2 βx2 U

α Y [βZγ] , (6.14)

Sα,βγ
βy

= 2 βy1

(
Zα U [βXγ] +Xα Z [βUγ]

)
− 2 βy2 U

α Z [βXγ] , (6.15)

Sα,βγ
βz

= 2 βz1

(
Xα U [βY γ] + Y α X [βUγ]

)
− 2 βz2 U

α X [βY γ] , (6.16)

and the coefficients α and β are defined as

αi1 = −
(
A1 −

A2

2
−A3

)
Cκi , αi2 = −A3Cκi ,

βi1 =
A3

2
Cωi , βi2 = A1Cωi , (6.17)

where, in the small polarization limit (ζ → 0),

A1 = cosh (ξ)(N(0) − B(0)), A2 = cosh (ξ)(A(0) − 3B(0)), and A3 = cosh (ξ)B(0) ,

see Eqs. (3.44).
The divergence of Eq. (6.10) can be expressed as a sum

∂αS
α,βγ
GLW = ∂αS

α,βγ
αx

+ ∂αS
α,βγ
αy

+ ∂αS
α,βγ
αz

+ ∂αS
α,βγ
βx

+ ∂αS
α,βγ
βy

+ ∂αS
α,βγ
βz

= 0 , (6.18)

where the subsequent summands

∂αS
α,βγ
αx

= 2 αx1
•
U [βXγ] + αx2

□
Y [βXγ] + αx2

⃝
Z [βXγ] + 2 αx1

[
θU U [βXγ] + U [β

•
Xγ] + U [βXγ]

• ]

+ αx2

[
θY Y [βXγ] + θZ Z [βXγ] + Y [β

□

Xγ] + Y [βXγ]
□

+ Z [β
⃝

Xγ] + Z [βXγ]
⃝
]
, (6.19)

∂αS
α,βγ
αy

= 2 αy1
•
U [βY γ] + αy2

■
X [βY γ] + αy2

⃝
Z [βY γ] + 2 αy1

[
θU U [βY γ] + U [β

•
Y γ] + U [βY γ]

• ]

+ αy2

[
X [β

■

Y γ] +X [βY γ]
■

+ Z [β
⃝

Y γ] + Z [βY γ]
⃝

+ θX X [βY γ] + θZ Z [βY γ]
]
, (6.20)

∂αS
α,βγ
αz

= 2 αz1
•
U [βZγ] + αz2

■
X [βZγ] + αz2

□
Y [βZγ] + 2 αz1

[
θU U [βZγ] + U [β

•
Zγ] + U [βZγ]

• ]

+ αz2

[
X [β

■

Zγ] +X [βZγ]
■

+ Y [β
□

Zγ] + Y [βZγ]
□

+ θX X [βZγ] + θY Y [βZγ]
]
, (6.21)

∂αS
α,βγ
βx

= 2
[
βx1

□

U [βZγ] + βx1
⃝

Y [βUγ] + βx1

(
θY U [βZγ] + θZ Y [βUγ]

)
− βx2
•
Y [βZγ]

− βx2θU Y [βZγ]
]
+ 2 βx1

[
U [β

□

Zγ] + Y [β
⃝

Uγ] + U [βZγ]
□

+ Y [βUγ]
⃝ ]

− 2 βx2

(
Y [β
•
Zγ] + Y [βZγ]

• )
, (6.22)
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6.1 Basis-vector decomposition of evolution equations

∂αS
α,βγ
βy

= 2
[
βy1
⃝

U [βXγ] + βy1
■

Z [βUγ] + βy1

(
θZ U [βXγ] + θX Z [βUγ]

)
− βy2
•
Z [βXγ]

− βy2θU Z [βXγ]
]
+ 2 βy1

[
U [β
⃝

Xγ] + Z [β
■

Uγ] + U [βXγ]
⃝

+ Z [βUγ]
■ ]

− 2 βy2

(
Z [β
•
Xγ] + Z [βXγ]

• )
, (6.23)

∂αS
α,βγ
βz

= 2
[
βz1

■

U [βY γ] + βz1
□

X [βUγ] + βz1

(
θX U [βY γ] + θY X [βUγ]

)
− βz2
•
X [βY γ]

− βz2θU X [βY γ]
]
+ 2 βz1

[
U [β

■

Y γ +X [β
□

Uγ] + U [βY γ]
■

+X [βUγ]
□ ]

− 2 βz2

(
X [β
•
Y γ] +X [βY γ]

• )
, (6.24)

were obtained from Eqs. (6.11)–(6.16), respectively.
Finally, to derive the evolution equations for the spin polarization components C (re-

call that α’s and β’s depend explicitly on C’s), we contract the partial differential equa-
tion (6.18) with UβXγ, UβYγ, UβZγ, YβZγ, XβZγ, and XβYγ, and obtain

αx1
•

+ αx1θU +
αx2

2

(
UY

□

+ UZ
⃝)
− αy2

2
UY

■ − αy1XY
• − αz2

2
UZ

■ − αz1XZ
• − βx1

(
XZ

□ −XY
⃝)

+βy1
⃝

+ βy1

(
θZ +XZ

■
)
− βy2UZ

• − βz1
□

− βz1
(
θY +XY

■
)
+ βz2UY

•
= 0 , (6.25)

αy1
•

+ αy1θU +
αy2

2

(
UX

■

+ UZ
⃝)
− αz2

2
UZ

□ − αz1Y Z
• − αx2

2
UX

□ − αx1Y X
• − βy1

(
Y X

⃝

− Y Z■
)

+βz1
■

+ βz1

(
θX + Y X

□
)
− βz2UX

• − βx1
⃝

− βx1
(
θZ + Y Z

□
)
+ βx2UZ

•
= 0 , (6.26)

αz1
•

+ αz1θU +
αz2

2

(
UX

■

+ UY
□
)
− αx2

2
UX

⃝

− αx1ZX
• − αy2

2
UY

⃝

− αy1ZY
• − βz1

(
ZY

■ − ZX□
)

+βx1
□

+ βx1

(
θY + ZY

⃝)
− βx2UY

• − βy1
■

− βy1
(
θX + ZX

⃝ )
+ βy2UX

•
= 0 , (6.27)

αy2
⃝

2
+
αy2

2

(
θZ − ZX

■
)
− αy1ZU

• − αz2
□

2
− αz2

2

(
θY − Y X

■
)
+ αz1Y U

• − αx2

2

(
Y X

⃝

− ZX□
)

+βx2
•

+ βx2θU + βx1

(
Y U

□

+ ZU
⃝)
− βy1Y U

■

+ βy2Y X
• − βz1ZU

■

+ βz2ZX
•

= 0 , (6.28)

αz2
■

2
+
αz2

2

(
θX −XY

□
)
− αz1XU

• − αx2
⃝

2
− αx2

2

(
θZ − ZY

□
)
+ αx1ZU

• − αy2

2

(
ZY

■ −XY
⃝)

+βy2
•

+ βy2θU + βy1

(
ZU

⃝

+XU
■
)
− βz1ZU

□

+ βz2ZY
• − βx1XU

□

+ βx2XY
•

= 0 , (6.29)

αx2
□

2
+
αx2

2

(
θY − Y Z

⃝)
− αx1Y U

• − αy2
■

2
− αy2

2

(
θX −XZ

⃝)
+ αy1XU

• − αz2

2

(
XZ

□ − Y Z■
)

+βz2
•

+ βz2θU + βz1

(
XU

■

+ Y U
□
)
− βx1XU

⃝

+ βx2XZ
• − βy1Y U

⃝

+ βy2Y Z
•

= 0 , (6.30)

respectively.
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6 Modeling of the spin polarization dynamics

As, in general, Eqs. (6.25)–(6.30) are quite complex, they need to be solved numerically
to determine the dynamics of Cκ and Cω. Moreover, one may observe, that the evolution of
the background enters Eqs. (6.25)–(6.30) solely through the thermodynamic factors A1–A3

and the flow vectors I, and can be entirely determined in advance; we will often exploit
this property hereafter. Finally, as we will see in the following sections, while, in general,
all spin components are entangled with each other, see Eqs. (6.25)–(6.30), in simple physics
situations the dynamics of some components decouples from others, providing opportunity
to get some insights on their collective properties more easily.

In subsequent sections we will study a number of special physics situations advocated by
phenomenological observations, whose complexity will change with the change of symmetry
constraints imposed on the system.

6.2 Boost-invariant and transversely homogeneous back-
ground

Experimental measurements show that in heavy-ion collisions, at top energies, the matter
produced in the central (midrapidity) region exhibits invariance with respect to Lorentz
boosts along the beam direction [309]. Moreover, as it takes finite time for the hydrody-
namic gradients to build up, the transverse expansion of the system in the vicinity of the
beam axis 1 may be treated initially as invariant with respect to translations in the trans-
verse plane. These two approximate symmetries, namely boost-invariance and transverse
homogeneity, (together with the η → −η parity symmetry) constitute the so-called Bjorken
symmetry 2. This symmetry is employed commonly in the phenomenology of heavy-ion
collisions due to its advantage of decreasing dimensionality and reducing number of inde-
pendent parameters required to describe the dynamics of the system. In particular, one
can show that all thermodynamic variables are Lorentz scalars which are functions of lon-
gitudinal proper time (τ) only, while the flow pattern is completely fixed by symmetry.
Indeed, in this case the basis four-vectors (6.1) and (6.3) take the forms

Uα = (cosh(η), 0, 0, sinh(η)) , Zα = (sinh(η), 0, 0, cosh(η)) ,

Xα = (0, 1, 0, 0) , Y α = (0, 0, 1, 0) . (6.31)

Moreover, directional derivatives (6.4) and the divergences (6.5) take the forms U ·∂ = ∂τ ,
Z · ∂ = 1

τ
∂η, X · ∂ = ∂x , Y · ∂ = ∂y , and

∂ · U =
1

τ
, (6.32)

respectively. One can also check that ∂ ·X = ∂ · Y = ∂ · Z = 0.
In the remaining part of Section 6.2 we will make use of the above expressions to

study polarization dynamics of Bjorken-expanding matter. The material discussed here is
partially based on Ref. [D6].

1By vicinity we mean that the distances from the z axis are much smaller than the root-mean-square
radius of the hard-sphere nuclear overlap region.

2The concept of boost-invariance was first discussed by R.P. Feynman in 1969 within the context
of hadron production at high energies [310]. In 1983 J.D. Bjorken implemented boost-invariance along
with homogeneity in the transverse direction (now known as Bjorken symmetry) into the equations of
hydrodynamics and estimated the values of initial energy densities in the collisions [311].
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6.2 Boost-invariant and transversely homogeneous background

6.2.1 Hydrodynamic evolution

One can check that, due to the symmetries imposed, the relativistic Euler equation (6.9)
is trivially satisfied. On the other hand, the energy equation (6.8) takes the form

∂E
∂τ

+
E + P
τ

= 0 . (6.33)

For baryon-charged matter Eq. (6.33) has to be supplemented with the conservation law
for net baryon density (6.7), which for Bjorken-expanding matter becomes

∂N
∂τ

+
N
τ

= 0 , (6.34)

and has the solution

N =
τ0
τ
N0 , (6.35)

where N0 is the initial net baryon density at the initial proper time τ0, N0 = N (τ0).
We solve numerically Eqs. (6.34) and (6.33) choosing the conditions aiming at mimicking

the situation encountered in high-energy heavy-ion collisions, where the temperature is
much higher than the baryon chemical potential. In such a case, we consider the initial
baryon chemical potential and the initial temperature as µB0 = µB(τ0) = 0.05GeV and
T0 = T (τ0) = 0.5GeV, respectively, with τ0 = 1 fm/c. For simplicity, we consider the
system of Λ hyperons and choose the particle mass as m = mΛ = 1.116 GeV [312]. The
resulting evolution of the temperature (T ), baryon chemical potential (µB), and the ratio
of baryon chemical potential over temperature (ξ) as a function of τ is shown in Figs. 6.1.
One can notice that, both, the temperature and baryon chemical potential, decrease with
τ for massive (m = mΛ) as well as massless (m → 0) case. In the m → 0 limit, T and
µB follow the analytical solutions T0 (τ0/τ)1/3 and µB0 (τ0/τ)

1/3, respectively, resulting in
a constant ξ. In the massive case, the latter increases with τ as expected

ξ = sinh−1

[
τ0
τ

N(0)(τ0)

N(0)

sinh(ξ0)

]
, (6.36)

where ξ0 and N(0)(τ0) are the values of the parameters at τ0.
Due to restrictive character of Bjorken expansion the evolution equations for spin com-

ponents (6.25)–(6.30) take the following simple form

αx1
•

= −αx1 θU −
αx2

2
UZ

⃝

,

αy1
•

= −αy1 θU −
αy2

2
UZ

⃝

,

αz1
•

= −αz1 θU ,

βx2
•

= −βx2 θU − βx1 ZU
⃝

,

βy2
•

= −βy2 θU − βy1 ZU
⃝

,

βz2
•

= −βz2 θU , (6.37)

where one can check that UZ
⃝

= −ZU
⃝

= 1/τ . As we observe from Eqs. (6.37), Bjorken
symmetries prevent the spin components to couple with each other.
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Figure 6.1: (Color online) Evolution of T (top panel), µB (middle panel), and ξ = µB/T
(lower panel) as a function of τ for Bjorken background along with their respective massless
case.
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Figure 6.2: (Color online) Time evolution of spin components.
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Figure 6.3: (Color online) Evolution of Cωi components in the z ≫ 1 limit.

In Fig. 6.2 we show the evolution of the spin polarization components as a function
of τ obtained by solving Eqs. (6.37) numerically. The initial value of all the components
are chosen arbitrarily to be 0.1 3. Transverse components CκX and CωX decrease with τ
whereas the longitudinal components CκZ and CωZ show opposite behavior. Due to the
rotational invariance, the transverse components CκX and CκY (as well as CωX and CωY )
follow the same differential equations, hence we refrain to show CκY and CωY evolution
in Fig. 6.2. We checked that the qualitative behavior of all the spin components does not
change significantly with the change in the initial values of thermodynamic parameters
such as T0 or µB0. Interestingly, in the large mass regime (z ≫ 1), see the discussion in
Section 3.2.4, the quantity B0 can be neglected making only βi2 remain non-vanishing. As
a result, Eqs. (6.37) allow to determine only the dynamics of magnetic-like components

3We kept the initial value for all the spin components same in order to observe their relative behavior
with respect to each other, as well as much smaller than 1 to respect the assumed small polarization limit.
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6 Modeling of the spin polarization dynamics

(CωX , CωY , CωZ), which follow the same dynamics given by equations

βi2
•

= −βi2 θU . (6.38)

Above equations have monotonically increasing solution

Cωi = C0
ωi

τ0
τ

cosh(ξ0)

cosh(ξ)

N(0)(τ0)

N(0)

, (6.39)

where C0
ωi, ξ0 and N(0)(τ0) are the values of the parameters at τ0. The solution (6.39) is

presented in Fig. 6.3. It shows that the qualitative behavior of CωZ component remains
same as in Fig. 6.2, whereas the behavior of CωX and CωY becomes opposite in the z ≫ 1
limit.

6.2.2 Angular momentum of a boost-invariant firecylinder

Solutions obtained in the previous section acquire intuitive interpretation when one con-
siders spin and orbital contributions to total angular momentum Jµν

FC = Lµν
FC + Sµν

FC at
the hypersurface of fixed longitudinal proper time we call a firecylinder (FC). Using the
fact that the total angular momentum is conserved, see Eq. (3.45), this will help us with
initialization of the spin components in numerical simulations. For this purpose, let us

Point of collision

Heavy-ion 
beam

Time (t)

Heavy-ion 
beam

Space (z)

Figure 6.4: (Color online) Schematic diagram of the boost-invariant firecylinder with Σ
denoting the hypersurface.

consider a boost-invariant three-dimensional hypersurface defined by τ = τFC = const. and
contained within the spacetime region defined by conditions −ηFC/2 ≤ η ≤ ηFC/2 and
(x2 + y2)1/2 ≤ RFC, with constant radius RFC, see Fig. 6.4. The respective hypersurface
element is defined as

∆Σµ = τFC Uµ dx dy dη , (6.40)

with the flow vector given by Eq. (6.31).
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6.2 Boost-invariant and transversely homogeneous background

The orbital contribution for the GLW pseudogauge can be calculated as follows

Lµν
FC =

∫
∆Σλ L

λ,µν =

∫
∆Σλ

(
xµ T λν

GLW − xν T λµ
GLW

)
,

=

∫
τFC Uλ dx dy dη

(
xµ T λν

GLW − xν T λµ
GLW

)
,

= τFC π R
2
FC

ηFC/2∫

−ηFC/2

E dη (xµ Uν − xν Uµ) , (6.41)

where, in the last line, we used the fact that Uµ is the eigenvector of the energy-momentum
tensor with E as an eigenvalue,

T λν
GLW Uλ = E Uν . (6.42)

Putting the value of Uµ from Eq. (6.31) in Eq. (6.41) we find that Lµν
FC = 0. Hence, the

orbital part does not contribute to the total angular momentum for Bjorken-expanding
matter.

The respective contribution from the spin part can be calculated as

Sµν
FC =

∫
∆Σλ S

λ,µν
GLW = τFC

∫
dx dy

ηFC/2∫

−ηFC/2

dη Uλ S
λ,µν
GLW ,

= τFC π R
2
FC

ηFC/2∫

−ηFC/2

dη Uλ S
λ,µν
GLW . (6.43)

Using in Eq. (6.43) the relation Uλ S
λ,µν
GLW = A3 (κ

µ Uν − κν Uµ) + A1 ϵ
µνβγ Uβ ωγ, see

Eq. (3.43), and integrating over η the spin angular momentum tensor takes the form

Sµν
FC = −Sνµ

FC =




0 S01
FC S02

FC S03
FC

−S01
FC 0 S12

FC S13
FC

−S02
FC −S12

FC 0 S23
FC

−S03
FC −S13

FC −S23
FC 0



, (6.44)

with its components expressed by

SFC
01 = −S01

FC = 2πR2
FC τFCA3CκX sinh(ηFC/2) ,

SFC
02 = −S02

FC = 2πR2
FC τFCA3CκY sinh(ηFC/2) ,

SFC
03 = −S03

FC = πR2
FC τFCA3CκZ ηFC ,

SFC
23 = S23

FC = −2πR2
FC τFCA1CωX sinh(ηFC/2) ,

SFC
13 = S13

FC = 2πR2
FC τFCA1CωY sinh(ηFC/2) , (6.45)

SFC
12 = S12

FC = −πR2
FC τFCA1CωZ ηFC .

We observe that in the boost-invariant and transversely homogeneous system different
spin components C are directly related to different components of spin angular momentum
tensor Sµν

FC, which, due to Lµν
FC = 0, are conserved during the evolution.
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6 Modeling of the spin polarization dynamics

At this point, it is important to emphasize the physics picture for the spin polarization
evolution we have in mind, which will be followed in the analyses presented in the current
chapter. We assume, that during the initial stage of the non-central relativistic heavy-ion
collision, the total angular momentum (J) consists of only orbital angular momentum (L),
the direction of which is perpendicular to the reaction (x − z) plane i.e. along the −y
axis [90,130,275,313], see Fig. 1.2.

This derives its motivation from the experimental measurements of the spin polarization
of Λ(Λ̄) hyperons where the average direction of the spin is along−y-axis. After the collision
some fraction of the orbital angular momentum is transferred, due to initial scatterings, to
the initial spin angular momentum (S) [314] which is, on average, along the same direction
as the original total angular momentum

J initial = Linitial = Lfinal + Sfinal . (6.46)

This is reflected by the non-vanishing xz component of spin angular momentum [315].
One may notice from Eq. (6.45) that the spin component CωY is directly linked to the xz
component of the spin angular momentum (SFC

13 ). Hence, the situation discussed here can
be reproduced in the numerical simulation of Bjorken-expanding system by assuming non-
vanishing and positive component CωY (τFC = τ0) and keeping all the other spin components
zero.

6.2.3 Spin polarization at freeze-out

Having the collective dynamics of the system determined in previous sections, we now use
it to calculate the spin polarization of particles emitted from the fluid at the freeze-out.
Due to simplifications resulting from the Bjorken symmetries, the phase-space density
of the PL four-vector (5.8) as well as the momentum density of all particles (5.13) can
be calculated analytically allowing us to write the following expressions of average spin
polarization (5.14) as a function of particle momentum, in PRF,

⟨πµ⟩p =
1

8m




0

χCωX mT
2 − 2CκZ py −

(
px pz
Ep+m

)
[χ (CκX py − CκY px) + 2CωZ ]

− 1
Ep+m

(χ pxEp (CωXpx + CωY py))

χCωY mT
2 + 2CκZ px −

(
py pz
Ep+m

)
[χ (CκX py − CκY px) + 2CωZ ]

− 1
Ep+m

(χ py Ep (CωXpx + CωY py))

(
mEp+mT

2

Ep+m

)
[χ (CκX py − CκY px) + 2CωZ ] +

χmpz(CωX px+CωY py)

Ep+m




(6.47)

where χ = (K0 (m̂T ) +K2 (m̂T )) / (mTK1 (m̂T )) and m̂T is the ratio of the transverse mass
over temperature, m̂T = mT/T . Note that the time component of ⟨πµ⟩p vanishes. Indeed,
since ⟨πµ⟩p⟨πµ⟩p is a Lorentz-invariant quantity, one can write ⟨πµ⟩pp

µ

* = ⟨π0⟩pm = 0.
Using the numerical results of the thermodynamic parameters from Eqs. (6.33) and (6.34),
and the spin components from Eqs. (6.37), from Eq. (6.47) we can obtain x, y, and z
components of ⟨πµ⟩p as a function of px and py at midrapidity (yp = 0). In Figs. 6.5
we show plots for ⟨πx⟩p (top panel) and ⟨πy⟩p (bottom panel) at midrapidity (one can
check that at midrapidity, ⟨πz⟩p vanishes). The component ⟨πy⟩p has negative magnitude
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Figure 6.5: (Color online) The x component (top panel) and y component (bottom panel)
of the mean spin polarization per particle at midrapidity as a function of px and py for the
Bjorken-expanding matter.

reflecting the initial direction of the spin in the system, whereas the component ⟨πx⟩p
exhibits a quadrupole structure depicting non-trivial momentum dependence of Eq. (6.47).

We note that the results presented here do not reproduce the experimentally observed
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6 Modeling of the spin polarization dynamics

polarization measurements, which is primarily due to the symmetries involved in the
Bjorken expansion. In particular, our results do not capture the quadrupole structure
of the longitudinal spin polarization ⟨πz⟩p at midrapidity [130], which is expected to arise
due to the flow gradients in the transverse plane (anisotropic flow resulting from the elliptic
deformation of the system) [129]. Obviously, such mechanism may be addressed only in
the framework which relaxes assumption of transverse homogeneity 4.

6.3 Non-boost-invariant and transversely homogeneous
background

The experimental results from the STAR Collaboration clearly show the decrease of the
amplitude of global polarization as a function of center-of-mass energy, with its values
approaching zero at top RHIC and LHC energies, see Fig. 1.4. This makes the low- and mid-
energy collisions most interesting from the point of view of polarization phenomenology.
On the other hand, the Bjorken model is known of being too restrictive on its assumptions
in this region. In this section we try to, partially, address this issue. In what follows, we
extend the study done in Section 6.2 by relaxing the symmetry of boost-invariance while
keeping assumption of homogeneity of the system in the transverse plane. Details of the
study presented in this section may be found in Ref. [D3].

6.3.1 Four-vector basis and spin polarization components

By relaxing the boost-invariance of the produced matter in the beam direction we need to
account for possible flow gradients which may build up along the beam direction. This is
done by introducing a deviation in the flow-vector (6.31) in the following way

Uα = (cosh(Φ), 0, 0, sinh(Φ)) , (6.48)

where, as mentioned before, Φ = ϑ(τ, η) + η, and we kept transverse components zero due
to homogeneity in x− y plane. The remaining basis vectors, see Eqs. (6.3), take the forms

Xα = (0, 1, 0, 0) , Y α = (0, 0, 1, 0) , Zα = (sinh(Φ), 0, 0, cosh(Φ)) . (6.49)

The directional derivatives (6.4) and the divergences (6.5) read

U · ∂ = cosh(ϑ) ∂τ +
sinh(ϑ)

τ
∂η , Z · ∂ = sinh(ϑ) ∂τ +

cosh(ϑ)

τ
∂η ,

X · ∂ = ∂x , Y · ∂ = ∂y , (6.50)

∂αU
α =

cosh(ϑ)

τ
+ ϑ

⃝

, ∂αZ
α =

sinh(ϑ)

τ
+ ϑ
•
, (6.51)

respectively. Since all the scalar functions must depend now on τ and η, one has ∂ ·X =
∂ · Y = 0.

4We note that in the spin-thermal based models quadrupole structure in the longitudinal spin polar-
ization component, comes, albeit with an opposite sign, from the imposed coupling between vorticity and
polarization [132].
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6.3 Non-boost-invariant and transversely homogeneous background

6.3.2 Background dynamics

In the case of the non-boost-invariant expansion, equations resulting from baryon density
conservation and energy-momentum conservation, (6.7) and (6.8)–(6.9), respectively, are
used together with the expressions listed in Section 6.3.1. However, unlike in the case of
Bjorken expansion, see Section 6.2.1, this time the relativistic Euler equation (6.9) has one
non-trivial (z) component,

(E + P) Uβ∂β sinh(Φ)−
(
∂z − sinh(Φ)Uβ∂β

)
P = 0 . (6.52)

As a result, we are left with three partial differential equations in τ − η space to be solved
for temperature, baryon chemical potential, and longitudinal fluid rapidity correction.
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Figure 6.6: (Color online) Temperature (top panel) and fluid rapidity (bottom panel)
evolution in η at various τ . Solid and dashed lines represent non-vanishing and vanishing
baryon chemical potential, respectively. The black and red symbols denote freeze-out points
at different times.

To model the non-trivial rapidity dependence of the initial energy density E0(η) =
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6 Modeling of the spin polarization dynamics

E(τ0, η) deposited in the collision we introduce the profile

E0(η) =
Ec0
2

[
Θ(η)

(
tanh(a− η b) + 1

)
+ Θ(−η)

(
tanh(a+ η b) + 1

)]
, (6.53)

with a = 6.2, b = 1.9, and Θ denoting the Heaviside step function [316]. Here, Ec0 =
E(T c

0 , µ
c
B0) is the initial energy density at the center (η = 0) calculated from Eq. (3.33) at

the initial central temperature T c
0 and baryon chemical potential µc

B0 (note that we assume
ζ → 0 herein). In numerical simulations we use T c

0 = T (τ0, η = 0) = 0.26 GeV. In the case
of baryon chemical potential profile we consider µB0(η) = µc

B0 = const. with two possibili-
ties: either we choose vanishing baryon chemical potential µc

B0 = 0 (resembling conditions
present at the high-energy experiments), or we pick µc

B0 = 0.12 GeV (to address possible
effects coming from baryon chemical potential present at lower energies). Throughout we
assume the initial longitudinal flow profile to have the Bjorken form Φ0(η) = η.

Figure 6.6 shows the evolution for T (top panel) and ϑ (bottom panel) as a function
of space-time rapidity for different longitudinal proper times τ with initial τ0 = 0.25 fm/c.
The dashed lines represent µc

B0 = 0 and solid lines denote µc
B0 = 0.12 GeV. We find that

the temperature evolution is η-even similar to the evolution of baryon chemical potential,
see Fig. 6.7, while the evolution of the fluid rapidity is η-odd. At midrapidity (η = 0),
temperature decreases in τ , similarly to the Bjorken case, see Fig. 6.1. Moreover, we
observe that at large |η| the energy density gradients lead to the buildup of fluid velocity
gradients. One may also notice the steep decay in T and ϑ evolution at η ≈ ±5 in the case
of non-zero baryon chemical potential. Up to this effect, the baryon chemical potential has
no significant effect on the evolution of the background parameters.
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Figure 6.7: (Color online) Baryon chemical potential evolution in η at various τ .
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6.3 Non-boost-invariant and transversely homogeneous background

6.3.3 Spin dynamics

The dynamics in the spin sector follows from Eqs. (6.25)–(6.30) which in the boost-
invariance-breaking case reduce to

αx1
•

+ βy1
⃝

= −αx1 θU −
αx2 UZ

⃝

2
− βy1 θZ + βy2 UZ

•
, (6.54)

αy1
• − βx1

⃝

= −αy1 θU −
αy2 UZ

⃝

2
+ βx1 θZ − βx2 UZ

•
, (6.55)

αz1
•

= −αz1 θU , (6.56)
αy2
⃝

2
+ βx2
•

= −αy2 θZ
2

+ αy1 ZU
• − βx2 θU − βx1 ZU

⃝

, (6.57)

αx2
⃝

2
− βy2
•

= −αx2 θZ
2

+ αx1 ZU
•
+ βy2 θU + βy1 ZU

⃝

, (6.58)

βz2
•

= −βz2 θU , (6.59)

where
UZ

⃝

= −ZU
⃝

= cosh(ϑ) (1 + ∂ϑ/∂η) /τ + sinh(ϑ) ∂ϑ/∂τ ,

and
UZ
•
= −ZU• = sinh(ϑ) (1 + ∂ϑ/∂η) /τ + cosh(ϑ) ∂ϑ/∂τ .

Note that, in contrast to the case of Bjorken expansion, in the present case some
spin components in the above equations are coupled, cf. Eqs. (6.37). In particular, from
Eqs. (6.54) and (6.58) one observes that this is the case for CκX and CωY . Similarly, the
coupling concerns CκY and CωX , which is evident from Eqs. (6.55) and (6.57). This does
not apply to longitudinal spin components CκZ and CωZ which evolve independently from
others.

In the numerical simulations, we follow the initialization scheme of the spin components
C which results from the physical considerations discussed in Section 6.2.2. Since at the
initial time ϑ0(η) = 0 (representing Bjorken flow profile), the non-vanishing y-component
of the spin angular momentum at the initial time is related to the component CωY and it
requires CωY to be symmetric in η, see Appendix A for more details. Hence, it is enough,
at the initial time, if we choose

C0
ωY (η) = CωY (τ0, η) =

d

cosh(η)
, (6.60)

where d = 0.1, and keep all other spin components zero to obtain the y-component of Sµν
FC.

With the help of the following relations between the parameterizations (4.7) and (4.8)
of the spin polarization tensor,

CκX = e1 cosh(Φ)− b2 sinh(Φ) , e1 = CκX cosh(Φ) + CωY sinh(Φ) , (6.61)
CκY = e2 cosh(Φ) + b1 sinh(Φ) , e2 = CκY cosh(Φ)− CωX sinh(Φ) , (6.62)
CκZ = e3, (6.63)
CωX = b1 cosh(Φ) + e2 sinh(Φ) , b1 = CωX cosh(Φ)− CκY sinh(Φ) , (6.64)
CωY = b2 cosh(Φ)− e1 sinh(Φ) , b2 = CκX sinh(Φ) + CωY cosh(Φ) , (6.65)
CωZ = b3 , (6.66)

97



6 Modeling of the spin polarization dynamics

the respective initial LAB frame spin components e1 and b2 are initialized as

e10(η) = e1(τ0, η) = d tanh(η) , b20(η) = b2(τ0, η) = d . (6.67)

In Fig. 6.8 we present results of numerical simulations for spin components CκX and CωY .
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Figure 6.8: (Color online) Evolution of the coefficients CκX (top panel) and CωY (bottom
panel). Solid and dashed lines represent non-vanishing and vanishing baryon chemical
potential, respectively.

As discussed above, although initially chosen to be zero, CκX component undergoes non-
trivial evolution due to its coupling to CωY through Eqs. (6.54) and (6.58) (obviously, all
other spin components remain zero). The symmetry in η of CκX and CωY remains intact
throughout the evolution, which is governed by the evolution equations (6.54) and (6.58),
along with the initial condition (6.60). One can observe effects of background evolution on
spin, appearing in spin equations of motion through the thermodynamic coefficients (6.17).
Similarly to temperature, see Fig. 6.6, the coefficient CωY also decreases in time, at the
center, reproducing the Bjorken behavior observed in Fig. 6.2. However, at the edges
(η ≈ ±5), as the system enters the large mass limit regime, the spin dynamics gets reversed
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6.3 Non-boost-invariant and transversely homogeneous background

which means that the magnitude of CωY starts to increase with τ . This is also the case
for the spin components in the Bjorken expansion, see Fig. 6.3. In Fig. 6.8 we also observe
that the presence of homogeneous non-zero, but small, baryon chemical potential is almost
irrelevant for spin dynamics, which is understood since baryon chemical potential enters
only through cosh(ξ) in the thermodynamic coefficients (6.17).

6.3.4 Spin polarization at freeze-out

After exploring the collective dynamics of the spin polarization components, we calculate
the average spin polarization of the particles emitted at the freeze-out to assess implications
of the dynamics for the measured observables. As the freeze-out times (τFO) depend on
the space-time rapidity of the fluid cells, see black and red symbols in Fig. 6.6, in the
current analysis, first we need to define the freeze-out hypersurface (Σµ) appearing in the
phase-space density of the PL four-vector (5.8) accordingly. In consequence, the resulting
factor ∆Σ · p is

∆Σ · p = mT

[
τFO(η) cosh (yp − η)− τ ′FO(η) sinh (yp − η)

]
dx dy dη, (6.68)

while the thermal factor has the form

β · p =
U · p
T

=
mT

T
cosh (yp − Φ) . (6.69)

Furthermore, the product of the dual polarization tensor ω⋆µβ with pβ is

ω⋆µβp
β =




(CκXpy − CκY px) sinh(Φ) + (CωXpx + CωY py) cosh(Φ) + CωZmT sinh (yp)

−CκYmT sinh (yp − Φ)− CωXmT cosh (yp − Φ) + CκZpy

CκXmT sinh (yp − Φ)− CωYmT cosh (yp − Φ)− CκZpx

− (CκXpy − CκY px) cosh(Φ)− (CωXpx + CωY py) sinh(Φ)− CωZmT cosh (yp)




,

(6.70)
which after Lorentz transformation to the PRF becomes

(ω⋆µβp
β)* =




0

m αppxpy [CκX sinh(Φ) + CωY cosh(Φ)]

m αpp
2
y [CκX sinh(Φ) + CωY cosh(Φ)]

−mT [CκX sinh (Φ− yp) + CωY cosh (Φ− yp)]

−m αppy

[
mT

(
CκX cosh (Φ− yp) + CωY sinh (Φ− yp)

)

+m
(
CκX cosh(Φ) + CωY sinh(Φ)

)]




, (6.71)

where αp ≡ 1/(m2 +mEp) [232]. Note that in the above equation we have kept only CκX

and CωY as these are the ones non-vanishing for the current numerical analysis.
Putting Eq. (6.71) in Eq. (5.14) we calculate the average spin polarization per particle

as a function of momentum coordinates. The results of this procedure for the case of
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6 Modeling of the spin polarization dynamics

vanishing baryon chemical potential at midrapidity and forward rapidity are shown in
Figs. 6.9–6.11. As we have shown above, see Fig. 6.8, the non-vanishing baryon chemical
potential has very little effect on the spin dynamics. We verified that the same applies to
momentum dependent polarization, hence we restrain from showing these results here.

Figure 6.9 shows the ⟨πx⟩p component of the mean polarization vector which has
quadrupole structure with the sign changing sequentially through the subsequent quad-
rants. Similar results were found in the case with Bjorken expansion, see Fig. 6.5 (top
panel). One can notice that this quadrupole structure is arising because of the px py term
in the x component of (ω⋆µβpβ)*, see Eq. (6.71). One observes that the magnitude of this
component decreases with rapidity.

The y component of polarization vector ⟨πy⟩p, shown in Fig. 6.10, is negative, depicting
the direction of the spin angular momentum assumed in the initialization of the hydrody-
namic equations. Its magnitude decreases with increasing rapidity and eventually becomes
independent of ϕp.

From the experimental point of view the most interesting is the polarization measured
along the beam (z) direction, i.e. longitudinal spin polarization [130, 139] which is still
awaiting clear explanation. This component is given by the quantity ⟨πz⟩p. Using symmetry
arguments in Eqs. (5.8) and (6.71), one can immediately obtain important information
about the ⟨πz⟩p quantity. Note that the symmetric integration range in η, makes only the
contribution of η-even integrands relevant. Thus, due to the assumption of CκX and CωY

being odd and even function of η, respectively, makes ⟨πz⟩p vanish at midrapidity (yp = 0).
On the other hand, at forward rapidity we observe non-trivial longitudinal polarization
pattern, see Fig. 6.11. We note that, similarly to the Bjorken expansion case, the results
shown here do not reproduce the quadrupole structure of the longitudinal spin polarization
seen in the experiments primarily due to the homogeneity in the transverse plane.

From the experimental viewpoint, apart from calculating multiple-differential spin po-
larization vector it is useful to consider integrated ⟨πµ⟩ components (note missing index
p). In particular, in order to get the spin polarization ⟨πµ⟩ we integrate Eq. (5.14) over
momentum coordinates.

We find that the initialization of the parameters that we adopted and the symmetry
properties of the spin polarization components allow only y component of ⟨πµ⟩ to be non-
vanishing (and negative).

Figure 6.12 (top panel) shows the behavior of the global polarization as a function of
rapidity. At midrapidity the magnitude of ⟨πy⟩ component is maximal and then it decreases
in forward rapidities indicating that most of the hyperon polarization is coming from the
midrapidity region. This behaviour is qualitatively similar to other models [170] and is a
subject of future experiments [317]. One can notice that the magnitude of ⟨πy⟩ at yp = 0
is qualitatively similar to the one obtained in the global polarization measurements [90],
see Fig. 1.4.

We also study the relation between the final polarization (⟨πy⟩) and the initial value of
the spin component (b20) at midrapidity and forward rapidity, which we show in Fig. 6.12
(bottom panel). We observe that ⟨πy⟩ depends linearly on b20 for, both, vanishing and
non-vanishing baryon chemical potential. Notice that, for b20 = 0.1, as considered in the
current analysis, the magnitude of ⟨πy⟩ is about 1.6% (yp = 0) as depicted also in the
top panel of Fig. 6.12, however, interestingly for b20 = 0.3, magnitude of ⟨πy⟩ is about 5%
at midrapidity which, qualitatively, agrees with the magnitude of spin polarization of Λ
hyperons observed in the low-energy heavy-ion collisions [137].

It is also interesting to find how spin polarization behaves with respect to transverse mo-
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Figure 6.9: (Color online) The x component of the mean spin polarization per particle
(5.14) at midrapidity (top panel) and forward rapidity (bottom panel) as a function of px
and py for the non-boost invariant system with vanishing baryon chemical potential.

mentum (pT ) and azimuthal angle (ϕp). This may provide important information about the
dynamics of spin polarization in the transverse-momentum plane. Integrating Eq. (5.14)
over transverse momentum and azimuthal angle gives global polarization as a function of
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Figure 6.10: (Color online) Same as Fig. 6.9 but for y-component.

ϕp and pT , respectively which can be calculated as follows [181]

⟨πµ(ϕp)⟩ =

∫
pT dpT Ep

dΠ*
µ (p)

d3p∫
dϕp pT dpT Ep

dN (p)
d3p

, ⟨πµ(pT )⟩ =

1
2π

∫
dϕp sin(2ϕp)Ep

dΠ*
µ (p)

d3p∫
dϕpEp

dN (p)
d3p

. (6.72)
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Figure 6.11: (Color online) The z component of the mean spin polarization per particle
(5.14) at forward rapidity as a function of px and py for the non-boost invariant background
with vanishing baryon chemical potential.

Figure 6.13 shows the behavior of ⟨πy⟩ with respect to pT (top panel) and ϕp (bottom
panel). The pT dependence is found to be strong as compared to other models [170] and
the experiments [96] which may be because we assume non-zero initial spin polarization
which then evolves in time. On the other hand, if pT dependence is weak then it probably
means that polarization is arising due to spin-orbit coupling which is not present in the
current formulation of our framework. The behaviour of ϕp dependence of polarization is
more pronounced at midrapidity which, within the range of 0 < ϕp < π/2, is qualitatively
similar to the polarization behavior in the experiments [96, 170]. In general, we find that
the effect of non-zero baryon chemical potential on ⟨πy⟩ is small, and has opposite effect
in forward rapidity and midrapidity.
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Figure 6.12: (Color online) Global spin polarization, ⟨πy⟩, as a function of rapidity (top
panel) and spin coefficient b20 (bottom panel).
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6.3 Non-boost-invariant and transversely homogeneous background
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Figure 6.13: (Color online) Component ⟨πy⟩ of momentum averaged polarization (5.15) as
a function of pT (top panel) and ϕp (bottom panel) with dashed and solid lines representing
vanishing and non-vanishing baryon chemical potential, respectively.
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7

Bjorken-expanding spin-polarized sys-
tem in external electric field

“Without great solitude,
no serious work is possible.”

– Pablo Picasso

In the heavy-ion collisions, it is expected that large electromagnetic fields are produced [119,
318,319] with the strength of the order of eE/m2

π ∼ eB/m2
π ∼ O(1) where mπ is the mass

of the pion and e is the electric charge. Understanding the dynamics of the EM fields
is still one of the key goals in the physics of heavy-ion collisions, for recent studies see
Refs. [320–329]. These fields may have an effect on the behavior of spin polarization of
particles, for instance, the splitting of Λ and Λ̄ global polarization, see Fig. 1.4, which is
still an open question. Thus, in this section we incorporate electric field into our formalism
and study its effects on the evolution of the spin components in the Bjorken-expanding
background. Details of this chapter may be found in Ref. [D4].

7.1 Stationary solution to the Boltzmann–Vlasov equa-
tion

For the sake of simplicity, we consider the fluid in equilibrium that, at the microscopic
scale, is composed of quark-like quasi-particles of Nf flavors which can be described by
Boltzmann-Vlasov (BV) equation. With this assumption we are not taking into considera-
tion any direct interaction (coupling) between spin and EM fields. In Ref. [286], a (station-
ary) solution to the BVequation was presented as the zeroth-order expansion in ℏ where
modified chemical potential allows electric field to be non-vanishing in equilibrium [330].
It is possible that in the event-by-event averaging [318] electric field may vanishes, how-
ever, its effects on the thermodynamics may survive. We first obtain the modification of
the equilibrium hydrodynamic variables, using the stationary solution to the BVequation,
which are then inserted into the equations of magnetohydrodynamics (MHD) along with
solutions of Maxwell equations derived for the case of Bjorken flow [324]. Subsequently,
we obtain the evolution of temperature and chemical potential and plug them into the
conservation law for spin to find the evolution of spin components. We observe that the
dynamics of the temperature and chemical potential is affected by the Joule heating (JH)
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7 Bjorken-expanding spin-polarized system in external electric field

term and modified thermodynamic parameters at the macroscopic and microscopic level,
respectively 1.

Due to the presence of EM fields, we use the stationary solution to the Boltzmann–
Vlasov (BV) equation [161] where the relativistic collisionless BV equation takes the form

pµ ∂µf
±
i ± qi F µν pν ∂

p
µ f

±
i = 0 , (7.1)

where i = 1, . . . , Nf represents quark flavor number, and qi(−qi) denotes the (anti)particle
electric charge for each ith flavor. The field strength tensor Fµν can be written in terms of
gauge field Aµ

2 as

Fµν = ∂µAν − ∂νAµ . (7.2)

One can also decompose Fµν in terms of electric (Eµ) and magnetic (Bµ) components
as [331]

Fµν = EµUν − EνUµ + ϵµναβU
αBβ, (7.3)

where
Eµ ≡ F µνUν , Bµ ≡ 1

2
ϵµναβFναUβ . (7.4)

The equilibrium distribution function (3.47) for the system with non-interacting quark-
like quasi-particles with spin, having same baryon number but different electric charges,
becomes

f±
eq,i(x, p, s) = f±

eq,i(x, p) exp

[
1

2
ωµν(x)s

µν

]
, (7.5)

where
f±
eq,i(x, p) = exp

[
−βµ (pµ ± qiAµ)±

ξ(x)

3

]
, (7.6)

is the stationary solution to Eq. (7.1). Note that, we have divided ξ by the number
of quarks (3) present in a baryon to get the quark chemical potential (µB/3). Thus,
ξ/3 = µB/(3T ) = µQ/T where µQ is the quark chemical potential.

Putting Eq. (7.6) into Eq. (7.1) gives

1

2
pµpν£β gµν ± qi pµ£β Aµ = 0 , (7.7)

where £β X is the Lie derivative of a tensor X with respect to β [332]

£β Aµ = βν∂νAµ + Aν∂µβ
ν , £β gµν = ∂µβν + ∂νβµ . (7.8)

In the global equilibrium Eq. (7.7) is satisfied, thus we get

£β gµν = 0 , £β Aµ = 0 , (7.9)

where, using Eq. (7.8), one gets

£β Aν = βµ (∂µAν − ∂νAµ) + βµ∂νAµ + Aµ∂νβ
µ ,

= βµFµν + ∂ν (β · A) = 0 . (7.10)
1Our approach is sometimes dubbed a strong electric field regime [330].
2Note that Aµ, defined here, have completely different meaning than the definition of axial-vector

component of the Wigner function used in the previous chapters.
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7.3 Baryon and electric charges

Using Eq. (7.3) in Eq. (7.10) we obtain

Eµ

T
= ∂µ (β · A) . (7.11)

Assuming Eµ and T being slowly varying functions at the microscopic scale, the integral
of above equation gives

β · A =
Eµ

T

∫
dxµ , (7.12)

up to a gauge transformation. This is immersed in the quark chemical potential [333].
Thus, Eq. (7.5) is expressed, in the small polarization limit (ωµν ≪ 1), as

f±
eq,i(x, p, s) = f±

eq,i(x, p)

[
1 +

1

2
ωµν(x)s

µν

]
, (7.13)

with

f±
eq,i(x, p) = exp (±ξi − βµpµ) , where ξi = ξ − qi

Eµ

T

∫
dxµ . (7.14)

The interpretation of Eq. (7.14) is that, though the event-by-event average of the electric
field vanishes, its traces in the distribution function may survive [318].

7.2 Baryon and electric charges

In this study the fluid has two charge currents: net baryon current (Nα) and electric charge
current (Jα). The net baryon current is defined as

Nα =

Nf∑

i

∫
dPdS pα

[
f+
eq,i(x, p, s)−f−

eq,i(x, p, s)
]
, (7.15)

which reduces, after plugging Eq. (7.13), to

Nα =

Nf∑

i

Ni U
α , (7.16)

with

Ni = 4 sinh(ξi)N(0),i(T ) , and N(0),i(T ) =
T 3

2π2
z2iK2(zi) , (7.17)

where zi ≡ mi/T is the ratio between ith flavor mass and temperature.
The inhomogeneous Maxwell equation

∂µF
µν = Jν = ρeU

ν +∆νρJρ , (7.18)

with ρe being local electric charge density

ρe =

Nf∑

i

∫
dP dS (p · U) qi

[
f+
eq,i(x, p, s)−f−

eq,i(x, p, s)
]

=

Nf∑

i

qiNi , (7.19)
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7 Bjorken-expanding spin-polarized system in external electric field

implies electric current conservation. Since we assume Bjorken–expanding resistive MHD,
this requires electric neutrality [324]. In this case, it is possible for the fluid to have a net
baryon density N , and vanishing electric charge density ρe 3. Away from equilibrium, the
(dissipative) electric current reads

Jµ = σeE
µ , (7.20)

with σe being the electric conductivity which, in general, can depend on T and µB.

7.3 Energy-momentum conservation

The energy-momentum tensor of the fluid is defined, in equilibrium, as

T µν =

Nf∑

i

∫
dPdS pµpν

[
f+
eq,i(x, p, s)+f

−
eq,i(x, p, s)

]
. (7.21)

After plugging Eq. (7.13) in the above equation we obtain

∂µT
µν = F νρJρ , (7.22)

where T µν has the same form as Eq. (3.32) with the energy density and pressure expressed
as

E = 4

Nf∑

i

cosh(ξi) E(0),i(T ) , P = 4

Nf∑

i

cosh(ξi)P(0),i(T ) , (7.23)

respectively. In above equations

E(0),i(T ) =
1

2π2
T 4 z2i

[
ziK1 (zi) + 3K2 (zi)

]
, P(0),i(T ) = T N(0),i(T ) . (7.24)

7.4 Entropy conservation

It is important to comment on the conservation of entropy in the presence of external
electric field in the global equilibrium. The definition of the entropy current is written
as [91, 161]

Hµ = −
Nf∑

i

∫
dPdS pµ

{
f+
eq,i(x, p, s)

[
ln f+

eq,i(x, p, s)− 1
]

+ f−
eq,i(x, p, s)

[
ln f−

eq,i(x, p, s)− 1
] }

. (7.25)

Putting Eq. (7.5) in Eq. (7.25), after some straightforward calculations we have

Hµ = Pβµ + βαT
µα −

Nf∑

i

ξi(x)N
µ
i , (7.26)

3This kind of setup, although greatly simplified, may hold at later stages of the evolution of the QGP.
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7.5 Background dynamics

whereas, in the global equilibrium, using Eq. (7.22) we obtain

∂µH
µ = ∂µ


Pβµ + βαT

µα −
Nf∑

i

ξi(x)N
µ
i




= βα∂µT
µα −

Nf∑

i

Nµ
i ∂µξi(x)

= βαF
αβJβ −

Nf∑

i

Nµ
i ∂µξi(x)

= −
Nf∑

i

Nµ
i ∂µ (ξi(x) + qiEµ) = −NTβµ∂µξ = −NT£β ξ = 0 . (7.27)

Hence, we can safely say that electric field does not produce entropy in global equilibrium
with the condition that chemical potential follows Eq. (7.14). We emphasize that Eq. (7.25)
also includes terms of spin polarization tensor (ωµν), however, those contributions come at
quadratic order which we do not consider in our analysis.

The current study assumes resistive MHD equations where the source of dissipation is
the electrical conductivity. For out of equilibrium system the divergence of entropy reads

∂µH
µ =

σe
T
E2 , where E ≡

√
−EµEµ . (7.28)

7.5 Background dynamics

The form of the net baryon density conservation (6.34) and the energy equation (6.33) in
the presence of the external electric field and Bjorken expansion become

∂N
∂τ

+
N
τ

= 0 ,
∂E
∂τ

+
E + P
τ

= σeE
2 , (7.29)

respectively. Along with the above equations, we must also solve the Maxwell equations
to obtain the evolution of the EM fields, which, in general, is quite difficult. Nevertheless,
here we assume maximally boost-invariant or non-rotating solution as [324]

Bµ = B0
τ0
τ
Y µ , Eµ = ℓE0

τ0
τ
e−σe(τ−τ0) Y µ , (7.30)

with E0 and B0 being the electric and magnetic field values at the initial proper time τ0,
respectively. The variable ℓ ≡ B·E

BE
= ±1 represents the parallel (+1) and anti-parallel

(−1) field configurations.
One obtains solution (7.30) to the resistive MHD equations as follows. Bjorken sym-

metries prevent magnetic field to exist in the longitudinal (z) direction together with Ez

component and electric charge density ρe [326], hence allowing electric and magnetic fields
to be non-vanishing only in the transverse (x− y) plane. Moreover, electric and magnetic
fields can only be parallel 0 (ℓ = +1) or antiparallel π (ℓ = −1) to each other in order
to preserve the Bjorken flow. We also consider that the direction of the fields is boost-
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7 Bjorken-expanding spin-polarized system in external electric field

invariant. This allows us to obtain the solution (7.30) from the Maxwell’s equations 4.
Using Eq. (7.30) in Eq. (7.14) we have

ξi = ξ − ℓ qiRRMS
E0

T

(τ0
τ

)
e−σe(τ−τ0) , (7.31)

with RRMS being the nucleon root-mean-square charge radius.
Another important point is of charge neutrality which is not satisfied at the initial time.

However, considering ρe at the initial time for Nf = 3, charge neutrality forces the initial
number densities to follow

2Nu(τ0)−Nd(τ0)−Ns(τ0) = 0 , (7.32)

which, in realistic situations, is not satisfied by the fluid evolution. For our analysis, local
electric charge density takes very small values within a fraction of a Fermi, hence can be
neglected and neutrality is achieved approximately.

For the numerical modelling of the background, we initialize the parameters at the
initial proper time τ0 = 1 fm as

T0 = 0.6GeV , µB0 = 0.05GeV , (7.33)

which corresponds to
√
sNN = 200GeV collision energy [334]. We use the masses of con-

stituent quarks such as up, down and strange at Λ’s mass scale for Nf = 3 [335]

mu = md = 0.382GeV , ms = 0.537GeV , (7.34)

whereas RRMS = 4.3 fm [336]. The electrical conductivity follows the relation up to second
order in ξ = µB/T as [337]

σe(T, µB) = 0.37 Qe T

[
1 + 0.15

(µB

T

)2]
, (7.35)

and Qe = (6/9)e2 is the sum of the square of up (2e/3), down (−e/3), and strange (−e/3)
quark electric charges. We also introduce α parameter to employ different initial values of
the electric field (E0) for the analysis

α ≡ ℓ
eE0

m2
π

, (7.36)

where eE0 = m2
π. α is our only free variable which we can tune to change the value of the

initial electric field.
In order to better understand the evolution of temperature and baryon chemical po-

tential, we first write the energy equation in Eq. (7.29) as

τ
dE
dτ

= − w︸︷︷︸
expansion term

+

Joule heating term︷ ︸︸ ︷
τ σeE

2 , (7.37)

4Note that the presence of EM fields can, in general, break the boost-invariance of the system due to
a non-vanishing value of the Poynting vector. In the presence of EM field the most general form of the
energy-momentum tensor can have terms of the form UµϵνλαβEλBαUβ , which can be argued to break the
boost-invariant flow. Thus to preserve the Bjorken symmetry in the transverse boost-invariant MHD, the
direction of the electric field can either be parallel or antiparallel to the direction of the magnetic field.
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Figure 7.1: (Color online) Evolution of T (top panel) and µB (bottom panel) as a function
of proper time τ with initial values T0 = 0.6 GeV, and µB0 = 0.05 GeV for Bjorken
background in the presence of external electric field. α = 0 corresponds no electric field in
the system.

with w = E +P being the enthalpy density. As observed from Eq. (7.37), the proper-time
evolution of the energy density depends on the expansion and JH terms. JH increases
the temperature with the increase in the values of E2 and σe τ , thus producing heating
effect. Equation (7.35) tells us that σe τ is a small factor and its increase will decrease the
electric field in the hydrodynamic evolution, see Eq. (7.30). However, the JH term can be
dominating over the expansion term in the early time for large initial value of electric field,
which may induce reheating effect [324]. Nonetheless, in the current setup, fluid evolution
gets modified through both JH term and EoS which prevents reheating and increases the
enthalpy density. This in turn means that temperature is decreasing due to electric field
(|α| ̸= 0) and makes the fluid elements heavier, which can be seen from Fig. 7.1 (upper
panel). The temperature behavior for both negative and positive values of α is almost
similar, however, for large values of α it is more pronounced.
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7 Bjorken-expanding spin-polarized system in external electric field

Evolution of the baryon chemical potential, as seen from Fig. 7.1 (lower panel), is more
sensitive to the presence of the electric field in the system. With the increase in proper
time, absolute value of µB starts to decrease, specifically at τ = 3 fm, because electric field
starts to dominate over µB, and the sign of µB depends on the sign of α.

7.6 Spin dynamics

The spin tensor (3.43) for quark-like quasi-particles takes the form

Sα,βγ
GLW =

Nf∑

i

cosh(ξi)

[
Uα
(
A1,i ω

βγ +A2,i U
[β ω

γ]
δ U

δ
)
+A3,i

(
U [β ωγ]α + gα[β ω

γ]
δ U

δ
)]

,

(7.38)

with the thermodynamic coefficients

A1,i = N(0),i − B(0),i , A2,i = A(0),i − 3B(0),i , A3,i = B(0),i . (7.39)

We observe that the forms of the spin equations of motion remain the same as Eqs. (6.37)
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Figure 7.2: (Color online) Proper-time evolution of spin polarization component CωY with
initial value CωY0 = 0.1 in the presence of external electric field.

even in the presence of the electric field and find no coupling between the spin components.
The evolution of the spin components is qualitatively similar to the Bjorken-expanding
system without mean fields, see Sec. 6.2. However, we notice that electric field enhances
the spin dynamics as depicted in Fig. 7.2. We only show CωY evolution as this component
is relevant keeping in mind the physics situation of heavy-ion collisions, see the discussion
in Sec. 6.2.2, and its enhancement suggests that electric field may play an important role
in the heavy-ions collision experiments. As the spin component behavior is similar to the
Bjorken-expanding matter, we find that the dynamics of mean spin polarization is also
qualitatively similar as shown in Figs. 6.5 in Sec. 6.2.3, hence we do not show those plots
here.
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8

Conformal symmetry of perfect-fluid
hydrodynamics with spin

“Try not to become a man of success
but rather a man of value.”

– Albert Einstein

In Sections 6.2 and 6.3 we have considered the produced matter to be homogeneous in the
direction transverse to the beam and we focused on its dynamics in the longitudinal direc-
tion. However, due to the finite size of the colliding nuclei, the dynamics of the produced
matter in the transverse plane is inhomogeneous, with energy density strongly decreasing at
the radial edge. To address such a possibility, in this section, we consider the simplest non-
trivial extension of Bjorken expansion assuming that the system is cylindrically-symmetric
with respect to the beam direction. Such conditions arise in perfectly central relativistic col-
lisions of heavy-ions or smaller systems. Although, in general, to study such configuration,
it is necessary to perform full numerical simulations, in what follows, we choose a different
strategy leading to semi-analytic results. For this purpose, we use a generalization of the
Bjorken flow known as Gubser flow [338,339]. The latter introduces the flow component in
the transverse direction and can be shown invariant for boost-invariant and cylindrically
symmetric systems under conformal symmetry group SO(3)q⊗SO(1, 1)⊗Z2. This special
symmetry, known as “Gubser’s symmetry”, is a generalized version of the Bjorken symmetry
ISO(2)⊗SO(1, 1)⊗Z2

1 and has been used in various studies of hydrodynamics [340–348].
In this chapter, we study the dynamics of spin components in the Gubser-expanding

perfect-fluid background. For this purpose, we first introduce certain aspects of conformal
mapping to the de Sitter space required to make the Gubser’s symmetry manifest. We
find transformation rules which the conservation laws must follow for the dynamics to
respect conformal invariance. While the resulting well-known tracelessness of the energy-
momentum tensor is a feasible condition, the additional condition for the spin tensor is not
satisfied by the form we use (3.39), thus breaking conformal symmetry explicitly. However,
as our formulation prevents any back-reaction from the spin evolution to the perfect-fluid
background evolution, the invariance of the background is not spoiled by the conformal

1SO(3)q is a special orthogonal rotation group in three dimensions characterized by a length scale q,
SO(1, 1) is a special orthogonal indefinite group which ensures boost-invariance symmetry in the system
and Z2 symmetry is generated by the reflections in the r − ϕ plane. ISO(2) is a Euclidean group with
dimension 3 ensuring translational and rotational invariance in the transverse plane. In the limit q → 0,
SO(3)q reduces to ISO(2) and Gubser flow takes the form of Bjorken flow.
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8 Conformal symmetry of perfect-fluid hydrodynamics with spin

symmetry breaking at the level of the spin tensor. This motivates us to find non-trivial
approximate solutions for the spin keeping a small but finite mass. The results presented
in the current chapter may be found in the Ref. [D5].

8.1 Boost-invariant and cylindrically-symmetric expan-
sion

For boost-invariant and cylindrically-symmetric (with respect to the beam direction) sys-
tems respecting Gubser symmetry it is convenient to introduce the polar-Milne coordinates
xµ = (τ, r, ϕ, η) with the line element given as

ds2 = −dτ 2 + dr2 + r2dϕ2 + τ 2dη2,

where τ and η, as defined in Section 6.1.1, are longitudinal proper time and longitudinal
spacetime rapidity, while r =

√
x2+y2 and ϕ = tan−1(y/x) are the radial distance and

the azimuthal angle, respectively, which parameterize the plane transverse to the beam
direction.

The four-vector basis for boost-invariant and cylindrically symmetric system can be
written in the form (note in LRF, U , X, Y , and Z are the unit vectors in the directions of
τ , r, ϕ, and η, respectively)

Uµ = (cosh(ϑ), sinh(ϑ), 0, 0) , Xµ = (sinh(ϑ), cosh(ϑ), 0, 0) ,

Y µ = (0, 0, 1/r, 0) , Zµ = (0, 0, 0, 1/τ) , (8.1)

which follows

U · U = −1 , X ·X = 1 , Y · Y = 1 , Z · Z = 1 , (8.2)

and allows polar-hyperbolic metric tensor, gµν = diag(−1, 1, 1/r2, 1/τ 2) (note opposite
signature as compared to previous sections), to be written as

gµν = −UµUν +XµXν + Y µY ν + ZµZν . (8.3)

8.2 Conformal symmetry and conformal mapping to de
Sitter space

The invariance of the flow profile with respect to the Gubser’s symmetry is manifest if
one uses the conformal mapping to the curved (de Sitter) spacetime dS3⊗R defined by
three-dimensional de Sitter space and a line. This is performed by Weyl rescaling of the
metric

ds2 → ds2

Ω2
cf

=
−dτ 2 + dr2 + r2dϕ2

τ 2
+ dη2 , (8.4)

where Ωcf = τ is the conformal factor, and the coordinate transformation from polar Milne
coordinates to de Sitter coordinates ˆ̂xµ = (ρ, θ, ϕ, η) 2 with the help of the relations

sinh (ρ(τ, r)) = −1− (qτ)2 + (qr)2

2 qτ
, tan (θ(τ, r)) =

2 qr

1 + (qτ)2 − (qr)2
. (8.5)

2In the following the quantities with a double hat on top indicate that they are defined in the de Sitter
space.
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8.2 Conformal symmetry and conformal mapping to de Sitter space

The rescaled line element in the de Sitter space with the metric

ˆ̂gµν = diag
(
−1, (cosh(ρ))2 , (cosh(ρ))2 (sin(θ))2 , 1

)
,

takes the form

dˆ̂s2 = −dρ2 + (cosh(ρ))2 (dθ2 + (sin(θ))2 dϕ2) + dη2 . (8.6)

From Eq. (8.6) we observe that the Weyl scaling (8.4) along with the change of the coor-
dinates through the relations (8.5) makes the (SO(3)q) conformal isometry to become a
manifest isometry (SO(3)) in de Sitter coordinates.

For a system to respect conformal symmetry it is required that (mA, nA) tensors trans-
form homogeneously under Weyl rescaling, namely [338,339,349–351]

Aµ1...µm
ν1...νn

(x) → e(−φ(x))∆AAµ1...µm
ν1...νn

(x) ≡ Ω∆A
cf A

µ1...µm
ν1...νn

(x) , (8.7)

where φ(x) depends on the spacetime coordinates, while ∆A = [A] + mA − nA indicates
the conformal weight of A with [A] representing the mass dimension of A, and mA and nA

are the number of contravariant and covariant indices, respectively, of the quantity A.
Take for example the metric tensor gµν : gµν is a second-rank (0, 2) tensor which is

dimensionless, thus [gµν ] = 0 with mA = 0 and nA = 2, hence, ∆gµν =−2, which implies
that gµν transforms homogeneously under Weyl rescaling as [339,349]

gµν → Ω−2
cf gµν . (8.8)

Similarly, conformal weight of gµν is ∆gµν =2.
With the use of Eq. (8.8) one can obtain the relation between R3⊗R and dS3⊗R as

ˆ̂gµν =
1

τ 2
∂xα

∂ ˆ̂xµ
∂xβ

∂ ˆ̂xν
gαβ . (8.9)

With the knowledge of ∆gµν =−2 and fluid flow normalization U · U = −1, the confor-
mal weight of contravariant fluid flow vector can be shown to be ∆Uµ = 1, where the
transformation rule is

ˆ̂Uν =
1

τ

∂xµ

∂ ˆ̂xν
Uµ . (8.10)

The advantage of going to de Sitter spacetime is that the flow profile (8.1) under (8.10)
becomes static

ˆ̂Uµ = (1, 0, 0, 0) . (8.11)

Hence, it respects Gubser’s symmetry with the transverse rapidity of the form [338,339]

ϑ(τ, r) = tanh−1

(
2 qτ qr

1 + (qτ)2 + (qr)2

)
. (8.12)

Similarly, other basis vectors (8.1) in the de Sitter spacetime become

ˆ̂Xµ =
(
0, (cosh(ρ))−1, 0, 0

)
, ˆ̂Y µ =

(
0, 0, (cosh(ρ) sin(θ))−1, 0

)
,

ˆ̂Zµ = (0, 0, 0, 1) . (8.13)
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8 Conformal symmetry of perfect-fluid hydrodynamics with spin

Using basis vectors, the metric ˆ̂gµν reads

ˆ̂gµν = − ˆ̂Uµ ˆ̂U ν + ˆ̂Xµ ˆ̂Xν + ˆ̂Y µ ˆ̂Y ν + ˆ̂Zµ ˆ̂Zν , (8.14)

with its determinant given by

ˆ̂g ≡ det(ˆ̂gµν) = −(cosh(ρ))4 (sin(θ))2 . (8.15)

From Eq. (3.33) we find that the mass dimension of the energy density and the pressure is
[E ] ≡ [P ] = 4, thus their conformal weight is ∆E = ∆P = 4. Similarly, for the net baryon
density (3.26) one arrives at [N ] = 3 with ∆N = 3. For the temperature and baryon
chemical potential it is easy to observe that their conformal weight is ∆T = ∆µB

= 1 since
their mass dimension is [T ] = [µB] = 1.

Using the method described above, see Eq. (8.10), transformation rules for other quan-
tities can be found:

Uµ(τ, r) = τ
∂ ˆ̂xν

∂xµ
ˆ̂Uν(ρ) ,

T (τ, r) =
ˆ̂T (ρ)

τ
, µB(τ, r) =

ˆ̂µB(ρ)

τ
,

E(τ, r) =
ˆ̂E(ρ)
τ 4

, P(τ, r) =
ˆ̂P(ρ)
τ 4

, N (τ, r) =
ˆ̂N (ρ)

τ 3
. (8.16)

For the purpose of the following analysis it is particularly important to find conformal
weights of the energy-momentum and the spin tensors. As mentioned before, see Eq. (1.23),
total angular momentum has both orbital and spin contributions

Jλ,µν = Lλ,µν + Sλ,µν = xµT λν − xνT λµ + Sλ,µν . (8.17)

As the mass dimension of xµ is [xµ] = −1, one has ∆xµ = 0. From the knowledge of the
conformal weights of E and Uα, and using Eq. (3.32), we find that the conformal weight
of the energy-momentum tensor is ∆Tαβ = 6 (note that left-hand side of Eq. (3.32) must
have the same conformal weight as each term on the right-hand side). From the reasoning
that each term in Eq. (8.17) should have the same conformal weight one can then find that
the spin tensor has the conformal weight ∆Sαβγ = 6. Therefore the GLW spin tensor in
our formalism should respect ∆Sαβγ

GLW
= 6 3.

In a similar way, using the information of the conformal weights of net baryon density
and fluid-flow, we also obtain the conformal weight of the net baryon current (3.25) as
∆Nα = 4. From Eq. (3.40), we find, using the conformal weight of the spin tensor, that
the conformal weight of the spin polarization tensor is ∆ωαβ =2 which gives the conformal
weights of κα and ωα to be ∆κα =1 and ∆ωα =1. Here, we have used the fact that ϵαβγδ has
no mass dimension and has four contravariant indices resulting in ∆ϵαβγδ =4, see Eq. (4.3).
Using the information of how spin polarization tensor transforms under Weyl scaling we
find that spin polarization components Cκ and Cω have conformal weights ∆Cκ =∆Cω =0,
which makes them conformally invariant (note that Cκ and Cω are dimensionless scalars).

3Using the information that the conformal weight of the Dirac spinor ψ and Dirac dual spinor ψ̄ is
∆ψ = ∆ψ̄ = 3

2 and Dirac Gamma matrix has the conformal weight ∆γµ = 1 [352, 353], we can find that
the canonical spin tensor (1.30) and the HW spin tensor (1.34) has the same conformal weight as the GLW
spin tensor.
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8.3 Conformal invariance of conservation equations

To summarise, transformation rules Eq. (8.7) for the net baryon current, the energy-
momentum tensor, and the spin tensor for four-dimensional spacetime read

Nα → Ω4
cf N

α , Tαβ → Ω6
cf T

αβ , Sαβγ → Ω6
cf S

αβγ . (8.18)

It can be easily noticed that the transformation rules for the covariant quantities can be
found using the information that raising (lowering) the Lorentz index with the metric
tensor changes the conformal weight by 2 (−2).

8.3 Conformal invariance of conservation equations

In this section we derive conformal transformation rules for the conservation laws for Nα,
Tαβ, and Sαβγ, which, in curved spacetime, read

dαN
α(x) = ∂αN

α + Γα
αβN

β = 0 , (8.19)

dαT
αβ(x) = ∂αT

αβ + Γα
αλT

λβ + Γβ
αλT

αλ = 0 , (8.20)
dαS

αβγ(x) = ∂αS
αβγ + Γα

αλS
λβγ + Γβ

αλS
αλγ + Γγ

αλS
αβλ = 0 , (8.21)

with Γν
µλ being the Christoffel symbol defined as [354–356]

Γν
µλ ≡ Γν

λµ =
1

2
gνσ(∂µgσλ + ∂λgσµ − ∂σgµλ) . (8.22)

Note that dα in Eqs. (8.19)–(8.21) is the covariant derivative 4, which reduces to partial
derivative in flat spacetime.

To obtain conformal transformation of the conservation equations (8.19)–(8.21) we re-
quire Christoffel symbols (8.22) to transform accordingly. Using Eq. (8.8) we get [351,357,
358]

ˆ̂Γν
µλ =

1

2
ˆ̂gνσ
[
∂µ ˆ̂gσλ + ∂λ ˆ̂gσµ − ∂σ ˆ̂gµλ

]
,

=
1

2
Ω−2gνσ

[
∂µ(Ω

2gσλ) + ∂λ(Ω
2gσµ)− ∂σ(Ω2gµλ)

]
,

=
e2φgνσ

2

[
∂µ(e

−2φgσλ) + ∂λ(e
−2φgσµ)− ∂σ(e−2φgµλ)

]
,

=
e2φgνσ

2

[
2e−φ∂µ(e

−φ)gσλ + e−2φ∂µ(gσλ) + 2e−φ∂λ(e
−φ)gσµ + e−2φ∂λ(gσµ)

−2e−φ∂σ(e
−φ)gµλ − e−2φ∂σ(gµλ)

]
,

=
gνσ

2
[ ∂µ(gσλ) + ∂λ(gσµ)− ∂σ(gµλ) + 2 eφ

(
∂µ(e

−φ)gσλ + ∂λ(e
−φ)gσµ − ∂σ(e−φ)gµλ

)
] ,

= Γν
µλ + eφ

[
δνλ∂µ(e

−φ) + δνµ∂λ(e
−φ)− ∂σ(e−φ)gνσgµλ

]
,

= Γν
µλ − δνλ∂µφ− δνµ∂λφ+ gνσgµλ∂σφ , (8.23)

with δβλ being the Kronecker delta function. However, one may notice that when φ is
constant then ∂σφ = 0 in Eq. (8.23) which makes ˆ̂Γν

µλ = Γν
µλ.

4See Appendix B for more information about covariant derivative and Christoffel symbols.
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8 Conformal symmetry of perfect-fluid hydrodynamics with spin

One can easily show that the net baryon current conservation (8.19) is conserved in
Minkowski and de Sitter spacetimes which means that it is conformal-frame indepen-
dent [349–351] resulting in

dαN
α = Ω4

cf
ˆ̂dα

ˆ̂Nα. (8.24)

Plugging Eq. (8.23) in Eq. (8.20) we arrive at the conformal transformation of energy and
linear momentum conservation [350,351,357]

dαT
αβ = Ω6

cf

[
ˆ̂dα

ˆ̂Tαβ − ˆ̂T λ
λ
ˆ̂gβδ∂δφ

]
, (8.25)

which indicates that ˆ̂Tαβ has to be traceless ( ˆ̂Tα
α = 0) to be conserved in de Sitter space-

time [359–362].
Finally, using Eqs. (8.18) and (8.23) in Eq. (8.21), we obtain the conformal transfor-

mation of the spin conservation law

dαS
αβγ = Ω6

cf

[
ˆ̂dα
ˆ̂Sαβγ − ( ˆ̂S λγ

λ
ˆ̂gβσ + ˆ̂Sαβ

α
ˆ̂gσγ)∂σφ

]
, (8.26)

indicating that the spin tensor needs to fulfill the condition ˆ̂S αβ
α = 0 for the spin conserva-

tion to be conformally invariant. We also observe from Eqs. (8.24), (8.25), and (8.26) that
when φ is constant all the conservation laws automatically become conformally invariant.

8.4 Background dynamics

We will now explore the Gubser-expanding background dynamics which will then be used
in the next section to obtain the evolution of the spin polarization components. Using
Eqs. (8.16) our results can be transformed back to the Minkowski spacetime.

We find that the GLW energy-momentum tensor (3.32) satisfies the traceless condition
only in the conformal limit where energy density (3.33), pressure (3.33), and net baryon
density (3.26) are expressed as

ˆ̂E =
12

π2
cosh(ξ) ˆ̂T

4
, ˆ̂P =

4

π2
cosh(ξ) ˆ̂T

4
, ˆ̂N =

4

π2
sinh(ξ) ˆ̂T

3
, (8.27)

respectively. One finds that ˆ̂E = 3 ˆ̂P , which makes the energy-momentum traceless, as re-
quired in Eq. (8.25). Moreover, we observe that the GLW (3.43) and HW (1.34) definitions
of spin tensor do not satisfy the condition of conformal invariance (8.26), which is not the
case for canonical spin tensor (1.30).

Since, as before, we assume small spin polarization limit which makes spin dynamics
decouple from the background dynamics, in the following we study the dynamics of the
spin components on top of the Gubser flow background without spoiling its conformal
invariance. Considering evolution of the spin components in the de Sitter coordinates we
keep finite mass in the spin tensor (3.43).

The conservation law for net baryon density (6.7) can be written in the de Sitter
coordinates as

ˆ̂Uα∂α
ˆ̂N + ˆ̂N∂α ˆ̂Uα + ˆ̂N ˆ̂Uα∂α

√
−ˆ̂g√
−ˆ̂g

= ∂ρ
ˆ̂N + 2 ˆ̂N tanh(ρ) = 0 , (8.28)
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8.5 Background dynamics

where ˆ̂g is the value of the determinant of de Sitter metric (8.15). Similarly, the conservation
of energy (6.8) gives

∂ρ
ˆ̂E + 2(ˆ̂E + ˆ̂P) tanh(ρ) = 0 , (8.29)

whereas Euler equation (6.9) is satisfied trivially. The solutions of the above equations of
motion can be obtained as [338,339],

ˆ̂E = ˆ̂E0
(
cosh(ρ0)

cosh(ρ)

)8/3

, ˆ̂N = ˆ̂N0

(
cosh(ρ0)

cosh(ρ)

)2

, (8.30)

respectively, where ˆ̂E0 ≡ ˆ̂E(ρ0) and ˆ̂N0 ≡ ˆ̂N (ρ0) are constants of integration at the initial
de Sitter time (ρ0). The respective solutions for temperature and baryon chemical potential
in de Sitter space can be obtained using Eqs. (8.27),

ˆ̂T = ˆ̂T0

(
cosh(ρ0)

cosh(ρ)

)2/3

, ˆ̂µB = ˆ̂µB0

(
cosh(ρ0)

cosh(ρ)

)2/3

, (8.31)

where ˆ̂T0 ≡ ˆ̂T (ρ0) and ˆ̂µB0 ≡ ˆ̂µB(ρ0) are the integration constants. This result implies that
ˆ̂ξ = ˆ̂µB/

ˆ̂T does not depend on ρ 5.
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Figure 8.1: (Color online) Temperature (contours) and flow-vector components

(U τ , U r) /
√
(U τ )2 + (U r)2 (stream lines – the coloring of arrows are indicated by the fluid

rapidity ϑ) as functions of longitudinal proper time (τ) and radial distance (r).

Figure 8.1 shows strongly correlated behavior of temperature (8.31) with the flow-vector

components (U τ , U r) /
√
(U τ )2 + (U r)2 where the initial temperature is ˆ̂T0 ≡ ˆ̂T (ρ0) = 1.2

at ρ0 = 0 such that considering q=1 fm−1 gives T (τ0 = 1 fm, r = 0) = 1.2 fm−1 = 0.24GeV
[342].

5We observe here that the dynamics of the system, due to Gubser symmetry, depends only on ρ [338,339].
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8 Conformal symmetry of perfect-fluid hydrodynamics with spin

8.5 Spin dynamics

In this section we study the evolution of the spin polarization components. For simplicity
we continue on using the de Sitter coordinates instead of polar Milne coordinates, although,
as we noted above, the considered GLW form of the spin tensor leads to the conformal
symmetry breaking.

The spin equations (6.25)–(6.30) reduce, in this case, to

ˆ̂Q ˙̂̂
CκX = − ˆ̂CκX

[
˙̂̂Q+

5

2
ˆ̂Q tanh(ρ)

]
, (8.32)

ˆ̂Q ˙̂̂
CκY +

ˆ̂Q
2
cosh(ρ) sin(θ)

˚̂̂
CωZ = − ˆ̂CκY

[
˙̂̂Q+

5

2
ˆ̂Q tanh(ρ)

]

− ˆ̂CωZ

ˆ̂Q
2
cosh(ρ) cos (θ) , (8.33)

ˆ̂Q ˙̂̂
CκZ −

ˆ̂Q
2
cosh(ρ) sin(θ)

˚̂̂
CωY = − ˆ̂CκZ

[
˙̂̂Q+ 3 ˆ̂Q tanh(ρ)

]

+ ˆ̂CωY
ˆ̂Q cosh(ρ) cos (θ) , (8.34)

(
ˆ̂Q− ˆ̂R

) ˙̂̂
CωX = − ˆ̂CωX

[
˙̂̂Q− ˙̂̂R+

(
9 ˆ̂Q
2
− 4 ˆ̂R

)
tanh(ρ)

]
,

(8.35)
(
ˆ̂Q− ˆ̂R

) ˙̂̂
CωY −

ˆ̂Q
2 sin(θ)

1

(cosh(ρ))3
˚̂̂
CκZ = − ˆ̂CωY

[
˙̂̂Q− ˙̂̂R+

(
9 ˆ̂Q
2
− 4 ˆ̂R

)
tanh(ρ)

]
,

(8.36)
(
ˆ̂Q− ˆ̂R

) ˙̂̂
CωZ +

ˆ̂Q
2 sin(θ)

1

(cosh(ρ))3
˚̂̂
CκY = − ˆ̂CωZ

[
˙̂̂Q− ˙̂̂R+

(
5 ˆ̂Q− 4 ˆ̂R

)
tanh(ρ)

]

−
ˆ̂Q

2 sin(θ)

cot (θ)

(cosh(ρ))3
ˆ̂CκY , (8.37)

where ˙( ) ≡ ∂/∂ρ, ˚( ) ≡ ∂/∂θ with ˆ̂Q = cosh(ˆ̂ξ) ˆ̂B(0) and ˆ̂R = cosh(ˆ̂ξ) ˆ̂N(0).
In contrast to the Bjorken-expanding system (6.37) where all spin components evolve

independently and to the case of non-boost invariant system, see Eqs. (6.54)–(6.59), where
the spin components CκX , CωY and CκY , CωX are coupled with each other, respectively,
here we find that CκX and CωX evolve independently whereas CκY , CωZ and CκZ , CωY are
coupled with each other, respectively. We observe that these couplings arise due to the
breaking of the conformal symmetry in the spin tensor through the dependence of the spin
components on the θ coordinate.

For the conformal EoS, the solutions to Eqs. (8.32) and (8.35) can be obtained analyt-
ically as

ˆ̂CκX = ˆ̂C0
κX

(
cosh(ρ)

cosh(ρ0)

)5/6

, ˆ̂CωX = ˆ̂C0
ωX

(
cosh(ρ0)

cosh(ρ)

)7/6

, (8.38)

where ˆ̂C0
κX ≡ ˆ̂CκX(ρ0) and ˆ̂C0

ωX ≡ ˆ̂CωX(ρ0) are the initial values of the spin components.
Interestingly, the behavior (concave function of ρ) of ˆ̂CωX is qualitatively similar to the
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Figure 8.2: (Color online) Dynamics of coefficients CκX (top panel) and CωX (bottom
panel) in τ − r plane. Note different color scaling for the two panels.
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8 Conformal symmetry of perfect-fluid hydrodynamics with spin

evolution of temperature and baryon chemical potential (8.31), whereas dynamics of ˆ̂CκX

is given by a convex function of de Sitter time ρ.
Figure 8.2 shows the evolution of CκX (top panel) and CωX (bottom panel) in the polar

Milne coordinates (τ, r) with the initial values of the spin components as ˆ̂C0
κX = ˆ̂C0

ωX = 0.1
implying CκX(τ0 = 1fm, r = 0) = CωX(τ0 = 1fm, r = 0) = 0.1 and the mass we considered
in the calculations is m = 0.5 ˆ̂T0 fm

−1.
The dynamics of the components ˆ̂CωY and ˆ̂CκZ is quite complicated due to their coupling

through Eqs. (8.34) and (8.36). However, when ˆ̂CωY is kept initially negligible, then it can
be shown that ˆ̂CκZ is approximately θ-independent

ˆ̂CκZ | ˆ
ĈωY =0

≈ ˆ̂C0
κZ

(
cosh(ρ)

cosh(ρ0)

)1/3

, (8.39)

where ˆ̂C0
κZ ≡ ˆ̂CκZ(ρ0) and ˆ̂CκZ(ρ) ∼ 1/

√
ˆ̂T (ρ).

Furthermore, when ˆ̂CωY ̸= 0, one may notice that ˆ̂CκZ vary slowly with θ and the
second term on the left-hand side of Eq. (8.36) can be considered negligible. In this case,
the solution to ˆ̂CωY component takes the form

ˆ̂CωY ≈ ˆ̂C0
ωY

(
cosh(ρ0)

cosh(ρ)

)7/6

, (8.40)

where ˆ̂C0
ωY is the initial value of ˆ̂CωY at ρ0. Numerically, it has checked that ˆ̂CωY depends

weakly on θ and thus approximately proportional to ˆ̂CωX .
From Eqs. (8.33) and (8.37) we observe that the solutions for ˆ̂CκY and ˆ̂CωZ can be ob-

tained only numerically. Nevertheless some special solutions can be obtained if we assume
that θ terms vanish which will make ˆ̂CκY and ˆ̂CωZ decouple from each other

ˆ̂CκY ≈ ˆ̂C0
κY

(
cosh(ρ)

cosh(ρ0)

)5/6

csc θ , ˆ̂CωZ ≈ ˆ̂C0
ωZ

(
cosh(ρ0)

cosh(ρ)

)5/3

csc θ , (8.41)

where ˆ̂C0
κY ≡ ˆ̂CκY (ρ0) and ˆ̂C0

ωZ ≡ ˆ̂CωZ(ρ0) and thus ˆ̂CκY ∼ ˆ̂CκX . All the spin components
tend to exhibit the behavior (cosh ρ)c, with c being positive (or negative) constant.
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9

Summary

“Begin at the beginning”, the King said gravely,
“and go on till you come to the end: then stop.”

– Lewis Carroll, Alice in Wonderland

• In this Thesis, we developed a quantum kinetic theory formalism for the Wigner
function for spin-1/2 massive particles considering local and non-local collisional effects
which we used to derive the Boltzmann-like kinetic equation for classical distribution
function in phase-space extended to spin. In this process, we assumed no extra
constraints on the collisional kernels and considered that the spin polarization may
have, both, classical and quantum origins (zeroth and the first-order, in ℏ).

• In the case of local equilibrium where the collisional kernels vanish using the devel-
oped quantum kinetic theory we derived the perfect-fluid hydrodynamics with spin.
We obtained them from the conservation laws for the net baryon current, the energy-
momentum tensor, and the spin tensor using GLW definitions of the currents. These
relations agree with the conservation equations derived using the classical approach
in the small polarization limit.

• We then studied the propagation properties of the spin polarization components
using the general form of spin tensor and derived the spin-wave velocity for the
Maxwell-Jüttner and Fermi-Dirac statistics. We analyzed the wave spectrum of the
spin polarization components and found that only the transverse spin components
propagate, as in the case of electromagnetic waves.

• Finally, we studied the space-time evolution of the spin polarization components
using the formalism of perfect-fluid hydrodynamics with spin and obtained some
novel numerical and analytic results using various hydrodynamic backgrounds and/or
external electric field. We found qualitative agreement between our spin polarization
results with other models and experimental observations.
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A

Interpretation of spin components for
boost-invariance-breaking flow

Following the discussions in Sec. 6.2.2 where we calculated orbital and spin contributions
to the total angular momentum at the hypersurface of fixed τ , in this appendix, we do the
same but for the non-boost-invariant transversely homogeneous system which helps us in
the initialization of the spin components in the numerical analysis. Details of the following
discussion are provided in the appendix of Ref. [D3].

Considering a similar boost-invariant three-dimensional hypersurface, as depicted in
Fig. 6.4, we calculate the orbital contribution to the total angular momentum as

Lµν
FC =

∫
∆Σλ L

λ,µν =

∫
∆Σλ

(
xµ T λν

GLW − xν T λµ
GLW

)
, (A.1)

with infinitesimal element of the hypersurface (∆Σλ) defined as

∆Σµ = τFC U
B
µ dx dy dη , (A.2)

cf. Eq. (6.40). Note that UB
µ is the same as Bjorken flow in Eq. (6.31), however, to

distinguish it from the non-boost-invariant flow (6.48) we have given it the suffix ‘B’.
Similarly to Eq. (6.41) we find

Lµν
FC =

∫
∆Σλ

(
xµ T λν

GLW − xν T λµ
GLW

)
, (A.3)

= τFC π R
2
FC

ηFC/2∫

−ηFC/2

dη UB
λ U

λ

[(
E + P

)
(xµUν − xνUµ)− P (xµUν

B − xνUµ
B)

]
.

Using definitions of Bjorken flow (6.31) and non-boost-invariant flow (6.48) we can show
that Lµν

FC = 0. Thus, there is vanishing contribution from the orbital part to the total
angular momentum.

Similarly, we can obtain the contribution from spin angular momentum as

Sµν
FC =

∫
∆Σλ S

λ,µν
GLW = τFC π R

2
FC

ηFC/2∫

−ηFC/2

dη UB
λ S

λ,µν
GLW , (A.4)
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where we insert Eqs. (6.31) and (6.48) to calculate the components of Sµν
FC. With the

assumption that ϑ is η-odd, we obtain the components S03
FC and S12

FC as

S03
FC = −π R2

FCτFC

∫
dηA3CκZ cosh(ϑ) ,

S12
FC = −π R2

FCτFC

∫
dηA1CωZ cosh(ϑ) , (A.5)

which vanish when both the longitudinal components are arbitrary odd functions of η or
zero. These symmetries are also maintained by their equations of motion, see Eqs. (6.56)
and (6.59). Furthermore, S13

FC and S01
FC components

S13
FC = π R2

FC τFC

∫
dηA3

[(A1

A3

cosh(ϑ) cosh(Φ)− 1

2
sinh(ϑ) sinh(Φ)

)
CωY

+
1

4
(sinh(η) + 3 sinh(Φ + ϑ))CκX

]
, (A.6)

S01
FC = −π R2

FC τFC

∫
dηA3

[(A1

A3

cosh(ϑ) sinh(Φ)− 1

2
sinh(ϑ) cosh(Φ)

)
CωY

+
1

4
(cosh(η) + 3 cosh(Φ + ϑ))CκX

]
, (A.7)

indicate that to have vanishing S01
FC and non-vanishing S13

FC, it is necessary that CωY is
even function of η, whereas CκX can be η-odd or zero. Thus, these conditions permit us
to initialize the spin components as Eq. (6.60).

Similar physical arguments can also be put forward for the spin components CκY and
CωX , however, for our assumed physical situation we can safely put them to zero.
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B

Covariant derivative and Christof-
fel symbols in de Sitter coordinates

In this appendix we list some important properties of the covariant derivative and the
Christoffel symbols in the de Sitter coordinates. Details presented here may be found in
the appendix of Ref. [D5].

B.1 The covariant derivative

For a general spacetime curvature, the partial derivative operator is not suitable for cal-
culating derivatives and thus we need to have a more general derivative operator namely
covariant derivative which acts on an arbitrary scalar V , rank-1 V µ and rank-2 V µν tensors
as

dµV = ∂µV , (B.1)
dµVν = ∂µVν − Γσ

µνVσ , (B.2)
dλVµν = ∂λVµν − Γσ

λµVσν − Γσ
λνVµσ , (B.3)

dµV
ν = ∂µV

ν + Γν
µσV

σ , (B.4)
dµV

µ = ∂µV
µ + Γµ

µσV
σ , (B.5)

dµV
µν = ∂µV

µν + Γµ
µσV

σν + Γν
µσV

µσ , (B.6)
dλV

µν = ∂λV
µν + Γµ

λσV
σν + Γν

λσV
µσ . (B.7)

B.2 Christoffel symbols in the de Sitter coordinates

Using the definition of Christoffel symbol (8.22) and the de Sitter metric (8.6), the following
non-vanishing Christoffel symbols remain

Γρ
θθ = sinh(ρ) cosh(ρ) , (B.8)

Γρ
ϕϕ = (sin(θ))2 sinh(ρ) cosh(ρ) , (B.9)

Γθ
ρθ = Γθ

θρ = tanh(ρ) , (B.10)

Γθ
ϕϕ = − sin(θ) cos(θ) , (B.11)

Γϕ
ρϕ = Γϕ

ϕρ = tanh(ρ) , (B.12)

Γϕ
θϕ = Γϕ

ϕθ = cot(θ) . (B.13)
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