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1 Introduction 

 With his work "An Inquiry into the Nature and Causes of the Wealth of Nations" 

published in 1776 [1], the Scottish philosopher and thinker Adam Smith laid 

foundations for economics as a separate branch of science. In the above-mentioned 

work, he used the term "invisible hand" meaning a mechanism that directs individual 

consumers so that their actions are the most beneficial to the whole of society. Although 

being commonly known and widely covered in the literature, this problem has not been 

to date put into mathematical formulas in a manner that would enable the market as a 

whole to be described precisely. This effect is a classic example of an emergent 

phenomenon, i.e. such a characteristic or property of a system, which has occurred in 

the system under examination, and which was never previously observed at the level of 

the individual system components. Phenomena of this type are characteristic of complex 

systems, where, due to a large number of nonlinear interactions between the elements of 

the system, evolving structures appear, which cannot be derived from the components in 

a simple manner. Looking from this perspective on financial markets in a broad sense, 

one can notice that they perfectly fit into the concept of complex systems. Starting from 

individual investors in the financial markets or individuals in their households, whose 

behavior can be described at best in a collective manner, it cannot be determined exactly 

in which direction the share prices or the domestic economy will, respectively, evolve in 

the future. 

 Due to the fact that financial markets have in recent years been supplying a vast 

amount of information that is readily available at a relatively low cost, more and more 

researchers from branches of science other than economics are being concerned with 

market analysis. Since 1973, when currency trading started, the financial institutions 

have been active round the clock [2]. Until 1995, there had been a nearly 80-fold 

increase in the volume of transactions, and even more dynamic growth of trade had 

taken place in the market of derivative financial instruments. A breakthrough in the 

development of financial market research occurred in 1980 when the capability to make 

transactions electronically was introduced, which, in turn, allowed the collection of 

huge amounts of data that became the subject of various analyses. To get an idea of how 

big and complex system are the financial markets in terms of the number of 

components, it is sufficient to mention that only in 2013 the two world's largest stock 

exchanges (NYSE, NASDAQ) traded nearly $12 trillion worth of shares, while the 



 

3 

 

daily number of NYSE stock exchange transactions amounts to almost 2.5 million 

orders
1
. Bloomberg, the world's largest supplier of information systems in the area of 

finances, has nearly 320.000 information terminals in 73 countries, which are used each 

day by millions of users. Roughly from the mid-1990s, the research activity of 

physicists in the field of economics began to be increasingly clearly visible. This 

activity made a bridge between financial mathematics, regarded by many as a kind of 

technical analysis, and the traditional approach used by financiers. The observation and 

recording of movements in the financial markets has enabled the construction of 

theoretical models needed for their description and practical verification. 

 The first attempts to describe the financial markets, known in the literature, date 

from the beginning of the last century, when Louis Bachelier, a French mathematician, 

proposed the random walk as the first model of the dynamics of the share price [3] , 

based on the assumption that price fluctuations are subject to Gauss distribution. His 

doctoral thesis entitled "The Theory of Speculation" [3] laid foundations for the 

development of financial mathematics, and the model described therein has still been 

used in economics, even though it does not completely correctly describe the dynamics 

of share prices. It is now known that the probability density distributions of financial 

fluctuations in the range of large financial events disappear very slowly (fat tails) [4; 5], 

which in practice means that the probability of rare events is greater than it would 

appear from the normal distribution. One of the first, who drew attention to this fact, 

was Benoit Mandelbrot. He formulated the thesis that the distributions of returns should 

be described with the stable Levy distribution [6]. As has turned out, however, this 

model does not fully reflect reality, because the tails of actual financial data distribution 

scale following a power-law relationship, with the scaling factor being outside the range 

of stable Levy distributions. This means that they do not have an infinite variance. The 

authors of study [7] have confirmed that the central part of the empirical data 

distribution perfectly fits into the Levy distribution, while at the distribution ends, the 

variations are fairly significant, and therefore they have proposed the truncated Levy 

flight model as more realistic. On the other hand, Plerou et al in their study [8] by 

analyzing data for the 1000 largest US companies, found that the cumulative 

distribution of share price fluctuations behaved at its tails as a power-law distribution 

with an exponent of 𝛼 = 3. It was then that the formulated inverse cubic law of scaling 

                                                 
1
  http://www.nyxdata.com/Data-Products/  access on: 16.03.2014 

http://www.nyxdata.com/Data-Products/
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appeared for the first time in research. However, the concept of power-law distributions 

had already been known in science since the 19th century, when V. Pareto used them 

for the first time to describe the sociological phenomena [9]. We deal with scaling when 

the graph of a function, as represented on a double logarithmic scale, is a straight line, 

in which case the slope of the line is the exponent of a power-law function. It is worth 

noting that scaling is, by the way, a natural feature of fractals, and it is fractal studies 

initiated by Mandelbrot that led to the creation of financial models relying on the self-

similarity of financial data, such as Multifractal Random Walk [10; 11], and 

Multifractal Model of Asset Returns [12], as well as to the development of techniques 

enabling the study of fractal structures. Real structures exhibit self-similarity (they scale 

themselves) in a statistical sense. For example, looking at the stock exchange quotations 

of any company, we are not able to distinguish whether a given signal comes from 

minutes' or daily quotations. Exactly the same is with fractals, whose core feature is 

that, when looking at the fractal structure at different levels of complexity, we see an 

object similar to the whole. The fractal formalism turned out so interesting to scientists 

that attempts were made to use it, for instance, in fluid dynamics [13]. The very concept 

of self-similar structures in fluid dynamics appeared already in Kolmogorov's works in 

1941 [14], and was then developed in the works of Mandelbrot [15], Frisch and Nelkin 

[16; 17] and Meneveau and Sreenivasan [13; 18; 19; 20]. A breakthrough, in the context 

of finances, was the work by Ghashghaie [21], published in Nature in 1996, which 

showed a similarity between turbulence and foreign exchange (FX) fluctuations. It has 

turned out that the flow of information between different time scales in FX markets is 

hierarchical and there exists its analogy to the turbulent flow of fluid, where the energy 

is transferred from large to small scales. Study [21] has further demonstrated that the 

probability density distribution of exchange rate fluctuations within a certain time 

period is very much similar to the distribution of velocity changes between two points 

in a turbulent flow with a defined spatial dimension. Despite the fact that another work 

[22] verified these findings to be too far-reaching, or even indicated significant 

difference (rather than similarities) in the dynamics of the both systems [23], this did 

not prevent the development of further studies in this direction [24; 25].  

 Closely related with turbulence is the notion of cascade processes. In such a 

process, a large vortex with the energy 𝜀 on the scale 𝑙0 transforms or divides itself into 

smaller vortices, and these in turn divide themselves into even smaller ones, and so no, 

down to the Kolmogorov scale 𝜂, below which the vortex energy is converted into heat. 
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In each step, the vortices are scaled down with a factor 𝛽. Figure 1.1 shows a graphic 

idea of the cascade process [26]. 

  

Figure 1.1 A graphic idea of the cascade process. 

 

Processes of the cascade type have also found application in financial modelling in the 

form of the Markov Switching Multifractal (MSM) model. This is an iterative model 

that is able to replicate the actual structure of financial data (including variation 

clustering, which is one of the stylized facts
2
), and to ensure the fractality of the model.         

The aim of this work is to perform the fractal analysis of financial data with the 

emphasis on the interaction between the individual elements of the financial market. 

The study used data from the FOREX currency market in the form of 9 transaction 

foreign exchange rates from the period from 17.01.2011 to 21.01.2011; 29 companies 

included in the DJIA index
3
 quoted every minute during the period from 02.01.2008 to 

30.09.2009; and for the network analysis of the markets, the 100 largest and smallest 

US companies quoted in 5 minutes' intervals in the period from 1.12.1997 to 

31.12.1999. 

                                                 
2
 Stylized facts – the distinguished, typical characteristics of a given system. In the case of the time series 

of financial data, in addition variation clustering, stylized facts include fat tails, returns distribution 

asymmetry, short system memory at the price change level and long at the volatility level and the 

leverage effect in the case of change in returns variance [118]. 
3
 The DJIA (Dow Jones Industrial Average) index is a stock market index made up of the 30 largest US 

companies listed on the New York Stock Exchange (NYSE and Nasdaq). It has been in use since 1896.  

www.investopedia.com: access on: 15.05.2014. 

 

http://www.investopedia.com/
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The thesis consists of six chapters. Chapter Two includes an analysis of the 

properties of statistical time series, such as the autocorrelation function and the cross 

correlation function, as well as the distribution of probability density on different time 

scales. In the Chapter Three, general concepts and fractal characteristics necessary for 

further understanding of the study are introduced. Chapter Four is a description of 

modern fractal analysis algorithms and their application on the example of financial 

data. The focus is primarily on the Multifractal Detrended Fluctuation Analysis (MF-

DFA) autocorrelation method, with the obtained results being supplemented with 

analysis using the Wavelet Leaders method. A new method of power-law Multifractal 

Cross-Correlation Analysis (MFCCA) has been introduced, while indicating its great 

advantage over other multifractal cross-correlation analysis methods. The MFCCA 

algorithm enables the correct identification and quantitative description of the 

multifractal cross-correlation between two time series and, unlike other multifractal 

analysis methods, is free from restrictions typical of other methods. In addition, a 

higher-order cross-correlation coefficient, 𝜌 
𝑞, has been introduced for detrended 

functions. Chapter Five contains an analysis of financial markets in a network 

representation, which allows the market structure to be looked at from a completely 

different perspective. Chapter Six contains summary and conclusions. 
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2 Statistical properties of financial data 

2.1 Models of financial markets 

The first financial market evolution model, presented by Louis Bachelier at the 

beginning of the last century, assumed that the assets price was subject to random 

walking, and the return had the Gaussian behaviour, so they can be described within a 

random game [3]. In some financial problems, this model is continued to be used owing 

to its simplicity, though it does not completely correspond to reality. It is sufficient to 

look at Figure 2.1 showing the actual financial data (the middle graph) to notice that 

values occurs in the signals, which have such a large amplitude that practically does not 

happen in Gaussian distributions. The red line marks the range ±3𝜎 and for the 

Gaussian variable 99.7% of the values are contained in this range. At first glance, it can 

be noticed that for the actual data it is quite different. For this particular reason it is 

generally accepted, and is confirmed by studies, that the distributions of actual financial 

data have an elongated central distribution part and fat tails. So, these are leptokurtic 

distributions. The explanation of this phenomenon might be the fact that financial 

markets experience intermittent problems with liquidity. In the case of high market 

liquidity, no large price spikes should appear. 

 

Figure 2.1 A diagram of one minute's change in DJIA index price (the upper figure), the returns of 

this index (the middle figure) and the Gaussian process. The range ±𝟑𝝈 is marked in red. 
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In 1968, Mandelbrot and Van Ness [27] introduced the fractional Brownian 

motion 𝐵𝐻(𝑡) with the mean value equal to zero and covariance given by the following 

formula to describe the financial data: 

 
𝐸[𝐵𝐻(𝑡)𝐵𝐻(𝑠)] =  

1

2
(|𝑡|2𝐻 + |𝑠|2𝐻−|𝑡 − 𝑠|2𝐻). 

(1) 

Unlike the classic Brownian movement, this is the process with memory, which is 

dependent on the parameter 𝐻 ∈ (0; 1) and its increments do not need to be 

independent. In addition, this is a self-affine process, which means that it satisfies the 

scaling relationship: 

𝐵𝐻(𝑐𝑡)~|𝑐|
𝐻𝐵𝐻(𝑡). (2) 

If 𝐻 > 1/2 we have a persistent time series, in which a positive correlation occurs 

between successive changes in the series, and the process itself is referred to as a 

process "with memory". This refers to a long-term memory of the process, which means 

that the existing change in the series is the resultant of all previous changes, even those 

very distant, which may only have a fragmentary contribution to the present situations. 

Moreover, what is happening at present has an effect on distant events in the future. In 

series of this type, a trend is visible. When 𝐻 < 1/2 the next changes in the series will 

be correlated negatively, and such a series is called anti-persistent. Consecutive changes 

between the successive terms of the series are alternating, i.e., if, at a given moment, the 

series takes on positive values, then it is more likely that it will assume a negative rather 

than positive value at the next moment. If 𝐻 = 1/2, the process is a random walk and 

the successive changes in this process will be completely uncorrelated. The parameter 𝐻 

defines, therefore, the volatility of the time series. A more detailed description of the 𝐻 

is provided in section 4.1. 

In the following years, there appeared also geometric and arithmetic Brownian 

motion models, which relied on the process described by fractional Brownian motion, 

but which did not have a specific limitation, namely that values assumed by the process 

might not be negative. They gave better results, though still far from being ideal, just 

because of the fat tails of the probability distributions of actual data, impossible to be 

reproduced in the case of the aforementioned processes. Mandelbrot also introduced 

Levy processes characterized by the probability distribution [7]: 

 
𝐿(𝑥) =

1

𝜋
∫ 𝑒−𝛾𝑘

𝛼𝐿 cos(𝑘𝑥) 𝑑𝑞
+∞

0

 
(3) 
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for the description of the dynamic of financial instrument prices, where 𝛾 > 0 is a 

scaling factor and the parameter 0 < 𝛼𝐿 ≤ 2 is a stability index. Levi processes have an 

infinite variance in the above-mentioned stability range, therefore they do not obey the 

Central Limit Theorem
 4

. The way of overcoming the infinite variance problem in the 

context of financial data was the introduction of the Truncated Levy Flights [7], which 

are given by the following formula: 

𝑇𝐿(𝑥) = {
0

𝑐𝐿(𝑥)
0

               
𝑥 > 𝑙

−𝑙 ≤ 𝑥 ≤ 𝑙
𝑥 > 𝑙

, 
(4) 

where 𝑙 is the length of truncation, 𝑐 is a normalization constant and 𝐿(𝑥), the Levy 

distribution. Distributions of this type have a finite variance, exponentially decaying 

tails, and in the central part they are described by the Levy distribution. 

As has been previously mentioned, the tails of actual financial data distributions 

scale themselves following the power law according to the formula: 

 𝑃(𝑟 > 𝑥)~𝑥−𝛼, (5) 

for which 𝛼 ≈ 3. Scaling of this type can be observed in the case of the indices 

developed share markets, emerging markets and commodity markets, and is called the 

inverse cubic law. Distribution of this type are not stable in the Levy sense
5
 (they have a 

finite variance), therefore, for sufficiently large time scales, they should converge to the 

Gaussian distribution in accordance with the CLT. For share markets, the convergence 

to the Gaussian distribution would be relatively slow with increasing scale [7], though 

recent studies show [4] that for contemporary markets this convergence is noticeable for 

scales ∆𝑡 > 1 min.  

Another interesting approach to the description of financial markets has been the 

formalism of nonextensive statistical mechanics proposed by Tsallis in his wok [28]. It 

is based on the concept of nonextensive entropy which is one of the possible 

generalizations of Boltzmann-Gibbs entropy. If a given dynamic system is an ergodic 

system, then this means that its averaged behaviour over time is the same as the 

behaviour averaged over the set of all available phase space states. This, in turn, means 

that all microstates are equally likely in the long run. In this sense, the system is 

                                                 
4
 In accordance with the CLT, the distribution of a random variable which is a superposition of 

independent random variables having a finite variance and the expected value equal to, has an 

asymptotically normal distribution. 
5
Process 𝑋 is stable, if the sum of independent processes 𝑋1 and 𝑋2 with a distribution 𝑆, is the process 

with the distribution 𝑆: 𝑎𝑋1 + 𝑏𝑋2 = 𝑐𝑋 + 𝑑. A feature of stable distributions is that they retain their 

statistical properties after summing and scaling. For stable financial time series, minute and hourly returns 

should have the same variance and mean value. 
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considered in the context of classical Boltzmann-Gibbs thermodynamics which is based 

on the assumption that all system components are statistically independent and the 

entropy is given by the formula: 

 

𝑆𝐵𝐺 = −𝑘∑𝑝𝑖

𝑊

𝑖=1

𝑙𝑛𝑝𝑖. 
(6) 

The entropy 𝑆𝐵𝐺 for the entire system is the sum of the entropies of the subsystems (it is 

extensive). 

As will be shown in the next sections, the financial market is a system in which 

all components are interrelated, therefore the use of distributions based on classical 

thermodynamics is not necessarily the best choice. The approach based on generalized 

entropy [29]:  

𝑆𝑞 = 𝑘
1 − ∑ 𝑝𝑖

𝑞𝑊
𝑖=1

𝑞 − 1
 (𝑞 ∈ ℛ), 

(7) 

gives better results when applied to empirical data. The parameter q in the formula 

above defines the statistics, and for 𝑞 = 1 we have simple entropy 𝑆𝐵𝐺 . q-Gaussian 

distributions that maximize the entropy (7) on the assumption that the generalized mean 

value satisfies the relationship 𝜇𝑞 = ∫𝑥
[𝑝(𝑥)]𝑞

∫[𝑝(𝑥)]
𝑞
𝑑𝑥
𝑑𝑥 and the generalized variance 

satisfies the relationship 𝜎𝑞
2 = ∫(𝑥 − 𝜇𝑞)

2 [𝑝(𝑥)]𝑞

∫[𝑝(𝑥)]𝑞
𝑑𝑥, are given by the formula: 

 𝑝𝑞(𝑥) = 𝑁𝑞𝑒𝑞
−𝐵𝑞(𝑥−𝜇𝑞)

2

, (8) 

where B𝑞 = ((3 − 𝑞)𝜎𝑞
2)−1, the q-exponent is defined by the formula 𝑒𝑞

𝑥 = [1 +

(1 − 𝑞)𝑥]
1

1−𝑞 while the normalizing factor is: 

 

𝑁𝑞 =

{
 
 
 
 
 

 
 
 
 
 Γ (

5 − 3𝑞
2(1 − 𝑞

)

Γ (
2 − 𝑞
1 − 𝑞)

√
1 − 𝑞

𝜋
𝐵𝑞                  𝑞 < 1 

1

√𝑞
                                                    𝑞 = 1

Γ (
1

𝑞 − 1
)

Γ (
3 − 𝑞

2(𝑞 − 1)
)

√
𝑞 − 1

𝜋
                   1 < 𝑞 < 3

. 

(9) 

What is important in the case of the q-Gaussian distribution is the fact that it 

asymptotically takes on the form of a power-law distribution, as follows: 
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𝑝𝑞(𝑥)~𝑥

2
1−𝑞 , 

(10) 

while if 𝑞 = 1, it assumes the form of a normal Gaussian distribution. For 1 < 𝑞 < 5/3 

the sum of q-Gaussians will be convergent to the Gaussian distribution, while for 

5/3 < 𝑞 < 3, it will be convergent to the Levy distribution, on account of the 

Generalized Limit Theorem [30]. It is important, insomuch as using a single parameter 

𝑞, it is possible to model a time series being either a monofractal (with the Gaussian 

distribution) or a multifractal (with the Levy distribution), as will be discussed later in 

this study. 

 As shown in reference [31], q-Gaussians can be successfully used for 

describing the probability distributions of foreign exchange series. Below, some 

examples of fitting empirical data with these distributions will be shown. For this 

purpose, the cumulated form of Formula (8) presented in study [31] will be used: 

 

𝑃𝑞±(𝑥) = 𝑁𝑞

(

 
 
 √𝜋(

1
2 (3 − 𝑞)𝛽

2Γ(𝛽)√
𝐵𝑞
𝛽

± (𝑥 − 𝜇𝑞

)

 
 
 

𝐹2
 
1(𝛼, 𝛽; 𝛾; 𝛿). 

(11) 

In the above formula, 𝛼 =
1

2
, 𝛽 =

1

𝑞−1
, 𝛾 =

3

2
, 𝛿 = 𝐵𝑞(𝑞 − 1)(𝜇𝑞 − 𝑥)

2
, while 

𝐹2
 
1(𝛼, 𝛽; 𝛾; 𝛿) = ∑

𝛿𝑘(𝛼)𝑘(𝛽)𝑘

𝑘!(𝛾)𝑘

∞
𝑘  is a hypergeometric Gaussian function. 

2.2 Probability distributions of returns 

A basic characteristic in examining the statistical properties of financial 

fluctuations are the probability distributions of returns. These distributions make it 

possible to construct appropriate theoretical models to describe processes, as well as to 

look inside them. In the calculations, the logarithmic rate of return, 𝑅 (return), was 

used, which, for the time series 𝑝(𝑡) representing the value of the signal (price) 𝑝 in 

time 𝑡, is defined by the following formula: 

 𝑅 ≡ 𝑅(𝑡, ∆𝑡) = ln(𝑝(𝑡 + ∆𝑡)) − ln(𝑝(𝑡)), (12) 

where 𝑡 = 1,2, … ,𝑁 is the time instant, and ∆𝑡, the scale under analysis. Then we 

normalize the returns: 

 
𝑟 ≡ 𝑟(𝑡, ∆𝑡) =

𝑅 − 𝑢 
𝜈

, 
(13) 
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where 𝑣  is the standard deviation of returns in time 𝑇  while 𝑢  is the average value after 

the time 𝑇. Owing to the normalization, calculations performed for different financial 

data are comparable. The analysis of fluctuations in returns is best carried out on a log-

log scale, because on this scale, power-law relationships take on the form of a straight 

line, which facilitates the scaling identifications. The distribution of fluctuations is 

approximately a symmetrical distribution 2.1  2.3, so the absolute values of |𝑟| will be 

analyzed.  

 There are a number of studies in the literature concerning the distribution of 

returns for shares [8; 32], foreign exchanges [31] or commodities [33], however, the 

statistical analysis presented in this paper, based on high-frequency data in the form of 

transaction foreign exchange rates, to the author's knowledge, has not been developed 

yet. For the financial data, a systematic analysis of the statistical properties was started 

from examining the distributions of the DJIA index returns. 

2.2.1 The foreign exchange market (FX) 

Forex (FX) is a foreign exchange market, in which various financial institutions, 

banks, corporations and governments carry out foreign exchange operations. It is an 

OTC (Over the Counter) market, where brokers or dealers negotiate currency prices 

directly between each other, and there is no central clearing house. This is the largest 

market in the world with an estimated daily turnover of 5.3 trillion US dollars
6
. For 

comparison, the forward exchange market, which is the world's second largest market in 

terms of turnover, is estimated at less than 440 billion US dollars of daily turnover. 

Foreign exchange trade takes place round the clock 5 days a week here, excluding 

weekends, with a huge number of transactions being made; so, this is the most liquid 

market in the world.  

The world's largest foreign exchange broker in 2014 was CITI, whose market share 

amounted to 16.04%
7
 and the currency most often traded in 2013 was the American 

dollar with a market share of 84%
8
. Movement on the FX has impact on other financial 

markets, because all other goods are expressed in different currencies, and therefore this 

market is the world's most important market. From a physicist's point of view, the FX is 

a complex system with extremely complicated time relationships, as there are many 

                                                 
6
 http://www.bis.org/press/p130905.htm access on: 24.09.2014 

7
 http://www.bloomberg.com/news/2014-05-08/deutsche-bank-currency-crown-lost-to-citigroup-on-

volatility-1-.html access:24.09.2014 
8
 http://www.bis.org/publ/rpfx13fx.pdf access:24.09.2014 

http://www.bis.org/press/p130905.htm
http://www.bloomberg.com/news/2014-05-08/deutsche-bank-currency-crown-lost-to-citigroup-on-volatility-1-.html
http://www.bloomberg.com/news/2014-05-08/deutsche-bank-currency-crown-lost-to-citigroup-on-volatility-1-.html
http://www.bis.org/publ/rpfx13fx.pdf
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factors influencing the formation of individual foreign exchange rates. Each of the 

currency pairs under analysis is characterized by its own dynamics, being dependent of 

the national economy, central banks (interest rates/inflation) or, as will be demonstrated 

later on in this study, events taking place in other markets and in different countries. 

The performed analysis covered the transaction exchange rates of 9 currency 

pairs (Figure 2.2) quoted in the period from 17.01.2011 to 21.01.2011, originating from 

the Deutsche Bank broker, which was the world's second largest broker in 2014: 

• GBPUSD-1’157’571 records, 

• USDJPY-485’169, 

• GBPJPY – 855’921, 

• EURUSD-928’925, 

• EURJPY-1’153’303, 

• EURGBP-1’359’974, 

• EURAUD-1’685’455, 

• AUDUSD-775’698, 

• AUDJPY-1’204’731. 

The data were then converted to the form of equally time-spaced time series with pre-

defined intervals of ∆𝑡 : 5-sec. - 86’400 records; 30-sec. - 14’400; 1-min. - 7’200; 2-

min. - 3’600; 4-min. - 1’800; 10-min. - 720, covering the entire trading day from 00:00 

to 24:00 hours. 

 

Figure 2.2 A minute of EURUSD currency pair trading, covering 40 transactions. 
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Subjected to analysis were also the so-called triangular relation deviations, which can be 

described with the following formula: 

 𝑟∆(𝑡𝑖, ∆𝑡) =  𝑟𝐴
𝐵(𝑡𝑖, ∆𝑡) + 𝑟𝐵

𝐶(𝑡𝑖, ∆𝑡)+𝑟𝐶
𝐴(𝑡𝑖, ∆𝑡) (14) 

and which, assuming the ideal market efficiency
 9

, should satisfy this equation: 

 𝑟∆(𝑡𝑖, ∆𝑡) = 0, (15) 

where 𝑟𝐴
𝐵 = −𝑟𝐵

𝐴. In formula (14), denotes the logarithmic rate of return for the rate of 

exchange of currency X for currency Y, in time 𝑡𝑖 and on the scale ∆𝑡. Deviations from 

(15) offer an excellent opportunity for generating profits at no risk, and are referred to 

as the triangular arbitrage. On contemporary financial markets, such a behaviour of data 

rates is actually found on very short time scales. Because of this, it is dedicated software 

programs being at financial institutions' service that close possible arbitrage items by 

using so-called high frequency trading (HFT)
10

. Considering the fact that triangular 

relation deviations occur at the 6th or a further decimal place, then in order to achieve a 

measurable profit, it is necessary to invest big money, which essentially precludes the 

involvement of individual investors. 

Using a signal given by formula (14) for analysis, we reduce the number of the system's 

degrees of freedom, thus going down from three different signal to one. While some 

exchange rates can be a result of completion of specific investment strategies carried out 

by traders/institutions, others may be a result of the market movement to eliminate that 

strategy, or the liquidation of possible arbitrage. When a player buying euros for dollars 

exchanges dollars for pounds and, for the exchanged pounds, he buys back euros at one 

time moment, then this transaction will bring in a profit to the player from this 

transaction, if relationship (15) is greater than zero. The occurrence of such a situation 

in the market causes the activity of other market participants, as a result of which 

𝑟∆(𝑡𝑖, ∆𝑡) will be convergent to 0. 

For examining the triangular relations, the following solid triangles were used: 

 AUD-EUR-JPY: 
𝐴𝑈𝐷

𝐸𝑈𝑅
∗
𝐸𝑈𝑅

𝐽𝑃𝑌
∗
𝐽𝑃𝑌

𝐴𝑈𝐷
≠ 0, 

 AUD-EUR-USD: 
𝐴𝑈𝐷

𝐸𝑈𝑅
∗
𝐸𝑈𝑅

𝑈𝑆𝐷
∗
𝑈𝑆𝐷

𝐴𝑈𝐷
≠ 0, 

 AUD-USD-JPY: 
𝐴𝑈𝐷

𝑈𝑆𝐷
∗
𝑈𝑆𝐷

𝐽𝑃𝑌
∗
𝐽𝑃𝑌

𝐴𝑈𝐷
≠ 0, 

                                                 
9
 The efficient market hypothesis propounds that, at any time moment, the price of a financial asset fully 

reflects all the information related to it. 
10

 HFT is a technique that a large number of transactions to be made automatically using special decision-

making algorithms in a very short time (of the order of seconds). www.investopedia.com: access 

on:19.06.2015 

http://www.investopedia.com/
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 EUR-GBP-JPY: 
𝐸𝑈𝑅

𝐺𝐵𝑃
∗
𝐺𝐵𝑃

𝐽𝑃𝑌
∗
𝐽𝑃𝑌

𝐸𝑈𝑅
≠ 0, 

 EUR-GBP-USD: 
𝐸𝑈𝑅

𝐺𝐵𝑃
∗
𝐺𝐵𝑃

𝑈𝑆𝐷
∗
𝑈𝑆𝐷

𝐸𝑈𝑅
≠ 0, 

 EUR-USD-JPY: 
𝐸𝑈𝑅

𝑈𝑆𝐷
∗
𝑈𝑆𝐷

𝐽𝑃𝑌
∗
𝐽𝑃𝑌

𝐸𝑈𝑅
≠ 0, 

 GBP/USD/JPY: 
𝐺𝐵𝑃

𝑈𝑆𝐷
∗
𝑈𝑆𝐷

𝐽𝑃𝑌
∗
𝐽𝑃𝑌

𝐺𝐵𝑃
≠ 0, 

where 
𝐴𝑈𝐷

𝐸𝑈𝑅
,
𝐸𝑈𝑅

𝐽𝑃𝑌
, etc., are the logarithmic rates of return. Figure 2.3 illustrates how 

the EURUSD exchange rate changes in the period under examination and the 

returns, r, for ∆𝑡 = 5 𝑠𝑒𝑐. The daily activity of the market is clearly visible in the 

form of five large clusters. The maximum activity falls, more or less, on the middle 

of the trading day. 

 

Figure 2.3 The EURUSD exchange rate (top) and the normalized five-second returns calculated for 

it (bottom). 

 

Figure 2.4 represents the cumulative distributions of returns modules for four selected 

currencies, though the appearance and behaviour are typical of all the exchange rates 

examined. Moreover, table 2.1 shows the power-law fitting exponents, using the least 

squares method, of function given by formula (5) to the distribution tails. It should be 

expected, similarly as in study [4], that a stronger decline of the distribution tails would 

be noticed with increasing time scale. However, for the analyzed data, it is difficult to 

observe such a phenomenon as a rule. For exchange rates based on the Australian Dollar 
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and the GBPJPY currency pair, this is so up to the 2 min. scale, followed by fluctuation 

on the remaining three scales. For the remaining currency pairs, it is hard to observe any 

regularity in tail decline; however, it can be assumed that, barring few exceptions, these 

values are contained in the range between 𝛼 =3 and 𝛼 = 5. This is likely to be 

influenced by the length of the time series, because of times scales greater than 5 sec., 

the distribution end scaling region becomes ever shorter and it is difficult to find an 

exact fit. The analyzed data indicates also that British pound-based exchange rates have 

the fattest tails, and they do not change very much with increasing time scale. This 

finding is consistent with previous observations from the period 2004-2008, made in 

study [31] . 

 

Table 2.1 Power-law exponents for all currency pairs sampled from 5 seconds to 10 minutes. 

  AUDUSD AUDJPY EURAUD EURGBP EURJPY EURUSD GBPJPY GBPUSD USDJPY 

5s 3.99 3.78 4.06 3.76 4.49 4.34 3.51 3.51 4.75 

30s 4.83 3.90 4.10 3.91 4.42 4.01 3.62 3.66 3.05 

1m 4.91 4.40 4.53 3.43 3.59 4.28 3.81 3.16 3.66 

2m 3.67 5.05 3.99 4.09 3.07 3.71 3.44 3.44 3.65 

4m 4.18 4.33 4.14 3.66 3.09 3.51 3.13 2.90 3.18 

10m 5.03 3.56 3.75 3.79 3.63 3.81 3.44 4.08 3.33 

 

This may also be indicative of the occurrence of correlations in the examined signals, 

because their convergence to the normal distribution is slower than for uncorrelated 

signals. As will be demonstrated later on in this study, these are nonlinear correlations 

being behind the fractal nature of the examined processes. 
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Figure 2.4 Cumulative distributions of currency returns, determined for time scales from 5 sec. to 

10 min. 

 

The situation is slightly different for the distributions of triangular relation deviations. 

Already at the returns level, a difference between 𝑟∆ and its component signals can be 

seen. While the fluctuation magnitudes are the same, the structure of the series 𝑟∆ itself 

is more uniform, with a small number of large-amplitude events. This is illustrated in 

Figure 2.5 for the AUD-EUR-USD pair. 
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Figure 2.5 The times series of three exchange rates making up the AUD-USD-EUR triangle and the 

triangle itself (the series at the very bottom). 

 

In contrast to the returns distributions, starting from the 5-second scale, the 

characteristic inverse cubic scaling law was not observed. All obtained scaling 

exponents assume values 𝛼 > 3, and the distribution tails are practically of the Gaussian 

type. The only exception is the EUR-GBP-JPY triangle, where, except for the 2-minute 

scale, the scaling exponents lie in the range of 𝛼 ∈ (3; 4).  
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Figure 2.6 The cumulative distribution of triangular relation deviation returns, determined for the 

time scale from 5 sec. to 10 min. Panel a) shows AUD-EUR-JPY triangular relation deviations, b) 

EUR-USD-JPY, c) EUR-GBP-USD, d) AUD-USD-JPY, e) EUR-GBP-JPY. 

 

A complete list of power exponents fitted to the distributions of triangular relation 

deviations is given in Table 2.2 . 

 
Table 2.2 Power exponents for all triangular relation deviations sampled from 5 sec. to 10 min. 

  
AUD-JPY-

USD 

AUD-EUR-

USD 

AUD-EUR-

JPY 

GBP-USD-

JPY 

EUR-GBP-

USD 

EUR-GBP-

JPY 

EUR-USD-

JPY 

5s 5.77 4.36 7.28 7.44 8.71 4.07 6.66 

30s 5.90 5.82 7.35 8.40 6.75 3.74 7.49 

1m 5.67 5.20 8.14 5.53 8.12 3.91 6.91 

2m 5.74 5.22 6.61 6.73 5.60 4.98 6.89 

4m 7.01 4.31 7.63 7.11 6.60 3.90 5.44 

10m 5.66 4.58 5.39 6.63 4.46 3.21 5.61 

 

As has been mentioned above, q-Gaussians prove themselves very well in describing 

real financial data. For this reason, their usefulness for the description of Forex market 

data was verified. Due to the length of the series, the distributions were fitted only to 5-
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second time series. Figure 2.7 shows a cumulative distribution for the AUD-EUR-USD 

triangle and the AUDUSD exchange rate with the q-Gaussian function fitted. 

 

Figure 2.7 The distribution of fluctuations in 5-second AUD-EUR-USD triangular relation 

deviations (the left-had panel) and the AUDEUR exchange rate (the right-hand panel) along with 

the q-Gaussian function fitted to the distribution tail (the solid line). The dashed line indicates the 

Gaussian distribution. 

 

These results are representative of all the examined triangles and currency pairs. It is 

clearly seen that, for the exchange rates, the distribution tails coincide very well with 

the value of the fitted function. In the case of the triangles, these distributions fairly well 

coincide with one another in the central part, whereas the tails are modelled not very 

accurately, and the empirical data are overrepresented with respect to the fitted 

distribution, more for the signal 𝑟∆ than for the returns themselves. For EURAUD 𝑞 =

1.44, which, according to formulae (5) and (10), means that the distribution tail scales 

itself approximately with the exponent 𝛼~4.5. 

2.2.2 DJIA 

In a similar way, 29 DJIA index companies and the index formed from those 

companies were analyzed. As has been shown in study [34], the index and its individual 

components are processes subject to the same probability distribution. The quotations 

covered the period 02.01.2008 –29.07.2011 and these were one-minute data. The index 

was made in a manner specific to this type of data, i.e. the share prices at a given time 

moment were added together, and then the returns were calculated from that signal. 
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Records formed through so-called share splits
 11

 likely to cause artificial fluctuations in 

data analysis, were removed from the time series. Figure 2.8 below represents the 

cumulative distributions of the one-minute normalized returns of all companies. 

 

Figure 2.8 The normalized cumulative distributions of 1-minute returns of 29 DJIA index 

companies. 

 

For the entire set, a very similar behaviour and power-law tail scaling can be noticed. 

The power-law behaviour of the tails is exhibited by distributions that have a finite 

variance and are either unstable distributions or stable distributions with the scaling 

exponent assuming values 𝛼 ≤ 2. Table 2.4 summarizes all power exponents fitted to 

the distribution tails. 

 

Table 2.3 The power exponents of power-law distribution fitting to the 1-minute cumulative 

distributions of DJIA index companies. 

AA 2.52 CSCO 2.51 INTC 2.67 MMM 2.55 T 2.8 

AIG 2.15 CVX 2.47 JNJ 2.59 MRK 2.45 UTX 2.52 

AXP 2.62 DD 2.56 JPM 2.47 MSFT 2.53 VZ 2.48 

BAC 2.22 GE 2.53 KFT 2.37 PFE 2.49 WMT 2.62 

BA 2.59 HD 2.57 KO 2.67 PG 2.49 XOM 2.64 

CAT 2.53 IBM 2.44 MCD 2.64 TRV 2.67     

 

Tail scaling along with the increase in the index time scale is illustrated in Figure 2.9. 

As can be noticed, the exponents take on values 𝛼~2.5 and lie beyond the stable Lèvy 

                                                 
11

 A share split is a reduction in the value of a given share, with the current level of the company's share 

capital being maintained. Some companies, wishing to maintain the prices of their shares in a range 

chosen by them, either emit new shares or split the share price, while retaining the share capital. 
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region and, with increasing times scale, they come ever closer to the Gaussian 

distribution, which is consistent with the Central Limit Theorem. 

 

Figure 2.9 The cumulative distribution of the DJIA index for five time scales. 

 

Similarly as for the FX market, an attempt was made to fit the q-Gaussians to the 

distribution of empirical data depending on the parameter q. As the representative set, 

four companies from different industries were chosen: AA – American Airlines (the 

aircraft industry), GE – General Electric (conglomerate), MSFT – Microsoft (IT), VZ – 

Verizon (telecommunications). The fitting was prepared for three time scales ∆𝑡 ∈

{1,10,60} minutes, and its result is shown in Figure 2.10. The obtained result seems to 

be very good, as the central part of the distribution and a considerable part of its tail 

coincide perfectly with the theoretical values. Only very rare events occurring at the 

very end of the distribution diverge slightly. In all cases, with the increase in the time 

scale, the values of parameter q decrease. This could have been expected from the 

asymptotic form of the q-Gaussian (10) and the previously observed fact of the 

convergence of the distribution tails to the Gaussian distribution with the increase in ∆𝑡. 
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Figure 2.10 The cumulative distributions of the returns of four companies with the q-Gaussian 

function fitted to the distribution tail. 

2.3 Autocorrelations and time cross-correlations  

Cross-correlations occurring in financial data provide an extremely important 

element of the analysis of their dynamics. They are part of stylized facts which, in this 

case, make the function of autocorrelation of the financial time series drop to zero after 

several minutes [8; 35], while for the volatility (the module of the returns under 

examination) this function remains positive over a considerable period of several weeks 

[36]. The autocorrelation (self-correlation) function 𝜌𝑥(𝜏) for function 𝑓(𝑡) and shift 𝜏 

is defined as follows: 

 𝜌𝑥(𝜏) = 〈𝑓(𝑡 + 𝜏)𝑓(𝑡)〉. (16) 

With the use of this function, we can determine the effect of the current signal value on 

the signal value in the future. The function may assume either positive values (when the 

changes between analyzed values in the series follow one another in the same direction) 

or negative values (the changes between series values follow one another in the opposite 

directions) and the maximum falls on the zero-shift point. For random signals, the 

function value falls immediately to zero. This function lends itself perfectly to the 

examination of linear relationships in an examined series. 
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The next stage in the investigation of FX market dynamics will be examining the 

interrelation between financial data. This is a very important analysis that is widely used 

in finances, because it leads to the optimization of the investment portfolio and assists in 

managing the risk. In the analysis of time series and processing signals, the cross-

correlation (intercorrelation) between two series is described by normalized covariance 

that means the degree in which the two series follow one another, assuming that one of 

these series is shifted by 𝜏 relative to the other. For two series 𝑋𝑡 and 𝑌𝑡 with a length T, 

this relationship is defined by a cross correlation function which is given by this 

formula: 

 
𝜌𝑥𝑦(𝜏) =

∑ (𝑋(𝑡) − 𝜇𝑋)(𝑌(𝑡 + 𝜏) − 𝜇𝑌)
𝑇
𝑡=1

𝜎𝑋𝜎𝑌
, 

(17) 

where 𝜎𝑋 and 𝜎𝑌 is the standard deviation of the respective series, while 𝜏 is the shift of 

the series 𝑌 relative to 𝑋. In the case, where 𝜌𝑥𝑦(𝜏 = 0), this is the Pearson correlation 

coefficient that assumes values in the interval −1 ≤ 𝜌𝑥𝑦 ≤ 1. In the case, when 𝜌𝑥𝑦 =

1, we have a perfect correlation between the signal, where 𝜌𝑥𝑦 = −1 means anti-

correlation and 𝜌𝑥𝑦 = 0 lack of correlation between the signals. Using 𝜌𝑥𝑦, the level of 

linear relationship between the signals 𝑋𝑡 and 𝑌𝑡 is determined. From this point on in 

this study, the terms cross-correlation and intercorrelation will be used interchangeably. 

Returns, as well as their modules, were used for analysis in view of the fact that the 

autocorrelation of volatility may exhibit a different nature. 

2.3.1 DJIA 

 The results obtained for the returns of the DJIA index companies discussed in the 

previous section are shown in Figure 2.11. They clearly indicate that no long-range 

correlations occur in financial signals, and only for 𝜏 = 1 min. can we speak of a weak 

anti-correlation of the examined time series. A possible cause of this phenomenon is the 

occurrence of zeros in the values of the returns on short time scales, being comparable 

to, or shorter than the frequency of making transactions. Negative autocorrelation is 

therefore a computational artefact. The behaviour of the entire index is similar, except 

that in the first minute the autocorrelation level is less negative compared to all 

component companies and takes on a value close to the noise value. Looking at the 

process governing the share price from this perspective, one might arrive at the 

conclusion that it is of the Brownian type (has no memory).  
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Figure 2.11 Autocorrelation function determined for 1-minute returns of 29 DJIA index companies. 

The index autocorrelation function is marked with the red line. The dashed lines denote the noise 

level. 

 

 In addition to examining the autocorrelation of the returns, their modules, i.e. 

volatility, was subjected to analysis. This quantity directly takes advantage of the 

amount of information coming in to the stock exchange. Panel a) in Figure 2.12 

represents this value on a linear scale for four companies: AIG, GE, MSFT and CSCO. 

We can clearly see a daily trend in the form of the regularity of a function, in which 

characteristic peaks occur exactly every 390 minutes. Panel b) in the above-mentioned 

figure shows the same data, presented on the log-log scale, along with a power-law 

function fitted to them. It can be seen that the autocorrelation function of volatility is 

long-range in character, in contrast to the examined returns. The power-law function 

fitted to the empirical data (given by formula (5)) has an exponent 𝛼 = 0.16 and seems 

to adequately describe the character of the fading of correlation in the signal. The same 

behaviour is visible in Panel c), which shows the intercorrelation function determined 

for those companies and fitted to the data with a power-law function with power 

exponent 𝛼 = 0.11. 
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Figure 2.12 The autocorrelation of volatility. Panels a) and b) show the function of autocorrelation 

of the volatility of four companies. The company AIG is marked in orange colour, GE in red, 

CSCO in green and MSFT in blue. Panel c) represents the cross-correlation determined among 

these companies. The dashed line denotes the power-law fit. A daily trend with characteristic peaks 

every 390 minutes (1 trading day) is clearly visible. 

 

Using formula (17), the Pearson coefficient among all companies returns has been 

determined, which yields 406 possible combinations. All of the examined companies 

are positively correlated with one another. Two thresholds of correlation values are very 

well visible, i.e. at 𝜌𝑥𝑦(0) ≈ 0.4 and 𝜌𝑥𝑦(0) ≈ 0.5, in the vicinity of which more than 

half of the obtained values lie. This is indicative of a moderate strength of those 

correlations. In the case of 41 combinations of companies, there is no cross-correlation 

between signals, and two of them are correlated with each other at a level of 𝜌𝑥𝑦(0) =

0.7. The mean value of cross-correlation in the examined set is 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.35 . When 

comparing the cross-correlation of companies from different sectors in Table 2.4, it can 

be noticed that its mean value is the greatest for Materials sector companies, while the 

least for Services sector companies. 

 

Table 2.4 The mean value of returns cross-correlation 𝝆𝒙𝒚(𝟎), given by sectors. 

Basic Materials 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 0.38 ± 0.04 
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Consumer Goods 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 0.36 ± 0.02 

Financial 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅  ≈ 0.32 ± 0.07 

Healthcare 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅
  ≈ 0.34 ± 0.02 

Industrial Goods 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅  ≈ 0.39 ± 0.01 

Services 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 0.28 ± 0.06 

Technology 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅  ≈ 0.35 ± 0.08 

 

2.3.2 FX market 

A similar analysis was made on data from the foreign exchange market, where 

the strength of correlation between each of the 9 currency pairs was determined. Figure 

2.13 represents autocorrelation functions, as dependent on the delay 𝜏, for all currency 

pairs (the top diagram), as well as triangular relation deviations (the bottom diagram). 

Just like for financial markets, for FX data this function will assume values at the zero 

level, practically from 𝜏 = 2. Similarly as in study [31], a characteristic feature of 

almost all examined currency pairs is the existence of a correlation low of negative 

correlations for 𝜏 = 1, being indicative of an (apparent) anti-persistence of the series for 

short time scales. The only currency pair that has no low for 𝜏 = 1 is GPBUSD, which, 

apart from the EURUSD pair (the minimum low), is the most frequently traded 

currency pair. Therefore, the series of their returns have the fewest zeros, and it is the 

presence of zeros that determines whether the occurring persistence is apparent or not. 

If price-changing transactions occur rarely, then returns different from zero seldom 

happen in the signal, as isolated peaks surrounded by zeros on both sides. That is, 

effectively for the algorithm, the large (real) rate of return is followed by a small one (or 

zero). This resembles exactly anti-persistence, but is not it. Therefore, the negative anti-

correlation determined for the FX data is a computational artefact. 
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Figure 2.13 The autocorrelation function of 5-second returns corresponding to all currency pairs 

(the top panel) and triangular relation deviations (the bottom panel). 

 

This implies that the process memory is very short, which is characteristic of Brownian 

processes.  

The volatility autocorrelation functions can be seen in Figures 2.14 and  2.15. 

 

Figure 2.14 The top panel: volatility autocorrelation of 5-second data. Peaks constituting a daily 

trend are clearly visible. The bottom panel: the volatility of triangular relation deviations for 5-

second data. 
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Figure 2.15 The volatility autocorrelation function on the log-log scale of 5-second time series 

corresponding to all currency pairs (the top panel) and triangular relation deviations (the bottom 

panel). 

 

When comparing the volatility with the returns it can be seen that the autocorrelation 

has a long decay time. In approximation, this is a power-law relationship 𝑐(𝜏)~𝑥−𝛼, 

and the power exponent assumes the values 𝛼 = 0.32 and 𝛼 = 0.15, respectively, for 

returns and the triangular relation deviations.  

Using the converse exchange rates (
𝐸𝑈𝑅

𝑈𝑆𝐷
= (

𝑈𝑆𝐷

𝐸𝑈𝑅
)
−1

), it was possible to examine 

24 currency pairs "in the triangle" and 12 currency pairs "beyond the triangle" for cross-

correlations. A complete list of combinations is provided in Table 2.5. 

 

Table 2.5 24 exchange rate pairs "in the triangle" (black colour) and 12 exchange rate pairs 

"beyond the triangle" (red colour). 

AUDJPY/EURAUD AUDJPY/JPYUSD AUDJPY/USDAUD 

AUDUSD/USDEUR AUDUSD/USDJPY EURAUD/GBPEUR 

EURAUD/AUDUSD EURAUD/USDEUR AUDJPY/GBPJPY 

EURJPY/AUDEUR EURJPY/JPYAUD GBPUSD/USDJPY 

GBPUSD/EURGBP GBPUSD/JPYGBP GBPUSD/USDEUR 

GBPJPY/JPYEUR GBPJPY/JPYUSD GBPJPY/EURGBP 

EURJPY/USDEUR EURJPY/JPYUSD EURGBP/JPYEUR 

EURUSD/GBPEUR EURUSD/USDJPY AUDUSD/USDGBP 

AUDJPY/EURGBP AUDJPY/GBPUSD AUDUSD/EURGBP 

EURJPY/GBPUSD EURJPY/AUDUSD EURUSD/AUDJPY 

GBPUSD/EURAUD GBPJPY/AUDUSD EURAUD/GBPJPY 
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EURAUD/USDJPY EURGBP/USDJPY EURUSD/GBPJPY 

 

The employed denotation "currencies inside the triangle" means a simplified version of 

triangular arbitrage, where one single currency will occur between the examined 

exchange rates. This name will be used later on in this study. In the case of exchange 

rates "outside the triangle" we have four independent currencies. Moreover, it can be 

expected that the condition 
𝐴𝑈𝐷

𝐽𝑃𝑌
∗
𝐸𝑈𝑅

𝐴𝑈𝐷
=

𝐸𝑈𝑅

𝐽𝑃𝑌
 will be satisfied for currencies inside the 

triangle, which enables, using two different exchange rates 
𝐴𝑈𝐷

𝐽𝑃𝑌
 and 

𝐸𝑈𝑅

𝐴𝑈𝐷
 having a 

common currency 𝐴𝑈𝐷, the determination of the exchange cross-rate 
𝐸𝑈𝑅

𝐽𝑃𝑌
. For 

currencies outside the triangle, as in the case of 
𝐴𝑈𝐷

𝐽𝑃𝑌
∗
𝐸𝑈𝑅

𝐺𝐵𝑃
, it is not possible to calculate 

the exchange cross-rate, because there is no common currency between the exchange 

rates.  

         The relation between exchange rates was examined using formula (17). Except for 

the AUDJPY/GBPJPY pair, all currencies inside the triangle are negatively correlated, 

while those outside the triangle, correlated positively (except for the pairs 

EURAUD/USDJPY and EURGBP/USDJPY). The most negatively correlated is the 

EURUSD/GBPEUR pair with a correlation value of 𝜌𝑥𝑦(0) = −0.63, 

AUDJPY/GBPJPY is positively correlated with 𝜌𝑥𝑦(0) = 0.37, while the 

GBPJPY/AUDUSD pair is almost uncorrelated, with 𝜌𝑥𝑦(0) = 0.06 (the noise level is 

0.01). All the results for 𝜌𝑥𝑦(0) are shown in the inner panel in Figure 2.16. The mean 

value of the correlation coefficient for the pairs inside the triangle is 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −0.36, 

which means a negative intercorrelation, while for the pairs outside the triangle it is 

𝜌𝑥𝑦̅̅ ̅̅̅(0) = 0.19, which would suggest virtually no or very little intercorrelation. This 

value is disturbed by the aforementioned pairs: EURAUD/USDJPY with the coefficient 

𝜌𝑥𝑦̅̅ ̅̅̅(0) = −0.08 and EURGBP/USDJPY with 𝜌𝑥𝑦̅̅ ̅̅̅(0) = −0.13. The EURUSD pair is 

the one which is strongest linked with the remaining exchange rates and has the mean 

correlation coefficient equal to 𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −0.31. This result could have been expected, 

as this pair is the world's most often traded currency pair with a 25% market share
12

. In 

turn, an exchange rate least connected with other exchange rates is the AUDJPY with 

                                                 
12

 www.reuters.com: access on 15.09.2015 
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31 

 

𝜌𝑥𝑦(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −0.13 being, at the same time, a pair with the smallest quota market share 

(approx. 0.5 %) among the most popular exchange rates. 

 In the next step, the cross-correlation between the volatility of all currency pairs 

from Table 2.5 was examined. This is represented in Figure 2.16 where the currencies 

inside the triangle are shown in black, while the currencies outside the triangle, in red. 

 

Figure 2.16 The cross-correlation function determined for the volatility of  5-second time series. 

The currencies inside the triangle are indicated with black colour, while the currencies outside the 

triangle, with red. The dashed line denotes the noise level. The inset shows the Pearson correlation 

coefficient 𝝆𝒙𝒚(𝟎), determined for the returns. 

 

At the volatility level, all the examined exchanges rates are cross-correlated for events 

distant as much as by 5 ∗ 103 (which gives almost 7 trading hours). For a delay of about 

50 seconds, a slightly lower level of cross-correlation can be observed in the currencies 

outside the triangle, compared to the currencies inside the triangle. In the inset, the 

cross-correlation level for the returns is also indicated. Cross-correlation clustering on 

the negative value side for currencies inside the triangle is clearly seen. The only 

exception is the AUDJPY/GBPJPY currency pair. 

Figure 2.17 illustrates cross-correlations between triangular relation deviations. 

Deviation pairs, for which 2 common currencies exist, such as AUD-USD-JPY/AUD-

USD-EUR (with the common currencies AUD and USD), are marked in red colour, 

while those that have one common currency, e.g. AUD-USD-JPY/GBP-JPY-EUR (the 
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common currency being JPY), are marked in black. It is clearly visible that, in the case 

of two common currencies between deviations, there is a cross-correlation for a delay of 

up to 𝜏 = 3 (equal to 15 sec.), thereupon it assumes the level of two uncorrelated noises. 

In the case of one common currency, the cross-correlation between two series is 

immediately zero. This results from the fact that for currency triangle pairs, two 

information transferring currencies are needed in order to be able to determine the 

cross-correlation between them.

 

Figure 2.17 The function of cross-correlation between triangular relation deviations. Correlations 

between triangles having 2 common currencies are marked in red colour. 
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3 Fractal and multifractal formalism 

 In the classical Euclidean geometry, we generally deal with regular objects, that 

are the ones free from roughness (such as curves, polygon sides, spheres or polyhedron 

walls). As can be easily noticed, the world around us is not so regular and simple in 

description. The attempt to describe the shape of some real objects (e.g. clouds) using 

traditional geometry is sometimes a very tedious, if not impossible job. In the 1970s, 

Benoit Mandelbrot made some groundbreaking discoveries in the study of irregular 

objects and created fractal geometry [37; 38]. From that moment, fractals have changed 

the way we view the world. The word 'fractal' itself is derived from Latin and means 

'fractional' or 'broken'. When examining financial data charts, Mandelbrot noticed that 

they are similar to each other in different time scales. This is a feature that is 

characteristic of fractals and is called self-similarity. An object having this feature is 

similar to itself regardless of the scale, looking the same when observed either from 

close up or from a distance. Taking a part of an object and respectively scaling it, we 

will get an object similar to the whole. Using fractal geometry, we can examine 

systems, from the complex and irregular structure of which, an ordered and hierarchical 

picture will emerge. Fractals are present almost everywhere. The shapes of a snow 

flake, shoreline, trees, human lungs or broccoli – these are just a few examples of 

natural, random fractals, in which self-similarity is statistical in character. One flake 

may differ in details from the other, but in terms of general characteristics, they are the 

same. And it is this type of systems that can be most fully described using fractal 

geometry. Apart from them, there are plenty of mathematical (deterministic) fractals 

generated by recurrent formulas, which, unlike natural fractals, make up ideal 

structures. At each iteration, scaling takes place while preserving the characteristic 

scale, which is not a rule for random fractals. Very commonly, random fractals are used 

in video games and computer graphics, where, with the help of simple mathematical 

rules, complex structures are created, including most often some landscape elements, 

such as trees or mountains, at a much lower computing cost. Examples of such fractals 

are shown in Figure 3.1. 
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Figure 3.1 Examples of simple mathematical fractals (on the left). The second top structure is a 

Koch curve, while the first bottom one, a Sierpinski triangle. On the right, there are examples of 

natural fractals. 

 

Also the time series of financial data have a fractal nature. Looking at the time series of 

data recorded every second or every minute, it is very difficult to distinguish which 

series is on what scale (Figure 3.2). 

 

Figure 3.2 Self-similarity of a time series (EUR/USD). 

 

Moreover, the record of share price variations (assuming its continuity) is not one-

dimensional (it is not an ordinary curve) or two-dimensional (its surface has a zero 

area), which, according to the definition below, is sufficient to refer it as a fractal. In 

addition, unlike classic fractal forms, which are spatially self-similar, time series are 

self-similar with respect to time.  



 

35 

 

 

There is no single definition of the fractal. One of the definitions says that the 

fractal is a set that exhibits a self-similarity property, at least in an approximate sense, if 

not exactly. According to another definition, fractals are objects having a non-trivial 

structure, which cannot be described using the Euclidean geometry. Or, the fractal is an 

object whose dimension is not an integer. 

We assume that the set 𝐹 is called fractal, if it shows the following features [39]: 

1) 𝐹 has a structure such, that its details can be seen on an arbitrarily small scale; 

2) 𝐹 is too irregular to be described using traditional geometry; 

3) 𝐹 is self-similar (in a statistical sense); 

4) fractal dimension of 𝐹 is usually greater than its topological dimension; 

5) in the case of mathematical fractals, it is defined simply, most fully in the form of a 

recurrent procedure. 

Below, basic fractal geometry concepts necessary for the description of fractals will be 

presented. 

3.1 General properties of fractal sets 

Fractals are scale free objects, i.e. they do not have a single, distinguished scale. 

They exhibit so complex structure that no direct and accurate measurement of their 

length, surface area or volume is possible. During the measurement of these values, it is 

normally indicated how fast they increase, because when made with increasingly great 

accuracy, the measurement will lead to divergent results. It should be noted that not 

every self-similar object is a fractal. Objects not being fractals include, e.g., an interval, 

a square or a cube. If the linear dimensions of those objects are scaled by an arbitrary 

number, then their respective surface area and volume will be changed proportionally. 

In the case of fractals, there is no such proportionality. 

Scaling is, therefore, a superposition of several transformations in Euclidean 

geometry. The transformation 𝑆: ℝ𝑛 → ℝ𝑛 is called isometric, if it retains the distance, 

that is |𝑆(𝑥) − 𝑆(𝑦)| = |𝑥 − 𝑦| for every 𝑥, 𝑦 ∈ ℝ𝑛. An example of isometric 

transformation is translation, or the parallel shift S(x) by a vector a: 𝑆(𝑥) =  𝑥 + 𝑎, 

rotation about a point 𝑎, |𝑆(𝑥) − 𝑎| = |𝑥 − 𝑎| and reflection. Similarity transformation 

by a value c is a transformation, where the relationship |𝑆(𝑥) − 𝑆(𝑦)| = 𝑐|𝑥 − 𝑦| 

occurs for every 𝑐 > 0 and 𝑥, 𝑦 ∈ ℝ𝑛, whereby a geometric figure subjected to this 

transformation turns into the identical figure, but with all its dimensions multiplied by 
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the value c. This is an isotropic transformation, i.e. the transformed object is scaled by 

the same value in all directions. 

A special case of self-similarity is self-affinity. The affine transformation 𝑆 is a 

transformation in the form of: 

 𝑆(𝑥) =  𝑇(𝑥) + 𝑎, (18) 

where 𝑎 is a point in ℝ𝑛 while 𝑇 is singular linear transformation. A transformation 𝑇 is 

non-singular, if 𝑇(𝑥) = 0 ⟺ 𝑥 = 0 and 𝑇 if the following relationship occurs: 

 𝑇(𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦) i 𝑇(𝜆𝑥) =  𝜆𝑇(𝑥), (19) 

where 𝑥, 𝑦 ∈ ℝ and 𝜆 ∈ ℝ. 

Affine transformation can be understood as a superposition of the operations of scaling, 

translation, rotation and reflection, not necessarily by the same value in all directions. 

So, this is an anisotropic transformation, in which scaling depends on the orientation in 

space. An example of affine transformation is shown in Figure 3.3 below. 

 

Figure 3.3 A schematic diagram of affine transformation. 

 

Self-affine are the time series of the returns (Figure 3.2), and for the description of the 

degree of irregularity of function 𝑓(𝑥) that can represent such a time series, the Hurst 

exponent 𝐻 is used. In the case, where 𝑓(𝑥) is self-affine, it satisfies the following 

relationships: 

 𝑓(𝑥) ≅ 𝜆𝐻𝑓(𝜆𝑥). (20) 

It follows from formula (20) that for 𝐻 = 1, 𝑓(𝑥) is self-similar. When the exponent 𝐻 

is dependent on time t, then the Hölder exponent (function) [40] is used to define the 

pointwise scaling. A function 𝑓 is called the Hölder function with an exponent ℎ, if the 

following relationship is satisfied: 

 |𝑓(𝑥) − 𝑃𝑛(𝑥 − 𝑥0)| ≤ 𝑐|𝑥 − 𝑥0|
ℎ, (21) 
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for a constant 𝑐 > 0 and a polynomial 𝑃𝑛 of order 𝑛. Assuming that 𝑛 < ℎ, the Hölder 

exponent ℎ(𝑥0) is defined as the greatest value in the set ℎ which satisfies the 

relationship (21): ℎ(𝑥0) =  sup {𝑠: 𝑓 ∈ 𝑐
𝑠(𝑥0)}. More information about the Hurst 

exponent is provided later on in this study. 

If one quantity depends on the other in a power-law manner, then we call this 

scaling. In the case of time series, scaling results directly from self-similarity forming 

the basis for fractal geometry. Self-similarity, or the lack of a characteristic scale, is 

closely related to power laws. Systems that can be described using power-law similarity 

distributions: 

 𝑃(𝑥) = 𝑥−𝛼, (22) 

are scale free objects, such as fractals. By multiplying the argument of function (22) by 

a constant factor c, we proportionally scale the value of the function itself, i.e.: 

 𝑃(𝑐𝑥) = (𝑐𝑥)−𝛼 = 𝑐−𝛼𝑃(𝑥). (23) 

In this case, scaling involves simply multiplying the function by the coefficients 𝑐−𝛼. 

Power-law distributions on a logarithmic-logarithmic scale have the form of a straight 

line (which is very important in the case of the methods of determining higher-order 

correlations: sections 4.1 and 4.2). If we find the logarithm of the both sides of 𝑃(𝑥) in 

formula (23), then we will get: ln 𝑃(𝑥) =  −𝛼 ln 𝑥 + ln 𝑐. Representing this is the 

coordinates 𝑥′ = ln𝑥′ and 𝑦′ = ln𝑃(𝑥), we obtain the linear relationship 𝑦′ = 𝑎𝑥′ + 𝑏, 

where 𝑎 =  −𝛼 and 𝑏 = ln𝑐.  

It is common practice to use the testing of a function for linearity on the 

logarithmic scale as the criterion for judging whether a given distribution is a power-law 

distribution or not. Unfortunately, this may lead to erroneous results, because it often 

turns out in practice that the size of a test sample strongly influences the occurrence of 

rare events in that sample (by the very nature of power-law distributions). To 

circumvent this limitation, the probability distribution for actual data is made on 

logarithmic cells. Thus, for small but frequent events, we have a large number of cells 

to be populated, while for large events we will get a small number of cells. Moreover, 

by being presented on the log-log scale, the power-law distribution diagram will gain in 

legibility owing to the fact that the logarithmic cells will be equally distant from one 

another. Power-law distributions are commonly used and observed in physics e.g. noise 

1/𝑓, phase transitions [41], percolation [41], the Insing model [42], biology [43] , 

economics (Pareto’s law [9]) or social sciences (Zipf's law [44]). 
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Fractality is also a feature of many complex systems, which are understood as systems 

with a very large number of elements interacting nonlinearly with one another, and in 

the dynamics of which emergent phenomena can be observed. As has already been 

mentioned, the feature of such phenomena is that they cannot be accurately foreseen at 

the macroscopic level based on the knowledge of the structure and interactions among 

the microscopic components of the system. A slight change in one component has far-

reaching consequences. Therefore, the complete description of a system requires all its 

characteristics to be considered at all organization levels [45; 46]. Complex systems can 

be observed in many fields of science from medicine, through physics and chemistry to 

economics and social sciences. Even though those areas are sometimes distant from one 

another, the behaviour of these systems can be described using the same principles, and 

the systems themselves exhibit a number of similar features, such as the aforementioned 

emergence, self-organization or hierarchy. As will be explained later in this study, all of 

these features are observed in the case of financial markets, where, additionally, the 

time series of share prices and foreign exchange rates exhibit fractal properties. 

3.2 Fractal dimensions 

For the quantitative description of scaling and self-affinity, the notion of fractal 

dimension applies, which provides information on how an object fills the space. 

Classically, the dimension is defined as the number of degrees of freedom needed for 

describing an arbitrary point inside that object. In that case, it is the topological 

dimension 𝐷𝑡. The topological dimension of an interval is one, because only one 

number is needed to describe the position of an arbitrary point on it. In turn, for the 

description of a point in a plane, two points are needed, from which it is inferred that the 

topological dimension of a plane is 𝐷𝑡 = 2, while for the description of the position of a 

point in the three-dimensional space, three numbers are required, hence 𝐷𝑡 = 3. The 

topological dimension of fractal objects is also an integer; so, it is not the appropriate 

measure for the description of those objects. 

A dimension most often used for fractals is the self-similarity dimension 𝐷𝑠 

defined by the formula: 

 𝐷𝑠 =
log (𝑁)

log (
1

𝑠
)
, (24) 

 where 𝑠 is the scale factor, and 𝑁 is the number of parts into which the object is 

divided. For geometric objects, such as an interval, a square or cube, the scale factor can 
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be chosen arbitrarily; but for fractals, it is specific for a given fractal. For example, the 

Sierpinski triangle scaled with 𝑠 = 1/2 has a fractal dimension of 𝐷𝑠 =
log (3)

log (2)
=

 1.5849, which means that, in the conventional meaning of the Euclidean dimension, 

this is an object between a straight line and a plane, though it has a topological 

dimension of 2. An equally common fractal dimension [39] is the box-counting 

dimension 𝐷𝑏 which is defined by the formula: 

 𝐷𝑏 = lim𝛿→0
log𝑁𝛿(𝐹)

− log𝛿
 , (25) 

where 𝐹 is a set in ℝ𝑛 and 𝑁𝛿(𝐹) is the smallest number of sets with the diameter 𝛿 

covering the set 𝐹. To calculate the box-counting dimension of a two-dimensional set 𝐹, 

the set on a grid, whose elements have the size 𝛿 and count how many elements are 

needed to completely cover the set 𝐹. 

For example, the Koch curve is formed by dividing an interval into 3 parts and 

substituting the median with two intervals, each with a length equal to 1/3 of the initial 

length, inclined at 60 degrees to one another. Therefore, at the first iteration, we cover 

the curve with three squares 𝑁𝛿(𝐹) = 3 , each with a side length of 𝛿 =
1

3
. 

At the second iteration, we repeat the operation, reducing the square side length to 

𝛿 =
1

9
, as a result of which we will have 𝑁𝛿(𝐹) = 12 squares covering the curve. At the 

n-th iteration, we have 𝑁𝛿(𝐹) = 3 ∗ 4
𝑛−1 and 𝛿 =

1

3𝑛
,which, after substituting in the 

formula, will give 𝐷𝑏 ≈ 1.26186. In practice, using the box-counting dimension will be 

burdened with a large error and may lead to fairly significant distortions as to the actual 

dimension of the fractal [47]. However, the oldest and, at the same time, the most 

important dimension is Hausdorff dimension [39], while the fractal definitions quoted 

above are only its simplification. To be able to define it, we must start from the 

definition of Hausdorff measure. Let us assume that 𝑈 is a non-empty subset of an n-

dimensional space ℝ𝑛 with a diameter defined as |𝑈| = sup{|𝑥 − 𝑦|: 𝑥, 𝑦 ∈ 𝑈} (the 

greatest distance between any pair of points in 𝑈) not greater than 𝛿. If {𝑈𝑖} is a 

countable set of sets 𝑈𝑖 with a diameter of at most 𝛿, which covers the 𝐹: 𝐹 ⊂

⋃ 𝑈𝑖 i 0 ≤
∞
𝑖=1 |𝑈𝑖| ≤ 𝛿, then we say that {𝑈𝑖} is a 𝛿–cover of 𝐹. If 𝐹 is a subset of ℝ𝑛 

and 𝑠 is a non-negative number, then for 𝛿 > 0,ℋ𝛿
𝑠 = inf{∑ |𝑈𝑖|

𝑠: {𝑈𝑖} 
∞
𝑖=1 } is the 

𝛿 −cover of the set F.  
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Figure 3.4 Covering of the set with subsets F of a different diameter 𝜹. 

 

We take all coverings of the set 𝐹 by sets of a diameter 𝛿 and search for the one with 

the smallest sum of the 𝑠-degree powers of those diameters. The idea of covering a set 

with different subsets is shown graphically in Figure 3.4. As 𝛿 decreases, the diameters 

of the sets of each of the covers decrease, whereby we can see more and more details of 

the set 𝐹. At the limit 𝛿 → 0, the measure ℋ𝑠(𝐹) is referred to as the 𝑠-dimensional 

Hausdorff measure of the set:  

 ℋ𝑠(𝐹) =  lim
𝛿→0

ℋ𝛿
𝑠(𝐹). (26) 

Scaling of a length, surface or volume is known very well. By scaling them up by a 

constant 𝜆, we obtain a curve 𝜆 two times as long, a surface 𝜆2 times as large, and a 

volume 𝜆3 times as great; the 𝑠-dimensional Hausdorff measure scales itself as 𝜆𝑠. Such 

scaling properties provide a foundation of the fractal theory. 

There is a critical value 𝑠, above or below which ℋ𝑠(𝐹) is 0 or ∞, and which is called 

the Hausdorff dimension  𝐷𝐻 [39]: 

 
ℋ𝑠(𝐹) = {

∞      0 ≤ 𝑠 <  𝐷𝐻
  0              𝑠 >   𝐷𝐻  

. 
(27) 

The relationship between the introduced dimensions is as follows: 𝐷𝑆 ≤ 𝐷𝐻 ≤ 𝐷𝑏. In 

practice, it is not always the case that dimensions calculated by different methods are 

the same. 

 To get the idea of what the fractality of time series is all about, we should have a 

look at Figure 2.1. We can see that individual returns are not uniform, but there are 

places where the volatility is greater or less. This reflects the correlation between 
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market participants that determine the price. How the space is filled by an object 

depends on the mechanism that forms it. In the case of returns, such driving forces are 

investors who price the value of assets based on micro- and macroeconomic factors. 

The time series of financial assets are not exactly random contrary to a time series of the 

Brownian motion, although the box-counting dimension of these two time series is 

comparable. The box-counting dimension for the time series in Figure 2.1 is 𝐷𝑏 = 1.43. 

3.3 Multifractals and the singularity spectrum 

The above-mentioned measures lend themselves perfectly to the determination 

of the dimensions of single fractals, but for multifractals (being a combination of 

individual fractal structures with their own fractal dimension and local scaling 

properties), other characteristics are needed, which will make it possible to describe the 

set [48]. Therefore, we introduce a new dimension, 𝐷. For a fractal object with a 

measure 𝜇, the dimension 𝐷 shows what the increase in mass 𝜇(𝐵𝑥(𝜖)) will be with the 

increase in 𝜖: 

 
𝜇(𝐵𝑥(𝜖)) = ∫ 𝑑

 

𝐵𝑥(𝜖)

𝜇(𝑦)~𝜖𝐷 , 
(28) 

where 𝐵𝑥(𝜖) is a sphere with a radius 𝜖 and with the centre 𝑥. Generally, fractal 

measures exhibit multifractal properties, if they scale diversely, depending on the 

position. This lead to local scaling: 

 𝜇(𝐵𝑥(𝜖))~𝜖
𝛼(𝑥), (29) 

where 𝛼(𝑥) is the strength of singularity (singularity exponent) of the measure 𝜇 at 

point 𝑥. The greater the value 𝛼(𝑥), the more uniform the measure is in the vicinity of 𝑥 

and the weaker the singularity. The singularity spectrum 𝑓(𝛼) describes the distribution 

of the exponents 𝛼(𝑥). If the measure 𝜇 is covered with spheres with a size 𝜖, then the 

number of such spheres scales itself, for a given 𝛼, in the following manner: 

 𝑁𝛼(𝜖)~𝜖
−𝑓(𝛼). (30) 

At the limit 𝜖 → 0+, 𝑓(𝛼) is the Hausdorff dimension of the set of points 𝑥 such, that 

𝛼(𝑥) = 𝛼: 𝑓(𝛼) =  𝑑𝐻({𝑥 ∈ Supp 𝜇, 𝛼(𝑥) = 𝛼}), or the set of the Hausdorff 

dimensions of points described by the same Hölder exponent. Now we have a 

distinction between two classes of singular measures. Homogeneous (monofractal) 

measures are characterized by a singularity spectrum in the form of a single point 

(𝛼0, 𝑓(𝛼0), which means that only one type of singularity is present. Fractal measures 
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refer to different-type singularities in such a manner that the function 𝑓(𝛼) has the 

shape of an inverted parabola extended between the points: 𝛼min (the strongest 

singularity) and 𝛼max (the weakest singularity). 

The generalized fractal dimension 𝐷𝑞 corresponds to the scaling exponent of the 

moment 𝑞 of measure 𝜇. If we cover the measure 𝜇 with spheres 𝐵𝑖(𝜖) with a size 𝜖, 

then we will be able to define the generalized scaling exponents 𝜏(𝑞) using the so-

called partition function: 

 𝑍(𝑞, 𝜖) = ∑ 𝜇𝑖
𝑞(𝜖)

𝑁(𝜖)
𝑖=1 , (31) 

where 𝜇𝑖= 𝜇(𝐵𝑖(𝜖)), 𝑞𝜖ℝ . At the limit 𝜖 → 0+, 𝑍(𝑞, 𝜖) shows a power-law behaviour: 

 𝑍(𝑞, 𝜖)~ 𝜖𝜏(𝑞). (32) 

The generalized fractal dimension is related to the generalized scaling exponent with the 

following relationship: 

 
𝐷𝑞 =

𝜏(𝑞)

𝑞 − 1
. 

(33) 

For different values of 𝑞, 𝐷𝑞 takes on some characteristic values. For 𝑞 = 0, the value 

of function 𝑓(𝛼) attains a maximum, while 𝐷0 is then the exponent of the support of 

measure 𝜇. In the case 𝑞 = 1, the equality 𝛼 = 𝑓(𝛼), occurs, with the corresponding 

value 𝐷1 being the information dimension. The information dimension tells us how the 

information needed for describing the point on a fractal scales itself with the increase in 

dimension 𝜖:  

 

𝐷1 = lim
𝜖→0

∑
𝑝𝑖(𝜖)ln (𝑝𝑖(𝜖))

𝑙𝑛(𝜖)
,

𝑁

𝑖=1

 

(34) 

where 𝑝𝑖(𝜖) is the probability of a sphere 𝑖 containing the point. The quantity 𝐷1 is 

related to the information entropy of the system. All values 𝑞 ≥ 2 are referred to as the 

correlation dimension [49] of degree 𝑞. The above dimension measures the probability 

of two randomly points chosen from the set being away from each other by a certain 

distance. Change in the correlation dimension entails a change in the measure 

distribution. An example of the singularity spectrum and its characteristic values are 

shown in Figure 3.5. 
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Figure 3.5 A sample multifractal spectrum 𝒇(𝜶) of the determined binomial cascade. 

 

If we assume that, for the adopted scale 𝜖, the distribution of the values of singularity 

exponent 𝛼 has the form of 𝜚(𝛼)𝜖−𝑓(𝛼), then by substituting this expression in Equation 

(31), we will obtain the relationship [48]: 

𝑍(𝑞, 𝜖)~∫𝜌(𝛼)𝜖𝑞𝛼−𝑓(𝛼)𝑑𝛼.  
(35) 

At the limit 𝜖 → 0+, the main contribution to the integral comes from the 

expression 𝜖min𝛼(𝑞𝛼−𝑓(𝛼)), from which it follows that 𝜏(𝑞) assumes the following 

form: 

 𝜏(𝑞) = min𝛼(𝑞𝛼 − 𝑓(𝛼)). (36) 

From the above formula, using the inverse Legendre transform, we get the formula 

for the spectrum 𝑓(𝛼): 

 𝑓(𝛼) = min𝑞(𝑞𝛼 − 𝜏(𝑞)).  (37) 

In the case where 𝑓(𝛼) is a smooth function, then, following formulas (36) and 

(37), we obtain the following relationship [48]: 

 
{

𝑞 = 𝑑𝑓/𝑑𝛼

𝜏(𝑞) = 𝑞𝛼 − 𝑓(𝛼).
 

(38) 

 

 

Referring to thermodynamics, we can identify the value q with Boltzmann temperature 

𝛽 = 1/𝑘𝑇, while 𝛼𝑖 = −ln(𝜇𝑖)/ln (1/ 𝜖), with energy 𝐸𝑖 per unit volume of microstate 

[50]. 
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4 Multifractal analysis of time series 

The correlations and memory of time series can be examined in various ways. 

The analysis of spectral density or autocorrelation function provides, as a rule, 

information on the linear relationships in the system under analysis. To supplement the 

system information in terms of non-linear relationships, fractal methods are used. The 

analysis a time series, in which non-linear long-range correlations occur, is often 

reduced to the analysis of its multifractal structure. Currently existing algorithms used 

for such analysis enable the time series fractal dimensions and the scaling exponents to 

be determined based on the statistic properties of the time series. As these are methods 

relatively simple and easy to implement, they have found application in many branches 

of science, such as physics [51], biology [52; 53], chemistry [54], medicine [55], music 

[56], meteorology [57] or economics [58; 59; 60]. The examination of the 

autocorrelation and cross-correlation functions enables one to look inside the natural 

system and observe its dynamics. One of the most commonly known methods of 

examining the fractal properties of time series is the DFA (Detrended Fluctuation 

Analysis) algorithm. This algorithm was first mentioned in study [61] concerning the 

DNA analysis. It allows long-range power-law correlations to be determined for non-

stationary processes. A generalization of this method on a multifractal case is the MF-

DFA (Multifractal Detrended Fluctuation Analysis) method that enables correlations 

other than linear to be identified [62] .  

For the proper detection of a correlation in a signal, it is necessary to identify the 

trend present in the data. Trends may lead to the incorrect identification of the 

correlation [62] due to the non-stationary nature of the signal. By eliminating the trend, 

we will obtain a stationary signal. In the above-mentioned methods, for each examined 

time scale 𝑠, the trend represented by the polynomial of degree 𝑚 is removed. The 

choice of the polynomial degree is of key importance, as in the case where it is too big, 

small fluctuations, incorrectly identified as a trend, might be cut out from the signal 

[63]. If the degree 𝑚 is too small, the trend may not be completely removed from the 

signal. Based on the results of study [63], a polynomial of the second degree was used 

for subsequent calculations, as it best describes the trend in financial data. To 

supplement the autocorrelation analysis of fluctuations, the data were also analyzed 

using the Wavelet Leaders method [64], which relies on the wavelet transform that 

decomposes the signal in the domain of time and frequency. To examine the power-law 
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correlation between signals, the DCCA (Detrended Cross-Correlation Analysis) method 

[65] was employed, which is a generalization of the DFA method on the case of two 

series. One of the multifractal variations of DCCA is the MF-DXA (Multifractal 

Detrended Cross-Correlation Analysis) method [66]. As is shown below, this method 

may lead to incorrect results. Therefore, the MFCCA (Multifractal Cross-Correlation 

Analysis) method [67] is proposed, as the one that is able to correctly identify the fractal 

cross-correlation. The method under consideration enables the determination of the 

spectrum exponent 𝜆𝑞 that characterizes the multifractal properties of the time series. 

4.1 The MF-DFA (Multifractal Detrended Fluctuation Analysis) 

multifractal method 

The British hydrologist Edwin Hurst, during his stay in Egypt from 1906, where 

he studied the water level in the Nile river basin, was one of the first to observe power 

laws in real time series [68]. He measured water level fluctuations in the water reservoir 

behind the dam around its average level. Had it been, as expected, an exactly random 

relationship, then the range of fluctuations would have varied in time following the 

classic Brownian motion
13

 as 𝑡1/2. However, Hurst noticed that the results could be best 

described using the relationship 𝑅/𝑆~𝑛𝐻, where 𝑛 is the time scale, 𝐻 is the Hurst 

exponent (not necessarily being equal to 1/2), 𝑅 is the range under analysis, and 𝑆, the 

standard deviation of the measurement, 𝑅. This is the so-called Rescaled Range 

Analysis (𝑅/𝑆), whose advantage is that it enables different types of time series to be 

compared. The Hurst exponent is dimensionless and is associated with the type of linear 

correlations occurring in a process. It can be regarded as a characteristic of the volatility 

of a fractal process, and in a wider context of financial markets, it can be considered a 

measure of investment risk. In the case of 𝐻 < 1/2, the time series is correlated 

negatively, for 𝐻 > 1/2 it is correlated positively, while for 𝐻 = 1/2 it is uncorrelated. 

For the flooding of the Nile, the 𝐻 value estimated by Hurst is ~0.77 [69]. Hurst 

discovered also that the majority of natural systems are not subject to random walking, 

but are in some way slightly correlated. 

                                                 
13

 In accordance with the classic Brownian motion law, a distance 𝑅 covered by a particle is proportional 

to the square root of time 𝑅~𝑇1/2. This principle is commonly used in investment strategies, where, 

having the monthly standard deviation 𝑇  and multiplying it by the root of 12, we obtain the yearly 

volatility of 𝑅 [119]. 
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The DFA method [70] has been introduced, because other conventional signal 

fluctuation description methods, such as 𝑅/𝑆, cannot be used for describing non-

stationary data. DFA enables the detection of long-range power-law correlations in 

signals containing trends (most often of the polynomial type), which make the 

identification of correlations in signal fluctuations difficult.  

A generalization of the DFA method on the multifractal case is the MF-DFA 

method [71; 72], which works as follows: given a time series 𝑥𝑖 of the length 𝑁(𝑖 =

1,2, …𝑁), we define the so called profile function according to the formula 

 

𝑋(𝑗) =∑[𝑥𝑖 − 𝑥̅

𝑗

𝑖=1

], 

(39) 

where 𝑥̅ is the mean value calculated for the whole signal. Then, the signal 𝑋 is divided 

into M𝑠 =
𝑁

𝑠
 intervals, each of the length 𝑠. This operation is repeated two times, from 

the beginning and end of the series, with the aim of avoiding the situation, where the 

relevant events occurring at either end of the series are omitted. As a result, we obtain 

2𝑀𝑠 intervals 𝑣, in which determine the trend 𝑃𝑋,𝑣
(𝑚)

 being a polynomial of degree 𝑚 and 

the variance 

 
𝐹𝑥
2(𝑣, 𝑠) =  

1

𝑠
∑ {(𝑋((𝑣 − 1)𝑠 + 𝑘) − 𝑃𝑋,𝑣

(𝑚)(𝑘))}
 

2𝑠

𝑘=1

, 
(40) 

where 𝑣 = 1…𝑀𝑠. Then, the variance is averaged over all intervals and the fluctuation 

function is determined for the parameter 𝑞 ≠ 0: 

 

𝐹𝑥
 (𝑞, 𝑠) =  {

1

2𝑀𝑠
∑[𝐹𝑥

2(𝑣, 𝑠)]𝑞/2

2𝑀𝑠

𝑣=1

}

1/𝑞

. 

(41) 

The core of the method is the analysis and respective interpretation of the fluctuation 

function. If, for different time scales 𝑠, the function 𝐹𝑥
 (𝑞, 𝑠) has a power-law behaviour, 

i.e. the following relationship is satisfied: 

𝐹𝑥
 (𝑞, 𝑠)~𝑠ℎ(𝑞), (42) 

then we can speak of the fractal properties 𝑥𝑖 characterized by the generalized Hurst 

exponent ℎ(𝑞), which for 𝑞 = 2 is the classic Hurst exponent defining linear 

correlations. The method allows processes of a multifractal, monofractal or a totally 

non-fractal nature to be distinguished. For multifractal series, ℎ(𝑞) changes its value, 

depending on the parameter 𝑞, while for monofractal series, ℎ is constant and equal to 

the classic Hurst exponent ℎ(𝑞) = 𝐻. Having the ℎ(𝑞) determined, using the 
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relationship given by (37) and the relationship 𝜏(𝑞) = 𝑞ℎ(𝑞) − 1 [48] we can determine 

the singularity spectrum. So, for random time series, the singularity spectrum should be 

reduced to a point located at 𝛼 ≈ 0.5 and 𝑓(𝛼) ≈ 1. When examining real monofractal 

date it often turns out that the determined spectrum is an inverted parabola rather than a 

point. This is the effect of the finite length of the examined series. Figure 4.1 shows 

three examples of fractal spectra determined for the fractional Brownian motion
14

 

(Fractional Brownian Motion) [27], given by three different Hurst exponents. In each 

case, the maximum of the multifractal spectrum 𝑓(𝛼) falls almost exactly on 𝛼 being 

equal to the given Hurst exponent. A certain narrow spectrum width can also be 

observed. 

 

Figure 4.1 Fractal spectra for FBM processes with a different Hurst exponent. The process H = 0.3 

is marked in red colour, H = 0.5 in black, and H = 0.8 in green. Inset plots show respective 

fluctuation functions. 

 

An example of a fractal process is the Markov-Switching Multifractal Model 

(MSM) first introduced in study [73]. This is an iterative model, which is able to 

replicate the hierarchic structure, providing it a multifractal nature. Its important feature 

is the fact that it can be used to model the process variation clustering (large fluctuation 

groups intermingled with groups of small fluctuations), therefore MSM is widely used 

in finances. The random variable 𝑟𝑡 of the MSM type is given by the formula: 

 

                                                 
14

 The fractional Brownian motion 𝐵𝐻(𝑡), which is a generalization of the classic Brownian motion and is 

controlled by the Hurst exponent 𝐻. Its average value is 0, and the covariance function is given by the 

𝐶𝑜𝑣(𝐵𝐻(𝑡1); 𝐵𝐻(𝑡2)) =
𝜎2

2
(𝑡1
2𝐻 − |𝑡1 − 𝑡2|

2𝐻 + 𝑡2
2𝐻). 
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 𝑟𝑡 = 𝜎𝑡𝑢𝑡 , (43) 

 where 𝑢𝑡 is the Gaussian random variable, while  

 

𝜎2𝑡 = 𝜎2∏𝑀𝑡
(𝑖)

𝑘

𝑖=1

 

(44) 

is the process volatility determined by 𝑘 multipliers 𝑀𝑡
(1)
, 𝑀𝑡

(2)
… 𝑀𝑡

(𝑖)
 and a constant 

factor 𝜎. The model assumes that the multipliers 𝑀𝑡
(𝑖)

 are sampled from a binomial or 

log-normal distribution. The process volatility is adapted in each step 𝑡 with the 

probability 𝛾𝑖, depending on the rank, and remains unchanged with the probability 

1 − 𝛾𝑖. The probability of change is given by the formula: 

 𝛾𝑖 = 1 − (1 − 𝛾𝑘)
(𝑏𝑖−𝑘), (45) 

where 𝛾𝑘 ∈ (0; 1) and 𝑏 ∈ (1,∞). 

Figure 4.2 shows a sample realization of the MSM process generated from the binomial 

distribution with the weight 𝑚0 = 1.2 and its fractal characteristics. The binomial 

distribution means that the variable 𝑀𝑡
(𝑖)

 can assume the values 𝑚0 and 2 − 𝑚0 with 

equal probability. 

 

Figure 4.2 The MSM process generated for the weight 𝒎𝟎 = 𝟏. 𝟐. The panel a) represents the 

realization of the process, b) the fluctuation function determined for it, c) the multifractal 

spectrum, while d) the generalized Hurst exponent 𝒉(𝒒)  determined for each of the moments q. 

 

Unlike the monofractal process, the fluctuation functions 𝐹𝑥
 (𝑞, 𝑠) are not parallel to 

each other, and for every value of 𝑞 they assume different slopes. The determined 
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multifractal spectrum 𝑓(𝛼) takes on the shape of an inverted parabola, is (∆𝛼 ≈ 0.4) 

wide and its maximum falls on the point 𝛼 = 1. The generalized Hurst exponent ℎ(𝑞) is 

a decreasing function 𝑞. 

Another example of a multifractal process is the multiplicative cascade which is a 

generalization of the Cantor set. It is constructed in the following manner: The measure 

is laid down on a unit segment. The segment is divided into 2 portions, and part of the 

mass 𝑚0 and 𝑚1 is assigned to each of the portions, where 𝑚0 +𝑚1 = 1 is the total 

mass. In the next step, each of the newly formed segments is divided again into 2 

portions, while assigning part of the mass 𝑚0 to the left-hand segment and 𝑚1 to the 

right-hand segment. This procedure is repeated for 𝑛 steps in such a manner that the 

total mass is the product of the masses of all preceding steps. If the probability 

distribution of these random variables does not depend on the iteration, then we have a 

self-similar structure with the retained relation of the scaling moments and the 

probability distribution. An example of fluctuation function determined for the cascade 

and Gaussian processes is shown in Figure 4.3. 

 

Figure 4.3 Starting from the top: the time series, the fluctuation function 𝑭𝒙
 (𝒒, 𝒔) and the Hurst 

exponent for, respectively, the Gaussian process (the left-hand panel) and the cascade process (the 

right-hand panel). 
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A difference between the two types of processes is clearly seen, on the level of both the 

fluctuation function 𝐹𝑥
 (𝑞, 𝑠), and the relationship ℎ(𝑞). In the case of the Gaussian 

process, the values of the function 𝐹𝑥
 (𝑞, 𝑠) for a given scale 𝑠 and moment 𝑞 do not 

practically differ from one another and are parallel to each other. By contrast, for the 

cascade process, the dependence of the slope of the fluctuation function on the 

parameter 𝑞 is clearly seen. Moreover, 'steps' in the graph of the function 𝐹𝑥
 (𝑞, 𝑠), can 

be observed; its values take on different values, depending on 𝑞, and with increasing 

scale the functions become closer to each other. The generalized Hurst exponent ℎ(𝑞) is 

constant with respect to 𝑞 for the Gaussian process, whereas for the cascade process it is 

not a constant function. 

4.1.1 Analysis of foreign exchange market data 

The multifractal analysis of the financial data from Section 3 using the MF-DFA 

method will be presented here. 

4.1.1.1 Base currencies 

As has already been mentioned, the fluctuation function 𝐹𝑥
 (𝑞, 𝑠) determined 

using the MFDFA algorithm is the basic characteristic informing about a possible 

fractal nature of the time series. Its behaviour with the change of the time scale enables 

one to answer the question whether the dependence of the function on the scale follows 

the power law, and if so, for what scales. Figure 4.4 represents such a function for 5 

seconds' returns of the EURUSD currency pair for different values of the parameter 𝑞. 
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Figure 4.4 Fluctuation function 𝑭𝒙
 (𝒒, 𝒔) for the EURUSD currency pair. The black line indicates 

the scaling interval that extends from the scale from 𝒔 = 𝟒𝟎 to 𝒔 = 𝟑𝟓𝟎𝟎. The red dashed line 

denotes the power-law matching to the extreme fluctuation function values. 

 

The function 𝐹𝑥(𝑞, 𝑠) has a power-law behaviour in the scaling interval from 

𝑠 = 40 (slightly over 3 trading minutes) to 𝑠 = 3500 (about five trading hours), which 

indicates a fractal nature of the autocorrelation. For the largest scales, the function 𝐹𝑥 

starts fluctuating, and therefore no such intervals are taken into account when 

determining the Hurst exponent. In this case, the good scaling quality allows the 

multifractal spectrum to be determined for the time series under examination. As has 

been demonstrated in section 2.2.2, the tails of the distributions of the returns and 

volatilities are leptokurtic (Figure 2.4). For this reason, the multifractal spectra were 

determined for 𝑞 from the interval 𝑞 ∈ [−4,4], while for detrending, a polynomial of 

degree 2 was used, which, as has been shown in study [63], well reflects a trend in 

financial data. The limited selection of the values of 𝑞 is due to the fact that the inverse 

cubic law essentially precludes the moments 𝑞 > 4 which, for greater q values, are 

divergent [74]. The degree of the multifractal complexity of the examined signal can be 

determined from the relationship: 

  ∆𝛼 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛 = 𝛼(𝑞𝑚𝑖𝑛) − 𝛼(𝑞max). (46) 

The greater the value of ∆𝛼, the greater the diversity of individual fractals that make up 

the examined multifractal. As the criterion of the multifractality of the examined series, 

∆𝛼 ≥ 0.15 is adopted [63]. 
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The obtained spectra for all exchange rates are shown in Figure 4.5 (indicated with the 

black line). They are all multifractal, and in the case of the returns, the EURJPY pair 

has the least width of ∆𝛼 = 0.15 , while the maximum of this spectrum falls on 

𝛼0 ≈ 0.46. The widest spectrum of ∆𝛼 = 0.29 is exhibited by the GBPUSD currency 

pair, which may be indicative of the complex dynamics of this pair, with the maximum 

spectrum being at point 𝛼 ≈ 0.5. All the examined spectra have their maxima in the 

range of 𝛼0 ∈ (0.45; 0.51), which indicates a lack of linear correlation in the analyzed 

signals or the presence of very weak anti-persistence. 

For volatility, the situation is different (the red line in Figure 4.5). Except for the 

British pound-based currency pairs (the last row in the above figure), the widths of all 

spectra are comparable to those of the spectra of the returns. The narrowest spectrum 

width ∆𝛼 = 0.15 is shown by the USDJPY pair, with the maximum falling on point 

𝛼 ≈ 0.64. The widest spectra are exhibited by the British pound-based currency pairs, 

with widths (and a position) of, respectively, ∆𝛼 = 0.41 (𝛼0 = 0.68) for the GBPUSD 

pair, ∆𝛼 = 0.41 (𝛼0 = 0.68) for the GBPJPY pair, and ∆𝛼 = 0.56 (𝛼0 = 0.71) for the 

EURGBP pair. Interestingly enough, the spectra 𝑓(𝛼) attain negative values, which is 

the result of the fact that the function 𝐹𝑥(𝑞, 𝑠) changes from the increasing function to a 

decreasing one for 𝑞 > 0 and small time scales 𝑠. For the first time, this effect was 

observed at the returns level in study [31], and is regarded as an anomaly [75]. All 

volatility spectra are distinctly located for 𝛼 > 0.5, which evidences a positive 

autocorrelation. Moreover, all of them are, to a greater or lesser extent, left-side 

asymmetric. This suggest the existence of a more complex organization of the series at 

the level of large fluctuations (for 𝑞 > 0), whereas the second portion of the spectrum 

(𝑞 < 0) is generated by smaller fluctuations, most likely by a kind of "noise" which is 

more monofractal (in the shape of Gaussian noise). To determine the degree of 

asymmetry, the following relationship [76]: 

 
𝐴𝛼 =

∆𝛼𝐿 − ∆𝛼𝑅
∆𝛼𝐿 + ∆𝛼𝑅

, 
(47) 

where ∆𝛼𝐿 = 𝛼0 − 𝛼𝑚𝑖𝑛 and ∆𝛼𝑅 = 𝛼𝑚𝑎𝑥 − 𝛼0 denote the distance of the spectrum 

maximum position 𝛼0 from, respectively, the least and greatest determined value of 𝛼. 
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Figure 4.5 Multifractal spectra for the returns (black colour) and volatility (red colour). 

 

The positive value of 𝐴𝛼 means a left-hand asymmetry, while the negative value, a 

right-hand asymmetry. For the returns, the highest degree of asymmetry is shown by the 

USDJPY currency pair, where 𝐴𝛼 = 0.76 , while the lowest, by GBPJPY with 𝐴𝛼 =

0.07 . In the case of volatility, these are, respectively, GBPJPY with 𝐴𝛼 = 0.85 and 

EURJPY with 𝐴𝛼 = 0.01. Spectra of this type (left-asymmetric) were first described in 

study [77], and for financial data, literary texts and inter-transaction times, were also 

comprehensively analyzed in study [76]. Using artificial time series generated with the 

use of symmetric binomial cascades (Figure 4.2) and setting them appropriately, the 

authors constructed a multifractal process having left-hand spectra. 

To sum up, the analyzed FX data have the nature of processes that are linearly 

uncorrelated at the returns level and correlated at the volatility level. The majority of 

spectra are asymmetric in shape, of which the British pound-related exchange rates 

EURGBP, GBPUSD and GBPJPY have the left-hand arm most developed, which 

indicates the greatest contribution of large fluctuations to the multifractality of these 

signals.  

As has been mentioned, multifractality is a non-linear phenomenon, therefore 

non-linear rather than linear correlations can only be its source. The 𝑓(𝛼) spectra 

determined for Gaussian processes exhibit a monofractal character, they are narrow and 

approximately punctual, whereas the spectra determined for processes with the 

leptokurtic distribution of fluctuations (e.g. truncated Levy flights [78]) assume the 

shape of an inverted parabola. This might suggest that the data distribution could affect 
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the multifractal structure. As have been demonstrated previously, FX data are 

distinguished by the fat tails of fluctuation distributions and time correlations, therefore 

the both factors can potentially be a source of signal fractality [79; 80; 81; 82]. It is 

worth noting, however, that probability distributions can lead only to an apparent 

fractality, as shown in study [30]. By using uncorrelated q-Gaussian series, the authors 

have demonstrated that for unstable time series (i.e. those convergent to the Gaussian 

distribution in accordance with the Central Limit Theorem) and 1.55 < 𝑞 < 1.65, two 

areas of scaling of the fluctuation function 𝐹𝑥
 (𝑞, 𝑠) are visible. For small scales s, the 

process looks multifractal, while for larger scales, monofractal. This effect is the more 

visible, the higher the value of 𝑞 is (the thicker the distribution tails are). In that case, a 

larger range of scales is needed to reconstruct the monofractal process, to which a 

convolution of independent q-Gaussians should be convergent. 

 In order to confirm the reliability of the obtained results, all linear correlations 

in the signal were destroyed by randomly mixing the data. Thus, only the character of 

the probability distributions was preserved. When comparing the spectra of the mixed 

time series (Figure 4.6, the right-hand panel) with the original data, a difference is 

clearly seen at the level of 𝑓(𝛼) spectrum width and ∆𝛼 width. The average spectrum 

width for the entire set of 9 exchange rates is ∆𝛼̅̅̅̅ = 0.27, and for the mixed data, 

∆𝛼̅̅̅̅ = 0.09. Moreover, in each of the analyzed cases, the maximum of the mixed series 

spectrum is located at point 𝛼0~0.5. This confirms the statement that it is correlations 

that underlay the fractal structure of data. 
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Figure 4.6 The multifractal spectra of mixed data (the right-hand panel) and Fourier surrogates 

(the left-hand panel). 

 

Taking a step forward, non-linear correlations were removed from all-time series by the 

Fourier substitute method 
15

, leaving linear correlations intact. This operation leads to a 

reduction of the 𝑓(𝛼) spectrum width, while retaining its maximum at the same point as 

for the original data spectrum. The average spectrum determined for all currencies is 

∆𝛼̅̅̅̅ = 0.01, which indicates the monofractal nature of the substitutes. This implies that 

the source of multifractality in the examined signals are non-linear correlations, as 

demonstrated also in reference [80]. 

4.1.1.2 Deviations from the triangular relation 

For the same 𝑞 ∈ [−4,4] parameter values as before, deviations from the 

triangular relation satisfying Equation (14) were analyzed. Figure 4.7 shows the 

fluctuation function 𝐹𝑥
 (𝑞, 𝑠) determined for 7 time series of triangular relation 

deviations (5-second data). It can be clearly seen that, in contrast to the analysis made 

for exchange rates in the preceding section, in this case the fluctuation function behaves 

differently. No scaling practically exists in the scale interval under consideration. The 

result is surprising, insomuch as the authors of study [31] when examining 1-minute 

exchange rates, observed a multifractal structure in them. The spectra determined in the 

                                                 
15

 In creating surrogates, the Fourier transformation of the time series is made, the amplitude is retained 

and the phase is randomly mixed. From so modified series, by means of the inverse Fourier transform, a 

surrogate signal is obtained. 



 

56 

 

study quoted above were asymmetric with the developed left-hand side and negative 

values of the scaling exponent and the multifractal spectrum.  

 

Figure 4.7 The fluctuation functions 𝑭𝒙
 (𝒒, 𝒔) determined for all deviations from the triangular 

relations: a) AUD-EUR-JPY, b) AUD-EUR-USD, c) AUD-USD-JPY, d) EUR-GBP-JPY, e) EUR-

GBP-USD, f) EUR-USD-JPY, g) GBP-USD-JPY. 

 

So, the question arises if possible linear correlations manifest themselves in this 

case only on larger time scales, starting from the 1 min. scale. To this end, triangular 

relation deviations were also analyzed for the 1-minute series. Similarly as for the 5-

second data, the fluctuation function did not show suitable scaling, which made the 

multifractal spectrum estimation impossible. The discrepancy in results compared to 

study [31] referred to above might be due to the different periods from which the data 

were derived. More recent data, as those considered in this study, may reflect faster 

processing of information on the exchange markets, which translates into higher market 

efficiency and, as a result, leads to a shortening of the arbitrage scale. An additional 

explanation of the discrepancy in the results might be the fact that the proper 

identification of the fractality of such time series is affected by the length of the series 

under analysis. In the present study, series of a length of slightly above 86000 points 

were used for analysis, while in study [31] series above 1.7 million points in length 

were examined. A shorter series simply means that there are no rare events in the signal, 

which did not have enough time to occur within the time frame under consideration. 
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4.1.1.3 Cross exchange rates– the effect of the number of currencies on the f(α) 

spectrum width 

As has been shown in section 2.3.2, all exchange rates examined in this study are 

more or less cross-correlated. Making use of this fact, the behaviour of exchange rates 

calculated by an indirect method, i.e. using cross-exchange rates, was also analyzed. 

Each of the exchange rates analyzed above can be calculated, e.g., using other exchange 

rates by passing through, respectively, two, three or four such exchange rates according 

to the following formula: 

𝐴

𝐵

𝐵

𝐶

𝐶

𝐷
…
𝑌

𝑍
=
𝐴

𝑍
, 

where 
𝑋

𝑌
 is the exchange rate of respective currencies. Figure 4.8 shows sample 

multifractal spectra and fluctuation functions 𝐹𝑥
 (𝑞, 𝑠) for the GBPUSD pair (black 

colour), as dependent on the number of exchange rates used for exchange rate 

calculations: 

 2 exchange rates = 
𝐺𝐵𝑃

𝐽𝑃𝑌

𝐽𝑃𝑌

𝑈𝑆𝐷
=

𝐺𝐵𝑃

𝑈𝑆𝐷
 (red colour) 

 3 exchange rates = 
𝐺𝐵𝑃

𝐽𝑃𝑌

𝐽𝑃𝑌

𝐸𝑈𝑅

𝐸𝑈𝑅

𝑈𝑆𝐷
=

𝐺𝐵𝑃

𝑈𝑆𝐷
 (green colour) 

 4 exchange rates = 
𝐺𝐵𝑃

𝐽𝑃𝑌

𝐽𝑃𝑌

𝐴𝑈𝐷

𝐴𝑈𝐷

𝐸𝑈𝑅

𝐸𝑈𝑅

𝑈𝑆𝐷
=

𝐺𝐵𝑃

𝑈𝑆𝐷
 (blue colour). 

The function 𝐹𝑥
 (𝑞, 𝑠) was determined for all examined scales and it exhibits scaling 

from, more or less, the scale 𝑠 = 200 to the scale 𝑠 = 5000. All determined singularity 

spectra indicate a multifractal nature of the signal under analysis. 

Figure 4.9 presents the widths of the spectra and their maximum, as dependent on the 

number of exchange rates used. In the top panel, where the location of the spectrum 

maximum is shown, it can be seen that with the increase in the number of exchange 

rates used for the calculation of the proper exchange rate, the maximum shifts towards 

the anti-persistent series. This is not a strong effect, though it is characteristic of each of 

the exchange rates examined. 
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Figure 4.8 Panels (a-d) present the returns fluctuation function for the exchange rates 

a) 
𝑮𝑩𝑷

𝑱𝑷𝒀
, b) 

𝑱𝑷𝒀

𝑨𝑼𝑫
,c)

𝑨𝑼𝑫

𝑬𝑼𝑹
,d) 

𝑬𝑼𝑹

𝑼𝑺𝑫
, used for determining the GBP/USD exchange rate. The black dashed line 

denotes the scaling interval, while the red dashed line, the matching of the power-law function to 

the extreme values of the fluctuation function. Panel e) represents the multifractal spectra for the 

GBPUSD pair, determined for a different number of transition exchange rates. The red colour 

denotes two, green three, and blue four transition exchange rates. The original exchange rate is 

marked in black colour. 

 

One can speculate here on the possible cause of this behaviour. What seems the most 

probable is the fact that by extending the arbitrage procedure to achieve the risk-free 

profit, due to an increased likelihood of making an error (the number of transition 

currencies), the risk of failure increases (the spectrum shifts to the left, and from the 

previous discussion we know that the more anti-persistent the series, the lower the 

probability of a trend occurring and, consequently, the risk).  
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Figure 4.9 The maximum of the multifractal spectra (the upper panel) and the width of the 

spectrum (the lower panel), as dependent on the number of exchange rates used for determining the 

base exchange rate. 

 

The situation is slightly different for the width of the spectrum shown in the lower panel 

in Figure 4.9. For the EURGBP, EURUSD and EURAUD exchanges rates, as the 

number of transition currencies increases, the spectrum becomes increasingly thinner, 

and for 4 exchange rates it starts balancing on the borderline characteristic of 

monofractal processes. In turn, for the EURJPY exchange rate, the spectrum is very 

narrow and typical of a monofractal, invariably for all recalculated cross-exchange 

rates. For the AUDUSD and GBPUSD exchange rates, the width decreases for one 

transition exchange rate, to slightly increase afterwards. 

 The shift of the spectrum towards the anti-persistent region and the absence of 

systematic spectrum narrowing depending on the number of transition currencies is 

surprising, because the authors of study [76] by analyzing, inter alia, symmetric 

multifractal cascades, have proved that the coincidence of many multifractal processes 

leads to the destruction of the hierarchical structure in the series, which results in a 

noise and monofractality. It seems that the difference is associated with the nature of the 

data examined here, where the exchange rates are interrelated (as shown in chapters 

2.3.2 and 4.3.1). So, the sum of series of this type leads to retaining the fractal 

correlations, which is reflected in the results presented herein. 
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4.1.2 Analysis of stock market data 

Similarly as for the FX market, 29 companies included in the DJIA index were 

subjected to analysis. From the times series of stock quotes, intervals were removed, in 

which the price had not changed for 20 minutes and more, to ensure the compactness of 

the carrier [71]. The parameter 𝑞 assumed values 𝑞 ∈ [−4,4]. Figure 4.10 shows 

functions 𝐹𝑥(𝑞, 𝑠) for four companies with the largest (the left-hand side) and the 

smallest (the right-hand side) spectrum width. It is clearly seen that in both cases the 

functions are of the power-law type and meet convincingly the scaling relations for the 

majority of scales. For the calculation of the scaling exponent ℎ(𝑞), the range from 

𝑠 = 60 to 𝑠 = 20000 was assumed, where scaling is the best (the range marked with 

the dashed lines in the figure). 

 

 

Figure 4.10 The fluctuation function 𝑭𝒙(𝒒, 𝒔) for the time series determined for the companies of 

the largest (the left-hand panel) and the smallest (the right-hand panel) width of the spectrum. 

 

Figure 4.11 presents the multifractal spectra 𝑓(𝛼) determined for all companies. They 

are all asymmetric with the more developed left-hand side being responsible for large 
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fluctuations. Their maxima lie in the region 𝛼 > 0.5, which is indicative of the 

persistence of the time series. 

 

Figure 4.11 Multifractal spectra for 29 DJIA index companies. The spectrum for the index is 

marked with the dashed line. 

 

The mean spectrum width for the examined set of companies is ∆𝛼̅̅̅̅ ≈ 0.40,. The 

companies with the largest spectrum width are WMT (Wall Mart) ∆𝛼 ≈ 0.48, MRK 

(Merck & Co) ∆𝛼 ≈ 0.48, KFT (Kraft Foods) ∆𝛼 ≈ 0.47 and MCD 

(McDonald's) ∆𝛼 ≈ 0.45. In turn, the PG (Procter & Gamble) company has the 

smallest spectrum width of ∆𝛼 ≈ 0.27, followed closely by GE (General Electric) with 

a spectrum width of ∆𝛼 ≈ 0.27 , CAT (Caterpillar) with ∆𝛼 ≈ 0.30 and BAC (Bank of 

America Corp.) with ∆𝛼 ≈ 0.31. In spite of the big differences in spectrum width, all 

of them are multifractal which indicates a complex structure of the series analyzed.  

 Interestingly enough, fairly significant differences arise at the sectoral analysis 

level. The largest spectrum width, being ∆𝛼 ̅̅ ̅̅  ≈ 0.44, is exhibited by financial 

companies, while industrial goods sector companies have the narrowest spectrum of 

∆𝛼 ̅̅ ̅̅  ≈ 0.37. Table 4.1 provides all values by sectors. From this perspective, too, the 

richness of the fractal structure of the examined data can be noticed. As mentioned, the 

mean spectrum width value is the greatest in the financial sector. This result could have 

been expected, because it is financial companies in a broad sense through which the 

majority of information passes and that are linked with other market participants. 

Industrial goods sector companies, on the other hand, have the narrowest spectrum, 
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which indicates a slightly weaker (though still strong) multifractality of the series 

examined. 

Table 4.1 Average multifractal spectrum widths ∆𝜶̅̅ ̅̅  and the asymmetry factor  

𝑨𝜶, given by sectors. 

Sector ∆𝛼 ̅̅ ̅̅  𝐴𝛼 

Industrial Goods 0.37 0.5 

Consumer Goods 0.38 0.56 

Basic Materials 0.40 0.38 

Technology 0.40 0.47 

Healthcare 0.42 0.59 

Services 0.43 0.52 

Financial 0.44 0.55 

 

Similarly as for the currency data, for all companies, the time series of mixed data were 

made and the multifractal were determined for them. In each case, the maximum of the 

determined spectrum is located in the vicinity of 𝛼 ≈ 0.5, and the mean width ∆𝛼 ̅̅ ̅̅  is at 

a level of 0.19. This residual multifractality also results from the length of the analyzed 

series and is an apparent effect. Moreover, for all companies, the asymmetry factor was 

calculated from formula (47). In the examined set of companies, there is no 𝐴𝛼 factor 

with a negative value, which would indicate a right-hand spectrum. The smallest value 

of 𝐴𝛼 = 0.08 is shown by the DD (Disney) company, which is indicative of a nearly 

symmetric spectrum, while the greatest value of 𝐴𝛼 = 0.77 is exhibited by BAC (Bank 

of America) with one of the narrowest spectra.  

4.2 The Wavelet Leaders method 

In contrast to the above-mentioned multifractal analysis methods based on 

detrended data analysis, there are also other methods that enable one to capture the 

richness of fractal structures. The WTMM (Wavelet Transform Modulus Maxima) 

method) [64] is a method relying on the wavelet transform, which enables the 

singularity spectrum of an examined signal to be determined. Its core is the 

decomposition of the signal into components corresponding to the mother wavelet 

function. We can think of the wavelet as a wave with the mean value equal to zero, 

being well located in the time and frequency domains. As demonstrated in study [71], it 

lends itself well to the analysis of strongly non-stationary time series. However, in 
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contrast to the detrended fluctuation method, the correctness of the results depends very 

heavily on the selection of the appropriate wavelet, therefore one needs to be very 

careful when approaching the interpretation of the results. 

In the study Wavelet Leaders in Multifractal Analysis [64], the Wavelet Leaders 

method has been proposed, which enables the determination of the singularity spectrum 

in a wide scale range and is applicable to processes that contain singularities of the 

chirp type and the cusp type
16

. As compared to the WTMM method, this is a more 

stable method. 

In the first step of the method, the signal is decomposed according to this formula:  

𝑓(𝑥) =  ∑ 𝑐𝑗,𝑘𝜓(2
𝑗𝑥 − 𝑘) =∑𝑐𝜆𝜓𝜆

λ∈Λ𝑗,𝑘∈𝑍

, (48) 

where 𝜓 is a wavelet and 𝑐𝑗,𝑘 are wavelet coefficients linked to the segment 𝜆 for scale 𝑗 

and position 𝑘 with the following relationship: 

𝜆 =  𝜆𝑗,𝑘 = [𝑘2
−𝑗, (𝑘 + 1)2−𝑗], (49) 

𝑐𝑗,𝑘 = 2𝑗 ∫𝑓(𝑥)

 

𝑅

𝜓(2𝑗𝑥 − 𝑘)𝑑𝑥. 
(50) 

For every segment 𝜆, the wavelet leader is 𝑑𝜆 = sup𝜆∈𝜆′|𝑐𝜆′|, and the distribution 

function is defined for it using the following relationship: 

𝑆(𝑞, 𝑗) =
1

2𝑗
 ∑ 𝑑λ

𝑞

λ∈Λ𝑗

, 
(51) 

where Λ𝑗 is a set of segments on scale 𝑗. The generalized scaling exponents are given by 

the formula 𝜏(𝑞) = log𝑗→+∞
log (𝑆(𝑞,𝑗))

𝑙𝑜𝑔2−𝑗
 and are linked to the singularity spectrum with 

the relationship 𝑑(ℎ) = inf{𝑞ℎ − 𝜏(𝑞)} + 1, where ℎ is the Hölder exponent (34). 

Results for the exchange market are shown in the figure below. For the analysis, the 

package described in study [64] and available on the website 

http://www.irit.fr/~Herwig.Wendt/software.html was used. For each of the currency 

pairs examined in the previous sections, the multifractal spectrum was determined for 

both the rates of return (black colour) and volatility (red colour). 

                                                 
16

 Chirp-type singularities occur in signals, in which the oscillation frequency either increases or 

decreases with time. In the case of the cusp-type singularity, the tangent at a point cannot be determined. 

 

http://www.irit.fr/~Herwig.Wendt/software.html
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Figure 4.12 The multifractal spectra of all currency pairs determined by the Wavelet Leaders 

method. 

 

The widest spectra determined for the rates of return are exhibited by the currency pairs 

based on the British pound (the bottom panel in Figure 4.12) with the widths (and the 

maxima) amounting to, respectively, ∆𝛼 = 0.56 (𝛼0 = 0.5) for the GBPUSD pair, 

∆𝛼 = 0.47 (𝛼0 = 0.46) for the GBPJPY pair, and ∆𝛼 = 0.42 (𝛼0 = 0.47) for the 

EURGBP pair. The narrowest multifractal spectrum of ∆𝛼 = 0.05 is shown by the 

AUDJPY currency pair at the point 𝛼0 = 0.42. All of the currency pairs have their 

maxima in the maximum interval 𝛼0 ∈ (0.39; 0.5), which indicates little anti-

persistence of the series, or the total absence of the linear correlation (GBPUSD and 

AUDUSD). For the maxima of the determined spectra, the obtained results seems to be 

consistent with the results obtained using the MF-DFA method. By contrast, for the 

widths of the spectra, the discrepancies are large. Using formula (47) the asymmetry 

factor has also been determined, which assumes only positive values for all currencies, 

which means the left-hand asymmetry. The greatest value 𝐴𝛼 = 0.98 is for the 

GBPUSD pair, while the least value 𝐴𝛼 = 0.17, for the EURUSD pair. The values 

assumed by 𝐴𝛼 are greater than those determined with the MF-DFA algorithm, which 
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may suggest that for FX market data the WL method is more sensitive to large 

fluctuation.  

For the volatility, the British pound-based exchange rates exhibit the widest 

spectra (spectra maxima); they are very wide, amounting to ∆𝛼 = 0.36 (𝛼0 = 0.77) for 

the GBPUSD pair, ∆𝛼 = 0.34 (𝛼0 = 0.78) for the EURGBP pair and ∆𝛼 = 0.27 (𝛼0 =

0.76) for the GBPJPY pair. The AUDJPY currency pair has the narrowest spectrum, 

indicating a practically monofractal behaviour of the cross-correlation, and amounting 

to ∆𝛼 = 0.03 (𝛼0 = 0.7). All of the obtained spectra have similar shapes, compared to 

the MF-DFA method, but no negative fractal dimensions, so well visible for the pound-

based pairs, were demonstrated with the WL method. Moreover, for the dollar-based 

currency pairs (except for GBPUSD, where 𝐴𝛼 = 0.67 ), the right-hand spectrum 

portion, being responsible for low volatility, is very well developed, whereas it is 

practically invisible for the MF-DFA method. The determined asymmetry factors are: 

𝐴𝛼 = −0.49 for the AUDUSD pair, 𝐴𝛼 = −0.57 for EURUSD and 𝐴𝛼 = −0.02 for 

USDJPY. The remaining exchange rates have left-hand asymmetric spectra. 

Similarly as for the FX data, all DJIA index companies were examined using the 

Wavelet Leaders method (Figure 4.13). The maxima of the spectra 𝑓(𝛼) are located in 

the range 𝛼 ∈(0.46, 0.59), which is largely consistent with the results obtained using the 

MF-DFA method, where all the results showed a slight persistence of the signal. The 

average spectrum width ∆𝛼 is 0.5, as compared to ∆𝛼 = 0.46 determined by the MF-

DFA method. The widest spectrum of ∆𝛼 = 0.72 is shown by the AIG company, while 

the narrowest spectrum of ∆𝛼 = 0.28, by XOM. 
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Figure 4.13 Spectra exhibited by DJIA index companies and the index itself (the dashed line), 

determined by the Wavelet Leaders method. 

 

By comparing the sector analysis given in Table 4.2 with the sector analysis results 

obtained using the MF-DFA method (Table 4.1), it can be noticed that the Wavelet 

Leader method indicates a much greater fractal complexity of the examined time series. 

Only for the Basic Materials sector companies are the obtained results consistent with 

those obtained by the MF-DFA method. 

Moreover, for all companies, the asymmetry factor was calculated from formula (47). 

All of the obtained values of 𝐴𝛼 are positive, which means a left-hand spectrum 

asymmetry. The least value of 𝐴𝛼 = 0.003 is exhibited by AXP (American Express 

Company), which implies a nearly symmetric spectrum, while the greatest value of 

𝐴𝛼 = 0.58 is shown by INTC (Intel). In the sector approach, 𝐴𝛼 takes on values (Table 

4.2) slightly smaller than those determined using the MF-DFA method, which may be 

due to the fact that for financial data series the WL method better captures the 

complexity of time series at the smallest fluctuation level. 

  

Table 4.2 The spectrum width ∆𝜶, as dashed down by sectors, determined by the Wavelet Leaders 

method. 

Sector ∆𝛼 ̅̅ ̅̅  𝐴𝛼 

Basic Materials 0.38 0.46 
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Technology 0.47 0.43 

Services 0.48 0.43 

Industrial Goods 0.52 0.38 

Healthcare 0.56 0.41 

Financial 0.56 0.28 

Consumer Goods 0.57 0.38 

 

To sum up, the Wavelet Leaders method is a useful tool for examining the fractality of a 

time series, though, as compared to the MF-DFA method, it is more complex in 

implementation. The results obtained using this method seem to be largely consistent 

with the results obtained by the MF-DFA method, which confirms their reliability.  

4.3 Multifractal Cross-Correlation Analysis (MFCCA ) 

Many signals coming from complex systems exhibit relationships of not only the 

autocorrelation, but also cross-correlation type. To determine the level of such 

correlation, the Pearson correlation coefficient is commonly used, which identifies only 

linear relationships. The already mentioned DCCA method, introduced to use by 

Podobnik and Stanley [65] enables the determination of the coefficient representing 

power-law cross-correlations between two non-stationary signals. Generalizations on 

the multifractal case, which have been proposed so far, are MF-DXA introduced by 

Wei-Xing Zhou [66] and the MF-HXA (Multifractal Height Cross-Correlation 

Analysis) method [83] proposed by Ladislav Kristoufek, which relies on the description 

of scaling of covariance function of order 𝑞. The MF-DXA method, used so far for the 

analysis of data from areas, such as seismology [84], finances [85; 86] or physics [87], 

involves the determination of the detrended covariance function of order 𝑞 between 

examined time series, although it has one major limitation. In the case of being used for 

real data, the fluctuation function (formula (41)) may assume negative values in this 

method, which prevents the determination of the scaling exponent for all values of 

parameter 𝑞. Literature provides also proposals for removing this limitation [88], chiefly 

by introducing a module to the detrended covariance function. However, as will be 

demonstrated below, this operation does not allow the correct identification of the 

power-law cross-correlation between two processes.  
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Study [67] has proposed a new MFCCA (Multifractal Cross-Correlation 

Analysis) method for determining the fractal cross-correlation between two time series, 

which is free from the limitation of the previous methods. A key component of this 

algorithm is the correct use of the fluctuation sign, whereby it is possible to determine 

the covariance function of order 𝑞 for the complete spectrum. The utility of the model 

will be shown based on the example of data generated using an appropriate module, as 

well as real data, as mentioned above. The relationship between the generalized Hurst 

exponent and parameter 𝜆𝑞 as determined using the MFCCA algorithm, will also be 

subjected to analysis. The above-mentioned relationship provides information on the 

strength of cross-correlation in the examined process. 

The MFCCA method consists of the following steps, and its flow chart is shown in 

Figure 4.14. As has been mentioned above, the MFCCA is a generalization of the 

DCCA method [89] hence the first steps are the same for both of them. We consider two 

time series, 𝑥𝑖 and 𝑦𝑖, where 𝑖 = 1,2… ,𝑁 and 𝑁 is the length of the series under 

analysis. 

1) For the series, we determine the so-called profile from the following formula: 

 

𝑋(𝑗) =∑[𝑥𝑖 − 𝑥̅

𝑗

𝑖=1

],  

𝑌(𝑗) =∑[𝑦𝑖 − 𝑦̅

𝑗

𝑖=1

]. 

 

 

(52) 

The mean values in the formula are calculated for the entire series. 

2) Each of the signals is divided into 𝑀𝑠 = 𝑁/𝑠 non-overlapping intervals v of a 

length 𝑠. To make sure that all time series points are taken into account in 

calculations, the entire series is divided twice, once starting from the beginning, 

and once starting from the end. As a result, 2𝑀𝑠 intervals are obtained. 

3) For each interval v in the series, the trend is calculated using a polynomial of 

degree 𝑚: 𝑃𝑋,𝑣
(𝑚)

for 𝑋 and 𝑃𝑌,𝑣
(𝑚)

for 𝑌. Based on the results obtained in study [63], 

a polynomial of degree 𝑚 = 2 has been chosen for all calculations. 

4) For each segment, the trend is subtracted from the examined series and the 

detrended cross-covariance is calculated: 

 
𝐹𝑥𝑦
2 (𝑣, 𝑠) =  

1

𝑠
∑{(𝑋((𝑣 − 1)𝑠 + 𝑘) − 𝑃𝑋,𝑣

(𝑚)(𝑘)) ∗ (𝑌((𝑣 − 1)𝑠 + 𝑘) − 𝑃𝑌,𝑣
(𝑚)(𝑘))}

 

𝑠

𝑘=1

. 
(53) 



 

69 

 

In contrast to the MFDFA method, 𝐹𝑥𝑦
2 (𝑣, 𝑠) can assume both positive and 

negative values. Therefore, for the analysis to be correct, the sign of 𝐹𝑥𝑦
2 (𝑣, 𝑠) is 

indispensable. 

5) The next step involves the calculation of the covariance function of degree 𝑞, the 

so-called fluctuation function, averaged over all intervals, using the formula 

below: 

 

𝐹𝑥𝑦
𝑞 (𝑠) =  

1

𝑀𝑠
∑sign(𝐹𝑥𝑦

2 (𝑣, 𝑠))|𝐹𝑥𝑦
2 (𝑣, 𝑠)|

𝑞/2

𝑀𝑠

𝑣=1

. 

 

(54) 

In the above formula, sign(𝐹𝑥𝑦
2 (𝑣, 𝑠)) denotes the sign of function 𝐹𝑥𝑦

2 (𝑣, 𝑠), and 

parameter 𝑞 may take on real values and enables series to be analyzed, depending on the 

signal size. For 𝑞 > 0, the predominant component of the fluctuation function will be 

large fluctuations, while for 𝑞 < 0, small fluctuations will be amplified, and their 

contribution to the fluctuation function will be the greatest. What is very important is 

that when determining the function 𝐹𝑥𝑦
𝑞 (𝑠), the original sign of amplified (or attenuated) 

fluctuations will be preserved. This allows the numerical errors of the method due to 

raising negative values (negative fluctuations) to the power to be avoided. As a result, 

no complex values occur during calculation and, in addition, no information coming 

from negative signal values is lost. 

For 𝑞 = 0, this formula should be used [62]: 

 

𝐹𝑥𝑦
0 (𝑠) =  

1

𝑀𝑠
∑sign(𝐹𝑥𝑦

2 (𝑣, 𝑠))ln|𝐹𝑥𝑦
2 (𝑣, 𝑠)|

 

𝑀𝑠

𝑣=1

. 

 

(55) 

The procedure must be repeated for different times scales, 𝑠. So obtained fluctuation 

function 𝐹𝑥𝑦
𝑞 (𝑠) should scale itself (i.e. be linear on the log-log scale), if a fractal cross-

correlation exists between the examined series. If the function fluctuates around zero, or 

assumes alternately negative and positive values by intervals, then in that case there is 

no cross-correlation in the signal. In the case, where the function 𝐹𝑥𝑦
𝑞 (𝑠) is negative for 

every scale 𝑠, then the function −𝐹𝑥𝑦
𝑞 (𝑠) is examined. 

The power-law character enforces the following relationship: 

 [𝐹𝑥𝑦
𝑞 (𝑠)]

1/𝑞
 = 𝐹𝑥𝑦(𝑞, 𝑠)~𝑠

𝜆𝑞 . (56) 

For 𝑞 = 0, the following relationship is satisfied: 

 exp (𝐹𝑥𝑦
0 (𝑠)) = 𝐹𝑥𝑦(0, 𝑠)~𝑠

𝜆0. (57) 
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𝜆𝑞 is the exponent characterizing the multifractal cross-correlation. In the event, when 

𝜆𝑞 is not dependent on 𝑞, then this parameter is equal to 𝜆  as obtained using DCCA, 

and we have a monofractal cross-correlation, otherwise, a multifractal cross-correlation. 

It is important to note that 𝜆𝑞 = 𝜆  for 𝑞 = 2. The values of scales 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are 

selected depending on the length of signal 𝑁. It is assumed that 𝑠𝑚𝑎𝑥 < 𝑁/5. Figure 

4.14 shows a flowchart of the MFCCA algorithm. 

 

 

Figure 4.14 A flowchart of the MFCCA algorithm. 

 

To demonstrate the usefulness of the method and its advantage over the MF-DXA 

method, the following time series were examined: 

a) two uncorrelated FARIMA processes [90], 

b) two correlated FARIMA processes. 
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They are an example of monofractal long-range correlated processes. FARIMA 

processes are non-stationary. To generate a pair of FARIMA processes, the following 

formulae were used: 

 
𝑥𝑖 = ∑𝑎𝑗(𝑑𝑥) − 𝑥𝑖−𝑗 + 𝜖𝑖

∞

𝑗=1

, 
(58) 

 
𝑦𝑖 = ∑𝑎𝑗(𝑑𝑦) − 𝑥𝑖−𝑗 + 𝜖𝑖

∞

𝑗=1

, 
(59) 

in which 𝜖𝑖 denotes Gaussian noise. In order to correlate two FARIMA processes, the 

same 𝜖𝑖 noise component should be used for generating the both series. 

The parameters 𝑑𝑥(𝑦) (−1/2 < 𝑑𝑥(𝑦) < 1/2) are responsible for the process 

stationarity and characterize the linear, long-range correlations in the signal. For 

𝑑 < 0.5 we have a stationary process, for 0.5 < 𝑑 < 1, a non-stationary sub-diffusion 

process, and for 𝑑 > 1, a super-diffusion process. They are related to the Hurst 

exponent with the following formula [67]: 

 𝐻 =
1

2
+ 𝑑𝑥(𝑦). (60) 

The weight 𝑎𝑗  (𝑑𝑥(𝑦)) in formulae (58) and (59) is given by this formula: 

 
𝑎𝑗  (𝑑𝑥(𝑦)) =

𝛤(𝑗 − 𝑑𝑥(𝑦))

[𝛤(−𝑑𝑥(𝑦))]𝛤(1 + 𝑗)]
 , 

(61) 

where 𝛤 is the Gamma function. A proposition can be found in the literature [65] which 

says that the average of individual fractal properties ℎ𝑥𝑦(𝑞) is related to the fractal 

properties of the two examined series with the following formula: 

 
ℎ𝑥𝑦(𝑞) =

ℎ𝑥(𝑞) + ℎ𝑦(𝑞)

2
, 

(62) 

where ℎ𝑥(𝑦)(𝑞) is the generalized Hurst exponent, which refers to the fractal properties 

of the series. For 𝑞 = 2, ℎ𝑥(𝑦)(𝑞) is normal Hurst exponent of a single time series. The 

relation between ℎ𝑥𝑦(𝑞) and 𝜆𝑞 based on empirical results [67] depends on the time 

structure of the analyzed series defined by the Hurst exponent. The difference between 

these two values of ∆= 𝜆𝑞 − ℎ𝑥𝑦(𝑞) defines the degree of similarity between fractal 

structures (the degree of series correlation). For the same signals ℎ𝑥𝑦(𝑞) = 𝜆𝑞, but for 

signals with different Hurst exponents, the difference is more significant. For FARIMA 

processes, the relationship: 
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𝜆𝑞 ≈

ℎ𝑥(𝑞) + ℎ𝑦(𝑞)

2
 

(63) 

is satisfied, if and only if the time series under analysis have a similar structure and the 

difference between ℎ𝑥(𝑞) and ℎ𝑦(𝑞) is small. This situation is illustrated in the right-

hand panel in Figure 4.15, where the relation between 𝜆𝑞 and ℎ𝑥𝑦(𝑞) is shown. In turn, 

the left-hand panel in Figure 4.15 shows the fluctuation function determined by the 

MFCCA method for two correlated FARIMA processes with different Hurst exponent 

values: a) 𝐻1 = 0.3, 𝐻2 = 0.5 b) 𝐻1 = 0.3, 𝐻2 = 0.8 c) 𝐻1 = 0.5, 𝐻2 = 0.8. Each value 

of 𝑞 has one corresponding line in the diagram. 

 

Figure 4.15 The fluctuation function 𝑭𝒙𝒚(𝒒, 𝒔) determined for three different pairs of processes 

with a different H exponent (left-hand side) and the determined scaling exponent 𝝀𝒒 and the mean 

generalized Hurst exponent 𝒉𝒙𝒚(𝒒) (right-hand side). 

 

The power-law nature of the function 𝐹𝑥𝑦(𝑞, 𝑠) is clearly seen within the entire scale 

range, and the functions lie nearly in parallel to one another, which indicates a uniform 

character of the cross-correlation occurring between the signals. The difference between 

the scaling exponent extrema, ∆𝜆𝑞 = max(𝜆𝑞) − min (𝜆𝑞), reflecting the complexity of 

the fractal cross-correlation, is, respectively, 0.0021 (a), 0.003 (b) and 0.0039 (c). Thus, 

the cross-correlation between the selected FARIMA processes is homogeneous. The 

parameter ∆= 𝜆𝑞 − ℎ𝑥𝑦(𝑞) assumes the greatest value in case (c), where the difference 

between the Hurts exponents is the largest. 
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To better compare the fluctuation function determined for each process separately and 

the function determined by the cross-correlation method, all the three functions for 

𝑞 = 2 are shown in Figure 4.16. For the correlated processes (panel a), cross-correlation 

fluctuation functions are clearly visible, which scale in a power-law manner from the 

scale s = 20 to the scale s = 3000 , with the scaling exponent determined for them 

satisfying approximately relationship (62). In the case of uncorrelated processes (panel 

b), it is not possible to determine the cross-correlation fluctuation function with a single 

type of scaling. 

 

Figure 4.16 The cross-correlation fluctuation function (the green line) determined for two processes 

with Hurst exponents of H=0.6 (the black line) and H=0.9 (the red line). Panel a) shows correlated 

processes, while panel b), uncorrelated processes. 

 

Interestingly enough, the MF-DXA algorithm used on the example of uncorrelated data 

incorrectly identifies non-linear cross-correlations between processes. This situation is 

illustrated by Figure 4.17. The fluctuation function was determined for each of the 

moments 𝑞 ∈ [−4,4], but due to the fact that for 𝑞 < 0 the function fluctuates heavily, 

𝐹𝑥𝑦(𝑞, 𝑠) is shown in the figure only for positive 𝑞 values. Scaling is very good from the 

scale 𝑠 = 30 to 𝑠 = 2000, and the fluctuation functions are parallel to one another, 

which indicates a monofractal behaviour of the cross-correlation. A confirmation of this 

fact is the inset in the figure showing 𝜆𝑞 and ℎ𝑥𝑦(𝑞), which vary only slightly with the 

increase in 𝑞. This result is incorrect, as no correlation may exist between two 

uncorrelated processes. 
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Figure 4.17 The fluctuation function 𝑭𝒙𝒚
 (𝒒, 𝒔) for two uncorrelated FARIMA processes, 

determined with the MF-DXA algorithm. The inset shows the scaling exponent 𝝀𝒒 and 𝒉𝒙𝒚(𝒒), as 

dependent on the parameter q. The black dashed line indicates the scaling interval, and the red 

dashed line, the power-law fitting to the extreme fluctuation function values. 

 

 To determine the degree of correlation differentiation at the level of different signal 

amplitudes, the following parameter is introduced: 

 𝑑 =  ∆𝜆𝑞 − ∆ℎ𝑥𝑦(𝑞),  (64) 

where ∆ℎ𝑥𝑦(𝑞) is the mean of the fractal properties determined for the series 𝑋 and 𝑌. 

The case of 𝑑 = 0 means that for all values of parameter 𝑞 there occurs the same 

correlation between signals for different fluctuation amplitudes. The case of 𝑑 ≠ 0 

means the change in correlation strength at the level of small and large fluctuations. 

 

4.3.1 The foreign exchange market 

For examining the multifractal cross-correlation, the MFCCA algorithm, 

described in the previous section, was used. The fluctuation functions were determined 

for parameter 𝑞 ∈ [−4,4]. For moments 𝑞 < 0, the fluctuation function cannot be 

determined (which indicates the lack of cross-correlation at the small fluctuation level), 

therefore 𝑞 ∈ [1,4] was assumed for analysis. The analysis covered 5-second returns 

series of a length of 𝑁 = 86400 for 20 time scales, starting from 𝑠 = 30 through to 

𝑠 = 𝑁/5. To assure the compactness of the carrier, the intervals of 20 and more zeros 

were removed from the series. Figure 4.18 shows a sample fluctuation function 

𝐹𝑥𝑦
 (𝑞, 𝑠), determined for the rates of return (panels a and c) and their volatility (panels b 

and d) between the exchange rates EURUSD/USDJPY and AUDJPY/EURAUD. Each 
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line corresponds to one value of 𝑞. The insets in the figure contain information on how 

the scaling exponent 𝜆𝑞 (in black colour) and the mean generalized Hurst exponent 

ℎ𝑥𝑦(𝑞) (in red colour, formula (62)), change with the increase in 𝑞. For the returns and 

for volatility, the fluctuation function 𝐹𝑥𝑦
 (𝑞, 𝑠) exhibits a power-law behaviour for 

scales from 𝑠 = 30 to 𝑠 = 3000 (for the returns and from 𝑠 = 30 to 𝑠 = 2000 (for the 

volatility). This is indicative of a fractal nature of the cross-correlation of these 

processes. In all of the examined cases, the value of the scaling exponent 𝜆𝑞 varies 

slightly with the increase in 𝑞, which suggests a multifractal nature of the cross-

correlation, both for the returns and for the volatility. Interestingly enough, the mean 

generalized Hurst exponent ℎ𝑥𝑦(𝑞) for the rates of return varies slightly, whereas for the 

volatility is practically constant. 

 

Figure 4.18 (On the left) The fluctuation functions 𝑭𝒙𝒚
 (𝒒, 𝒔) determined for two sample rates of 

return (EURUSD/USDJPY, the top panel, and AUDJPY/EURAUD, the bottom panel). The dashed 

line indicates the scaling interval. (On the right) The fluctuation function determined for the 

volatility of these currency pairs. The insets show the scaling exponents 𝝀𝒒 and 𝒉𝒙𝒚(𝒒), as 

dependent on the parameter q. 

 

It should be underlined here that in the case of the rates of return for the currency pairs 

outside the triangle, AUDJPY/EURGBP and EURUSD/GBPJPY, scaling is much worse 
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and occurs within a narrow scale interval. In Figure 4.20 , these pairs are indicated by 

the filling. For the currency pairs EURAUD/GBPJPY, GBPJPY/AUDUSD, 

AUDJPY/GBPUSD, on the other hand, we can essentially speak of lack of scaling 

(these pairs are fractally uncorrelated), therefore the estimation of the exponent 𝜆𝑞 was 

impossible.  

The performed analysis shows that all of the currency pairs exhibit cross-correlation 

both on the returns level, as well as on the volatility level, for currencies forming 

triangles. Generally, it can be accepted that in the case of volatility for currencies 

outside the triangle, the 𝜆𝑞 scaling exponent deviation from the mean value of 

generalized Hurst exponents ℎ𝑥𝑦(𝑞) is greater than for currencies inside the triangle 

(Figure 4.19). 

 

Figure 4.19 The differences between the scaling exponent 𝝀𝒒 and 𝒉𝒙𝒚(𝒒) determined for the 

volatility (q=2).  

 

The situation is slightly different for the returns (Figure 4.20), where it is hard to notice 

a similar behaviour. There is no feature that would enable one to capture the difference 

between currencies inside the triangles and those outside the triangle, in both 

quantitative and qualitative terms. 
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Figure 4.20 The differences between the scaling exponent 𝝀𝒒 and 𝒉𝒙𝒚(𝒒) determined for the rates of 

return and q=2. The filling indicates those pairs, where the fluctuation function scaling is weak. 

 

For all combinations of currencies inside the triangle and outside the triangle, the level 

of 𝑑 correlation differentiation was determined (formula (64)), as shown in Figure 4.21. 

Similarly as for the monofractal analysis presented for parameter 𝑞 = 2 (Figures 4.19 

and 4.20), so for the multifractal analysis, a difference can be noticed between  

currencies inside the triangle, as well as outside the triangle, for the volatility (the 

bottom panel), where 𝑑 assumes large values, so a change in the strength of correlation 

takes place at a different fluctuation level. This effect seems to be more pronounced for 

the currencies outside the triangle. For the rates of return, the pairs of currencies inside 

triangle cannot be qualitatively distinguished from the pairs of currencies outside the 

triangle (the top panel).  
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Figure 4.21 The difference between ∆𝝀𝒒 and 𝜟𝒉𝒙𝒚(𝒒) for all currency pairs. The top figure 

represents the rates of return, while the bottom figure, the volatility. The currencies inside the 

triangle are marked in black, while the currencies outside the triangle, in red. Those pairs, where 

the fluctuation function scaling is poorly noticeable is marked by the filling. 
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4.3.2 The stock market  

The quotations of DJIA index companies were also examined for multifractal 

cross-correlation. Due to the fact that for the General Electric (GE) company the 

analyzed data were incomplete (data from the period 1.10.2009-03.01.2010 was 

missing), all time series were truncated to this company's series length that was 

𝑡 =  172369 points. All possible combinations of 29 companies were examined in the 

interval of −4 ≤ 𝑞 ≤ 4. For all values of parameter 𝑞 < 1, the fluctuation function 

𝐹𝑥𝑦
 (𝑞, 𝑠) has no well defined scaling for any of the pairs analyzed. It very heavily 

fluctuates near zero and does not assume the same sign for different values of s even by 

intervals, which is the condition necessary for correlation to occur. This shows that no 

significant correlations were observed in the signal for small fluctuations, while a 

reciprocal fractal correlation may only exist at the level of large correlations occurring 

in the signal. Therefore, the further analysis was limited to the values of 1 ≤ 𝑞 ≤ 4. 

An example representative of all combinations of the examined companies, i.e. the 

fluctuation function determined for the companies CSCO (Cisco Systems, Inc.) and 

MCD (McDonald's), and the dependence of 𝜆𝑞 and ℎ𝑥𝑦(𝑞) on the parameter 𝑞, are 

represented in Figure 4.22. Two different types of behaviour of the scaling exponent 𝜆𝑞 

relative to the averaged generalized Hurst exponent ℎ𝑥𝑦(𝑞) of individual series are 

indicated there. In the upper panel of Figure 4.22 it can be seen that the values of 𝜆𝑞 are 

distinctly greater than those of ℎ𝑥𝑦(𝑞), the functions 𝜆𝑞 and ℎ𝑥𝑦(𝑞) are decreasing, and 

the difference between them is constant in terms of increase in 𝑞. This means that the 

companies are correlated, the complexity of this correlation is not dependent on the 

fluctuation amplitude and the fractal characteristic of the both processes is different. 

The fractal strength of the cross-correlation, expressed as ∆𝜆𝑞, for the above-mentioned 

companies is 0.13, while the difference in the generalized Hurst exponent (for the 

extreme values of 𝑞 is ∆ℎ𝑥𝑦(𝑞) = 0.13. 
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Figure 4.22 The fluctuation functions 𝑭𝒙𝒚
 (𝒒, 𝒔) and the magnitudes of 𝝀𝒒 (in black) and 𝒉𝒙𝒚(𝒒) (in 

red ) determined for two pairs of companies: CSCO (Cisco Systems, Inc.) and MCD (McDonald's) 

(the top panel) and DD (Disney) and VZ (Verizon) (the bottom panel). The dashed line indicates the 

scaling intervals. 

 

However, there is a group of companies, whose fractal properties are different from 

those described above, since the difference between 𝜆𝑞 and ℎ𝑥𝑦(𝑞) varies with 𝑞, and 

for 𝑞 close to 4 it is practically zero. This is indicative of the fact that the dynamics of 

the processes changes with the fluctuation amplitude and its increase, becoming more 

and more similar to these processes. This can be observed in the bottom panel in Figure 

4.22 (the companies DD-Disney and VZ-Verizon), where ∆ℎ𝑥𝑦(𝑞)  = 0.12 and 

∆𝜆𝑞 = 0.15. Among all the analyzed combinations of companies, the existence of non-

linear internal correlations are observed, which are quite significant in view of the fact 

that ∆𝜆𝑞 assumes quite considerable values. 

 Similarly as for the currencies, for all possible combinations among the 

companies, the parameter 𝑑 was determined. The histogram in Figure 4.23 shows that 

little correlation complexity prevails in this set (small and big fluctuations are correlated 

in a similar manner). 
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Figure 4.23 The histogram representing the value of 𝒅 determined for all combinations of 29 DJIA 

index companies. 

 

The mean value for all set is 𝑑 ≈ 0.005, and the values dashed down by sectors are 

given in Table 4.3. The above shows that the greatest correlation complexity is 

exhibited by the Services sector companies, while the companies from the Healthcare 

sector are practically homogeneous in terms of correlation at a varying fluctuation level. 

 

Table 4.3 The value of the 𝒅 coefficient in sectors break down . 

Basic Materials 𝑑  ≈ 0.03 

Consumer Goods 𝑑  ≈ −0.04 

Financial 𝑑  ≈ 0.03 

Healthcare 𝑑  ≈ 0.01 

Industrial Goods 𝑑  ≈ 0.03 

Services 𝑑  ≈ −0.05 

Technology 𝑑  ≈ 0.02 

4.4 Determination of the cross-correlation coefficient 𝝆 
𝒒 for time 

series 

As has been shown previously, the analysis of cross-correlation between two 

stable time series is conducted based on the Pearson correlation coefficient, which 

defines the linear relationship between them. For financial times series, which are not 
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stable and, as has already been demonstrated, are mutually related in a non-linear 

manner, such correlation analysis might not be sufficient. 

As has been mentioned above, if there exists a cross-correlation between two time 

series, the following relationship is valid:  

 𝐹𝑥𝑦(𝑞, 𝑠)~𝑠
𝜆𝑞 , (65) 

where the scaling exponent 𝜆𝑞 determines whether there is a fractal correlation between 

the series, or not. For the determination of the cross-correlation strength on a specific 

scale, the coefficient 𝜌𝐷𝐶𝐶𝐴 defined by formula [91] below is proposed: 

 
𝜌𝐷𝐶𝐶𝐴(𝑠) ≈

𝐹𝑥𝑦
2 (𝑠)

𝐹𝑥(𝑠)𝐹𝑦(𝑠)
. 

(66) 

Using this coefficient, the cross-correlation level can be determined for non-stationary 

data on different time scales, and it is not associated with the fractal properties of the 

signals under analysis. It is the capability to work on non-stationary data that is the 

essential advantage of 𝜌𝐷𝐶𝐶𝐴(𝑠) over the Pearson correlation coefficient. The 𝜌𝐷𝐶𝐶𝐴(𝑠) 

coefficient is based on the two methods referred to earlier, i.e. DFA and DCCA, and due 

to the fact that it is defined on a single scale, examines signals can be either fractal or 

not. Its usefulness has been demonstrated on the example of climatic [92] or stock 

exchange [91] data.  

The 𝜌𝐷𝐶𝐶𝐴(𝑠) coefficient assumes the following values [93]: 

 

𝜌𝐷𝐶𝐶𝐴
 (𝑠) = {

1 − perfect positive correlation between signals
0 − no correlation between signals                         
−1 − perfect negative correlation between signals

. 

(67) 

It helps not only to determine the strength of correlation between two signals, but also 

to identify the occurrence of seasonal effects in the signals under analysis. Figure 4.24  

shows the 𝜌𝐷𝐶𝐶𝐴(𝑠) coefficient determined from exchange and financial market data. 

For the FX market (panel a), a difference is clearly seen for the exchange rates inside 

the triangle (black colour), where the cross-correlation assumes negative values for all 

examined scales and is constant for every 𝑠, in contrast to the exchange rates outside the 

triangle, where the cross-correlation takes on values close to zero for all scales. This is a 

behaviour typical of all the examined currency combinations contained in Table 2.5. 

The function 𝜌𝐷𝐶𝐶𝐴
 (𝑠) behaves differently for volatility (panel c). For the currencies 

inside the triangle, the 𝜌𝐷𝐶𝐶𝐴
 (𝑠) function assumes positive values from the smallest 

scales and additionally increases with increasing 𝑠, attaining 1 with the largest scale. 

For the currencies outside the triangle, the behaviour is similar, except that for the 
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smallest scales the values of 𝜌𝐷𝐶𝐶𝐴
 (𝑠) are much lower. For sample financial market 

returns (panel b), a positive cross-correlation can be observed at a constant level for all 

scales. The coefficient/function 𝜌𝐷𝐶𝐶𝐴
 (𝑠) determined among volatility series (panel d) 

also shows a positive cross-correlation, though it starts fluctuating for higher scales.  

 

Figure 4.24 The correlation coefficient determined for sample currency pairs (panel a, returns 

series and c, volatility series) and companies (panel b, return series and d, volatility series). 

 

It seems, however, that so estimated correlation has one limitation. The 

component functions of the cross-correlation coefficient rely on plain variance and 

covariance functions, therefore it is not possible to estimate whether the potential 

correlation comes from varying-amplitude fluctuation to the same extent, or some of the 

fluctuations have a smaller or greater contribution to this value. To overcome this 

limitation, study [94] has proposed a q-generalized cross-correlation coefficient which 

is sensitive to fluctuation amplitude, as shown below: 

 
𝜌𝑀𝐹𝐶𝐶𝐴
𝑞 (𝑠) =

𝐹𝑥𝑦
 𝑞(𝑠)

𝐹𝑥

𝑞
2(𝑠)𝐹𝑦

𝑞
2(𝑠)

, 
(68) 

where 𝑞 ∈ ℝ, 𝐹𝑥𝑦
2  is the detrended cross-covariance function determined by the MFCCA 

method, while 𝐹𝑥
𝑞
 and 𝐹𝑦

𝑞
 are detrended fluctuation functions of order 𝑞, determined by 

the MF-DFA method for individual time series. It should be noted that the detrended 

fluctuation function used in the numerator, determined using the MFCCA method, is 

crucial to the obtaining of reliable results, owing to the fact that is correctly interprets 

the fluctuation sign. For 𝑞 = 2, formula (68) turns into formula (66). When using 

𝜌𝑀𝐹𝐶𝐶𝐴
𝑞 (𝑠), we do not look at the fractality of the series; instead, we look at the 
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correlations for a specific scale 𝑠. For all values of parameter 𝑞 > 2, the increasingly 

large fluctuations have the greatest contribution to 𝜌𝑀𝐹𝐶𝐶𝐴
𝑞

. Similarly to 𝜌𝐷𝐶𝐶𝐴, the 

generalized coefficient assumes values in the interval of 𝜌𝑀𝐹𝐶𝐶𝐴
𝑞 ∈ [−1,1], for every 

𝑞 ≥ 0. In the case where 𝑞 < 0, the situation is slightly different. So, in the case of 

uncorrelated or weakly correlated processes, the module of the numerator in formula 

(68) is much greater than the denominator, as a consequence of which the values of 

𝜌𝑀𝐹𝐶𝐶𝐴
𝑞

 may go beyond the interval -1,1. To avoid this drawback, the coefficient needs 

to be redefined in the following manner: 

 
𝜌 
𝑞 = {

𝜌𝑀𝐹𝐶𝐶𝐴
𝑞            for        |𝜌𝑀𝐹𝐶𝐶𝐴

𝑞 |  ≤ 1

(𝜌𝑀𝐹𝐶𝐶𝐴
𝑞 )−1  for       |𝜌𝑀𝐹𝐶𝐶𝐴

𝑞 | > 1
. 

(69) 

Thus, 𝜌 
𝑞 will always stay within the interval [−1,1], and this very coefficient, given by 

formula (69), will be used later on in this study. The figures below show a sample value 

of the 𝜌 
𝑞 coefficient for different values of parameter 𝑞 ∈ {−4,−2,2,4}, determined for 

two correlated 4.25 and uncorrelated 4.26 FARIMA processes. In the case of the 

correlated processes it is clearly seen that 𝜌 
𝑞 ≈ 1, regardless of the value of 𝑞. This is 

due to the fact that FARIMA processes are stationary, while in the case of non-

stationary processes one might expect deviations from 1 with the increase in scale In the 

case of the uncorrelated processes it is clearly seen that 𝜌 
𝑞 ≈ 1, regardless of the value 

of 𝑞. This is due to the fact that FARIMA processes are stationary, while in the case of 

non-stationary processes one might expect deviations from 1 with the increase in scale 𝑠 

[94]. 
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Figure 4.25 The 𝝆 
𝒒 coefficient calculated for two correlated FARIMA processes. 

 

For uncorrelated processes (the both time series were subjected to random mixing) the 

𝜌 
𝑞 coefficient well identifies the absence of correlation between them for 𝑞 < 0; in 

turn, for 𝑞 > 0, above the scale 𝑠 > 3000, slight deviations from zero are visible in 

Figure 4.26 . To assess whether these deviations are significant or not, the standard 

deviation 𝜎(𝜌 𝑞)̅̅ ̅̅ ̅̅ ̅̅ = 0.09 was calculated for 1000 time series as average for all scales, 

which reaches 𝜎(𝜌 
𝑞) = 0.25, for the largest scales. It can be seen, therefore, that even 

so for the largest scales these deviations are significant, yet they are contained within 

the limit of error. 
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Figure 4.26 The 𝝆 
𝒒 coefficient calculated for two uncorrelated FARIMA processes. 

 

It should be emphasized that the detrended fluctuation function used in the numerator, 

determined using the MFCCA method, is crucial to the obtaining of reliable results, 

owing to the fact that is correctly interprets the fluctuation sign. Figure 4.27 represents 

the same two uncorrelated FARIMA processes as in Figure 4.26, except that for the 

determination of 𝜌 
𝑞, the MF-DXA algorithm was used, in which the function 𝐹𝑥𝑦

2 (𝑠) 

(formula (53)) is calculated with a module. For 𝑞 = −4, the 𝜌 
𝑞 coefficient correctly 

indicates the absence of correlation for all the examined scales. 

 

Figure 4.27 The 𝝆 
𝒒 coefficient calculated for two uncorrelated FARIMA processes using the MF-

DXA algorithm for determining the fluctuation function 𝑭𝒙𝒚
 𝒒 (𝒔). 
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However, for 𝑞 ≥ −2 , a clear positive cross-correlation can be noticed throughout the 

interval, in spite of the fact that such correlation cannot occur between two independent 

time series. This provides an additional confirmation of the reliability of the MFCCA 

algorithm, which correctly identifies correlations between time series. 

 The coefficient 𝜌 
𝑞, introduced in this Chapter and discussed on the example of 

both artificially generated and real time series, will be used in Chapter 5 for the 

determination of the network representation of relations between stock exchange listed 

companies. 
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5 Network analysis of the financial data – MST trees  

This chapter will present and discuss the properties of the network representation 

of financial markets, understood based on fractal data analysis methods. To the author's 

knowledge, the method proposed in the present study is the first network representation 

of this type, where the analysis is made in two dimensions, i.e. with respect both to time 

scale and to fluctuation amplitude. 

A network is best defined as a set of nodes connected with one another by edges 

[95]. The nodes are the system's components (listed companies) and the edges are 

interrelations between them (e.g. correlation). So, it can be seen that, from this 

perspective, the financial market fits perfectly into this pattern. The first study to use 

network methods for the analysis of cross-correlation on financial markets was that of 

Mantegna [96] and these methods are currently being successfully employed for the 

analysis of currency exchange markets [97; 98; 99], commodity markets [100] or stock 

markets [101; 102; 103]. An advantage of the network formalism is the capability to 

compare different systems and to isolate the most similar possible features from them. 

In addition, we get a tool in our hands, which provides information on the system's 

dynamics and structure in a compact form. 

The study of complex networks derives from graph theory and, as an 

independent research field, has been functioning since, more or less, the mid-20th 

century. It has found application as a perfect tool for the analysis and description of a 

wide variety of phenomena and systems [104; 105]. In physics, regular networks 

(Figure 5.1, panel a) have been in use since long ago, and form a foundation for 

different theories, e.g. in solid-state physics. A characteristic feature of these systems is 

a high degree of order, a fixed number of nodes and a small extent of interactions 

between them; so, this is a deterministic system that is not subject to evolution. Each 

node in this network has the same multiplicity (degree)
17

. If applied to the description of 

different dynamic systems, it is little useful. In 1960, two Hungarian mathematicians, 

Paul Erdös and Alfred Rényi, proposed random graphs for the description of complex 

networks (model ER) [106]. According to the proposed model, a random network 

(Figure 5.1, panel b) is constructed using a recurrent procedure. From a set of 𝑁 

unconnected nodes, 𝑁/2 pairs of nodes are chosen randomly and connected with 

probability 𝑝. In the random graph, the probability of a given node having a multiplicity 

                                                 
17

 Multiplicity (degree) of a node is the number of  edges attached to it. 



 

89 

 

𝑘 per 𝑛 − 1 possible connections with other nodes is the same as the chance of 

achieving 𝑘 successes in 𝑛 − 1 trials, which is described by the binomial distribution: 

𝑃(𝑘) =  (
𝑛 − 1
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−1−𝑘, (70) 

which, at the limit 𝑛 ≫ 𝑘𝑧, where 𝑧 =
𝑛(𝑛−1)𝑝

𝑛
= (𝑛 − 1)𝑝 ≈ 𝑛𝑝 (mean node degree), 

turns into the Poisson distribution: 

𝑃(𝑘) =
𝑧𝑘𝑒−𝑧

𝑘!
. 

(71) 

This implies that with increasing node multiplicity, the probability of attaching another 

node decreases, as a consequence of which nodes with a very large number of 

connections are little probable. Random networks are characterized by a complete lack 

of regularity of connections between nodes and the absence of their hierarchical 

ordering. Moreover, phase transitions can be observed in such networks. In the case 

where the probability 𝑝 of attaching a node is small, there exist a large number of 

isolated nodes in the network, and relatively few clusters, compared to the size of the 

entire network. With the increase in 𝑝, these clusters become increasingly large in size 

and number. In the event when the value of 𝑝 exceeds the critical value 𝑝𝑐 (percolation 

threshold), transition from the disordered phase (where clusters of sizes much smaller 

than the network's size only exist) to an ordered phase occurs in the network, whereby a 

percolation cluster comes into being, which provides the path
18

 between arbitrary nodes. 

This cluster scales itself along with the network size 𝑁.  

 

 

Figure 5.1 Examples of a) a regular, b) a random, and c) a scale-free networks. 

 

Not each of the network nodes is equally important in terms of its function. It 

may happen that the removal of a node from the network will either go unnoticed, or 

                                                 
18

 The path 𝑙(𝑗, 𝑘) is a set of edges, which connects the nodes 𝑗 and 𝑘. The length of the path is the 

number of its edges. 
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quite the contrary, will lead to an impairment of operation or even disintegration of the 

network. The number of all edges that a node has is its degree 𝑘. The higher its degree, 

the more important the node is for the entire network because it interacts with a greater 

number of other nodes. The distribution of node multiplicity 𝑃(𝑘 ) is one of the basic 

network characteristics, which informs that a randomly chosen network node has 𝑘 

connections with other nodes. Given 𝑁 nodes and the number of nodes 𝑁𝑘  with the 

defined multiplicity 𝑘, this distribution will be expressed by the formula: 

𝑃(𝑘) =  
𝑁𝑘
𝑁
. 

(72) 

An important feature being common to different real networks is that the node 

multiplicity distribution is a power-law function 𝑃(𝑘)~𝑘−𝛾 [95], and it is known from 

the discussion in chapter (2) that power-law distributions are scale-free distributions. 

Scale-free network (Figure 5.1, panel c) was observed, for example, in the network of 

WWW sites (𝛾 = 2.1), power networks (𝛾 = 4) or air connection networks (𝛾 = 2.2) 

[107; 108; 109], though, at first glance, these networks (at least the WWW network) 

could be regarded as random networks. Whether this feature, being characteristic of 

different types of systems, is accidental or is the effect of some fixed rules was 

attempted to be solved by two mathematicians, Albert-László Barabási and Réka Albert 

(model BA). In their study [110] they have shown that there are two mechanisms which 

generate the power-law distribution of nodes in real networks. These are: the network 

growth (at each step of network evolution, a new node is added), and the preferential 

node attachment (one node attaches to another one with a probability proportional to the 

other node's multiplicity). A characteristic feature of the scale-free network is the 

resistance to accidental damage to its nodes and a small average path length (formulae 

(73)) [107].  

Basic measures to describe a network, in addition to node multiplicity, are the 

average path length and the node betweenness. For a network with 𝑁 nodes and the 

shortest path 𝑙(𝑗, 𝑘) between the nodes 𝑗 and 𝑘, the average path length 𝐿 is given by the 

formula: 

𝐿 =  
1

𝑁(𝑁 − 1)
∑𝑙(𝑗, 𝑘)

𝑗≠𝑘

. 
(73) 

The greater the average path length 𝐿, the more scattered the network is.  

The betweenness [111], which, like the multiplicity, describes the significance of 

a node 𝑖 in the network, is defined by the following formula: 
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𝑏𝑖 = ∑
𝑛𝑖(𝑗, 𝑘)

𝑛(𝑗, 𝑘)
,

𝑗≠𝑘

 
(74) 

where 𝑛𝑖(𝑗, 𝑘) is the number of the shortest paths between the nodes 𝑗 and 𝑘 passing 

through the node 𝑖, and 𝑛(𝑗, 𝑘) is the total number of the shortest paths. The greater the 

value of 𝑏𝑖, the more important the node 𝑖 is to the network. As has been shown [96], at 

the level of normal linear correlation, the financial market constitutes a set of 

interconnected companies. Taking companies for network nodes and the coefficient 

𝜌 
𝑞(𝑠) (68) for edges, weighed networks

 19
 were made for each value of parameter 𝑞.  

100 American companies, respectively, the largest and the smallest in terms of 

capitalization, recorded at intervals of 5 minutes, were used for analysis. Each of the 

analyzed rate of return series had a length of 40638 points and covered the period from 

1.12.1997 to 31.12.1999. The series were also examined for artifacts, i.e. the numerical 

errors of writing data to a file, which could have disturb the obtained results; so, the 

series do not have any rates of return with a standard deviation greater than 10, whose 

occurrence is very little probable. 

To avoid any information overflow, the Minimum Spanning Tree (MST) method 

was used for network structure analysis [112], which enables the structure of a network 

to be graphically presented in a concise manner and its essential features to be captured 

analytically [97]. Let there be given a graph 𝐺 with 𝑉 nodes, a set of edges 𝐸 ∈

{{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} and an edge weight 𝐶𝑥𝑦. The graph 𝑇 with 𝑉 nodes and 𝐷 ∈ 𝐸 edges, 

having the smallest sum of edge weights 𝜔𝑒, is the minimum spanning tree. One node 𝑉 

corresponds to one time series. The method relies on the distance measure 𝑑𝑥,𝑦
𝑠 =

√2(1 − 𝐶𝑥𝑦
𝑠 ), where 𝐶𝑥𝑦

𝑠  is the matrix of 𝑁 × 𝑁 coefficients 𝜌 
𝑞(𝑠) (formula (69)) 

determined for scale 𝑠 (this is the characteristic scale used in the MFCCA and MFDFA 

methods). To verify whether for the selected scale 𝑠 the selected distance is well defined 

for the selected moments 𝑞 from the interval 𝑞 ∈ [−4,4] and meets the conditions of the 

metric
20

 [96], 161700 three-element company combinations was subjected to analysis 

and checked if the triangle inequality 𝑑𝐴𝐵
𝑞 + 𝑑𝐵𝐶

𝑞 ≥ 𝑑𝐴𝐶
𝑞 , is satisfied, where 𝑑𝐴𝐵

𝑞
 is the 

distance between the series 𝑎 and 𝑏. The result of the analysis is shown in Table 5.1 . 

                                                 
19

 In the case, where each edge has a specific numeral value (weight) 𝜔𝑒, assigned to it, a given network 

is referred to as the weighed network.  
20

If 𝑥 = 𝑦 then 𝑑𝑥,𝑦
𝑠 = 0, 𝑑𝑥,𝑦

𝑠 = 𝑑𝑦,𝑥
𝑠 , 𝑑𝑥,𝑦

𝑠 + 𝑑𝑦,𝑧
𝑠 ≥ 𝑑𝑥,𝑧

𝑠  . 
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Table 5.1 The number of cases, where the triangle inequality for the distance 𝒅𝒙,𝒚
𝒔  is not satisfied. 

Actual errors are given in parentheses. The letter A denotes the set of the largest companies, while 

B, that of the smallest companies. 

 q\scale 
Hourly 

-A- 

Daily 

-A- 

Weekly 

-A- 

Hourly  

-B- 

Daily  

-B- 

Weekly  

-B- 

-4 20436 (1501) 0 0 155198 0 0 

-3 21505 (2570) 5 (5) 0 155200 (2) 1 (1) 8 (8) 

-2 24149 (5214) 3705 (3705) 0 155198 2464 (2464) 1940 (1940) 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

 

For 𝑞 < 0, the triangle inequality is not satisfied for the majority of scales. The 

vast majority of cases is due to the fact that the intervals of zeros longer than the scale 𝑠 

used in the MFCCA and MF-DFA methods have not been removed from the analyzed 

series. This leads to the situation, where the fluctuation function and, consequently, the 

coefficient 𝜌 
𝑞(𝑠) cannot be determined for small scales. As a result, the triangle 

inequality is not satisfied numerically. This is particularly visible for smaller companies 

that are less frequently traded (there are more zeros in the series). There are also cases 

in the analyzed group, where 𝜌 
𝑞(𝑠) is determined correctly, yet the inequality is not 

satisfied. This means that the distance 𝑑𝑥,𝑦
𝑠  defined for 𝜌 

𝑞(𝑠) does not constitute a 

metric. And since it is not a metric, then the tree built on this distance is not an MST 

tree. Therefore, moments 𝑞 = {2; 3; 4} were used for determining the MST trees, 

because only for them is the 𝑑𝑥,𝑦
𝑠  distance unquestionably a metric. 

 The value of 𝑑𝑥,𝑦
𝑠  measures the distance between two time series 𝑋 and 𝑌. 

Thanks to this operation it is possible to exchange the 𝐶𝑥𝑦 measure, which is 

proportional to the connection strength, for the 𝑑𝑥,𝑦
𝑠  measure, in which this relationship 

will be inverse. For fully correlated signals, 𝑑𝑥,𝑦
𝑠 = 0, for anti-correlated signals, 

√2 < 𝑑𝑥,𝑦
𝑠 ≤ 2, while for uncorrelated signals, 𝑑𝑥,𝑦

𝑠 ≅ √2. Having a given metric, the 

MST method puts all distances 𝑑𝑥,𝑦
𝑠  between time series (𝑋, 𝑌) in increasing order and 

combines all nodes with respect to 𝑑𝑥,𝑦
𝑠  in such a manner that each node be attached 

exactly once. In that case, we obtain a network that is distinguished by the smallest 

possible sum of edge weights 𝜔𝑒. In the MST method, each node has a measure of 

"importance" in the network assigned to it. The more important a node is for the 

network, the higher is its degree 𝐾. In transition from the complete network to the MST 
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tree, some measures (e.g. the betweenness or the average length of the shortest path) are 

retained. All trees were determined using Kruskal's algorithm [113] available in Matlab. 

The whole analysis was based on the correlation coefficient 𝜌𝑞 described in 

section 4.4 and was carried out in two dimensions. One of the dimensions is the time 

interval between price measurements, therefore individual MST trees are presented in 

three time scales: an hourly, a daily and a weekly scale. The second dimension is 

parameter 𝑞 in the MF-DFA and MFCCA methods, being responsible for the 

reinforcement of either large or small fluctuations. The aim of the analysis is to answer 

the question whether and, if so, how the statistical network properties change with the 

scale and the fluctuation amplitude. 
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5.1  The 100 largest American companies 21  
 

For 𝑁 = 100 companies and a given scale 𝑠, 𝑁(𝑁 − 1)/2 = 4950 coefficients 

𝜌 
𝑞(𝑠) were determined for 𝑞 from the interval −4 ≤ 𝑞 ≤ 4, based on which a network 

was constructed, defined in such a manner that each time series 𝑥𝑖 was represented in 

the form of the node 𝑖, while the value of coefficient 𝜌𝑞(𝑠) represented the edge 

connecting the nodes 𝑖 − 𝑗. A sample function 𝜌𝑞(𝑠) determined for the companies GE 

and CSCO (the hourly scale) is shown in Figure 5.2. It is perfectly visible that for 

moments 𝑞 < 0, no cross-correlation occurs between the companies for the most of the 

examined scales 𝑠. This is evidenced by two different types of the behaviour of 𝜌𝑞(𝑠). 

For 𝑞 = −4, , the coefficient 𝜌𝑞(𝑠) has a value close to 0 practically for all scales, while 

for 𝑞 = −2 and 𝑞 = −3, it heavily oscillates between negative and positive values, not 

assuming the same sign for larger intervals of 𝑠. For 𝑞 > 0, the correlation is well 

visible around the value 0.5 (𝑞 = 2), 0.4 (𝑞 = 3) and 0.25 (𝑞 = 4) for all examined 

scales. A characteristic scale of 𝑠 = 1950 minutes (indicated with the dashed line in the 

figure) is very well visible for 𝑞 > 0, which represents the full trading week, when the 

value of 𝜌𝑞(𝑠) changes markedly. 

 

Figure 5.2 The coefficient 𝝆 
𝒒 determined for the GE and CSCO company pair (the hourly scale) 

The dashed line indicates one trading day. 

                                                 
21

 A list of all companies with their division by sectors is given in Table 8.2. 
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For the MST network analysis performed later on in this study, three 

characteristic times scales were taken, i.e. the hourly scale (𝑠 = 60 minutes), the daily 

scale (𝑠 = 390 minutes) and the weekly scale (𝑠 = 1950 minutes). The probability 

density distribution of 𝜌 
𝑞(𝑠) coefficients, determined for all company combinations and 

three time scales, is shown in Figure 5.3. The hourly scale is indicated in black colour, 

the daily scale in red, and the weekly scale in green. For 𝑞 = {−3,−4} and the daily 

and weekly scales, the distributions are approximately symmetrical, with the 

distribution maximum being located near the 0 point, which most often means the lack 

of cross-correlation between companies at the smallest fluctuation level. In the case, 

where 𝑞 = −2, 𝜌 
𝑞 assumes more values from the entire range (-1;1), what doesn’t 

mean the cross-correlation between companies as is was stated above. It comes from the 

fact that 𝜌 
𝑞 strongly fluctuates around zero for the entire scale range [94]. 

For moments 𝑞 > 0, the distributions are asymmetric, their tail is thicker on the 

right-hand side, and the maximum lies in the range [0.1;0.2]. This is due to the fact that 

the companies are rarely negatively correlated or uncorrelated with one another, and a 

slight positive correlation prevails between them on all the examined scales.  

For the daily and weekly scales, the shape of the distribution does not change 

because of the increase in 𝑞, and the position of the distribution maximum shifts slightly 

towards 0, which suggests that reinforcing increasingly large fluctuation amplitudes 

weakens the correlation between the companies. For the hourly scale, the distribution 

also shifts towards 0, except that an increase in the number of companies with the 

lowest cross-correlation occurs in the distribution shape. The effect of weakening of 

correlation between companies is the strongest for the hourly scale. 
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Figure 5.3 The probability density 𝑷(𝝆 

𝒒(𝒔)) determined for three time scales: hourly (black 

colour), daily (red colour) and weekly (green colour). 

 

A sample visualization of the obtained MST trees for the hourly scale and 

moments 𝑞 > 0 is shown in Figure 5.4 . For this and every other MST tree shown later 

on in the study, the length of the connection between nodes does not carry any 

information, in contrast to the thickness and colour of the lines. The thicker and blacker 

the line, the greater the cross-correlation. 
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Figure 5.4 An MST tree drawn up for the 100 largest American companies, determined for 

different values of parameter q and the hourly scale, broken down by sectors. The clusters are 

indicated with rectangles: A – financial cluster; B – technological cluster; and C – health care 

cluster. 

 In all of the analyzed MST trees and for moments 𝑞 > 0, nodes of a high 

multiplicity 𝑘 are very clearly visible, and the network itself has the features of a 

centralized network with visible financial (A - red), technology company (B - green) 

and health care (C - brown, visible for 𝑞 = 3) clusters. The value of the correlation 

between these clusters (as well as in the clusters themselves) and the central network 

node (GE) is one of the greatest, as opposed to the correlation to other network nodes, 

where this level assumes moderate values, i.e. 0.1–0.4. Interestingly enough, at the plain 

linear correlation level, networks of this type (i.e. centralized, with clusters) can be 

observed on the FX market [97; 98].  
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For 𝑞 = 2, the main node is the GE (General Electric) company with a 

multiplicity of 51 (super hub), CSCO (Cisco Systems, Inc.) with 𝑘 = 12 (technology 

cluster) and C (Citigroup Inc.) with 𝑘 = 9 (financial cluster). For 𝑞 = 3 , the main 

network node is also GE with 𝑘 = 24 and HD (Home Depot) and BK (Bank of New 

York) with 𝑘 = 10. The BK company is directly associated with 7 other financial sector 

companies, forming a cluster. With a multiplicity of 𝑘 = 8, the CSCO company forms a 

significantly correlated technology cluster. For 𝑞 = 4 , the clusterization is slightly less 

visible and the network is getting more decentralized. With a multiplicity of 𝑘 = 10, 

GE is no longer the central network node, whose role is taken over by the HD company 

with 𝑘 = 15. Still well visible is the technology cluster, with the centre in the CSCO 

company with 𝑘 = 5, and the financial cluster, this time without the main node, but 

with a very well visible strong cross-correlation. In addition, clusters with a multiplicity 

of 𝑘 = 8 are clearly visible in the network, which do not constitute a sectoral 

connection for BK (The Bank of New York), AXP (American Express Company), F 

(Ford Motor Co.) and PG (The Procter & Gamble Company).  

The presence of GE as the central node (for 𝑞 = 2 and 𝑞 = 3) is not surprising, 

as this company is a huge conglomerate on the American market, operating either 

directly or indirectly practically in all market branches, such as energy generation, 

petroleum production, or machinery and equipment manufacture. It should also be noted 

that, in the period under examination, the aforementioned companies being the centres 

of clusters, were the companies of the highest market capitalization among all 

companies. What is also characteristic of the trees described above is the occurrence of 

a very large number of companies with a multiplicity of 1 in the vicinity of high-

multiplicity nodes.  

In terms of topology, the MST trees determined for the daily scale look very 

much similar to those determined for the hourly scale (Figure 5.5). For all values of 

parameter 𝑞, high-multiplicity nodes are very well visible (GE is again the network's 

hub), forming three clusters (on the example of 𝑞 = 2): financial (A - red colour, with 

the centre in the C company with a multiplicity of 𝑘 = 7); technology (B - green colour, 

with the centre in the CSCO company with a multiplicity of 𝑘 = 12) and health care (C 

- brown colour, MRK, with a multiplicity of 𝑘 = 5). With the increase in 𝑞, the 

multiplicity of the central nodes of particular clusters slightly decreases. 
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Figure 5.5 An MST tree for the 100 largest American companies, determined for different values of 

parameter q and the daily scale, broken down by sectors. The clusters are indicated with 

rectangles: A – financial cluster; B – technological cluster; and C – health care cluster. 

 

The situation is very similar for the tree determined for the weekly scale (Fig. 5.6. ). For 

moments 𝑞 = 2 and 𝑞 = 3, like for the daily scale, three clusters are visible, which are 

supplemented with a fourth cluster (D - yellow colour) with the central node in the HD 

company, for moments 𝑞 = 3 and 𝑞 = 4, and a fifth basic materials cluster (E - orange 

colour) showing up for 𝑞 = 3, with the central node in CHV (Chevron). 
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Figure 5.6 An MST tree determined for the 100 largest American companies, for different values of 

parameter q and the weekly scale, broken down by sectors. The clusters are indicated with dashed 

line. A – financial cluster; B – technology cluster; C – health care cluster; D – services cluster; and 

E – basic materials cluster. 

 

It is worth noting that  the structure of MST trees is not stable due to the variation in 

signal amplitudes and the change in the time scale. There are companies (such as GE) 

which, with the increase in fluctuation amplitude or scale, lose their importance in the 

network. There are also those, whose multiplicity changes with increasing fluctuation 

amplitude (MRK is the centre of a cluster for 𝑞 = 3, and is not for 𝑞 = 2; 4). It appears, 

therefore, that both the fluctuation amplitude and the time scale has the effect on the 

strength of correlation between companies. In the case of the time scale, a longer time 

horizon is most often needed for the correlation to form, as confirmed by the weekly 

scale case, where the clusterization is the greatest and 𝜌 
𝑞 assumes the largest values 

(Figure 5.4). This may also mean that, at the large signal amplitude level, the 

fluctuations of correlated companies are similar. This is, as it were, a natural behaviour, 

because the majority of companies head in the same direction as the market does, 

whereas among themselves, the companies exhibit a more independent dynamic. 

          Looking at the tree structure on selected scales it can be noticed that, on the 

quality level, the network does not change significantly, and presumably this is a scale-

free network. The scale-free networks of financial data are a well-known phenomenon 

[101; 114; 115]. The absence of the characteristic scale seems to be confirmed by 
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Figure 5.7 which shows cumulative distributions of node multiplicities, determined for 

the hourly, daily and weekly scales, depending on the moment 𝑞. For all moments 

𝑞 > 0, the distribution is a power-law distribution, which is characteristic of the 

distribution of multiplicities in scale-free networks. The estimated scaling exponents 

are: 𝛼 = 1.22; 1.45; 1.7 (for 𝑞 being, respectively, 2, 3 and 4) for the hourly scale; 

𝛼 =  1.47; 2.16; 2.4 for the daily scale; and 𝛼 =  1.85; 2.29; 2.09 for the weekly scale. 

In study [101] where its authors examined multiplicity distributions for nearly 500 

companies listed at the NYSE stock exchange, the scaling exponent was estimated at a 

level of 𝛼 = 2.1. In turn, study [97] estimated the scaling exponent to be in the range of 

𝛼 ∈ (1.37; 1.96). 

 

Figure 5.7 Cumulative distribution of node multiplicities for the 100 largest American companies 

determined for the hourly a), daily b) and weekly scales, respectively, depending on the parameter 

q. 

 

For each tree, the average path length 𝐿 was also determined (Table 5.2). In view of the 

fact that the obtained 𝐿 values are high, the network exhibits the features of a dispersed 

network. The obtained 𝐿 values are, for every scale and every moment, greater than the 

average path length 𝐿𝑎𝑣 = 2.87, as determined based on the Pearson correlation 

coefficient 𝜌𝑥𝑦, which implies that a network relying on nonlinear correlation at a 

varying fluctuation level, is more dispersed. 
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Table 5.2 The average path length 𝑳 determined for three time scales and different values of 

parameter q. 

Scale   |   q 2 3 4 

Hourly 3.28 5.83 5.97 

Daily 3.68 3.4 5.17 

Weekly 5.63 6.15 6.16 

 

The betweenness coefficient 𝑏𝑖 (Table 5.3) determined for moments 𝑞 > 0, confirms 

the existence of a large number of nodes significant for network operation efficiency, 

which lose importance with increasing parameter 𝑞. The obtained betweenness values 

are, on every scale and for every moment, less than the value of the betweenness 

𝑏𝑖 = 0.94 determined for the network relying on the Pearson correlation coefficient 

𝜌𝑥𝑦. This implies that a network built on the coefficient of nonlinear correlations at a 

large signal amplitude level indicates a smaller number of companies playing a 

dominant role in the financial market. 

 

Table 5.3 The network betweenness 𝒃𝒊 determined for three time scales and different values of 

parameter q. 

Scale    |  q 2 3 4 

Hourly 0.91 0.74 0.76 

Daily 0.9 0.9 0.73 

Weekly 0.74 0.64 0.62 

 

To sum up, the statistic properties of the network determined for cross-

correlations at a large fluctuation level exhibit similarities with respect to scale change. 

If large fluctuations occur in networks, those networks become heavily centralized, and 

with the increase in parameter 𝑞, the strength of connections between the companies is 

increasingly high. Very easily visible clusters show up, which group together companies 

belonging to a single stock market sector. In the case of the technology and financial 

sectors, they are stable in respect of the change in 𝑞, in contrast to the health care cluster 

which appears only at a higher fluctuation amplitudes (only visible for 𝑞 = (3; 4)) or 

the basic materials cluster which shows up for the weekly scale only. The examined 

statistic properties of the MST trees do not change significantly with the change in 
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scale, either. The scale-free network structure is visible for moment 𝑞 > 0 and for all 

scales. 

 It is important to take note of the practical aspect of the performed analysis. As 

rightly observed in studies [96; 101], MST trees relying on (linear) correlation 

coefficients can be useful for the optimization of the investment portfolio. In the classic 

theory of investment portfolio optimization introduced by Markowitz [116], the 

selection of assets is made based on the expected value and the variance of the portfolio 

return rate. From among the constructed portfolios, the one is selected, which 

maximizes the expected value with a given market, or the one which minimizes the risk 

at the given expected rate of return. By extending the capabilities of such analysis to 

include nonlinear correlations to be determined additionally on different time scales and 

for different magnitudes of fluctuations, we get a tool in our hands, which can provide 

more accurate information on the market under analysis. 

5.2 The 100 smallest American companies22  

In order to verify whether the results obtained in the previous section are typical 

of large capitalization companies only, a network of 100 American companies of the 

least capitalization was also subjected to analysis. Like in the previous paragraph, the 

coefficient 𝜌𝑞(𝑠) was determined for three time scales: hourly, daily and weekly, for q 

parameter values of −4 ≤ 𝑞 ≤ 4. In Figure 5.8 a sample coefficient 𝜌𝑞(𝑠) determined 

between the companies BZF and EWF, being the largest nodes in the network, is shown 

for the hourly scale and different values of parameter 𝑞. For the moment 𝑞 = −4, lack 

of correlation is clearly seen. The same is visible for the moments 𝑞 = −2 and 𝑞 = −3, 

where 𝜌𝑞  fluctuates around zero what means that there is no correlation on these 

amplitude level. This effect is characteristic of all of the examined companies. For 

moments 𝑞 > 0, the correlation is positive for all scales 𝑠, although it is much weaker 

than for the largest companies in the market.  

 

                                                 
22

 A list of all companies with their membership of respective sectors is given in Table 8.3. 
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Figure 5.8 The coefficient 𝝆 
𝒒 determined between the small-capitalization companies BZF and 

EWF for the hourly scale. 

 

Figure 5.9 represents the density distribution of coefficients 𝜌 
𝑞(𝑠), determined for all 

combinations of the smallest companies and three time scales. For the daily scale and 

weekly scales and for 𝑞 < 0 , the shape of the distribution is very similar to that of the 

one determined for the largest companies. They are approximately symmetrical and for 

𝑞 ∈ [−3;−4] their maximum is near 0, what confirms the fact that at the lowest 

fluctuations level, there is no cross-correlation between the companies. For the daily 

and weekly scales and 𝑞 = −2, there are much fewer cases of mutually uncorrelated 

companies, and the distribution itself is more flat. But again, it comes from the fact, that 

𝜌 
𝑞 fluctuates around zero for the entire scale range and it doesn’t mean the cross-

correlation. For the hourly scale, the distribution 𝜌 
𝑞 is stable with respect to change in 

the negative values of parameter 𝑞 and, most frequently, there are no cross-correlations 

between the companies at a low fluctuation level. This behaviour is different from that 

observed for the largest companies, where the distribution was more flat for the above-

mentioned hourly scale and moment 𝑞 = −2. 

For positive values of moments 𝑞 and for the hourly and daily scales, 𝜌 
𝑞 

coefficient values close to 0 are predominating. For the weekly scale, the distribution is 

stable with respect to the increase in 𝑞, and 𝜌 
𝑞 assumes a wider value spectrum, with a 

preponderance of values indicating a slight positive cross-correlation. So, it appears 

that, like for the largest companies, at a given fluctuation level, it is the time scale that 
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plays an important role in the occurrence of correlations. On shorter scales, we can 

speak of a lack of correlations between the companies, which only become pronounced 

on the weekly scale. This suggest that a slightly longer time horizon is needed for cross-

correlations to occur. For the largest companies, no similar feature could be noticed, 

because correlations at a varying level of large fluctuation amplitudes were visible for 

all examined time scales. 

 

Figure 5.9 The probability density 𝑷(𝝆 
𝒒(𝒔)) determined for three time scales: hourly (black 

colour), daily (red colour) and weekly (green colour). 

 

Like for the largest companies, the MST trees were determined for the smallest 

companies. The tree determined for the hourly scale and three different values of 

parameter 𝑞 is shown and Figure 5.10.  

For 𝑞 = 2, there exist central network nodes and these are the EWF (Earth, Wind 

& Fire) and BZF (Wisdom Tree Brazilian Real Strategy ETF) investment funds (both of 

them with a multiplicity of 𝑘 = 20). The value of correlation between them is the 

highest among all of the examined companies. They form two interconnected financial 

clusters. The basic materials cluster is also visible in the network, with the centre in the 

NS (National Steel Corp Cl-B) company. The both funds are of the ETF
23

 type, 

                                                 
23

 ETF (Exchange-Traded Fund) –  an investment fund based on the stock market index or the asset 

basket. It is most often managed on an algorithmic manner, and its units are quoted on the Stock 

Exchange similarly to shares. www.investopedia.com access on:12.12.2015. 
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therefore their investment strategy relies on the tracking of the stock market index. They 

will be, as it were, a reflection of the market; they turn to their advantage the whole 

market information, as a consequence of which it could be expected that they will have 

the greatest multiplicity. 

 

Figure 5.10 An MST tree determined for the 100 smallest American companies, for different q 

parameter values and the hourly scale. The cluster A constitutes a set of companies from the 

financial sector (red colour), and the cluster B, from the basic materials sector (orange colour). 

  

For 𝑞 = 3, there are two central network nodes: CH (Aberdeen Chile Fund Inc.), 

with a relatively large multiplicity of 𝑘 = 13 and GHI (Global High Income Fund Inc.) 

with a multiplicity of 𝑘 = 7. These are investment funds, too, and they form 

interconnected financial clusters. For 𝑞 = 4 , the place of the GHI node is taken by 
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another fund, GRR (Asia Tigers Fund Inc.), with a multiplicity of 𝑘 = 6 and, like 

before, two connected financial clusters are visible. When analyzing the tree structure 

for the daily scale 5.11 and in the case of 𝑞 = 2, we can clearly see two high-

multiplicity nodes: EWF (𝑘 = 34) and BZF (𝑘 = 20), which are strongly correlated. 

For 𝑞 = 3, the companies EWF and BZF still have the highest multiplicity (𝑘 = 10 and 

𝑘 = 9, respectively), and the GHI company with a multiplicity of 𝑘 = 9 shows up 

again. For 𝑞 = 4, the companies BZF and EWF lose their importance in the network, 

with the predominant nodes being GHI, GRR and TCH (all of them with a multiplicity 

of 𝑘 = 8). In the cross-section of the entire tree, it is difficult to identify clusters 

forming a sectoral combination of companies, which is makes is a difference compared 

to the trees determined for the largest companies, where they were fairly well visible. 

 

Figure 5.11 An MST tree for the 100 smallest American companies, determined for different q 

parameter values and the daily scale. 

 

The above-described structure of the MST trees determined for the daily scale seems to 

be similar to that of the trees determined for the weekly scale, as shown in Figure 5.12. 
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For large fluctuations and for 𝑞 = 2, a single large BXF node with a multiplicity of 

𝑘 = 27 occurs in the network, which loses its importance with the increase in parameter 

𝑞. Like for the daily scale, it is hard to explicitly delineate sectoral clusters, and this is 

the only difference between to the analysis of the largest companies. 

 

Figure 5.12 An MST tree determined for the 100 smallest American companies, for different q 

parameter values and the weekly scale. 

 

 

The node multiplicity distribution represented in Fig. 5.13 seems to indicate the lack of 

the characteristic scale for moments 𝑞 > 0 for all time scales. The estimated scaling 

exponents are: 𝛼 = 1.95; 2.03; 2.25 (for 𝑞 being, respectively, 2, 3 and 4) for the hourly 

scale; 𝛼 =  2.13; 1.64; 1.96 for the daily scale; while 𝛼 =  1.68; 1.55; 1.57 for the 
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weekly scale. These are scaling exponents that lie in a value range similar to those 

obtained for the largest companies. 

 
Figure 5.13 Cumulative distribution of node multiplicities for the 100 smallest American companies 

determined for the hourly a), daily b) and weekly scales, respectively, depending on the parameter 

q. 

 

Like for the companies analyzed in the previous section, the statistic network properties 

were estimated based on the average path length 𝐿 and the betweenness 𝑏𝑖. The average 

path length determined for the network based on the Pearson cross-correlation 

coefficient 𝜌𝑥𝑦 amounts to 𝐿𝑎𝑣 = 4.64, being smaller than any of the determined values 

of the analyzed trees, except for the moment 𝑞 = 2. 

The values and the differences between the average path length values in Table 5.4, as 

dependent on parameter 𝑞, are similar to those determined for the largest companies 

(Table 5.2). 

 

Table 5.4 The average path length L determined for three time scales and different q parameter 

values. 

Scale   |  q 2 3 4 

Hourly 4.25 5.85 6.12 

Daily 3.63 5.42 6.99 

Weekly 4.47 5.94 5.80 
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The situation looks similarly at the level of the betweenness (Table 5.5) determined for 

the network. For the hourly scale, the betweenness values are constant, whereas for the 

daily and weekly scales, the 𝑏𝑖 values decrease with the increase in 𝑞, which means that 

the nodes most important for network operation lose their importance. For all moments 

𝑞 > 0 𝑏𝑖 ∈ (0.57; 0.84) , and it is in this range that the 𝑏𝑖 = 0.77 determined for the 

𝜌𝑥𝑦 Pearson correlation coefficient is contained. 

Table 5.5 The network betweenness 𝒃𝒊 for the 100 smallest companies, determined for three time 

scales and different q parameter values. 

Scale   |  q 2 3 4 

Hourly 0.76 0.77 0.77 

Daily 0.84 0.66 0.59 

Weekly 0.84 0.60 0.57 

 

Like for the average path length, 𝑏𝑖 betweenness values and their change with the 

increase in the parameter are similar to those determined for the largest companies 

(Table 5.3).  

The analysis made above shows that, at the level of the statistic network properties 

determined for fluctuation amplitudes of a varying size, there is no significant 

difference between the largest and the smallest company networks. However, a sectoral 

clusterization is visible for the largest companies, which is practically absent in the 

smallest company network. 

 

 

 

 

 

 

 

 

 

 

 



 

111 

 

6 Summary and conclusions 

 The subject of the research carried out in this study was the analysis of financial 

data derived from the exchange and capital markets. Main emphasis has been laid on the 

identification and description of cross-correlations between individual elements of the 

market. The analyzed data included transaction exchange rates taken from the FX 

market, time series of triangular relation deviation on return level, the one-minute 

exchange rates of twenty nine DJIA index companies and the five-minute quotations of 

the 100 largest and the 100 smallest companies listed on the American market, which 

were examined in a network representation. 

The multifractal analysis was performed using the MFDFA and Wavelet Leaders 

methods. The multifractal cross-correlations were identified using a new MFCCA 

method. In addition, the generalized cross-correlation coefficient was used, which, 

along with the network representation of relations between stock market companies, 

enables the two-dimensional analysis of relationships between companies with respect 

to time and fluctuation amplitude. 

 The analysis was started with the examination of the distributions of returns on 

different time scales, which made it possible to verify one of the stylized facts, 

according to which the tails of the cumulative distribution should have power scaling 

with an exponent of 𝛼 = 3. As has been demonstrated, for financial markets (DAX, 

SP500) in the period under consideration, deviations from the inverse cubic law can be 

observed already on time scales of the order of one minute [4] (for greater scales, the 

distribution tails become increasingly Gaussian in character). The study shows that in 

the case of the FX market, distributions are not stable, and the scaling exponent is 

contained in the range of ∈ (2.9; 5.05) and strongly depends on considered time scale. 

However, it is hard to indicate a characteristic scale for particular exchange rate, where 

a break in scaling occurs and the tails bend back towards the Gaussian distribution. The 

situation is slightly different for the series of deviations from the ideal triangular 

relation. Starting from the smallest time scale, the distribution tails are very close to the 

Gaussian distribution. An exception is the EURGBPJPY triangle, where the slopes are 

in the range of 𝛼 ∈ (3.21; 4.98). This result may suggest a much faster information 

flow on exchange markets compared to asset markets. 

 In the case of DJIA data, for the smallest time scale (1 minute), the scaling 

exponents of individual companies assume values approximately close to 2.5, which 
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means that the deviation from the inverse cubic law is little. The index consisting of 

those companies, starting from the scale of 𝑡 = 10 min., starts slowly approaching the 

Gaussian distribution. 

 The analysis of the linear correlations for returns, made later on in this study, has 

confirmed the absence of any significant correlations for both financial and currency 

data. The autocorrelation function, for both sets of data, is characteristic of Brownian 

processes and after 10 seconds (FX data both for the rates of return and for the series of 

deviations from the triangular relation) or two minutes (financial data) it attains a noise 

level. Before this happens, however, it attains negative values which may suggest a 

negative correlation between successive changes in the series. The observed fact 

appears to be, however, a computational artefact, caused by too large a number of 

transactions not changing the asset price. Cross-correlation between currencies shows 

that generally currencies inside the triangle are cross-correlated negatively (barring one 

exception), while currencies not being inside the triangle, except for two instances, are 

slightly positively correlated. A currency pair which is the strongest connected with the 

others is the EURUSD pair (the most often traded currency pair in the world), while the 

weakest connected one is the AUDJPY pair. The examination of correlations between 

the series of deviations from the triangular relation has shown that such series are 

correlated even up to the scale of 15 seconds in the case, where two common currencies 

occur between the series. If there are no common currencies, the series are not 

correlated. For financial data and the majority of all possible combinations between 

companies, cross-correlation exists. Breaking down companies by sectors, the strongest 

inter-sector relationships occur in the Industrial Goods sector, and the weakest, in the 

Services sector. 

 At the level of the volatility of currency and financial data series, a power-law 

behaviour of the decay of the autocorrelation and cross-correlations functions and the 

clear presence of a daily trend in financial data, manifesting itself in distinct peaks 

occurring every 390 minutes, were observed. In addition, all the examined exchanges 

rates are cross-correlated for events distant nearly 7 trading hours and for a delay up to  

50 seconds, a slightly lower level of cross-correlation can be observed in the currencies 

outside the triangle, compared to the currencies inside the triangle.  

 The main focus in the study was put on nonlinear correlations analysis so the 

next point discussed was autocorrelation multifractal analysis. For illustrative purpose 

singularity spectra and fluctuation functions were shown for monofractal processes, as 
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well as for two different multifractal models of the Markov switching processes and 

multiplicative cascade types. For real exchange rates, the estimated singularity spectra 

indicate a multifractal nature of the examined processes. They are all asymmetric, with 

the left-hand part much more developed. This asymmetry may be due to the fact that 

large fluctuations predominate in the structure of the analyzed signal. In turn, the 

location of the spectrum maximum suggests a lack of linear correlations or a slight anti-

persistence in the examined series, which is consistent with results obtained by 

traditional methods.  

 The shapes of the spectra determined for exchange rate volatility series are also 

(left-sided) asymmetric, wide, and indicative of a great complexity of the analyzed 

signal. Their maxima are located in an area indicating high persistence of the series. At 

that level, negative fractal dimensions were observed, which are more and more often 

appear in the literature. Using the Fourier surrogate method it has been shown that it is 

nonlinear correlations that are responsible for the fractal nature of the currency time 

series. The triangular relation deviation series for the analyzed type of data have not 

exhibited the fractal nature in spite of the fact that those were already previously 

observed and described in the literature [31]. The explanation of this fact may be the too 

small length of the series, in which large fluctuations or respective correlations have not 

had enough time to develop yet. 

 In addition, so-called cross rates, or exchange rates calculated using transition 

currencies, were also examined. It has been demonstrated that with the increase in the 

number of transition currencies the spectrum maximum shifts to the left towards the 

region of uncorrelated data and, in the majority of instances, it becomes increasingly 

narrow.  

 In the case of stock market data, all estimated singularity spectra show perfectly 

the multifractal nature of the time series. Spectra reveal left sided asymmetry. The 

location of the spectra maxima indicates a weak persistent nature of these processes. In 

the sectoral approach, the widest structure variety is exhibited by Financial Sector 

companies, while the narrowest, by companies from the Industrial Materials sector. It 

has been demonstrated that in this case, too, it is nonlinear correlations that underlie the 

fractal nature of the time series. 

 Both the share market and exchange market data were also examined with the 

Wavelet Leaders algorithm, and thus obtained results were largely consistent with those 

obtained by the MFDFA method in terms of the identification of the fractal nature of the 
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data. The spectra determined by the WL method turned out to be wider, which is a well-

known effect, as shown in study [117].  

 The analysis of nonlinear interrelationships was started with the description of 

the MFCCA method, which, as has been shown, is able to correctly identify the 

correlations between time series. On the example of correlated and uncorrelated 

FARIMA processes generated by the algorithm, the usefulness of the method was 

demonstrated. Then, currency data were examined for nonlinear cross-correlations. For 

the rates of return and moments 𝑞 < 0, the absence of relevant fluctuation function 

scaling has been shown, which means the lack of cross-correlation at the level of low 

fluctuations. The performed analysis shows also that all of the currency pairs exhibit 

cross-correlation both on the returns level, as well as on the volatility level, for 

currencies forming triangles. Generally, it can be accepted that in the case of volatility 

for currencies outside the triangle, the 𝜆𝑞 scaling exponent deviation from the mean 

value of generalized Hurst exponents ℎ𝑥𝑦(𝑞) is greater than for currencies inside the 

triangle. A parameter 𝑑 has been introduced, being the difference between the span of 

the scaling exponent 𝜆𝑞 and the span of the average Hurst exponent of the analyzed time 

series ℎ𝑥𝑦(𝑞), illustrating the complexity of the cross-correlation. The analysis of the 

volatility has shown that 𝑑 assumes values greater for currencies outside the triangle 

than for currencies inside the triangle. For return series, 𝑑 greater than 0 was also 

observed, but the only criterion allowing currencies inside the triangles to be 

distinguished from those outside the triangle was the inability to estimate the scaling 

exponent for a few cases of currencies outside the triangle.  

Similarly for financial markets, no correlations were observed at the low fluctuation 

level, therefore the analysis was narrowed to moments 𝑞 > 1. Among all combinations 

of correlations between companies, two different types of scaling exponent behaviour 

were observed. In one case, the difference between 𝜆𝑞 and ℎ𝑥𝑦(𝑞) is independent of 𝑞 

(the correlation strength is constant at a varying signal amplitude level), while in the 

other, with the increase in 𝑞, this difference decreases practically to zero (change in 

correlation strength at a varying signal amplitude level). For all combinations of 

companies, parameter 𝑑 most often takes on values close to 0, which means the same 

correlation strength at the level of increasingly high fluctuations. In the sectoral cross-

section, change in correlation strength at the high and low fluctuation levels is the most 

pronounced for Services sector companies. 
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 To assess the strength of fractal cross-correlation between two signals on a 

particular scale, the generalized coefficient 𝜌 
𝑞(𝑠) was used, which relies on the 

MFDFA and MFCCA methods. This allowed the numerical estimation of the nonlinear 

correlation on the selected time scale 𝑠, while considering the fluctuation amplitude. 

The coefficient was used for making a comprehensive analysis of the largest and the 

smallest American companies listed in the period 1997–1999, while considering three 

characteristic time scales: hourly, daily and weekly. 

 The analysis of 𝜌 
𝑞(𝑠) coefficients, determined for the largest companies, shows 

that, for the hourly, daily and weekly scales, there is no correlation between companies 

at the level of the lowest fluctuations (𝑞 < 0). For large fluctuations and moment 𝑞 >

0, in the majority of instances, a small correlation exists between companies, which 

becomes weaker with the increase in 𝑞.  

 A similar analysis of 𝜌 
𝑞(𝑠) coefficient, made for the smallest companies, has 

shown that for moments 𝑞 < 0 most often there is no correlation between companies on 

all time scales. For positive values of moments 𝑞 and for the daily and weekly scales, 

also no correlation essentially exists between companies. For the weekly scale, it can be 

noticed that 𝜌 
𝑞(𝑠) assumes, in the majority of cases, values different from 0, and the 

distribution itself is stable with respect to increase in 𝑞. This is a difference between the 

behaviour of the largest companies, which implies that for the smallest (and, at the 

same, most seldom traded) companies, a longer time horizon is needed for nonlinear 

correlations to occur at the large fluctuation level. 

 For network analysis, the MST representation was used. To verify whether MST 

trees can be built based on the 𝜌 
𝑞(𝑠) coefficient, it was checked between each three-

element company combination to see if the adopted distance 𝑑𝑥,𝑦
𝑠  between network 

nodes meets the metric conditions. From the analysis made on all time scales and 

moments −4 ≤ 𝑞 ≤ 4 it was demonstrated that for 𝑞 < 0 the length defined with 𝜌 
𝑞(𝑠) 

did not meet the metric conditions (the triangle inequality condition for the distance was 

not satisfied), therefore the analysis was limited to moments 𝑞 = {2; 3; 4}, for which the 

triangular relation was met. 

 In the case of the largest company network determined based on large 

fluctuations, we have a scale-free, heavily centralized network with the visible financial, 

technology and health care sectors for the hourly and daily scales, supplemented with 

services and basic materials sectors for the weekly scale. The tree structure is not stable 
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in respect of change in times scale and signal amplitude. For the smallest scales, the GE 

company is the central network node (for the weekly scale and highest moment, this is 

the HD company), and other nodes with a multiplicity > 1 appear in the network, which 

also perform the function of hubs. The average betweenness coefficient  𝑏𝑖 determined 

for the network assumes values closer to 1, which confirms the existence of many nodes 

in the network, which are important to its operation, but which, however, lose 

importance with the increase in fluctuation amplitude. The average path lengths 𝐿 

determined for the networks are indicative of a more dispersed nature of the networks 

on all scales comparing to the one, determined for Pearson correlation coefficient. 

           The analysis made for the smallest companies is similar. The determined network 

is a scale-free and centralized network, whose central nodes are investment funds that 

make investments based on stock exchange indexes. For the hourly scale, the financial 

and basic materials clusters are visible, but in contrast to the largest company network, 

there are no sectoral clusters for the daily and weekly scales clearly visible. Admittedly, 

there are nodes with a large multiplicity, but without the hallmarks of sectoral 

membership. The betweenness and average path length results take on values similar to 

those obtained for the largest companies. It appears, therefore, that the obtained 

structure and properties of the network of companies are independent of their 

capitalization. The only difference is that strong sectoral relationships can be observed 

for the largest companies at the big price movement level. 

To sum up, the analyses carried out in the study and the obtained results provide 

a contribution to the knowledge that we have on the complex and rich structure of 

financial markets in a broad sense, and disclose new facts about the interrelations 

among their components. The multifractal analysis of the interrelations between market 

elements shows the existence of such interrelation at the level of large fluctuations. 

Particularly promising is the use of the q-generalized nonlinear correlation coefficient 

𝜌 
𝑞, which, combined with the network representation of interrelations, helps to perceive 

previously unknown facts, namely the existence of nonlinear correlations between 

capital market companies at the large fluctuation level, which are additionally unstable 

in respect of the change (amplification) of the signal amplitude and the time scales 

examined. 
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Table 8.1 The list of DJIA stocks with sector assignment. 

Symbol Name Sector 

AA Alcoa Inc. Basic Materials 

CVX Chevron Corporation Basic Materials 

DD E. I. du Pont de Nemours and Company Basic Materials 

XOM Exxon Mobil Corporation Basic Materials 

KFT Mondelez International, Inc. Consumer Goods 

KO The Coca-Cola Company Consumer Goods 

PG The Procter & Gamble Company Consumer Goods 

AIG American International Group, Inc. Financial 

AXP American Express Company Financial 

BAC Bank of America Corporation Financial 

JPM JPMorgan Chase & Co. Financial 

TRV The Travelers Companies, Inc. Financial 

JNJ Johnson & Johnson Healthcare 
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PFE Pfizer Inc.  Healthcare 

MRK Merck & Co. Inc.  Healthcare 

BA The Boeing Company (BA) Industrial Goods 

CAT Caterpillar Inc. Industrial Goods 

MMM 3M Company Industrial Goods 

UTX United Technologies Corporation Industrial Goods 

GE General Electric Company Industrial Goods 

HD The Home Depot, Inc. Services 

MCD McDonald's Corp.  Services 

WMT Wal-Mart Stores Inc. Services 

CSCO Cisco Systems, Inc. Technology 

IBM International Business Machines 

Corporation 

Technology 

INTC Intel Corporation Technology 

MSFT Microsoft Corporation Technology 

T AT&T, Inc.  Technology 

VZ Verizon Communications Inc.  Technology 

 

 

Table 8.2 The list of 100 biggest stock in US with sector assignment. 

Symb

ol 

Name Sector Symb

ol 

Name Sector 

AA Alcoa Basic Materials PNU Pharmacia & 

Upjohn 

Healthcare 

CHV Chevron Basic Materials ALD AlliedSignal Industrial Goods 

DD DuPont De Nemours Basic Materials BA Boeing Industrial Goods 

GTE Gran Tierra Energy Basic Materials GE General Electric Industrial Goods 

XOM Exxon Basic Materials MMM 3M Corp. Industrial Goods 

TX Texaco Basic Materials UTX United Technologies Industrial Goods 

ENE Enron Basic Materials EMR Emerson Electric Co Industrial Goods 

DOW The Dow Chemical 

Company 

Basic Materials ARC Atlantic Richfield Services 

SLB Schlumberger Limited Basic Materials BEL Bell Services 

BUD Anheuser-Busch Consumer Goods BLS BellSouth Services 

CCU Compania Cervecerias 

Unidas S.A 

Consumer Goods CBS CBS Services 

CL Colgate-Palmolive Consumer Goods CCL Carnival Corp. Services 



 

129 

 

G Gillette Consumer Goods CMCS Comcast 

Corporation 

Services 

GM General Motors Consumer Goods COX Cox 

Communications 

Services 

KBM Kimberly-Clark Consumer Goods DH Dayton Hudson Services 

EDS Electronic Data 

Systems 

Consumer Goods DIS Walt Disney Services 

MO Philip Morris Consumer Goods GCI Gannett Co., Inc Services 

KO Coca-Cola Consumer Goods HD Home Depot Services 

F Ford Motor Consumer Goods WMT Wall-Mart Stores Services 

EK Eastman Kodak Consumer Goods MCD McDonald’s Corp Services 

PEP PepsiCo Consumer Goods VIA Viacom Services 

PG Procter & Gamble Consumer Goods LOW Lowe's Companies 

Inc. 

Services 

AHP American Home 

Products 

Financial TWX Time Warner Services 

AIG AIG Financial T AT&T Services 

AXP American Express Financial QWST Qwest 

Communications 

Intl. 

Services 

BAC Bank America Financial SBC SBC 

Communications 

Services 

BK Bank of New York Financial AOL America Online Technology 

C Citigroup Financial AUD Automatic Data 

Processing 

Technology 

CMB Chase Manhattan Financial CA Computer 

Associates 

Technology 

JPM J.P. Morgan Financial CPQ Compaq Computer Technology 

MMC Marsh & McLennan Financial CSCO Cisco Systems Technology 

WFC Wells Fargo Financial DELL Dell Technology 

MER Merrill Lynch Financial GTW Gateway 2000 Technology 

FBF Fleet Financial Group Financial HWP Hewlett Packard Technology 

FNM Fannie Mae Financial IBM IBM Technology 

ONE Bank One Financial INTC Intel Corp. Technology 

MWD Morgan Stanley Financial LU Lucent Technologies Technology 

FRE Freddie Mac Financial YHOO Yahoo! Technology 

FTU First Union Financial WCO

M 

MCI WorldCom Technology 

SCH Charles Schwab Financial USW US West Technology 

ABT Abott Labolatories Healthcare UMG MediaOne Group Technology 

AMG

N 

Amgen Inc. Healthcare TXN Texas Instruments Technology 

BMY Bristol-Myers Squibb Healthcare EMC EMC Corporation Technology 

LLY Eli Lilly and Company Healthcare MOT Motorola Technology 
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MDT Medtronic Healthcare MSFT Microsoft Corp. Technology 

JNJ Johnson & Johnson Healthcare GLW Corning Inc. Technology 

MTC Monsanto Healthcare SUN

W 

Sun Technology 

MRK Merck Healthcare QCO

M 

Qualcomm Technology 

SGP Schering-Plough Healthcare ORCL Oracle Technology 

PFE Pfizer Healthcare AT Alltel Utilities 

 

Table 8.3 The list of 100 smallest stock in US market with sector assignment. 

Symbol Name Sector Symbol Name Sector 

ADF Acm Managed Dollar Incm Fd In Financial JPR Jp Realty Inc    Financial 

ADV Advest Group Inc  The  Financial KPA 

Innkeepers Usa 

Trust   Financial 

AEC Associated Estates Realty Cor Financial KTO K2 Inc     

Consumer 

Goods 

AEM Agnico-Eagle Mines Ltd   Basic Materials LTC Tc Properties Inc  Financial 

AGI Alpine Group Inc.  The Industrial Goods MAG 

 Magna Intl Cl-A 

Sub Vtg Shs Services 

AJL Mway Japan Ltd Ads  1/2 Com  Consumer Goods MCL Moore Corp Ltd  

Consumer 

Goods 

APB Asia Pacific Fund Inc   Financial MGL 

Magellan Health 

Services Inc Healthcare 

ASA Asa Ltd   Financial MLR 

Miller Industries 

In 

Consumer 

Goods 

AVL Aviall Inc   Industrial Goods MSD 

Morgan Stanley 

Emer Mkts Debt Financial 

AVS Aviation Sales Company  Industrial Goods NS 

National Steel 

Corp Cl-B  

Basic 

Materials 

BBA Bombay Co Inc  The   Consumer Goods NSS Ns Group Inc    

Basic 

Materials 

BCU Borden Chem Plastic L.P. Basic Materials NWK 

Network 

Equipment Tech 

Inc  Technology 

BIR Birmingham Steel Corp   Basic Materials OHI 

Omega Healthcare 

Investors Inc Financial 

BOY Boykin Lodging Company  Financial OMI 

Wens   Minor Inc  

Hldg Co  Services 

BPT Bp Prudhoe Bay Royalty Tr Basic Materials OS 

Oregon Steel Mills 

Inc  

Industrial 

Goods 

BUR Burlington Res Coal Seam Gas Basic Materials PAR Coastcast Corp  

Industrial 

Goods 

BXG Bluegreen Corp    Consumer Goods PEI 

Penn Real Estate 

Invst Tst Sbi Financial 
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BZF Brazil Fund Inc  Financial PIN Amf Bowling Inc   

Consumer 

Goods 

CCC Calgon Carbon Corp Industrial Goods POP  Pope   Talbot Inc     

Basic 

Materials 

CH Chile Fund Inc  Financial PWN 

Cash America 

International Inc Financial 

CNO Cornerstone Propane Ptners L.P Financial RCS 

Rcm Strategic 

Global Govt Fd  Financial 

COP Consolidated Products Inc Services RFS 

Rfs Hotel 

Investors Inc     Financial 

CRY Cryolife Inc.   Healthcare RGO 

Ranger Oil 

Limited   

Basic 

Materials 

CWN Crown American Realty Trust  Financial RGR 

Sturm Ruger   Co 

Inc 

Industrial 

Goods 

DBS Debt Strategies Fund Inc. Financial RTI 

Rmi Titanium Co  

New  

Basic 

Materials 

DK Donna Karan International Inc Consumer Goods SAH 

Sonic Automotive 

Inc Cl A   Services 

DMN Dimon Corp Consumer Goods SBG 

Salomon 

Bro2008Wldwide 

Govt Tr Financial 

EDF Merging Mkts Incm Fd Ii Inc  Financial SFY Swift Energy Co   

Basic 

Materials 

EMF Templeton Emerging Mkt Fund Financial SIE 

Sierra Health 

Services Inc  Healthcare 

ESL Esterline Technologies Corp Industrial Goods SKT 

Tanger Factory 

Outlet Centers  Financial 

EWF European Warrant Fund Inc Financial SRT Startek Inc.    Services 

EY Ethyl Corp     Basic Materials SSS 

Sovran Self 

Storage Inc  Financial 

FA Fairchild Corp Cl-A  Services TCH 

Templeton China 

World Fund Inc Financial 

FC  Franklin Covey Co.    Services TEE 

National Golf 

Properties Inc Financial 

FF First Financial Fund Inc  Financial TMA 

Thornborg 

Mortgage Asset 

Corp Financial 

FIX Comfort Systems Usa Inc  Industrial Goods TMR 

The Meridian 

Resource Corp  

Basic 

Materials 

FLH Fila Hldgs Spa Adr 5Ord Of Lit Consumer Goods TRP 

Transcanada 

Pipelines Limited 

Basic 

Materials 

GDC General Datacomm Ind Inc  Technology TYL Tyler Corporation   Technology 

GER Germany Fund Inc  Financial UAG 

United Auto 

Group Inc Vtg    Services 
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GHI Global High Incm Dollar Fd Inc3 Financial UH 

U.S. Home Corp  

New   

Consumer 

Goods 

GRO Mississippi Chemical Corp Industrial Goods UNT Unit Corporation   

Basic 

Materials 

GRR Asia Tigers Fund Inc  The Financial USV 

U.S.Restaurant 

Props Inc.  Services 

HGR Hanger Orthopedic Group Inc Healthcare VTO 

Vitro Sociedad 

Anonima Ads  

Basic 

Materials 

HXL Hexcel Corp  New Industrial Goods WHC 

Wackenhut 

Corrections Corp  

Industrial 

Goods 

IIR Iri International Corp Basic Materials WHX 

Whx Corp  

Holding Co 

Basic 

Materials 

IMC Intl Multifoods Corp  Consumer Goods WLV 

Wolverine Tube 

Inc 

Industrial 

Goods 

IMR Imco Recycling Inc Basic Materials WS 

Weirton Steel 

Corp  

Basic 

Materials 

IRT Irt Property Co  Consumer Goods WSO Watsco Inc   Services 

ITX International Tech Cp  New Services WTS 

Watts Industries 

Inc Cl A   

Industrial 

Goods 

JOF Japan Otc Equity Fund Inc Financial WXH 

Winston Hotels 

Inc   Financial 

Table 8.4  

 

All calculations were performed using Matlab environment on Zeus computer in 

Academic Computer Centre Cyfronet AGH in Kraków. 

 

 

 


