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Abstract

This thesis is devoted to the study of the effects of Multi-Parton Interactions in diffractive
events observed in proton-proton interactions at the Large Hadron Collider. Intact protons
originating from such events were tagged and measured by dedicated forward detectors of the
ATLAS experiment at the LHC – the AFP detectors. These detectors are installed in the LHC
tunnel about 2̃10 m from the interaction point. The analysis was performed using the data
sample, corresponding to the integrated luminosity of 56 nb−1, of proton-proton collisions at
the centre-of-mass energy of

√
s = 13 TeV. These data were collected in 2017 in a dedicated

run with low instantaneous luminosity. The presented study is the first attempt to analyse the
MPI effects in a sample enhanced with diffractive processes.

The measured MPI sensitive observables are: the mean charged track multiplicity, the mean
of the sum of the charged particle track transverse momenta, and the mean charged track
transverse momentum. The observables were constructed using charged particle tracks with
the absolute pseudorapidity up to 2.5 and with the transverse momentum greater than 500 MeV.
In addition, the presence of the leading track, the charged particle track with the transverse
momentum above 1 GeV, and a diffractively scattered proton with the relative energy loss
between 3.5% and 8% were required.

The measurements were performed in three regions of the azimuthal angle defined with respect
to the leading track. These regions have different sensitivity to MPI. Two types of background
were estimated and their contributions were subtracted statistically from the experimental
distributions. The results were corrected for the detector effects – the track and vertex recon-
struction efficiencies and the AFP trigger inefficiency. Predictions of the Pythia 8 A2 single
diffractive Monte Carlo were compared to the experimental results and it was found that they
fail to reproduce the data. Tuning of the Pythia 8 single diffractive Monte Carlo parameters
was attempted and the resulting model provides a much better description of the experimental
data.





Streszczenie

Niniejsza rozprawa doktorska poświęcona jest pomiarowi efektów oddziaływań wielopartono-
wych występujących w przypadkach dyfrakcyjnych w zderzeniach proton-proton na akcelera-
torze LHC. Jedną z sygnatur takich oddziaływań jest obecność nietkniętego protonu, zwanego
protonem dyfrakcyjnym, który może być zmierzony przez detektory do przodu. Przykładem
takich detektorów, będących częścią eksperymentu ATLAS, są detektory AFP. Analiza prze-
prowadzona w niniejszej pracy opiera się na danych o scałkowanej świetlności wynoszącej około
56 nb−1, pochodzących z oddziaływań proton-proton przy energii zderzenia w układzie środka
masy wynoszącej 13 TeV. Dane te zostały zebrane w 2017 roku w trakcie specjalnych okresów
zbierania danych, w których akcelerator pracował z niską świetlnością chwilową. Warto podkre-
ślić, że to jest pierwsza analiza mająca na celu pomiar efektów oddziaływań wielopartonowych
w przypadkach dyfrakcyjnych.

W pracy analizowano rozkłady wrażliwe na efekty oddziaływań wielopartonowych: średniej
krotności naładowanych śladów, sumy pędów poprzeczych naładowanych śladów i średni pęd
poprzeczny naładowanych śladów. Obserwable te oparto o naładowane ślady, których absolutna
wartość pseudorapidity jest mniejsza niż 2,5 oraz i których pęd poprzeczny jest większy niż
500 MeV. Ponadto wymagana była obecność naładowanego śladu, sładu wiodącego, którego
pęd poprzeczny przekracza 1 GeV, oraz dyfrakcyjnego protonu, którego względna stata energii
wynosi pomiędzy 3,5 i 8%.

Pomiar został przeprowadzony w trzech obszarach kąta azymutalnego wyznaczanego wzglę-
dem śladu wiodącego. Obszary te charakteryzują się różną czułością na efekty oddziaływań
wielopartonowych. Otrzymane rozkłady badanych obserwabli zostały poprawione na efekty
związane z wydajnością rekonstrukcji wierzchołka i śladu oraz wydajnością trygera AFP. Osza-
cowane zostały również przyczynki dwóch rodzajów tła. Przewidywania modelu Monte Carlo,
Pythia 8 A2, dla oddziaływań pojedynczej dysocjacji dyfrakyjnej, zostrały skonfrontowane z
wynikami pomiarów. Okazało się, że model ten nie potrafi opisać mierzonych zależności. Prze-
prowadzono próbę justowania parametrów modelu Pythia 8 A2 dla oddziaływań pojedynczej
dysocjacji dyfrakyjnej, w wyniku której otrzymano wersję modelu dostarczającą znacznie lepszy
opis danych doświadczalnych.
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Preface

Precise tests of the Standard Model or searches for new phenomena at hadron colliders require
not only a good understanding of the primary short-distanced scatterings, but also of the
accompanying interactions of the rest of the proton-proton system, named the Underlying
Event (UE). The largest contribution to the UE activity is due to the Initial- and Final-State
Radiation and Multi-Parton Interactions. The accurate description of these phenomena by the
phenomenological and theoretical models implemented in the Monte Carlo generators are of
great importance for the LHC physics programme.

Diffractive processes constitute a significant fraction of inelastic interactions in proton-proton
collisions. An exchange of a colour-singlet object in such a process may result in two main
features of diffractive events. One is the presence of a region devoid of any particle – the
large (pseudo)rapidity gap. The other signature is the presence of an intact forward proton
scattered at a very small angle. In the case of an experiment at the colliding beams accelerator,
the gap is observed in the central detector. The registration of the forward emitted proton(s)
requires a dedicated experimental set-up. Typically, such detectors constitute a system located
along the beam line at large distances from the interaction point. The measurement of the
forward scattered proton(s) exploits the machine magnetic lattice and to position the detectors
in the immediate vicinity of a beam the Roman Pot or the Hamburg beam pipe technique is
utilised. A modern experimental set-up of Forward Detectors may contain the tracking and
timing detectors delivering the trigger and allowing reconstruction of the proton kinematics
as well as the background discrimination. The physics programme of forward detectors at the
LHC ranges from precise measurements of the elastic scattering, resulting elastic and total
cross-sections or precise determination of the machine luminosity, through the analysis of soft
and hard diffractive dissociation, to the investigations of the photon-photon interactions and
the searches of the Beyond Standard Model effects.

In this thesis, the proton-proton collision data taken with the ATLAS detector at the centre-
of-mass energy of

√
s = 13 TeV were studied. In particular, special emphasis was put on the

study of single diffractive processes and in particular, on the effects of the Multi-Parton Inter-
actions in such interactions. As a signature of the single diffractive process the presence of the
intact forward scattered proton in the ATLAS Forward Proton detector was requested. The
observables used in the present analysis were constructed using information on the charged par-
ticle tracks delivered by the ATLAS tracking system. The present studies constitute the first
measurement of the Multi-Parton Interactions in diffractive processes. The obtained results,
corrected for various experimental effects, can be confronted with predictions of phenomeno-
logical or theoretical models. In this thesis, predictions of the Pythia 8 Monte Carlo model of
single diffractive dissociation are confronted with the data. Moreover, results of the performed
measurements constitute the base for the tuning of the models and the obtained results of such
a procedure are presented.
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The author of this thesis took an active part in all stages of the analysis starting from the beam
tests of the experimental apparatus, through the data taking, commissioning, and software de-
velopment to the analysis of the MPI effects. It is clear that parts of the mentioned tasks were
done in collaboration with responsible teams. However, the implementation of the reconstruc-
tion of the forward proton kinematics based on the AFP delivered data is the author’s original
achievement. It is to be used by all analyses involving the AFP data.

The author of this thesis is an ATLAS author and hence he signs all ATLAS Collaboration
publications since December 2018. Below, a list of publications with the author’s significant
contribution is given:

• ATLAS Collaboration (K. Cieśla), Observation and Measurement of Forward Proton
Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism
at ATLAS, Phys. Rev. Lett. 125 (2020) 261801,

• ATLAS Collaboration (K. Cieśla), Charged Particle Multiplicity Distribution in Single
Diffractive Processes Tagged with the AFP, in preparation,

• K. Cieśla et al., On the Centrality Determination with Forward Proton Detectors, Ukr.
J. Phys. 64 (2019) 7, 554,

• K. Cieśla et al., Detecting Nuclear Debris with the Forward Proton Detectors at the
LHC, Photonics Applications in Astronomy, Communications, Industry, and High-Energy
Physics Experiments 2019, Proc.SPIE vol.11176

• R. Staszewski, K. Cieśla, J.J. Chwastowski, Forward proton detectors in heavy ion
physics, Acta Physica Polonica B 50 (2019) 1229,

• J. Lange (K. Cieśla) et al., Beam tests of an integrated prototype of the ATLAS Forward
Proton detector, JINST 11 09 P09005 (2016),

• Nozka, L. (K. Cieśla) et al., Construction of the optical part of a time-of-flight detector
prototype for the AFP detector”, Opt. Express 24 (2016) 27951.

• K. Cieśla and R. Staszewski, Flexibility of LHC Optics for Forward Proton Measurements,
Acta Phys. Polon. B 47 (2016) 1633.

The first two publications are devoted to the study of diffractive dissociation and photon-photon
interactions with the help of the AFP detectors. The others discuss potential application of the
AFP in ion-ion physics and the tests of the apparatus. Some of the studied topics were also
presented during conferences or workshops and the list appended.

• Photon-photon fusion measurements at ATLAS, on behalf of the ATLAS Collaboration,
Low-x Meeting 2021, Elba, Italy, 26 September – 1 October 2021,

• Single diffractive charged particle multiplicity with AFP at 13 TeV, ATLAS ARP General
Meeting, 7 – 9 October 2020, Geneva, CERN,

• AFP: first physics and performance results, ATLAS Physics Week, Geneva, CERN, 10 –
15 February, 2019,

• On the Centrality Determination with Forward Proton Detectors, New Trends in High-
Energy Physics, Odessa, Ukraine, 12 – 18 May 2019,

• Detecting Nuclear Debris with the Forward Proton Detectors at the LHC, XLIV-th IEEE-
SPIE Joint Symposium Wilga, Wilga, Poland, 26 May – 2 June 2019,
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• Diffractive Analyses, ATLAS Standard Model Workshop, Belgrad, Serbia, 17 – 20 Septem-
ber 2019,

• Status of kinematic reconstruction for forward proton, ATLAS Forward Physics and De-
tector Workshop, Geneva, CERN, 14 – 15 March 2018.

The thesis is organised as follows. Chapter 1 starts with a brief introduction of the Standard
Model – theory describing elementary particles and their interactions. The greatest emphasis
is put on the QCD – the quantum field theory of strong interactions. Next, a step-by-step
overview of the processes occurring in collision of two hadrons, including the MPI, is presented.
Finally, the description of the diffractive processes is provided.

Chapter 2 is dedicated to the experimental apparatus. It starts with the description of the LHC
accelerator. The outline of the ATLAS central detector and its subcomponents is provided.
This includes the Inner Detector, MBTS, TDAQ and most importantly the AFP detectors –
dedicated to the diffractive measurements.

Chapter 3 is devoted to the explanation of the proton reconstruction procedure, beginning with
the description of forward proton kinematics and the detector alignment. Next, the description
of each reconstruction step is provided. Starting from detector hits, going through clusters and
tracks, it finishes with proton reconstruction methods. The simulation of AFP is also presented.

Chapter 4 covers the data analysis. At first, the definition of the signal events and observables is
provided. Then, the data samples are introduced together with the description of the event and
track selection. Finally, the corrections to the measured observables are explained, including
the detector efficiencies and the background subtraction.

Chapter 5 discusses he obtained results concerning the distributions of the UE-sensitive vari-
ables. Predictions of the Pythia 8 A2 single diffractive Monte Carlo are compared to the
measurements.

Chapter 6 is dedicated to the Monte Carlo tuning study. It starts with the description of
the tunable parameters and their impact on the measured observables is discussed. Next, the
multi-step tuning procedure is explained and its results are discussed. Finally, a global fit with
the chosen parameters is performed and the Monte Carlo predictions derived using the fitted
parameters are compared to the experimental data and results obtained with Pythia 8 A2 single
diffractive Monte Carlo.
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Chapter 1

Introduction

1.1 Standard Model
The presently and widely accepted theory describing elementary particles and interaction be-
tween them is called the Standard Model. It includes a description of the electromagnetic,
weak and strong interactions. Fundamental particles of the Standard Model are divided into
two main subgroups, see Fig. 1.1:

• fermions – the 1/2 spin building blocks of known matter.The fermions are further divided
into two groups:

– six quarks (and six anti-quarks) which are constituents of hadrons: mesons, com-
posed of a quark and anti-quark (e.g., pion, π+ = ud̄ – up and anti-down quarks),
and baryons, composed of three quarks or three anti-quarks (e.g. proton, p = uud
– two up and one down quarks). There are also more exotic particles like tetra-
or penta-quarks, composed of two quarks and two anti-quarks or four quarks and
one anti-quark, respectively, but their properties are not well established yet [1, 2].
Fermions are bound together by the strong force, due to quarks carrying the colour
charge. The quarks are also electrically charged (carrying fractions |1/3| or |2/3| of
the elementary charge) and they can interact electromagnetically, and weakly (e.g.
a neutron decay into a proton, electron and neutrino).

– six leptons (and six anti-leptons), with three of them being electrically charged: elec-
tron, muon and taon, and corresponding to them three neutral and nearly massless
neutrinos.

• bosons – characterised by integer spins and split into two groups: the gauge bosons
(mediating elementary interactions; with a unit spin), and a scalar boson which spin is
equal to zero. The gauge boson group consists of:

– photon γ – a massless and neutral carrier of the electromagnetic force. Photons
couple only to charged particles. The theory describing electromagnetic interactions
is called Quantum Electrodynamics (QED).

– gluons g – massless and colour-charged carriers of strong force. Unlike photons,
gluons posses the colour charge, thus they can interact with each other, introduc-
ing a variety of processes which are absent in QED. The theory describing strong
interactions is called Quantum Chromodynamics (QCD).
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– weak bosons W±, Z0 – massive (W± – 80 GeV and Z0 – 91 GeV) mediating
weak interactions, which are responsible for radioactive decays (e.g. neutron de-
cay, n0 → p+ +(W− → e−ν̄e)). The interaction was initially described by Quantum
Flavourdynamics, but currently is described better by Electroweak Theory (EWT)
which unifies the electromagnetic and weak interactions.

Standard Model foresees the existence of a single scalar boson called the Higgs boson,
which is the latest and heaviest (125 GeV) discovered fundamental boson. It is responsible
for providing particles with mass via their interaction with the Higgs field.

Standard Model of Elementary Particles
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Figure 1.1: Overview of Standard Model particles. [3]

Gravitational interactions are not included into the Standard Model as there is no complete
quantum field theory of gravitons, hypothetical spin 2 particles responsible for mediating this
interaction. Gravity is currently described by Einstein’s General Relativity.

1.2 QCD – an overview
Quantum Chromodynamics (QCD) is a Quantum Field Theory describing the strong interaction
between the colour charged particles. QCD is based on the SU(3) gauge symmetry group with
three colour charges and eight interaction mediators known as gluons. Figure 1.2 shows the
Feynman diagrams of the fundamental couplings for both QED and QCD.

In case of QED, an electrically charged electron radiates a photon mediating electromagnetic
interaction. The strength of the interaction is driven by the fine-structure constant α and its
value is approximately 1/137 and depends very mildly on the energy growing with it.
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(a) photon radiation (b) gluon radiation

Figure 1.2: Diagrams of the fundamental QED (left) and QCD (right) couplings.

In QCD, the colour-charged quark emits a gluon mediating strong interactions. Here, the
running of the coupling constant αs is of primordial importance. This originates from the fact
that the gluons carry the colour charge (colour charge and anti-charge) and, unlike the photons,
can interact with each other. Figure 1.3 presents three elementary QCD couplings: the gluon
radiation, three- and four- gluon self-coupling. The consequences of this are phenomena called
the colour confinement and asymptotic freedom.

(a) gluon radiation (b) gluon self-coupling

Figure 1.3: Diagrams of all the fundamental QCD couplings. Force carrier self-interaction is
present only in QCD.

The concepts of the quantum fluctuations, screening and anti-screening play a very important
role in QCD. The quantum fluctuations are represented by a cloud of virtual quark–anti-
quark pairs around a quark. In diagrams, the virtual pairs are depicted as closed loops. This
phenomenon is present for both QED and QCD, and an example of the related graphs is
presented in Figure 1.4.

Figure 1.4: Screening.
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The additional virtual pairs polarise the vacuum around the charge: virtual particles of unlike
charge are attracted to the charge while those with the same charge are repelled. The net effect
is a partial cancellation or screening of the charge causing the effective charge of a particle to
decrease asymptotically to some value with increasing distance. In the calculations, additional
loops are taken into account using the perturbative approach. In case of QCD, due to the gluon
self-interaction, the quantum fluctuations include also gluon loops, see Figure 1.5.

Figure 1.5: Anti-screening.

In case of QCD, due to the gluon self-interaction, the quantum fluctuations include also gluon
loops, see Figure 1.5. There is no equivalent of such a phenomenon in QED. The effect is
opposite to the screening, therefore it is called anti-screening, since gluons carry both the
colour charge and anti-charge. This modifies the colour field properties and leads also to its
amplification. When the anti-screening dominates, the effective charge increases with increasing
distance. In QCD, the anti-screening dominates and the running coupling constant behaves as:

αs(Q
2) =

1

β0 ln(
Q2

Λ2 ))
, (1.1)

where β0 is a constant first computed by Politzer [4], Gross and Wilczek [5], Q2 is the energy
scale and Λ is called the lambda QCD or the QCD scale and its value is around 200 MeV.

Figure 1.6 presents the relation between the energy scale and the strong coupling constant
value. At high energy scales, the value of the coupling constant is αs ≪ 1. Hence, the higher
order contributions in perturbative calculations are small and the perturbation methods deliver
accurate results. This regime is called the asymptotic freedom. At small Q2 values or large
distances, the value of the strong coupling constant becomes large which invalidates the use
of perturbative methods in this region. This is the so-called non-perturbative region requiring
dedicated methods to perform meaningful calculations.

Colour confinement:
Experimental observations show no evidence of free quarks. Only systems of bound quarks are
observed in the form of the colour neutral (colour singlet) hadrons.

The mechanism of the colour confinement can be illustrated by considering the potential be-
tween two quarks, which behaves as:

VQCD(r) = −4

3

αs

r
+ kr, (1.2)

where k denotes a constant equal to 1 GeV/fm. For small distances between the quarks the
first term dominates. The quarks behave as almost free particles (the asymptotic freedom).
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in this category, removing this pre-average would not change the final result within the quoted
uncertainty.

αs(MZ
2) = 0.1179 ± 0.0010

α
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τ decay (N3LO)
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DIS jets (NLO)
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Figure 9.3: Summary of measurements of αs as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

9.4.3 Deep-inelastic scattering and global PDF fits:
Studies of DIS final states have led to a number of precise determinations of αs: a combination [501]
of precision measurements at HERA, based on NLO fits to inclusive jet cross sections in neutral
current DIS at high Q2, provides combined values of αs at different energy scales Q, as shown
in Fig. 9.3, and quotes a combined result of αs(M2

Z) = 0.1198 ± 0.0032. A more recent study
of multijet production [373], based on improved reconstruction and data calibration, confirms the
general picture, albeit with a somewhat smaller value of αs(M2

Z) = 0.1165±0.0039, still at NLO. An

1st June, 2020 8:27am

Figure 1.6: Relation between energy scale and value of coupling constant. From [6]

However, with increasing distance between the quarks the second term takes over. The potential
rises to the point where the binding energy between the quarks exceeds the mass of a quark
pair. To minimise the system potential energy the colour field collapses and creates a new
quark–anti-quark pair. The process is illustrated in Figure 1.7.

The colour confinement is profoundly related to the gluon self-interactions. Colour charged
particles: quarks and gluons are confined inside the QCD potential in colour-neutral hadrons.

Deep inelastic scattering and parton distribution functions: The evidence of the par-
tonic structure of hadrons was provided by experiments dedicated to the lepton–hadron scat-
tering, to the study of the deep inelastic scattering (DIS) process. In this process, in the vast
majority of cases, a lepton emits a virtual photon (with virtuality Q2) which interacts with a
quark carrying a fraction x of the proton momentum. A diagram of a DIS process mediated
by a virtual photon is presented in Figure 1.8.

The experimental data deliver information allowing construction of a function describing the
observation probability of a parton (in a proton) with a given x, at the scale Q2 – the parton
distribution functions (PDF). Examples of the proton PDF are shown in Figure 1.9 for two
Q2 values. Since a proton consists of two up and one down valence quarks, the probability
of finding an up quark is roughly double of finding a down quark. The probability of finding
gluons increases with decreasing value of x. However, it is also possible to find heavier quarks
and also anti-quarks. This shows that protons consist not only of the valence quarks, but also
a sea of quarks, anti-quarks and gluons.
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Figure 1.7: Quark separation. When the binding energy between the quarks exceeds the mass
of a quark pair, the field collapses creating a new quark anti-quark pair.

Figure 1.8: Diagram of deep inelastic scattering.
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Figure 1.9: MSTW2008LO Parton Distribution Function. From [7]

1.3 Overview of hadron-hadron collisions
The proton structure is very rich and complex. It consists of the valence and the sea quarks
and gluons which all are called partons. Therefore, collisions of high-energy protons can lead
to very complex processes, which have to be reflected by the phenomenological and theoretical
models including those exploiting the Monte Carlo methods.

Figures 1.10 through 1.13 show schematic illustrations of a hard proton-proton collision and
accompanying processes:

• Hard scattering: Initially there are two high-energy protons approaching each other
(Figure 1.10a). A single parton from the first proton interacts with a single parton of the
second proton (Figure 1.10b). This particular example shows a gq → gq process which
can be described using perturnative QCD (pQCD).

However, the hard scattering is not the only process to occur in a collision of two pro-
tons. There are many additional interactions involving the initial and final particles, and
interactions between spectator partons, which are collectively termed as the Underlying
Event (UE). The UE is often defined also as “all interactions besides the hard scattering”.
The three most significant UE processes are the Initial- and Final-state radiation (ISR
and FSR) and Multiple Parton Interaction (MPI).

• Initial- and Final-state radiation: Both initial and final state consists of high energy
and colour or electrically charged particles. Such particles can radiate new particles such
as gluons (q → qg) or photons (q → qγ). These processes are shown in Figure 1.11. Addi-
tional branching and emissions can cause parton cascades (parton showers). Depending
on the emission source they are referred to as Initial- or Final-state radiation.
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(a) Initial state. (b) Hard scattering.

Figure 1.10: Schematic view of a proton-proton collision. Left: Initial state. Two protons
moving towards each other. Each proton is composed of many partons (black dots). Right:
Hard scattering. Two partons, one from each proton, interact with each other producing new
particles: gq → gq.

(a) Initial-state radiation. (b) Final-state radiation.

Figure 1.11: Schematic view of a proton-proton collision. Emissions from the initial (left) and
final (right) state. Radiated particles may branch and emit other particles causing parton
showers.
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(a) Multiple Parton Interaction. (b) MPI with ISR and FSR.

Figure 1.12: Schematic view of a proton-proton collision. An additional pair of partons may
interact with each other producing new particles (left). The initial and final state radiation can
occur in addition to the MPI (right).

(a) Hadronization. (b) Decay of unstable hadrons.

Figure 1.13: Schematic view of a proton-proton collision. Recombination of colour-charged
quarks and gluons into colour-neutral hadrons (left). Unstable hadrons decay into new particles
(right).
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• Multiple Parton Interaction: Since hadrons have a complex partonic structure there-
fore during the hadron-hadron collision more than one pair of partons may interact (cf.
Fig. 1.12). This phenomenon is referred to as Multiple Parton Interaction (MPI). MPIs
provide a significant contribution to the event activity and are necessary for a proper
description of the measured final state. MPIs are described in more detail in Section 1.4.

• Hadronisation: At this point of proton-proton interaction the produced particles consist
mostly of the colour charged quarks and gluons. Since the final state particles can only be
colour singlets then quarks and gluons have to recombine (see Fig. 1.13a). The hadrons
emerging from hadronisation may further decay into lighter particles (Figure 1.13b).

1.4 Multiple Parton Interaction
To illustrate the importance of the MPI, Figure 1.14 shows predictions of the Pythia 8 Monte
Carlo [8] with and without the MPI are compared to the ATLAS measurement of the charged
particles multiplicity distributions at the centre-of-mass collision energy of

√
s = 7 TeV. If

the MPIs are not included the Monte Carlo does not describe the data. The shapes of the
distributions largely differ. The impact of the parton showers originating from ISR and FSR is
much smaller than that of the MPIs. Therefore, Multiple Parton Interactions are essential for
a proper description and reproduction of the data features.
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Figure 1.14: Comparison of charged particle multiplicities between ATLAS data at
√
s =

7 TeV [9] and various Monte Carlo models with and without MPI. [10]

A mechanism of the MPI phenomenon implemented in Pythia was presented by Sjöstrand and
van Zijl in [11]. One can consider the differential cross-section for 2 → 2 hard QCD process as
a function of p2T :
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dσhard

dp2T
=

∑
i,j,k

y
dx1dx2dt̂f

1
i (x1, Q

2)f 2
j (x2, Q

2)
dσ̂k

ij

dp2T
δ(p2T − t̂û

ŝ
), (1.3)

where σ̂k
ij is the cross-section for process k possible between partons i and j. The parton

distribution functions fa
i (x,Q

2) give the probability of finding parton i carrying a fraction x of
the momentum of the incoming hadron a, probed at the scale Q2. The Mandelstam variables ŝ,
t̂, û are related to the momenta of the incoming (p1 and p2) and outgoing (p3 and p4) particles
by:

ŝ = (p1 + p2)
2 = (p3 + p4)

2,

t̂ = (p1 − p3)
2 = (p4 − p2)

2,

û = (p1 − p4)
2 = (p3 − p2)

2.

(1.4)

For massless partons, the Mandelstam variables are related by:

ŝ+ t̂+ û = 0,

ŝ = x1x2s,
(1.5)

where s is the centre-of-mass hadron-hadron collision energy squared. The cross-section for
2 → 2 QCD processes is dominated by the t-channel gluon exchange: qq → qq, gq → gq and
gg → gg. Using Equation 1.3 for interactions where t̂ ≪ ŝ, the approximation

Q2 = p2T =
t̂û

ŝ
≈ t̂

can be considered. Hence, the differential cross-section can be expressed as:

dσhard

dp2T
≈

x
dx1dx2F (x1, p

2
T )F (x2, p

2
T )

dσ̂

dp2T
, (1.6)

where F is the averaged PDF and:

dσ̂

dp2T
=

8πα2
s(p

2
T )

9p4T
. (1.7)

Neglecting the integrals over x1, x2 and for constant αs, the integrated cross-section above some
pTmin is:

σhard(pTmin) =

s/4∫
p2Tmin

dσ

dp2T
dp2T ∝ 1

p2Tmin

. (1.8)

In the limit pTmin → 0, the integrated cross-section diverges, exceeding the total cross-section
for hadron-hadron interaction for pTmin of the order of few GeV. Figure 1.15 shows the com-
parison of the integrated and total cross-sections obtained for the Tevatron and LHC energies.
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Figure 1.15: Comparison of the integrated and total cross-sections for the Tevatron (1.8 TeV)
and the LHC (14 TeV) collision energies. [12]

This problem can be solved by recognising that σhard is the parton-parton and not the hadron-
hadron cross-section. One should observe that a single event containing two parton–parton
interactions counts twice in the parton-level cross-section calculations but only once in the case
of the hadron-level cross-section. Therefore, the ratio of these two numbers is the measure of
the average number of interactions per hadron-hadron collision:

σhard(pTmin)

σtot

= ⟨n⟩(pTmin). (1.9)

For an in depth explanation a reader is referred to [11–15].

1.5 Diffractive processes
When two high-energy protons collide, at least one parton from the first proton interacts
with another one from the second proton. Typically, such an interaction leads to a colour
flow between the protons leaving them in a non-singlet colour state. Since only the colour
neutral particles exist in nature, the protons excited in an interaction break and their remnants
recombine into the streams of hadrons – the proton remnants. This class of events is called
non-diffractive and an example of such a process is shown in Figure 1.16a.

However, it is possible for one or both protons to stay intact after a collision. This is possible if
the interaction is mediated by a colour singlet exchange. One possibility is the electromagnetic
process mediated by a photon. Figure 1.16b shows an example of such a process – the exclusive
(photo)production of a lepton pair. The exclusivity condition means that all final state particles
can be measured in an experiment.

The other possibility is offered by an exchange of a colour singlet object, which is a system
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(a) Non-diffractive jet production. (b) Exclusive production of a lepton pair.

Figure 1.16: The Feynman diagrams of the non-diffractive dijet production (right) and the
exclusive production of a lepton pair.

of more than a single gluon. The most notable examples are a pomeron and an odderon.
The first one is responsible for the increase of the cross-section with

√
s and the second one

is an odd charge parity partner of the pomeron. Such interactions are well described by the
Regge theory [16–18]. In QCD, these two objects are represented, at the lowest order, by a
colour-singlet ensemble of two or three gluons, respectively. The simplest process involving the
pomeron exchange is the elastic scattering, see Figure 1.17a, where the pomeron is indicated
as two parallel lines.

In the elastic process, both protons survive the interaction with their energy unchanged. How-
ever, due to the exchange of a pomeron, their transverse momentum changes. Typically, the
protons scatter at very small angles, which requires a dedicated apparatus to register them. In
the case when the energy transfer does occur, one or both protons may dissociate into a system
of particles carrying the quantum numbers of a proton. This group of processes is called single
or double diffractive dissociation (or single and double diffraction), respectively. Another pos-
sibility is that two pomerons emitted by the protons interact with each other producing some
central state – the central diffraction process. Single or double diffractive dissociation can occur
simultaneously with central diffraction. Figure 1.17 presents examples of diffractive processes.

An exchange of a colour singlet profoundly impacts the final state of an interaction. Namely,
it leads to a region devoid of particles – the (pseudo)rapidity gap. This feature is used to
distinguish diffractive processes. This is illustrated in Figures 1.18 and 1.19, which provide a
comparison between non-diffractive and diffractive processes. Each figure presents a part of a
Feynman diagram of a process in question (left) and a schematic distribution of the final state
particles in the (pseudo)rapidity space (right). For the non-diffractive process (Figure 1.18) the
initial proton emits a parton participating in a hard collision producing a central system. This
causes the proton breakup, as its colour charge is no longer neutral. In the right plot there are
two marked areas, one corresponds to the central system near the (pseudo)rapidity value of
zero, and the other, located further away from zero, is populated by the remnants. Those two
regions may overlap, making the distinguishing of the final state particle origin ambiguous.

In a diffractive process (Figure 1.19) a pomeron is emitted by the incoming proton. This allows
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(a) elastic process (b) single diffraction (c) double diffraction

(d) central diffraction (e) central single diffraction (f) central double diffraction

Figure 1.17: Examples of elastic and diffractive processes. All of them involve the exchange
of a pomeron, represented by two parallel lines. In elastic process (a) both protons survive
and only the momentum transfer occurs between them. In single (b) and double (c) diffractive
processes, the energy transfer occurs, which may lead to a dissociation of one or both protons.
In central diffraction (d) the emitted pomerons interact with each other producing some central
state X. It is also possible for one (e) or both (f) protons to dissociate in such process.
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the proton to stay intact. The emitted pomeron becomes the source of the hard parton and
recombines into pomeron remnants. The plot on the right shows areas populated by particles
originating from the mentioned sources. Similarly to the non-diffractive case, there are central-
state particles produced near rapidity zero and possibly overlapping with them those belonging
to the pomeron remnant(s). There is also a large rapidity gap where no particles are produced
and next to it there is a region populated by the intact forward proton.

Figure 1.18: Partial diagram of the non-diffractive process (left). The incoming proton emits a
hard parton, which participates in production of some central state. Proton breaks into a stream
of particles (proton remnants). The plot (right) shows approximate regions in (pseudo)rapidity
y/η space, where particles will be detected.

Figure 1.19: Partial diagram of the central diffractive process (left). the incoming proton emits
a pomeron participating in central system production via hard parton. The rest of the pomeron
recombines into stream of particles (pomeron remnants). Proton survives the interaction and
is scattered at very low angle. The right plot shows approximate regions in pseudorapidity η
space, where particles will be detected. Also the gap devoid of particles is presented.

1.6 Pythia event generator
The Pythia Monte Carlo plays an important role in many various studies in particle physics.
At its basic form the model accommodates the leading order pQCD and successfully describes
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the data at this level. It includes the Lund String Fragmentation mechanism [19]. It is also
able to simulate the Underlying Event which mechanism was sketched in Sec. 1.4.

In Pythia, the total, elastic and inelastic cross-sections are obtained from the Regge fits to data.
Currently, this is described by Donnachie and Landshoff [20] parameterisation providing:

σpp
tot(s) = (21.70s0.0808 + 56.08s0.4525) mb, (1.10)

where s in pp collision centre-of-mass energy squared, and the first and second term correspond
to the pomeron and reggeon contributions, respectively. The elastic cross-section is given by:

σpp
el (s) =

(σpp
tot)

2

16πBpp
el (s)

, (1.11)

where Bpp
el (s) = 5 + 4s0.0808 is the pp elastic slope. In consequence the inelastic cross-section

reads:

σpp
in (s) = σpp

tot(s)− σpp
el (s). (1.12)

The inelastic cross-section can be broken into single diffractive (SD), double diffractive (DD),
central diffractive (CD) and non-diffractive cross-sections. For single and double diffraction the
parameterisation is given by Schuler and Sjöstrand [21]:

dσpp→pX
SD (s)

dtdM 2
X

=
g3P
16π

β3
pP

M2
X

FSD(MX)exp(BpX
SDt), (1.13)

dσpp
DD(s)

dtdM 2
1dM

2
2

=
g23P
16π

β2
pP

M2
1M

2
2

FDD(M1,M2)exp(BDDt), (1.14)

where MX , M1, M2 are diffractive masses, g3P, βpP are pomeron couplings, BpX
SD, BDD are

diffractive slopes and FSD, FDD are the low-mass resonance-region enhancement and high-mass
kinematical-limit suppression factors.

σCD(s) = σCD(sref )

(
ln(0.06 s/s0)

ln(0.06 sref/s0)

)3/2

, (1.15)

where σCD(sref ) is reference CD cross-section at centre-of-mass energy of √sref = 2 TeV and√
s0 = 1 GeV.

dσpp
CD(s)

dt1dt2dξ1dξ2
∝ 1

ξ1ξ2
exp(BpX

SDt1) exp(BXp
SDt2), (1.16)

where ξ1, ξ2 are the fraction of the proton energy carried by the pomeron and related to the
diffractive mass as MCD =

√
ξ1ξ2s.

σpp
ND(s) = σpp

in (s)−
∫ (

dσpp→pX
SD + dσpp→Xp

SD + dσpp
DD + dσCD(s)

)
. (1.17)
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Non-diffractive event class is considered as a “norm”, therefore is the most developed.

In single, double and central diffractive models, a pomeron is viewed as a glueball-like hadronic
state. The pomeron flux defines the mass spectrum of the produced diffractive system. The
internal structure is simulated as for the non-diffractive processes i.e., as a collision of a pro-
ton and a pomeron with partonic structures described by the respective parton distribution
functions. The low-mass diffractive systems (Mx < 10 GeV) are assumed to exhibit no per-
turbative effects, thus are represented as non-perturbative hadronising strings, respecting the
quantum numbers of the diffractively excited hadrons. In case of high-mass systems, the ISR
and FSR effects are fully included and the additional Multi-Parton Interactions within the
proton-pomeron system are allowed.

The generation of diffractive processes in Pythia is steered by a set of parameters which im-
portance for the present studies is discussed in chapter 6.
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Chapter 2

Experimental apparatus

2.1 Large Hadron Collider
The Large Hadron Collider (LHC) [22] is the world’s largest and highest energy particle col-
lider. It is situated at the European Organisation for Nuclear Research (CERN) near Geneva,
Switzerland. It belongs to the CERN accelerator complex (Figure 2.1). It is located in a 27 km
long tunnel where two beams, of protons or heavy ions, are accelerated and brought to collision
at certain Interaction Points (IP).

The LHC beams are divided into bunches to match the time structure of the machine. A bunch
contains about 1011 protons with a nominal energy of 6.5 TeV. The bunches collide at the rate
of 40 MHz. However, for the accelerator safety and experimental reasons only 2808 out of 3564
bunches may be filled with particles. Various values of the centre-of-mass collision,

√
s, energy

were achieved. The present work uses the data gathered in runs at
√
s = 13 TeV.

One of the most important parameters of a collider, besides the collision energy, is the instan-
taneous luminosity defined as:

L =
NaNbf

4πσxσy

, (2.1)

where Na and Nb are the numbers of protons in a bunch, f = 11.245 kHz is the LHC revolution
frequency and σx and σy are the RMS sizes of the beams in the horizontal and vertical direction,
respectively. This formula assumes a uniform population of bunches. The luminosity is also
related to the rate of events of a given process, dN/dt, with the cross-section, σ, by

dN

dt
= L · σ. (2.2)

The LHC was designed to achieve the instantaneous luminosity of L = 1034 cm−2· s−1 and in
2018 a peak value of L = 2.1 · 1034 cm−2· s−1 was reached. The integrated luminosity is the
luminosity delivered within a period of time:

Lint =

∫
L · dt. (2.3)
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The integrated luminosity informs about amount of the collected data and is given in inverse
barns.

Figure 2.1: CERN accelerator complex. From [23].

Both beams undergo a complicated process of creation, bunching and acceleration before they
are brought to a collision. It starts at the source of protons – a hydrogen bottle – goes through
the Linac, Booster, PS, SPS accelerators. Eventually the bunches are injected into the LHC
rings. At the LHC the beams are accelerated from 450 GeV to 6.5 TeV and after declaring the
“Stable beams” conditions the experiments start to collect the data.

The beams are kept on their orbits by a system of superconducting and warm magnets. The op-
tical properties of the beams are controlled by about 400 quadrupole magnets and the particles
are accelerated using 8 radio frequency cavities per beam. An important part of the accelerator
safety is the system of collimators protecting the machine and the experiments. The settings
of the machine elements is called the LHC optics and it includes the parameters describing:

• dipoles: used to change direction of the beams

• quadrupoles: providing focusing/defocusing of the beams and matching of the beams’
sizes at the IPs,

• higher-order-pole magnets: used to correct the beam properties,

• collimators: used to trim and shape the beam and to protect magnets and other equip-
ment.

Four main experiments are located at the Interaction Points. These are:

• ATLAS (A Toroidal LHC ApparatuS) [24]: A general-purpose detector located at IP1
(Section 2.2).

• CMS (Compact Muon Solenoid) [25]: A general-purpose detector located at IP5. ATLAS
and CMS are designed to crosscheck the measurements of each other.
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• ALICE (A Large Ion Collider Experiment) [26]: Specialised detector located at IP8.
Dedicated to the measurement of matter at extreme densities, e.g., quark-gluon plasma
in heavy ion collisions.

• LHCb (Large Hadron Collider beauty) [27]: Specialised detector located at IP2. Dedi-
cated to the study of the matter-anti-matter asymmetry via the measurement of the CP
symmetry violation in the b quark sector.

2.2 ATLAS
ATLAS (A Toroidal LHC ApparatuS) [24] is one of two general-purpose detectors at the LHC.
It is used to measure the final states of proton-proton, proton-ion and ion-ion collisions. It is
located at the LHC IP1 and is the largest of the LHC experiments with the length of 46 m and
25 m diameter. Figure 2.2 shows the computer-generated image of the ATLAS detector with
its major components.

Figure 2.2: Computer generated image of the ATLAS detector. From [28].

ATLAS consists of three main detector systems:

• Inner Detector [29] (InDet) – dedicated to the measurement of charged particle tracks.
This part of the ATLAS detector delivered the experimental data used in the following
study and will be described in more detail in Section 2.2.1.

• Calorimeters [30] – designed to measure the energies of the final state particles. The sys-
tem of calorimeters is divided into two distinct parts: electromagnetic (for the measure-
ment of electrons and photons) and hadronic (for hadrons, e.g., protons, pions) calorime-
ters. Both types are build as sampling calorimenters with alternating active (the signal
readout) and passive (particle absorbing) layers.

– Liqud Argon (LAr) calorimeter [31] is an electromagnetic calorimeter, with liquid
argon acting as an active medium and the absorber in the form of lead plates (the
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Figure 2.3: The ATLAS coordinate system. From [39]

energy resolution ∆E/E = 10%/
√

E(GeV )⊕ 0.7%),

– Tile Calorimeter (TileCal) [32] – hadron calorimeter, with scintillators used to mea-
sure the energy deposited by particles and iron as a passive layers (the energy res-
olution ∆E/E = 52%/

√
E(GeV ) ⊕ 5.7% and ∆E/E = 50%/

√
E(GeV ) ⊕ 3% for

single hadrons and jets respectively).

• Muon chambers [33] – designed to identify and measure the muon tracks and hence to
determine their momenta and energies.

The ATLAS system of magnets [34] aids with the measurements. The solenoid magnet [35]
allows determination of the transverse momentum and charge sign of a particle from the mea-
surement of the particle track in the Inner Detector. The ATLAS toroidal magnets [36] support
the measurements related to muons.

The pp interactions at the LHC create enormous amounts of data. To limit it and to record
only interesting events, a system of triggers is used. It consists of a first-level hardware trigger
(L1, LVL1 Trigger) [37] with trigger rate of 75 kHz, which feeds into a software trigger (HLT,
High Level Trigger) [38] with rate of 2 kHz. More details in Section 2.2.4.

ATLAS Coordinate system:
The ATLAS experiment uses the right-hand coordinate system (cf. Figure 2.3), with z-axis
following the beam coming from the LHCb experiment – beam1, x-axis pointing to the centre
of the LHC, and y-axis pointing upwards. The origin of the system is the centre of the detector.
The side with positive z-values is often called Side A, while the opposite one – Side C, which
is in the beam2 direction. Very often the azimuthal angle φ and pseudorapidity η related to
polar angle θ by:

η = − ln(tan
θ

2
) (2.4)

are used.
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2.2.1 ATLAS Inner Detector
The main goal of the ATLAS Inner Detector [29] is the measurement and reconstruction of
the charged particle tracks. It is located within the 2 T solenoidal magnetic field allowing for
the measurement of the transverse momenta and determination of the charge sign of particles
that pass through the detector. The Inner Detector is 6.2 m long and 2.1 m in diameter. It
is composed of three subsystems: the pixel detector, the semiconductor tracker (SCT) and the
transition radiation tracker (TRT). All subsystems are divided into three parts: barrel – cylin-
drically shaped trackers around the IP, and two end-caps – disk shaped trackers perpendicular
to the beam axis placed on both ends of the barrel. Figure 2.4 presents an image of the ATLAS
Inner Detector.

Figure 2.4: Computer generated image of the ATLAS inner detector. From [40]

Pixel Detector:
The pixel detector [41] is the ATLAS innermost tracker. The barrel and end-cap parts contain 92
million identically sized, 50x400 µm2, silicon pixels. The barrel region has three tracking layers
at the radii of 50.5 mm, 88.5 mm and 122.5 mm from the axis and covers the pseudorapidity
range of |η| < 1.4. The end-cap has also three tracking layers at the distance of 495 mm,
580 mm and 650 mm from the detector centre (z = 0) and covers the pseudorapidity range of
1.4 < |η| < 2.5. The total area of the active layer is 1.70 m2. The precision of the track position
measurement reaches 10 µm in the transverse and 115 µm in z direction. The main task of
the Pixel Detector is a precise determination of the primary and secondary vertices, which is
crucial for B-physics.

Semiconductor Tracker:
The semiconductor tracker [42–44] contains 4088 microstrip sensors. Each SCT module has
two 63.56x63.96 mm2 silicon sensors. The barrel region consists of four layers located at radii
ranging from 299 mm to 514 mm. The end-cap modules contain nine active layers located at
|z| between 847.5 mm and 2727 mm. The total area of the active layers is 60 m2. Similarly
to the pixel detector, the barrel and end-caps cover the pseudorapidity range of |η| < 1.4 and
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1.4 < |η| < 2.5, respectively. The precision of the track position measurement reaches 17 µm
in the transverse and 580 µm in the z direction. The SCT main goal is to deliver information
exploited by a precise tracking procedure.

Transition Radiation Tracker:
The transition radiation tracker [45,46] is the outermost part of the Inner Detector. It consists
of total of more than 320 thousand, 4 mm in diameter kapton straws. The straws, serving as
drift chambers, are filled with a Xeon-based active gas mixture (some channels use Argon).
The length of the straw varies depending on region: for the barrel it is 144 cm with straws
parallel to the beam axis, and the end-cap straws are 37 cm long and oriented radially with
respect to the z axis. The TRT contains up to 73 layers of straws interleaved with fibres (barrel)
and 160 straw planes interleaved with foils (end-cap), which provide transition radiation for
electron identification. The barrel TRT is divided into three rings of 32 modules each with
necessary support structures. The barrel radial layers are located at r between 559 mm and
1080 mm. The end-cap region consists of 18 disk-shaped segments, placed at |z| ranging
between 847.5 mm and 3403 mm. The charged particle tracks with the transverse momentum
pT > 0.5 GeV and |η| < 2.0 cross at least 36 straws, except for the barrel-end-cap transition
region (0.8 < |η| < 1.0), where this number decreases to 22. The precision of the track position
measurement reaches 130 µm. The TRT improves the tracking and its transition radiation
features are used for the electron identification.

2.2.2 MBTS
Triggering on given types of events may introduce a bias to the recorded data sample. Therefore,
there is a need for a trigger which introduces the least bias. In the ATLAS experiment such a
trigger is delivered by the Minimum Bias Trigger Scintillators [47].

The MBTS detector is composed of 2 cm thick polistyrene scintillating disks, each divided into
sixteen segments, installed symmetrically in the inner side of the end-cap calorimeter at |z| =
3.56 m from ATLAS IP. Each disk is separated into the outer and inner ring covering 2.08 ≤
|η| ≤ 2.76 and 2.76 < |η| < 3.86 respectively. Light emitted in scintillators is collected by the
wavelength-shifting optical fibers and guided to the photomultiplier tubes. PMTs measurements
are then read out by the same electronics as the Tile Calorimeter. The Central Trigger Processor
(CTP) combines the signal collected from all 32 MBTS segments and provides several trigger
items, described in Section 2.2.4.

2.2.3 ATLAS Forward Proton
The ATLAS Forward Proton (AFP) [48] detectors are another sub-system of the ATLAS ex-
periment. The AFP detectors are designed to measure the trajectories of the protons scattered
at very low angles. For that reason, they have to be positioned at a significant distance from
the collision point at locations where the scattered proton is well separated from the beam.
Obviously, the detector positions were selected taking into account the LHC optics. The AFP
general scheme is presented in Figure 2.5.

The AFP detector system consists of four stations, two on each side of the ATLAS IP between
the fifth and sixth quadrupole magnet. The near and far stations are placed 205 m and 217 m
away, respectively. Each station is equipped with four layers of 16.8x20 mm2 silicon pixel
sensors with an array of 80x360 pixels with a common name of the Silicon Tracker (SiT). SiT
is capable of a precise measurement of the proton track position in the plane perpendicular to
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Figure 2.5: ATLAS Forward Proton general overview.

the beam axis. The spacial resolution is 6 µm and 30 µm in x and y direction, respectively [49].
Far stations are additionally equipped with the quartz Time-of-Flight (ToF) detectors. In case
protons are registered in both far stations the difference of the ToF timing measurements allows
determination of the interaction location, which is useful for the background rejection.Although
the efficiency of the ToF detectors in LHC Run 2 was very low (∼5%), the timing resolution
reached ∼30 ps [50]. The AFP detectors are capable of moving perpendicular to the beam due
to the use of the Roman Pot (RP) technology [48]. This technology allows a precise positioning
of the detectors in the immediate vicinity of the beams during the data taking periods and
retracting them when the beams are unstable. In addition, the RPs separate the detectors
from ultra-high vacuum of the accelerator. Figure 2.6 shows a sketch of the AFP far station.

Silicon Tracker 

ToF Detector 

Roman Pot 
Flange 

Figure 2.6: The ATLAS Forward Proton far station. From [48].

The AFP detectors can also provide a L1 trigger signal [51] which is based on the SiT. Three
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planes out of four are used for the triggering and the trigger signal is generated when two out
of these three planes fire. The trigger items provided by the AFP detectors are described in
Section 2.2.4.

2.2.4 Trigger and Data Acquisition systems
The Data Acquisition System is used to read out fragmented data from ATLAS subsystems,
combine them into full events, and store them for further off-line analysis. The DAQ is separated
into two subsystems: Detector Readout and Data Flow. The DAQ system also provides tools
for control and monitoring.

The Detector Readout constantly reads raw detector data at the rate of ∼1.7 MB per 25 ns or
one bunch-crossing. Such data is buffered in Read Out Drivers (ROD) after L1 trigger decision
and passed further into the Data Flow at the rate of ∼160 GB/s.

The Data Flow Readout System receives and buffers fragmented detector data from the RODs
via 1800 independent read-out channels. The data are sent to the HLT farm upon request via
the Data Collection Network. Atfer the LHC trigger the data rate is reduced to ∼3 GB/s and
is stored off-site for further processing

The ATLAS Trigger system performs a two-stage selection process: L1 trigger and High Level
Trigger. The triggering decision is based on information delivered by the ATLAS detector
components.

LVL1 trigger:
The Level 1 trigger [37] is a purely hardware system. As an input, the L1 trigger uses outputs
from the ATLAS subsystems, looks for certain patterns in the received signals and defines the
regions of interest (RoI). The list of the L1 triggers is limited to 256 which are defined in the
Central Trigger Processor [52]. The LVL1 trigger limits the data acquisition rate from the LHC
nominal collision rate of 40 MHz to 100 kHz. Its latency is about 2 µs.

In this analysis, two ALTAS subsystems provide the L1 trigger information:

• MBTS – provides several L1 trigger items, however this analysis uses only one: L1_MBTS_2
which requires at least two hits on the same MBTS side.

• AFP – this analysis uses the L1 trigger formed as a logical AND of both stations on same
side, named as L1_AFP_A and L1_AFP_C for side A and C respectively. Such trigger items
can be combined further as a logical OR forming L1_AFP_A_OR_C trigger.

High Level Trigger:
The HLT [38] is a purely software system. Originally it was formed from two subsystems: LVL2
trigger and Event Filter, which were merged into a single system in LHC Run-2. It operates
from a large farm of about 40 thousand CPU cores. In around 200 µs per event, it conducts
an analysis of RoI provided by the L1 trigger. The trigger rate is reduced from 100 kHz
to approximately 1 kHz. The decision whether the event passes is delivered by dedicated
algorithms. In about 1/10th of the HLT items an event is accepted unconditionally based on
the L1 trigger decision. The remaining events left by the HLT are stored for future processing.

Trigger prescale:
One of the main tasks of the trigger system is the reduction of the amount of data. As
mentioned above this is achieved using dedicated algorithms. In addition a mechanism of
presecales is available. The prescale defines how often an event with a positive trigger decision
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Figure 2.7: The dataflow of the ATLAS TDAQ system. From [53].

can be passed for further processing. This procedure is applied individually to each of the LVL1
and HLT triggers.

The Data Acquisition system form the TDAQ system together with the Trigger system. The
data flow of the TDAQ system is presented in Figure 2.7

Analysis triggers:
This analysis uses both L1 and HLT trigger items:

• HLT_noalg_L1AFP_A_OR_C – consists of the L1 AFP trigger and no High-Level Trigger
algorithm. The trigger is prescaled at the HLT level by 20 and has no prescale at L1.

• HLT_noalg_L1MBTS_2 – consists of L1 MBTS trigger fired when Minimum Bias Trigger
Scintillators detect the activity and no algorithm in the High-Level Trigger. The trigger
is prescaled at the HLT level by 10 and at L1 by 150, giving total prescale equal to 1500.

• HLT_mb_sptrk – the Minimum Bias Space-track trigger. On the level one it accepts all
events and at the HLT level it requires the Inner Detector signal.

• L1_AFP_A or L1_AFP_C – selects events on the given AFP side. These items are not used
for recording any events but their decision is stored and can be used to find which AFP
side trigger the HLT_noalg_L1AFP_A_OR_C.

• L1_MBTS_2 – using information about the decision of this item will be used for evaluation
of the HLT_noalg_L1MBTS_2 efficiency.

The combinations of presented triggers are used to derive data samples of various roles in the
presented analysis and are described in Section 4.1.
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Chapter 3

Forward proton reconstruction

This chapter discusses the reconstruction of forward proton kinematics. It is based on the work
of the author and is used in all analyses concerning the AFP data. An essential ingredient is
the evaluation of the systematic uncertainties.

Section 3.1 introduces the kinematic variables used in the description of the forward proton
and discusses the AFP geometrical acceptance. Section 3.2 describes the alignment of the AFP
detectors. The reconstruction of the scattered proton kinematics is a two-step procedure. At
the first stage the AFP SiT hits are reconstructed from the low-level detector information.
This is done as a part of the off-line reconstruction procedure described in [54]. Next, the
reconstructed hits are used in the on-fly reconstruction during the event analysis. This is a
multi-step process. At first, the hits are used in the cluster reconstruction (Section 3.3). Next,
the track reconstruction procedure is performed (Section 3.4). Finally, the tracks are used in
the proton reconstruction (Section 3.5).

3.1 AFP geometrical acceptance
The forward proton can be described using two kinematic variables: its transverse momentum
pT and the relative energy loss ξ defined as:

ξ = 1− Eproton

Ebeam

, (3.1)

where Eproton is the energy of the AFP measured proton and Ebeam is the nominal energy of
the beam. The probability that a proton reaches the AFP detectors is called the geometric
acceptance and is a function of the proton pT , ξ as well as of the detector-beam distance and
the LHC optics. It is obtained using Monte Carlo methods and is calculated as the ratio of the
number of protons that reach the detector to the total number of protons generated within a
given kinematics range. Figure 3.1 shows the acceptance of the Near AFP station on side C,
for the nominal LHC optics. One should note that the acceptance depends also on the TCL4
and TCL5 collimators at which some protons my be lost.
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Figure 3.1: The geometric acceptance of the AFP near station for the nominal collision optics
as a function of protons transverse momentum pT and relative energy loss ξ.

3.2 Alignment of the AFP detectors
Proper kinematic reconstruction of the forward proton requires knowledge of the detector posi-
tion with respect to the centre of the proton beam. In case of the AFP detectors two alignment
levels can be singled out. Namely, the inter-plane and global alignments.

Global alignment: The AFP global alignment defines the position of a SiT sensor along the
x-axis, e.g., the position of the edge of the sensor. It has three ingredients (see Fig. 3.2):

• ∆tracker – the distance between the sensor edge and the exterior floor of the Roman Pot.
It is assumed to be constant and its value is 500 µm and follows from the experimental
set-up construction.

• ∆RP – the distance between the Roman Pot exterior floor and the centre of the beam
pipe. This value taken from the step motor readings.

• ∆beam – the position of the centre of the beam with respect to the beam pipe axis. Its
value is obtained during the beam-based alignment procedure [55].

Inter-plane alignment: The inter-plane alignment is defined as a displacement and rotation of
a SiT plane with respect to the first SiT layer. The alignment method defines three parameters
per plane. These are ∆x and ∆y – being the offsets in the (x, y) plane and α – the angle of
rotation around the z-axis.

Systematics:
There are two possible sources of the alignment systematic uncertainty. The first one is related
to the local alignment – due to a possible rotation of the detector planes during the SiT package
assembly or its insertion into a Roman Pot, a counterclockwise rotation of the planes along
beam axis by 4 mrad.

The second one is related to the global alignment, which comes from the uncertainty of the BBA
alignment procedure and the corrections obtained in the analysis of the AFP tagged exclusive
production of lepton pairs [56]. A ±300 µm shift along the x-axis is considered.

38



x

z

Roman Pot

SiT

be
am

∆tracker

∆RP

∆beam

Figure 3.2: Parameters of the AFP global (upper) and inter-plane (lower) alignment.

39



3.3 Cluster reconstruction
The cluster reconstruction process, called “clusterisation”, groups neighbouring pixel hits into
a cluster. This operation is performed for each pixel layer of each AFP station independently.

The cluster reconstruction process starts with a first free, i.e. not associated with any cluster,
pixel hit which is taken as the cluster seed. Next, a search for all pixels neighbouring the seed
is performed along the seed (pixel) long edge, i.e. in the x-direction. If a neighbouring pixel is
found it is added to a cluster. The procedure is repeated until there are no more neighbouring
pixels. Eventually, the cluster position is calculated as the deposited charge-weighted average
position of the centres of the associated pixels. It should be noted that the cluster position is
calculated with respect to the edge of the sensor. This is corrected by applying the inter-plane
alignment.

Taking into account the pixel layer geometry it is expected that the number of hits belonging to
a cluster is between one and three [49]. This can be checked by inspecting the hit multiplicity
distributions for few chosen SiT layers presented in Fig. 3.3. As expected in majority cases a
cluster contains 1 to 3 pixels. However, it is possible to form a cluster consisting of a large
number of pixels. Such clusters may be due to particle showering in the detector or the Roman
Pot material.
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Figure 3.3: Hit multiplicity in cluster for near (left) and far (right) station on side C.

Systematics:
To estimate systematic uncertainty on the alignment parameters another neighbourhood of
a cluster seed is considered. Namely, a search for neighbouring pixels is performed in both
directions i.e. along both x and y axes. Obviously, this influences the cluster position along
y. However, this change is rather minor and partially included in the track reconstruction
algorithm.

3.4 Track reconstruction
The track reconstruction process is divided into two steps:

• track finding algorithm searching for the track candidates,

• reconstruction of the track properties, discarding low quality ones and calculating param-
eters of the accepted track candidates.

This procedure is applied independently for each AFP station.
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3.4.1 Track finding algorithm
The procedure of finding track candidates is similar to the clustering algorithm. However, it
creates clusters of clusters. These super-clusters are formed from the clusters belonging to
all SiT layers of a given station if the distance between their centres in the (x, y) plane does
not exceed 0.5 mm. Such super-clusters, called now the track candidates, are passed to the
parameters reconstruction algorithm. The reason of the effectiveness of such a simple algorithm
is the fact that the measured protons are almost parallel to the beam.

Systematics:
This procedure experiences similar systematics as the clustering algorithm. It is possible to
create a track candidate consisting of dozens of clusters if a particle shower was formed or
multiple proton tracks were registered within the detector. Therefore, the maximum distance
between the cluster centres can be set to 1 mm, in order to estimate such effects.

3.4.2 Reconstruction of the track parameters
At first, the signature of track candidates is checked. Each candidate is required to have
associated clusters in at least two different layers of the SiT. Next, the candidate positions and
slopes in the x and y directions are calculated applying linear regression to the centres of the
clusters. One should observe that the track positions are calculated with respect to the edge of
the first pixel sensor. This is corrected by applying the global alignment (see Section 3.2).

Systematics:
To study the systematic effects one can use a different cluster-layer requirement. The track
candidates are required to have exactly one cluster per a pixel layer and at least two clusters
in total. Additionally, the minimum number of layers with identified associated clusters can be
changed from two to three1.

3.5 Proton reconstruction
Properties of the protons registered by the AFP are found using the reconstructed tracks. The
procedure requires the knowledge of both the used machine optics and the detector alignment.

3.5.1 Optics and transport simulation
In the reconstruction procedure, information about the LHC optics is held in a form of the pro-
ton transport parametrisation proposed in [57]. The parameterisation is based on the proton
transport calculations performed using specialised codes (e.g. MAD-X [58]). It allows calcu-
lation of the scattered proton trajectory position and slopes at a given distance from the IP.
In the present case the location of the near AFP station was chosen. An extrapolation of the
proton trajectory to the location of the far station is straightforward since no LHC magnetic
elements are present between the two stations. Each parameterisation has the following form:

αAFP = Aα(ξ) + Bα(ξ)x0 + Cα(ξ)y0 +Dα(ξ)z0

+ Eα(ξ)x
′

0 + Fα(ξ)y
′

0 +Gα(ξ)z0x
′

0 +Hα(ξ)z0y
′

0

(3.2)

1In fact, the requirement of only two planes is a consequence of the technical problems experienced by one
of the Silicon Trackers on the A-side during the considered data taking period.
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where α is either the horizontal or vertical proton position or slope (xAFP , yAFP , x′
AFP , y′

AFP ,
respectively), Aα · · ·Hα are various order polynomials in ξ, (x0, y0, z0) denote the initial position
of a proton (the interaction vertex coordinates) and (x′

0, y
′
0) are the initial slopes of the scattered

proton trajectory.

From the proton transport simulations, it follows that the xAFP and x
′
AFP do not depend on y0

and y
′
0. This reflects a negligible role of the sextupole and higher order magnetic fields in the

LHC optics between the ATLAS IP and the AFP stations. Taking the above into account, the
polynomials Cy, Fy, Hy or Bx, Ex, Gx can be set to zero in calculation of the horizontal and
vertical components, respectively, leading to:

xAFP = Ax(ξ) + Bx(ξ)x0 +Dx(ξ)z0 + Ex(ξ)x
′

0 +Gx(ξ)z0x
′

0, (3.3)

yAFP = Ay(ξ) + Cy(ξ)y0 +Dy(ξ)z0 + Fy(ξ)y
′

0 +Hy(ξ)z0y
′

0. (3.4)

The parameterisation file [59] stores the coefficients of the polynomials, as well as their orders,
the distance for which the parameterisation was calculated, the crossing angles, etc.

Systematics:
For the systematic checks, two additional parameterisation files were prepared. They were ob-
tained assuming a modification of the beam initial angle in the horizontal direction by ±50 µrad,
which reflects the optics uncertainty.

3.5.2 Proton kinematics reconstruction
The proton kinematics reconstruction is performed for each side independently. The first step
is to find a pair of tracks, one in the NEAR and one in the FAR station. The distance between
these tracks, projected onto the (x, y)-plane can not exceed 2 mm. This requirement follows
from the expected low angles of the signal protons and discriminates most of the pairs left by
different protons hitting the stations. It is possible for a single track to be matched with more
than one track in the other station. In such a case additional protons may be reconstructed.
Another possibility is the proton kinematics reconstruction using only a single station, but then
only information about the proton relative energy loss can be retrieved. This option is not used
in the present analysis.

There are two possible reconstruction methods: “analytical” – uses parameterisation directly
and “minimization” – uses either parameterisation or transport software by minimizing χ2

function.

Analytical method:
This method uses parameterisation equations. Starting from Equation 3.3 for the horizontal
position and slope components:

{
xAFP = Ax(ξ) + Bx(ξ)x0 +Dx(ξ)z0 + Ex(ξ)x

′
0 +Gx(ξ)z0x

′
0

x
′
AFP = Ax′ (ξ) + Bx′ (ξ)x0 +Dx′ (ξ)z0 + Ex′ (ξ)x

′
0 +Gx′ (ξ)z0x

′
0,

(3.5)

where xAFP and x
′
AFP are the horizontal position and slopes2 calculated from the reconstructed

2Experimentally it is measured as (xFAR − xNEAR)/d, where d is the distance between the stations.
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tracks, x0 and z0 are the coordinates of the interaction vertex position, ξ and x
′
0 are the unknown

relative energy loss of a proton and its slope at the IP.

From Eqs. 3.5 one can derive x
′
0:

x
′
0 =

xAFP − Ax(ξ)− Bx(ξ)x0 −Dx(ξ)z0
Ex(ξ) +Gx(ξ)z0

x
′
0 =

x
′
AFP − Ax′ (ξ)− Bx′ (ξ)x0 −Dx′ (ξ)z0

Ex′ (ξ) +Gx′ (ξ)z0

(3.6)

and then subtracting one equation from the other one gets:

(xAFP − Ax(ξ)− Bx(ξ)x0 −Dx(ξ)z0)(Ex′ (ξ) +Gx′ (ξ)z0) −
(x

′

AFP − Ax′ (ξ)− Bx′ (ξ)x0 −Dx′ (ξ)z0)(Ex(ξ) +Gx(ξ)z0) = 0.
(3.7)

Next, this equation is solved for the relative energy loss ξ using the bisection method. The
resulting ξ value can be inserted into Eq. 3.6 to obtain the initial horizontal (and vertical)
slopes. Eventually, the proton four-momentum is calculated using ξ, x′

0 and y
′
0 values.

Systematics:
Track pair selection may be stricter by changing the maximum distance to 1 mm.

3.6 Fast AFP simulation
An experimental analysis typically involves the use of Monte Carlo simulated events which
have undergone a full simulation of the detector apparatus. However, in the case of the AFP
detectors, full simulation is impractical and fast AFP simulation is used.

This procedure is performed for ATLAS fully simulated Monte Carlo samples containing in-
formation about the truth level (interaction final state level) particles. For each final state
proton with sufficient energy to have a chance of reaching AFP (with ξ smaller than 0.3), the
scattered proton momentum is smeared with the angular spread of the beams and its transport
through the LHC lattice is simulated. If a particle hits the detector, the Gaussian smearing of
the position with experimental spatial resolutions is applied. Next, the simulated data undergo
the same reconstruction chain as the real ones, however, starting from the reconstructed track
level.

Figure 3.4 shows a correlation between the true and reconstructed values of the relative energy
loss ξ. As can be seen from the figure those two values are very strongly correlated, which
confirms the correctness of the reconstruction procedure.
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Chapter 4

Data analysis

The goal of the present analysis is to study the MPI phenomenon in diffractive events. The first
step is the measurement of UE-sensitive observables in events with a forward proton measured
in the AFP detectors. Following the previous UE analyses performed within ATLAS, these
observables are based on charged particle tracks registered by the ATLAS ID. The analysis
uses data collected during a special LHC run at

√
s = 13 TeV (ATLAS run nr. 336505) with a

very low average number of interactions per bunch crossing, µ ∼ 0.04.

The measurement is performed for three distinct regions. The discussed regions are defined
with respect to the direction of the track with the highest transverse momentum (the leading
track) considering the difference of the azimuthal angles:

∆φ = φleading − φtrack.

The regions are defined as:

• |∆φ| < 60◦– towards,

• 60◦< |∆φ| < 120◦– transverse,

• |∆φ| > 120◦– away.

This is illustrated in Figure 4.1. The three regions have different sensitivities to the effects of
the UE, with the towards and away regions being the least sensitive because of the activity of
the leading and recoiling jet respectively, leaving transverse region the most sensitive. Addi-
tionally, the transverse region is split further into more and less active sides named transMax
and transMin regions respectively. The transMin region is relatively insensitive to wide-angle
emmisions from the hard process. The difference between transMax and transMin, named as
transDiff, represents the effects of the hard process contribution to the transverse region.

The variables of interest are:

• mean number of charged tracks per unit of ηφ, ⟨ntrk/δηδφ⟩,

• mean pT sum of charged tracks per unit of ηφ, ⟨ΣpT/δηδφ⟩,

• mean per-event average pT of charged particles, ⟨mean pT ⟩.

Section 4.1 describes the event and track selection criteria and sample types used in the present
analysis. The collected data needs to be corrected for the detector inefficiencies. Data correction
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Figure 4.1: Definition of regions in the azimuthal angle space with respect to the leading charged
particle track.

procedure is described in Section 4.2. The corrections include the ones related to the central
detector: track (Section 4.2.1) and vertex (Section 4.2.2) reconstruction efficiencies, and the
AFP trigger efficiency (Section 4.2.3). The dominant background is due to the non-diffractive
processes and its estimation is described in Section 4.3. Also, the background related to the
vertex reconstruction algorithm is discussed.

4.1 Data preparation
The experimental data selection procedure is divided into two steps:

1. Pre-selection is build around the main trigger for a given sample. The aim is to reduce
the sample size by changing the data format. This is essentially only a technical step,
performed to reduce the computing resources needed for the rest of the analysis. It
includes most of the track selection – Section 4.1.1.

2. Final selection. Performed during the proper analysis and exploiting the auxiliary triggers
– Section 4.1.2.

Datasets: In this analysis, two main types of data samples are used:

• The experimental data from the ATLAS dataset labelled as
data17_13TeV.00336505.physics_MinBias.merge.AOD.f935_m1992.
This sample was used to derive all analysed datasets referred to with a generic name
“Data”.

• The Monte Carlo samples from the datasets:
mc15_13TeV.361204.Pythia8_A2_MSTW2008LO_SD_minbias.merge.AOD.
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e3639_s2601_s2132_r6616_r6264/,
mc15_13TeV.361203.Pythia8_A2_MSTW2008LO_ND_minbias.merge.AOD.

e3639_s2601_s2132_r6616_r6264/.
The MC samples were generated using Pythia 8 A2 tune [60] with MSTW2008LO PDF
set [7]. These samples contain single diffractive dissociation (SD) or non-diffractive (ND)
events. The ND sample is used only for the track efficiency calculations (Section 4.2.1).

Data formats: Two different data formats are used in the analysis:

• xAOD (Analysis Object Data) – the default data storing format for both the experimental
and Monte Carlo data used by the ATLAS Collaboration. It contains a reduced sized
output of the physics quantities from the reconstruction. This includes the Inner Detector
tracks and the AFP hits but also many more physics objects which are not used in the
present analysis. To work with the xAOD data samples the use of a dedicated ATLAS
framework – Athena [61] – is required. Such data were used as an input in the pre-
selection.

• ntuple – the ROOT format [62]. Such files can be easily analysed without the need for
installation of the Athena framework.

4.1.1 Initial data selection
The initial selection was performed within the Athena framework using the xAOD sample. The
purpose of this step was the event and track selection and storing the data required at the next
analysis steps in the ntuple data format. This drastically reduced the size of the sample and
allowed the use of a dedicated code enabling a faster processing of the data during the analysis
development.

Event selection: The events were selected in a two-step procedure. At first, an event was
required to belong to the stable data taking period of the run and with constant trigger prescales.
Such a period is defined requiring that the proton beams are stable and the detectors are able
to record the physics data. From the ATLAS detector point of view, such a period is divided
in the so-called lumiblocks lasting for about 60 second. For the analysed run the considered
lumiblock range is 248–453. At the second step the trigger conditions were checked. In the
present analysis, three main triggers were used to obtain three different event samples:

• HLT_noalg_L1AFP_A_OR_C (prescale = 20):
The samples derived from this one are the main signal sample, but also are used to
estimate one of the background types, corrections to the background model and recon-
struction efficiencies.

• HLT_noalg_L1MBTS_2 (prescale = 1500):
The samples derived from this one are the main background samples.

• HLT_mb_sptrk (prescale = 5):
The samples derived from this one are used as corrections to the background model.

Later, the sample will be checked for the response of the auxiliary L1 triggers: L1_AFP_C,
L1_AFP_A, L1_MBTS_2. At this point this information is not needed and is stored for use in
the next selection step. Numbers of events in the selected samples are presented in Table 4.1.
For the Monte Carlo events, since they do not include lumiblocks or triggers, the initial event
selection is omitted.
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Table 4.1: The number of events selected by each trigger.

Trigger Number of events
HLT_noalg_L1AFP_A_OR_C 6 383 128
HLT_noalg_L1MBTS_2 4 147 731
HLT_mb_sptrk 420 887

Track selection: The tracks were required to fulfil the standard ATLAS selection criteria [63]:

• transverse momentum, pT > 500 MeV,

• pseudorapidity, |η| < 2.5,

• transverse impact parameter, |d0| < 1.5 mm,

• at least one hit in the ATLAS Pixel detector,

• at least six hits in the SCT detector.

Results concerning the track selection procedure are presented in Appendix A and Table A.1.
Typically, the ATLAS track selection also includes a cut on the longitudinal impact parameter
z0· sin θ. This condition was not applied here in order to preserve the tracks not associated
with the interaction vertex for later steps of the analysis.

In case of the Monte Carlo samples, the selection follows the same path as for the reconstructed
tracks (detector level). However, MC sample contains also the truth-level information about
the produced particles. The selection of these particles was similar to the track selection: only
the charged and stable particles were considered and they had to pass the same kinematic cuts
on the transverse momentum and the pseudorapidity of the tracks. The stable particles are
defined with lifetime is either infinite or large enough to not decay within the detector (e.g.
neutron).

4.1.2 Final data selection
This selection step is performed during the proper analysis. The event selection steps are listed
below.

• auxiliary trigger selection1,

• 1 or 2 interaction vertices1,

• 1 proton on a triggered side of the AFP with the relative energy loss ξ ∈ [0.035, 0.080]1,

• at least one charged track,

• at most 50 tracks – higher multiplicities are dominated by background.

• leading track transverse momentum pleadT > 1 GeV.

The first three steps of the selection procedure depend on the actually processed sample and
on the aim of the resulting sample. See Fig. 4.2 for the overview of the sample selection.
The auxiliary trigger selection uses the Level 1 trigger response. One sample was prepared
demanding the presence of exactly two reconstructed vertices and was used for the related

1The selection details depend on the future sample purpose.
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Figure 4.2: Diagram representing the trigger selection for each data sample used in the analysis.
Samples mentioned in blue boxes are the results of the pre-selection for the High-Level trigger.
The sub-samples in red boxes are derived at the final selection step after the checks of auxiliary
triggers, the event and tracks selection.

background studies. For all other samples the presence of exactly one reconstructed vertex
is required. The upper limit on the number of tracks was not present in the non-diffractive
analysis, however in the previous AFP analysis [64] it was found that for tracks multiplicities
ntrk > 50, the background dominates the sample.

HLT_noalg_L1AFP_A_OR_C samples:
From this sample eight (four for each side) different sub-samples are obtained, including:

• The signal sample contains the experimental data used for the main measurement. It
is also used in the background correction procedure. The trigger selection includes the
checks of the L1_AFP_A or L1_AFP_C trigger bits. Such sample is referred to as “AfpA”
or “AfpC”. Table A.2 shows results of the selection for the AfpC sample. The cuts with
the strongest impact are those concerning: the trigger and vertex selection, the proton
energy, and pleadT .

• Merged vertex background sample is derived to estimate one of the background
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sources. For the details of the correction procedure consult Section 4.3.4. The trigger
selection involves either the L1_AFP_A or L1_AFP_C trigger bits. This sample is the only
one which requires the presence of two reconstructed vertices in an event. The sample is
referred to as “MergedVertexBkgA” or “MergedVertexBkgC”.

• Background parameter sample is constructed to calculate parameters of the combi-
natorial background model. The selection criteria are following those used to derive the
AfpA or AfpC samples except for the upper limit of the track multiplicity and the leading
track transverse momentum (see Sec. 4.3.1). This sample is referred to as “BkgParame-
tersA” or “BkgParametersC”.

• Background correction sample contains events that pass the selection criteria of
the AfpA or AfpC samples and an additional requirement of the L1_MBTS_2 trigger
(Sec. 4.3.1). This sample is referred to as “AfpMbtsA” or “AfpMbtsC”.

HLT_noalg_L1MBTS_2 sample:
It is a source of the experimental data used to construct the main background sample which is
central to the calculation of the parameters of the combinatorial background model (Sec. 4.3.1).
The selection requirements are similar to those applied to select the Afp samples with the
replacement of the L1 AFP triggers by the L1_MBTS_2 trigger. Since in this sample the AFP
is not of concern the presence of the scattered proton is not demanded. The sample is referred
to as “Mbts”.

HLT_mb_sptrk sample:
From this sample two new samples are obtained and both are used to devise the corrections
to the combinatorial background model (Sec. 4.3.1). The first sample has no additional re-
quirements on the trigger, so it relies exclusively on the HLT_mb_sptrk trigger. It is referred
to as “Sptrk”. The second sample embeds an additional requirement on the L1 MBTS trigger:
L1_MBTS_2 and is referred to as “SptrkMbts”. Both samples do not require the presence of the
scattered proton.

The Monte Carlo generated data can be treated in two ways. In the case of the fully simulated
Monte Carlo, the resulting data have to undergo a path identical to that of the experimental
data except for the AFP trigger requirement. For the truth level Monte Carlo, the analysis is
similar to that of the data samples, but instead of tracks, the particles are used. This sample
is compared to the unfolded data.

4.2 Efficiencies
In order to compare the measured distributions and the Monte Carlo model predictions at the
particle level, the observables need to be corrected for the detector inefficiencies. These include
the tracking (Sec. 4.2.1), vertexing (Sec. 4.2.2) and AFP trigger (Sec. 4.2.3) and are discussed
below.

4.2.1 Track reconstruction
Few factors contribute to the track reconstruction efficiency: the track reconstruction ineffi-
ciency, fraction of fake tracks, the out-of-kinematic-range tracks and the charged strange baryon
fractions. All these contributions are calculated using the Pythia 8 A2 non-diffractive events.
The reason behind the use of non-diffractive sample is that the detector reconstruction efficien-
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cies are process independent and in case of non-diffractive sample the number of tracks passing
the track and vertex selection criteria is much greater, thus resulting in more precise efficiency
calculation.

Track reconstruction efficiency

ϵtrk(η, pT ) =
Nmatched

reco (η, pT )

Ngen(η, pT )
(4.1)

is defined as the ratio of the number of charged particles with matched [65] reconstructed tracks,
Nmatched

reco , to the charged particle multiplicity, Ngen, in a given η or pT range. All particles
are required to pass the selection criteria (Sec. 4.1.1). The track reconstruction efficiency
distribution is presented in Figure 4.3 (left).

For the centrally produced tracks the reconstruction efficiency is close to 95%. It decreases to
∼ 70% with |η| increasing to 2.5. The track reconstruction efficiency slowly grows with pT from
74% to 88% with pT increasing from 500 MeV to 30 GeV. However, one should note that the
shape of the pT distribution results in larger uncertainties on ϵtrk(η, pT ) for large pT -values.

Fraction of fake tracks
ffake(η, pT ) =

Nnot−matched
reco (η, pT )

Nall
reco(η, pT )

(4.2)

where Nnot−matched
reco (η, pT ) is the number of reconstructed tracks in a given η, pT interval without

a matched particle, and Nall
reco(η, pT ) is the total number of the reconstructed tracks. Again, all

tracks have to pass the selection criteria of Section 4.1.1. The fake track fraction distribution
is presented in Figure 4.3 (middle). This fraction turns out to be less than 1h for tracks with
transverse momentum pT < 3 GeV and it practically vanishes for larger pT .

Fraction of out-of-kinematic-range tracks is defined as:

fout(η, pT ) =
N out−of−range

reco (η, pT )

Nall
reco(η, pT )

(4.3)

where N out−of−range
reco (η, pT ) is the number of tracks reconstructed within the η and pT accep-

tances, but originating from regions outside the fiducial volume, and Nall
reco(η, pT ) is the total

number of reconstructed tracks in the selected η and pT range. All tracks have to pass the selec-
tion criteria described in Sect. 4.1.1. The distribution of out-of-kinematic-range track fraction
is presented in Figure 4.3 (right).

For tracks which are close to kinematic cuts (pT ≈ 500 MeV or |η| ≈ 2.5), this fraction reaches
∼10-15%. Further away from the kinematic cuts this factor quickly drops to less than 1%.

Fraction of charged strange baryons

fsb(η, pT ) =
N sb

reco(η, pT )

Nall
reco(η, pT )

(4.4)

is defined as the ratio of the number of reconstructed tracks with matched charged strange
baryon, N sb

reco(η, pT ), to the total number of reconstructed tracks, Nall
reco(η, pT ), as a function of

the track transverse momentum pT . All tracks need to pass the selection criteria mentioned
in Section 4.1.1. The charged strange baryon fraction distribution is presented in Figure 4.4.
For very low pT values, the fraction is close to zero and it increases up to 2.5% for pT reaching
20 GeV.
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Figure 4.3: The track reconstruction efficiency (left), the fake track fraction (middle) and the
out-of-kinematic-range track fraction (right) as a function of pseudorapidity η and transverse
momentum pT . The black dotted line marks kinematic cut on pT > 500 MeV. All distributions
start below the cut on pT , as introducing it here would falsely cause a drop of the low-pT track
efficiency. Note varying binning in different kinematic ranges due to lower statistics for higher
pT values.
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Figure 4.4: The fraction of the charged strange baryons as a function of the particle pT .
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4.2.2 Vertex reconstruction
The vertex reconstruction efficiency is calculated as the ratio of the number of events with at
least one reconstructed track and exactly one reconstructed vertex to the number of events
with at least one track and zero or one vertex.

ϵvtx(nsel) =
Nnsel>=1 ∧ nvtx=1

evt

N
nsel>=1 ∧ nvtx∈{0,1}
evt

(4.5)

It is plotted as a function of the track multiplicity in Figure 4.5. Calculations were done using
the MBTS-triggered data sample and with slightly relaxed selection criteria. It was estimated
neglecting the cut on the longitudinal impact parameter. It is initially around 90% for a single
reconstructed track and quickly rises to 100% if there are two and more reconstructed tracks
in an event.
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Figure 4.5: The vertex reconstruction efficiency as a function of the multiplicity of the recon-
structed tracks.

4.2.3 AFP trigger
The efficiency of the AFP triggers: L1_AFP_A and L1_AFP_C, was determined by comparing the
number of events triggered by various central detector triggers with and without coincidence
with the AFP triggers, while requiring a reconstructed proton to be present on a given detector
side. Figure 4.6 shows the number of events triggered only by central triggers while Figure 4.7
shows the coincidence of the central and AFP triggers for both ATLAS sides as a function of
relative energy loss, ξ, of the reconstructed proton.

If only the central detector triggers are demanded then similar numbers of events registered
on both AFP sides are observed. As expected, the additional requirement of the AFP trigger
decreases these numbers. However, there is a large asymmetry – a much lower number of
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Figure 4.6: The number of events with reconstructed forward proton as a function of its relative
energy loss ξ for side A (left) and C (right) triggered by probing triggers (see text).
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events passes the side A selection than the side C one. This can be quantified by calculating
the efficiency of the AFP triggers, see Figure 4.8.
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Figure 4.8: The AFP trigger efficiency as a function of the proton relative energy loss ξ for side
A (left) and C (right).

The C side efficiency is close to 90% and weakly ξ dependent. For the side A, the efficiency is
much lower and varies from 10% to about 30% with ξ increasing from 0.03 to 0.11. This can
be a consequence of technical problems with two SiT planes in the A Far station which happen
to be selected as ones providing the L1 trigger signal.

The efficiencies on both sides were fitted with a linear function in the considered ξ range:

ϵsAFP (ξ) = asξ + bs, (4.6)

where s denotes either A or C side. The resulting values of the a and b parameters for both
sides are listed in Table 4.2.

Table 4.2: Parameters of the fit to the AFP trigger efficiency.

Side Parameter a Parameter b

A 2.363(71) 0.0296(44)
C 0.373(40) 0.9311(28)

4.2.4 Corrections
Per-event efficiency: The effect of the event loss due to inefficiencies of the AFP trigger and
the vertex reconstruction were corrected by applying the weight defined as:

wev(nsel, ξ) =
1

ϵvtx(nsel)
· 1

ϵAFP (ξ)
, (4.7)

where ϵvtx and ϵAFP are the vertex reconstruction and the AFP trigger efficiencies, respectively,
nsel is the multiplicity of the selected tracks without the vertex requirement and ξ is the relative
energy loss of the measured proton.

Per-track efficiency: To correct for inefficiencies related to the track reconstruction the
distributions of the selected tracks were weighted by
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wtrk(η, pT ) =
1

ϵtrk(η, pT )
· (1− ffake(η, pT )− fout(η, pT )− fsb(pT )), (4.8)

where ϵtrk is the track reconstruction efficiency and ffake, fout and fsb are fractions of the fake,
out-of-kinematic-range tracks and the strange baryon, respectively.

The track weight was used in the construction of the Σ pT and ∆φ distributions, and also of
the mean pT in an event, determined by calculating the weighted average:

⟨pT ⟩ =
Σi∈tracks p

i
Tw

i
trk

Σi∈tracks wi
trk

. (4.9)

4.3 Background
Samples of events, which passed the selection criteria, contain in addition to the signal, also an
admixture of background events. A typical procedure to correct for the background effects is
to subtract statistically the background distribution from the signal one.

4.3.1 Non-diffractive background
In this analysis the two main experimental sources of information are used:

• the central detector – providing the reconstructed vertex and tracks,

• the forward detectors – providing the reconstructed forward protons.

When these two signatures originate from a single proton-proton interaction, such an event is
considered a signal event. However, if these two signatures are due to two different interactions
– one providing only the tracks and vertex in the central detector and the other providing only
a proton in the forward detectors, such an event is considered a background one. Figure 4.9
shows graphical representations of the signal and background events.

Figure 4.9: Representation of the signal (left) and background (right) events. The signal event
– observation of a signal in both the central (tracks and vertex) and forward (proton) detectors
originating from a single interaction. The background event – a coincidence of two different
interactions, one providing the tracks and vertex in the central detector and the other delivering
a proton in the forward detectors.

Using two experimental signatures one can derive three types of measurable classes of processes:

• non-diffractive-like – containing only a vertex without a forward proton,
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• single-diffractive-like – a vertex and a forward proton,

• halo-like – only a forward proton.

Calculations of the probabilities of such processes and the number of interactions per bunch
crossing allow an estimation of the background contribution. There are four parameters de-
scribing the combinatorial background model:

• average number of interactions per bunch crossing (pile-up) – µ,

• probability of non-diffractive-like interaction – pnd,

• probability of single-diffractive-like interaction – psd,

• probability of halo-like interaction – phalo,

with

pnd + psd + phalo = 1. (4.10)

Since events may consist of several processes, it is possible to express the probability of the
observation of an event of a certain type by using the above probabilities. Assuming that the
probability of a given number of interactions per bunch crossing can be expressed using Poisson
distribution:

Pµ(n) = e−µ · µ
n

n!
. (4.11)

Probabilities of events with a single reconstructed forward proton and either zero, one, or two
reconstructed vertices can be expressed as:

PAFP+0vtx = e−µ · µ · phalo (4.12)

PAFP+1vtx = e−µ · µ · psd + e−µ · µ2 · phalo · pnd (4.13)

PAFP+2vtx = e−µ · µ2 · psd · pnd + e−µ · µ3 · phalo · p2nd, (4.14)

with an additional constraint on the pile-up:

µMB = µ(psd + pnd), (4.15)

where µMB denotes the pile-up value delivered by the central detector. The probabilities of
events are calculated using numbers of the collected events scaled by the AFP trigger prescale to
the total number of bunch crossing occured in a given time. The uncertainties were calculated
as the square root of the number of events and appropriately scaled. Eventually, the model
parameters are obtained by solving equations 4.12, 4.13, 4.14 and 4.15 with 4.10 acting as a
constraint on pnd, by minimising the χ2 function:
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χ2(phalo, psd, pnd, µ) =

=

(
e−µ · µ · phalo − PAFP+0vtx

uAFP+0vtx

)2

+

(
e−µ · µ · psd + e−µ · µ2 · phalo · pnd − PAFP+1vtx

uAFP+1vtx

)2

+

(
e−µ · µ2 · psd · pnd + e−µ · µ3 · phalo · p2nd − PAFP+2vtx

uAFP+2vtx

)2

+

(
µ(psd + pnd)− µMB

uµMB

)2

,

(4.16)

where u-symbols denote the statistical uncertainties on given probabilities. The minimisation
was performed with Minuit2 [66] and was done for each bunch crossing (BCID) independently.
Then, the mean value of each parameter was obtained by fitting a constant. The results of
the minimisation with fitted constants are shown in Figure 4.10 and fit results are presented in
Table 4.3.

Table 4.3: Parameters of the combinatorial background model.

µmb source µ psd pnd phalo

xAOD 0.04236 0.007265(6) 0.9888 0.003935(4)
Poisson fit 0.03805(14) 0.008309(31) 0.9873 0.004392(16)

The estimation of the combinatorial background is based on Equation 4.13. It consists of
two terms: the first corresponds to the signal and the second one to the background. The
probability of measuring only the background event is given by:

Pbkg = e−µ · µ2 · phalo · pnd. (4.17)

Since the probability of having an event containing only the non-diffractive-like interaction is
given by

Pno−AFP = e−µ · µ · pnd, (4.18)

then

Pbkg = (e−µ · µ · pnd) · µ · phalo = Pno−AFP · µ · phalo. (4.19)

Then the probabilities are transformed into numbers of events. The background distributions
are obtained by scaling the distribution of events registered by the MBTS trigger by MBTS
trigger prescale PMBTS, µ and phalo:

Nbkg(ntrk) = NMBTS(ntrk) · PMBTS · µ · phalo. (4.20)

Figure 4.11 shows the comparison of the signal and background distributions of the track
multiplicity.
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Figure 4.10: Parameters of the combinatorial background parameters: µ (top left), psd (top
right), pnd (bottom left) and phalo (bottom right) as a function of paired bunch crossing number.
The values are results of the χ2 minimisation using the µMB-value obtained directly from the
xAOD file and the experimental data for the side C.
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Figure 4.11: Comparison of the signal and background distributions of the track multiplicity.

4.3.2 Combinatorial model uncertainties
There are two sources of uncertainty in the discussed model. The first one is related to the
pile-up µMB-value. It can be obtained either directly from the xAOD file2 or from a Poisson fit
to the vertex multiplicity distribution. An example of such a fit is shown in Figure 4.12. Next,
the background model parameters are calculated as described in Section 4.3.1.

The second one is due to the uncertainty on the phalo-value and equation 4.20 becomes:

Nhalo
bkg (ntrk) = NMBTS(ntrk) · µxAOD · (phalo + uphalo) · PMBTS, (4.21)

where uphalo is the uncertainty on the phalo and follows from phalo spread (cf. Figure 4.10) and
is around 5%.

The total uncertainty of the model is calculated as:

N total
uncert(ntrk) =

√
(Nbkg −Nµ

bkg)
2 + (Nbkg −Nhalo

bkg )2. (4.22)

4.3.3 Corrections for the MBTS inefficiency
The MBTS trigger inefficiency, especially visible for the low track multiplicity events, implies
that the corrections to the background distributions have to be taken into account. The correc-
tion is applied to each measured distribution. It is calculated as the ratio of the distributions
constructed using samples of events triggered by a probe trigger to those triggered by a coinci-
dence of a probe and the MBTS triggers. The inefficiency of the MBTS trigger, in such a ratio,
should be visible as an excess of events triggered only by a probe trigger w.r.t. those selected

2Delivered by the ATLAS Luminosity Group.
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Figure 4.12: Poisson fit to the vertex multiplicity distribution for a single bunch crossing.

requiring both the probe and the MBTS triggers. In this analysis, two probe triggers were
considered: the space-track trigger (HLT_mb_sptrk), which is the central detector trigger, and
the signal triggers (a coincidence of HLT_noalg_L1AFP_A_OR_C with L1_AFP_A or L1_AFP_A.
Figure 4.13 (left) compares the distributions obtained using the events triggered with a probe
and a probe ⊕ MBTS trigger.
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Figure 4.13: Left – comparison of the charged track multiplicity distributions obtained from
events triggered by a HLT_mb_sptrk (black line) and a coincidence of HLT_mb_sptrk and
L1_MBTS_2 (red line). Right – the correction factors for the background for the charged track
multiplicity distribution.

The calculated correction factors are shown in Figure 4.13 (right). The background final distri-
butions are calculated by applying these as the multiplicative correction factors. The correction
factors obtained using the space-track triggers are taken as the default ones. All others are
used in the estimation of the systematic uncertainty of the background model.
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4.3.4 Merged vertex background
Another source of background is the vertex reconstruction algorithm. Namely, it is possible
that two very close vertices are merged and reconstructed as a single one. Such events pass
all other signal selection criteria. Figure ?? shows the distribution of the absolute value of the
distance, d, between the vertices in an event with exactly two reconstructed vertices.

A local minimum, close to zero, in the number of events can be observed indicating the merging
of the vertices. This shows a migration of two-vertex events into the one-vertex event sample.
Such “merged”-vertex events satisfy all the signal selection requirements and it is impossible to
distinguish them on the event-by-event basis. Nevertheless, one can approximate the number
of migrated events. This can be done by performing a Gaussian fit to the distribution of s
(Fig. 4.14). One can integrate the fitted function extrapolated to d = 0 obtaining the approx-
imate number of signal-like events with exactly two vertices and subtract from it the actual
signal-like events.
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Figure 4.14: The distribution of the distance, d, between a pair of vertices in signal-like events
with exactly two vertices. The blue line marks Gaussian fit.

To obtain the merged vertex background distribution one can multiply the signal distribution
by a factor equal to the ratio of the approximate number of the migrated events to the measured
number of the signal-like events with two vertices reconstructed and then scale it with the AFP
triggers’ prescale. This is given by:

Nmerged
bkg (ntrk) = NAFP (ntrk) ·

Nmigrated

Nactual

· PAFP . (4.23)

In Figure 4.15 the signal and both backgrounds (combinatorial and merged vertex) distributions
are compared. One can observe that the amount of the merged vertex background is much
smaller than the non-diffractive one.
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Figure 4.15: Comparison of the signal (black), combinatorial (red) and merged vertex back-
ground (green) distributions of the charged track multiplicity.
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Chapter 5

Results

This chapter presents the measured distributions of the Underlying Event-sensitive variables.
These are: the average number of the charged particle tracks, ⟨ntrk/δηδφ⟩, or the mean value
of ⟨ΣpT/δηδφ⟩ presented as functions of the azimuthal distance from the leading particle,
|δϕ| or the transverse momentum of the leading particle, pleadT . They describe the angular
distributions of momentum and particle flow w.r.t. the leading track. It has to be stressed
that the distributions presented below are for the first time constructed for events containing
a forward scattered proton tagged in the AFP. Such events belong to a sample enriched with
single diffractive processes. Results of a similar analysis performed without this requirement
are described in [63]. Features of the presently measured distributions are discussed below.
Predictions of the Monte Carlo single diffractive model of pp interactions are confronted with
experimental results.

5.1 Charged particle multiplicity and transverse momen-
tum distributions

At first, general distributions of the charged particle multiplicity and the transverse momen-
tum are shown in Fig. 5.1. These distributions were constructed requiring pleadT > 1 GeV. The
presented experimental results were corrected as described in the previous chapter and were
unfolded using the Bayesian unfolding method presented in [67]. The charged multiplicity dis-
tribution is shown for events with nch ≤ 50 since above this value the distribution is dominated
by the background [64]. Predictions of Pythia 8 A2 for single diffractive processes (SD) are also
shown in the figure.

The experimental charged particle multiplicity distribution raises rapidly and reaches its maxi-
mum for nch ≈ 5 and then approximately exponentially decreases. The Monte Carlo behaviour
is qualitatively similar. However, certain differences are clearly visible. Namely, the maximum
is located at nch ≈ 7 and the model predicts much more events with nch > 12. Also, the fall
of the MC distribution is non-exponential. One may conclude that Pythia 8 A2 SD fails to
describe the shape of the charged particle multiplicity distribution.

The charged particle transverse momentum distribution, right panel of Fig. 5.1, is a steeply
falling function. Generally, Pythia 8 A2 SD reproduces the experimental distribution quite
well. However, it slightly overestimates the high-pT region, pT > 3 GeV, predicting a bit harder
spectrum than that observed in the data. It should be mentioned that this Pythia tune provides
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Figure 5.1: The charged particle multiplicity nch (left) and the charged particle transverse
momentum pT (right) for events with the leading particle of the transverse momentum
pleadT > 1 GeV. The ATLAS data - black line, Pythia 8 A2 single diffractive Monte Carlo -
red line.

a good description of inclusive data, i.e. without the forward proton requirement.

5.2 Angular distributions of ⟨ntrk⟩ and ⟨ΣpT ⟩
The data presented below were selected and corrected as described in chapter 4. The leading
particle was used only as a reference and is not included in the distributions presented in the
following.

Figure 5.2 shows the mean charged track multiplicity ⟨ntrk/δηδφ⟩, and the mean value of the
scalar sum of the charged track transverse momenta, ⟨ΣpT/δηδφ⟩, as functions of the absolute
value of the azimuthal distance from the leading track, |∆φ|, for events with pleadT > 1 GeV.
Also, predictions of the Pythia 8 A2 SD Monte Carlo are presented. The three considered
angular sectors (c.f. p. 45) are separated by vertical dotted lines.
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Figure 5.2: The data (black line) and Pythia 8 A2 SD (read line) distributions of mean densi-
ties of the charged track multiplicity, ⟨ntrk/δηδφ⟩ (left), and the scalar sum of the transverse
momenta, ⟨ΣpT/δηδφ⟩ (right), as a function of the absolute value of the azimuthal angle dif-
ference |∆φ| for events with the leading particle transverse momentum pleadT > 1 GeV. The
vertical dotted lines mark the three considered regions: towards, transverse and away.
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The data and Monte Carlo on both plots show the expected behaviour. The highest activity is
present in the towards region (|∆φ| < π/3) and can be attributed to the (mini) jet associated
with the leading particle and in the away region (|∆φ| > 2π/3) originating from the recoiling jet.
The lowest activity is observed in the transverse region (π/3 < |∆φ| < 2π/3) and corresponds
to the Underlying Event which includes Multi-Parton Interactions.

Despite qualitative similarities, large discrepancies between the data and Monte Carlo are seen.
Not only the Monte Carlo predicts much higher values of both ⟨ntrk⟩ and ⟨ΣpT ⟩ but also certain
differences of the shapes of the distributions are visible. The Monte Carlo predicts a stronger
enhancement of the activity in the towards region than experimentally measured.

A deeper insight can be gained by considering the above discussed distributions in different
ranges of the leading particle transverse momentum. Results presented in Fig. 5.3 were obtained
for three adjacent intervals: pleadT ∈ [1, 2), pleadT ∈ [2, 4) or pleadT ∈ [4,+∞). These intervals are
populated by about 75%, 22.5% and 2.5% of events. The idea behind such a division is related
to the development of the jet structure with increasing value of the leading particle transverse
momentum.

Qualitatively, the results are similar to those presented in Fig. 5.2. However, with increasing
pleadT value the activity in all azimuthal regions gets larger with a clear domination of the towards
region. Moreover, the Monte Carlo predictions approach the experimental distributions from
the above.

The pleadT dependence of the distributions could be attributed to the development and evolution
of the jet structure in the event. With increasing transverse momentum the towards (narrow)
and recoiling (wide) jets become visible - an increase of the towards and away activities. For
even larger pleadT an additional radiation of a gluon(s) (for example, the third jet) contributing
also to the transverse region results in a further increase of the activity.

Concluding, the Pythia 8 A2 SD predictions are only in qualitative agreement with the ex-
perimental measurements. They fail to describe accurately both the shapes (20%) and the
magnitudes of the distributions. On the other hand the evolution of the shape of the distribu-
tions with increasing pleadT seems to be quite well reproduced by the MC predictions and they
gradually approach the data.

5.3 The pleadT dependence of ⟨ntrk⟩ and ⟨ΣpT ⟩
The analysis discussed above can be extended by a study of the pleadT dependence of ⟨ntrk/δηδφ⟩
and ⟨ΣpT/δηδφ⟩ in the three discussed regions of |δφ|. The resulting distributions are depicted
in Figure 5.4 for the leading track transverse momentum between 1 GeV and 20 GeV.

For pleadT < 4 GeV all distributions show a relatively fast increase which considerably slows
down for larger transverse momenta. Both distributions in the transverse region exhibit a
sort of a plateau at the level of about 0.5 particle and 0.5 GeV, respectively, per η − ϕ unit
area. The initial increase can be related to the transition from the non-perturbative to the
perturbative regime of the interaction. The other two distributions show a nearly linear increase
for pleadT > 4 GeV. This increase is a bit faster in the case of the away region distributions.
However, one should recall that the leading-pT particle is excluded from the distributions.
Behaviour of the ⟨ntrk/δηδφ⟩ and ⟨ΣpT/δηδφ⟩ distributions is a manifestation of the growing
importance of hard processes with increasing value of the hard scale – the emerging two-jet
structure with increasing role of the radiation of additional gluon(s) leading to the three (or
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Figure 5.3: The mean charged track multiplicity ⟨ntrk/δηδφ⟩ (left column), and the mean value
of the scalar sum of the charged track transverse momenta, ⟨ΣpT/δηδφ⟩ (right column), as a
function of |∆φ| for three intervals of the leading particle transverse momentum: pleadT ∈ [1, 2)
(top row), pleadT ∈ [2, 4) (middle row) and pleadT ∈ [4,+∞) (bottom row). The ATLAS data -
black line, Pythia 8 A2 sigle diffractive Monte Carlo - red line. Vertical dotted lines mark the
boundaries between the discussed azimuthal regions: towards, transverse and away.
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Figure 5.4: Mean ηφ densities of the charged particle track multiplicities ntrk (left) and of the
sum of the transverse momenta ΣpT (right) as a function of transverse momentum of leading
charged track in the towards, transverse and away regions.

more complex) jet configuration of an event. Such a behaviour was already seen in one-photon
annihilation events at the e+e− machines and delivered experimental evidence for gluons in the
three jet, “Mercedes”, events, see [68–70]. One should also observe that the reached values of
⟨ntrk⟩ and ⟨ΣpT ⟩ per unit η − ϕ area are about a factor of two smaller than those measured in
the inclusive case [63].

The discussed distributions are shown together with the Pythia 8 A2 SD predictions in Fig-
ure 5.5. The Monte Carlo follows the behaviour discussed above with a more rapid increase for
pleadT < 4 GeV. However, it fails to describe the data overestimating the values of both ⟨ntrk⟩
and ⟨ΣpT ⟩ for pleadT < 8 GeV. For larger pleadT the Monte Carlo predicted values are compatible
with the data within large errors.

5.4 ntrk and ΣpT densities in transverse min/max/diff re-
gions

The next step of the present analysis is focused on the transverse region which is expected to
be most sensitive to the UE effects. This region, on the event-by-event basis, is split into two
sides: transMax and transMin. The transMax is sensitive to the MPIs and additional gluon
radiation while the transMin sensitivity is nearly solely related to the MPIs. The transDiff
measures the difference between of the two.

The measured and Pythia 8 A2 SD simulated distributions of ⟨ntrk/δηδφ⟩ and ⟨ΣpT/δηδφ⟩ are
presented in Figure 5.6 as functions of the leading particle transverse momentum for the three
considered regions.

Qualitatively, all distributions follow the same pattern: a rapid initial increase followed by a
flattening of the dependence. In the transMax and transMin regions the Monte Carlo predic-
tions overestimate both the initial growth and values up to pleadT of about 8-10 GeV. For larger
pleadT the MC agrees with the data within the errors. In case of the transDiff distributions
Pythia 8 A2 SD reproduces the experimental result relatively well. However, it still overes-
timates the measurements for pleadT < 8 GeV. The measured values are a factor of about two
smaller than in the inclusive case [63].
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Figure 5.5: Mean ηφ densities of the charged particle track multiplicities ntrk (left) and mean
ηφ densities of the sum of the charged track transverse momenta ΣpT (right) as a function of
the transverse momentum of the leading charged track in the towards (top), transverse (middle)
and away (bottom) regions. Predictions of the Pythia 8 A2 single diffractive Monte Carlo is
marked with the red line.
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Figure 5.6: Mean ηφ densities of charged track multiplicities ntrk (left) and mean ηφ densities
of sum of charged track transverse momenta ΣpT (right) as a function of transverse momentum
of leading charged track in the transMin (top), transMax (middle) and transDiff (bottom)
regions. Predictions of the Pythia 8 A2 single diffractive Monte Carlo is marked with the red
line.
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5.5 Mean transverse momentum in transverse, transMin
and transMax regions

The dependence of the per-event ⟨mean pT ⟩ value (see eq. 4.9) on the observables related
to an event may provide some constrains concerning the colour reconfiguration. The colour-
reconnection/-disruption mechanisms reshuffle the colour field leading to the energetically pre-
ferred state of the system and typically increase the transverse momentum [63].

The measured relations between the per-event ⟨mean pT ⟩ as a function of the leading particle
transverse momentum are presented in Figure 5.7 (left) for the transverse, transMin, transMax
regions together with the single diffractive Pythia 8 A2 predictions.

Again, for low pleadT values there is a rapid raise of the ⟨mean pT ⟩ value, and above pleadT ≈ 4 GeV
the distributions reach a sort of a plateau. Contrary to all previous results, these distributions
are relatively well reproduced by the Monte Carlo predictions in all discussed regions.

One may also investigate the dependence of the per-event ⟨mean pT ⟩ on the charged track
multiplicity. Figure 5.7 (right) presents the results of this investigation for the three considered
regions. The single diffractive Pythia 8 A2 predictions are represented by the red line.

In all three presented regions, the Monte Carlo nicely reproduces the measured distribution.
Value of ⟨mean pT ⟩ slowly increases from ∼ 0.7 GeV to about 1.1 GeV with ntransverse

trk growing
from 1 to 20. For ntransverse

trk > 20, a clear limitation of the available statistics is seen and the
MC predictions are compatible with the data within the errors.

The measured values are similar to those reported by the inclusive analysis [63], however, in
a narrower multiplicity range. As can be seen from Fig. 5.7 (right) the presently measured
multiplicities are limited to 28.

5.6 Summary of measurements
This chapter was focused on the experimental observables sensitive to the Underlying Event
phenomena. These results were obtained selecting charged particles within the acceptance
of the ATLAS Inner Detector and requesting a forward proton tag in the AFP. The data
were corrected for various experimental effects. The selected sample is enriched in the single
diffractive dissociation processes.

It was found that the single diffractive Pythia 8 A2 predictions describe the charged parti-
cle transverse momentum spectrum, however, they fail to describe the charged multiplicity
distribution. The Monte Carlo overestimates the number of high multiplicity events.

Among the distributions sensitive to UE, the distributions of ⟨ntrk⟩, ⟨ΣpT ⟩ and ⟨mean pT ⟩ were
investigated in three azimuthal regions (towards, transverse and away) defined with respect to
the direction of the leading particle, pleadT , – the one with the highest value of the transverse
momentum. In the case of the analysis performed on the event-by-event basis, the transverse
region was divided into two: “Max” – containing higher activity and “Min”. The distribution
of the observables were studied as functions of pleadT or the charged particle track multiplicity
within a region, ntrk.

It was found that the predictions of single diffractive Pythia 8 A2 Monte Carlo are in a qual-
itative agreement with the data but they fail to reproduced the experimental distributions
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Figure 5.7: The per-event average transverse momentum of charged tracks ⟨mean pT ⟩ as a
function of the leading particle transverse momentum (left) and of the charged track multiplicity
in transverse region ntransverse

trk (right) in the transverse (top), transMin (middle) and transMax
(bottom) regions. Prediction of the Pythia 8 A2 SD Monte Carlo are marked with red line.
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overestimating the values. It should be noted that the description of the ⟨ntrk⟩ and ⟨ΣpT ⟩ dis-
tributions improves with increasing value of pleadT . The obtained experimental results are lower
by a factor of about two than those measured for inclusive data. The only properly predicted
distributions are those of the per-event ⟨mean pT ⟩ as functions of the pleadT and ntrk.

Behaviour of the ⟨ntrk⟩ and ⟨ΣpT ⟩ distributions indicates the growing importance of hard pro-
cesses with increasing value of the hard scale – the emerging two-jet structure with increasing
role of the radiation of additional gluon(s) contributing to more complex structure of an event.
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Chapter 6

Monte Carlo tuning

As it was demonstrated in chapter 5, the Monte Carlo predictions do not reproduce majority
of the data features. Therefore, the next step is an attempt to tune the Monte Carlo model in
such a way that its predictions are as close to the data as possible.

Pythia Monte Carlo generator has many adjustable parameters which impact the delivered
predictions. To quantify how well the chosen set of parameters influences the reproduction of
the data features, a set of samples with different values of the selected parameters was generated.
Each sample contains 1 million single diffractive events. These events were requested to pass
the same selection criteria as for an ordinary Monte Carlo sample. The obtained results were
then compared to the data and the predictions of the Pythia 8 A2 single diffractive Monte
Carlo generated with the default settings. The distributions chosen for the tuning procedure
are the mean number of the charged particle tracks as a function of |∆φ|, referred to as “∆φ
plot”, in different bins of the leading track transverse momentum.

6.1 Pythia parameters
The considered Pythia 8 flags and parameters are listed in Tables 6.1 and 6.2 and briefly
described below:

Table 6.1: Pythia flags.

Group Name Tune default
Tune pp A2 MSTW2008LO
SigmaDiffractive PomFlux 1
MultipartonInteractions bProfile 4
PartonLevel MPI on
PartonLevel ISR on
PartonLevel FSR on

Tune:pp: a set of generation settings known as tune. The Pythia default tune is the 2013
Monash tune [71]. The default in this study is the Pythia 8 A2 tune [60] with the MSTW2008LO
PDF set [7]. Yet another tune is the A2 tune using the CTEQ6L1 PDF set.
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Table 6.2: Pythia parameters.

Group Name Unit Tune default Min. value Max. value
Diffraction sigmaRefPomP mb 10 2 40
Diffraction mPowPomP - 0 0 0.5
Diffraction mMinPert GeV 10 5 -
Diffraction mRefPomP GeV 100 1 -
MultipartonInteractions pT0Ref GeV 1.9 0.5 10

It is worth mentioning that the choice of the PDFs is not the only difference distinguishing the
A2 tunes as they use slightly different values of other parameters.

Figure 6.1 compares the nch and < ntrk > vs. |δφ distributions obtained using different tunes.
As one can observe the MC predicted charged particle multiplicity distributions are practically
identical with some differences in the high nch tail. The difference between the predictions of
different tunes shows up in the ∆φ plot. The MC predictions are of nearly the same shape,
however, they differ in the average value. The A2 tune with MSTW2008LO PDF predicts the
mean multiplicities higher than those delivered by CTEQ6L1 or Monash tunes. All used Monte
Carlo models fail to describe the data.
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Figure 6.1: Comparison of the charged particle multiplicity (left) and the average number of
tracks as a function of |∆φ| (right) generated using different Pythia 8 tunes to the data.

SigmaDiffractive:PomFlux: governs the choice of the pomeron flux parameterisation. The
default setting (1) uses a description based on the critical pomeron given by Schuler and Sjös-
trand [21] The other settings: 4 uses conventional pomeron description discussed by Donnachie
and Landshoff [20], 5 uses the MBR simulation of proton-proton interactions [72] and 6 uses
the H1 Fit A parameterisation [73,74]. Figure 6.2 shows the considered distributions generated
using these settings compared to the experimental results. This parameter has no effect on
both of the.

MultipartonInteractions:bProfile: steers the choice of the impact parameter profile for
the incoming hadron beams. The A2 tune settings, marked by 4 in Figures, use Gaussian
distribution with a width varying as 1+a1 log(1/x), where a1 is a free parameter and x denotes
the Bjorken x of a parton. The Pythia default setting (1) uses a simple Gaussian distribution
without any free parameters, 2 uses a double Gaussian distribution, with two free parameters
and 3 uses an overlap function of the form e−bexpPow , where expPow is an additional free
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Figure 6.2: Comparison of the charged particle multiplicity (left) and the mean number of
tracks as a function of |∆φ| (right) for various setting of the SigmaDiffractive:PomFlux flag to
the data (see text).

parameter. Figure 6.3 shows a comparison of distributions generated using these settings.

The charged particle multiplicity distributions differ slightly in the shapes. The differences
become for large nch. The ∆φ plot shows similarities of both the shapes and normalisations of
the predicted dependencies. All MC versions fail to describe the data.
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Figure 6.3: Comparison of the charged particle multiplicity (left) and the mean number of tracks
as a function of |∆φ| (right) for the different values of the MultipartonInteractions:bProfile flag
to the data (see text).

PartonLevel:MPI, PartonLevel:ISR, PartonLevel:FSR: provide the largest contributors
to the Underlying Event activity. All tunes have these processes turned on. Nevertheless, it
is worth to investigate their impact on the predicted distributions. The results are shown in
Figure 6.4.

In all cases, switching any component off noticeably impacts the predictions:

• Charged particle multiplicity: the distributions are steeper – with an increased number
of low multiplicity events and a less populated high multiplicity region. Turning the ISR
flag off gives the multiplicity distribution which is the closest to the measured one. As
expected, turning off the MPI flag considerably reduces the number of high multiplicity
events.
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Figure 6.4: Comparison of the charged particle multiplicity (left) and the mean number of
tracks as a function of |∆φ| (right) for all flags turned on (default, red line) and each of the
PartonLevel:MPI, PartonLevel:ISR and PartonLevel:FSR flags set off separately to the data.

• Mean number of the charged particle tracks: both the shape and normalisation of the
distributions change significantly. This was anticipated since switching off any Underlying
Event component lowers the activity in the transverse region.

Diffraction:mMinPert: defines the mass threshold in soft diffraction separating the low-
(non-perturbative) and high- (perturbative) mass regimes. The default value for A2 tune is
10 GeV. The parameter value ranges between 5 GeV and infinity. If the used value exceeds the
centre-of-mass energy, then no perturbative description will be used. Figure 6.5 shows the MC
predictions generated for few values of the Diffraction:mMinPert parameter compared to the
data.

This setting dramatically reduces the charged multiplicity and hence the mean number of
tracks in all angular regions. Generally speaking, the change of the parameter value up to
1000 GeV has relatively small impact on the distributions. For larger values the distribution
of the charged multiplicity and the mean number of tracks change the shape or normalisation
and for Diffraction:mMinPert = 3500 GeV the generated distribution of ⟨ntrk⟩ vs. |∆φ| is the
closest to the experimental one. For the Diffraction:mMinPert values above the CMS energy
of pp interaction no events with nch > 10 are predicted.

The next set of parameters belonging to the Diffraction group, sigmaRefPomP, mRef-
PomP and mPowPomP, is related to the high-mass soft diffraction. The standard pertur-
bative MPI framework in Pythia provides the cross-sections for parton-parton interactions. To
transform the cross-sections into the probabilities, the ansatz for the proton-promeron cross-
section is required. Its dependence on the mass of the diffrective system m is assumed to have
the form:

σPomP (m) = σref
PomP ∗ (m/mref )

p, (6.1)

where σref
PomP (Diffraction:sigmaRefPomP) denotes the reference cross-section, mref (Diffraction:mRefPomP)

is the reference mass scale and p (Diffraction:mPowPomP) is the mass rescaling pace.

Diffraction:sigmaRefPomP: the parameter default value for the A2 tune is 10 mb, with the
range spanned between 2 mb and 40 mb. Figure 6.6 shows the distributions generated assuming
Diffraction:sigmaRefPomP of 10 mb, 20 mb and 40 mb compared to the data.
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Figure 6.5: Comparison of the charged particle multiplicity (left) and the mean number of
tracks as a function of |∆φ| (right) for different values of the Diffraction:mMinPert parameter
to the data.

The distributions generated for Diffraction:sigmaRefPomP = 20 mb are closest to the experi-
mental ones. However, the number of the high multiplicity events is slightly underestimated.
The 40 mb sample delivers the multiplicity distribution which is narrower than the experimental
one, which underestimates both high and low multiplicities while overestimating the number of
events with nch between 4 and 8. In case of the ∆φ plot, with increasing value of the parame-
ter, the normalisation decreases and the shape of the distribution becomes slightly flatter. The
default value of the parameter predicts the highest mean multiplicities. For the 20 mb-sample,
the mean number of charged tracks reproduces the measurement in the transverse region, but
in towards and away regions the predictions are much higher than the data. Finally, for the
40 mb sample the Monte Carlo prediction matches the measurement for small |∆φ| values and
underestimates the data elsewhere.
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Figure 6.6: Comparison of the charged particle multiplicity (left) and the mean number of tracks
as a function of |∆φ| (right) for different values of the Diffraction:sigmaRefPomP compared to
the data.

Diffraction:mRefPomP: the reference mass scale for calculating the effective proton-pomeron
cross-section. The default is set to 100 GeV. The parameter ranges between 1 GeV and infinity.
The distributions generated for few arbitrary values of this parameter are compared in Figure 6.7
with each other and the data.
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As can be observed, the Diffraction:mRefPomP very weakly influences the distributions.
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Figure 6.7: Comparison of the charged particle multiplicity (left) and the mean number of
tracks as a function of |∆φ| (right) for different values of the Diffraction:mRefPomP to the
data.

Diffraction:mPowPomP: the mass rescaling pace for calculating the effective proton-pomeron
cross-section. It is defaulted to zero in A2 tune and potentially ranging between zero and 0.5.
In Figure 6.8 the distributions generated with with the parameter value set to 0, 0.2, and 0.5
are compared to the experimental results.
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Figure 6.8: Comparison of the charged particle multiplicity (left) and the mean number of
tracks as a function of |∆φ| (right) for different values of the Diffraction:mPowPomP to the
data.

The results are similar to those obtained in the sigmaRefPomP parameter case. The sample
generated with the parameter value set to 0.2 provides the best description of the experimental
multiplicity distribution, however the number of low multiplicity events is still underestimated.
If Diffraction:mPowPomP = 0.5 then the description of low ntrk region improves but high
multiplicities are largely underestimated. In case of the ∆φ plot, with increasing value of
the parameter, the normalisation decreases and the distribution becomes slightly flatter. The
default value of the parameter leads to the highest mean multiplicities. If it is set to 0.2,
the mean number of the charged tracks agrees with the data in the transverse region, but
in the towards and away regions the Monte Carlo predicts much higher means. Finally, if the
parameter is set to 0.5, the Monte Carlo predictions do not reproduce the data underestimating
them.
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MultipartonInteractions:pT0Ref: the reference scale in the pT0 parameterisation formula:

pT0 = pT0(ecmNow) = pT0Ref ∗ (ecmNow/ecmRef )ecmPow, (6.2)

where ecmNow is the CMS energy, pT0Ref is the pT0 value for the reference CMS energy,
ecmRef is the reference energy scale set to 7000 GeV and ecmPow is the energy rescaling pace.
It is worth pointing out, as it is stated by the Pythia authors [75], this parameter value is also
related to the settings of other parameters. Figure 6.9 shows the distributions generated using
few arbitrary chosen values compared to the data.
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Figure 6.9: Comparison of the charged particle multiplicity (left) and the mean number of
tracks as a function of |∆φ| (right) for different MultipartonInteractions:pT0Ref values to the
data.

The Monte Carlo description of the data improves with increasing value of the parameter. For
MultipartonInteractions:pT0Ref > 3 GeV the changes seem to be minor. In case of the mean
charged track multiplicity, the normalisation decreases with increasing value of the parameter.
However, unlike for the previous parameters, the shapes of the distributions remain practically
unchanged.

6.2 Parameter minimisation
The analysis described in the previous section suggests the selection of five parameters for
the next part of the tuning procedure. These parameters are: Diffraction:sigmaRefPomP,
Diffraction:mPowPomP, Diffraction:mRefPomP, Diffraction:mRefPomP and Mul-
tipartonInteractions:pT0Ref.

The first step is to identify the objective function. In the present analysis a χ2 function was
exploited. The ⟨ntrk⟩ vs |∆φ| distribiution was taken as an input to the χ2 calculation. Since
it was shown that depending on the leading track transverse momentum, the shapes of the
Monte Carlo and the data distributions evolve the minimisation procedure was performed for
each of the three pleadT ranges. The χ2 function is constructed as a sum over all bins in a given
distribution:

χ2 =
40∑
i=1

(xMC
i − xdata

i )2

(eMC
i )2 + (edatai )2

, (6.3)
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where xMC
i and xdata

i are the i-th bin contents and eMC
i and edatai are the errors on the i-th bin

contents for the Monte Carlo and the data, respectively. Each distribution has 40 bins. The
total χ2 function value was then calculated as:

χ2
tot = χ2

pleadT ∈[1,2) + χ2
pleadT ∈[2,4) + χ2

pleadT ∈[4,+∞). (6.4)

The minimisation procedure starts with defining a parameter or rather a list of parameters as
well as their allowed ranges. Then, each minimisation step is performed as follows:

1. Generate a sample of 100,000 Pythia events for a given set of parameters.

2. Analyse the sample using the common analysis code.

3. Calculate the χ2 function value.

For each chosen parameter, a scan was performed. A number of samples was generated for the
parameter values uniformly distributed within the allowed range, see Table 6.3.

Table 6.3: Parameters chosen in scan procedure.

Group Name Unit Min. value Max. value # of samples
Diffraction sigmaRefPomP mb 10 40 100
Diffraction mPowPomP - 0 0.5 100
Diffraction mMinPert GeV 10 4000 160
Diffraction mRefPomP GeV 1 1000 100
MultipartonInteractions pT0Ref GeV 1.5 5 45

6.2.1 One-dimensional minimisation
This section discusses the scan results presented as plots of the χ2 function value, divided
by the number of the degrees of freedom NDoF , as a function of the considered parameter.
Such plots are referred to as “χ2 plots”. A more detailed explanation is given in case of the
Diffraction:sigmaRefPomP parameter, while for the others, only the final results are presented.

Diffraction:sigmaRefPomP:
Previous section suggests that the best value of Diffraction:sigmaRefPomP is close to 20 mb.
It is worth checking if this is also the best choice for each pleadT ranges. Figure 6.10 shows the
χ2 plots for three pleadT bins.

For the lowest pleadT bin there seem to exist two distinct minima: the first one for Diffrac-
tion:sigmaRefPomP ≈ 26 mb, the second at ∼34 mb. For pleadT ∈ [2, 4) there is a single
minimum for Diffraction:sigmaRefPomP ≈ 20 mb. For the highest pleadT bin the minimum is
located at ∼15 mb.

Eventually, the combined χ2 value was obtained as a sum of individual values obtained for each
pleadT bin and is presented in Figure 6.10. A single minimum for Diffraction:sigmaRefPomP ≈
22 mb is observed in this figure. This value is close to the one obtained in the previous section.
The hint of a local minimum is still visible for Diffraction:sigmaRefPomP ≈ 34 mb.

82



10 15 20 25 30 35 40

Diffraction:sigmaRefPomP [mb]

1

10

 / 
N

D
oF

 (
40

)
2 χ

 InternalATLAS
 = 13 TeVs

 [1, 2)∈ lead
T

p

10 15 20 25 30 35 40

Diffraction:sigmaRefPomP [mb]

1

10 / 
N

D
oF

 (
40

)
2 χ

 InternalATLAS
 = 13 TeVs

 [2, 4)∈ lead
T

p

10 15 20 25 30 35 40

Diffraction:sigmaRefPomP [mb]

1

10

 / 
N

D
oF

 (
40

)
2 χ

 InternalATLAS
 = 13 TeVs

)∞ [4, +∈ lead
T

p

10 15 20 25 30 35 40

Diffraction:sigmaRefPomP [mb]

1

10 / 
N

D
oF

 (
12

0)
to

ta
l

2 χ

 InternalATLAS
 = 13 TeVs

 > 1 GeVlead
T

p

Figure 6.10: The χ2 function value for different pleadT bins and the total χ2 as a function of
Diffraction:sigmaRefPomP parameter value. The vertical dotted line marks the parameter
default value.
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Diffraction:mPowPomP:
The results of the previous section suggests the value of 0.2. Figure 6.11 (left) shows the
combined χ2 plot, with a mimimum Diffraction:mPowPomP at ∼0.21.
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Figure 6.11: The χ2 function value as a function of Diffraction:mPowPomP (left) and Diffrac-
tion:mMinPert (right) parameters value. The vertical dotted line marks the parameter default
value.

Diffraction:mMinPert:
Section 6.1 findings suggest the value close to 3.5 TeV. The combined χ2 is drawn in Figure 6.11
(right). For Diffraction:mMinPert < 2500 GeV the χ2 does not depend on the parameter value.
Above 2500 GeV rapid changes are visible, with the χ2 minimum located within 3500 GeV–
3600 GeV.

Diffraction:mRefPomP:
Figure 6.12 (left) shows the combined χ2 plot implying the lack of sensitivity to the Diffrac-
tion:mRefPomP value. This confirms the observation of the previous section.
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Figure 6.12: The χ2 function value as a function of Diffraction:mRefPomP (left) and Multipar-
tonInteractions:pT0Ref (right) parameter value. The vertical dotted line marks the parameter
default value.

MultipartonInteractions:pT0Ref:
Section 6.1 results point to values between 2.28 and 3. The combined χ2 plot is presented in
Figure 6.12 (right).
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For MultipartonInteractions:pT0Ref < 2.8 GeV the χ2 rapidly decreases. Above, the χ2 is
the parameter value independent. No distinct minimum is observed. The parameter value of
MultipartonInteractions:pT0Ref was set to 3.5 GeV, corresponding to the lowest χ2 value.

Table 6.4 summarises the results of the above discussed scans.

Table 6.4: Values of the parameters obtained in the scan procedure.

Group Name Unit Approx. minimum
Diffraction sigmaRefPomP mb 22
Diffraction mPowPomP - 0.21
Diffraction mMinPert GeV 3500
Diffraction mRefPomP GeV Not found
MultipartonInteractions pT0Ref GeV 3.5

6.2.2 Correlations between parameters
In the next step of the minimization procedure, the scan was performed fixing one of the param-
eters at its minimum while scanning the others. Such a procedure was repeated for each of the
considered parameters. Figure 6.13 shows the combined χ2 plot for Diffraction:sigmaRefPomP
parameter as an example.

As can be observed, the scans of the three considered parameters suggest the value of Diffrac-
tion:sigmaRefPomP close to ∼10 mb, which is close to the Pythia 8 A2 default value. This
result and those obtained in Section 6.2.1 demonstrate the importance of the correlations be-
tween the parameters and clearly suggest a need for the multi-dimensional χ2 minimization,
i.e. a need of the multidimensional tuning.

6.3 Multi-parmeter fit
In the last step, a global fit using all five parameters was attempted. The minimization was
performed using the hyperopt package [76] designed to serial and parallel optimization over
various search spaces. This includes the ones showing a large variation of the results as a con-
sequence of a small change of the input parameters. Table 6.5 lists the values of the parameters
at the χ2 minimum (χ2/NDoF = 1.093) and the data together with the fit results are presented
in Fig. 6.14.

Table 6.5: Parameter values obtained with the hyperopt package.

Group Name Unit Parameter value
Diffraction sigmaRefPomP mb 22.026
Diffraction mPowPomP - 0.0582
Diffraction mMinPert GeV 2876.648
Diffraction mRefPomP GeV 9.192
MultipartonInteractions pT0Ref GeV 1.533
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Figure 6.14: The data distributions (the black line) with results of the hyperopt fit (the red
line) for different bins of pleadT .
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Next, a sample of 2.5 million events was generated (and is referred to as “hyperopt”), with
the parameters set to the above listed values. Then, the earlier discussed distributions were
constructed and compared to the experimental results and Pythia 8 A2 SD predictions. The
outcome of this comparison is presented in Figures 6.15 and 6.16.
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Figure 6.15: Distributions of the charged particle multiplicity nch (left) and the charged particle
transverse momentum pT (right) for events with the leading particle of the transverse momen-
tum plead > 1 GeV. The black line – the data, the red line – Pythia 8 A2 SD, the green line -
results of Pythia 8 SD tuning obtained with hyperopt.

In case of the charged particle multiplicity distribution the hyperopt predictions describe the
experimental distribution much better than those of Pythia 8 A2 SD. Nevertheless, the very
low and high multiplicities are still underestimated at the level reaching 50%. The charged
particle transverse momentum distributions are shown in Fig. 6.15 right. The pT distribution
was not a part of the minimization procedure. The hyperopt spectrum is softer than the data
and the Pythia 8 A2 SD predictions. Both the hyperopt sample and Pythia 8 A2 SD do not
describe the data perfectly. For low pT Pythia 8 A2 SD seems to describe the data slightly
better than the hyperopt sample.
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Figure 6.16: Distributions of the mean densities of the charged particle track multiplicity,
⟨ntrk⟩, (left) and the sum of transverse momenta, ⟨ΣpT ⟩, (right) as a function of |∆φ| for events
with the leading particle transverse momentum plead > 1 GeV. The vertical dotted lines mark
boundaries of the three considered regions: towards, transverse and away. The black line – the
data, the red line – Pythia 8 A2 SD, the green line – results of Pythia 8 SD tuning obtained
with hyperopt.
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For both ⟨ntrk⟩ and ⟨ΣpT ⟩ the hyperopt provides a better description of the measured distri-
bution than Pythia 8 A2 SD. In case of ⟨ntrk⟩ the transverse region is well described by the
hyperopt predictions. In the towards and away regions the hyperopt overestimates the data
by about ∼20% and ∼10% respectively. In case of ⟨ΣpT ⟩ the agreement between the hyperopt
and data is within 10% in the transverse and away regions, and in towards regions the hyperopt
predictions overshoots the data by about 20%.

Summarising, an attempt of the Pythia 8 A2 SD Monte Carlo tuning was performed. For the
first time, the procedure used the ATLAS data selected requesting the AFP proton tag, e.g.
a sample enriched with single diffractive dissociation processes. The multidimensional tuning
procedure provided a set of parameters resulting in a considerably better agreement of the
experimental data and Monte Carlo predictions.
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Chapter 7

Summary and conclusions

This thesis presented the study of the Underlying Event sensitive observables. The experimental
basis for the work were the ATLAS Collaboration data collected during the dedicated proton-
proton LHC run in 2017, which corresponds to the integrated luminosity of 56 nb−1. The data
were taken at

√
s = 13 TeV. The selection procedure followed the standard ATLAS one with an

additional requirement of a tag of the forward scattered proton delivered by AFP. For the first
time, the measurements of the Underlying Event sensitive observables were performed using
the data sample enriched with single diffractive dissociation processes.

The studied observables were defined using the charged particle tracks measured in the Inner
Detector. The tracks were requested to be within the pseudorapidity interval |η| < 2.5 and to
have the transverse momentum greater than 0.5 GeV. The obtained results were corrected for
the background contribution, detector effects and were unfolded to the particle level.

The analysis was performed in three regions of the azimuthal angle defined with respect to the
highest transverse momentum particle. These were towards, transverse and away regions. For
the study of the per-event observables, the transverse region was further split into transMax
defined as the one containing larger activity and the complementary one – transMin. Predictions
of the Pythia 8 A2 single diffractive Monte Carlo were confronted with the experimental results.

It was found that Pythia 8 A2 SD MC fails to reproduce the charged particle multiplicity.
It predicts too many high multiplicity events and the shape of the MC distribution is much
harder than the experimental one, showing approximately exponential decrease. On the other
hand the MC predicted transverse momentum distribution of the charged particles quite well
matches the measured one with a slight tendency of overestimating the high-pT region.

The studied UE sensitive observables were the average number of the charged particle tracks,
⟨ntrk⟩, and the average value of the scalar sum of the transverse momenta, ⟨ΣpT ⟩. They were
analysed as a function of the azimuthal distance from the leading particle, |∆φ|.

The shapes of the measured and predicted distributions qualitatively agree. The towards and
away regions show higher activities than that seen in the transverse one. However, Pythia 8 A2
SD Monte Carlo overestimates both distributions in the whole |∆φ| range. A study of ⟨ntrk⟩
and ⟨ΣpT ⟩ in different bins of the leading particle transverse momentum, pleadT , demonstrates
that with increasing value of pleadT :

• activity in all regions increases,
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• growth of the activity in the towards and away regions is faster than in the transverse
one,

• the Pythia 8 A2 SD predictions approach the experimental distributions.

Such a behaviour clearly indicates the growing importance of hard processes with increasing
value of the hard scale. The increase in the towards and away regions is a consequence of
the emerging two-jet structure. The overall growth shows the increasing role of the radiation
of additional gluon(s) leading to a more complex partonic structure of the event during the
hadronisation processes.

Next step of the analysis was focused on the transverse, UE-dominated region. This region
was on the event-by-event basis divided into the transMax and transMin regions, with the
former being sensitive to the hard and MPI processes and the latter almost solely sensitive
to the MPIs. The ⟨ntrk⟩ and ⟨ΣpT ⟩ distributions were measured as functions of pleadT . They
show a characteristic shape with an initial rapid increase followed by a sort of a plateau. These
distributions are relatively (within the errors) well reproduced by the used Monte Carlo model
in the plateau region and largely overestimated for lower pleadT values. Such a conclusion can be
extended to the transDiff (=transMax-transMin) distributions.

Some constraints on the Underlying Event phenomena can be also derived from a study of the
per-event mean transverse momentum of charged particles, ⟨mean pT ⟩, as a function of ntrk or
pleadT . Such analysis was performed for the transverse, transMax and transMin and transDiff
regions. It has to be stressed that these are the only dependencies properly predicted by the
Pythia 8 A2 single diffractive Monte Carlo.

Inadequate description of the measured distributions provided by the Pythia 8 A2 single diffrac-
tive Monte Carlo resulted an attempt to tune the model parameters. One should note that
the distribution of the charged particle transverse momentum practically remains unchanged
vs. the performed variations of the parameters’ values. Dramatic effects were seen for distri-
bution of the charged particle multiplicity and ⟨ntrk⟩. The latter was used in the final tuning
fit. These comparisons allowed to select important parameters and to perform the fit. The
resulting setting of the Pythia 8 A2 single diffractive model quite well reproduces the discussed
experimental results.

The above findings clearly show a need for further analyses and studies concerning the tune of
the Pythia 8 single diffractive model. Such investigations should be based on the enlarged data
samples and they should include a wider set of observables. Eventually, they should also cover a
common tuning of the parameters pertaining to the description of diffractive and non-diffractive
processes, and should be based on the diffractive and inclusive data.

92



Appendix A

Additional information

Table A.1: Number of tracks after each cut and percentage of tracks which passed a given cut
compared to previous one from sample triggered by the HLT_noalg_L1AFP_A_OR_C trigger.

Cut # of tracks % of tracks
All 67 124 984 100%
pT > 500 MeV 26 965 260 40.17%
|η| < 2.5 26 423 334 97.99%
|d0| < 1.5 mm 21 067 340 79.73%
Pixel hits ≥ 1 20 775 224 98.61%
SCT hits ≥ 6 19 085 774 91.87%

Table A.2: The number of events after each cut and the percentage of events which passed a
given cut with respect to the previous one.

Cut # of events % of events
All 6 383 128 100%
L1_AFP_C 4 859 382 76.13%
1 vertex 2 693 824 55.44%
1 proton 2 563 717 95.17%
0.035 < ξ < 0.080 1 493 512 58.26%
# of tracks > 0 1 362 333 91.22%
# of tracks ≤ 50 1 361 866 99.97%
pleadingT > 1 GeV 753 951 55.36%

Table showing number of event passed by each selection step.
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Table A.3: The number of tracks after each cut and the percentage of tracks which passed a
given cut with respect to the previous one.

Cut name # of events % of events
Initial 4859382 100%
1 vertex 2693824 55.44%
1 proton 2563712 95.17%
Proton ξ 1499258 58.48%
Tracks > 0 1367856 91.24%
Leading pT > 1 GeV 758374 55.44%
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