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The human hearing sense is an astonishingly effective signal processor. 
Recent experiments [1, 2, 3] suggest that it is even capable of overcoming 

limitations implied by the time-frequency uncertainty relation. The 
latter, mostly known from quantum mechanics, requires that the 

product of uncertainties in time and frequency, ∆t∙∆f , cannot 
be smaller than the limiting value ∆t∙∆f = (1/4π), 

 which holds when the signal is a harmonically 
oscillating function with a Gaussian 

envelope.
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BOX 1: TEST FOR THE EFFECT OF GAUSSIAN 
ENVELOPE ON THE PITCH OF A PURE TONE 

In the test en220_cos.mp4 the listener is asked to determine 
the pitches of three consecutive sounds. The first reference 
sound is a long cosine signal so that its pitch is readily recog-
nizable. The second sound is a cosine signal cos(2πf1t) wrapped 
in a Gaussian envelope exp(-t2/2(∆t)2). The width ∆t of the 
Gaussian decreases in the consecutive sequences. The third 
sound is the Gaussian envelope alone. The signal underlying 
frequency is f1=220Hz. The reference sound has a frequency 
3×f1(third harmonic of the signal). The width ∆t decreases with 
time of the experiment in the following manner: i) starting 
from 1000/Fs=22.676 ms to 200/Fs=4.535 ms by 50/Fs=1.135 
ms and: ii) from 199/Fs= 4.533 ms to 1/Fs=0.0227 ms by 1/Fs  
where Fs=44100 s-1 is the standard sampling rate in 
the *.wav format of sound files. The listener sees the 
number of the experimental sequence and the corre-
sponding width of the envelope in ms on the screen. 
This allows one to trace curves analogous to Fig. 1.  
The test Env220_cosRETRO.mp4 contains the same sounds in 
order of decreasing ∆t.

T
he acoustic pressure of such a signal is  
p(t)=p0exp(-t2/2(∆t)2)cos(2π f1t), where  
f1 is the underlying frequency. The spec-
trum of the signal is also Gaussian, p(f)= 

p0exp(-(f-f1)2/2(∆f)2) and the widths of the two Gaussian 
functions are inversely proportional to one another. 

Whereas the theorem follows directly from properties 
of the Fourier transform, its significance both in quantum 
mechanics and in macroscopic physics is still debated. The 
problem resides in the meaning of words such as “width”, “ex-
tent” or “uncertainty” in the theory of signal processing and in 
statistics. According to the standard quantum mechanical in-
terpretation a sufficiently long measurement time is needed to 
achieve a prescribed precision in determination of the energy 
E=hf of a stationary quantum state. Shortening the duration 
time of a pulse leads to broadening of its spectrum. Broadband 
properties of attosecond optical pulses are now investigated 
for applications in condensed matter studies [4]. Here we 
propose some simple acoustic tests that help to elucidate the 
extraordinary abilities of the human hearing when exposed 
to pulses of duration times comparable to or shorter than 
one oscillation cycle. This is what we call ultrashort pulses. 

The ear is a frequency detector. In particular, a peri-
odic acoustic signal of frequency f produces a sensation 
of pitch H (the tone height). A known tune, i.e., a se-
quence of sounds of different pitches, is recognizable as 
long as the frequency ratios of the consecutive sounds 
are conserved. This impressive equivalence of pitch 

differences – called musical intervals – to frequency ra-
tios implies that the pitch-frequency relation is strictly 
logarithmic. For example, in the conventions adopted by 
MIDI (Musical Instrument Digital Interface) the relation 
reads H=69+12log2(f/440Hz). The exact evolutional and 
physiological foundations of this relation are not well 
understood to the best of our knowledge. 

Among all periodic signals the purely sinusoidal ones, 
called pure tones, are the closest counterparts of station-
ary quantum states. They are mostly exploited in what 
follows. The presence of higher harmonics, which does 
not affect the periodicity of the signal, results in changes 
in what is called timbre (tone colour) of the sound.

Sinusoidal signals  
with Gaussian envelopes 
The test ep220_cos.mp4 [t1] is designed to allow the read-
er to appreciate the effect of a Gaussian envelope on the 
perceived pitch of a pure tone. The listener is provided 
with three sounds: i) a relatively long reference tone,  
ii) a cosine signal cos(2πf1t) wrapped in a Gaussian en-
velope exp(-t2/2(∆t)2) and iii) the envelope alone. The 
fundamental frequency is f1=220Hz and the width ∆t of 
the envelope decreases in the consecutive sequences in 
the range from 22.7 ms to 0.0227 ms. Detailed instruc-
tions for the test are supplied in Box 1. 

The results obtained for three test persons (three of 
the authors) are shown in Fig. 1. All persons notice an 
increase in the perceived pitch fp with decreasing enve-
lope width ∆t. The pitch of the sole envelope fEP (Enve-
lope Pitch) starts to be noticeable if ∆t is less than about 
1.13ms. The test persons report the two to be equal,  
fEP = fp , for extremely short pulses, ∆t=0.159ms. We invite 
the reader to listen to the test ep220_cosRETRO.mp4 [t1]  
to appreciate the effect at a different aspect. The fact that 
the effective perceived pitch fp of a short signal is higher 
than the pitch corresponding to the frequency f1 of the 
underlying cosine indicates how our sense of hearing 
overcomes the uncertainty principle. The time needed 
to determine a higher frequency is, put simply, shorter. 
Now we have to find a mechanism to explain this rise in 
pitch. A hint is visible in Fig. 1 where a significant number 
of results concentrate around the frequency fp = 3×f1, i.e., 
that of the third harmonic. The signal seems, therefore, 
to be nonlinearly processed (distorted) prior to reaching 
the heart of the detector, i.e., the basilar membrane of the 
cochlea. The nonlinear distortion may take place in the ear 
itself as well as outside. Another reason for the increase in 
the pitch, this time of purely linear origin, can be related 
to the broadening of the spectrum with decreasing du-
ration, so that some higher frequencies, not necessarily 
harmonic, are also presented to the ear. In any case, the ratio  
fp/f1 is an estimate of the factor by which the uncertainty 
relation is “beaten” by our hearing organs. The factor is 
roughly constant in the region where the supposed third 
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BOX 2: TEST FOR EFFECTIVE ENVELOPE PITCH OF A GAUSSIAN PULSE 

The test eep.mp4 consists of pairs 
of sounds. The first sound is a co-
sine wave of frequency 660 s-1, long 
enough to easily determine its pitch. 
The second sound is a pure Gaussian 
envelope exp(-t2/2(∆t)2). The maxi-
mum amplitudes of the signals are 
equal. The width ∆t of the Gaussi-
an decreases with the number of 
pairs in the manner analogous to 
Box 1 i) starting from 1000/Fs to 
200/Fs by 50/Fs and ii) from 199/Fs 
to 1/Fs by 1/Fs, where Fs=44100s-1 

is the standard sampling rate The 
sequence number and the width 
in ms are visible on the screen. The 
listener is asked to attribute an in-
terval to each pair of sounds heard. 
The corresponding frequency fEP(σ) 
should be calculated knowing the 
frequency ratios defining each inter-
val (see, e.g., http://en.wikipedia.org/ 
wiki/List_of_pitch_intervals). Listen-
ers with absolute pitch hearing may 
find the reference sound redundant. 
The listeners without knowledge of 

musical intervals may give their re-
sponses in terms of beginnings of 
known tunes. Multiple listening to 
the test may give more precise re-
sults. Sometimes subjects hesitate to 
attribute a perceived interval due to 
the approximate character of the Ef-
fective Envelope Pitch. The responses 
may also be different for subjects who 
are accustomed to different intervals 
than those used in European music. 
The file eepRETRO.mp4 presents the 
sequence in order of increasing ∆t. 

m FIG. 1: Effective pitch of a cosine signal with a Gaussian envelope and the pitch attributed to the 
envelope itself as a function of the pulse’s duration ∆t, for three different test persons (MM, PS and 
PZ). Here, f1 is the frequency of the enveloped cosine signal, fp the perceived pitch of the enveloped 
cosine signal and fEP (the envelope pitch) the perceived pitch of the envelope itself.

. FIG. 2: Pitch attributed to purely Gaussian pulses (envelopes only) as a function of duration ∆t.

harmonic is generated and, at the same time, the pulse 
is too short to allow the fundamental frequency to be 
detected. A significant increase in the factor is visible for 
extremely short pulses. Noteworthy is that the “beating of 
the uncertainty principle” by more than a factor of ten, as 
reported in [2], concerns essentially quantities which are 
of a very different nature than the pulse’s duration time ∆t. 

The shorter the sharper
An intriguing result of the test discussed above is that 
a certain pitch is attributed to a purely Gaussian pulse 
without any underlying periodic signal. The pulse must be 
very short for this to be the case, i.e., ∆t<1.5ms. One may 
realize that such pulses are in fact clicks or snaps. In other 
words: they are point-like events on the axis of time. The 
shape and the duration of such pulses are surely beyond 
the reach of human perception. Yet differences in what 
can be qualified as pitch or timbre offer the possibility to 
obtain insight into such properties. Let us have a closer 
look at the phenomenon. 

The dependence of the frequency fEP (the perceived 
pitch of the envelope alone) on the pulse’s width ∆t can 
be studied with the test eep.mp4 [t2] described in Box 2. 
The listener is asked to determine the musical interval 
between a relatively long reference tone and the pulse. 
Knowing the intervals in terms of the frequency ratios 
one can trace the desired function fEP(∆t). It is clear that 
the shorter pulses appear sharper. The results obtained 
by the authors are represented in Fig. 2 as a log-log plot.

The incontestable straight-line behaviour indicates a 
power law fEP(∆t)≅1/∆tα. It is interesting that the expo-
nent α is almost identical for the two test persons who 
lack an absolute pitch hearing (α=0.271±0.031 for PS 
and α=0.260±0.023 for PZ) and much higher for the 
only test person who does have absolute pitch hearing 

http://en.wikipedia.org/wiki/List_of_pitch_intervals
http://en.wikipedia.org/wiki/List_of_pitch_intervals
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as depicted in Fig. 3. It is not easy to detect a difference in 
width of the two vertical lines on the left hand side. The 
difference is, however, immediately clear if the area cov-
ered by each line, i.e., the product of its width and length, 
is known to be constant, as is seen on the right-hand side. 

A practical measurement of the duration of a Gauss-
ian pulse with the use of its spectral properties raises 
the question of the discriminability – also known as 
the just noticeable difference – dl∆t (difference limen) 
of duration times. With the tests described in Box 3 
[t3] the reader will find for herself/himself the smallest  
noticeable difference dl∆t as a function of ∆t. The ex-
perience of the authors suggests that, when provided 
with two short purely Gaussian pulses of slightly dif-
ferent widths, some people distinguish two qualities: 
the effective pitch and the timbre. More precisely, if 
the duration times are very close, some subjects judge 
the pitches equal although they still notice a difference, 
which can be qualified as a difference in timbre. The 
results obtained by the authors indicate that the ‘differ-
ence limen’ associated with the effective pitch is fairly 
proportional to the duration of the pulse. Thus, it follows 
the Weber-Fechner law [5] stating that dl∆t/∆t=const. In 
contrast, the difference limen as judged by the timbre 

(α=1.30±0.05 for MM). A plausible mechanism of the 
sensation of the envelope pitch is that the spectrum of the 
pulse is filtered by the ear in such a way that the maximum 
of the filtered spectrum shifts towards higher frequencies 
with increasing width ∆f of the incoming spectrum, i.e., 
with decreasing duration ∆t. To model such a filter we 
adopted the idea of Helmholtz that an incoming signal 
excites a series of damped oscillators, each of which tuned 
to its own distinct eigenfrequency. The effective pitch cor-
responds to the oscillator that, when excited by the pulse, 
attains the highest amplitude. More details on the model 
can be found in [3]. The frequency of the most excited 
oscillator is also shown in Fig. 2. The power law is satisfied 
to great accuracy in the region studied, but the exponent 
is still different: αtheory=0.6939±0.0005.

Sensing submillisecond time intervals 
It is clear that the increase in the effective pitch with 
decreasing duration ∆t is most significant for the short-
est pulses. This follows, of course, from the uncertainty 
principle for Gaussian envelopes: ∆f=1/(4π∆t). Therefore, 
paradoxically, changes in the duration are most easily 
discernible for the shortest pulses. A similar effect occurs 
in the assessment of the width of a line drawn on a paper 

c FIG. 4: Just noticeable 
difference in pulse width vs. 
pulse width as detected by the 
authors (MM, RG, PZ and PS). 
The lines represent linear fits. 

BOX 3: TEST FOR DISCRIMINATION LIMEN OF DURATION TIMES OF GAUSSIAN PULSES 

The reader can check the dis-
crimination limens for the width 
parameter ∆t of Gaussian signals ex-
p(-t2/2(∆t)2) in the range 1Fs<∆t<25/
Fs, i.e., 0.023ms<∆t<0.567ms, where 
Fs=44100s-1 is the standard sam-
pling rate. There are 25 files here, 
each corresponding to the initial 

width parameter ∆t=NN/Fs where 
the integer number NN is indicat-
ed in the file name dlNN.mp4. Each 
file contains a series of pairs of 
sounds. The first sound has width 
parameter ∆t=NN/Fs and the sec-
ond (NN+n·d∆t)/Fs, where d∆t=0.15/
Fs.The listener is asked to indicate 

the pair number nl for which the 
sounds start to appear different. 
The corresponding difference 
nl·d∆t/Fs=dl∆t is an estimate of the 
discrimination limen sought. The 
Weber-Fechner law is satisfied if the 
discrimination limen is proportional 
to the initial width ∆t=NN/Fs. 

. FIG. 3: Assessment 
of the width of two 

narrow lines of equal 
area, using their 

height as a key.
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turns out almost independent of ∆t, i.e., dl∆t=const. Two of 
us noticed just a difference without paying attention to the 
nature of the difference. The results were then just linear com-
binations of both behaviours as seen in Fig. 4. The values of 
the constants depend on the subject. The readers may try to 
trace their own curves. 

In conclusion, simple acoustic tests are able to reveal mech-
anisms which make the ear overcome the uncertainty relation. 
The same mechanisms allow a human subject to distinguish 
the duration times of very short acoustic pulses provided that 
the shapes of the pulses are well defined. This phenomenon 
may be useful in designing devices aimed at measuring pa-
rameters of ultrashort pulses. n
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Links to tests

[t1] https://drive.google.com/folderview?id= 
0BwQPqgssghTtZDNwY2Z0NmgzRVE&usp=sharing

[t2] https://drive.google.com/folderview?id= 
0BwQPqgssghTtQkhHanZJd3hScDg&usp=sharing

[t3] https://drive.google.com/folderview?id= 
0BwQPqgssghTtZUdJOU9XX0pna00&usp=sharing
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