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Abstract

The thesis discusses computing environment for phenomenology of τ lepton decays.
The study is performed with TAUOLA Monte Carlo library and concentrates on
decays τ− → (πππ)−ντ . Importance of connection between the experimental data
and model building is investigated. Special emphasis is put on available data dis-
tributions as a limiting factor in model development.

τ decays apart from being interesting field on their own are also used as a tool
for measurement of hard electroweak and also quantum chromo-dynamic processes.
Investigation of how different theoretical models can affect such measurements was
done with help of Neural Networks on the example of Higgs charge parity state
measurement

Last but least, future needs of experiments and possible paths of tools develop-
ment are studied and discussed together with recent improvements in TAUOLA li-
brary. Most notably new initialization is introduced and option for user-programmed
models is added. Context behind introduced modifications and features is given.

Streszczenie

Rozprawa przedstawia środowisko obliczeniowe dla fenomenologi rozpadów leptonów
τ . Do badań użyto biblioteki Monte Carlo TAUOLA pozwalającej na generowanie
rozpadów leptonów τ . Praca koncentruje się na rozpadach typu τ− → (πππ)−ντ .
Tworzenie modeli teoretycznych powinno być oparte o dane experymentalne, ze
względu na konieczność optymalizowania przewidywań oddziaływań silnych pośred-
nich energii. Zbadano jak jakość danych oraz sposób ich przedstawienia może po-
tencjalnie wpływać na uwydatnienie lub ukrycie właściwości fizycznych opisywanych
rozpadów.

Rozpady leptonów τ są także narzędziem do badania innych procesów, jak cho-
ciażby pomiary parametrów bozonu Higgsa. Takie pomiary mogą być zależne od
użytego modelowania rozpadów lepronów τ . Z pomocą sieci neuronowych podjęto
próbę oceny jak silna jest to zależność.

Praca opisuje rownież rozwój narzędzia TAUOLA w kontekście potrzeb
przyszłych eksperymentów, a także dyskutuje dalsze ściezki rozwoju. Umoty-
wowanie zmian również zostało opisane.
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Chapter 1

Introduction

Elementary particles physics is a field devoted to describe most fundamental building
blocks of mater. There are 17 particles we consider elementary - 6 quarks, 6 leptons
(together called fermions), 4 gauge bosons and 1 scalar boson. This thesis focuses
on the heaviest known lepton which is the τ lepton.

The τ leptons were first discovered at SLAC in a series of experiments [1] between
years 1974-1977. The mass of the τ lepton is 1.777 GeV/c2 and a lifetime of 2.9×
10−13 s [2]. It is the only known lepton that can decay into hadrons, and does so
roughly 65% of the times. The decays are P parity sensitive. There are dozens
τ lepton decay modes, most of which are not described as precise as the available
data. Therefore models aiming to describe τ lepton decays need to be constantly
updated.

One type of tools that are used by the experiment are Monte Carlo (MC) gen-
erators, which allow modeling of the physical process in simple and comprehensible
way, without need for laborious analytical calculations. Such modeling can help
finding optimal experimental setup for measurement of specific expected/possible
properties of particles and interactions. In τ lepton physics one of the most promi-
nent MC generators is TAUOLA library [3], which allows for modeling of τ lepton
decays. Research described in this thesis was dominantly performed with the help
of particular MC generator.

The thesis is organized as follows: Chapter 2 is dedicated to non specialists
and gives brief introduction on particle physics, τ leptons and MC generators. It
is followed by Chapter 3 discussing experimental measurements relevant to the τ
leptons and topics brought later in this thesis. Special emphasis is put on precision of
measurements as factor dictating our approach towards MC and theoretical models.

Chapter 4 gives further insight into MC techniques and their implementation,
concentrating on TAUOLA MC library. Next Chapter 5 gives brief introduction
to electroweak interaction, only on the level necessary for understanding topics dis-
cussed in following chapters. It also introduces and describes importance of searches
strongly related to the τ physics. Topics of intermediate energy (0.5-2GeV/c2) quan-
tum chromo-dynamics, rare τ decays, measurements of Higgs properties and Beyond
Standard Model hypotheses like Lepton Flavour Violation are touched upon.

Comparison of different models for τ− → π0π0π−ντ decay and its implications
for future progress in the field are discussed in the Chapter 6. This chapter is an
important supplement to the publication [A] written by the author of this thesis.
Some results from that publication are brought up for the context.

Development of TAUOLA library over past few years is recounted in the Chap-
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ter 7. First Section 7.1 discusses different approaches to fitting tested on Resonance
Chiral Lagrantian model that later became one of the options available through
TAUOLA. It is followed by Section 7.2 describing features of most recent initial-
ization [B]. Special emphasis is set on the newly added framework for plugging
user-defined models. Possible future improvements are mentioned in last section of
the chapter.

Chapter 8 gives brief introduction into vast topics of Machine Leaning and Neu-
ral Networks, then follows with practical application of said techniques. Systemat-
ical errors associated with different modeling are estimated when Neural Network
technique is used for distinction between even and mixed Higgs CP (C -charge con-
jugation, P- parity symmetries) state.

Chapter 9 summarizes the thesis.
References to papers I am co-author are given numbered by capital letters.



Chapter 2

Theory for non specialist

Field of elementary particles physics and Monte Carlo methods, stand at the base
of the research presented in this thesis. Even people who do have some general
knowledge in physics often do not know the details of what the τ lepton is. Hopefully
this introductory chapter is enough to answer that for people outside the field of
particle physics.

2.1 Introduction to elementary particles

Elementary particles are most basic building blocks of nature. What was considered
elementary evolved with time as our knowledge expanded, however the basic defi-
nition remains the same: The elementary particle is an object that does not have
any internal components. These particles can be grouped based on their properties.
Figure 2.1 features all currently known elementary fields with their basic parame-
ters and groups to which they are assigned to. Division into the groups is based on
characteristics that will be discussed below. Most basic differentiating factor is the
spin. Particles with integer spin are called bosons, while those with half spin are
fermions.

There are five elementary bosons, whereas four of them are gauge bosons and
one is a scalar boson. Gauge bosons (photons, gluons, W and Z bosons) are particles
carrying basic forces of nature: electromagnetism, strong force and weak force. In
further discussion we ignore gravity, as no established quantum theory of gravity
exist. While most people understand forces as invisible springs connecting two
interacting objects, in reality it looks more like mail exchange with help of carrying-
pigeons (gauge bosons). The only known scalar boson - Higgs particle [4] serves
a whole different purpose. Its importance is commonly simplified to giving other
particles their masses1. It is not within the scope of this thesis to fully explore
this topic, but it should be noted that there is way more to Higgs boson than
that. The Higgs boson is closely related with other particles couplings also P, CP
parity properties. It is even considered to participate in the so called inflation of
the universe e.g. [5] or be responsible for vacuum stability [6]. That is why it is
sometimes called God Particle [7].

Fermions the construction blocks of the mater we see daily. There are twelve
known fermions divided into two basic categories (six particles each). Quarks are
the fermions that interact with environment through all forces. Most notably quarks

1 Acquisition of masses happens via spontaneous symmetry breaking.
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Figure 2.1: Elementary particles/fields and their basic parameters. Particles are
assigned into groups and subgroups based on their properties.

interact strongly and are building constituents of all hadrons, like proton and neu-
tron. Quarks can only be seen in bound states called hadrons. Even though they are
elementary, they can only exist while interacting with other quark, because of con-
finement [8]. Leptons have two subgroups based on their interactions. Uncharged
leptons are called neutrinos, which can interact only by weak force, while charged
leptons can also interact by electromagnetism.

Within fermions we can distinguish three families, which differ by mass and
quantum numbers but have the same spin and charge. Particles from heavier families
decay into lighter ones (except neutrinos). Therefore, in everyday life we see mater
build only with particles from first family.

Apart form described above particles there are also anti-particles. Anti-fermions
have opposite charge and quantum numbers, while bosons are their own antiparticles
except for W boson (which is charged). W+ boson is an anti-particle to W− boson.
As far as we know they do not have any additional properties over regular particles.
If particle and its antiparticle counterpart meet they annihilate into photons. In
addition all known processes of creation both particles and antiparticles are produced
in equal amount. That creates the matter - antimatter asymmetry problem. Though
the Standard Model2 [9] provides some mechanisms of CP symmetry breaking, it
does not provide any way of breaking lepton nor barion number. Therefore, most
of the matter should annihilate based on equal production, leaving almost only
photons and no barionic matter. Some of the approaches to tackle this problem will

2 A theory describing interactions between elementary particles.
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Figure 2.2: Feynman diagram of τ− decay.

be discussed later.

2.1.1 τ leptons

Mass (1.777 GeV/c2) of the τ leptons makes them the only leptons with mass higher
than the lightest hadron (that is pion M

π
0 = 0.135GeV/c2) and therefore can decay

into them. Hadronic decays cover around 65% of all τ lepton decays [10]. Remaining
percentiles are split between decays τ → µντ ν̄µ and τ → eντ ν̄e. Taus decay only
through weak interaction, by emission of W boson and subsequent creation of ντ ,
which is illustrated in Fig. 2.2. Leptonic decays require quantum electro-dynamics
(QED) corrections, while hadronic decays fall into calculation schemes of quantum
QCD, of intermediate energy range (0.5− 2.0GeV)).

2.2 Monte Carlo methods

Monte Carlo methods [11, 12] are typically defined as a class of numerical methods
based on random number generation. More complicated, but also precise definition
is given by J. H. Halton [13]: Representing the solution of a problem as a parameter
of a hypothetical population, and using a random sequence of numbers to construct
a sample of the population, from which statistical estimates of the parameter can
be obtained.

MC methods make no sense when trying to resolve simple problems, but for
problem with high variation of initial state or multiple intermediate stages it makes
its way. As an example: calculating the odds of getting specific sum of dots when
trowing two six sided dices, would be to simple to be worth the effort of writing
and using MC simulation, but if you had to trow 10 dices and number of sides of
each dice was randomly selected ranging from 4 to 100 then MC simulation might
be easier and faster solution. Ultimately it boils down to dimension of the problem
- the bigger the dimension, the more useful MC methods are. Weather models,
traffic simulations, modeling of diffusion, numerical integration, all of these, use
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MC methods.
First published paper on the topic originated in Manhattan Project [11, 12].

In [14] it is said, that E. Fermi already used the method for solving neutron transport
equations in nuclear power plants in 1930’, but didn’t publish anything on it. It was
first usage of the method in a modern way, meaning with help of mechanical device
- FERMIAC. The very first documented use of randomness was done by G. Compte
de Buffon in 1777. Later, his experiment known as Buffon’s needle was used by
Laplace in 1886 to estimate the value of π.

In particle physics MC generators are invaluable help. They allow for modeling
whole experiment from collision to detector response, testing methods of analysis
and event selection criteria. They also help with systematic error estimation and
even fitting of model parameters (Markow chain MC [15])

Analysis presented in this thesis are done with the help of TAUOLA MC li-
brary [3, 16]. It is a MC generator for τ lepton decays with a long history starting
in 1991 or even earlier. Recent updates in TAUOLA will be discussed later in this
thesis.



Chapter 3

Precision and nature of
experimental data in τ lepton

physics

Physics is a science strongly connected to empirical observations, therefore, in this
chapter precision of the experiments researching τ lepton will be discussed. Some
historical overview will be provided, as well as some possible future developments,
to complete experimental background for this thesis.

3.1 Past measurements

Since the discovery of the τ lepton [17] experimental environment evolved until
establishment of B-factories operating at Υ(4S) peak. It happens so that at those
energies cross section for e+e− → τ+τ− is still relatively high - 0.919nb [18], (cf. Fig.
3.1). Therefore, the B-factories are also superb place to study τ lepton properties.
That is not the case for experiments reaching energies high above Z boson peak and
those colliding protons, where τ pair production cross section is much lower, while
cross section for hadronic processes i.e. background increases.

Comparing experiments associated with LEP facility (OPAL, ALEPH) and op-
erating at the same time CLEO experiment (CLEO II detector [19]) we have two or-
ders of magnitude bigger datasets (of the τ lepton decays) in the latter, see Table 3.1.
The advent of B-factories like BaBar and Belle enabled increasing the amount of
ττ pairs produced by another two orders of magnitude in following decade. Those
experiments concentrating on relatively low energies could achieve big improvement
in luminosity.

The sheer amount of data makes measurements at B-factories potentially pre-
cise. The experimental data currently reaches precision levels beyond 0.1% in bins
of invariant mass distributions coming from decay channels with high branching
ratios e.g. τ− → π−π−π+ντ . Such precision already requires QED loop correc-
tions at the level of matrix element calculation. Topic of precision of theoretical
predictions will be discussed in greater details in Chapters 5 and 6. Here it should
only be stated that experimental precision exceeds that of theoretical predictions
by orders of magnitude. Therefore, any models for well established hadronic decays
have no sufficient predictive power. Model building has to be performed in a data
driven fashion and the result has to be fitted to the experimental data. At the
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Figure 3.1: e+e− → τ+τ− cross section (black) and researched energy ranges of
different experiments (red). Data points are taken from e+e− → l+l− at CESR,
PEP, TRISTAN, LEP. B-factories operate at 10 GeV τ -charm factories at 2-5GeV.

Experiment Accelerator CM energy Luminosity [fb−1] No. τ pairs

OPAL LEP I/LEP II 90-209 GeV ∼1 200 ×103

ALEPH LEP I/LEP II 90-209 GeV ∼1 300 ×103

CLEO CESR 3.5-12 GeV ∼5 14 ×106

BaBar PEP II 10.6 GeV 513.7 440 ×106

Belle KEKB 10.6 GeV > 1000 ∼1 ×109

Belle II Super KEKB 10.6 GeV exp. > 40000 > 40 ×109

Table 3.1: Comparison of data samples, center-of-mass (CM) energies and luminosi-
ties of selected experiments researching τ leptons. OPAL and ALEPH operated in
the years 1989-2000. CLEO started operating in 1979 and stopped the year 2000
and undergone two major upgrades along the way (we exclude CLEO-c here). Belle
experiment ran from 1999 to 2010 and BaBar from 2000 to 2008. Belle II started
collecting data in 2018.
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same time, model independent analysis as described in [20] should be the ultimate
goal. Until now, the CLEO collaboration was the one closest to achieving this goal
and in Ref. [21] declared that such model independent analysis is being performed,
while publishing the analysis that has performed a three-dimienional (Dalitz plots
in different ranges of Q2) fit of theoretical model to the τ− → π0π0π−ντ data. In
Ref. [A] it was studied how usage of such distributions instead of 1-dim invariant
masses of final state particles can improve tests of theoretical models, as more of
underlying properties are disentangled. BaBar collaboration managed to publish
only one-dimensional distributions [22]. Ongoing developments in TAUOLA MC,
discussed in chapter 7, are in part motivated by the desire to enable/simplify model
independent analysis as well as model parameters fitting for τ decays with three
scalar particles in final state.

Validation of theoretical models by fitting to the experimental data should be
done (if possible) within experimental collaboration even if data is in principle pub-
licly available. Amount of data is not the only thing affecting precision of experi-
mental measurements. Detector design and backgrounds also crucial, and can help
or hinder specific subset of measurements. Only experimental collaboration mem-
bers can really be competent in full understanding systematical errors associated
with the detector, triggers, particle reconstruction, background estimation, etc. For
example CLEO II detector [19] had very poor separation of charged particles (pions
and kaons), while being very good at measuring π0 mesons. Hence, one-prong 3π
channel analysis is the best we have today, while analysis for three-prong channel
was never published by collaboration.

3.2 Future measurements

This year, Belle 2 started collecting data. With data sample expected from Belle 2
collaboration we should be able to measure τ lepton decays with branching ratios
at the level of 10−10. This gives hope for strong improvement in searches of new
physics. Currently upper limits (90% confidence level) on LFV τ decays are at the
level of 10−8 [10]. This signifies the importance of studying LFV models (and
other models predicting New Physics, e.g. second class currents) and puts strong
requirement for MC generators to simplify introducing and testing such models into
them. This was also addressed in last TAUOLA release [B], and will be discussed
in chapter 7, from MC development perspective.

The τ -charm factories of extremely high luminosities could bring even more
data than Belle II. Although, the topic is still open, as of now it seems one will
be constructed in Novosibirsk [23, 24] There is also similar project considered in
China [25]. Before construction begins it is hard to tell exactly how precise will
be measurements at super τ -charm factories, but I think it is safe to assume data
samples at least one order of magnitude bigger than those we will obtain form Belle
II. Also background and reconstruction conditions should be more advantageous.

New data in the field of intermediate energy QCD (which as we discusses is
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important to τ lepton decays) may also be obtained from unexpected source of
Gravitation Waves measurements from Neutron Stars merger [26]. Already now,
those measurements bring some informations about equation of state of neutral
matter of those stars. It is possible, that with progress in measurement technology
of gravitation waves, we will get some input for models of hadronic τ decays. On
the other hand, measurements from medium energy accelerator physics may become
useful for the equation of state in Neutron (or quark, strange-quark) Stars. Such
possibility certainly is fascinating.



Chapter 4

Monte Carlo method
implementation and its

requirement for the τ decay
physics

In this chapter technical aspects of MC methods will be discussed. We will start
with random number generators and their properties. Then typical MC techniques
and their implementation will be presented.

4.1 Basic components and techniques of MC methods

4.1.1 Random number generation

Monte Carlo event generator is a stochastic tool using random numbers, therefore
its most elementary component (or elementary functionality) is a (pseudo)random
number generator (RNG). Here we should put distinction between true random
numbers and pseudo-random numbers. True random numbers are those generated
in completely unpredictable and unrepeatable way, e.g. from physical experiment.
Throwing a good (unloaded) die would be example of obtaining true random num-
ber, though limited to integer in range 1-6. Pseudo-random numbers are generated
according to strict mathematical formula. They however should have all the sta-
tistical properties of true random numbers, hence from now on, we will call them
random numbers. A typical example of random number generation is a middle
square method [27], invented by J. von Neumann, where you choose a number from
specific range (using specific number of digits) e.g. 1-1000, square it and then use
middle numbers of the result as your new random number. For example you can
start with 234, which gives 54756. Then, you take middle of that - 475, squared it
gives 225625, therefore 56 is your next random number. If we continue with that
choice, we will eventually arrive at loop: 16, 5, 25, 2, 4, 16. Middle square method
is flawed in many aspects, but that makes it great example for what is important
in random number generators.

First of all, RNGs require a seed (or seeds). Seed is a number that starts the
sequence of random numbers and once set, it determines output. The sequence can
be therefore recreated using the same seed. Since the sequence can be recreated
it is not truly random (that is why earlier we used term pseudo-random). This
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Figure 4.1: Initial (X-axis) and following (Y-axis) (pseudo)random number gen-
erated using middle square method, for first 100 numbers. Visible line indicate
correlations between numbers in the sequence. For ”good” RNG such plot should
look homogeneous.

is efficient and useful feature for tests of MC generators. We can e.g. make sure
that our computation using RNG gives same result regardless of operating system,
user-defined setup, hardware, etc. - comparison can provide installation tests. It
is useful during program restructuring, e.g. rewriting into different programing
language. Such ability to debug program would not be possible with true random
numbers, because true random sequence cannot be reproduced.

Second important lesson from middle square method is that RNG can easily
revert to infinite loop or single number. This is an extreme example and most
RNGs do not revert into single number or a infinite loop, but they do start repating
the sequance of generated numbers eventually. Amount of numbers that can be
generated from given method before repeating the sequence is called a cycle (or a
period). Long cycle is one of the properties describing good RNG. What defines
long cycle depends on the problem you want to resolve, but we usually are talking
about length of ∼ 1030 different numbers. For comparison our example had only 12.

Other crucial characteristic of RNG is a lack of correlations in the sequence of
generated numbers. In our example of middle square method correlations between
two consecutive numbers can be seen in Fig. 4.1 as clear lines. Same thing may occur
for a pair of numbers with any number of others in between and is always a bad thing,
as it is definite proof of produced numbers not being random. Similar to Fig. 4.1
plot for good generator should look more like plot of white noise, with no distinct
features. This characteristic (lack of correlations) is often called randomness.

Random numbers are usually used in huge quantities. Speed of generation was
an issue and is one of the factors defining a good RNG. It limited how complicated
mathematical formula could be used. Nowadays computational power available
makes the issue of speed less and less important. That being said, we need to
acknowledge that RNGs almost always were faster, than obtaining sequence of true
random numbers from physical experiment. Speed was at the beginning one of the
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main factors behind development of RNGs
While talking about speed, it should be said that parallelization (in terms of us-

ing different machines or processor cores) can easily be obtained by setting different
RNG seed for each processing core which are then run in parallel. If N genera-
tions are performed that way, we can obtain the sample of the required size N-times
faster. This, of course, puts on the generator additional requirement of randomness
between independently generated series of random numbers, so the results can be
summed without introducing new correlations. It is a simple but efficient way for
parallelization.

4.1.2 Changes of variables and rejection method

While RNGs generate random numbers from flat distribution1, for practical applica-
tions we usually need random numbers following a particular probability distribution
function. There are two main ways of obtaining such number, von Neuman’s rejec-
tion method (also called elimination method or acceptance-rejection method) and
changing the variable by reverting cumulative density function (CDF).

Let us describe the latter method first, starting with some definitions. Assume
we have random variable x. Probability distribution of that variable is a function
that for any given x is equal to probability of randomly obtaining this x. In contin-
uous space (x ∈ [a, b]) such definition is useless because probability of getting any
particular number from infinity of possibilities is 0. Therefore we use probability
density functions (PDF), which should be treated as relative likelihood of obtaining
specific value. PDF (f(x)) is defined such that integral over given range of x is
equal to probability of obtaining result from that range. CDF (F (x)) is a function
which value at point X is a probability of obtaining x ≤ X when x has stated be-
fore PDF distribution. Hence, F (x) must be continuous2, non decreasing and fulfill:
F (−∞) = 0 and F (∞) = 1. PDF and CDF are connected by formula:

F (X) =


0 forX ≤ a∫ X
a f(x)dx forX ∈ (a, b)

1 forX ≥ b
(4.1)

Reverting CDF method uses changes of variable such that:

R ∈ (0, 1), R = F (X) → X = F−1(R). (4.2)

Then, X has a PDF distribution of function f(x), while R is generated from RNG,
therefore has flat distribution. Such change of variables is correct because:

F (X) = P (R ≤ F (X)) = P (F−1(R) ≤ x) = P (X ≤ x), (4.3)
1 At least most of them, but one can find RNG that produces numbers from e.g. Gauss

distribution.
2For a continuous random variable as considered here.
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Figure 4.2: Visualization of rejection method. If we plot our PDF and randomly
generate (x,y) pairs, those below the f(x) (PDF) curve are accepted and those above
rejected.

where P (A) is probability of A occurring.
Changing variable in the presented way is an easy and accurate method. It is

also efficient as one random number from RNG gives you one number from given
CDF. Downside is, that only simple CDF can be reverted analytically and therefore
used in fast manner. Numerical CDF reverting will decrease speed and accuracy.

Rejection method is in its premise similar to physical experiments, where mea-
surement of one variable indicate value of other. An example of such would use
of Buffon’s needle to estimate value of π. Buffon’s needle in its original form was
posed as a mathematical question of geometrical probability. “Suppose we have a
floor made of parallel strips of wood, each the same width, and we drop a needle
onto the floor. What is the probability that the needle will lie across a line between
two strips?” But knowing actual probability (which can easily be calculated and
depends on needle’s length and strips width) and performing the experiment nu-
merous times one has simple MC method of estimating π (inversely proportional to
the probability). Hence, by measuring where needle was dropped, we can actually
measure π.

Let’s say we want to generate random number X from given PDF of f(x), where
x ∈ [a, b] and PDF value ranges from 0 to c. We can obtain it by generating a pair
of numbers: r1 ∈ [a, b], r2 ∈ [0, c] and if f(r1) > r2 then assign X = r1 (accept
event), else repeat generation (reject event). This is rejection method in its simplest
form. Visualization of such method is presented on Fig. 4.2.

To prove the rejection method we need to show that accepted events actually
are of desired PDF:
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P (X < t) =

∫ t

a
f(r1)dr1. (4.4)

r1 and r2 are generated from flat distributions of PDFs 1
b−a and 1

c respectively.
Therefore:

P (X < t) = P (r1 < t|r2 < f(r1)) =
P (r2 < f(r1)|r1 < t)P (r1 < t)

P (r2 < f(r1))
, (4.5)

P (r2 < f(r1)) =

∫ b

a

dr1
b− a

∫ f(r1)

0

dr2
c

=
1

(b− a)c
, (4.6)

P (r2 < f(r1)|r1 < t)P (r1 < t) = P (r2 < f(r1) ∩ r1 < t) =∫ t

a

dr1
b− a

∫ f(r1)

0

dr2
c

=
1

(b− a)c

∫ t

a
f(r1)dr1, (4.7)

P (X < t) =

1
(b−a)c

∫ t
a f(r1)dr1
1

(b−a)c
=

∫ t

a
f(r1)dr1. (4.8)

For multidimensional PDFs rejection method works in the same manner. If
we have m-dimensional variable, we need to generate m + 1 variables and apply:
if f(x1, x2, ..., xm) < xm+1 → accept event, else→ reject. Multichannel generation,
where each channel takes care of distinct structure of enhancements is important to
note. We will not go into details here. In case of TAUOLA an example is explained
in Section 2 (PHASE SPACE AND MATRIX ELEMENTS) of ref [3]. Such methods can
always be confirmed with mathematically formal considerations. We will not cover
the details as they are lengthy and would require a lot of repetition of published
results which are not essential for the present work. We will also not discuss cases,
where distribution features extremely sharp peaks like Dirac delta.

4.1.2.1 Issues of numerical stability

Numerical stability can be divided into two main aspects - efficiency of generation
and precision of the result. More often than not, those issues can be connected. If
required structure of singularities is demanding, density of distribution varies a lot
over the phase space, vast spectrum of difficulties may appear, usually related to
rounding errors or due to fine distribution of random numbers over some subregion
of (0,1) range. That is one of the aspects which needs to be checked whenever
precision range improves substantially. Test with semi-analytical results are then
useful, but even more effective are the tests with analytic results. First papers on
TAUOLA [28] collect such semi-analytical and analytical results for comparison with
MC results.
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Previous subsection described methods for generating numbers of given PDF.
Depending on the choice, some optimization is usually required. In physical prob-
lems we usually deal with hard or impossible to revert CDFs. Therefore some varia-
tion of rejection method is usually used. Looking at Fig. 4.2 one should notice that
for PDFs with very high and thin peaks this method will be extremely inefficient
because most of the random points will land above the PDF curve and therefore be
rejected. This can be mitigated by defining envelope distribution g(r1) such that:

f(r1) ≤ cg(r1). (4.9)

PDF g(r1) must be proven to be efficient for such MC use. Then we change variables
same way as in first part of this section:

R ∈ (0, 1), R = G(r1) → r1 = G−1(R) (4.10)

and
G(r1) =

∫ r1

a
g(R)dR, r1 ∈ (a, b). (4.11)

Second generated variable is still r2[0, c] and we reject event if f(r1)
g(r1)

> r2. Here we
should mention that poorly chosen g(r1) can cause all kinds of problems if e.g. at
any point f(r1)

g(r1)
goes to ∞ or 0.

4.2 TAUOLA implementation of MC methods

MC library TAUOLA has a modular structure allowing for independent tests, op-
timization or substitution of most important components. Those are RNG, phase
space generators, matrix elements and hadronic currents (for semi-leptonic decays
only), see Fig. 4.3. Those are treated as black boxes (at least at some stages of work)
and no internal structure is enforced, but arguments of routines/functions need to
be maintained for communication between blocks.

Hadronic currents are constituents of matrix elements but they contain most of
the theoretical assumptions differentiating theoretical models for particular decay.
That is why they are coded as independent blocks. Matrix elements together with
phase space effectively define PDF of random variables (four-momenta of final state
particles) required for generation of τ decay events. Their definitions are given in
Chapter 6.

TAUOLA by default uses RANMAR [29, 30] RNG. It can easily be replaced, but
as of today no experimental collaboration using TAUOLA has claimed to replace it
with more modern generators. RANMAR should still be sufficient in the upcoming
years.

τ decay events from TAUOLA are generated using variant of rejection method
with weighting events and pre-sampling for maximum weight used to determine
whether or not algorithm accepts the event. Usually this method is called Impor-
tance Sampling. Section 3 of [28] gives exact technical realization. Multichannel
generation is used to control complicated structures of enhancements. It is worth to
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Figure 4.3: Block diagram of most basic TAUOLA components. Some are omitted,
e.g. of phase-space pre-samplers steering. It is to simplify view and because only
expert users will actually look into them.

note that some of these features of phase space generation are predominantly needed
for tests, when in reference analytical calculations narrow width approximations are
used.



Chapter 5

τ lepton physics

This chapter gives introduction to the areas of physics directly connected to the
τ lepton. Main aspect under consideration is precision predicted by theory, while
details irrelevant to my research will not be discussed.

5.1 Fermi’s point-like interaction

The τ decays can be described by Feynman’s diagram in Fig. 2.2. From there we can
use Feynman rules to write down matrix element’s general formula, where because
of its large mass W boson propagator contributes a factor to a G constant only:

M =
G√

2
Jµτ · Jµ, (5.1)

where G is the Fermi constant and Jµτ = ū(N)γµ(v+ aγ5)u(P ) is a leptonic current
associated with decaying τ lepton. The v and a are handedness defining constants,
M is the mass of the τ lepton, P is a four-momentum of decaying τ , qi’s are four-
momenta of outgoing particles except ντ and N is a ντ four-momentum. Jµ is
a current associated with second vertex in the diagram Fig. 2.2. Jµτ and Jµ are
independent1, which is very useful for semileptonic decays, where Jµ is a hadronic
current describing QCD interactions of final state hadrons.

Formulas given in this section have build in two assumptions that slightly limit
the precision on MC predictions. First one is lack of loop corrections, which is
acceptable for precision down to about α/π ≈ 0.2%. Second one is reducing W

propagator −ig
µν−qµqν/M2

W

q
2−M2

W

to i g
µν

M
2
W

using q2 < m2
τ �M2

W . It yields error, depend-
ing on exchanged virtuality (hence mass of decay product) [31]:

Γ = Γapprox. +O(
3

5

M2
τ

M2
W

− 2
m2

M2
W

) (5.2)

where m,Mτ ,MW are the mass of decay product, τ lepton and W boson, respec-
tively. Assuming extreme case of decay into some resonance of mass almost equal
to τ it cannot exceed ∼0.07% and usually it is below ∼0.04%.

One loop QCD radiative corrections introduce ∼ 10% =
αQCD
π enhancement

to semileptonic decay rates [32]. Those should be introduced in hadronic current
as an overall factor, but in general it relies on fits to experimental data anyway.

1 For leptonic channels such formulation is reaching limits of experimental precision and loop
corrections will most likely be necessity for Belle II experiment.
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Theoretical constraints are generally not sufficiently precise, as will be discussed in
next section.

In the following subsections we will briefly describe areas of physics that could
greatly benefit from further exploration of τ lepton decays.

5.2 Intermediate energy QCD

While leptonic τ decays can be relatively well described by weak interaction of W bo-
son and QED, that is not the case for semileptonic decays that fall into low/medium
energy (0,1-2GeV) QCD calculation range. No fully reliable analytical QCD meth-
ods exist for this energy scale. Perturbative QCD while giving us most precise
test of the theory like deep inelastic scattering, LHC measurements and other pro-
cesses [32], is less suitable for low energies due to bad convergence of perturbative
expansion in αQCD. Strong coupling constant is large at those energy scales and
therefore makes the calculations non-predictive. Using spontaneous (chiral) sym-
metry braking one can obtain approximate effective field theories for low energies,
such as Chiral Perturbative Theory [33], where planar QCD diagrams are summed
to all orders.

χPT has approximate SU(3) symmetry in flavour space where available degrees
of freedom are lightest pseudo-scalar mesons: π+, π−, K+, K−, π0, K0, ¯

K0, η. Its
symmetry would be exact if mesons were massless and lightest hadrons were scalars
(Goldstone bosons). Because neither of those statements is true, chiral symmetry of
χPT is broken. It gives good description of low mass hadrons though, usually limit of
applicability is put just below mass of lightest vector particle: Mρ = 0.77GeV. This
is not sufficient for τ lepton decays, therefore extrapolations to higher energies were
proposed, most notably Resonance Dominance Model [34] and Resonance Chiral
Lagrangian [35]. Their implementation into TAUOLA for modeling of τ → πππντ
decay will be discussed in the next chapter. Here, let us only mention that pertur-
bation expansion can be used also in χPT, but again up to a limit. One can not
expect precision of resulting model to be better than 5-10%, may be even 20%, see
discussion in [36]. This is by far not sufficient when compared with the precision
of experimental data. On the other hand properly analyzed data can provide input
for future model builders.

5.3 Beyond Standard Model hypotheses

The Standard Model (SM) [9] describes the strong, weak and electromagnetic inter-
actions via exchange of gauge bosons and is considered a big achievement of modern
science. At least last 30 years of experimental research is mainly confirming SM pre-
dictions, e.g. recent discovery of Higgs boson [37]. That being said, SM can never be
ultimate theory of Particle Physics because it does not include gravity which should
become relevant to particle interactions near the Planck scale (1019GeV). Apart
from that we do have some experimental issues for SM predictions e.g.: matter/ani-
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matter asymmetry [38], neutrino mass [39], dark matter [40]. Theories that try
to address the topics are generally called Beyond Standard Model (BSM) or New
Physics (NP). In this section I want to briefly describe areas where τ physics is
especially relevant to those searches.

Dark matter is a term describing unidentified, invisible constituent of our uni-
verse that interacts by gravity and, we suspect, also by weak force. It does not
interact by strong and electromagnetic force. A this point all we know about dark
matter comes from astronomical observations. If dark matter is made out of elemen-
tary particles, they are not present in SM, hence many models predict additional
particles that could fit the description. Most scientists lean towards supersymmetric
(SUSY) models [41], which predict additional set of particles, similar to that of pre-
sented in Fig. 2.1. It introduces additional symmetry between bosons and fermions.
According to this theory each elementary particle present in SM has a supersym-
metric partner of other type (boson for fermions and fermion for bosons). Naming
scheme of such particles goes like this: supersymmetric partners to fermions gain a
prefix “s”, while partners to bosons get a sufix “ino”. Therefore, we get names like
squarks, sleptons, Higgsino. Supersymmetry is considered by many as most natural
extension of SM. Since τ lepton has relatively large mass those particles could po-
tentially have large Yukawa coupling to τ leptons, hence making them great tool for
this type of searches. This tool is as good as our understanding of τ decays. The
better modeling we have, the more we can do with measurements.

In current definition of SM neutrinos are assumed to be massless. Recently ob-
served neutrino oscillations, require neutrinos to have a non-vanishing mass or SM to
be modified. Oscillation does not allow for direct mass measurement of mass, but al-
lows for probing relation between masses of neutrinos e.g. [42]. Currently upper limit
on τ neutrino mass comes mainly from cosmological measurements [43]. Measur-
ing or improving limits on ντ mass may also be possible through measuring/setting
bounds on Lepton Flavour Violating τ decays. Therefore τ measurements are ex-
tremely important for gaining further insight on the topic.

Widely accepted theory of the Big Bang together with standard model predicts
equal production of matter and antimatter at the very beginning of our universe. If
that was the case, as universe expanded all matter should ultimately annihilate into
photons. Therefore scientists search for any signs of inherent asymmetry between
matter and antimatter or processes that could lead to it. On atomic scale, recent
measurements of anti hydrogen atoms showed exact symmetry in energy spectrum
with regular hydrogen [44]. Same experiment tested the idea of anti-gravity from
antimatter. Results were leaning towards same gravitational interaction of matter
and anti-matter, but uncertainty of the measurement make it inconclusive [45].

On elementary particle scale we look for processes that directly violate bar-
ion/lepton number or lepton flavour. τ leptons could in theory provide us with
such processes. For instance they are more massive than protons, therefore any
experimental sign of taus decaying into barion would be a breakthrough. Other
option would be finding Lepton Flavour Violating decay. Those will be discussed in
following subsection.
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5.3.1 Lepton Flavour Violation

Lepton Flavour Violation (LFV) is one of possible solutions to matter/ani-matter
asymmetry. Experiments are constantly searching for LFV processes, but they are
yet to be found. In the meantime many models and theories are trying to put predic-
tions on where to find them. Among these theories are (minimal) supersymmetry
(SUSY) [41], seesaw models [46], little Higgs scenarios [47] and models with four
generations of fermions e.g. [48].

Since we did not observe experimentally SUSY particles yet, the symmetry must
be broken, therefore they must be heavier than experimentally available production
threshold. With that comes main criticism of the model - in principle the lightest
supersymmetric particle can be so heavy that in no foreseeable future we can produce
it and test the theory. For example in [49] optimistic prediction was that LEP II
could already find evidence of minimal SUSY. Now, 25 years later, we have 2 orders
of magnitude higher energies available, and SUSY predictions are again pushed just
to the next generation of accelerators [50].

Little Higgs scenarios predict additional particles as well, namely vector like
quarks and additional bosons. Those models are more constrained than SUSY and
new particles cannot be heavier than roughly 10 TeV [51]

Models with fourth generation of particles, as the name suggests predict another
set of fermions. In particular existence of fourth generation leptons strongly affects
branching ratios of LFV τ decays [52], where we able to measure them. Such
measurements could exclude competing, previously mentioned, theories for NP.

The problem of LFV can be tackled also by an effective field theory approach
like in [53]. Such approach allows for estimation of all possible operators of required
symmetry with arbitrary couplings. This gives opportunity to test experimental
efficiencies in searches of LFV processes.

All mentioned earlier models are important in respect to the τ physics, because
they predict mechanism for decays like τ− → l−γ or τ− → l−l−l+ which violate
lepton flavour. Those types of decays do not require building more powerful acceler-
ators, only collecting more data. Therefore, they provide a simple way of searching
for new physics.

5.4 Higgs parameters measurements

In previous sections of this chapter we have briefly discussed areas of physics where
τ lepton decays are in the center of the attention themselves, but they can also be
great tools for measurement of properties of particles decaying into τ ’s like Higgs
boson. Once discovered, main aspect of Higgs boson measurements is to check
weather or not it has properties predicted by Standard Model.

SM predicts Higgs particle to be scalar boson (spin zero particle with symmet-
rical wave function under CP transformation), therefore deviation from that would
be clear indication of NP. The τ leptons is a great tool for measuring Higgs par-
ity because of its large mass thus large coupling to Higgs and P-parity sensitive
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decays [54]. Also CP properties of Higgs as well as Z bosons can be studied with
the help of the τ lepton final states. The tools like [55] are useful. Not all τ decay
channel can be used, also those with high branching ratios are most convenient.
The more complicated decay channel, the less precise theoretical modeling. With
the help on Machine Learning one can derive methods to exploit more complicated
decay channels and study the influence of different decay models ambiguities on the
measurement [C]. The multidimensional nature of such measured distributions may
offer a window to better models of intermediate energy range of strong interaction
results.

Measuring Higgs Yukawa couplings to τ is another important test of the Standard
Model. Interestingly first measurements pointed at disagreement [56], but further
analysis showed that H → ττ rates are within SM prediction [57]. BSM hypothesis
like charged Higgs are also likely to be tested through usage of τ ’s [58]. But we will
not concentrate on these studies.



Chapter 6

Hadronic τ decay models
comparison

As was already mentioned, the τ lepton decays into hadrons are excellent probes of
intermediate energy QCD. At the same time we lack good theoretical prediction for
that range1, therefore we rely on models that usually are of limited predictive power.
In this chapter we will discuss some models of τ decaying into three pions and τ

neutrino. Conclusions of this comparison apply also to other more complicated decay
modes. Hadronic τ lepton decays are discussed here in the context of application in
MC generator TAUOLA [3, 28].

6.1 Implementation of theory into Monte Carlo simula-
tion

In the following section I will recall descriptions, use notation and naming conven-
tions from [3] and in following couple of sections we also use notation from [A].

When coding theoretical model into MC we are looking for way of calculating
differential partial width defined in Eq. 6.1:

dΓX = G2 v
2 + a2

4M
dLips(P ; qi, N)× |M|2, (6.1)

where: M is the mass of the τ lepton and qi’s are four-momenta of outgoing particles
except ντ . It is a product of the flux factor, phase-space and matrix element squared.
It is worth noticing that the equations given in this chapter are given for the case of
the τ lepton decaying into three scalars and neutrino. Description given here is not
original, but it is required for references in later sections e.q Sect. 7.1, so we recall
it in a necessary details.

The event generation in MC starts with use of a phase-space parametrization,
which for four body decay, is described by formula 6.2:

1 Especially for decays with three or more hadrons in the final state. Simpler channels, described
by single form factor are usually considered as well described, though we use in part empirical
models.
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dLips(P ; q1, q2, q3, q4) =
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Qmin = m1 +m2 +m3, Qmax = M −m4,

M2,min = m1 +m2, M2,max = Q−m3.

(6.2)

and
λ(x, y, z) = (x− y − z)2 − 4yz. (6.3)

The formula is exact and depends only on masses of final state particles, but used
directly is inefficient for a Monte Carlo algorithm if sharp peaks are present due to
resonances in the intermediate states. Therefore, it requires changes of variables,
which improve the program efficiency while leaving intact the actual density of
the phase space2. Phase space, dLips is calculated independently of the matrix
element Eq. 6.4. Matrix element (Eq. 6.4) consists of weak and hadronic currents3.
The Matrix element for τ lepton decaying into ντ and hadrons is given by:

M =
G√

2
ū(N)γµ(v + aγ5)u(P ) · Jµ. (6.4)

From Eq. 6.4 we can calculate the formula for matrix element squared and con-
tracted with density matrix:

|M|2 = G2 v
2 + a2

2
(ω + ω̂ + (Hµ + Ĥµ)sµ) (6.5)

2 These changes could in principle be avoided for the simulations of the physical case, but are
indispensable for some tests, see Sect. 4.2.

3 Recall Section 5.1
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where:

ω = Pµ(Πµ − γvaΠ
5
µ),

Hµ =
1

M
(M2δνµ − PµP

ν)(Π5
ν − γvaΠν),

ω̂ = 2
v2 − a2

v2 + a2
mνM(J∗ · J),

Ĥµ = −2
v2 − a2

v2 + a2
mν Im εµνρσJ∗νJρPσ

Πµ = 2[(J∗ ·N)Jµ + (J ·N)J∗µ − (J∗ · J)Nµ],

Π5µ = 2 Im εµνρσJ∗νJρNσ,

γva = − 2va

v2 + a2

(6.6)

Note: γva=1 in Standard Model.
For massles ντ formula 6.5 can be simplified to:

|M|2 = G2 v
2 + a2

2
(ω +Hµs

µ). (6.7)

Looking at Eq. 6.4 one can spot that only hadronic current Jµ is model depen-
dent and contains all the QCD interactions involved in hadronic part of the decay.
It is also main source of systematical error because typical precision of the models
is of order of 1/Nc ≈ 30% or 1/N2

c ≈ 10%. Experimental data can reach a precision
level better than 0.1% in many of the cases.

Equation (6.8) defines4 hadronic current as used for all three-scalars decay chan-
nels of TAUOLA:

Jµ = N
{
Tµν
[
c1(p2 − p3)

νF1 + c2(p3 − p1)
νF2 + c3(p1 − p2)

νF3

]
+c4q

µF4 −
i

4π2F 2 c5ε
µ
. νρσp

ν
1p
ρ
2p
σ
3F5

}
, (6.8)

where Tµν = gµν −QµQν/Q
2 denotes the transverse projector, and Qµ = (p1 + p2 +

p3)
µ is the momentum of the hadronic system, while pi (i=1,2,3), denotes the four

momenta of i-th pion. The same ordering is used for masses (mi). The ε
µ
. νρσ is the

Levi-Civita tensor. In equations of this and the following sections we use notation:
si = (pj + pk)

2 where i 6= j 6= k 6= i. Constants: ci (i=1,2,...,5) are Clebsch-Gordan
coefficients, defined specifically for particular hadronic current used. Specific form

4Five form factors are used instead of four imposed by Lorenz invariance for practical purpose.
In principle F3 can be represented as linear combination of contributions to F1 and F2, therefore
it is not employed by some models.
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factors in (6.8) are describing different types of intermediate states5. Form factors
1, 2, 3 are related to pseudo-scalars e.g. a1. F4 describes scalar current e.g. π(1300)

and F5 the Wess-Zumino term [59] is dedicated to vector intermediate states e.q ω.
Eqs. (6.9), (6.10) and (6.11) describe Breit-Wigner functions that are later used

in definition of form factors:

P (S,m1,m2) =

√
(S − (m1 +m2)

2
)(S − (m1 −m2)

2
)

√
S

, (6.9)

ΓL−wave(S,M,Γ,m1,m2, L) = Γ
M√
S

(
P (S,m1,m2)

P (M
2
,m1,m2)

)2L+1

, (6.10)

BW (S,M,Γ,m1,m2, L) =
M

2

S −M2 − iMΓL−wave(S,M,Γ,m1,m2, L)
. (6.11)

These are typical building blocks useful for hadronic currents parameterizations,
such as of Gounaris-Sakurai parametrization [60] for ρ → ππ. In following sec-
tions we will bring mathematical formulas of form factors as coded in TAUOLA for
specific models. Exact values of masses and widths used were collected in Ref. [A].
While they are important, their values can be topic of a whole different discussion on
reasons why those values were used. In this chapter I want to concentrate on struc-
ture of hadronic currents, therefore we will not bring values of masses and widths
explicitly. In the following sections I will give technical description of models. For
the detailed motivation I will rely on references.

6.2 Essentials of Resonance Dominance Model

Resonance Dominance Model6 (RDM) in its basic form was described in [34] and
later used by BaBar collaboration. It assumes cascade process τ → a1ντ →
ρ/ρ′πντ → πππντ with, Q2 dependent a1 width parametrized in Eq. 6.12, as in
Ref. [34]:

G(x) =

{
4.1(x− 9m

2
π0

)
3
[1− 3.3(x− 9m

2
π0

)] + 5.8(x− 9m
2
π0

)
2 if x < (Mρ +mπ)

2
,

x(1.623 + 10.38
x
− 9.32

x
2 + 0.65

x
3 ) if x ≥ (Mρ +mπ)

2
.

(6.12)

Above equation comes from dispersive relations [34] and comparison with AR-
GUS data [61]. Presence of both a1 and ρ in this decay is well established exper-
imentally. Despite, the RDM model does not perfectly describe the experimental
data, but it does describe it well enough to be useful and it is expected not to intro-
duce shaky physical properties to the decay. Form factors in this model have very
basic structure of Breit-Wigner distributions:

5 In case of chain decay, type of the first particle in the chain dictates which form factor is used.
6 In the literature it is usually called Kuhn-Santamaria (KS) model, because of the names of

ref. [34] authors. Here we use alternative name because it is contains idea behind the model.
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F1 =
M

2
a1

Q
2 −M2

a1
− iMa1

G(Q
2
)

G(M
2
a1

)

·


BW (s1,Mρ,Γρ,m2,m3, 1) +

β1
1+β1

BW (s1,Mρ
′ ,Γ

ρ
′ ,m2,m3, 1) if s1 > (mπ +mπ)

2
,

M
2
ρ

M
2
ρ−s1

+
β1

1+β1

M
2

ρ
′

M
2

ρ
′−s1

if s1 ≤ (mπ +mπ)
2
,

(6.13)

F2(s2) coincide with F1(s1) but has an opposite sign when included in hadronic
current. Normalization constant β1 = −0.145. All other form factors are equal to
zero: F3 = 0; F4 = 0; F5 = 0, because this model does not predict any scalar nor
vector component in the decay.

6.3 Essentials of CLEO model

Model developed by CLEO collaboration [21] is an variation on RDM model [34],
but with some significant improvements. First of all, the Q2 dependence of the a1
resonance width is given by new formula (6.14) obtained from dispersive relations
fitted to π0π0π− mass spectra performed by the CLEO collaboration [21]. Com-
plicated form is determined by the a1 decay channels: as a1 virtuality gets larger
thresholds are crossed, allowing for more decay channels to open, therefore changing
the Q2 dependence of the effective width. In the [21] authors suggest that inclusion
on KK∗ threshold was crucial for improving of the fit to experimental distribution
of a1 in τ lepton decay into three pions. When a1 virtuality is above this threshold
it can decay into KK∗, therefore invariant mass distribution of three pions becomes
more steep, see fig. 9 of [21].

WGA(Q
2
) =

C3π ·


0 if Q2

< t1,

5.809(Q
2 − t1)

3
[1− 3.0098(Q

2 − t1) + 4.5792(Q
2 − t1)

3
)] if t1 < Q

2
< t2,

−13.914 + 27.679Q
2 − 13.393Q

4
+ 3.1924Q

6 − 0.10487Q
8 if Q2

> t2,

+ C3π ·


0 if Q2

< t1,

6.2845(Q
2 − t1)

3
[1− 2.9595(Q

2 − t1) + 4.3355(Q
2 − t1)

3
] if t1 < Q

2
< t2,

−15.411 + 32.088Q
2 − 17.666Q

4
+ 4.9355Q

6 − 0.37498Q
8 if Q2

> t2,

+ CK∗ ·


√

(Q
2−t3)(Q

2−(M
K
∗−mK)

2
)

2Q
2 if Q2

> t3,

0 if Q2 ≤ t3,

(6.14)

where:
t1 = (3mπ)2, t2 = (2m

π
0 + mπ)2, t3 = (MK

∗ + mK)2, C3π = 0.23842 and CK∗ =

4.76212C3π and Q2 is given in GeV2 units.
Other part of form factors in CLEO modeling also changed significantly with

respect to KS model. New resonances were included to account for additional decay
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chains:
τ → a1ντ → σπντ → πππντ
τ → a1ντ → f2(1270)πντ → πππντ
τ → a1ντ → f0(1370)πντ → πππντ .
Form factors used in this model are parametrized in Eq. 6.15 and Eq. 6.16

F1 =

(
M

2
a1

Q
2 −M2

a1
−

iMa1
Γa1

1.3281 · 0.806
·WGA(Q

2
)

+ β
M

2

a
′
1

Q
2 −M2

a
′
1
−

iM
a
′
1

Γ
a
′
1

1.3281 · 0.806
·WGA(Q

2
)

)
·

(
β1 ·BW (s1,Mρ,Γρ,m2,m3, 1) + β2 ·BW (s1,Mρ

′ ,Γ
ρ
′ ,m2,m3, 1)

− β3 ·
(s3 −m

2
3)− (s1 −m

2
1)

3
·BW (s2,Mρ,Γρ,m3,m1, 1)

− β4 ·
(s3 −m

2
3)− (s1 −m

2
1)

3
·BW (s2,Mρ

′ ,Γ
ρ
′ ,m3,m1, 1)

+ β5 ·
(Q

2
+ s3 −m

2
2)(2m

2
3 + 2m

2
1 − s3)

18s3

·BW (s3,Mf2
,Γf2 ,m1,m2, 2)

+ β6 ·
2

3
·BW (s3,Mσ,Γσ,m1,m2, 0)

+ β7 ·
2

3
·BW (s3,Mf0

,Γf0 ,m1,m2, 0)

)
. (6.15)

The F2 has the same functional form as F1. The only difference is interchange for
its arguments indices 1 and 2 in eq. (6.8), and that constant c2 has opposite sign to
c1. The parameter β was introduced by the CLEO collaboration for studies of a′1
influence. Due to insufficient experimental evidence it was set to 0, but remains in
the code as an option for future studies. The F3 takes the form:

F3 =

(
M

2
a1

Q
2 −M2

a1
−

iMa1
Γa1

1.3281 · 0.806
·WGA(Q

2
)

+ β
M

2

a
′
1

Q
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a
′
1
−

iM
a
′
1

Γ
a
′
1

1.3281 · 0.806
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2
)

)
·
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(s2 −m
2
2)− (s3 −m

2
3)

3
·BW (s1,Mρ,Γρ,m2,m3, 1)

+ β3 ·
(s3 −m

2
3)− (s1 −m

2
1)

3
·BW (s2,Mρ,Γρ,m3,m1, 1)

+ β4 ·
(s2 −m

2
2)− (s3 −m

2
3)

3
·BW (s1,Mρ
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ρ
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+ β4 ·
(s3 −m

2
3)− (s1 −m

2
1)

3
·BW (s2,Mρ

′ ,Γ
ρ
′ ,m3,m1, 1)

− β5 ·
(s1 −m

2
1)− (s2 −m

2
2)

2
·BW (s3,Mf2

,Γf2 ,m1,m2, 2)

)
.

(6.16)

In Eq. 6.15 and Eq. 6.16, complex coefficients βi (i=1,2,...,7) have values: β1 = 1,
β2 = 0.12ei0.99/π, β3 = 0.37e−i0.15/π, β4 = 0.87ei0.53/π, β5 = 0.71ei0.56/π, β6 =

2.1ei0.23/π, β7 = 0.77e−i0.54/π.
Similarly to KS model F4 and F5 are equal to zero, as no scalar nor vector

intermediate state is predicted. It is worth noting that scalar contribution (F4 6= 0),
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namely τ → π′(1300)ντ subsequently decaying into three pions was studied [62], but
experimental evidence was not sufficient to establish existence of such decay chain.

6.4 Essentials of Resonance Chiral Lagrangian model

Resonance Chiral Lagrangian (RχL) model for τ → πππντ has originated in [63],
which were inspired by Refs. [35, 64]. The reason behind developing RχL model
was to create something theoretically sound, with all desired symmetries, while also
improving description of experimental data. RχL is derived from Chiral Perturba-
tion Theory (χPT) and reproduces next-to-leading order chiral behavior with help
of effective Lagrangians. In this approach form factors take a form:

Fi = F
χ
i + F

R
i + F

RR
i . (6.17)

In above equation Fχi is a chiral contribution, that means τ lepton decaying directly
into final state without intermediate states. FRi and FRRi are respectively single
and double resonance contribution. Therefore, we have three types of decay chains
included:
τ → πππντ
τ → Xπντ → πππντ
τ → Y ντ → Xπντ → πππντ
Most recent publicly available version of the model [65] included contribution from
a1 pseudo-vector (Y in above examples of decay chains) and contributions from ρ,
ρ′, σ (X in decay chains mentioned above). In that model form factors basic (with
ρ only) components are parametrized in Eqs. 6.18, 6.19 6.20:

F
χ
1 = −2

√
2

2
, (6.18)

F
R
1 =

√
2FVGV

3F
2

[
3s1

s1 −M
2
ρ − iMρΓρ(s1,Mρ,Γρ,mπ,mπ, 0)

−
(

2GV

3F
2 − 1

)(
2Q

2 − 2s1 − s3

s1 −M
2
ρ − iMρΓρ(s1,Mρ,Γρ,mπ,mπ, 0)

+
s3 − s1

s1 −M
2
ρ − iMρΓρ(s1,Mρ,Γρ,mπ,mπ, 0)

)]
, (6.19)

F
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2

q
2
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′
+λ
′′
)

3s1

s1 −M
2
ρ − iMρΓρ(s1,Mρ,Γρ,mπ,mπ, 0)

+H

(
s1

q
2 ,
m

2
π

q
2

)
2Q

2
+ s1 − s3

s1 −M
2
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2
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2
ρ − iMρΓρ(s1,Mρ,Γρ,mπ,mπ, 0)

]
, (6.20)
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where
H(x, y) = −λ0y + λ′x+ λ′′, (6.21)

and
4λ0 = λ′x+ λ′′, (6.22)

λ′′ = −(1− 2G2
V /F

2)λ′, (6.23)

λ′ = F 2/(2
√

2FAGV ). (6.24)

The ρ′ contribution is included in similar way to KS model, by replacing in
Eq. 6.19 Eq. 6.20:

1

M2
ρ − s

2 − iMρΓρ(s
2,Mρ,Γρ,mπ,mπ, 0)

→

1

1 + βρ′

(
1

M2
ρ − s

2 − iMρΓρ(s
2,Mρ,Γρ,mπ,mπ, 0)

+

βρ′

M2
ρ
′ − s2 − iMρ

′Γρ′(s
2,Mρ

′ ,Γρ′ ,mπ,mπ, 0)

)
. (6.25)

Then in Ref. [65] inclusion of σ resonance was introduced by adding new terms7

into form factors:

FR1 → FR1 +
4FVGV

3F 2

[
ασBW (s1,Mσ,Γσ,m2,m3, 0)Fσ(q2, s1)

+ βσBW (s2,Mσ,Γσ,m1,m30)Fσ(q2, s2)

]
, (6.26)

FRR1 → FRR1 +
4FVGV

3F 2

q2

q2 −M2
a1
− iMa1

Γa1
(q2)[

γσBW (s1,Mσ,Γσ,m2,m3, 0)Fσ(q2, s1)

+ δσBW (s2,Mσ,Γσ,m1,m30)Fσ(q2, s2)

]
, (6.27)

and

Fσ(x, y) = exp

(
−λ(x, y,m2

π)R2
σ

8x

)
. (6.28)

Most recent variation of this model [66] is not included in any official TAUOLA
release, but curious reader can find there inclusion of scalar and tensor contribution
to the decay within RχL calculation scheme.

While discussing RχL model we did not include Γa1
(q2) modeling yet, which

as mentioned in previous sections is quite important element of theoretical model
7 This was because of new experimental data which became available for Ref. [65]
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for decays mediated by a1 resonance. It is described in detail in [36] and I do not
want to overextend this already lengthy chapter, nevertheless still missing some
important theoretical context. Here I would like to describe its construction at
the level of ideas. In opposition to RDM and CLEO model, here strict theoretical
considerations are used, based on our knowledge of a1. The Γa1

(q2) is constructed
as a sum of known, most important contributors to a1 decay width obtained from
dispersive relations. Therefore:

Γa1
(q2) = Γa1→πππ + Γ

a1→πK
+
K
− + Γ

a1→πK
0
K

0 . (6.29)

Such constructions greatly complicates mathematical formulation of hadronic cur-
rent and increases time of calculation, making direct use of the model inefficient
for fitting. That was mitigated by calculating table of Γa1

(q2) values in only some
points of phase space and use of polynomial extrapolation [65]. When users run MC
simulation 1000 points are generated during initialization for that purpose. This of
course increases initialization time compared to other models for given decay.

6.5 Comparison of RDM, CLEO and RχL models

In this section we will compare previously described models. Comparison will be
done on three levels starting with decay width of the channel, then all possible com-
binations of final state pseudoscalars invariant masses will be used. Third method
for comparison will be use of Dalitz plots in slices in q2 that is three-dimensional
distributions. We will be comparing MC generated samples of 10M τ− → π0π0π−ντ
decay events. Those results are complementary to three prong channel analysis of
Ref. [A].

The most basic property of theoretical model that can be confronted with ex-
periment is predicted partial width of decay channel8. In Table 6.1 we collect values
obtained from investigated models as well as the one calculated using values from
Particle Data Group [2]. One can see drastic difference between older models used
by CLEO and BaBar (RDM model) collaborations, and RχL model and experimen-
tal value. Fits of RχL parametrization included fitting9 to the experimental value
of decay width [65], while as far as we know previously mentioned collaborations
concentrated on recreating shapes of experimentally obtained spectra only.

Use of invariant mass distributions of different combinations of final state parti-
cles is usually natural progression from measuring decay widths and as mentioned
before, sometimes is considered more important. Not all possible combinations of
those are always available, as was the case e.g for early fits of RχL model [67]. Pro-
cessing the data requires manpower which can be a limiting factor, especially for
non mainstream measurements. This is most likely the case with modern analysis of

8 For MC analysis it can be tuned by simple rescaling of coupling constants, without insight
into dynamics. Therefore, it is sometimes ignored.

9 Note, fit was performed to BaBar data of τ− → π
−
π
−
π

+
ντ decays and prediction for one

prong channel was obtained from isospin rotation.
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CLEO RDM RχL experimental
0.15245 0.14689 0.21208 0.20991+/-0.02185

Table 6.1: Partial decay width of τ− → π0π0π−ντ obtained form different models
and from experimental measurements. Results given in GeV/c2 units.

the τ lepton decays to three pions. Most advanced analysis (in terms dimensionality
of distributions used) comes from CLEO collaboration [21] even though later exper-
iments collected a lot more data. Fortunately obtaining distributions from MC is
less laborious, therefore Fig. 6.1 collects distributions obtained from CLEO, RDM
and RχL models as implemented in TAUOLA MC.

Comparison of spectra reveals clear differences between models, most promi-
nently in the π0π0 mass distribution, where peak for RDM model is not as high as
the other two. This should be attributed to lack of σ resonance in RDM model.
Second big difference is a1 modeling, displayed in the π0π0π− mass spectra, which
is significantly different for RχL model. Here the difference is rooted in RχL being
derived strictly from theoretical prediction of (6.29), while a1 modeling in CLEO
and RDM model is obtained from fits of polynomials to the peak shape (see Eqs.
6.12, 6.14). Apart from that differences does not seem outrageously large.

Another step of this analysis is the use of three-dimensional distributions - Dalitz
plot slices in q2. As mentioned before this type of plots was used by CLEO collab-
oration [21] for fits of their model. Figures 6.2, 6.3, 6.4 contain such distributions
obtained from CLEO, RDM and RχL models. While such plots display some dif-
ferences, it is hard to fully grasp how big those differences are. This is much clearer
using ratios of two models results, Figures 6.5, 6.6, 6.7. Already now we can see
that three-dimensional distributions reveal a lot more features of models, especially
interferences between intermediate states (we will touch on that later). One could
ask how big are those differences in measurable sense. A test was performed to
count how many bins in dalitz plots differ by more than 50% and 100% relative to
other models10. Number of events in those bins was also counted. The Table 6.2
collects such analysis for Fig. 6.2 and Fig. 6.4, ratio of which is plotted in Fig. 6.5.
Similar comparisons for other two combinations of models are stored in Table 6.3,
and Table 6.4. From those test we can conclude that difference between models are
substantial and cannot be downplayed as something occurring only in tails of the
distributions which usually have no statistical impact. CLEO and RDM models are
the most different, almost half of the bins exceed 50% difference and more than 10%
of events fall into those bins. It is not as drastic when we compare CLEO with RχL
and RχL with RDM models, but still more than 20% of bins display such difference
and more that 3% of events is in those bins.

Bigger differences between models visible on three-dimensional than on one-
10 Here we include both positive and negative difference, so bins with ratios of above 1.5 and

below 0.66 are included in the statistics for difference exceeding 50%.
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Figure 6.1: Invariant mass distributions obtained from CLEO (red), RχL (green)
and RDM (blue) models. Number of events in π0π− distribution is doubled because
both of possible π0π− combinations are used.
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Figure 6.2: 8 Dalitz plots for slices in Q2: 0.36- 0.81, 0.81-1.0, 1.0-1.21, 1.21-1.44,
1.44-1.69, 1.69- 1.96, 1.96-2.25, 2.25-3.24 GeV2. Each Dalitz plot is distribution for
RDM model in s1, s2 variables (GeV2 units). s1 is taken to be the highest of the
two possible values of M2

π
0
π
− in each event.



6.5. Comparison of RDM, CLEO and RχL models 35

Figure 6.3: 8 Dalitz plots for slices in Q2: 0.36- 0.81, 0.81-1.0, 1.0-1.21, 1.21-1.44,
1.44-1.69, 1.69- 1.96, 1.96-2.25, 2.25-3.24 GeV2. Each Dalitz plot is distribution for
RχL model in s1, s2 variables (GeV2 units). s1 is taken to be the highest of the two
possible values of M2

π
0
π
− in each event.
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Figure 6.4: 8 Dalitz plots for slices in Q2: 0.36- 0.81, 0.81-1.0, 1.0-1.21, 1.21-1.44,
1.44-1.69, 1.69- 1.96, 1.96-2.25, 2.25-3.24 GeV2. Each Dalitz plot is distribution for
CLEO model in s1, s2 variables (GeV2 units). s1 is taken to be the highest of the
two possible values of M2

π
0
π
− in each event.
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Figure 6.5: Ratio of distributions obtained from CLEO model (Fig. 6.4) to the one
from RDM model (Fig. 6.2).
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Figure 6.6: Ratio of distributions obtained from RχL model (Fig. 6.3) to the one
from RDM model (Fig. 6.2).
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Figure 6.7: Ratio of distributions obtained from RχL model (Fig. 6.3) to the one
from CLEO model (Fig. 6.4).
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total number of non empty bins for both histograms: 2432
Analysis relative to histogram Fig. 6.4 number of bins with difference over 50%: 1094
number of events in such bins :1345483
number of bins with difference over 100%: 649
number of events in such bins:510036
fraction of events in first and second case: 0.134604, 0.0510248
============================================
Analysis relative to histogram Fig. 6.2 number of bins with difference over 50%: 1094
number of events in such bins :1182125
number of bins with difference over 100%: 649
number of events in such bins:329447
fraction of events in first and second case: 0.118271, 0.0329611

Table 6.2: Analysis of histogram bins of high ratio for compared models (Fig. 6.5
contains ratio A to B we consider here also ratio B to A). Bins where difference
exceeds 50% and 100% are counted, as well as number of events in those bins and
how big fraction of all events does those bins constitute to.

dimensional distribution should come as no surprise. After all obtaining spectra of
lower dimensionality means integrating some of the dimensions and therefore loosing
some information. In our case it is particularly important for RχL and CLEOmodels
which display interference between vector and scalar intermediate states. On top
of that RDM and RχL models were used to describe those integrated distributions,
while CLEO model was fitted to three-dimensional data. It seems we cannot expect
significant improvement in modeling without modern experimental analysis in three-
(or more) dimensional space. That being said, we can investigate existing models in
terms of visible interference depending on type of distribution used. Here we should
recall results of Table 5 of [A], which show that CLEO model after integration
still allows for decent estimation of impact of it’s components. Interference terms
contribute 20.5% to total width of the τ− → π0π0π−ντ decay, while for RχL it is
only 4.7%. Same analysis shows that it is respectively 22.4% and 9.5% for three-
dimensional distributions. Therefore, use of Dalitz plot slices improves sensitivity in
both cases, but also it is much more important for model like RχL. RDM obviously
does not have such features because in includes only vector intermediate states.

Comparisons presented in this section did not include experimental data, there-
fore should not be treated as definite proof of superiority of specific model. All
things considered, the three compared models were made in different times and
with different goals in mind and fair comparison would require fit of all of them
to same experimental data, optimally three-dimensional one and running the tests
again. Until then, this comparison can be our rough estimate of systematical un-
certainty when the τ leptons are used for other measurements and some model of
the decay needs to be chosen. An example will be discussed in Chapter 8.
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total number of non empty bins for both histograms: 2425
Analysis relative to histogram Fig. 6.3 number of bins with difference over 50%: 785
number of events in such bins :614649
number of bins with difference over 100%: 461
number of events in such bins:256047
fraction of events in first and second case: 0.0614842, 0.0256127
============================================
Analysis relative to histogram Fig. 6.2 number of bins with difference over 50%: 785
number of events in such bins :318735
number of bins with difference over 100%: 461
number of events in such bins:81371
fraction of events in first and second case: 0.0318861, 0.00814031

Table 6.3: Analysis of histogram bins of high ratio for compared models (Fig. 6.6
contains ratio A to B we consider here also ratio B to A). Bins where difference
exceeds 50% and 100% are counted, as well as number of events in those bins and
how big fraction of all events does those bins constitute to.

total number of non empty bins for both histograms: 2432
Analysis relative to histogram Fig. 6.3 number of bins with difference over 50%: 526
number of events in such bins :366445
number of bins with difference over 100%: 214
number of events in such bins:71840
fraction of events in first and second case: 0.0366544, 0.00718595
============================================
Analysis relative to histogram Fig. 6.4 number of bins with difference over 50%: 526
number of events in such bins :316968
number of bins with difference over 100%: 214
number of events in such bins:62157
fraction of events in first and second case: 0.0317094, 0.00621816

Table 6.4: Analysis of histogram bins of high ratio for compared models (Fig. 6.6
contains ratio A to B we consider here also ratio B to A). Bins where difference
exceeds 50% and 100% are counted, as well as number of events in those bins and
how big fraction of all events does those bins constitute to.



Chapter 7

TAUOLA development

In this chapter, we will be discussing TAUOLA developments over the past few years.
It is worth pointing out that any advancements are always dictated by the needs of
the users. In previous chapters some of the motivations behind specific modifications
had been laid out. Here, we will connect those motives to specific work done for
TAUOLA library. Most important issue is the presence of big differences in the
available models and their poor intrinsic precision1. Because of that, models need
to be constantly updated and adapted to new experimental input. One face of such
adaptation are fits of model parameters, other is modification of internal structure2.
When developing TAUOLA we want to accommodate models improvement and
adaptation in an user-friendly way.

7.1 Fitting model parameters

In the Chapter 3 experimental precision was discussed, while Chapter 5 provided
prediction on theoretical uncertainties. Later on, in Chapter 6 we have compared
different models for the τ → πππντ decay. Having that knowledge in mind we can
say that fitting theoretical models to experimental data is a must. Therefore, much
work was put into technical aspects of different options for fitting [D]. Pros and
cons of template morphing approach [69] and the use of analytical functions will be
discussed in following subsections.

7.1.1 Template morphing

Template morphing is a standard technique oriented towards models where an an-
alytical approach is impossible or suffers some case specific problems, like lack of
unfolded data and efficient way of including backgrounds and cuts. For example,
variant of the method was already used in domain of τ physics in [69] for the preci-
sion tests of the Standard Model at LEP. With this method theoretical distribution
is obtained from MC sample. A pre-generated set of MC events is the template.
When change of model parameters occurs weights are calculated for each event.
Effectively weight is a relative probability of event with given dynamics occurring,

1 In this statement I follow the logic of [68]. The theoretical model precision is derived from
models assumption, not from comparison with the data. So, if model introduces assumption that
is valid up to 30% deviation that is the precision of the model regardless of its perfect agreement
with the data.

2 Like addition of σ resonance to RχL model described in Section 6.4.
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that is the ratio: |Mnew|
2

|Mold|
2 is used. Template weight is not even always required to

be from the same model we use for calculating Mold, it is enough, that the ratios
|Mnew|

2

|Mold|
2 will be reconstructed properly. That is the case for the spin weight in the

case of τ± → π±π0ντ decay models, but in general caseMold and not onlyMnew

must be known. What is important is that we have four-momenta of final state
particles and we can calculate matrix element squared for an event. When we apply
those weights to events from the template we are morphing the distributions, hence
the name of the method.

The use of template morphing [69] for fitting may seem not intuitive at first, be-
cause single re-weighting of template gives user only a single point in n-dimensional
space of model parameters. From the series of events histograms can be obtained.
Such histograms can be then used as a functions to be fitted. The parameters depen-
dence is introduced with accurate weights. Most common method used for fitting by
public libraries like MINUIT [70] is a gradient descent [71]. Without going into much
details, this method uses linear in respect to model parameter approximation of fit-
ted function. It is obtained by calculating first derivatives over model parameters
and using Taylor’s expansion, so model parameters are arguments of the function3.
Minimizing the χ2 between this function and data points means optimal fit. If pre-
fect fit is possible that means finding zero of the function y = χ2(model parameters)

can be achieved. In physical cases function y resembles parabola floating above x-
axis. Therefore, going for values of model parameters predicted from zero point of
the y’s linear approximation usually will make us go closer to the minimum, but
somewhere on the other arm of a parabola. Repeating the procedure we will zig-zag
around the minimum, newer reaching it. To avoid this scenario limitations have to
be set on maximum change in model parameters per iteration. Usually estimation
of second derivative is used for that purpose. If minimum χ2 lies high above zero
zig-zagging will strengthen and limits on step size in parameters space have to be
more restrictive.

Direct use of re-wighting algorithm in the fitting library would be highly CPU
consuming. Re-weighting of 10M sample may take anywhere between 2 and 7 hours,
and fitting with MINUIT can take a few hundreds iterations, sometimes even ex-
ceeding thousand. Default methods are too restrictive to provide even rough result
fast enough. Therefore we are forced to use nested gradient method. We obtain
a linear approximation of function with help of Taylor’s theorem numerically. For
that at least n+1 points (n is the number of fitted parameters), that means n+1
re-weightings for the sample is required (fortunately those can be parallelized). Con-
structed function (containing linear terms of Taylor expansion) is then plugged to
fitting algorithm of MINUIT through ROOT environment [72]. Values obtained
from there can be used for another re-weighting, which produces new points for
construction of new linear function in parameters space, which is fitted by MINUIT,
and so on. Incorporating second quadratic term estimation can be helpful [D], but

3 Histograms are linear with respect to filling events and thus their weights.
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requires additional n re-weightings for the sample. Nevertheless, we found it bene-
ficial [D] as long as it means using more computing cores and not increasing time
needed for single step of calculation. We should also mention that gradient descent
convergence is asymptotic, so the biggest drop in χ2 value happens in early stage of
fitting. While nesting gradient as explained before we can control size of the steps
in accordance to our knowledge about fitted model. This allows us to optimize for
those early stages and opt for only rough estimate of model parameters, which from
our experience could take as little as 10-20 iterations [73].

From this description drawbacks of the method should be clear - it is extremely
slow (time per iteration), and therefore without incorporating big cluster computers4

can be used to obtain only rough estimate on parameter values. But, considering
systematical uncertainties associated with theory more often than not, rough esti-
mate can be good enough. We should also mention that size of the template should
be sufficient to ignore statistical errors of MC sample. The sample is usually 10
times bigger than experimental one, so its statistical error is negligible in compari-
son to the one of experimental data. This may be detrimental for use of the method
with large datasets due to increased CPU consumption.

The upside of this method is its wide range of applications. It can be used to fit
data containing background, or with experimental cuts strongly deforming spectra.
That being said for unfolded data, if possible, analytical/semi-analytical approach
are more convenient for use.

7.1.2 Fitting analytical distributions

Fitting analytical distribution to the experimental data may seem to be the most
basic solution for recreating experimental shapes, but sometimes obtaining analyt-
ical distributions is not as simple as it may seem. For τ lepton decays theoretical
models are coded in a from of hadronic currents as described in Chapter 6. To
obtain analytical formula for experimentally available spectra one has to construct
hadronic function WA of [20], which then can be integrated over bins used for ex-
perimental histogram. This is three-dimensional integration of convoluted function,
so numerical stability needs to be checked at any point. Also stability of numerical
calculation of derivatives is essential, otherwise algorithms like MINUIT (using gra-
dients) fail. Some simplifications may be required to save CPU time. One of such
simplification is replacing integration of one dimension by using value in the center
of the bin. Then, additional normalization is required, but for one-dimensional dis-
tributions like invariant mass spectra, it can be done without introducing significant
error. Technical details of using this exact approach for RχL model are given in [D].

For three-dimensional distributions like those presented in Chapter 6 integra-
tion over all three dimension within each bin cannot be avoided. This significantly
increases time of integration by adding on complexity but also by increasing num-
ber of bins. The latter can be mitigated, but then we are loosing on resolution.

4 Even with such computers whole procedure could last a few weeks, therefore have increased
risk of failure from software or hardware malfunction.
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Additionally instability of integrals can be expected in tails of distributions, where
chosen binning covers only small volume of available in the decay phase-space, while
being mostly empty. Therefore, distribution obtained from analytical formulation
of the problem may be dependent on chosen integration scheme.

All things considered fitting analytical distributions is a ”go to” method in most
cases, mainly due to superior CPU time efficiency. It is also optimal for numer-
ical stability tests (parameter correlations, multiple similar local minima) before
confronting theoretical models with experimental data. Main limitation is the in-
ability to fit distributions with irremovable backgrounds and strong experimental
cuts removing big chunk of phase space.

7.1.3 Further reflections on fitting

Brought in previous sections experiences with fitting do not fully explore the topic.
Other methods should investigated in the future, but here I would like to concentrate
on limitations we experienced, that are not connected to the methods used.

First of all, experimental data available consisted of invariant mass distributions,
at first of π−π+ and π−π−π+ systems, later also π−π− was added. When fitting
simultaneously to those distributions each event is used multiple times, introducing
strong correlations between histograms and their bins. As a result we were more
likely to encounter degeneration of the result and multiple similar local minima.
The study [D] actually confirmed that, though other minima had higher χ2. Fitting
three-dimensional distribution similar to those of Chapter 6 would most likely miti-
gate this issue, because each event is used only once and they monitor more details
of the model than its three one-dimensional projections.

Second hindrance to our fits was big number of fitted parameters. Masses and
widths of resonances could probably be set to PDG values, as was done in e.g. [21]
with CLEO model. Fitting masses and widths is more theoretically sound, but
complicates fitting and well established resonances should not deviate from PDG
values in significant way.

Third problem was presence of correlations between parameters. We had at least
4 strongly correlated parameters. Resolving such issue is not always straightforward
and usually requires fits of the model to a sample generated with its help but with
different set of parameters. Discussed later in this chapter modifications to TAUOLA
should help with such procedures in the future. Nevertheless, at the time of analysis
form [D] this was not viable choice, because it would strongly delay the work.

7.2 New initialization

Recently new initialization for TAUOLA was introduced [B]. It is a much needed
response to the needs of modern experiments such as Belle II but also fulfills scien-
tific duty of archiving the progress made by BaBar collaboration. This TAUOLA
initialization mirrors the one used by aforementioned collaboration for basic simu-
lations. At the same time historically available options are still included and can
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be accessed by internal flags. Such solutions maintains continuity of the code de-
velopment5, which is especially important for seasoned users, fluent in FORTRAN,
but not necessarily in more modern programing languages. For such users ability to
recognize and modify code on the most basic level is very important and complete
removal of some options and too drastic changes may be met with a backlash: loss
of physics content.

Important aspect of the new initialization is an increased number (up to 200)
of available decay channels. This feature was introduced already with [74, 75] and
BaBar initialization made a use of this possibility. Not all of those channels were
actually used, some of them are placeholders, but it was an important step of devel-
opment because it simplified addition of new channels and new parameterizations
based on theoretical models. Therefore, this initialization introduces some new de-
cay channels, but also improves modeling of some old ones.

Furthermore, some previously merged channels became separated. One example
of such is the τ decay into three pions, which at the time generated both one and
three-prong decays. User wishing for generation of only one option was forced to
modify internal parameters. Now, those are two separate decay channels, therefore
can be chosen with program input parameter. Models for the two channels can be
studied separately. The partial widths calculated from event samples are obtained
and not just the average of the two.

Parallel to introduction of above mentioned features groundwork for future up-
dates has been laid. Whenever possible, the code was split into independent blocks
that could be tested and modified separately, see Fig. 4.3. While some parts of the
code were already separated, only now structure of the code can be considered op-
timal for further improvements that will be discussed in Section 7.3. Those changes
also allowed for introduction of a framework for user-defined hadronic currents and
matrix elements.

7.2.1 User defined currents

Since the TAUOLA is open source any user can always modify the code, but up
until last release [B] it required familiarity with FORTRAN source code. Right
now, it became possible to code new hadronic current models in any programing
language and plug them into TAUOLA through pointers to user-defined functions.
With increasing precision and amount of data available more decay channels can be
researched and with greater detail. Models predicting e.g. LFV decays, baryonic
decays and second class currents are not well established, therefore it is important
that many options for those can be easily introduced into MC simulation and tested.
The same arrangements can be prepared and be useful for fitting program. In
Chapter 5 some of those ideas and their importance were discussed, but even well
established decays could benefit from new models, because intrinsic precision of the
models is much lower than experimental one for the data used for fits. With the

5 Note, that TAUOLA project has almost 30 years now.
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barrier of required familiarity with the source code lifted, more people can involve
themselves into model building.

With the framework for user-defined models we included two examples to help
users learn how to use it. First example was quite trivial, but very important
as a technical test. We have supplemented C++ functions recreating TAUOLA
modeling for τ− → (ππ)−ντ decay. With this users got simple template to follow
while introducing own models. This example function generates exactly the same
events as FORTRAN counterpart used as a basis. Therefore, we have a proof of
framework working correctly, showing at the same time that rewriting TAUOLA
into C++ can be done channel by channel and easily tested.

Second example can already be used for LFV searches. We have coded higher
order operators from LFV model of [76, 53]. Fig. 1 of Ref [B] collects results
obtained with this example code. Switching between the options needs to be done
by commenting/uncommenting parts of the source code. Such solution may not be
elegant, but it is good for learning purposes.

7.3 Future plans

In previous section some historical aspects of TAUOLA were mentioned. One of
them is TAUOLA being written in FORTRAN while less and less people are familiar
with this programming language. Migration to C++ or other more recent language
seems to be unavoidable in modern environment. All the preparations for such
translation to new language have been made and hopefully it can be done in a
seamless for the users way. It is not set in stone that C++ will be language of
choice, but it is most likely scenario. With current block structure of TAUOLA it
does not need to be performed at one go and the process can be discussed with users
community6 along the way.

Currently, fitting model parameters for hadronic currents requires a lot of effort.
There is no straightforward way of fitting model coded for TAUOLA. The possibility
of plugging user-defined currents may enable creation of a tool that could use those
currents in the same way for fitting. Previously mentioned possible migration to
newer programing language would further facilitate fitting programs. Some effort
has been put into this topic but it is still far from finished. Nevertheless, with the
help e.g. of ROOT libraries we hope that such tool will be prepared at least for
decay channels into three hadrons in the final state. If such a tool will be prepared
it can be further improved to allow for fits of distributions obtained with projection
operators of [20]. It need to be stressed that all effort put into fitting is necessity
due to models being data driven and that is dictated by the precision levels of
experimental distributions compared to theoretical predictions.

As time progresses new tools are becoming more prominent. The hot topic right
now are the Neural Networks (NN), which development seems to have speed up over

6 The community of FORTRAN users is quite important and we don’t want to force on them
too many drastic changes in a short period of time.
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the past few years. While at this point NN’s don’t look too promising7 as a tool for
fitting they are meant for pattern recognition and therefore may be an alternative
to projection operators. It is too early to say anything definite, the very idea seems
worth exploring. In the next chapter an example of NN usage will be presented for
evaluation of systematical errors associated with different models for τ decays when
used for Higgs CP parity measurement. This learning experience may be helpful in
finding ways of using NNs for other problems.

7 The talk [77] is somewhat challenging that statement already now.



Chapter 8

Higgs CP state measurement with
the help of Machine Learning

techniques

In Chapter 5 some areas of physics involving the τ lepton were brought to attention.
In this chapter I want to concentrate on those phenomena that can be measured
through use of τ ’s. Electroweak processes involving weak bosons are the typical
examples. For years now τ ’s were used for measuring the properties of Z and W
bosons. With the discovery of scalar boson - Higgs, τ ’s are great tool also for measur-
ing properties of this new particle. This was discussed in Section 5.4. Considerations
of optimal measurables [69] available in particular experiment require modeling of
the τ ’s and this introduces systematical error associated with used model. It is hard
to asses how much of an impact different models have. In the following sections I
will describe briefly what Neural Network is and how it can be used to resolve the
issue of systematical errors in Higgs CP measurement [C].

8.1 Introduction to Machine Learning and NN

First of all it should be said that Machine Learning (ML) is very broad term which
includes all of many approaches allowing computer to successively improve (learn)
performance at certain task, without any additional programing. NN is only one
type of ML techniques based on the idea of creating artificial network mirroring that
of a brain. Both ideas are relatively old1 and only recently computers began to have
enough computing power to employ ML for scientific tasks. Also simplifications in
approaches, without loss of performance were of a great importance for ML practical
applications. Speed of the progress increased enormously.

The term NN is also very broad and there are multiple options for creating a
NN. The NN techniques develop rapidly and new approaches appear, on a scale
of months. It does not seem to be feasible or useful to present snapshot of this
development as of today. Things changed a lot since Cracow group started to use
the methods in summer 2015. Especially in domain of evaluation of systematic
error progress of the last two years was enormous. Software companies seem to

1 It is hard to pinpoint when the idea pop up, but [78] from 1949 seems one of the earliest
examples while 10 years later [79] ML is used on the game of checkers. At that point idea of NN
was already established, but due to lack of computing power its use was beyond foreseeable (at the
time) future.
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play nowadays leading role in this development. That is probably why, CERN
organized series of talks devoted to this development let us quote as an example
talks: [80, 77]. The practical message is that theoretical predictions, if available with
options controlled by weights- matrix element ratios, are useful and even crucial for
definition of measures defining distance in the event space.

For the purpose of next section we will use two terms: receiver operating char-
acteristic curve (ROC curve) and area under the curve (AUC) [81]. The ROC [82]
can be used to evaluate quality of a classifier (diagnostic test). Classifier is basically
an operator that distinguishes between two hypothesis. The AUC is normalized
to 1 area under ROC curve and can be interpreted as probability of distinguish-
ing between two measured states using our classifier. Therefore AUC of 0.5 means
random classification (we might as well throw a coin to choose the correct answer),
the further result is from that value, the better. An AUC of 1 or 0 means perfect
classification.

8.2 Assessing systematic errors associated with different
models using NN

The classifier (mentioned in previous section) is in our case a tool created with
the help of NN, specifically it is a program that recognizes in a dataset Higgs CP
characteristic (even vs mixed). NN learning process is based on providing initial
algorithm with input of known characteristic. For that purpose 1 million H → ττ

were used, with events subsequent decays ττ → a±1 ντa
∓
1 ντ or ττ → ρ±ντa

∓
1 ντ . First

part was generated using Pythia 8.2 [83] with Higgs produced via gluon-gluon fusion,
τ decays were simulated using TAUOLA and spin correlations were implemented
with TauSpinner [55]. Because experimental measurements cannot always provide
most desirable quantities, four types of inputs were were defined:

• the acoplanarity angle (φ∗) [54],

• y =
E
π
±−E

π
0

E
π
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π
0
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[54],

• invariant masses of pairs and triplets of final state pions,

• 4-vectors of final state pions.

The goal of the analysis [C] was to check if and how much the classifier is affected
by the model used for training depending on available input. The models used for
τ → a∓1 ντ were those presented in Chapter 6 plus one additional variation of CLEO
model. Different options for τ → ρντ were not considered in the study as they are
known to factorize from spin dependence.

While testing how NN responds to training based on different model it is also
important to remember that experimental data has specific resolution. Using that
knowledge [84, 85], NN was trained also with Gaussian smeared MC samples. It is
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only simple estimation of detector effects and further analysis might be required in
the future. For now, it should be treated as first order estimation of the experimental
effects impact on NN training.

Data collected from above mentioned considerations was collected in a form of
AUC values collected in [C]. To summarize those results:

• Smearing the sample used for training has little effect on the AUC score,
reducing predictive power of the classifier by about 1%.

• Impact of different models of τ decays used for training than for analyzed
sample is bellow 1% in all of the cases, depending on input parameters used it
can be even reduced to below 0.1%. This is most important conclusion relying
on results of my work on τ hadronic currents.

• Input parameters have the biggest impact on the AUC score. The lowest
scores are obtained for usage of φ∗ and y for input, while best result is obtain
when using all of the defined inputs. The difference in the AUC value does
not exceed 3%.

While the classifier is quite robust against all considered variations in the training,
the AUC score in the best case scenario is 0.604. Note in above consideration
we did not use neutrino momentum, because it escapes detection, therefore some
information is lost. With possibility to recover neutrino four-momentum the AUC
could reach the value of 0.782 [86]. Therefore, any constrains that could be found
on neutrino momentum, could greatly improve the measurement of Higg boson CP
state using our classifier.



Chapter 9

Summary

The presented thesis has explored vast topic of τ decays in the context of present day
experiments like Belle and BaBar and tools used by them. Theoretical background
on most interesting aspects has been laid out. Challenges in both modeling and data
analysis have been addressed, with special emphasis on available precision level.
Based on the needs of experiments, improvements in the MC library TUAOLA were
introduced.

New default initialization for TAUOLA was accommodated for progress in the
τ decays measurements. That gave users better baseline for further development
of theoretical models, while also improved standard modeling for those who use
τ decays only as a tool for measurements of other processes like Higgs properties
or BSM searches. Historical parametrization were maintained as options available
through internal flags.

Most known models for τ → πππντ available through TAUOLA library have
been compared using data representations of different dimensionality. Interference
between vector and scalar intermediate states (when present) has been assessed.
Need for model confrontation against three-dimensional experimental data has been
voiced. Such need is backed by high precision of experimental data compared to
theoretical one. Therefore, models development have to be data driven and fitting
to experimental data is a must.

The ability to add user-defined hadronic currents/ matrix elements was also
given to the users. While framework for this procedure was prepared with C++ in
mind, it gives model-builders ability to program models in a computer language of
their choice. At the same time it removes from them the necessity of being familiar
with FORTRAN and knowing internal TAUOLA structure in order to introduce
new modeling. New decay modes, including the New Physics one, can be added this
way. Example functions were included, featuring LFV decays τ → µµµ.

Internal structure of TAUOLA has been modified to provide more flexibility for
possible future routes of development. Those were also discussed, notably not only
for TAUOLA but for fitting framework as well.

Migration into other - more modern programing language (most likely C++)
may be necessary to better facilitate fitting programs. Possible use of NN for data
analysis and model development was also discussed.

The topic of systematical errors associated with different models used for simula-
tion of other measurables was brought at the margin of this work. It was addressed
in case of Higgs CP state (with τ lepton final states)measurements. ML technique
of NN was used to create classifier distinguishing between even and mixed CP. Im-
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pact on the classifier was estimated to be insignificant regardless of model, input
parameters used for NN’s training.
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