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1.	Preface

This monograph is an attempt at a comprehensive treatment of tomographic 
reconstruction methods with the special emphasis on the application in fusion research. 
Therefore, the main volume of the book is devoted to tomographic inversion methods that 
are either commonly used in the fusion research or they have just been developed and 
published by me or other researchers. However, detailed explanation and discussion of 
plasma tomography principles would not have been possible without giving an 
introduction to classical tomographic reconstruction methods. By these classical methods, 
I mean here analytical and algebraic methods commonly applied not only in medicine but 
also in many different fields such as geophysics, bioscience or material science.

Inversion methods applied in plasma tomography significantly differ from classical ones. 
This is mostly due to the nature of the data collected in tomographic experiments carried 
out with fusion devices. The algebraic reconstruction method, shortly described in 
Chapter 5, can be considered as a link between classical tomographic methods described 
in the preceding part of the book and reconstruction methods that are specific to fusion 
research. In fact, most of the reconstruction methods used in fusion science belong 
indeed to the class of algebraic methods. However, due to the fact that measured data 
sets are sparse and the reconstruction problem is strongly ill-posed, specific methods that 
include a regularisation are required. This is shown and discussed in Chapter 6.

My main motivation in publishing this work was a desire to share, with the widest possible 
readership, a comprehensive monograph on plasma tomography. I would expect the 
target audience to be primarily academics, with a special emphasis on graduate and PhD 
students from plasma physics and fusion research community. I hope that this book can 
serve as a self-contained resource for PhD students wishing to extend their knowledge on 
plasma tomography. I tried to present as many practical applications as possible, focusing 
mostly on the recent advances made with tokamak devices.

I assume  the  Reader is familiar with the basic concepts of plasma  physics and 
thermonuclear fusion, as well as with basic mathematical apparatus such as linear 
algebra. The introductory chapters and proofs of presented theorems should help the 
Reader to immerse into the ideas presented through the book. For the sake of clarity, 
some detailed information and additional proofs are postponed to the appendices.
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Preparing this monograph, I used my knowledge and experience acquired during my work 
in the Department of Radiation Transport Physics of the Institute of Nuclear Physics, 
Polish Academy of Sciences as well as the experience gained during my two-year-long 
stay in the Culham Centre For Fusion Energy (CCFE), Oxfordshire UK.

I would like to express my gratitude to the many people who helped me through this book 
- to all those who provided support and offered comments, allowed me to quote their 
remarks and assisted in the editing, proofreading and design. I would like to kindly thank 
my colleagues from Department of Radiation Transport Physics, IFJ PAN and colleagues 
from Neutron&Gamma group, CCFE. I would like to thank especially Prof. U. Woźnicka, 
Prof. K. Drozdowicz and Prof. W. Królas for their invaluable support and precious 
guidance. I would like to kindly thank Prof. M. Scholz for many long hours of scientific 
discussions. Last but not least, I am also very grateful for the wonderful editorial support 
and guidance I received from dr hab. Janusz Lekki. Above all however, I want to thank My 
Family which supported and encouraged me in spite of all the time it took me away from 
them.
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no. DEC-2017/01/X/ST2/00126) which financially supported a part of the research 

presented in this monograph.
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2. A brief history of computed tomography 

against developments in fusion plasma physics

Tomographic methods and fusion science have been developing in parallel. Undoubtedly 
the most important event in history of tomography was the invention of the computed 
tomographic (CT) scanner. It was done by Sir Godfrey Newbold Hounsfield in year 1968 as 
a prototype device and introduced into medical practice in 1971. Independently, Allan 
MacLeod Cormack worked on the theoretical aspects of tomographic inversion from 
projections obtained with X-rays. The developed techniques were practically applied using 
an experimental device constructed by himself. The results of his work were published in 
1963 in Journal of Applied Physics [Cormack 1963] and later in Physics of Medical Biology 
Journal [Cormack 1973]. In 1979 Hounsfield and Cormack received the Nobel Prize in 
Physiology or Medicine. However, construction of the medical CT scanner would not have 
been possible without the contribution of many researches from several different fields, 
such as mathematics, physics or computer science. In fact, discoveries made in those 
fields are intertwined with advances in computed tomography. Thus, to discuss the history 
of CT it is necessary to provide at least a brief but more general overview of  this 
scientific puzzle.

The description of mathematical backgrounds of a function reconstruction from its 
projection can be traced back to work of Norwegian mathematician Niels Henrik Abel. In 
his paper from 1823 and its continuation from year 1826, he considered the problem 
of determination of the shape of a hill from travel time that a material point spends to move 
from the hill in the gravitational field. The problem is a generalisation of the tautochrone 
problem solved earlier by Christiaan Huygens. By this problem Abel was led to an integral 
transform – the so-called Abel transform – which is used also nowadays for the inversion 
of neutron or X-ray plasma emissivity from its projection when spherical or cylindrical 
symmetry can be assumed. The Abel transform is described in details in Section 4.5 of 
this book. An extension of Abel’s idea was the Radon transform introduced in 1917 by an 
Austrian mathematician Johann Radon. The Radon transform is, similarly to Abel’s one, 
an  integral transform. It takes an arbitrary function on the plane to a two dimensional 
function defined on the space of lines in the plane, which value at the particular line is 
given by the line integral of the function over that line. A formal definition of the Radon 
transform is given in Section 4.3. Even by intuition it is easy to link this transform 
to the phenomenon of image creation on X-ray sensitive films when an object is exposed 
to radiation. Radon also provided a formula for the inverse transform and generalised 
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the problem to three dimensions. It should be stressed here that the Radon transform is 
the basis for most of the modern tomographic methods used in medical CT.

Physical background, not only for the construction of the CT scanner and development 
of  tomographic methods but also for broadly defined medical imaging, was created with 
discovery of X-ray by Wilhelm Conrad Röntgen in 1895. However, it is interesting to note 
that for the first time X-rays were used for an industrial and not medical application, as 
Röentgen produced a radiograph of a set of weights in a box to show it to his colleagues. 
The news of Röntgen’s discovery immediately aroused an immense interest in the public 
and also initiated intense research in several directions. Physicians and physicists began, 
as early as January 1896, to use X-rays on patients to investigate the skeleton 
and  subsequently the lung and other organs. This was the birth of radiology. In 1901 
Röntgen was awarded the very first Nobel Prize in Physics. The award was officially in 
recognition of the extraordinary services he has rendered by the discovery of the 
remarkable rays subsequently named after him. X-rays and radioactivity were at the origin 
of the scientific revolution at the end of the 19th and the beginning of the 20th centuries. 
Over the years more advanced X-ray sources were used for imaging of the human body. 
The significant improvements of the X-ray tube design are attributed to Thomas Edison. 
The initial enthusiasm about the new possibilities of X-ray application in medical 
diagnostics was gradually cooled down when physicians and researchers realised 
limitations of the two-dimensional imaging. Just a year after the discovery of X-rays 
by Röntgen, Elihu Thomson from General Electric proposed stereoscopy. The technique 
he proposed involved taking two X-ray pictures, displaced with respect to each other, 
of a patient who remained motionless. The diagnostician could then use a stereoscope 
to  view both the images simultaneously to give a depth perspective. The significant 
contribution to the improvement of X-ray imaging techniques was also made by a Polish 
researcher from the Krakow Clinic of Internal Medicine - Dr Karol Mayer. In 1916 he 
performed several experiments to obtain stratigraphic images using a moving X-ray tube 
and a stationary film cassette. This was a process which resembles scanning in computed 
tomography procedure. A similar imaging procedure was also described and patented 
earlier in 1915 by Carlo Baese, an engineer from Florence. The technique proposed by 
Baese was based on the simultaneous movement of the tube and X-ray film cassette. 
In 1922 A.E.M. Bocage obtained a patent entitled Methods and equipment for obtaining 
radiological images of cross-sections of the body not obscured by tissue structures in front 
of or behind the cross-section. During the same period, B.G. Ziedses des Plantes 
conducted research into his concept of planigraphy, which was put into practice by 
Massiot in 1935. Later in 1963 a German doctor Willy Kuhn used gamma radiation 
to obtain a sliced image of tissues, but the way to modern tomographic scanners was still 
unreachable due to lack of a computing machine.

The complete description of history of computer development is definitively beyond the 
scope of this book. The reader may wish to refer to other publications for more details 
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[Ceruzzi 2003]. The mathematical foundations of modern computer science began to be 
laid by Kurt Gödel with his incompleteness theorem published in 1931. In this theorem, he 
showed that there were limits to what could be proved and disproved within a  formal 
system [Gödel 1931]. In 1935, at Cambridge University, Alan Turing created the principle 
of the modern computer. He described an abstract digital computing machine consisting 
of a limitless memory and a scanner that moves back and forth through the memory, 
reading, symbol by symbol, what it finds and writing further symbols [Turing 1936]. The 
actions of the scanner are dictated by a program of instructions that is stored 
in  the memory in the form of symbols. It was Turing’s revolutionary concept of stored-
program that gives a possibility of the machine to modify its own program. Today 
the concept is known as the universal Turing machine. In the United States the Hungarian-
American mathematician John von Neumann shared Turing's dream of building a universal 
stored-program computing machine. Von Neumann had learned of the universal Turing 
machine before the war. He and Turing came to know each other during years 1936-1938, 
when they both were working at Princeton University. Von Neumann contributed to a new 
understanding of how practical and fast computers should be organised and built, giving 
principles for future generations of high-speed digital computers.

The first officially recognised programmable electronic computer was built at the Moore 
School at the University of Pennsylvania. It was called the Electronic Numerical Integrator 
and Computer - ENIAC. The project of creation of the computing machine started 
in 1943 and stemmed from military needs - fast calculation of firing tables for artillery. One 
of the first ENIAC programs also included a study of the feasibility of the thermonuclear 
weapon. ENIAC was completed in 1945 and ran approximately 200% over budget. 
However, in reality, the first computer was built three years earlier. It was constructed 
during the war at the Bletchley Park centre by a group of telephone engineers under 
the direction of Max Newman. The existence of the computer, called Colossus I, was kept 
secret until 1976. Just to give the impression of the technology from that time let us recall 
some facts. ENIAC consisted of 40 panels and weighed approximately 30 tons. It was 
programmed manually by setting thousands of switches by hand. ENIAC could not store 
programs or data, and problems had to be solved in stages, with the results punched 
on cards that were fed back. It was extremely unreliable machine in today’s meaning - 
longest continuous period of operation without a failure was 116 hours. The average 
mobile phone is roughly 40 000 000 times smaller, 120 000 times lighter and consumes 
40  000 times less power than ENIAC. And even though the direct comparison is very 
difficult, the average mobile phone would be probably thousands times more powerful 
than ENIAC. But none of today's electronic technology would have appeared without its 
contribution.

The further development of computing machines was stimulated by invention of the 
transistor by William Shockley, John Bardeen and Walter H. Brattain of Bell Laboratories 
in  1948 and the integrated circuit at Intel under the direction of Ted Hoff in 1969. 
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In parallel, the first computer languages appeared. In 1953 Grace Hopper developed the 
first computer language, which eventually became known as COBOL and in 1954 the 
FORTRAN programming language was born. Hounsfield first research prototype CT 
scanner, constructed in 1967, required nine days to obtain the data and two and a half 
hours to compute the image. The resolution of the image was as low as 80 × 80 pixels. 
Hounsfield used algebraic techniques, described in Chapter 5. The reconstructed CT 
image was noisy and affected by artefacts. The further development in reconstruction 
algorithms resulted in application of convolution back-projection algorithms (see Section 
4.11) created by Ramachandran and Lakshminarayanan [Ramachandran 1971] and later 
popularised by Shepp and Logan [Shepp 1974]. The class of back-projection methods is 
described in Chapter 4. Back-projection algorithms considerably reduced the 
  reconstruction time and gave more accurate results. By 1972, when Hounsfield 
introduced its first generation commercial prototype head scanner, scanning speed had 
been reduced to five minutes and the reconstruction time to 20 seconds. Since that time, 
an enormous progress in radiation sources and detection systems has been made.

Gradually, digital computers became powerful enough to store and display digital images. 
Since the 1990s, computerised radiography and digital radiography have been replacing 
X-ray films. Further development of X-ray imaging was stimulated by utilisation 
of synchrotron radiation. At first, synchrotron radiation was treated as a parasitic effect. 
The first accelerators were built by particle physicists in the 1930s. They were used 
in the field of high-energy or nuclear physics. Synchrotron radiation was seen for the first 
time at General Electric in the United States in 1947 in a new, at that time, type of particle 
accelerator - synchrotron. The observation of the synchrotron radiation was first 
considered as a drawback for nuclear experiments since it caused the particles to lose 
energy that was so precious to discover new particles and phenomena. However, it was 
then recognised in the 1960s as light with exceptional properties that overcame 
the  shortcomings of the known X-ray sources such as X-ray tubes. In the mid- to late 
1970s, scientists began to discuss ideas for using synchrotrons to produce extremely 
bright X‑rays. These discussions led to the construction of the so-called second-
generation synchrotrons dedicated solely to the production of electromagnetic radiation. 
It was followed by third-generation synchrotrons that use insertion devices - wigglers and 
undulators providing several orders of magnitude higher flux than simple bending 
magnets. Impressive progress continues with the development and construction of free 
electron lasers with the peak brilliance of billions times higher than that of conventional 
X‑ray sources. Computed micro- and nano-tomography techniques that utilise synchrotron 
radiation are nowadays almost standard experimental tools for scientist from diverse fields 
such as physics, medicine, bioscience, geoscience and material science.

When the dream about the practical tool capable of giving non-destructive insight into 
the  human body and other structures was coming true, another scientific challenge 
appeared. People have always been dreaming about an energy source that is practically 
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inexhaustible, relatively cheap, producing low or no radiation or environmental hazard and 
capable of producing large amount of energy in a stable fashion. Such possibilities could 
be opened by nuclear fusion - a  nuclear reaction in which  light elements  form 
heavier elements. At the beginning of 20th century scientists obtained the first insights into 
the physics of sunshine. When the Sun and other stars transmute matter, tirelessly 
transforming hydrogen into helium by the process of fusion, they release colossal amounts 
of energy. Einstein provided the first clues on how the Sun works in 1905 with his famous 
equation derived from his special theory of relativity. The equation predicted that 
the conversion of a small amount of mass could yield a very large amount of energy with 
the conversion factor being the square of the speed of light. The key experimental 
observation was made in 1920 by British chemist Francis William Aston who took precise 
measurements of the masses of atoms. This work was seized upon by Sir Arthur 
Eddington, a British astrophysicist, who realised that by fusing hydrogen into helium, 
the Sun would release around 0.7% of the mass into energy. In 1939, German physicist 
Hans Bethe completed the picture with a quantitative theory explaining the generation 
of fusion energy in stars. Having an access to similar energy system would be like bringing 
the Sun down to earth to provide abundant energy for millions of years. The world 
scientific community is convinced that fusion power can be achieved in the relatively not 
too distant future. However, nuclear fusion represents the frontier of today’s science and 
technology.

On the Sun - a large fusion power reactor - the nuclei of atoms are fused as they are 
compressed together by the force of the Sun’s gravity. On Earth however, the same 
process must be achieved using a similar ionised gas called plasma that makes up the 
Sun, but without the benefit of the huge gravitational force. This is due to negligible mass 
of plasma that we are able to use in the experiments on earth, compared to mass of the 
Sun. Plasma must be confined and simultaneously heated to very high temperatures. 
There are two schools of plasma confinement – using magnetic fields or the internal force 
of powerful beams like lasers. In the latter case plasma must be compressed to extreme 
density. In this book we will focus mostly on magnetically confined plasma, since such 
a  long-living plasma requires special diagnostics and tomographic methods are very 
useful in this case.

In early stages, fusion research was kept secret. That was because of the military 
significance of an uncontrolled fusion device – the H-bomb. In 1952, the United States 
tested the world’s first H-bomb which was soon thereafter detonated also by the Soviet 
Union. However, three years earlier, in 1950 Igor Kurchatov, director of the Soviet weapon 
program, convinced Soviet leaders that significant resources should be devoted 
to the development of controlled fusion energy. In the United States the work on the same 
problem begun under the leadership of Edward Teller and others. In 1956 a turning point 
came. A Soviet Union delegation led by  First Secretary of Soviet Communist Party - 
Nikita  S. Khrushchev, Prime Minister of the USSR - Nikolai  A. Bulganin  and 
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Igor  Kurchatov  visited  the United  Kingdom. On April  25, Kurchatov  gave a lecture 
at Harwell located just nearby today’s Culham Science Centre in Oxfordshire. At that time 
Harwell was the leading research  centre of the UK’s Atomic Energy Research 
Establishment. He presented the full experimental and theoretical details of the Soviet 
fusion research to an audience of western scientists. A similar declassification came a few 
months later with the lecture of a Soviet academician L. Artsimovich given to an audience 
in Stockholm. Partly under the influence of the openness of Kurchatov’s lecture, in early 
1957 the UK decided to declassify thermonuclear research. Also significant parts 
of  the  US program were declassified and made public. It can be frankly said that 
Kurchatov and Artsimovich’s presentations accelerated fusion research program in the 
West. Among the presented information was the concept of Soviet fusion device – 
tokamak (rus. тороидальная камера с магнитными катушками — toroidal chamber with 
magnetic coils). In the late 1940s, Soviet researcher Andrei Sakharov proposed that fusion 
plasma can be confined in a doughnut-shaped vessel by magnetic fields. In this geometry, 
an electrical current is induced in the plasma to transform the circular magnetic field into 
helical spirals winding around plasma doughnut. Initially, the Soviet scientists struggled 
with the presence of impurities in the plasma (by the way, even now it is still a significant 
issue for the fusion device operation). Finally, in 1969 the Soviet tokamak research 
program achieved a major success in plasma heating. At first Soviet reports 
on  the  achieved plasma temperature were taken with a pinch of salt in the West. 
The situation changed when a team of British scientists invited to USSR used advanced 
laser techniques and found that the tokamak was producing even higher temperatures 
than originally stated.

Another leading concept of magnetic confinement fusion (MCF) is the stellarator device. 
It was invented by Lyman Spitzer  in 1958 and built the next year at what later became 
the Princeton Plasma Physics Laboratory. It is somehow similar to the tokamak device. 
The stellarator is also a doughnut-shaped magnetic ‘plasma container’, but the helical 
twist in the magnetic field lines is not generated by introducing an electrical current in the 
plasma, as in the tokamak device. Instead, required twist to the magnetic field lines 
is achieved solely with external coils. Even though the magnet coils and plasma itself have 
a complicated shape, there is a major advantage of this design. The tokamak’s induced 
current is exhausted within minutes, requiring a pulse-mode operation. In a stellarator, 
the magnetic cage is produced with a single coil system, without a longitudinal net-current 
in the plasma and hence without a transformer. This makes stellarators suitable 
for continuous operation. Technical difficulties prevented the construction of large-scale 
stellarators in the 1950s and 1960s. Much better results from tokamak devices led to them 
falling from favour in the 1970s. In the 1990s interest in the stellarator design 
reappeared,  and a number of new devices have been built. Some important modern 
stellarator experiments are  Wendelstein 7-X  in Germany, the  Helically Symmetric 
Experiment (HSX) in the USA, and the Large Helical Device (LHD) in Japan.
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In the 1970s the construction of large-scale tokamaks was approved, including a 
European collaboration to build the biggest machine to date – the Joint European Torus 
(JET). In the 1980s, Soviet general secretary Mikhail Gorbachev proposed to US president 
Ronald Reagan that the superpowers might collaborate to build ITER - The International 
Thermonuclear Experimental Reactor. In the 1990s, however, policy-makers’ enthusiasm 
for grand energy research projects wavered against a background of sustained low oil 
prices. A key step was taken in November 2006 when a much-revised ITER plan was 
finally agreed as a seven-party international collaboration (EU, China, India, Japan, Russia, 
South Korea and the US). Construction of the ITER Tokamak complex started in 2013.

Experiments with actual fusion fuel - a mix of the hydrogen isotopes - deuterium and 
tritium – began in the early 1990s in the Tokamak Fusion Test Reactor (TFTR) in Princeton, 
US, and the Joint European Torus (JET) in Culham, UK. JET marked a key step 
in  international collaboration, and in 1991 achieved the world’s first controlled release 
of fusion power. Three tokamak devices played a special role in history of modern fusion 
research. They are: Japan Atomic Energy Research Institute Tokamak-60 (JT-60) in Naka, 
Japan (1985 to present), Tokamak Fusion Test Reactor in Princeton, New Jersey, US, 
(1982–1997) and aforementioned Joint European Torus JET in Culham UK (1984 to 
present). Together these three machines have demonstrated the scientific fundamentals 
of  fusion power production. Researchers at JT-60 (and latter at Tore Supra and WEST 
tokamak) demonstrated that it should be possible to extend the duration of tokamak 
discharge by means of an external current drive. This would be an important step towards 
continuous electricity generation. In JET, TFTR and JT-60 scientists have approached 
the  long-sought ‘break-even point’, where a device releases as much energy as it is 
required to produce fusion. So far, JET has achieved the highest level of fusion energy 
production (Figure 2.1). In 1997, JET produced around 64% of the amount of energy being 
fed into the plasma (denoted by Q = 0.64) [Dickson 1997]. This refers to the total energy 
released by the reaction, 4/5 of which is taken up by the emitted neutrons, providing 
the heat for electricity generation. Only when the plasma reactions release five times more 
of energy that is put in (Q > 5), the internal heating power is greater than the supplied 
power. Clearly a power station needs to produce vastly more energy than it consumes 
(e.g. Q ~50). ITER’s objective is to release 10 times as much energy as it will use to initiate 
the fusion reaction (Q = 10). For 50 MW of input power, ITER will generate 500 MW 
of output power. ITER will pave the way for the Demonstration Power Plant (DEMO). As 
research continues in other fusion installations worldwide, scientists hope that DEMO will 
put fusion power into the grid by the end of this century.

In late 80s tomographic inversion and fusion research converged  into a powerful tool. 
Since then tomography inversion has been used routinely for studying of plasma radiation. 
Various tomographic algorithms have been developed, with those based on Tikhonov 
regularisation being among the fastest while still providing reliable results [Bielecki 
2015].  In tokamak plasma research, the soft X-ray (SXR) tomography has been used 
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for  investigating plasma shape and physical processes occurring inside the plasmas. 
The  X-ray tomography also allows access to the spatio-temporal transient phenomena 
due to magnetohydrodynamic (MHD) activities, which play an important role in plasma 
confinement. Hard X-ray tomography has been used to study the high-energy tail 
of  the  electron distribution function in a thermonuclear plasma. Studying this tail 
is  of  particular interest when the electron distribution function is non-Maxwellian. 
Tomographic reconstruction of plasma emission in the hard X-ray (HXR) energy range, 
which corresponds to the domain of acceleration of the energetic electrons by radio 
frequency waves (so-called Lower Hybrid (LH) or Electron Cyclotron (EC) plasma heating), 
provides also a considerable insight on the wave propagation and absorption 
[Peysson  2001]. Neutron plasma tomography is a useful technique for localisation 
of  a plasma axis, study of the response to MHD plasma instabilities and determination 
of  plasma total neutron yield and alpha-particle birth profile. Other types of plasma 
tomographic inversion, commonly applied at tokamak devices, include bolometry 
[Konoshima, 2001] and visible light computerised tomography [Goswami 2014].
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Figure 2.1 Time trace of the record fusion power achieved at JET in 1997 (Q ≈ 0.64) and 
the power achieved during steady-state operation in 1997. For comparison, time traces of 
the record fusion power achieved at TFTR tokamak in 1994 and during the JET operation 
in 1991 are also plotted [Ongena 2016].



3. Various types of tomography

Since the appearance of computed tomography, it has been playing an important 
role  in many research fields. Originating from the medical field, CT has been gradually 
introduced in various applications, evolving and adapting to scientific problems. Currently, 
tomographic methods are used for imaging of various objects and structures which 
dimensions can span over several orders  of magnitude. Different physical phenomena 
are  utilized in different types of tomography. The variety of CT types used in modern 
science is so large that it is difficult to provide a systematic classification. Moreover, 
the division of CT methods can be multifaceted. During the last decade, there has been 
an  avalanche of publications on different aspects of computed tomography. Table 3.1 
summarizes commonly applied types of tomographic techniques providing relevant 
references. The list however is by no means exhaustive and each position could be a topic 
of a separate monograph.

Very generally, tomographic methods can be divided into transmission and emission 
techniques. In transmission tomography, an external source (typically of radiation, such as 
X-rays or neutrons, but also of ultrasound wave, electrical current etc.) of known intensity 
and location is used. The radiation is transmitted through the object to measure its 
attenuation or scattering properties. For instance, in the absorption X-ray CT, dense 
materials such as bones have higher attenuation coefficient than soft tissue. In this case, 
the quantity of interest is the spatial distribution of linear attenuation coefficient at some 
energy or range of energies. In transmission tomography different shapes of the incident 
radiation beam can be used. On this basis, we can distinguish between pencil-, parallel-, 
fan- or cone-beam geometry. A schematic comparison of these geometrical configurations 
is shown in figure 3.1. The tomographic reconstruction algorithms must take into account 
these geometrical aspects. In case of pencil- and planar fan-beam geometry, an additional 
scanning with the object (or equivalently with the source and detector) is needed. 
The  modification of classical CT is the microtomography method that allows imaging 
of objects with very fine spatial resolution. More details about this method can be found 
in a series of publications [Bielecki 2013; Bielecki 2012; Bielecki 2009]. Microtomography 
(as well as submicro- and nano-imaging) very often utilizes synchrotron radiation due to its 
advantageous properties such as high intensity, high collimation and adjustable 
monochromatic energy spectrum when a tunable monochromator is applied 
[Bielecki 2013].
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	 	 	 Table 3.1. Common types of tomographic techniques

Name Physical 
phenomenon

Physical quantity 
measured Scientific disciplines Transmission

/Emission References

X-ray absorption 
CT X-ray absorption Linear attenuation 

coefficient for X-rays Medicine Transmission [Kak 2001] 

X-ray absorption 
microtomography X-ray absorption Linear attenuation 

coefficient for X-rays

Various (geophysics, 
biology, material 

science, archaeology, 
cultural heritage etc.)

Transmission
[Bielecki 2013] 
[Bielecki 2012] 
[Bielecki 2009]

Neutron 
tomography

Absorption of 
thermal neutrons

Linear attenuation 
coefficient for 

thermal neutrons

Various (wood- and soil-
physics, geology 
material science, 

paleontology, 
archaeology and 
cultural heritage, 

nuclear technology etc.)

Transmission [Anderson 2009]

Positron Emission 
Tomography

Positron 
annihilation

Gamma ray 
emissivity from 

electron-positron 
annihilation

Medicine Emission
[Waterstram-Rich 

2016] 
[Wernick 2004]

Single photon 
emission 

tomography
Gamma ray 

emission
Gamma ray 

emissivity of gamma-
emitting radioisotope

Medicine Emission [Wernick 2004]

Magnetic 
resonance 

tomography

Nuclear 
magnetic 
resonance

Nuclear magnetic 
moment Medicine Emission/

transmission
[Bushong 2014] 
[Hashemi 2003] 

[Westbrook 2011]
Electrical resistivity 

tomography Electric current Electrical resistivity Geophysics Transmission [Perrone 2014]

Electrical 
impedance 
tomography

Electric current
Electrical 

conductivity, 
electrical permittivity, 
electrical impedance

Medicine Transmission [Brown 2003] 

Ultrasound 
tomography

Propagation, 
reflection and 
attenuation of 

ultrasound 
waves

Ultrasound 
attenuation 

coefficient, speed of 
sound (from time-of-
flight measurements)

Medicine Emission [Gemmeke 2007] 

Electron 
tomography

Electron 
attenuation and 

scattering
Electron attenuation 

coefficient
Nanoscience, biology, 

material science Transmission [Ercius 2015]

Plasma soft X-ray 
tomography

Plasma X-ray 
emission X-ray emissivity Plasma physics, 

thermonuclear fusion Emission
[Anton 1996] 

[Granetz 1988] 
[Granetz 1985]

Plasma hard X-ray 
tomography

Plasma X-ray 
emission X-ray emissivity Plasma physics, 

thermonuclear fusion Emission [Peysson 2001] 
[Gnesin 2008]

Plasma neutron 
tomography

Plasma neutron 
emission Neutron emissivity Plasma physics, 

thermonuclear fusion Emission [Bielecki 2015]
[Craciunescu 2008]

Plasma gamma-
ray tomography

Plasma gamma 
emission e.g. 

from deuterons 
or alphas 

reactions with 
plasma 

impurities

Gamma emissivity Plasma physics, 
thermonuclear fusion Emission [Kiptily 2006]

Plasma bolometry Plasma radiative 
energy loss Radiated power Plasma physics, 

thermonuclear fusion Emission [Konoshima 2001]



Another modification of X-ray CT arose from the fact that materials having different 
elemental compositions can be represented in a tomographic image by the same (or very 
similar) value. This is because the reconstructed linear attenuation coefficient is not unique 
for any given material, but is a function of the material composition, energy of photons 
interacting with the material, and the mass density of the material. In general, 
the  attenuation of any material represented by X-ray tomographic image is caused by 
a  combination of photoelectric and Compton effects. The photoelectric effect 
predominates at lower photon energies and is heavily energy‑dependent. Compton 
scattering occurs almost independently of the photon energy at energies exceeding 
30 keV. The photoelectric effect is related to high atomic numbers, whereas the Compton 
effect is predominantly related to the density of the material. Therefore, the impact of these 
two mechanisms varies at different energy levels. Thus, the problem can be partly 
overcome by attenuation measurements acquired with different energy spectra, along with 
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Figure 3.1 Various beam geometries in CT. a) Planar fan beam. In this case, to obtain full 
3D reconstruction of the object, scanning in vertical direction is required. b) Pencil beam. 
Scanning in two perpendicular directions is required. c) Commonly used in commercial CT 
systems cone-beam configuration. d) Parallel-beam geometry. This configuration is often 
employed at synchrotron beamlines.



the use of the known changes in attenuation between the two spectra. This, the so-called 
dual-energy tomography helps to differentiate and to quantify material composition.

Similarly to X-ray tomography, transmission neutron tomography involves the production 
of three-dimensional images by the detection of the absorbance of neutrons produced by 
a neutron source. Typically, the spatial resolution of neutron tomographic systems is lower 
than X-ray systems (down to ~25 μm). X-ray and neutron tomography are complementary 
methods. They show different characteristics of the imaged object due to differences 
in  neutron and X-ray interaction with the material of investigated object. Contrary to 
X‑rays, neutrons interact significantly with some light materials (e.g., hydrogenous 
substances, boron or lithium) and penetrate heavy materials with minimal attenuation. This 
makes neutron tomography particularly sensitive to samples with low abundance 
of hydrogenous materials.

Among transmission methods, we can also distinguish absorption-contrast 
and  phase‑contrast (refraction) methods. Tomographic techniques listed above belong 
to absorption methods. It is however possible to exploit differences in the refractive index 
of materials, rather than attenuation coefficient, to differentiate between investigated 
structures. This phase-contrast imaging is used extensively in optical microscopy. In X-ray 
tomography, phase-contrast can be used to image structures with similar attenuation 
coefficients that could appear in absorption as almost uniform. This is very useful 
in biological, medical and geological applications. Contrast-phase variations in the X-rays 
emerging from the object have to be eventually converted into intensity variations at an 
X‑ray detector. This can be done in several ways. The so-called propagation-based 
phase‑contrast techniques use free‑space propagation in order to enhance object edges 
[Zaprazny 2012]. The propagation-based phase contrast methods usually require special 
phase-retrieval algorithms. Several of them have been developed. While this topic 
is  beyond the scope of this book, the paper by Nugent [Nugent 2007] is an excellent 
summary of phase-retrieval techniques in X-ray imaging. Talbot interferometry uses a set 
of diffraction gratings to measure the derivative of the phase. X-ray Talbot interferometry 
has the advantage that it functions with polychromatic cone-beam X-rays 
[Momose  2006] .  Different ia l phase measurements are a lso per formed 
in  diffraction‑enhanced imaging that uses an analyzer crystal [Kitchen 2007]. X-ray 
interferometry uses a crystal interferometer to measure the phase directly [Bonse 1965; 
Beckmann 1995; Momose 1995].

In emission tomography, no external source is used – the investigated object is the source 
of radiation itself. A classic example of emission tomography is Positron Emission 
Tomography (PET), widely applied in medicine. PET consists in detection of pairs 
of  gamma rays emitted by positron-emitting radionuclide – so-called tracer, which 
is  introduced into a patient body on a biologically active molecule. Imaging of the local 
tracer concentration is possible due to the unique properties of positron decay 
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and  annihilation. After the emission from the parent nucleus, the energetic positron 
traverses a few millimeters through the tissue until it becomes thermalized by electrostatic 
interaction between the electrons and the atomic nuclei of the media and combines with 
a free electron to form a positronium. The positronium decays by annihilation, generating 
a pair of gamma rays which travel in nearly opposite directions. Each of these photons 
carries an energy of 511 keV. The photons are detected in coincidence using pairs 
of  collinearly aligned detectors. The other example of emission tomography is Single-
photon Emission Computed Tomography  (SPECT) also commonly used in medicine. 
SPECT also requires delivery of a gamma-emitting  radioisotope  into the patient 
bloodstream. Gamma rays, emitted from the radioisotope located in a patient body, are 
registered using a gamma camera. Multiple projections - from multiple angles - are 
acquired, allowing tomographic reconstruction. SPECT is similar to PET in its use of 
radioactive tracer material and detection of gamma rays. In contrast to PET, however, the 
tracers used in SPECT emit gamma radiation that is measured directly, whereas PET 
tracers emit positrons that annihilate with electrons producing two gamma photons to be 
emitted in opposite directions. A PET scanner detects these emissions coincident in time, 
which allows achieving higher spatial resolution than SPECT. On the other hand, SPECT is 
a significantly less expensive technique than PET. This is because the method uses longer-
lived and more easily obtained radioisotopes than PET.

A separate class of tomographic methods is Magnetic Resonance Tomography. Magnetic 
resonance imaging is based on the fact that certain atomic nuclei (hydrogen mostly used 
in clinical practice) can absorb and emit radio-frequency (RF) radiation when exposed 
to external electric fields. The subject of MRI is definitely beyond the scope of this book. 

Figure 3.2. An example of emission 
tomography – Positron Emission 
Tomography. A positron emitted by 
radionuclide travels very short distance 
before it annihilates and generates the 
pair of gamma rays each of energy of 
511 keV. The two almost back-to-back 
emitted photons are registered in 
coincidence by two external scintillation 
detectors in order to determine both 
activity and location of the positron 
emitter.
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The interested Reader is referred to many excellent monographs on this topic [Bushong 
2014; Hashemi 2003; Westbrook 2011].

Since thermonuclear plasma emits a  wide range  of  electromagnetic waves as well as 
particle radiation, plasma tomography relays mostly on emission techniques. However, 
in some cases, external beams are also used on fusion devices, e.g. to recover the spatial 
electron density distribution from far infrared (FIR) interferometric measurements 
[Doyle 1986]. Tomographic techniques routinely applied at fusion devices (tokamaks and 
stellarators) include: soft and hard X-ray tomography, gamma tomography, neutron 
tomography and bolometry. The distinction between soft and hard energy range is made 
according to different origins of the measured photons and different physical phenomena 
involved. This will be explained in details in the following chapters of the book. Further 
information on neutron, gamma and X-ray detection systems at modern tokamak devices 
is presented in Section 6.2 of the book.
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4. Reconstruction methods in classical 

tomography

Reconstruction of a tomographic image relies on the application of a dedicated 
mathematical method to retrieve the original spatial distribution (in 2D or 3D) of desired 
quantity in investigated object (e.g. linear attenuation coefficient or any other quantity from 
the third column of Tab. 3.1), based on the results of measured line-integrated values. 
In  this book, we distinguish between ‘classical’ reconstruction methods and a separate 
class of methods used in fusion science, where the reconstruction is typically preformed 
from sparse data sets and an appropriate regularisation method is required. The latter 
methods are disused in detail in Chapter 6. Here we focus on ‘classical’ reconstruction 
methods that fall into two categories: analytical or iterative. Among analytical methods 
a few of them are presented in the subsequent part of the chapter, namely: direct Fourier 
inversion method, back-projection (BP) method, and its modifications commonly applied 
in medical CT: back-projection filtering (BPF) method, filtered back-projection (FBP) 
method and convolution back-projection (CBP) method. In turn, the iterative methods use 
the differences between the measured data and the calculated data to update an image in 
an iterative manner. The initial reconstructed images (a guess or an image given by BP 
method) are refined and modified iteratively until certain criteria are met. One example 
of an iterative method - Algebraic Reconstruction Technique is discussed in Chapter 5. In 
general, the analytical approach such as FBP is less perfect, albeit much faster and thus it 
has become the golden standard in reconstruction methods for diagnostic CT.

Let us start the discussion on tomographic reconstruction methods with a simple intuitive 
example. Let us assume that our image to be reconstructed is 2D and consists of 64 (8×8) 
unit-area elements (pixels). Only 2 out of 64 elements have values different than zero and 
arbitrary equal to 1. The situation is shown in Figure 4.1a. To relate this simplified image 
with some physical reality let us assume that the image represents the X-ray linear 
attenuation coefficient given in arbitrary units. Moreover, to further simplify our discussion, 
let us assume that we have measured only two perpendicular projections of the object. 
The projections created by the registration of the X-rays passing through the object along 
two perpendicular directions are presented in Figure 4.1b. According to back-projection 
method, in the first step, we assign to all image elements in a given column the same 
average value associated with the vertical projection. This is equivalent to smearing out or, 
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as the name of the method indicates, back-projecting of the measured projection along 
the original paths of the rays over the image grid. This process of back-projecting of the 
vertical projection is schematically shown in Figure 4.1c. Similarly, we repeat the 
procedure for the horizontal projection, summing up, for every image element, the values 
resulted from every back-projection process. This is shown in Figure 4.1d. The image 
resulting from back-projecting of both available projections is illustrated in Figure 4.1e. 
Using such a limited data set (two projections only!) we are able to reconstruct the location 
of both non-zero elements of the original image. However, it is important to note that, as a 
result of the reconstruction, we also obtained artifacts in the form of four streaks and two 
artificial points. It can be shown that performing more projection measurements, and using 
them for reconstruction does not prevent this situation. In the general case, an image 
reconstructed by simple back-projection method carries the information on the original 

image distorted (blurred) by factor 1
|r |

 , where r is the distance from the origin. This will be 

formally shown in the subsequent part of this chapter. 
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a) b)

c) d)

e) Figure 4.1 A schematic illustration of back-projection 
reconstruction of an image composed of two points. a) Original 
image to be reconstructed, b) Results of measurements of two 
perpendicular projections, c) back-projecting of the vertical 
projection over the image plane, d) back-projecting of the 
horizontal projection and summing up contributions from both 
back-projections, e) reconstructed image affected by streak 
artefacts. 



4.2 Line integrals and projections

In order to discuss further the analytical reconstruction methods, we have to introduce 
some formal definitions. We will use the coordinate system shown in Figure 4.2. For the 
sake of simplicity, we will focus on two-dimensional case. Let (x, y) be the Cartesian 
coordinates, and f (x, y) be a compactly supported continuous function on           R          2. For given 
f (x, y) and given (θ, s)  we define a line integral as a value of:

 p = ∫L
f (x, y)d l, (4.2.1)

where L is a straight line defined by (θ, s) parameters shown in Figure 4.2 and l is the path 
along given line L. A projection Pθ(s) is a set of line integrals for all values of parameter s. 
An example of projection P(θ= 45∘)(s) for θ = 45∘  is also illustrated in Figure 4.2.
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Figure 4.2 The coordinate systems and an example of a line integral and 
projection for θ = 45∘. (s, t) is the rotated system.



4.3 The Radon Transform

The Radon transform P of f (x, y) in two dimensions is given by:

P =          R          f = ∫L
f (x, y)d l, (4.3.1)

for all lines L.           R           designates here the Radon transform operator, l is the path along line L. 
Function f (x, y) can be interpreted e.g. as the local neutron or X-ray emissivity (i.e. the 
number of neutrons or X-ray photons emitted by a unit plasma volume per unit time) in a 
poloidal cross-section of plasma confined in a tokamak. L would be then a viewing line 
through the plasma and p(s) the experimentally measured line-integrated emissivity. In 
case of absorption medical CT, function f (x, y) can be identified with a distribution of the 
linear attenuation coefficient in a cross-section of a human body. 

In computed microtomography or medical CT, where either a scanned object or 
equivalently an X-ray source and a detector are being rotated, it is very useful to perform 
transformation from (x, y) coordinate system to the rotated system (s, t) (see Figure 4.2). In 
plasma tomography, where neither plasma nor a detection system can be rotated, we 
have to deal with multiple, angularly distributed Lines of Sight (LoS) of a detection system 
(see. Section 6.2). The relationships between the two systems are following:

(x, y) → (s, t) 	 	 	 	 	 	 (s, t) → (x, y)

s = x cos(θ) + y sin(θ)	 	 	   	 x = s cos(θ) −t sin(θ)	

t = −x sin(θ) + y cos(θ)	 	  	 	 y = s sin(θ) + t cos(θ), (4.3.2)

where θ denotes the angle between axes x and s .  

Using (s, θ) parametrisation, the Radon transform can be expressed as:

	 	 	 P(s, θ) = ∫
∞

−∞ ∫
∞

−∞
f (x, y)δ(xcos(θ) + ysin(θ) −s)d xd y, (4.3.3)

where δ denotes the Kronecker delta. The pair of (s, θ) quantities can be considered as 
coordinates on the space of all lines in           R          2. 
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The graphical representation of the Radon transform of the f (x, y) function from Figure 4.2 
is shown in Figure 4.3. In tomographic terms, this graphical representation of the Radon 
transform is called sinogram. 

The plot is called sinogram for the following reason:
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Theorem:

The Radon transform of an isolated point is a sinusoidal function of θ with the 
amplitude of the sinusoid being the distance of the point from the origin.

Proof:

Let an isolated point function be represented by 2D Dirac function:

f (x, y) = δ(x −x0)δ(y −y0) . (4.3.4)

Then, the Radon transform:

P(s, θ) = ∫
∞

−∞ ∫
∞

−∞
δ(x −x0)δ(y −y0)δ(xcos(θ) + ysin(θ) −s)d xd y . (4.3.5)

Thus*,

P(s, θ) = δ(x0cos(θ) + y0sin(θ) −s) . (4.3.6)

 P(s, θ) does not vanish only for:

s = x0cos(θ) + y0sin(θ) . (4.3.7)

Substituting: 

x0 = Csinϕ; y0 = Ccosϕ, (4.3.8)

s = C sinϕ cos θ + C cosϕ sinθ = C sin(ϕ + θ), (4.3.9)

where: 

x2
0 + y2

0 = C2sin2θ + C2cos2θ = C2, (4.3.10)

C = x2
0 + y2

0 . (4.3.11)

* Strictly product of two delta functions is not well defined, however the relationship can be deduced noting that each projection is 
a function that is zero everywhere except at a single point at some location s, which is dependent on θ .  



The sinogram of any object is the superposition of all the sinusoids, each weighted by 
the value f (x, y). This can indicate that there should be enough information in the sinogram 
to recover the original function f (x, y), providing that we are able to unscramble all of those 
sinusoids. The definition of the Radon transform can be also generalised to higher 
dimensions [Deans 1978], however for all applications presented in this textbook it is 
satisfactory to focus solely on 2D Radon transform.  

Figure 4.3  Sinogram as a graphical representation of the Radon transform of function f (x, y) 
presented in Figure 4.2.
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4.4 Properties of the Radon transform

The following list shows (without proofs) a few basic properties of the Radon transform. 
This list however is by no means exhaustive. The Reader interested in a more 
mathematical treatment is referred to the textbook of Helgason [Helgason 1999].

Let us assume that:           R          : f (x, y) → P(s, θ). Then, the following properties of the Radon 
transform hold:

1) Linearity:  If           R          : g (x, y) → Q(s, θ), then,          R          : α f + βg → αP(s, θ) + βQ(s, θ), (4.4.1)

2) Translation:           R          : f (x −x0, y −y0) → P(s −x0cosθ −y0sinθ, θ), (4.4.2)

3) Rotation:           R          : f (xcosθ′� + ysinθ′�, −xsinθ′ � + ycosθ′�) → P(s, θ −θ′ �), (4.4.3)

4) Magnification:           R          : f (αx, αy) → 1
|α |

P(αs, θ), for  α ≠ 0, (4.4.4) 

5) Flips:           R          : f (−x, y) → P(s, π −θ),           R          : f (x, −y) → P(−s, π −θ),

The last two properties are special cases of the more general affine scaling property of the 
Radon transform [Fessler 2014].

6) The projection-integral theorem: for a scalar function z :           R           →           R          :

 

∫ P(s, θ) z(s)d s = ∫ (∫ f (s cosθ −t sinθ, s sinθ + t cosθ)d t) z(s) d s = ∫ ∫ f (x, y)z(xcosθ + ysinθ)d xd y 

(4.4.5)

In the special case when z(s) = 1 we obtain:

7) Volume conservation: ∫ P(s, θ)d s = ∫ ∫ f (x, y)d xd y = F(0,0) ∀θ, (4.4.6)

where F(x, y) denotes the Fourier transform of function f (x, y).
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4.5 The Abel transform

The Abel transform designated by the operator           A           is a special case of the 2D Radon 
Transform, valid when the function being transformed is rotationally symmetric. Figure 4.4 
shows graphical interpretation of the Abel transform in 2D. 

If function fa( ⃗r ) is independent of the polar angle θ in polar coordinates ⃗r = (r, θ) i.e. 
fa(x, y) = fa( ⃗r ) = fa(r), then all projection directions are equivalent. Thus, without losing 
generality, we can choose projection parallel to the x axis. Then, the Radon transform 
defined by Eq. 4.3.1 becomes:

          R           fa(r) =            A          fa(r) = Pa = ∫
∞

−∞
fa(r)d y (4.5.1)

Since: x2 + y2 = r2 and d y = r
y

dr,

Pa(x) = 2∫
∞

|x|
f (r) r

r2 −x2
dr, (4.5.2)

where we used symmetry properties of fa(r). Equation 4.5.2 is explicit form of the Abel 
transform.
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Figure 4.4  Geometrical interpretation of the 
Abel transform in two dimensions. The Abel 
transform can be considered as a process 
of projection (i.e. integration) of the 
circularly symmetric function fa(r) along the 
lines of sight.  



4.6 Fourier Slice Theorem

Perhaps the most important theorem in computed tomography states that: 

Theorem:

The 1D Fourier transform of a parallel projection Pθ(s) of function f (x, y) is equal to 1D 
slice  of the  2D Fourier transform of function f (x, y) through the origin in the Fourier 
space evaluated at angle θ.

Proof:

2D Fourier transform of function f (x, y) is given by:

          F          ( f (x, y)) = F(u , v) = ∫
∞

−∞ ∫
∞

−∞
f (x, y)e(−2πi(u x+ vy))d xd y, (4.6.1)

where (u , v) are frequency variables. Without loss of generality we can choose θ = 0 
(projection parallel to x axis), thus y = 0.

From Eq. 4.6.1 we obtain: 

 F(u ,0) = ∫
∞

−∞ ∫
∞

−∞
f (x, y)e−2πiu xd xd y . (4.6.2)

Since the phase factor is now independent of y, we can split the integral as follows:

F(u ,0) = ∫
∞

−∞ [∫
∞

−∞
f (x, y)d y]e−2πiu xd x . (4.6.3)

We can recognise the term in the brackets as the equation for a projection along lines 
of constant x i.e. projection at angle θ = 0:

Pθ= 0(x) = ∫
∞

−∞
f (x, y)d y . (4.6.4)

Substituting the above equation into Eq. 4.6.3, we obtain:

F(u ,0) = ∫
∞

−∞
Pθ= 0(x)e−2πiu xd x . (4.6.5)
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Now, let us define projection at an angle θ = 0 as Pθ= 0(s) = Pθ= 0(x) and its Fourier 
transform:

          F          (Pθ= 0(x)) = Sθ= 0(u ) = ∫
∞

−∞
Pθ= 0(x)e−2πiu xd x . (4.6.6)

Thus, the right-hand side of Eq. 4.6.5 represents 1D Fourier transform of the projection 
Pθ= 0(x). Thus, we found the following relationship:

 F(u ,0) = Sθ= 0(u ) . (4.6.7)

This result however is independent of the orientation between the object and the 
coordinate system i.e. if the (s, t) coordinate system is rotated by an angle θ, the Fourier 
transform of the projection from Eq. 4.6.6 is equal to 2D Fourier transform of the object 
along a line that is rotated by θ:  

F(ρ, θ) = Sθ(ρ) . (4.6.8)

The theorem is illustrated in Figure 4.5. Using this figure, the theorem can be paraphrased 
as follows: The Fourier transform of projection Pθ(s) gives the values of F(u , v) along BB′� 
line in Figure 4.5.
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Figure 4.5 Illustration of the Fourier Slice Theorem. 



4.7 Direct Fourier reconstruction

The tomographic reconstruction can be directly based on the Fourier Slice theorem. 
To  reconstruct function f (x, y) from a set of its projections {Pθ1

(s), Pθ2
(s), …, PθN

(s)}, at first 
we have to calculate 1D Fourier transforms of each projection: {Sθ1

(ρ), Sθ2
(ρ), …, SθN

(ρ)}. 
Using the Fourier Slice Theorem we can determine the values of 2D Fourier transform 
F(u , v) of the function f (x, y) on radial lines defined by the set of {θ1, θ2, …, θN}, as shown in 
Figure 4.6. Only if an infinite number of projections are taken, then F(u , v) would be known 
at all points in the (u , v) plane. Then, the function f (x, y) can be recovered using the inverse 
2D Fourier transform: 

f (x, y) = ∫
∞

−∞ ∫
∞

−∞
F(u , v)e(2πi(u x+ vy))d u d v, (4.7.1)

In practice, the implementation is based on the Inverse Fast Fourier Transform (IFFT) 
[Brigham 2002]. The 2D IFFT requires Cartesian samples while Fourier Slice Theorem 
relationship is intrinsically polar. Moreover, the projections are measured with a finite 
resolution. This means that only a finite number of values along the radial lines defined by 
the set of {θ1, θ2, …, θN} is known. Thus, the proper interpolation is needed. We leave the 
detailed discussion on the numerical implementation of the method, since it is not crucial 
for the general understanding of the topic. The Direct Fourier reconstruction method 
provides good results if the measured projections {Pθ1

(s), Pθ2
(s), …, PθN

(s)} are noiseless. In 
practice however, the required interpolation can introduce some artefacts. Moreover, the 
method involves computationally demanding 2D Fourier Transform.
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Figure 4.6 Illustration of the polar samples and interpolation onto Cartesian coordinates 
in the direct Fourier reconstruction method.



4.8 Back-projection 

As it was shown in Section 4.3, the Radon transform maps the original object function 
f (x, y) into its sinogram P(s, θ). In Chapter 4.1, in order to recover the function f (x, y) from 
P(s, θ), we used back-projection method in a simple and intuitive way. In this approach, we 
take each sinogram value and ‘smear’ it back into object space along the corresponding 
ray. Formally, the back-projection operation for the parallel beam is given by:

fBP(x, y) = ∫
π

0
h (θ) P(x cosθ + y sinθ, θ)dθ . (4.8.1)

In the above equation we introduced a user-chosen weight h (θ) for angle θ. This kind of 
weighting is useful when different projections have different signal to noise ratio. However, 
in the simplest case we can simply assume that  h (θ) = 1. 

We will demonstrate now the fact which was announced in the beginning of the chapter – 
the function reconstructed using back-projection method fBP(x, y) is a severely blurred 
version of the original function f (x, y). At first, let us note that the back-projection operation 
is linear and shift-invariant:

fBP(x −c, y −d ) = ∫
π

0
h (θ) P((x −c)cosθ + (y −d )sinθ, θ)dθ = ∫

π

0
h (θ) P(r −c cosθ −d sinθ, θ)dθ, (4.8.2)

where we used property 2 of the Radon transform presented in Section 4.4. Due to this 
shift-invariant, it is sufficient to examine the behaviour of fBP(x, y) only in a single point. For 
simplicity let us choose (x, y) = (0,0). Then, the reconstructed image of the point is given 
by:

fBP(0,0) = ∫
π

0
h (θ′�) P(0, θ′ �)dθ′� = ∫

π

0
h (θ′�)[∫

∞

−∞
f (0 cosθ′�−l sinθ′�,0 sinθ′� + l cosθ′ �)d l]dθ′ � =

= ∫
π

0 ∫
∞

−∞

h ((θ + π /2)mod π)
|r |

f (0 −rcosθ,0 −rsinθ) |r |drdθ, (4.8.3)

where we made the following variable change: θ′� = (θ + π /2)mod π, l =
r if θ′� ∈ [ π

2 , π]
−r if θ′� ∈ [0, π

2 )
.
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Using previously mentioned shift invariant property, we obtain the following formula for 
back-projected image:

fBP(x, y) = ∫
π

0 ∫
∞

−∞

h ((θ + π
2 )mod π)

|r |
f (x −rcosθ, y −rsinθ) |r |drdθ . (4.8.4)

The equation shows that the function reconstructed using back-projection method is the 

convolution of g (r, θ) =
h ((θ + π

2 )mod π)
|r |

 and f (x, y) in polar coordinates. In the common 

case of unmodified projections, when h (θ) = 1, we can notice that the function 

reconstructed using back-projection method is the original function blurred by the  1
|r |

 

term. Function 1
|r |

, plotted in Figure 4.7, can be treated as the point-spread function. 

The  heavy tails of this function limit the ability to interpret tomographic images 
reconstructed by simple back-projection method. 
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Figure 4.7 Illustration of the 1
|r |

 function that is 

the point-spread function in case of reconstruction by 
back-projection method.



Using Equation 4.8.4 and the convolution theorem (see Appendix 1), we can obtain the 
following relationship in the frequency domain:

FBP(ρ, Θ) = G(ρ, Θ)F(ρ, Θ), (4.8.5)

where FBP(ρ, Θ) is the polar form of the 2D Fourier transform of fBP(r, θ), F(ρ, Θ) is the polar 
form of the 2D Fourier transform of f (r, θ) and G(ρ, Θ) is the polar form of the 2D Fourier 
transform of the point-spread function g (r, θ). 

 Next, let us present and prove the following theorem:

Theorem:

The Fourier transform of 1
|r |

 is 1
|ρ |

.

Proof:

          F          ( 1
|r | )          F          =( 1

(x2 + y2) ) = ∫
∞

−∞ ∫
∞

−∞

1
(x2 + y2)

e−2πi(xu + vy)d xd y =

= ∫
∞

−∞ ∫
π

0

1
r

e−2πi(u rcosθ+ vrsinnθ)rdrdθ = ∫
π

0
δ(u cosθ + vsinθ)dθ . (4.8.6)

To evaluate the above integral we use the following relationship:

∫ δ(f (x))d x = 1
| f′�(x0) |

, (4.8.7)

where x0 is defined by equation: f (x) = 0 and f′� denotes derivative of f .

Since (u cosθ + vsinθ)′� = −u sinθ + vcosθ, then θ0 = arctan( −u
v ).

Thus,

          F          ( 1
|r | ) = 1

| −u sin(arctan( − u
v )) + vcos(arctan( − u

v )) |
= 1

u 2
v + v

1 + u 2
v2

= u 2 + v2

u 2 + v2
= 1

|ρ |
(4.8.8)

where we used the fact that: sin(arctan(x)) = x
1 + x2

 and cos(arctan(x)) = 1
1 + x2

.
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In the more general case, the point-spread function given in Equation 4.8.4 has the 
following Fourier transform:

          F          (g (r, θ)) =          F           ( 1
|r | (h (θ + π /2)mod π)) = 1

|ρ |
h (Θ) . (4.8.9)

The proof of the above theorem is deferred to Appendix 2.

Thus, in the general case the frequency-space relationship between the original object 
function and the function reconstructed using back-projection method is:

FBP(ρ, Θ) = h (Θ)
|ρ |

F(ρ, Θ), (4.8.10)

Equation 4.8.10 suggests that high spacial frequencies are attenuated by the  1
|ρ |

 factor.
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4.9 Back-projection filtering method

As it was shown in the previous section, the image function reconstructed by simple 
back‑projection method is a highly blurred version of the original image function. 
Equation 4.7.9 however, gives us a hint how to improve this situation. Again, for the sake 
of simplicity let us assume the user-defined filter function in a simplest form of h (θ) = 1. 
Then, using Equation 4.8.10 we can deduce the formula for the 2D Fourier transform of the 
image function reconstructed by back-projection filtering method fBPF(x, y):

FBPF(u , v) = u 2 + v2FBP(u , v), (4.9.1)

where FBP(u , v) is the 2D Fourier transform of the back-projected image and the filter with 
frequency response |ρ | = u 2 + v2 is called the cone filter due to its shape. Equation 4.9.1 
indicates the following steps of reconstruction. In the first step, we compute fBP(x, y) by 
simple back-projection of P(s, θ). Then, we compute 2D Fourier transform of fBP(x, y) in 
order to get FBP(u , v). Next, we apply the cone filter in the Fourier domain using Equation 
4.9.1. The cone filter cancels out the DC component of f (x, y), however it can be recovered 
using the volume conservation property of the Radon transform (Eq. 4.4.6). In the end, we 
calculate the inverse 2D transform of FBPF(u , v) to recover fBPF(x, y). This flow 
of back‑projection filtering reconstruction method is summarised in Figure 4.8.

43

Figure 4.8 Flow of the back-projection filtering reconstruction method.

Back-projection:  fBP(x, y) = ∫
π

0
h (θ)P(xcosθ + ysinθ, θ)dθ

2D Fourier transform: FBP(u , v) =          F          (fBP(x, y))

Application of the cone filter: FBPF(u , v) = u 2 + v2FBP(u , v)

Inverse 2D Fourier transform: fBPF(x, y) =          F          −1(FBPF(u , v))



The method is called back-projection filtering because at first the sinogram is 

back‑projected and then the cone filter is applied to deconvolve the blurring 1
|r |

 term. 

The  back-projection filtering method however, has a few disadvantages. First of all, it 
should be noted that function fBP(x, y) has unbounded spatial support. This is true even 

when the original function f (x, y) has a finite support due to the tails of the 1
|r |

 term. Thus, 

the support of fBP(x, y) must be truncated in any practical application of the method due to 
the finite size of computer memory. Also, in practice, fBP(x, y) has to be computed using a 
significantly larger matrix size than is needed to store the final result of fBPF(x, y). A large 
grid increases the computational costs of both the back-projection step and the 2D 
Fourier transform needed for the filtering. This disadvantage can be overcome by 
interchanging the filtering and back-projection phases as discussed in the next section.

Another disadvantage of the method is caused by the cone filter itself. In practice, using 
the cone filter only would severely amplify high frequency components, increasing noise 
level. To counteract this, the cone filter is usually apodised in the frequency domain with 
a windowing function. In this case Eq. 4.9.1 becomes:

FBPF(u , v) = A(u , v) u 2 + v2FBP(u , v), (4.9.2)

where A(u , v) is a low-pass filter.
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4.10 Filtered back-projection method

As it was shown in the previous section, reconstruction of the original function using 
back‑projecting and filtering has some drawbacks. However, thanks to the Fourier Slice 
Theorem, we can move the filtration step before the back-projection. Indeed, we can also 
recover the original function f (x, y) in the following way:

fFBP(x, y) = ∫ ∫ F(u , v)e2πi(xu + yv)d u d v = ∫
π

0 ∫
∞

−∞
F(νcosθ, νsinθ)e2πiν(xcosθ+ ysinθ) |ν |dνdθ =

= ∫
π

0 ∫
∞

−∞
Sθ(ν)e2πiν(xcosθ+ ysinθ) |ν |dνdθ = ∫

π

0
P̃θ(xcosθ + ysinθ)dθ (4.10.1)

In the first step of Equation 4.10.1 we changed (u , v) frequency variables to polar variables 
(ν, θ). In this case ν denotes radial variable along the line defined by Fourier Slice Theorem.   
In the second step we utilised the Fourier Slice Theorem: F(νcosθ, νsinθ) = Sθ(ν) and in the 
third step we defined the filtered projection as:

P̃θ(s) = ∫
∞

−∞
Sθ(ν) |ν |e2πiνsdν . (4.10.2)

Equation 4.10.1 suggests the following, alternative method of the reconstruction. At first, 
for each projection angle θ, we compute the 1D Fourier transform of the projection 
{Pθ1

(s), Pθ2
(s), …, PθN

(s)} to form {Sθ1
(ν), Sθ2

(ν), …, SθN
(ν)}. Then, we multiply each Fourier 

transform by |ν |  in order to obtain { |ν |Sθ1
(ν), …, |ν |SθN

(ν)} = {S̃θ1
(ν), …, S̃θN

(ν)}. Next, for 
each θ, we have to compute the inverse 1D Fourier transform of S̃θ(ν) in order to obtain the 
set of filtered projection {P̃θ1

(s), …, P̃θN
(s)}. In the end, we perform back-projection of the 

filtered sinogram using the definition of back-projection operator (Eq. 4.8.1). The flow of 
the filtered back-projection reconstruction method is presented in Figure 4.9.

It is worth noting that a filtered projection P̃θ(s) can have both positive and negative values 
contrary to a ‘normal’ projection Pθ(s) that obviously has only nonnegative values. This 
allows a destructive interference to occur in the regions where the image function is 
supposed to be zero. These regions however would be non-zero when the simple 

back‑projection of unfiltered projections is used, due to the blurring 1
|r |

 term.  An example 

of filtered and unfiltered projections of a simple square phantom model is shown in 
Figure 4.10. 
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Figure 4.9 Flow of the filtered back-projection reconstruction method.

Fourier transform of each projection:           F          (Pθ(s)) = Sθ(ν)

Application of the ramp filter for each Sθ(ν): |ν |Sθ(ν)

Inverse Fourier Transform to get filtered projections: P̃θ(s) =          F           −1( |ν |Sθ(ν))

Back-projection of filtered projections:  fFBP(x, y) = ∫
π

0
P̃(xcosθ + ysinθ, θ)dθ

Figure 4.10 An example of filtered and unfiltered projection of a simple square model.  
The filtered projection features negative values allowing a destructive interference to occur 
in the regions where the original image is supposed to be zero.

Phantom object 

Unfiltered  projection

Ramp-filtered  projection

s

s

x

y

P θ= 35o
(s)

P̃ θ= 35o
(s)



4.11 Convolution back-projection 

As it was mentioned earlier the ramp filter |ν |severely amplifies noise. Thus in practice, the 
filter is replaced (apodised with a windowing function) by a numerically more stable 
counterpart. In this case Equation 4.10.2 is replaced by:

P̃θ(s) = ∫
∞

−∞
Sθ(ν)A(ν) |ν |e2πiνsdν, (4.11.1)

where A(ν) is a one dimensional low-pass filter. Alternatively, this filtering operation can be 
done in the spatial domain by the following radial convolution:

P̃θ(s) = Pθ(s) * h a(s) = ∫ Pθ(s′�)h a(s −s′ �)d s′�, (4.11.2)

where the filter kernel h a(r) is the inverse Fourier transform of Ha(ν) = A(ν) |ν |  i.e:

h a(s) = ∫
∞

−∞
A(ν) |ν |e2πiνsdν . (4.11.3)

Using the formula for the back-projection of filtered projections from the previous section 
(Eq. 4.10.1) and Equation 4.11.2 we can define the method of convolution back-projection:

fCBP = ∫
π

0
P(s, θ) * h a(xcosθ + ysinθ)dθ = ∫

π

0 ∫ P(s, θ)h a(xcosθ + ysinθ −s)d sdθ . (4.11.4)

The simplest example is to use a spatially band-limited function. Such a function can be 
considered as an apodisation of the ramp filter |ν |with rectangular band-limiting window 

function A(ν) = rect( ν
2ν0 ), where ν0 is the maximum spatial frequency. This filter function 

is called Ram-Lak after names of two Indian physicists Ramachandran and 
Lakshminarayan [Ramachandran 1971]. Another commonly used filter is the so-called 
Shepp-Logan filter [Shepp 1974] named after an American mathematician Larry Shepp 
and an American electrical engineer Benjamin F. Logan. The filter is the result 
of multiplication in the frequency domain of the ramp filter by a sinc function. Figure 4.11a 
presents the shapes of Ram-Lak and Shepp-Logan functions in the frequency domain, 
while Figure 4.11b shows their impulse response function. There are more filter functions 
commonly used in CT. The more complete list is given in Appendix 9.3. 
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Figure 4.11 Ram-Lak and Shepp-Logan filter functions (a) and their impulse response 
functions (b).
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4.12 Fan beam tomography

The preceding sections were focused on the analytic reconstruction methods for 2D 
parallel beam (parallel projections). This is a very important case because it gives a 
relatively simple insight into the reconstruction methods and has been practically realised 
in synchrotron tomography. However, most of modern commercial CT scanners rely on fan 
beam or cone beam geometry. In this section, we derive the filtered back-projection 
method for the fan beam geometry. The succeeding section presents the most popular 
method in case of cone-beam geometry.

A simple approach to reconstruct the original object from equiangular fan beam 
projections would be to rebin every fan beam projection into parallel beam ones. For each 
sinogram collected using a fan beam geometry Pf (γ, β), we can find an equivalent 
sinogram of parallel beam P(s, θ) that has the same rays orientation as rays of the fan 
beam sinogram. For this purpose, the following relationships illustrated in Figure 4.12a are 
used:

θ = γ + β, (4.12.1)

s = Dsinγ, (4.12.2)

where D is the focal length, β is the angle between the source and the reference axis, and 
the angle γ gives the location of a ray within the fan. 
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Figure 4.12 Equiangular fan-beam geometry. a) θ, s, γ, β and D relationships, b) β, γ′�, and D′� 
relationships.
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After this simple rebinning of the fan beam projections into the parallel beam format, we 
can use an algorithm for parallel beam. In practice, this approach requires data 
interpolation when changing coordinates. Such an interpolation typically introduces some 
errors. Thus, in order to obtain accurate results it is advantageous to start with an 
analytical expression for the parallel beam reconstruction and substitute the parallel 
projection by fan beam counterpart, changing variables by calculation of the proper 
Jacobian. Reconstruction method for the parallel beam geometry can be written as: 

f (x, y) = ∫
π

0 ∫ P(s, θ)h (xcosθ + ysinθ −s)d sdθ, (4.12.3)

where the filter kernel h (s) is the inverse Fourier transform of |ν | :

h (s) = ∫
∞

−∞
|ν |e2πisdν . (4.12.4)

This method only requires the parallel projections collected over 180°. However, 
projections collected over 360° also can be used. Then, Eq. 4.12.3 becomes:

f (x, y) = 1
2 ∫

2π

0 ∫ P(s, θ)h (xcosθ + ysinθ −s)d sdθ . (4.12.5)

Since it is easier to use polar coordinates (r, ϕ) (Fig. 4.12b) rather than Cartesian 
coordinates (x, y), we substitute:

x = rcosϕ		 	 y = rsinϕ . (4.12.6)

Equation 4.12.5 can be re-written as:

f (r, ϕ) = 1
2 ∫

2π

0 ∫ P(s, θ)h (rcos(θ −ϕ) −s)d sdθ . (4.12.7)

Changing variables using expressions 4.12.1 and 4.12.2 and calculating Jacobian
cos θ −sin θ
sin θ cos θ = Dcosγ, we obtain:

f (r, ϕ) = 1
2 ∫

2π

0 ∫
π/2

−π/2
P(ea)

f (γ, β)h (rcos(β + γ −ϕ) −Dsinγ)Dcosγdγdβ, (4.12.8)

where P(ea)
f (γ, β) is an equiangular fan beam Radon transform. The above equation 

describes the reconstruction method for the fan beam geometry. However, the inner 
integral over γ is not in the convolution form. Thus, in the next steps we convert the 
integral over γ to a convolution with respect to γ. For a given reconstruction point (r, ϕ) we 
can define a distance D’ from the source to the point and the angle γ′� of the ray that 
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passes through the point, as shown in Figure 4.12b. Then the argument of h  can be 
rewritten as rcos(β + γ −ϕ) −Dsinγ = D′�sin(γ′�−γ) [Kak 2001] and Eq. 4.12.8 becomes:

f (r, ϕ) = 1
2 ∫

2π

0 ∫
π/2

−π/2
P(ea)

f (γ, β)h (D′ �sin(γ′�−γ))Dcosγdγdβ . (4.12.9)

Using Eq. 4.12.4 we obtain:

h (D′�sinγ) = ∫
∞

−∞
|ν |e2πiνD′ �sinγdν . (4.12.10)

Now, by making the following substitution:

ν′� = ν
D′�sinγ

γ
, (4.12.11)

we can write: 

h (D′�sinγ) = ( γ
D′�sinγ )

2

∫
∞

−∞
|ν′�|e2πiν′�γdν′� = ( γ

D′�sinγ )
2
h (γ) . (4.12.12)

Using the above formula, Eq. 4.12.9 can be written as:

f (r, ϕ) = ∫
2π

0

1
D′�2 ∫

π/2

−π/2
P(ea)

f (γ, β)h f (γ′�−γ)cosγdγdβ, (4.12.13)

where we defined:

h f = D
2 ( γ

sinγ )
2
h (γ) . (4.12.14)

Equation 4.12.13 is the foundation of the fan-beam convolution back-projection algorithm 
for the equiangular rays geometry. 

In case of equally spaced detectors array (equidistant rays), the final equation is slightly 
different, due to differences in mathematical manipulation:

f (r, ϕ) = 1
2 ∫

2π

0

1
U2 ∫

∞

−∞

D
D2 + t2

P(ed )
f (t, β)h f (t′�−t)d tdβ, (4.12.15)

where: P(ed )
f (t, β) is an equidistant fan beam Radon transform and:  

U = D + rsin(β −ϕ)
D

, (4.12.16)
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t′� = Drcos(β −ϕ)
D + rsin(β −ϕ) , (4.12.17)

and t is shown in Figure 4.13.

In this case fan projections are represented in terms of distance t rather than angular 
location given by γ angle. The basic concept of the reconstruction however remains 
similar. More details on this second case can be found in [Kak 2001]. 
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4.13 Cone beam tomography

Most of the conventional X-ray sources such as X-ray tubes produce a conical beam of 
radiation. Using such beams in CT has the main advantage of the reduction of time 
needed for projections collection. In this case, ray integrals are measured through every 
point in the object in the time it takes to measure a single slice in a fan-beam geometry. 
To present a method of topographic reconstruction in case of the cone-beam at first we 
have to extend the definition of projection to 3D case. A single ray in 3D is uniquely 
defined by the intersection of two planes:

s = xcosθ + ysinθ (4.13.1)

r = −(−xsinθ + ycosθ)sinγ + zcosγ (4.13.2)

A new coordinate system (s, t, r) is obtained by two rotations of the (x, y, z) coordinate 
system:

[
s
t′�
r] =

1 0 0
0 cosγ sinγ
0 −sinγ cosγ

cosθ sinθ 1
−sinθ cosθ 0

0 0 0 [
x
y
z] (4.13.3)

The first rotation is by θ angle around z axis to form (s, t, z) coordinate system, the second 
rotation is by γ angle around s axis (out of (s, t) plane) to form (s, t′�, r) coordinate system. 
These operations are illustrated in Figure 4.14.
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A 3D parallel projection of the function f can be now expressed as:

Pθ,γ(s, r) = ∫ f (s, t, r)d t . (4.13.4)

Now, we will present the most common method of reconstruction for the cone beam 
geometry. The method is often called FDK algorithm after the names of its creators: L. A. 
Feldkamp, L. C. Davis, and J. W. Kress [Feldkamp 1984]. The algorithm is an extension 
of the fan-beam reconstruction formula to the cone-beam case. It is based on filtering and 
back-projecting a single fan-beam plane within the cone. Each elevation in the cone is 
considered separately and the final 3D reconstruction is obtained by summing the 
contribution to the object from all the tilted fan beams. Thus, the basic idea of the FDK 
method is to apply weighted filter on the measured data along each row of the detector as 
if it were part of a 2D fan-beam acquisition and then to perform 3D back-projection. 
The method is fast and robust. However, the FDK method provides only an approximation 
of the reconstructed function. This is because the method is dedicated to the circular 
source trajectory (axial scan) and such a scan does not satisfy Tuy’s conditions [Tuy, 1983]. 
More details on the Tuy’s condition can be found in Appendix 9.4. Artefacts are especially 
pronounced at locations away from the orbit plane. They include reduction of 
reconstructed function values in the regions away from the orbit plane or cross-talks 
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between adjacent slices. In general, the exact results are achieved only at the orbit plane. 
Thus, the method provides better results if the angle of cone beam is small.

Because of the similarities with the fan-beam reconstruction method we start with the 2D 
equidistant fan-beam reconstruction formula for the point (r, ϕ) (Eq. 4.12.15), changing 
names for some of the variables:

f (r, ϕ) = 1
2 ∫

2π

0

1
U2 ∫

∞

−∞

DSO

D2
SO + b2

P(b, β)h (b′�−b)d bdβ, (4.13.5)

where: b′� = DSOrcos(β −ϕ)
DSO + rsin(β −ϕ) , h (b) = ∫

∞

−∞
|ν |e2πiνbdν, U(r, ϕ, β) = DSO + rsin(β −ϕ)

DSO
, (4.13.6)

and DSO is the distance from the centre of rotation to the source, as indicated in Figure 
4.15.

The above equation can be simplified by replacing polar coordinate system (r, ϕ) by 
rotated (s, t) system. Using the following expressions:

s = x cosβ + y sinβ,	 t = −x sinβ + y cosβ (4.13.7)

and 

x = r cosϕ,	 y = r sinϕ (4.13.8)

we can write:

r sin(β −ϕ) = r(sinβcosϕ −cosβsinϕ) = y cosβ −t −y cosβ = −t (4.13.9)

and 

r cos(β −ϕ) = r(cosβcosϕ + sinβsinϕ) = s −y sinβ + y sinβ = s . (4.13.10)

Thus:

 b′� = DSOs
DSO −t

 	 and	 U(r, ϕ, β) = DSO −t
DSO

. (4.13.11)

We can rewrite Eq. 4.13.5 using the above relationships:

f (s, t) = 1
2 ∫

2π

0

D2
SO

(DSO −t)2 ∫
∞

−∞

DSO

D2
SO + b2

P(b, β)h ( DSOs
(DSO −t) −b)d bdβ . (4.13.12)
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There is one more step to obtain the formula for cone-beam reconstruction. In contrast to 
2D fan beam reconstruction, in the cone beam case we have to tilt the fan beam out of 
the plane of reconstruction as it is shown in Figure 4.16. A new coordinate system (s, t′�) 
is defined to represent the location of the reconstructed point with respect to the tilted fan. 
When we move out of the central reconstruction plane, the size of the fan changes. 
Because of this fan size change, both DSO and dβ change as well. The new source 
distance D′�SO is given by:

D′�2SO = D2
SO + ζ2, (4.13.13)

where ζ is the height of the fan above the centre of the plane of rotation (measured along z 
axis as shown in Fig. 4.16.).  

Since: 

DSOdβ = D′�SOdβ′�, (4.13.14)

dβ′� = DSOdβ

D2
SO + ζ2

. (4.13.15)

Substituting D′�SO for DSO and dβ′� for dβ we obtain:
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Figure 4.16 Two coordinate systems: (s, t) and (s′�, t′�). The coordinate system (s′�, t′�) represents 
a tilted fan beam. 
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f (s′�, t′�) = 1
2 ∫

2π

0

D′�2SO

(D′�SO −t′�)2 ∫
∞

−∞

D′ �SO

D′�2SO + b2
P(b, β′�, ζ )h ( D′�SOs′�

(D′�SO −t′�) −b)d bdβ′�, (4.13.16)

where we indicated that P depends on the height ζ.

We can return to (s, t, z) coordinate system using Eq. 4.13.14, Eq. 4.13.15 and the following 
relationships:

s′� = s,	 t′�
D′�SO

= t
DSO

,	 ζ
DSO

= z
DSO −t

. (4.13.17)

Finally, the formula for cone-beam reconstruction is given by:

f (s, t) = 1
2 ∫

2π

0

D2
SO

(DSO −t)2 ∫
∞

−∞

DSO

D2
SO + b2 + ζ2

P(b, β′�, ζ )h ( DSOs
DSO −t

−b)d bdβ . (4.13.18)

The pre-weighting factor 
DSO

D2
SO + b2 + ζ2

 is geometrically interpreted as the cosine of the 

angle between the ray and the central ray of the projection. The first term 
D2

SO

(DSO −t)2  is 

identical to the 1
U2  factor in fan-beam back-projection (cf. Eq. 4.12.16). Pre-weighted 

projections are convoluted with the ramp filter h  independently for each fan elevation ζ. 
Finally the pre-weighted and filtered projections are back-projected into three-dimensional 
reconstruction space. The flow of the FDK method is presented in Figure 4.17.
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Figure 4.17. The flow of the FDK method
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Row-by-row application of the ramp filter to the pre-scaled projection data.

Cone-beam back-projection of the pre-scaled and filtered data with a weighting 
function of the distance from the reconstruction point to the focal point.



4.14 Examples of application: X-ray microtomography
Based on J. Bielecki etal., Radiation Physics and Chemistry, 93, 59 (2013).

In this section a few selected applications of CT method will be presented. The following 
investigations were carried out using an X-ray microtomography system developed 
at  the  Institute of Nuclear Physics (Kraków, Poland). The system is composed 
of a microfocusing X-ray source, a sample positioning system and an X-ray sensitive CCD 
camera. The  schematic layout of the experimental setup is shown in Figure 4.18. More 
details on the microtomographic system can be found in [Bielecki 2009].

Investigations from several fields were carried out using the microtomographic system. 
In geo-science studies the following quantities have been determined: porosity, pore size 
distributions, specific area and tortuosity of rock samples [Bielecki 2013]. Combined 
microtomographic studies and Lattice Boltzmann calculations provided permeability 
tensors of the samples [Bielecki 2013]. Selected results are presented in Figure 4.19a-e. 
Material science investigations concerned imaging of foam materials based on carbon 
fibres, polylactic acid and tricalcium phosphate (Figure 4.20a-c). The X-ray 
microtomographic system was also used to image endocasts of human kidneys. More 
details on this topic can be found in [Drewniak 2011]. An example of the obtained 
tomographic images is presented in Figure 4.20.

The spatial resolution of the system based on the laboratory source is around 4 µm 
[Bielecki 2009]. The resolution is determined mostly by the spot size of the X-ray tube and 
the dimensions of a single element of the CCD detector. Higher resolution can be achieved 
using dedicated synchrotron beamline. Figure 4.22 shows a comparison of tomographic 
reconstruction of the same rock sample obtained using the laboratory system 
and  the  TopoTomo beamline of ANKA synchrotron (KIT, Karlsruhe, Germany) 
[Bielecki 2013]. The spatial resolution of images obtained using the synchrotron beamline 
was around 1 µm.

For the reconstruction of tomographic images obtained with the laboratory system the 
FDK cone beam algorithm was used, while in case of synchrotron-based images 
convolution back-projection for parallel beam geometry was applied.
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Figure 4.18. Schematic view of the X-ray microtomography setup
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Figure 4.19 a) Internal structure of a porous rock sample, b) triangulation process to 
calculate the specific area of the sample, c) pore size distribution calculation, 
d)  tortuosity calculation based on the random walk scheme, e) an example of 
reconstructed microtomographic slice of a rock sample (sandstone). 

a)

b)

c) d)

e)

a) b) c)
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Figure 4.22  Reconstructed tomographic 
slice of a sandstone rock sample: a) 
synchrotron beamline, b) experimental 
setup based on microfocusing X-ray tube. 
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Figure 4.20 Microtomographic images of a) carbon fibre foam, b) polylactic acid-based 
foam material, c) tricalcium phosphate-based foam material.
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5. Algebraic Reconstruction Methods

In the preceding part of this book analytical methods, i.e. methods based on analytical  
transformations, were presented. This kind of reconstruction methods require a large 
number of projections. Moreover, ideally, the projections should be uniformly distributed 
over 180 or 360°. Often this condition is not fully fulfilled in classical (e.g. medical) CT and 
almost never in plasma tomography (see Section 6.2). An alternative approach to 
the tomographic reconstruction is based on algebraic manipulations. In this approach we 
assume that the searched function is represented by an array of discrete unknowns. 
Based on the measured projections, we can set up a system of linear algebraic equations 
for the unknowns. The reconstruction problem, in this case, consists in solving the system 
of equations. In this part of the book, we will at first introduce a set of linear equations 
where unknowns are elements of the object cross section. Then, we will present 
the Kaczmarz [Kaczmarz 1937] method for solving these equations. This approach applied 
to CT is often referred to as Algebraic Reconstruction Technique (ART). This will be 
followed by the several approximations that are used in this method to speed up its 
computer implementation.

5.1 Definition of the problem

Let f (x, y) be the function to be reconstructed. We introduce a grid that is superimposed on 
the image function f (x, y), as shown in Figure 5.1. We assume that in each cell function 
f (x, y) is constant. Then, fj denotes this constant value in the j-th cell, and N is the total 
number of cells. These steps are equivalent to introduction of the localised (pixel) basis 
set. Now, let us define the projections. In order to do that, we introduce rays of width τ as 
shown in Figure 5.1. A discrete line integral counterpart is now called a ray-sum. 
A projection will also have an index. Let pi be the ray-sum measured with the i-th ray as 
shown in Figure 5.1. Then, the following relationship between fj and pi holds:

N

∑
j= 1

wij fj = pi, 	 i = 1,2,...,M (5.1)
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where M is the total number of rays in all projections, and wji is the element of weighting 
(or contribution) matrix that represents the contribution of the j-th grid element to the i-th 
ray integral. The system of linear equation (Eq. 5.1) can be also written in the matrix form 
as:

Wf = p, (5.2)

where f is (N⨯1) column vector, p is (M⨯1) column vector and W is (M⨯N) matrix. 
The elements of W matrix can be constructed as the fractional area of the j-th image cell 
intercepted by the i-th ray, as shown for one of the cells in Figure 5.1. Note that most 
of the elements of W are zero, since only a small number of cells contribute to any given 
ray-sum. This implies that W is a sparse matrix.
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Figure 5.1 Definition of the problem in algebraic approach to tomographic reconstruction. 
An example of a weighting matrix element construction is also shown.
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Now, let us focus on the solution of the system of equations. First of all, if both M and N
were small we could use direct matrix inversion methods. In practice however, this is never  
true. For example, considering a moderate image resolution of 512⨯512 elements, 
N would be ~2.6⨯105 and M would also have the same magnitude. Furthermore, when 
M < N and additionally projection data consists of measurement noise, direct matrix 
inversion is not possible and some least squares method must be used. However, when 
both M and N are large, such methods are also computationally impractical. In the next 
section a more efficient iterative Kaczmarz method is presented. Nevertheless, as will be 
shown later in the book, in highly ill-posed problems this method also fails and some kind 
of regularisation is required.

5.2 Algebraic Reconstruction Technique (Kaczmarz 
method)

In order to explain the principles of ART method, at first we have to note that the function 
f (x, y) discretized on N grid cells has N degrees of freedom. Thus, the image to be 
reconstructed, represented by vector  f = ( f1, f2, . . . , fN)T, can be considered as a single 
point in a N-dimensional space. Each of the equations of the linear system (Eq. 5.1) 
represents a hyperplane in this N-dimensional space. If a unique solution exists, all these 
hyperplanes intersect in a single point that represents a desired solution. In order 
to simplify our considerations let us focus on a simple case of two variables only. Then, 
Equation 5.1 written down explicitly takes the following form:

{w11 f1 + w12 f2 = p1
w21 f1 + w22 f2 = p2

(5.3)

In this simple case of 2-dimensional space, hyperplanes are reduced to straight lines 
as  shown in Figure 5.2. The ART method starts with an initial guess, e.g. vector f (0) is 
selected in the random manner (the superscript denotes the iteration number). In the next 
step, this initial vector is projected onto the first line. Then, the resulting point is again 
projected on the second line and this procedure continues as shown in Figure 5.2. 
If a unique solution exists (i.e. if the two lines intersect), this iterative procedure will always 
converge to that point. The mathematical expression for f (k), where k is the iteration 
number is given by:

f (k) = f (k−1) −f (k−1) ⋅ wi −pi

wi ⋅ wi
wi, (5.4)

where wi = (wi1, wi2, . . . , wiN) and ‘⋅’ denotes the dot product. 
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The convergence speed of the method depends on the angle between hyperplanes. If the 
two hyperplanes in Figure 5.2 are perpendicular to each other, then for an initial guess 
of any point in the ( f1, f2)-plane, it is possible to arrive at the correct solution in only two 
iterations. On the other hand, if the angle between two hyperplanes is small, many 
iterations may be required, depending on the initial guess, before the correct solution 
is reached.

Sometimes, in the classical tomography we deal with the situation when M>N 
(overdetermined system). Moreover, the projection set can be corrupted by noise. 
Obviously, no unique solution exists in this case. The ART solution then does not converge 
to a single point but rather oscillate in the neighborhood of the intersections 
of the hyperplanes [Kak 2001].

When M<N (underdetermined system) a unique solution of the system of linear equations 
(Eq. 5.1) does not exist. In fact, an infinite number of solutions are possible. It can be 
shown however [Tanabe 1971] that for M<N the solution obtained using ART converges 
to the minimum variance solution. The ART method is computationally efficient but it has 
also another important and attractive feature that will be discussed in detail 
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Figure 5.2 Illustration of the ART reconstruction problem in a simple case of  two unknowns.
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in  the subsequent part of the book, when plasma tomography methods are considered. 
Namely, it allows, to  some extent, to incorporate into the solution a priori information 
about the image that is to be reconstructed. For example, if it is known a priori that the 
image f (x, y) is nonnegative, then in each of the solutions f (k), successively obtained by 
using Equation  5.4, the negative components can be set to zero. Similarly, we can 
incorporate the information that f (x, y) is zero (i.e. does not extend) outside a certain region 
or impose some smoothness constraint if these properties of the solution are known.

In order to discuss further some features of the ART method, let us rewrite Equation 5.4 
in the following form:

f (k)
j = f (k−1)

j + pi −qi

∑N
l= 1 w2

il

wij, (5.5)

where:

 qi = f (k−1) ⋅ wi =
N

∑
l= 1

f (k−1)
l ⋅ wil . (5.6) 

The above equation states that during an iteration the value in the j-th element 
of the image is corrected by:

Δf (k)
j = f (k)

j −f (k−1)
j = pi −qi

∑N
l= 1 w2

il

wij . (5.7)

In Equation 5.7, pi is the measured ray-sum along the i-th ray, while qi can be considered 
as the computed ray-sum for the same i-th ray based on the (k-1)-th solution, as given 
by  Equation 5.6. The correction Δf (k)

j  to the j-th pixel is obtained by first calculating 

the  difference between the measured ray-sum pi and the computed ray-sum  qi, 

normalizing this difference by 
N

∑
l= 1

w2
il. Then this value is assigned to all image cells 

in  the  i‑th ray, each assignment being weighted by the corresponding w2
ij. Sometimes, 

in order to improve the reconstruction quality and to reduce the artifacts caused by noise 
in the projections, the relaxation technique is used. Then, each pixel is updated by αΔf (k)

j  

rather than by Δf (k)
j , where α ∈ (0,1). Sometimes, the relaxation parameter α is taken as 

a function of the iteration number, i.e. it becomes smaller with increasing iteration number.

Figure 5.3 shows a simple example of image reconstruction using ART. In this case 
the  image is composed of four (unknown) elements only. For the iterative reconstruction, 
six ray-sums (p1, . . . , p6) are used. In every iteration, f (k) vector is calculated. 
The computations converges after six iterations.
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Two another methods arise as variations of ART. In the Simultaneous Iterative 
Reconstruction Technique (SIRT) the changes in the j-th pixel are also computed using 
Equation 5.7. The difference is that before changing the value of j-th element, we go 
through all the equations and only at the end of each iteration the cell values are changed 
by the average value of all the computed changes for that element. This constitutes one 
iteration of the algorithm. In the second iteration, we go back to the first equation and 
the  process is repeated. In another variant of ART method - Simultaneous Algebraic 
Reconstruction Technique (SART), several modifications were introduced to improve 
the  quality of reconstructed images [Andersen 1984]. In order to reduce errors 
in the approximation of ray integrals of a smooth image by finite sums, the pixel basis was 
substituted by bilinear elements. Partial weights were assigned to the first and last image 
elements on the individual rays. In addition, a longitudinal Hamming window was applied 
to emphasize the corrections effective near the middle of a ray relative to those effective 
near its ends [Kak 2001].
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Figure 5.3 An example of application of ART for reconstruction of four pixel image.
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6. Tomographic inversion in plasma physics 

In this part of the book we will focus on the reconstruction method which are dedicated 
to plasma tomography. Even though we assume that the Reader has some knowledge on 
fusion science and plasma physics, we will start with a brief introduction to fusion physics 
and fusion devices. This part of the book can be treated as a refresher and can be omitted 
by the experienced Reader. Next, neutron, gamma-ray and X-ray detection systems 
in  modern tokamak devices will be described with the special emphasis on technical 
aspects. In the subsequent chapters we will again focus on mathematical description, 
starting from the definition of the inversion problem in plasma physics through 
an  introduction to ill-posed problems, ending with a detailed discussion on several 
methods specific to plasma tomography. Finally, practical examples of applications 
in the recent studies will be given.

In fusion reactions, low-mass nuclei fuse (i.e. combine), to form more massive nuclei. 
For example, in the reaction that naturally occurs in the Sun at a solar-core temperature 
of 14 million degrees, the nuclei of hydrogen (protons) fuse to form alpha particles trough 
the so-called proton-proton (p-p) cycle. After a fusion reaction, the total mass is less than 
before the reaction. The ‘missing’ mass is converted into energy, as quantified by 
the well‑known Einstein equation:

 E = Δmc2, (6.1.1)

where E is the energy released in the reaction, Δm is the nuclei mass difference before 
and after the reaction, and c is the speed of light in vacuum. Nuclei carry positive charges 
and if they have a low kinetic energy (at low temperature), they repel one another. In order 
to ‘force’ the nuclei to fuse, the particles involved must overcome this Coulomb barrier 
and get close enough for the attractive nuclear strong force to take over. This requires 
extremely high temperatures. In stars, when the p-p cycle is considered, the barrier can be 
penetrated with the help of tunnelling effect, allowing the process to proceed at lower 
temperatures than that which would be required at pressures obtainable in the laboratory. 
However, due to very low probability of quantum tunnelling, the extremely large number 
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of  nuclei in stars generates fusion reactions over billions of years. In the laboratory 
experiments, the fuel must be heated to temperatures around 100 million degrees, to give 
the nuclei a high enough kinetic energy of thermal motion to overcome the force 
of  repulsion of the positive charges and fuse. At this temperatures, electrons and nuclei 
are already separated and create an ionised gas called plasma. Since particles in plasma 
are charged, they conduct electricity and interact with magnetic fields. In somewhat 
simplified terms, the problem of producing fusion energy lies in development of a device 
that can heat the fuel to a sufficiently high temperature and then confine it for a time long 
enough so that more energy is released through fusion reactions than is used for heating. 
There are three commonly known approaches to fusion:

• Gravitational confinement. In this case, plasma is compressed to a high density and 
temperature by gravity. This confinement method requires a large amount of mass that 
can only be found in stars, thus it is impractical in laboratory applications.

• Inertial confinement. In this case, to initiate nuclear fusion reactions by heating and 
compressing a fuel target, usually high-energy beams of laser light are focused on 
a pellet that contains a mixture of deuterium and tritium. An example of realisation of this 
idea is the National Ignition Facility (NIF) - a large laser-based inertial confinement fusion 
(ICF) research device, located at the Lawrence Livermore National Laboratory 
in Livermore, California [Miller 2004].

• Magnetic confinement. Here, plasma is held away from the surface of experimental 
vessel by a combination of magnetic fields in a toroidal (doughnut-shaped) geometry 
and heated inductively, by radio-frequency waves or by injected fast neutral particles. 
The methods of plasma heating are described in more detail at the end of this section.

The most promising of these approaches is the magnetic confinement and the device 
which shows most promise for fusion is the tokamak [Sheffield 1994]. Thus, in this book, 
we focus mostly on applications of tomographic methods for tokamak plasma physics.

The primary fusion reactions possible to utilise in the future fusion reactors to harvest 
the  energy are those involving light nuclei, such as the hydrogen isotopes deuterium 
D and tritium T:

D + T → 4He + n + 17.6 MeV, (6.1.2)

D + D → 3He + n + 3.3 MeV, (6.1.3)

D + D → T + H + 4.0 MeV, (6.1.4)

D + 3He → 4He + H + 18.3 MeV . (6.1.5)
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The two reactions involving as the reactants only deuterons (Eq. 6.1.3 and Eq. 6.1.4) occur 
with almost the same probability. The energy is released in the form of kinetic energy 
of  the reaction products. The neutron carries 14.1 MeV and 2.45 MeV of energy for 
reaction 6.1.2 and 6.1.3, respectively. The most promising is the first reaction (Eq. 6.1.2). 
This is due to the fact that its cross-section is considerably higher at energies 
(temperature) achievable in the laboratory than for the other reactions. Figure 6.1.1 
presents plots of the cross-sections for D-T, D-D and D-3He reactions (in barns) 
as  a  function of nuclei energies (in keV). The character of the cross-section function 
for  D‑T reaction makes the future fusion power plants likely to operate with DT fuel. 
Deuterium can be quite easily obtained from sea water. The more problematic is tritium 
production. Tritium undergoes radioactive decay with a half-life of 12.3 years and therefore 
is not abundant naturally. It can however be produced from lithium in the following 
reaction:

6Li + n → 4He + T + 4.8 MeV . (6.1.6)

Natural lithium, present in the earth crust, contains around 7.5% of 6Li, thus T can be 
relatively easily produced inside a tokamak device equipped with a lithium blanket. 
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The D–T reaction requires the input energy of at least ~10 keV and yields large output 
energy of 17.6 MeV. The 14.1 MeV neutrons produced in this reaction escape from 
the magnetic field due to their lack of electric charge and carry 80% of the fusion energy 
to  the tokamak blanket. The neutrons kinetic energy is then converted into heat to drive 
electrical generators and to breed the tritium fuel, according to reaction 6.1.6. The other 
20% (3.5 MeV) of the fusion energy is converted to kinetic energy of the helium ions. 
These energetic alpha particles, confined by the magnetic field, heat the plasma. In this 
way, a self-heating system can be obtained.

In the fusion reactor device, the net energy production should be positive. In fact, taking 
into account also the economical factors, the amplification factor Q (do not confuse with 
the reaction Q-value) defined as:

Q =
Pfu s

Pext
, (6.1.7)

should be greater then ~10-20 [Hamacher 2001]. In Equation 6.1.7, Pfu s is the fusion power 
density and Pext is the power density produced by external auxiliary heating systems. 
The  condition when Q → ∞ (Pext → 0) is called ignition. In this case, the thermal energy 
of  the plasma is completely sustained by the nuclear fusion reactions. The condition 
of Q = 1 is referred to as breakeven. None of these conditions have been achieved so far 
in laboratory experiments.

The energy balance in a plasma can be described by a simple equation:

d W
dt

= P̄fu s + Pext −Ploss, (6.1.8)

where W is the thermal energy density of the plasma, P̄fu s is the power density produced 
by the nuclear fusion reactions remaining inside the plasma which contributes 
to  the plasma thermal energy and Ploss is the lost power density. The power density loss 
occurs due to two phenomena. First of all, the magnetic confinement is not perfect, thus 
particles and heat diffuse outside the plasma centre. The second reason of losses 
is  bremsstrahlung radiation, produced when electrons in the plasma hit other charged 
particles, such as electrons or ions at a lower temperature, and suddenly decelerate. 
The power density lost by bremsstrahlung is proportional to n2Z2

i T, where n is electron 
density, Zi is ion density and T is plasma temperature. It is obvious that high-Z plasma 
impurities produce high bremsstrahlung losses.

Let us now focus on D-T reaction. Total fusion reaction power Pfu s can be calculated as:

Pfu s = EnDnT < σ v > , (6.1.9)
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where E is the energy produced in D-T reaction, nD and nT are deuterium and tritium ion 
densities, respectively, and < σ v > is the so-called reactivity - a temperature dependent 
product between the cross-section σ of the reaction and the relative velocity v 
of  the  nuclei, averaged over the Maxwellian distribution. Figure 6.2 shows reactivity as 
a  function of temperature for D-T, D-D and D-3He reactions. The part of fusion reaction 
power density that remains in the plasma P̄fu s is given as:

P̄fu s = ĒnDnT < σ v > , (6.1.10)

where Ē=3.5 MeV is the energy carried by the alpha particles in a DT reaction. Assuming 
that the fuel is composed of 50% of tritium and 50% of deuterium we have:

nd = nt = ne

2 . (6.1.11)
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Figure 6.2 Reactivity for D-T, D-D and D-3He fusion reactions. Based on National 
Physical Laboratory, Kaye & Laby data [NPL 2017].
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Then, we can re-write Equation 6.1.10 as:

P̄fu s = Ē
n2

e

4 < σ v > . (6.1.12)

In order to gain energy by plasma, P̄fu s + Pext must be grater than Ploss. In the special case, 
when power losses are exactly compensated by the external sources (i.e. Pext = Ploss), 
plasma is in the stationary condition and its thermal energy remains constant. 
This  situation is useful to define the energy confinement time - the characteristic time 
of thermal plasma energy dissipation:

τE = W
Ploss

. (6.1.13)

The physical meaning of the above quantity is the time in which the plasma thermal energy 
is completely dissipated if the external heating sources are suddenly switched off.

Equation 6.1.8 leads to the Lawson‘s Criterion [Lawson 1957], that is very useful 
in studying of breakeven and ignition conditions. For DT plasma the Lawson’s criterion for 
ignition states that:

neτE ≥ 12
Ē

T
< σ v > , (6.1.14)

which, for temperature T = 25 keV (close to the minimum of T
< σ v >  ), gives:

neτE ≥ 1.7 × 1020 m−3 s . (6.1.15)

Today’s fusion scientists use the triple product, more often than the above quantity, as 
their figure of merit. The triple product includes all three quantities: ne, τE and T. Let us 
multiply both sides of Equation 6.1.14 by T:

neτET ≥ 12
Ē

T 2

< σ v > . (6.1.16)

The quantity T 2

< σ v >  is a temperature dependent function with an absolute minimum at 

a  slightly lower temperature than for T
< σ v > . For the DT reaction, the minimum 

of the triple product occurs at T = 14 keV giving the ignition condition:

neτET ≥ 3 × 1021 keV m−3 s . (6.1.17)

So far, this condition has been never achieved in the present fusion reactors.
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As it was stated before, among all existing concepts of fusion devices, the most promising 
so far is the tokamak machine. The other, competitive concept of fusion reactor based on 
magnetic confinement is the stellarator device. The interested reader is referred to a book 
by M. Wakatani [Wakatani 1998] for more details. The tokamak device design is shown 
in  a  simplified way in  Figure 6.3. The device uses three superposed magnetic fields 
to confine fusion fuel. A ring-shaped field is produced by plane external coils. The second 
field comes from current flow in the plasma. The plasma current is induced by 
a  transformer coil. This is the reason why tokamak devices work in a pulse mode rather 
than in a continuous one. An  increasing current can be generated in the primary winding 
only for a limited time, thus current in the plasma can be driven also for the limited time. 
The field lines of the combined fields are then helical. A third, vertical field of outer coils 
is used for plasma positioning and shaping.

The induced current heats the plasma. This ohmic heating is limited by the fact that 
the  electric resistance, which produces the heat, decreases with plasma temperature. 
The other non-inductive methods of plasma heating include: injection of neutral particle 
beam (Neutral Beam Injection - NBI) and plasma heating using electromagnetic waves 
of different frequencies.

72

Figure 6.3 Simplified view of the tokamak device.
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In the NBI heating, positive ions (usually of hydrogen isotopes) are accelerated to high 
energies (>100 keV) via electric fields. As the ions cannot penetrate the magnetic field they 
must pass a neutraliser target where they capture electrons resulting in high energetic 
neutral atoms which subsequently enter the magnetic field of the tokamak (see Fig. 6.4). 
However, there is a balance between the rates at which the ions can be neutralised 
and re‑ionisation by collisions. Thus, obtaining a completely neutral beam is not feasible. 
Unfortunately, the ionised fraction in the beam increases rapidly with increasing energy 
of  the beam particles. The non-neutralised part of the beam is removed magnetically 
as shown in Figure 6.4. The neutral atoms that entered the plasma become ionised again 
due to collisions with plasma particles. These ions are much faster then average plasma 
particles. In a series of subsequent ion-ion, ion‑electron and electron-electron collisions, 
the beam atoms transfer their kinetic energy to all plasma particles.

The other method of plasma heating uses electromagnetic waves. In the plasma, ions and 
electrons gyrate around magnetic field lines. Electromagnetic waves of the specific 
frequency can resonate or damp their power to plasma particles. Gyro-frequency 
of the plasma particles depends on their charge and mass as well as on the magnetic field 
strength. The magnetic field decreases as 1/R in the plasma region, where R 
is the so‑called major radius as shown in Figure 6.5. This allows to target certain particles 
by  injecting waves of the respective frequency. The commonly applied Ion Cyclotron 
Resonant Heating (ICRH) relies on launching radio-frequency waves with frequencies 
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Figure 6.4 Schematic illustration of three methods of plasma heating: ohmic heating, 
injection of neutral particles and resonant radio-frequency wave heating.  



equal to the cyclotron frequency of one of the ion species of the plasma or harmonics 
thereof (typically of ~20-60 MHz). The energy is transferred to the ions in resonant 
wave‑particle interactions. Ion Cyclotron Resonant Heating method is of the key 
importance to the studies presented in Sec. 6.12. Another technique, Lower Hybrid 
Current Drive (LHCD) employs frequencies lying between ion cyclotron and electron 
cyclotron ones. LHCD has an inefficient heating effect. It can be used however to drive 
electric current [Jacquinot 1991].
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Figure 6.5 Magnitude of magnetic field in the tokamak device as a function of the major 
radius R.



6.2 Neutron, gamma and X-ray detection systems in 
modern tokamak devices

Modern tokamaks are equipped with numerous plasma diagnostic systems. Some basic 
diagnostics are based on time-resolved measurements, e.g. using fission chambers 
to determine total neutron yield from plasma. The other plasma diagnostics use dedicated 
neutron or gamma spectrometers of different types to extract information on physical 
parameters of plasma. In this section, we focus only on spatially resolved plasma 
diagnostic systems that allow retrieving information on neutron, gamma or X-ray emission.

These systems are of the special importance for DT plasma reactions, since 
the  distribution of 14.1 MeV neutrons gives information on fusion reactivity and alpha 
particle profile birth. On the other hand, gamma rays of energy of 4.44 MeV, from 
interaction of alpha particles with Be plasma impurities in the reaction 9Be(#,n$)12C, 
provide the profile of fast confined #-particles. Gamma rays of 17 MeV from D(t,$)5He 
reaction, which is a weak branch of the DT reaction (Eq. 6.1.2), can give an independent 
assessment of fusion reactivity. Finally, the study of emission of hard X-rays of the energy 
> 20 keV provides an insight into the energy distribution function of runaway electrons 
[Shevelev 2013], while measurement of soft X-ray emission (0.1 - 20 keV) is a standard 
way of accessing valuable information on particle transport and magnetic configuration. 
Soft X-ray emission depends mainly on electron and impurity densities, as well as 
on electron temperature. This causes that, on one hand, soft X-ray analysis can provide 
valuable information of fusion plasma, but on the other hand such analysis is usually 
difficult to perform and therefore is often supported by numerical studies.

As it was described in the previous part of the book, in medical CT a finite, but relatively 
large number of projections is acquired by rotating the source and detector system around 
a patient. In tokamak devices however, such rotating system is not technically achievable 
and the tomographic inversion must be performed from a very limited number 
of  projection directions. At JET tokamak, the neutron and gamma profile monitor (JET 
Gamma and Neutron Camera also called KN3) is used to obtain information on spatial 
distribution of neutron, gamma and hard X-ray emissivity. It consists of two cameras with 
19 lines of sight in total. Each camera features three types of detectors. Liquid organic 
scintillators NE213, coupled to photomultiplier tubes, are used for neutron (2.45 MeV 
neutrons from DD reaction and 14.1 neutrons from DT reaction) and gamma rays 
detection. The  detectors have neutron/gamma pulse shape discrimination capabilities. 
The  second type of detectors is based on plastic scintillator Bicron-418 and is used 
to  measure 14.1  MeV neutrons from DT reaction. The third detection system used 
for gamma measurements was equipped with CsI(Tl) photodiodes, but has been recently 
upgraded for the upcoming second deuterium-tritium campaign (DT2) and the detectors 
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have been replaced by LaBr3 scintillators combined with MultiPixel Photon Counters 
(MPPC) [Boltruczyk 2017]. This allowed to improve both the energy resolution (FWHM 
of  a  few % for 3–6 MeV gamma-rays) and count rate capability (up to 500 kHz). More 
information on this topic will be presented in Chapter 7. A poloidal cross section 
of  the  JET tokamak vessel, along with 19 lines of sight (LoS) of the camera, is shown 
in  Figure 6.6. The plasma section covered by each LoS is about 20 cm 
diameter at the plasma centre.

WEST tokamak [Johnston 2017] has been recently equipped with a new soft X-ray 
detection system based on Gas Emission Multiplier (GEM) detectors. The system 
is designed to cover a poloidal section of the WEST tokamak. It is composed of two GEM 
detectors - one situated inside a port, with 83 LoS to observe plasma vertically, 
and  the other located outside of a port, with 107 tomographic viewing lines to observe 
plasma horizontally. The primary aim of the diagnostic is metal impurities radiation 
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Figure 6.6 Geometrical layout of LoS of the neutron and gamma camera at JET tokamak 
[Kiptily 2006].



monitoring, especially tungsten emission, in 2–15  keV energy region. Additionally, 
the  diagnostic system monitors MHD plasma activity in a 2D poloidal plasma 
cross‑section. The system can achieve the temporal resolution of 1 ms with 1 cm resolved 
detection of plasma at the equatorial plane [Mazon 2015].

ASDEX Upgrade (AGU) tokamak [Neu 2009] is equipped with the soft X-ray tomographic 
system that has been operational since the year 2006. The diagnostic consists of 15 
miniature heads with separate pinholes and chips assembled into 8 cameras. The system 
features 208 LoS in total. Each head works with a linear array of 35 diodes of size 
4.6  ×  0.96 mm2 with 30 μm separation [Odstrčil 2016]. The spectral interval covered 
by the system ranges from 2.3 keV to about 13 keV. The spatial resolution of the system 
is about 7 cm.

Also many other tokamak devices, like JT60-U [Konoshima 2001], EAST [Xu 2012], KSTAR 
[Lee 2014], TCV [Anton 1996] or COMPASS [Mlynar 2012], have plasma diagnostic 
systems capable of plasma tomographic reconstruction.
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6.3 Definition of the inversion problem in plasma 
physics

The task of tomographic reconstruction for thermonuclear plasma as a source of fusion 
neutrons, gamma rays or X-rays is very challenging due to ill-posed nature of the problem 
and sparse spatial resolution of the measured plasma projections. The sparse spatial 
resolution is a result of limited number of LoS available for the diagnostics. Thus, 
appropriate algorithms, suitable for the reconstruction from the limited data set, have 
to  be  used. Several approaches to plasma tomographic reconstruction have been 
developed, tested and applied on various machines. In this section we give a foundations 
of the problem, taking as an example neutron and gamma camera system at JET (see 
the  information presented in Sec. 5.1). In the next section, the appropriate mathematical 
apparatus for solving and analysing of ill-posed problems will be presented. 
In the subsequent sections, we will go back to practical approach and applications.

The tomographic reconstruction is performed from the measured projections:

∫LoS
f (x, y)d l, (6.3.1)

i.e., from the line integrals of the emissivity function f (x, y), along the 19 straight LoS 
of the system presented in Fig 6.7. Here we assume that the detection system is placed 
in  a  poloidal cross-section of the plasma and its toroidal extension is small compared 
to  the plasma dimensions (analogy to the fan-beam tomography). Moreover, we assume 
that the emissivity is axially symmetric in the toroidal direction. These assumptions are well 
fulfilled for the JET camera. The physical meaning of f (x, y) is the neutron or photon (X-ray 
or gamma-ray) emissivity of the plasma, i.e. number of neutrons or photons emitted per 
plasma unit volume, per unit time. In practice however, it is a signal associated with 
neutron or photon that is directly measured by a detector and not the line integrated 
emissivity. Thus, to relate the measured signals to line integrated emissivity it is necessary 
to include a factor that takes into account several aspects. First of all, geometrical 
considerations, such as detector collimator geometry, detector solid angles and detectors 
LoS layout have to be taken into account. Then, properties of the detectors such as 
detection efficiency, energy thresholds and detector response functions have 
to  be  included. Finally, the information on scattering inside the detector collimator 
and the tokamak vacuum vessel should be taken into account as well. Usually, the precise 
translation of the count rate to the line integrals requires both experimental study 
of  the  detector response and Monte Carlo (MC) calculations of the radiation transport. 
Hereafter, we assume that we have the knowledge about the above-mentioned properties.
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Let us assume now that we can discretise the emissivity function f (x, y) on a grid 
of NH × NV elements, as shown in Figure 6.7. Each element is then associated to a value 
of  the emissivity that is assumed to be constant within the pixel. There is a trade-off 
between the number of discrete elements given by NH and NV, defining the resolution 
of  the reconstructed function f (x, y), and the number of degrees of freedom 
of ill‑conditioned problem.

After discretisation, the inverse problem of tomographic reconstruction is defined by 
the set of linear equations:

pk =
Np

∑
i= 1

wki fi, 	 k = 1...Nd . (6.3.2)

In Eq. 6.3.2, fi is the i-th element of the plasma emissivity represented by Np × 1 column 
vector f = ( f1, . . , fNp

)T, NP = NH NV is the total number of elements for the discrete 
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representation of the neutron emissivity, Nd = 19 is the number of LoS, and pk is the k-th 
element of Nd × 1 column vector p that represents the available data along the LoS. 
The element wki of the geometrical matrix W (known also as weight or contribution matrix) 
represents the contribution of i-th element of emissivity to the k-th projection. The matrix 
W (of size Nd × Np ) is constructed based on the detailed geometrical description 
of  the  diagnostic system defined by LoS geometry. Often, empirical correction factors 
mentioned before (for detectors efficiency, scattering contribution etc.) are included into 
the matrix elements. In the simple model, the values of wki elements of W matrix can be 
calculated as  the polygonal intersection area between discretisation grid elements 
and  the  LoS width [Bielecki 2015]. In more complex cases, a full 3D model of LoS 
geometry can be considered to calculate elements of the geometrical matrix.

Due to the limited number of LoS, the tomographic reconstruction of the plasma neutron 
emissivity is an ill-posed problem. This is reflected in the matrix W which is ill-conditioned 
since its condition number, defined as the maximum ratio of the relative error in f (x, y) 
divided by the relative error in p, is large. Thus, standard reconstruction methods can lead 
to a solution that satisfies Eq. 6.3.2 but with no physical relevance.

Also, it is a well-known fact that the Algebraic Reconstruction Technique itself (presented 
in Sec. 5.2) does not provide, in general, physically meaningful results for undetermined, 
ill-posed problem of tomographic reconstruction of fusion plasmas [Ingesson 1998]. This 
is because the measurements themselves do not describe a unique solution 
and  the solution is sensitive to noise. Therefore, regularisation is required by taking into 
account additional (a priori) information to obtain a single well-behaved solution. Using this 
extra information and constraints can, to some extent, compensate for the lack 
of experimental data and to select a realistic solution among all possible ones. Indeed, 
the regularisation is the key to obtain reliable and physically meaningful solution in plasma 
tomography. In the subsequent sections of the book, several complementary methods 
dedicated to plasma tomography will be presented.
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6.4 Introduction to ill-posed inverse problems

A great number of problems from various branches of classical mathematics can be 
classified as ill-posed inverse problems, and since they are unstable and usually nonlinear, 
very often are considered as the most complicated ones. Similarly, ill-posed inverse 
problems are systematically studied in physics [Lavrent'ev 1986], geophysics [Zhdanov 
2002], medicine [Fischer 2008], economics [Horowitz 2014], and many other areas 
of knowledge where mathematical methods are used. They play a key role in tomographic 
reconstruction of fusion plasma, where the inversion is inherently ill-posed.

Let us consider a matrix equation in the form of Eq. 6.3.2:

Wf = p . (6.4.1)

The above equation is strictly related to the Fredholm integral equation of the first kind, 
which takes the following general form for functions defined on the interval [a,b]:

∫
b

a
W(s, t)f (t)d t = p(s), a ≤ s ≤ b, (6.4.2)

where the right-hand side p and the kernel W are given, and where f is the unknown 
solution.

The problem defined by Eq. 6.4.1 is well-posed (in sense of Hadamard [Hadamard 1902]) 
if:

• There exists some solution f (existence),

• There is only one solution (uniqueness),

• The solution depends continuously on available input data p (stability).

Otherwise the problem is ill-posed. To illustrate the issues connected with the ill-posed 
inverse problems, let us focus on the following simple and illustrative example.
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Example:

The following system of linear equations is given:

{x1 + 10 x2 = 11 + ϵ
10 x1 + 100.1 x2 = 110.1 (6.4.3)

Let us relate ϵ to some kind of noise that is inherently present in the input data. Then, if 
ϵ = 0, x1 = x2 = 1, however if ϵ is small but ϵ ≠ 0, say ϵ = 0.1, then x1 = 101.1, x2 = −9.

The solution is very sensitive to perturbation. Let us use the Singular Value 

Decomposition (see. Appendix 9.5) C = U ΣVT of the coefficient matrix C = [ 1 10
10 100.1] 

to investigate properties of the system:

U = V = [−0.0994 −0.9950
−0.9950 0.0994 ], 		 Σ = [101.0990 0

0 0.0010] . (6.4.4)

Now we can clarify the definition of the condition number given in the previous section 
as the ratio of largest over smallest singular value (diagonal elements of Σ matrix):

Cond(C ) = σ1
σn

≈ 1 × 105 . (6.4.5)

The ratio measures the degree of singularity of C . The larger this value is, the closer C 
is to being singular. The large condition number implies that the columns of C are 
nearly linearly dependent.

Note that we have to clearly distinguish ill-conditioning from round-off error. 
Conditioning is a property of the matrix itself and not the property of an algorithm 
or floating point precision of the computer used to solve the system.

The above example illustrates the properties of ill-posed problems. However, 
in  tomographic reconstruction of fusion plasmas the situation is even more complicated 
because:

• Usually we deal with underdetermined problem (more unknowns than LoS),

• The geometrical matrix W is usually sparse (limited coverage of the space by LoS),

• The projection vector p (input data) contains a significant amount of noise. This is due to 
errors resulting from statistical fluctuations in the finite number of neutrons or photons 
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detected, described by a Poisson distribution, as well as the noise from other 
signal‑independent sources (e.g. electronics noise from tokamak high power systems 
such as ICRH & NBI heating or LIDAR lasers).

The ill-conditioning of the tomographic reconstruction problem in fusion research implies 
that standard methods of numerical linear algebra (e.g. LU, Cholesky, or QR factorisation)  
for solving Eq. 6.3.2 cannot be used in a straightforward manner. Instead, more 
sophisticated methods must be applied in order to ensure the  computation 
of a meaningful and physically sensible solution. This is the essential goal of regularisation 
methods. These methods incorporate further information (a priori knowledge) about 
the  desired solution in order to stabilise the problem and select a useful and stable 
solution. This is the primary aim of regularisation.

In 1943, A. N. Tikhonov pointed out the practical importance of ill-posed inverse problems 
and gave the possibility of finding stable solutions for them [Tikhonov 1943]. Tikhonov 
regularisation is still the foundation of many methods applied in plasma tomographic 
reconstruction. Based on these foundations, other methods have been developed and 
applied. The idea behind Tikhonov regularisation is to define the regularised solution fλ as 
the minimiser of the following weighted combination of the residual norm and the side 
constraint:

fλ = arg min[ Wf −p 2 + λ Lf 2], (6.4.6)

where ⋅  denotes the Euclidean norm. In many cases, matrix L is chosen as the 
identity matrix (W = I), giving preference to solutions with smaller norms, or as a difference 
operator to enforce smoothness of the solution.

To explain further the idea behind the Tikhonov regularisation, let us consider the following 
simple and illustrative example.
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Let us assume that the discrete function  f to be reconstructed is composed of 3 
elements only. Furthermore, only two measurements (projections) are available:

p = [10
10] . (6.4.7)

This situation is schematically illustrated below.

	 	 	 	 	 	

The ill-conditioned (Cond(W) ≈ 200) contribution matrix W is given as:

W = [1 0.41 1.4
1 0.43 1.4], (6.4.8)

The system of linear equations Wf = p is underdetermined, with an infinite number 
of solutions. The solution that minimises the norm f 2 is:

f = [
3.4
0

4.7] . (6.4.9)

Let us call this solution the ‘exact’ solution. The ‘exact’ solution can be illustrated as 
below. 

	 	 	 	 	 	

Now, let us add a small amount of noise to the measured projections p, such that the 
perturbed projection vector is given as:

p′� = [10.1
9.9 ] . (6.4.10)
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The solution that minimises the norm f′� 2, obtained using the perturbed projections 
p’ is:

f′� =
4.8
−10
6.7

. (6.4.11)

It is obvious that the solution is far from what we expected (i.e. far from the ‘exact’ 
solution) and it features a negative, non-physical element.

	 	 	 	 	 	

In the second case, the norm is definitively too big ( f′� = 12.6 ) compared to the 
norm of the ‘exact’ solution ( f = 5.8 ). Thus, the idea behind the regularisation 
is to make Wf′�−p′� 2 as small as possible (but actually not to minimising it), without 

f′� becoming too big. Indeed, it can be achieved by minimising of the functional in 
Eq. 6.4.6. The table below summarises several solutions for different values of the λ 
parameter.

Table 6.1. Regularised solutions for different value of the λ parameter.
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0.01 9.5

0.039 5.8

0.05 5.7

0.1 5.6

1 4.8

� ’f

�
4.2

−6.1
5.9

�
3.36
0.08
4.7

�
3.3
0.5
4.62

�
3.2
1.1
4.5

�
2.7
1.15
3.85

� f′� 2



It is clear that by a proper choice of the λ parameter (e.g. λ=0.039), we can obtain 
the regularised solution that is very close to the ‘exact’ solution. However, we have to 
know how to choose λ and choosing a proper value for λ can be challenging.

The regularisation parameter λ controls the weight given to minimisation of the side 
constraint relative to minimisation of the residual norm. A large λ (a large amount 
of  regularisation) favours a small solution seminorm at the cost of a large residual norm, 
while a small λ (a small amount of regularisation) favours a small residual norm and a large 
solution seminorm. Thus, the regularisation parameter λ is an important quantity which 
controls the properties of the regularised solution. The proper choice of λ value is crucial 
for obtaining reliable and physically relevant results of the reconstruction. 
The  regularisation parameter λ should be chosen with a special care. The next section 
presents a few methods of selection of optimal regularisation parameter λ.
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6.5 Methods for selection of optimal regularisation 
parameter

One of the simple methods for selection of optimal regularisation parameter 
is the so‑called L-curve method. It employs a plot, for all valid regularisation parameters, 
of the magnitude of the regularised solution Lf 2 versus the magnitude 
of the corresponding residual Wf −p 2. The L-curve when plotted in log-log scale has 
usually a characteristic L-shaped appearance with a distinct corner separating the vertical 
and  horizontal parts of the curve. The optimal choice of the regularisation parameter 
corresponds to the L-curve’s corner [Hansen 1992]. Figure 6.8 shows the ideal form 
of the L-curve. Unfortunately, in some cases, the highly ill-posed character of the problem 
can cause the L-curve to be concave, and consequently, its L-vertex cannot be reliably 
defined.

Another method is the Generalised Cross-Validation (GCV) technique [Golub 1979]. This 
approach is an extension of the ordinary Cross-Validation technique. The method is based 
on an idea that if one arbitrary element pi of the projection (input data) vector p is left out, 
then the corresponding regularised solution (calculated using n-1 remaining 
measurements) should predict this element well and λ should be independent 
of any orthogonal transformation of p. This leads to choosing the regularisation parameter 
which minimises the following GCV function:
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G =
Wfreg −p 2

[Tr(I −WWI)] . (6.5.1)

In Eq. 5.5.1 WI is a matrix which produces the regularised solution freg when multiplied 
by p, i.e., freg = WIp. The trace in denominator can be easily computed using SVD.

The Morozov’s discrepancy principle [Morozov 1984] can be used as well to select 
regularisation parameter λ, when some estimation ϵ of errors in the input projection vector 
p is known. Then, every solution that reproduces the projection within the errors 
is acceptable. However, the principle suggests to choose optimal λ ≥ 0 such that:

Wfλ −p = ϵ , (6.5.2)

i.e. such that the residual norm is exactly equal to the error estimate. In practice, 
the method requires finding the zero of nonlinear function and can be efficiently realised 
by SVD. Two remarks on the Morozov’s discrepancy principle are necessary. First of all, 
in this approach λ is a function not only of the projection input data p, but also a function 
of error magnitude ϵ. Moreover, the discrepancy principle selects λ as large as possible 
within given error bars, thus it tends to over-regularise the solution. In practice, for 
tomographic reconstruction of fusion plasmas, it means that if L matrix is related 
to a derivative operator, the solution can be over-smoothed.

Several less common methods have been also applied for selection of regularisation 
parameter in tomography, including extensions of L-curve method [Xu 2016], Predicted 
Residual Error Sum of Squares (PRESS) or Akaike information criterion (AIC) 
[Odstrčil  2016]. In practice however, the highly ill-posed character of the tomographic 
reconstruction problem causes that often the described methods fail. Then, more heuristic 
methods that include physical information from other plasma diagnostics must be applied. 
An example of such approach will be presented in the subsequent section of the book.
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6.6 Reconstruction by Tikhonov regularisation
Based on J. Bielecki et al., Review of Scientific Instruments 86, 093505 (2015).

In this section an example of solving of Eq. 6.3.2 and hence performing tomographic 
reconstruction using Tikhonov regularisation will be presented. Let us focus 
on reconstruction of plasma neutron emissivity in case of JET tokamak using the detection 
system illustrated in Figure 6.6 (page 76).

The geometrical matrix W was calculated by considering the LoS of each detector 
projected onto the discretisation grid representing the plasma neutron emissivity 
cross‑section. The values of wki elements of W matrix were calculated as the polygonal 
intersection areas between discretisation grid elements and the LoS width. 
The  information on the geometrical layout of the KN3 LoS was provided by the SURFace 
reconstruction code. For the presented analysis, 2.45 MeV neutron emissivity profiles were 
used, acquired using the set of NE213 liquid organic scintillator detectors (each detector 
of 2.5 cm diameter and 1.0 cm thick). The signal from 2.45 MeV neutrons was separated 
from the gamma ray signals by pulse signal discrimination using the standard Charge 
Comparison (CC) method [Giacomelli 2014], while the 14.1 MeV neutron contribution from 
triton burnup process was negligible.

The correction factors taken into account during the construction of W matrix include: 
(i) neutron detection efficiency of NE213 detectors; (ii) neutron attenuation and scattering 
in the collimator; and (iii) neutron backscattering contribution. The absolute neutron 
detection efficiency of NE213 detectors for 2.45 MeV neutrons was determined 
as  ~2.4×10-2 per neutron/cm2 [Adams 1993]. Correction factors for the attenuation 
of  the  neutrons (as they pass through the tokamak vessel window and the material 
surrounding the neutron detector) as well as for the scattering of the neutrons 
in  the  collimators were calculated using the Monte Carlo N-Particle Transport Code 
(MCNP) modelling [Adams 1993]. For the horizontal camera, the correction is ~9% 
and  for  the vertical camera ~17.5%. The differences are due to the different thicknesses 
of  the neutron attenuation materials between the plasma and the NE213 detectors. 
The  correction factors for each collimator channel due to neutron backscattering were 
calculated using FURNACE code. For neutron energy of 2 MeV, the backscattered neutron 
contribution in the central camera channels (i.e., channels #5 and #14) is ~3% of the total 
incident neutron flux on the detector, while it is >75% for the outer channels (channels #1, 
#10, #11, and #19) [Adams 1993].

The ill-posed problem of the reconstruction can be solved using extra information 
and  constraints to compensate, to some extent, for the lack of experimental data 
and to select a realistic solution among all possible ones. An example of such information 
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is the  smoothness of the neutron emissivity solution. This means that the reasonable 
and  physically realistic solution is obtained from the discretised neutron emissivity 
function, assuming it to be a smooth function, i.e., each element has no drastically 
different values compared to its neighbouring elements. The smoothness of the solution 
can be imposed either a posteriori or a priori. For instance, in [Craciunescu 2008], 
the  neutron emissivity solution was obtained by post-processing, smoothing 
the  reconstructed image of  the  neutron emissivity function. A smoothing operator was 
implemented as  one‑dimensional median filtering using a sliding window that moves 
on  the magnetic contour lines. Thus, the smoothing operator was not integrated 
in the objective function. 

In the presented example, instead, a priori knowledge upon the emissivity function 
is  intrinsically included into the regularisation procedure, in order to avoid 
the  post‑processing of the solution. According to Tikhonov method, the solution 
of Eq. 6.3.2 is obtained by minimising the following functional:

min[ Wf −p 2 + λ2 (L1 + cL2)f 2], (6.6.1)

where, in this two-parameter case, λ controls the weight given to the minimisation 
of the side constraint relative to the minimisation of the residual norm, while parameter c 
controls the proportion between the terms related to L1 and L2 operators 
in  the minimisation of the side constraints. Operator L1 = ∇2 is a discrete approximation 
of  the Laplacian that imposes a smoothness constraint of the reconstructed solution. 
The L1 operator can be written as a matrix of NH NV × NH NV elements (see Appendix 9.6):

L1 =

T −I 0 . . . 0
−I T −I . . . 0
0 −I T . . . 0
0 0 −I . . . 0. . . . . . . . . . . . . . .
0 0 0 . . . T

, (6.6.2)

where I is an NV × NV identity matrix and T is the following NV × NV matrix: 

T =

−4 −1 0 . . . 0
−1 −4 −1 . . . 0
0 −1 −4 . . . 0
0 0 −1 . . . 0. . . . . . . . . . . . . . .
0 0 0 . . . −4

, (6.6.3)

and NH and NV are the numbers of grid elements in the horizontal and vertical directions, 
respectively, as defined in Sec. 6.3.
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In Eq. 6.6.1, L2 is a derivative operator along the magnetic flux contours which implies 
smoothness of the solution along the contours and the correct reconstruction of the shape 
of the neutron emissivity. The particular form of the L2 matrix has to be computed 
individually for every time interval of interest in the plasma discharge. Information on 
the magnetic configuration is obtained for a particular instance of time of JET discharge 
using the FLUSH software that helps to reconstruct the flux solution of the EFIT plasma 
equilibrium solver [O’Brien 1992]. In order to minimise the functional in Eq. 6.6.1 
and  to  find the solution that regularises the reconstruction inverse problem, 
the  Generalised Singular Value Decomposition (GSVD) was applied to matrices 
W and L = (L1 + cL2):

W = UΣX−1, L = VMX−1, (6.6.4)

where U is Nd × Np orthogonal matrix, V is Np × Np orthogonal matrix, X is Np × Np

nonsingular matrix, and Σ and M are Np × Np diagonal matrices:

 Σ = diag (σ1, . . . , σNp
), M = diag (μ1, . . . , μNp

) . (6.6.5)

As previously, Nd and Np refer to the number of available detectors and number 
of the discrete elements (pixels) of the reconstructed function f, respectively.

The diagonal entries of Σ and M are non-negative, ordered as follows: 

0 ≤ σ1 ≤ . . . ≤ σNp
≤ 1, 1 ≥ μ1 ≥ . . . ≥ μNp

≥ 0, (6.6.6)

and normalised:

σ2
i + μ2

i = 1, i = 1...Np . (6.6.7)

They define the generalised singular values of the matrix pair (W, L) as ratios 
σi

μi
 

(for  i = 1...Np) that reflect the level of ill-conditioning of the reconstruction problem. 
In Eq. 6.6.4, U and V are the matrices of singular vectors of the matrix WL−1. Using GSVD, 
the regularised solution is calculated as:

fλ = [WTW + λLTL]−1WTp =
Np

∑
i= 1

< ui, p > σi

σ2
i + λμ2

i
xi, (6.6.8)

where xi is i-th column vector of X , ui is i-th column vector of U, and < . >  denotes 
the inner product.
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Since the standard methods described in Sec. 6.5 fail in this case, the optimal values of λ 
and c parameters are chosen through an iterative procedure. Additional a priori information is 
used to select the optimal regularisation parameters. The normalised electron density profile 
Γe was chosen as a priori information provided by JET LIDAR and High Resolution Thomson 
Scattering (HRTS) diagnostics [Gowers 2002, Maslov 2013]. For  this purpose, several 
physical assumptions have to be made. First of all, it must be noted that the  neutron 
emission from JET ohmic plasmas is very low and the major contribution to  2.45 MeV 
neutron emission comes from Neutral Beam Injection (NBI) heated plasma. This is because 
the cross-section for beam-thermal interaction is about two orders of magnitude higher than 
the cross-section for thermonuclear reactions. The neutron camera data thus consist mostly 
of signals from neutrons produced in beam-thermal deuterons fusion reactions. Furthermore, 
the quasi-neutrality condition of the plasma is assumed (i.e. the plasma electron density ne is 
approximately equal to ion density ni). The neutron rate from a given point in the plasma is 
related to the fuel density ni at that point [Eriksson 2014] and also to electron temperature Te, 
due to the dependency of the slowing down time distribution function of the beam-thermal 
component. Then, the assumption of quasi-neutrality plasma condition allows us to base the 
selection of  regularisation parameters on the minimisation of the root mean square (RMS) 
difference between the normalised electron density profile Γe and the normalised 
reconstructed neutron emissivity profile Γn. The search of the optimal regularisation 
parameters is performed iteratively. In order to find the optimal couple of the parameters 
(λ2, c), a scan in c is performed. Then, for a given c, the Golden Section Search (GSS) 
method [Teukolsky 2007] is applied to find the optimal λ2.

The presented method was applied to reconstruct the neutron emissivity of deuterium 
plasma discharge (#85100) with varying NBI power scenario shown in Figure 6.9a. For this 
discharge, the maximum electron temperature Te = 1.5 keV and the effective ionic charge Ze 
during time interval 47.5–51.0 s was 1.13 ± 0.15. As input, the total number of neutron 
counts measured by the NE213 detectors was used. Figure 6.9a shows the total NBI power 
during the discharge recorded with the time resolution of 15.2 ms together with the total 
neutron yield measured by JET KN1 diagnostic with the maximal time resolution of 6 ms. 
KN1 is the main diagnostic system used at JET tokamak to measure the total neutron yield 
produced during the plasma discharges. It consists of three sets of 235U and 238U fission 
chambers placed around the machine [Swinhoe 1984]. Figure 6.9c shows the results 
of  the  reconstruction of the neutron emissivity for nine, 0.1 s long time intervals, 
corresponding to characteristic moments of the NBI power evolution. Figure 6.9b presents 
plots of the total neutron yield. measured by the fission chambers (down-sampled to time 
resolution of 0.1 s) and the maximum of the reconstructed neutron emissivity, calculated  
with the same time resolution. A good correlation of the reconstructed neutron emissivity 
with the  total neutron yield measured independently by the fission chambers is observed 
(see Fig. 6.9b).
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Figure 6.9 a) Total NBI power 
dur ing the d ischarge (b lue) 
and  total neutron yield measured 
by the fission chambers (red) 
b )  to ta l neut ron y ie ld ( red) 
measured by the fission chambers 
(down-sampled to time resolution 
of 0.1 s) and the maximum 
of  the  reconstructed neutron 
emissivity with the same time 
reso lu t ion (b lue ) c ) resu l t s 
o f  t h e  r e c o n s t r u c t i o n 
of  the  neutron emissivity for nine, 
0 . 1 s l o n g , t i m e i n t e r v a l s 
corresponding to characteristic 
moments of the NBI power 
evolution [Bielecki 2015].
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A maximum neutron emissivity of 2.9 × 1015 m-3s-1, evaluated using the developed method 
and  data provided by KN3 diagnostic, was observed during the time interval 49.2‑49.3 s 
(E  in  Fig.  6.9b). Sudden drops of NBI power during time intervals 48.6‑48.7 s (D) 
and 49.6‑49.7 s (F) are clearly reflected in the plots of the reconstructed emissivity function 
and can be also noted in the plot of the maximum reconstructed emissivity (Fig. 6.9b). 
Lower emissivity of ≈ 0.75 × 1015 m-3s-1, corresponding to the phase of switching on 
and  switching off the NBI system can be observed during time intervals 48–48.1 s (A) 
and 50.5‑50.6 s (I), respectively.

In general, the results of the performed reconstruction are consistent with 
the measurements of KN1 diagnostic. However, some discrepancies (e.g., Fig. 6.9b, time 
intervals: 48.7‑48.8 s, 50.1‑50.2 s, and 50.5‑50.6 s) can be observed due to the coarse 
method of the regularisation parameters selection. Very occasionally, the regularisation 
parameters, selected automatically by the presented procedure, differ significantly from 
the actual optimal parameters. Then, the choice of (λ2, c) can influence the results 
of  the  reconstruction. If selected (λ2, c) are too small compared to optimal parameters, 
the  reconstructed emissivity function can be under-smoothed (too highly peaked), which 
results in a too high maximum of the reconstructed emissivity. If (λ2, c) are too large, 
the  solution is over-smoothed with a too low maximum of the reconstructed emissivity. 
In  general, the images of reconstructed neutron emissivity are not affected by severe 
artefacts. The plasma shape and its centre position can be clearly distinguished. However, 
minor artefacts can be rarely observed in the region of vessel covered by outermost LoS, 
monitoring plasma edges. In these regions, the neutron emissivity is mostly related 
to thermal plasma. However, this neutron contribution to the camera measurement is low 
and comparable to statistical noise.

The presented method based on Tikhonov regularisation uses the electron density profile 
shape as a priori information for the neutron emissivity profile shape. It was for the first 
time that the data from physical measurements of the tokamak diagnostics have been 
used to select the optimal parameters of regularisation. In this approach, the electron 
density profile was used, since it can be reliably measured at JET tokamak by LIDAR 
and  HRTS diagnostics. However, the information on electron density profile could 
be  substituted by the ion density and ion temperature distributions, providing 
that appropriate diagnostics will be available at a tokamak facility. In contrast with some 
methods reported previously, the one presented here does not include any 
post‑processing of the obtained solution (e.g., no median filtering applied to the solution) 
and the physical constraints on the solution are imposed during the regularisation process. 
In several papers, complementary approaches to plasma emissivity reconstruction based 
on Tikhonov regularisation have been also reported [Iwama 1989, Terasaki 1999, 
Lee 2010, Wingen 2015].
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6.7 Reconstruction by Minimum Fisher Information 
Method

Based on A. Jardin, D. Mazon and J. Bielecki, Phys. Scr. 91 044007 (2016). 

In this section an alternative method for reconstruction of plasma emissivity is presented. 
The method is based on minimising of Fisher information (MFI) and will be presented 
in the context of soft X-ray (SXR) plasma emissivity reconstruction for Tore Supra tokamak. 
SXR in the range of 0.1–20 keV provides valuable information on tokamak plasma 
for studying e.g. magnetohydrodynamic activity, magnetic equilibrium or impurity transport 
[Vezinet 2014]. In particular, tungsten which is widely used as the main plasma facing 
material in major tokamaks such as ITER, JET or WEST, is a source of concern 
due  to  significant radiation losses in the plasma core and thus must be kept under 
acceptable concentrations. In this context, 2D SXR tomography is a useful tool to observe 
poloidal asymmetries of impurities and to provide a good estimate of their local 
concentration. In  order to distinguish from neutron emissivity defined in the previous 
sections, the reconstructed SXR emissivity will be hereafter denoted as g (x, y).

The SXR diagnostic used at Tore Supra tokamak is equipped with two fan-beam cameras. 
The horizontal camera consists of 45 LoS associated with one pinhole, while the vertical 
camera features 31 + 6 LoS associated with two pinholes. The geometrical layout 
of  the  diagnostic’s LoS is shown in Fig 6.10. This configuration enables to obtain 
the spatial resolution of ~3 cm in the centre of the poloidal cross-section of the tokamak 
vessel. The diagnostic measures line-integrated profiles of the plasma SXR emission 
in the energy range of  3 - 25 keV. For this purpose the diagnostic is equipped with Nd = 82 
silicon diodes accurately calibrated in their X-ray domain, including the electronics 
and  geometrical correction [Mazon 2008]. The searched SXR emissivity is discretised 
on a square grid of 1.6 m × 1.6 m as a matrix of Np × Np square elements. Each element 
is associated to a value g i of the SXR emissivity that is assumed to be constant within 
the pixel.

The inverse problem of SXR tomographic reconstruction between the emissivity g (x, y) 
and»  the line-integrated measurements pk is defined, in analogy to Eq. 6.3.1, by the set 
of equations:

pk =
Np

2

∑
i= 1

wkig i, k = 1...Nd, (6.7.1)

where wki are the coefficients of the geometrical matrix for the Tore Supra SXR diagnostic.
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As it was shown in the previous sections, simple minimisation of the residuals 
or  the  standard methods of tomographic reconstruction cannot be used due to 
the  ill‑conditioned nature of the problem as well as presence of noise in the measured 
data. The problem is also underdetermined, with only Nd = 82 projections compared 
to the amount of information to retrieve, typically N2

p = 400 ÷ 2500.

To reconstruct SXR emissivity, similarly as in Sec 6.6, we rely on adding a priori 
information on the expected emissivity profile and minimising the functional:

g λ = arg min[ Wg −p 2 + λ Lg 2], (6.7.2)

where we used again the matrix representation. For the ordinary Tikhonov regularisation, 
L = I (zeroth order regularisation that minimises the solution norm), L = ∇ (first-order linear 
regularisation that minimises the solution gradients), L = ∇2 (second-order linear 
regularisation that selects the solution with the least curvature) or L represents other types 

Figure 6.10 Geometrical layout of lines of sight of Tore Supra SXR diagnostic [Jardin 2016].  
The system features 31+6 vertical lines (in red and purple), associated with a camera 
equipped with two pinholes and 45 horizontal lines (in blue), associated with 
a single‑pinhole camera. 
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of derivative operator as shown in the previous section. In MFI method however, L 
is associated with the Fisher information defined as the following integral:

If = ∫ g ′�(x)2

g (x) d x, (6.7.3)

where x = (x, y). The above equation implies that the regions of low g (x, y) have maximum 
information and hence minimum variance, thus become smooth, whereas smoothening 
is  less pronounced in regions where g (x, y) is high. Often, instead of solving the fully 
nonlinear problem (Eq. 6.7.2 with the objective function given by Eq. 6.7.3), a weighted 
linear regularisation method is used [Anton 1996]. Starting from first-order regularisation 
and introducing a positive diagonal weight matrix F, the regularisation term for MFI 
method is defined as:

H(n) = ∇T F(n) ∇, (6.7.4)

where the superscript (n) denotes the iteration number. In order to minimise the Fisher 
information of the emissivity g (x, y), we apply an iterative approach. We start with F(0) = I 
which is equivalent to the first-order linear regularisation. Then, we solve the normal 
equation (Eq. 6.6.8) to obtain g(n):

g(n)
λ = [WTW + λH(n)]−1WTp . (6.7.5)

Then, we use solution g(n)
λ  to construct elements of F(n) matrix:

F(n)
ij = 1

g (n)
i

δij g (n)
i > g min

F(n)
ij = 1

g min
δij g (n)

i ≤ g min

, (6.7.6)

where δij is the Kronecker’s delta and g min > 0 is the lower bound used for calculation 
of  the weights. Any negative element g (n)

i < 0 which could appear between two iteration 
steps is automatically set to zero to avoid unphysical solution. This iterative procedure 
continues until g(n) ≈ g(n−1). Then, g(n) is taken as the solution.

For the selection of the regularisation parameter λ, the standard methods described 
in  Sec. 6.5 can be used. However, due to the iterative nature of MFI method, 
the computational demands are higher and thus some simplified method of λ selection are 
often used [Jardin 2016]. One possibility is to use a fast empirical method based on 
the matrix traces:

λ(n) = Tr(WTW)
Tr(H(n)) . (6.7.7)
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Another possibility is to select the regularisation parameter such that smoothness 
of solution matches the noise level in measurements:

1
Nd ∑

k

(pk −p(rec)
k )2

σk
≈ 1, (6.7.8)

where σk denotes the variance of the expected noise level on the k-th channel 
and p(rec)

k = ∑
i

Wkig i is the signal at the i-th channel calculated based on the reconstructed 

emissivity.

Figure 6.11 shows a comparison of reconstruction results for three simple plasma models 
obtained using two different reconstruction methods: second-order Tikhonov 
regularisation and Minimum Fisher Information method. Three phantom models were 
created and used to mimic the most commonly observed SXR emissivity distributions 
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Figure 6.11 Comparison of reconstruction results of three plasma models performed with 
the second-order Tikhonov regularisation and Minimum Fisher Information method [Jardin 
2016]. 
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in tokamak plasma. The phantom models include: Gaussian, hollow, and banana shapes. 
The simple Gaussian model is given by the following formula:

5(x, y) = exp(−(x −Δx)2

2σ2 −(y −Δy)2

2σ2 ), (6.7.9)

where (Δx, Δy) are the plasma centre coordinates and σ represents the standard deviation 
of the Gaussian. The hollow model is obtained by subtracting two Gaussian phantoms 
with the same emissivity centre but different variances σ2

1 > σ2
2  :

ℋ(x, y) = 51(x, y) −52(x, y) . (6.7.10)

Then, the banana model is derived from the hollow model by introducing a High-Field Side 
(HFS) poloidal asymmetry as follows: 

ℬ(x, y) = ℋ(x, y)exp(−(x −Δxas)2

2σ2as
−(y −Δyas)2

2σ2as
), (6.7.11)

where the point (Δxas, Δyas) denotes the centre of the asymmetry chosen on the corona 
of  the corresponding hollow profile, and σas represents the asymmetry spatial extent. 
The  phantom shapes were selected to model, in relatively realistic way, the commonly 
observed distributions of SXR emissivity. While the Gaussian shape represents emission 
of a thermal plasma, the banana phantom reflects more complicated cases of the SXR 
emissivity, such as impurity poloidal asymmetries. The hollow shape simulates SXR 
emissivity observed after a sawtooth crash. The results are also quantified by two figures 
of merits RMSem and RMSpr which represent root mean square error of the reconstructed 
emissivity and root mean square error of the projections, respectively, i.e.:

RMSem = 1
Np

2 ∑
i

(g (mod )
i −g (rec)

i )2, (6.7.12)

where g (mod )
i  denotes the emissivity in the i-th element of the model, g (rec)

i  is the emissivity 
in the i-th element of the reconstruction result,

RMSpr = 1
Nd ∑

i
(p(mod )

i −p(rec)
i )2, (6.7.13)

where p(mod )
i  is the signal at the i-th detector calculated from the phantom model and p(rec)

i  
is the signal at the i‑th detector based on the reconstructed emissivity. Emissivity profiles 
are normalised, i.e. RMSem equal to one represents 100% of global reconstruction error 
while zero represents a perfect reconstruction.
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In order to test the reconstruction quality as a function of plasma emissivity extent, several 
reconstructions of regular centred Gaussian model 5 with a scan of the standard deviation 
σ from 0.1 to 0.3 m were performed. Values of σ greater than 0.3 m are not considered 
as relevant with respect to the available plasma volume inside the vacuum vessel of Tore 
Supra tokamak. In this study, the grid size was arbitrary fixed to N2

p = 40 × 40. Figure 6.12a 
and Figure 6.12b show the resulting RMSem and RMSpr, respectively. The usual range 
of experimental SXR emissivity extent observed at Tore Supra tokamak is also indicated 
in  the figures. It can be noted that both MFI and Tikhonov regularisation methods give 
similar and satisfying results with RMSpr ≈ 1 % , with a slightly better quality for the MFI 
method in the range of plasma dimensions observed at Tore Supra tokamak. This trend 
seems to reverse for higher σ values, which can be explained by the different regularisation 
operators of the two methods. Indeed, the second order Tikhonov regularisation method 
simply minimises the curvature of the solution, while in the MFI method the ponderation 
matrix F flattens the gradient at the plasma edge. This can degrade the MFI 
reconstructions for high SXR emissivity extents with respect to the considered plasma 
volume, where the SXR emissivity level is still substantial at the very edge of plasma.

In Figure 6.13 the two regularisation methods are compared in terms of RMSem and RMSpr 
versus the reconstruction grid size. The comparison involved a set of 108 phantoms per 
grid point, including the 3 plasma models for different plasma sizes (from σ = 0.15 m 
to 0.25 m) and for different positions ((Δx, Δy) from -0.2 m to +0.2 m around the tokamak 
vessel centre), in order to cover all the possibilities inside the available plasma volume. 
As a general trend, it can be clearly seen that a finer grid leads to better reconstructions, 
but with an extra cost of the computational demands per inversion. Grids finer than 
Np

2 = 50 × 50 do not give better reconstructions than RMSem = 2 −5 %  while 
the computational time is an increasing exponential function of N2

p  [Jardin 2016].
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Figure 6.12 a) RMSem vs plasma dimension σ b) RMSpr vs plasma dimension σ for Tikhonov 
regularisation and Minimum Fisher Information methods. 



It was found that the second-order Tikhonov regularisation method is globally slightly 
more accurate in terms of RMSem and MFI method tends to overfit measurements, 
due  to  the previously described rough methods of λ optimisation. For the Tikhonov 
regular isat ion-based method, implemented using GSVD approach, most 
of the computational time is spent in GSVD of the W and L matrices. In principle, if L does 
not depend on time (e.g. does not depend on magnetic configuration), the decomposition 
can be performed once for all required time intervals, before the inversion. However, 
in  more complex cases as presented in Sec. 6.6, where matrix L is time 
dependent  (e.g.  depends on magnetic configuration), the GSVD has to be performed 
individually for every time interval of interest in the plasma discharge. This obviously 
increases the computational demands.

It can be noticed from Figure 6.11b and Figure 6.11c that, due to relatively low number 
of  projections, tomographic inversions do not give perfect reconstructions of complex 
shapes and poles of emissivity appear for non regular emissivity models. It is slightly more 
pronounced for MFI method. Thus, in order to give a physical example of the SXR 
emissivity reconstruction and to study the capability of the results interpretation, a Tore 
Supra discharge (#46564) was investigated. During the discharge, tungsten laser blow-off 
was performed. Figure 6.14a shows the time traces for all 82 SXR detectors. Since 
the increase in SXR emissivity during the laser blow-off is attributed to tungsten radiation, 
the background is subtracted from the SXR signal (see Fig. 6.14a). Then, based on 
the  background-subtracted projections shown in Figure 6.14b, the SXR emissivity was 
reconstructed using MFI method. The resulting SXR emissivity features a High Field Side 
asymmetry, as shown in Figure 6.14c. In the next step, a synthetic model that mimics 
the  experiment was created. The model is presented in Figure 6.14d, and the related 
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Figure 6.13 RMSem and RMSpr as a function of N2
p  for the second order Tikhonov 

regularisation and MFI method [Jardin 2016].
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projections calculated based on the model are shown also in Figure 6.14b. The MFI was 
used to reconstruct the synthetic emissivity of the model. The result of the model 
reconstruction is shown in Figure 6.14e. The experimental reconstruction in 6.14c is thus 
compared with the reconstructed emissivity obtained from the phantom model 
(Figure 6.14e). The two tomograms show a similar pattern of poles of emissivity in terms 
of both position and intensity, validating the presence of an experimental High Field Side 
asymmetry in W radiation.
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Figure 6.14 Reconstruction of a Tore Supra tokamak discharge with W laser blow-off 
(#46564). a) Time traces for all SXR detectors, b) input projections after background 
subtraction, c) experimental SXR emissivity reconstructed using MFI method, d) related 
synthetic model, e) reconstruction results of the model obtained with MFI method 
[Jardin 2016].



6.8 Using different basis functions

The methods presented in Section 6.6 and Section 6.7 belong to so-called series 
expansion methods. In this class of the reconstruction methods, the inversion problem 
is  discretised by expanding the emission profile on a set of basis functions. Although 
the  use of rectangular-pixel basis functions is a common approach, it is obviously not 
the only choice. In fact, rectangular-pixels belong to the so-called local basis functions. 
The name ‘local’ indicates that the basis function has value of 1 inside the corresponding 
pixel and 0 outside the pixel (i.e. basis functions have small or local spatial support). Pixels 
have usually rectangular shape, however hexagonal or other patterns are possible as well. 
The advantage of using the local basis functions is that they are not directly related to 
the expected shapes of the reconstructed emissivity function. On the other hand, usually 
many local basis functions are needed to properly reconstruct the emissivity function, 
thus, the problem is ill-conditioned and undetermined, as it was shown in the previous 
sections. An incorporation of a priori knowledge is needed in this case.

103

Figure 6.15 An example of gamma ray emissivity reconstruction using the magnetic flux 
surfaces as basis functions. JET discharge #90756.
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On the contrary, global basis functions incorporate a priori information on the emissivity 
function somehow naturally. They are non-zero over a large part of the emissivity region 
(i.e. they have non-local spatial support) and describe some linear property 
of the emissivity function. Fourier series is an example of global basis function.

Figure 6.15 shows the results of gamma-ray emissivity reconstruction for JET discharge 
#90756. The developed and applied method relies, similarly to the method presented 
in  Sec. 6.6, on Tikhonov regularisation. In this approach however the magnetic flux 
surfaces were used as basis functions. The smoothness of the reconstructed gamma-ray 
emissivity function was imposed by defining the regularisation operator L as:

L =

1
ΔΨ1

0 . . . 0 0

− 1
ΔΨ2

1
ΔΨ2

. . . 0 0

0 − 1
ΔΨ3

. . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . − 1

ΔΨN

1
ΔΨN

, (6.8.1)

where ΔΨ1 . . . ΔΨN denote separation between magnetic surfaces (1.. N). As the input data 
signals from the CsI detectors, installed in the JET camera (KN3 system), were taken. 
The reconstruction algorithm was implemented in MATLAB programming language.
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6.9 Genetic Algorithms for plasma tomographic 
reconstruction

Based on J. Bielecki,  Fus. Eng. Des. 127, 160 (2018).

In this Section, a new method of neutron emission reconstruction, based on genetic 
algorithms (GA), is presented. Genetic algorithms have been already applied in the field 
of  electrical impedance [Olmi 2000, Hsiao 2001], optical [Kihm 1996] and X-ray 
[Yang  2014] tomography. However, this is the first attempt of application of GA for 
tomographic inversion in MCF devices. Genetic algorithms are adaptive heuristic search 
methods inspired by evolutionary ideas of natural selection and genetics. They use 
probabilistic selection rules, rather than deterministic ones. It is well known that 
parallelisation of the standard reconstruction method, e.g. based on the sparse GSVD, 
is  not a trivial task. Contrary, GA are inherently parallel and can be easily distributed 
among many Central Processing Units (CPUs) or  Graphic Processing Units (GPUs). 
Moreover, GA perform the search from a population of points, in a parallel manner. 
Therefore, they have the ability to avoid being trapped in a local optimal solution like 
traditional methods, which search from a single point. Genetic algorithms  are also well 
suited for optimisation in noisy environments. All these points suggest that GA are worth 
testing for being a candidate as a tomographic inversion method in fusion devices. There 
exists a large number of textbooks and papers that tackle the problem of GA. The field 
of GA is very dynamic and continuously developing. Thus, the comprehensive overview 
of GA is definitely outside the scope of this monograph.
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Figure 6.16 Geometrical layout of the LoS of the generic neutron tomographic system.  
The neutron imaging system consists of two cameras with 32 LoS in total.
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In this section we test the feasibility of application of GA to the neutron emissivity 
tomographic inversion and investigate its robustness. To do that, a generic experimental 
setup presented in Figure 6.16 was used.

The system consists of two cameras, each camera features 16 neutron detectors. 
However, it is worth noting that the method can be easily adapted and applied to any 
tokamak’s neutron diagnostic geometry.

In the presented approach, the ill-posed inversion problem is solved using a local basis 
functions in the form of rectangular pixels. Thus, the emissivity is discretised on a grid as 
a  matrix F of N × N square elements. Each element is associated with a value 
of  the  emissivity that is assumed to be constant within the pixel. The grid size is 
a parameter that can be tuned and it should be chosen as a trade-of between the number 
of degrees of freedom of the ill-conditioned problem, the resolution of the reconstructed 
neutron emissivity, and the computing time. In the presented work, N = 19 was found as 
a  good compromise between the resolution and computing time. Let us remind that 
the discrete inverse problem of tomographic reconstruction is defined by the following set 
of linear equations: (see Sec. 6.3, Eq. 6.3.1)

pk =
Np

∑
i= 1

wki fi, 	 k = 1...Nd (6.9.1)

In the above equation fi is the i-th element of the plasma neutron emissivity represented 
by  N2 × 1 column vector f , i.e. f is a row-major ordered vector form of emissivity matrix F, 
N2 is the total number of elements for the discrete representation of the neutron emissivity, 
Nd is the number of LoS (detectors) and pk is the k-th element of Nd × 1 column vector p 
that represents the available data along the LoS. The element wki of the geometrical matrix 
W represents the contribution of i-th element of emissivity to the k-th projection.

The proposed method is based on an iterative approach. The workflow 
of  the  reconstruction method is presented in Figure 6.17. The reconstruction starts with 
the  initialisation phase. In this step, M random solutions fj, ( j = 1...M ) (so-called 
‘chromosomes’ in GA terminology) are created. To speed-up the convergence process, 
an  alternative version of initialisation step can be also used. In this case, the initial 
population of the solutions is taken as M solutions of ART (Kaczmarz) method (see 
Sec. 5.2) with the  iteration number selected randomly, instead of the completely random 
initial solutions. It is a known fact that the ART itself does not provide, in general, 
physically meaningful results for the undetermined, ill-posed problem of tomographic 
reconstruction of fusion plasmas [Ingesson 1998]. As an illustration, Figure 6.18 presents 
results of the reconstruction by ART of three test phantoms (Gaussian, hollow, banana) 
defined in Sec. 6.7 after 100 iterations when the convergence of the solution was reached 
(i.e. further iterations do not improve the quality of the reconstruction). Although the overall 
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Figure 6.17 Workflow diagram of the reconstruction method based on Genetic Algorithms.

Figure 6.18 Results of the reconstruction of three neutron emissivity models using ART. The 
reconstructions were obtained after 100 iterations. Although ART is not able to reproduce 
good results for the highly ill-posed problem, the solutions obtained with different iteration 
numbers can be used as initial guesses for GA-based reconstruction method.
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reconstruction quality is very poor and the results feature many artefacts, this kind of trial 
emissivity functions can be used as initial guesses for GA-based method.

In the next step, the solutions are evaluated based on the Tikhonov-like objective function:

fj
obj = Wf j −p

2
+ λ Lf j 2

, (6.9.2)

where L is a matrix representation of the derivative operator that imposes a smoothness 
constraint on the reconstructed solutions and λ is a constant that controls the weight given 
to the minimisation of this side constraint relative to the minimisation of the residual norm. 
Selection of the λ parameter could be optimised during the reconstruction using 
the  methods described in Sec 6.5, however it would additionally increase 
the  computational cost of the method. Thus, during the development phase, λ was 
set  to  1. This choice was based on the experience from several initial tests. After 
the evaluation, in the selection step, a fraction Sr of the solutions with the lowest values 
of  the objective function are  selected as the candidates for the next generation. 
The quantity Sr represents the survival rate and it was set to 0.7. From these MSr selected 
solutions, in the next step, the remaining M −MSr solutions are created in the cross-over 
phase. In every step of this phase, for two given solutions, three random numbers are 
selected that represent the start point Cs, the width Cw and the height Ch  of a random block 
to be swapped between the solutions. This procedure is illustrated in Figure 6.19. Then, 
one of the two newly created solutions is randomly chosen as a candidate for a new 
generation. This cross-over procedure is repeated until M −MSr new solutions are created 
to keep the population number M constant at all the iterations.

The next phase introduces some mutations in the pre-selected and crossed-over 
population. This is done in the following way. For randomly selected solutions of a given 
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Figure 6.19 Illustration of the cross-over operation - swapping of two random blocks.



generation, the elements of the selected solutions are modified by adding a random noise. 
The noise has a Gaussian distribution with the standard deviation equal to Pm fraction 
of  the particular element value. The Pm parameter represents mutation probability 
and  should be kept low (typically below 0.001 [McCall 2005]). Since the mutation 
operations can rarely introduce some minor negative elements in the solutions, in the last 
step, the negative solutions, if exist, are penalised by taking the absolute value. This step 
can be treated as an additional mutation and does not influence the convergence 
of the GA. The whole set of steps is repeated until the average objective function value f̄obj 
is higher than a given threshold value T.

The developed method was tested using a synthetic data set defined in Sec. 6.7. Analytic 
neutron emissivity models of Gaussian, hollow and banana shapes were used to produce 
synthetic projections that were taken as inputs for the reconstruction algorithm. After 
performing the reconstruction, consistency between the model and the reconstruction 
result was evaluated for both local emissivity and the projections. Such tests are valuable 
for assessing the performance, accuracy and limits of  the method. The reconstruction 
accuracy was evaluated using two figures of merit RMSem and RMSpr, as defined 
in  Sec.  6.7, which represent root mean square error of the reconstructed emissivity 
and root mean square error of the projections, respectively.

Test  reconstructions  were  performed  for  two different phantom sizes: small (S) 
(σ = 0.15a, (Δx, Δy) = (0,0), σ2 = σ, σ1 = 2σ, σas = 3σ, (Δxas, Δyas) = ( 2,0)) and large (L) 
(σ = 0.21a, (Δx, Δy) = (0,0), σ2 = σ, σ1 = 2σ, σas = 3σ, (Δxas, Δyas) = ( 2,0) ) , where a is 
the  minor radius of the system. Figure 6.20 and Figure 6.21 show the results 
of reconstructions of the three phantom models for S and L phantoms size, respectively. 
The reconstructions were performed using the developed method based on GA and, 
for  comparison, using Tikhonov regularisation (TR). In both methods, to allow for a fair 
comparison, no preferential smoothing constraint has been imposed. The solution of TR 
problem was obtained using GSVD as described in Sec. 6.6. In general, the reconstruction 
of the Gaussian emissivity model gives very satisfactory results, however reconstructions 
of more complex shapes like hollow model and banana model are not perfect due to 
the  limited number of projections. The accuracy of GA is comparable with TR for both 
small and large phantoms. The only exception is the reconstruction of large Gaussian 
model, where RMSem is slightly lower in case of TR method. The advantage of GA-based 
method can be noticed when the background emissivity around the reconstructed 
phantom is considered. The reconstructed shape is slightly smeared out in case of TR 
reconstruction. Also, the reconstructed maximum value of the model is better reproduced 
by GA-based method. The results are quantified by calculated RMSem and RMSpr that are 
presented in Tab. 6.1 for small phantoms size and in Tab. 6.2 for large phantoms size.
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Model Genetic Algorithm Tikhonov Regularization 

Figure 6.20 Three phantom models (small size) reconstructed using the developed 
method based on GA as compared with TR method.

Figure 6.21 Three phantom models (large size) reconstructed using the developed 
method based on GA as compared with TR method.
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Table 6.3 Calculated RMSem and RMSpr for the reconstruction of the three phantom 
models (large size) using GA and TR methods.

Model GAGA TRTR

RMSem RMSpr RMSem RMSpr

Gaussian (L) 0.034±0.005 0.072±0.036 0.028 0.062

Hollow (L) 0.084±0.010 0.065±0.032 0.162 0.247

Banana (L) 0.077±0.006 0.067±0.033 0.118 0.195

Table 6.2 Calculated RMSem and RMSpr for the reconstruction of the three phantom 
models (small size) using GA and TR methods.

Model GAGA TRTR

RMSem RMSpr RMSem RMSpr

Gaussian (S) 0.046±0.004 0.412±0.021 0.065 0.083

Hollow (S) 0.121±0.015 0.169±0.052 0.128 0.3128

Banana (S) 0.097±0.005 0.425±0.007 0.100 0.258

Figure 6.22 Small banana phantom model. An example of input projections (in blue) 
and back-calculated projections after the reconstruction using GA-based method (in red) 
and TR-based method (in black).
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Since the GA-based method is not deterministic, the presented results are the average 
from 10 independent runs along with the standard deviations. On the other hand, due to 
stochastic nature of GA, the shapes reconstructed using the GA-based method are slightly 
jagged. The reconstructed emissivity functions are also not free from artefacts.

This can be noticed in the reconstruction results of small hollow and banana models where 
poles of emissivity appear as artefacts. Figure 6.22 presents the comparison of input 
projections for the small banana model and back-calculated projections for GA and TR 
methods. Slightly higher discrepancies of the original and back-calculated projections 
are  observed for GA-based method. This is quantified by RMSpr values presented 
in Tab.  6.2. The RMSpr value for the banana model is around ~1.5 times higher for GA 
method than for the result obtained with TR method. Nevertheless, the obtained RMSpr 
errors are very low for both methods (< 5%).

Figure 6.23 presents the evolution of the GA solution for the reconstruction of the small 
hollow phantom model. The plots were created every 2000 iterations, up to ~10000 
iterations where the convergence condition was reached. Figure 6.24 shows the average 
value of the objective function f̄obj as a function of the iteration number for the same 
reconstruction of the hollow model.
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Figure 6.23 Evolution of the GA-based solution for the reconstruction of the small hollow 
phantom model.

1000 iterations 3000 iterations 5000 iterations 7000 iterations 9000 iterations

Figure 6.24 The average value of the objective function as a function of the iteration 
number for the reconstruction of the small hollow model.



During a tokamak operation, diagnostics and associated Data Acquisition Systems (DAQ) 
usually work in noisy environment of high-power NBI and ICRH systems. Thus, in the next 
step, the resilience of the developed method against the noise was studied. For this 
purpose, the banana phantom model was used. The line-integrated projection data set p 
was  constructed for the phantom and next the random noise was intentionally added 
to  the  projection data. It was assumed that each detector acquired a signal with 
an  addition of relative noise. In principle, the neutron detector signals exhibit noise 
resulting from statistical fluctuations of the finite number of neutrons detected, as 
described by a Poisson distribution. In practice however, the noise can be modelled using 
a  Gaussian distribution, since for small neutron counting rates the noise is generally 
dominated by other signal-independent sources (e.g. electronics-noise) and for larger 
counting rates the central limit theorem ensures that the Poisson distribution approaches 
the Gaussian distribution. The simulated noise had therefore the Gaussian distribution with 
standard deviation equal to fraction l of the signal pk in a particular channel. The noise level 
was varied from 0.01 to 0.1. For each noise level, the reconstruction quality in terms 
of RMSem was tested by performing 10 reconstructions of the phantom using synthetic 
projections affected by the noise. Figure 6.25 presents the plot of RMSem as a function 
of  the noise level l. As a reference, the results from TR method were also included in 
the figure.
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Figure 6.25 RMSem as a function of the noise level l for the GA-based method (in red) 
and TR method (in black). Results for the small banana phantom model.



For  l > 0.07 significant distortions of the emissivity shape were observed. Additionally, 
since the GA-based method is of a stochastic nature, the significant deviations from 
the mean RMSem values were observed.

The computation time needed for reconstructions highly depends on the implementation 
(parallel, sequential computing) as well as on the numerical libraries and machine type 
(e.g. CPU, GPU, Field Programmable Gate Arrays (FPGA)). Moreover, the time depends 
also on selection of parameters such as population size, initial guess, reconstruction grid 
size etc. Finally, the method is of  a stochastic nature itself, thus slightly different 
computation time can be required for different runs of the same code, even if the same 
input data and parameters were used. However, in order to give a rough estimate on 
the computational demands, the reconstruction time for the GA-based method (sequential 
computation implemented into a MATLAB code) is plotted in  Figure  6.26 as a function 
of  the grid size N. The test was carried out for the three phantoms (large size) with 
the optimal parameters used in  the previous part of the study. All reconstructions were 
conducted using 10000 iterations. The presented results are the average from 10 
independent runs (error bars are of the size of the symbols). In the investigated range 
of  the grid size parameter N, the presented implementation of the algorithm is 
of  polynomial time complexity 9(n2) regardless the considered model (Gauss, Hollow, 
Banana).

The presented novel method of neutron emissivity reconstruction for tokamak plasma has 
been developed and tested with the set of synthetic models and it has been proven that 
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Figure 6.26 Reconstruction time for the GA-based method as a function of the grid size 
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the method provides accurate reconstruction results, comparable with results obtained 
with TR method. It was therefore shown that GA can be successfully applied for neutron 
emissivity reconstruction from limited experimental data set of a tokamak diagnostic. 
The root mean square difference between the reconstructed solution and the model RMSem 
varied between 5 – 12 % for the GA-based method and 3 - 16% for TR method. It must be 
stressed however that the tests were carried out in somewhat ideal situation, since 
the comparison was performed using perfect models without presence of noise and using 
an ideal description of the geometrical layout of LoS. The errors assessment in the real 
situation is much more difficult, however those results give at least the lower limit 
of  the expected reconstruction errors. The method also performs well when the additive 
noise present in the input projections is below ~7 %. Typically, around 10000 iterations are 
needed to achieve solution convergence. The method is computationally demanding and, 
at this stage, is slower than TR method with GSVD [Bielecki 2015]. However, a new highly-
parallel implementation of the method utilising GPU-accelerated computation is foreseen. 
In the presented method, many parameters can be tuned (e.g. population size M, survival 
rate Sr, cross-over parameters Cs, Cw, Ch ), however the experience shows that the settings 
can influence the convergence speed but very rarely influence the overall accuracy 
of the method.

115



6.10 Monte Carlo approach for plasma tomographic 
reconstruction

Based on J. Bielecki, submitted to Journal of Fusion Energy (2018).

In this section a new approach to plasma neutron emissivity reconstruction based on 
Metropolis–Hastings [Metropolis 1953, Hasting 1970] MC algorithm is presented. 
The  presented method can serve as an alternative for commonly applied techniques 
described in Sec 6.6 and Sec 6.7. The algorithm is based on a biased random walk. 
A dedicated computer code generates pseudo-random samples within the domain that 
contains the solution. The proper selection criterion (i.e. objective function) ensures the 
convergence to the desired solution.

Large non-trivial systems, such as systems involved in the ill-posed problems of plasma 
tomographic reconstruction, suffer from the ‘curse of dimensionality’. This means that 
the  number of possible configurations is very large with numerous local minima, and 
therefore a straightforward sampling of these configurations is rather impractical, as it was 
shown before. For neutron tomographic reconstruction from limited data sets measured in 
tokamak devices, the applied Metropolis–Hastings algorithm can overcome this problem, 
avoiding trapping in local minima. In fact, the algorithm offers a possible method 
for  jumping out of a local minimum by accepting, with some finite probability, changes in 
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Figure 6.27 Workflow diagram of the MC-based reconstruction method. 



the direction opposite to indicated by the objective function. Moreover, in this approach, 
additional a priori information (e.g. about the smoothness of the solution) can be also 
easily incorporated. This a priori information is taken into account by the (Tikhonov-like) 
objective function.

The method has been developed and evaluated using the generic tomographic system 
described in the previous section (Fig. 6.16). Again, we focus on solving Eq. 6.9.1. In most 
cases of plasma tomography, solving of the equation by the direct matrix inversion 
is  impossible due to ill-posed nature of the problem and some kind of regularisation 
is usually applied, as demonstrated in previous sections. In the current approach we take 
advantage of stochastic MC approach, instead of solving the problem by Tikhonov 
regularisation with Singular Value Decomposition (SVD), as it was shown in Sec. 6.6. 
The  proposed method is based on an iterative approach. The workflow 
of  the  reconstruction method is presented in Figure 6.27. The reconstruction starts with 
the  initialisation phase. In this step, an initial guess of the solution f (0) is created. 
In  the  developed code, a N2 × 1 null vector is taken as the initial guess, where, 
as  previously, N2  is the total number of elements for the discrete representation 
of the neutron emissivity. In the subsequent step, an element fi of the solution is selected 
randomly in order to be modified. The probability distribution for selecting the random 
element is defined according to projections p. This process is pictorially represented 
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Figure 6.28 Illustration of the selection of a random element according to projections p.



in  Figure 6.28. Such an  approach ensures that the modifications are more frequently 
introduced in the regions where greater values of the reconstructed function are expected 
and less frequent modifications are performed in the region where lower values are 
expected. In this sense, the method inherits some aspects of the BP method (cf. Sec 4.8). 
The value of the selected element is then modified by adding a random number r, drawn 
from a uniform distribution in the interval (a, b). The lower a and upper b limits 
of  the  interval are determined experimentally and in this work were set as -0.001 
and 0.001, respectively. In general, the smaller are the steps of modifications the better 
reconstruction accuracy can be achieved, however, more iterations are needed to obtain 
the convergence. In each iteration, the unmodified solution f (k) and the modified solution 
f (trial) are evaluated by the Tikhonov-like objective function given as:

E(f (k)) = Wf (k) −p
2

+ λ Lf (k) 2
. (6.10.1)

In Eq. 6.10.1, L is a matrix representation of the second-order derivative operator that 
imposes a smoothness constraint on the reconstructed solutions, λ is the regularisation 
parameter and the superscript (k) denotes the iteration number.
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Figure 6.29 Illustration of the regularisation parameter selection procedure based on 
the widths of Gaussian functions fitted to the projections.



In the presented approach, a simple heuristic method of finding approximated optimum 
of λ is applied. At first, two Gaussian functions are fitted to the projection data set (one for 
the vertical view, another for the horizontal view) as shown in Figure 6.29. 
The regularisation parameter λ is then taken as a function of the variations σ2

(reg )1 and σ2
(reg )2 

of the two Gaussian distributions:

λ =
σ2

(reg )1 + σ2
(reg )2

lMC
, (6.10.2)

where lMC is a constant that has been determined experimentally, based on scans for 
several test phantoms (in this study lMC =1.4). Dynamic selection of λ, based on the widths 
of the projection functions, ensures increased smoothness for a wider emissivity function 
and prevents from over-smoothing when the emissivity function is more peaked.

Let E(f (k)) denote the value of the objective function before introducing the modification 
and E(f (trial)) be the value of the objective function when the modification of selected 
element fi is considered (i.e. f (trial)

i = f (k)
i + r). Then, the modification is accepted only if:

exp( −E(f (trial)) −E(f (k))
cMC

) > pMC, (6.10.3)

where pMC is a uniformly distributed random number in the interval (0,1) and cMC is a small 
constant parameter (cMC = 0.001 taken in this study). If condition 6.10.3 is fulfilled, 
the  modified solution f (trial) is taken for the next iteration (i.e. f (k+ 1) = f (trial)), otherwise 
unmodified solution is used in the next iteration (i.e. f (k+ 1) = f (k)). In order to prevent 
unphysical solutions containing negative elements, every s iterations (s = 100, in this study) 
the negative values of f (k), if exist, are penalised by taking the absolute value 
of  the  solution. The iteration procedure continues until the objective function E(f (k)) 
is higher than a given threshold value T.

Figure 6.30a shows the objective function value as a function of the iteration number. After 
~8 × 104 iterations the convergence criterion (E(f (k)) < T) was met. In general, the objective 
function decreases with the iteration number, however, locally, the objective function can 
increase as it is shown in Fig 6.30b. Figure 6.30c shows the change in the objective 
function value ΔE = E( f (trial)) −E( f (k)) as a function of the iteration number. Figure 6.30d 
presents the rejected trials (i.e. those trials for which condition 6.10.3 has not been 
fulfilled) as a function of the iteration number. It can be clearly seen, that number 
of  the  rejected events increases when the iterative process converges to the desired 
solution. This is quite obvious, since when the current solution becomes more similar 
to  the final solution, there is much less possibilities to implement random changes that 
would decrease the objective function.
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The presented method was tested with the set of plasma neutron emissivity phantom 
models defined in the previous section. Figures 6.31 and 6.32 show the reconstruction 
results of the modelled neutron emissivity, along with the relative errors, for small and large 
phantoms size, respectively. Figures 6.33a-f summarise the reconstruction quality, in terms 
of RMSem, as a function of the reconstruction grid size, for all the considered models. Since 
the presented method is of a stochastic nature, the presented results are the average 
values from 10 independent reconstructions and the error bars represent the  standard 
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Figure 6.30. Convergence of the solution in Monte Carlo-based reconstruction method: 
a)  the objective function value as a function of the iteration number, b) zoom of plot a) 
to  show that the objective function value can locally increase, c) the change in the 
objective function value ΔE as a function of the iteration number, d) rejected trials (black 
vertical lines) as a function of the iteration number.
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Figure 6.32 Three phantom models (large size) reconstructed using the developed MC 
method and the relative error in reconstruction.

Figure 6.31 Three phantom models (small size) reconstructed using the developed MC 
method and the relative error in reconstruction.
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Figure 6.33 The RMSem as a function of the grid size for the developed MC method (in red) 
and TR (in blue). a) small Gaussian model, b) large Gaussian model, c) small banana model, 
d) large banana model, e) small hollow model, f) large hollow model.
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deviation. For comparison, also the RMSem values for the results obtained with TR method 
have been included in the figure. It can be noted that, in most cases, grid size of 24 or 26 
is optimal and further increase of the grid resolution does not lead to better quality 
(i.e.  lower RMSem) of the obtained results. In general, the developed MC method provides 
better results of reconstruction than TR for more complex models (banana and hollow). 
However, RMSem is higher for MC method (~0.06) than for TR method (~0.02) when large 
Gaussian model is considered. Both methods give almost equal RMSem values for small 
Gaussian model. In general, TR method seems to better reconstruct larger phantoms while 
in case of the MC method slightly lower RMSem is obtained for the small phantoms set. 
For  both large and small hollow and banana models, regions with the highest relative 
reconstruction error are located in the central part of the model. In these regions, 
the  modelled emissivity drops to zero, however due to the smoothness constraint 
implemented in the objective function the reconstructed emissivity has small non-zero 
value. This leads to the situation that the relative error locally reaches ~0.35, in the central 
part of the reconstructed emissivity (see Fig. 6.31 and Fig. 6.32).

The developed method has been also tested against random noise present in the input 
projections. Similarly as for the GA-based method described in the previous section, 
the simulated noise had the Gaussian distribution with standard deviation equal to fraction 
l of the signal pk in a particular projection channel. The noise level was varied from 0.01 
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Figure 6.34 The RMSem as a function of the noise level l for the MC-based method (in red) 
and TR method (in black). Results for the small hollow phantom model. Reconstruction 
grid was set to 24.



to  0.1. For each noise level, the reconstruction quality, in terms of RMSem, was tested 
by  performing 10 reconstructions of the small hollow phantom (grid size = 24) using 
synthetic projections affected by the noise. The results of this test are shown 
in Figure 6.34, where RMSem is plotted as a function of the noise level l. As a reference, 
the  results from TR method are also included in the figure. Similarly to the GA-based 
method, the developed MC method features almost linear increase of RMSem with noise 
level l. However, in case of the MC method, the slope is much greater (~ 0.3) when 
compared to the GA-based method (~0.05), which means that the method is much more 
sensitive to noise present in the input data.

As it was stated in the previous section, the computational time depends on many factors. 
However, again in order to give at least a rough estimation of the reconstruction speed 
of the method, the number of iterations required to archived the convergence and the time 
spent on the computations is presented in Figure 6.35 for the three phantom models (large 
size).
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Figure 6.35 Computational time and number of iterations required to achieve convergence 
for reconstruction of the three phantom models using the MC-based method.
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The presented results are the average values obtained from 10 independent runs (error 
bars are of the size of the symbols). In the investigated range of the grid size parameter, 
both computational time and number of required iterations feature approximately linear 
dependence. Reconstruction of the hollow model is the most computationally demanding. 
Less computation time is needed to reconstruct banana model, while the simple Gaussian 
model requires the lowest number of iterations to obtain the convergence and hence 
it consumes the lowest computational time.

Another MC method for neutron and gamma emissivity reconstruction has been 
developed by Craciunescu et al. [Craciunescu 2009]. The authors called this method 
Monte Carlo Back-projection Technique. It is based on a simple iterative scheme and, 
for  complex shapes of numerically simulated emissivity distributions, provides usually 
poorer results than TR or Minimum Likelihood method [Craciunescu 2009].
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6.11 Gamma-ray emissivity tomographic 
reconstructions for Three-Ion Scenario Experiments at 

JET
Based on Ye. Kazakov, (...), J. Bielecki, et.al., Nature Physics 13, 973 (2017).

This section shows an application of the gamma-ray tomographic reconstruction in recent 
and pioneering research with efficient acceleration of 3He ions to high energies in dedicated 
hydrogen–deuterium mixtures (so-called ‘three-ion scenario’) at JET tokamak. The goal of 
the study was to validate that, in properly chosen multi-ion plasmas, electromagnetic ion 
cyclotron waves can be effectively absorbed by a very low number of resonant ions. This 
technique opens the possibility of highly-efficient generation of energetic ions 
in  magnetised plasma, allowing for effective plasma heating. It turns out that 
the tomographic reconstruction methods can be of great help also in this study.

The charged plasma particles gyrate around the magnetic field lines with their 
characteristic cyclotron frequency ωci = qsB/ms, where qs is the particle’s charge, ms is 
the particle’s mass, and B is the local magnitude of the magnetic field.
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Figure 6.36. Illustration of the wave-particle resonance phenomenon during ICRH. 



Transfer of energy from the waves emitted by the ICRH antenna to plasma particles is 
possible when the oscillations of  the externally applied electromagnetic field are in 
resonance with the cyclotron frequency of the particles or harmonics thereof:

ω = nωci + k∥v∥, (6.11.1)

where n=1,2..., ω is the frequency of the wave and the k∥v∥ term is a classical Doppler shift 
due to ions velocity, where k∥ and v∥ are the components parallel to the magnetic field B 
of  the wave-vector k and ion velocity v, respectively. Due to the fact that the magnitude 
of magnetic field in the plasma region decreases with the major radius R (see Fig. 6.36), 
there are well-defined regions where the wave-particle resonance can occur. Since there 
is a finite distribution of v∥, these regions have finite widths. This is schematically illustrated 
in Figure 6.36.

In order to find a dispersion relation for the waves that can be excited in the ion cyclotron 
range of frequencies, the following differential wave equation (obtained from the Maxwell’s 
equations) has to be considered:

∇ × ∇ × E −k2
0

ϵp

ϵ0
E = 0, (6.11.2)

where E is the electric field vector, k0 = ω
c

, with ω denoting the angular wave frequency 

and c the speed of light in vacuum. The plasma permittivity tensor in Eq. 6.11.2 is given 
as:

ϵp

ϵ0
=

ϵ1 iϵ2 0
−iϵ2 ϵ1 0

0 0 ϵ3

, (6.11.3)

ϵ1 = 1 −
ω2

pe

ω2 −ω2ce
−∑

i

ω2
pi

ω2 −ω2
ci

,   ϵ2 = ωce

ω
ω2

pe

ω2 −ω2ce
−∑

i

ωci

ω
ω2

pi

ω2 −ω2
ci

,   ϵ3 = 1 −
ω2

pe

ω2 −∑
i

ω2
pi

ω2 .

The elements of the tensor contain ion cyclotron angular frequencies ωci = Zi |qe |B
mi

, 

electron cyclotron angular frequencies ωce = |qe |B
me

 as well as plasma ion ω2
pe = q2

e ne

meϵ0
 and 

electron ω2
pi = Z2

i q2
e ni

miϵ0
 angular frequencies. For simplicity, we consider here the case of 

a cold homogenous plasma and we assume that z axis is chosen along the direction of B.
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The dispersion relations for the waves that can be excited in a plasma, obtained from 
the  condition that the determinant of the set of three scalar equations deduced from 
Eq.  6.11.2 must be zero for non-trivial solution to exist, can be approximated as 
[Stix 1992]:

k2
⊥ ,FW =

(k 2
0ϵR −k2

∥)(k 2
0ϵL −k2

∥)
(k2

0ϵS −k2
∥) , (6.11.4)

k2
⊥ ,SW = k 2

0ϵ3
ϵS

(k2
0 ϵS −k2

||), (6.11.5)

where ϵL = ϵ1 + ϵ2, ϵR = ϵ1 −ϵ2, ϵS = ϵ1, k⊥  and k∥ are the components of wave propagation 
vector k perpendicular to the magnetic filed B and parallel to it, respectively. 
The  subscripts FW and SW correspond to fast wave (magnetosconic wave) and slow 
wave, respectively. These two types of wave are usually decoupled from each other, 
because the magnitude of their wave vectors is more than one order of magnitude 
different. However, confluences between these modes occur near the singularity 
of Eq. 6.11.4, when k2

0 ϵS = k2
∥. This phenomenon is called mode conversion.

In general, the  fast wave is elliptically polarised. The electric field can be thus written as 
a  linear combination of a left-hand polarised component E+ = Ex + iEy and a right-hand 
polarised one E− = Ex −iEy. It can be shown that power absorbed by the ions when 
passing through a cyclotron resonance is given by [Stix 1992]:

Pabs ∝ |E+ Jn−1(k⊥ ρL) + E−Jn+ 1(k⊥ ρL) |2 , (6.11.6)

where ρL is the Larmor radius of the resonant ion and n is the harmonic number of 
the  cyclotron frequency, Jm is the Bessel function of the first kind. Since k⊥ ρL < < 1  
(k⊥ ~ m−1, ρL~ mm), it can be noted that for the fundamental heating (i.e. n=1) the absorbed 
power is proportional to |E+ |2 .

In recent decades, several efficient ICRH scenarios were identified theoretically 
and  verified experimentally [Noterdaeme 2008]. These heating scenarios are intended 
to increase the energy content of the plasma. Recently, a new type of ‘three-ion scenario’ 
has been identified for multi-ion plasma. The scheme relies on matching the cyclotron 
layer of the third ions with the mode conversion layer. The fast wave mode conversion 
leads to an intense left-hand polarised electric field component E+  favourable for 
radio‑frequency absorption by the ions. The location of the mode conversion layer can be 
controlled by adjusting the concentration of the main plasma ions (e.g. H and D).
The optimal concentrations, normalised to electron density, of the main plasma ions 
X1 = n1/ne, X2 = n2 /ne are given as [Kazakov  2015]:
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X1 = 1
Z1

(Z /A)1 −(Z /A)3
(Z /A)1 −(Z /A)2

, X2 = 1
Z2

(Z /A)3 −(Z /A)2
(Z /A)1 −(Z /A)2

, (6.11.7)

where Zi and Ai are the charge state and the atomic mass of ion species, respectively. 
The index i = 1 and i = 2 refers to the main plasma ions, and i = 3 refers to the absorbing 
minority. An important practical application of three-ion heating scenarios will be 
the  extension to D-T plasmas, foreseen as a fuel mix in future fusion reactors. Various 
impurity ions can be utilised in this case to efficiently absorb RF power, but perhaps 
the most useful will be Beryllium impurities.

To validate the applicability of three-ion heating scenarios, a series of dedicated 
experiments have been performed on JET and Alcator C-Mod tokamaks [Kazakov 2017]. 
The goal of these experiments was to demonstrate that indeed a small amount of 3He ions 
can efficiently absorb RF power in H–D mixtures. In JET experiments, the edge isotopic 
ratio H /(H + D) was varied between 0.73 and 0.92 and the 3He concentration between 
0.1% and 1.5%. The JET experiments were run at central electron densities 
ne ≈ 4 × 1019 m−3 and toroidal magnetic field B = 3.2 T at a plasma current Ip = 2 MA. 
In  order to evaluate the effectiveness of three-ion scenario, the so-called scaling laws 
(ITERL96-P and IPB98(y,2)) for the thermal energy confinement time τE were used. 
The  results confirmed that three-ion scenarios offer an alternative, attractive and still 
mostly unexplored way for strong damping of electromagnetic waves in magnetised fusion 
plasmas [Kazakov 2017].NATURE PHYSICS DOI: 10.1038/NPHYS4167 ARTICLES
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Figure 2 | Illustration of the performance of the D–(3He)–H three-ion ICRH scenario on Alcator C-Mod and JET tokamaks. a, Alcator C-Mod three-ion
heating pulse (#1160901009, X[3He]⇡0.5%, red) and (3He)–D pulse (#1160823003, X[3He]⇡5–7%, black). b, JET three-ion heating pulses #90753
(X[H]⇡68–74%, X[3He]⇡0.2–0.4%, blue) and #90758 (X[H]⇡80–82%, X[3He]⇡0.1–0.3%, red). Whereas a few % of 3He is needed for minority
heating in H or D majority plasmas, strong wave absorption in H–D plasmas is achieved with about ten times less 3He.

plasma heating for a fairly broad range of the isotopic ratio (see also
Supplementary Figs 5 and 6). In particular, central plasma heating
with1Te0/1PICRH >0.5 keVMW�1 was observed forH/(H+D)⇡
0.78–0.91 mixtures at 3He concentrations below 0.5%.

Figure 2a also includes the evolution of Te0 and Wp for
3He minority heating in the Alcator C-Mod D plasma with
X[3He]⇡5–7% (pulse 1160823003). Compared to this (3He)–D
scenario, the three-ion heating scenario in C-Mod showed a larger
increase in the plasma stored energy (1Wp/1PICRH = 22 kJMW�1

versus 14 kJMW�1).
A direct comparison of the heating performance of the three-

ion discharges was not possible for the JET discharges discussed
here. However, it can be assessed comparing the measured thermal
plasma energy to that derived from a so-called scaling law. These
scaling laws predict the energy confinement value for a given
plasma experiment as a function of specific engineering parameters
(Ip, B0, ne, . . .; ref. 13) and result from a statistical analysis of data
collected from multiple tokamaks worldwide. Here, we use the
well-established ITERL96-P and IPB98(y,2) scalings for the energy
confinement time ⌧E (equations (24) and (20) in ref. 13) for L-mode
and H-mode tokamak plasmas. ⌧E is the characteristic time during
which the plasma maintains its energy if the heating power is
suddenly switched o�1. Under stationary conditions it is given by the
ratio of the stored plasma energy divided by the total heating power.
Supplementary Figs 1–4 show the results obtained for L-mode JET
discharges heatedwith di�erent ICRHminority scenarios, including
the ratios ⌧E/⌧E,scaling. From the definition of ⌧E given above, it follows
immediately that ⌧E/⌧E,scaling is equal to the ratio of the corresponding
stored energies. For the three-ion heating pulse #90758 (Fig. 2b), we
obtain ⌧E/⌧IPB98(y,2) ⇡ 0.85–0.88 and ⌧E/⌧ITERL96�P ⇡ 1.43–1.48. This
compares very well to ⌧E/⌧E,scaling values for the excellent (H)–D
minority heating scenario in JET plasmas (Supplementary Fig. 1).

E�cient generation of high-energy ions
Energetic ions play a crucial role in fusion plasmas14. Indeed, the
success of magnetic fusion relies upon good confinement of fast
alpha particles (4He ions with birth energies 3.5MeV). This is

required to sustain high plasma temperatures and for economical
operation of a fusion reactor1. However, these energetic 4He ions
can also trigger instabilities that degrade the plasma performance.
To mimic the behaviour of fusion-born alphas, but without actually
using D–T plasmas, ICRH has been extensively used in the past.

For fundamental ion cyclotron absorption the acquired ion
energies scale with the absorbed RF power per particle15. Since
three-ion scenarios allow minimizing the number of resonant
particles down to h levels, ions with rather high energies can be
generated. For plasma densities and ICRH power levels available in
the JET and C-Mod experiments, self-consistent power deposition
computations with the codes AORSA16, PION17 and SCENIC18

predicted acceleration of 3He ions to energies of a few MeV.
Figure 2b shows fast repetitive drops in Te0 (so-called ‘sawtooth’

oscillations) with a period of ⇠0.2 s during the NBI-only phase
of JET pulses #90753 and #90758 (t = 7–8 s). Extended sawtooth
periods up to ⇠1.0 s are seen when ICRH is applied on top of NBI.
Similarly, in the three-ion Alcator C-Mod discharge in Fig. 2a, the
sawtooth period increases from ⇠0.13 s during the 2MW ICRH
phase to ⇠0.23 s during the 4MW phase. The observation of long-
period sawteeth is a first indication of the creation of energetic ions
by ICRH, as the presence of fast ions in a plasma is well known to
have a stabilizing e�ect on sawteeth19,20.

An independent confirmation of accelerating 3He ions to high
energies is provided by gamma-ray emission spectroscopy on
JET21,22. Figure 3a shows the gamma-ray spectrum for pulse #90753
during t = 8–14 s (PICRH = 4.4MW), recorded with the LaBr3
spectrometer23. The observed lines originate from 9Be(3He, p� )11B
and 9Be(3He, n� )11C nuclear reactions between fast 3He ions
and beryllium (9Be) impurities. These impurities are intrinsically
present in JET plasmas with the ITER-like wall. The reported
plasmas were contaminated with⇠0.5% 9Be, as estimated by charge
exchange measurements.

The observation of the E� ⇡ 4.44MeV line implies immediately
the presence of confined fast 3He ions with energies >0.9MeV
(ref. 21). Alpha particles, born in concurrent 3He–D fusion
reactions, also contribute to the gamma-emission at this energy
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Figure 6.37 Illustration of 
the  performance of the D–
( 3He ) –H th ree - i on ICRH 
scenario on JET tokamak. 
Upper panel: ICRH power 
PICRH, middle panel: electron 
temperature Te, bottom panel: 
plasma stored energy Wp 
[Kazakov 2017]. 
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Additional indication of the creation of energetic ions by RF waves was the observation 
of  long-period sawtooth oscillations, as the presence of fast ions in a plasma is 
well‑known to have a stabilising effect on sawteeth. In Figure 6.37 fast repetitive drops in 
electron temperature Te (i.e. sawtooth oscillations) with a period of≈ 0.2  s occur during 
the NBI-only heating phase of the JET pulse #90753 & #90758 (t = 7−8 s). The period 
of  these oscillations increases dramatically up to ≈1.0 s when ICRH is applied on top 
of NBI heating.

An independent confirmation of accelerating 3He ions to high energies is provided 
by gamma-ray emission spectroscopy. Figure 6.38 shows the gamma-ray spectrum for 
pulse #90753 during t = 8–14 s (PICRH = 4.4 MW), recorded with the LaBr3 spectrometer 
[Nocente 2013]. The observed lines originate from 9Be(3He, pγ)11B and 9Be(3He, nγ)11C 
nuclear reactions between fast 3He ions and beryllium (9Be) impurities. These impurities 
are intrinsically present in JET plasmas with the ITER-like wall. The reported plasmas were 
contaminated with ∼0.5% 9Be, as estimated by charge exchange measurements. 
The observation of the Eγ ≈ 4.44 MeV line implies immediately the presence of confined 
fast 3He ions with energies >0.9 MeV. Alpha particles, born in concurrent 3He + D fusion 
reactions, also contribute to the gamma-emission at this energy through 4He + 9Be 
reactions. Also, a number of characteristic gamma lines at Eγ > 4.44 MeV, originating from 
transitions between higher excited states of 11B and 11C nuclei (products of 3He + 9Be 
reactions) are observed. The excitation efficiency for such high-energy levels increases 
by  a factor of ten when the energy of the projectile 3He ions increases from 1 MeV 
to  2  MeV. For comparison, the gamma ray spectrum recorded in JET pulse #91323, 
in  which 3He ions (≈1–2%) were heated as a minority with up to 7.6 MW of ICRH 

Figure 6.38 Gamma-ray 
spectra measured in JET 
pulse #90753 (three-ion 
scenario, in red) and in 
pulse #91323 ((3He)–H 
scenario, in blue). The 
error bars represent the 
square root of the number 
of counts in each channel 
of the spectrum and arise 
f ro m t h e u n d e r l y i n g 
Poisson statistics of the 
gamma-ray detect ion 
process [Kazakov 2017].
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in an almost pure H plasma is also displayed (so-called ‘two-ion scenario’). Clearly, higher 
gamma-count rates for the three-ion pulse #90753 is observed, even though less ICRH 
power (a factor of two) was injected into the plasma. 

The efficiency of fast-ion generation was further enhanced by changing the configuration 
of ICRH antenna from dipole to + π /2 phasing. This is where tomographic reconstruction 
methods were of special usefulness. The ICRH antenna at JET is a phased array of 4 
poloidal straps. Controlling the phase between straps allows waves to be launched with 
different k∥ spectra. Thus, the antenna phasing defines the dominant k∥ 
(i.e.  the wavenumber parallel to the magnetic field) and the spectrum of emitted waves. 
The + π /2 phasing (i.e. relative phasing of the four elements: [0, π

2 , π, −π
2 ]) launches waves 

predominantly in the direction of the plasma current with typical values |k(ant)
∥ | ≈ 3.4 m−1, 

which is two times smaller then for dipole phasing ( |k(ant)
∥ | ≈ 6.7 m−1). Since the width 

Figure 6.39 The JET plasma cross-section and 19 lines-of-sight of the neutron/gamma 
camera. The reconstructed high-energy gamma-ray emission (Eγ ∈  (4.5,9.0) MeV) 
visualises the population of the confined energetic 3He ions (E(3He) > 1 MeV). Pulses 
#90752 (a) and #90753 (b) had a nearly identical plasma composition and RF heating 
power except for the ICRH antenna phasing. A factor-of-two increase in the gamma-ray 
emissivity was observed in pulse #90753, in which 2 MW of RF power was coupled to the 
plasma with +π/2 phasing. Results presented in arbitrary units [Kazakov 2017]. 
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of  the absorption zone scales with |k∥ | , reducing it has the advantage of increasing 
the  absorbed RF power per ion. Furthermore, the + π /2 phasing allows one to exploit 
the RF-induced pinch effect, beneficial to localise the energetic ions towards the plasma 
core [Mantsinen 2002]. The results of two-dimensional tomographic reconstruction 
of  the  Eγ ∈ (4.5, 9.0) MeV gamma-ray emission for two comparable three-ion heating 
pulses #90752 and #90753 are shown in Figure 6.39. For the reconstruction, data from 
JET neutron/gamma camera equipped with 19 CsI detectors has been used (see Sec 6.2). 
For both pulses, plasma had a nearly identical composition (X[H] ≈ 70 − 75%, X[3He] ≈ 0.2 
− 0.3%) and RF conditions (PICRH = 4.2 MW). However, in pulse #90752 ICRH power was 
applied using dipole phasing solely, while in pulse #90753 about half of the ICRH power 
(2.1 MW) was launched with + π /2 phasing.

The reconstructed high-energy gamma-ray emission (Eγ ∈ (4.5,9.0) MeV) allows to visualise 
the population of the confined energetic 3He ions (E(3He) > 1 MeV). It can be clearly seen 
that the energetic 3He ions are more centrally located and the number of gamma-ray 
counts increases by a factor of two in pulse #90753. The same holds for the period of 
the  sawtooth oscillations. This example demonstrates the power and usefulness 
of  tomographic methods in fusion science - in this case gamma-ray emissivity 
reconstruction.
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7. Recent advances in plasma tomography
Based on: M. Riva, (...), J. Bielecki, et al., Fus. Eng Des. 123, 873 (2017),

G. Boltroczuk, (...), J. Bielecki, et al., Fus. Eng Des. 123, 940 (2017),
J. Bielecki et al., Fus Eng. Des. 112, 646 (2016).

Over recent years a lot of progress has been made in the field of plasma tomography 
diagnostics. New tomographic techniques have been developed, as it was shown in 
the previous sections, but also new instrumentation and measurement techniques have 
been applied. Perhaps it is fair to claim that a large part of the progress in this field was 
stimulated by two factors: the construction of ITER and its diagnostics and the preparation 
for the second DT campaign (DT2) at JET. Since the first topic is definitely outside 
the  scope of this monograph, the interested Reader is referred to a series of articles 
[Chugunov 2011, Petrizzi 2007]. The long-term preparation for DT2 at JET resulted in 
modifications of both gamma and neutron tomographic systems. In this chapter 
the advances in plasma tomography, made during the preparations for DT2, are presented 
and supplemented with the information on new plasma tomography techniques elaborated 
outside of the tokamak plasma field. At the end of the chapter, modern trends in plasma 
tomography are outlined.

During DT2, a particular attention will be paid to 4.44 MeV gamma-rays emitted in 
the  9Be(α, nγ)12C reaction, providing the profile of fast confined #-particles [Kiptily 2005]. 
In addition, tomography of the measured hard X-ray emission (bremsstrahlung radiation) 
can provide detailed data on the temporal evolution and spatial structure of runaway 
electron beams during expected disruptions. The gamma-ray detection system, dedicated 
for measurements in DT plasma, has to be able to register spectra at high count rates, up 
to approximately 500 kHz. At the same time, the detectors should be characterised by 
a full width at half maximum (FWHM) of about a few percent for 3 - 6 MeV gamma-rays. 
The upgraded Gamma-ray Camera at JET features a set of new LaBr3:Ce scintillators, with 
a fast light output decay (~20 ns) and energy resolution of a few percent, coupled 
to  photodetectors with a fast response time - Multi-Pixel Photon Counters (MPPC) 
[Zychor  2016]. The previously installed CsI:Tl scintillators were coupled to PIN 
photodiodes in the camera. PIN photodetectors are characterised by small dimensions, 
low operating voltage and immunity to a magnetic field. However, the main drawback of 
PIN diodes is a low gain coefficient of ∼1, requiring the usage of a preamplifier for 
spectrometry measurements. This resulted in a relatively slow response time which is not 
suitable for measurements at high count rates expected during DT2 experiments. 
Contrary, the MPPC features fast response time, high gain coefficient and high photon 
detection efficiency, resulting in good energy resolution, and still maintaining the immunity 
to magnetic field and  small dimensions. The device also features a low bias voltage in 
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comparison with photomultiplier tubes. However, the main drawback of MPPC is a gain 
sensitivity to temperature and voltage. To reduce the influence of bias voltage fluctuations, 
a high quality voltage supply with a voltage ripple less than 3 mV is exploited to bias 
the MPPC. To reduce the noise pick-up by the detector, μ-metal shielded signal cables 
with additional electromagnetic shielding are used. A limited dynamic range and 
non‑linearity of a signal response are another drawbacks when bright and fast scintillators 
are in use. Thus, the gain of the device is repeatedly monitored using a gamma-ray source 
available inside the JET gamma-ray camera. Due to a very strong voltage-temperature 
dependence for MPPC-based detectors, a device for real-time temperature monitoring 
and MPPC gain stabilisation was designed and constructed in National Centre For Nuclear 
Research (NCBJ) [Zychor 2016]. The device controlled by a personal computer uses 
a measured dependence of a breakdown voltage on temperature to maintain a constant 
value of the MPPC gain. Using the device, the gain fluctuations can be kept at the level 
of 1% [Zychor 2016]. Since the detectors used in experiments will be exposed high count 
rates during DT2, they should operate with a short pulse duration to minimise the number 
of pile-up events. Thus, the output signals are additionally shortened using 
a  resistance‑capacitance passive differentiator circuit with a pole zero cancellation. 
With the signal shortening system, the total length of a signal is ∼120 ns, with a rise time 
of ∼17 ns and a fall time of ∼90 ns.

The LaBr3:Ce scintillator contains long-lived naturally occurring 138La isotope. 
The abundance of this isotope is 0.0902% and its half-life is 1.05×1011 years. 138La has 
two decay channels: by electron capture into 138Ba with 66.4% probability and by beta 
decay into 138Ce. The daughter nucleus emits 1436 and 789 keV gamma-rays, 
respectively. For 138Ba, the K – shell and L+M – shell X-ray binding energies are 37.4 keV 
and 5.6 keV, respectively. Due to non-proportional response effects, an equivalent energy, 
i.e. the energy that is detected by LaBr3:Ce, is only 35.5 and 4.5 keV. K and L+M cascade 
peaks are detected as pile ups with the 1436 keV gamma-ray of the 138Ba de‑excitation, 
therefore 1472 and 1440 keV gamma lines are observed. Thus, 138La is a source of 
an additional intrinsic gamma-ray background and beta self-contamination of the crystal. 
On one hand, such an intrinsic activity poses a serious limit for the application in low count 
rate experiments. On the other hand, the intrinsic lines can be used for on-line gain 
monitoring and calibration.

The neutron detection system for tomographic applications during DT2 also required 
a thorough upgrade. During the first DT campaign in 1997, the BC418 neutron detectors 
worked up to ~1.2×106 cps (counts above 10 MeV threshold). However, the presence 
of higher NBI power in future DT campaigns might imply higher rates and a demanding 
value of ~2×106 cps has been set as a target for the neutron camera diagnostic. Moreover, 
the BC418 neutron detectors worked with an analogue DAQ having several limitations (no 
possibility of accurate pulse height spectra measurements, no raw data storage, complex 
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calibration procedure etc.). To overcome the above mentioned limitations during DT2 
campaign, an  upgrade project was launched with the main objective of increasing the 
performance and reliability of the 14 MeV neutron measurements performed by BC418 
detectors.

The objective was achieved by installation of a cutting edge dedicated digital data 
acquisition system. The system features high throughput and is able to perform on-line 
data pre-processing. The raw data (i.e. pulses from the photomultiplier tubes coupled to 
BC418 detectors) are stored on local computers and can be further processed and 
analysed off-line. The off-line analysis includes pile-up rejection, pulse height spectra 
processing, calibration, DT neutron count rate estimation, etc. The hardware architecture 
selected for the neutron camera acquisition system is based on a set of rack-mounted 
units shown in Figure 7.1a. Each unit is equipped with a 4-slots backplane (Figure 7.1b) 
hosting up to 4 PC boards (Figure 7.1c) and each PC board accommodates a two-channel 
digitiser through a PCIe×8 carrier board. Two rack units with all backplane slots occupied 
(16 acquisition channels) and one rack unit with 2 backplane slots occupied (4 acquisition 
channels) are used to provide full coverage of the neutron camera LoS and a spare 
acquisition channel. The 10 two-channel digitisers (X6-400M, Innovative Integration, US) 
are equipped with a FPGA, external clock and trigger; each channel features a 14 bit 
ADCs with software selectable sampling rate up to 400MS/s. The FPGA board is mounted 
on the PCIe×8 carrier as a high speed Switch Mezzanine Card (XMC), as shown in 
Figure 7.1d. Some specific design solutions were made in order to cope with the high data 
throughput foreseen in the future DT2 campaign. Large on-board RAM and use of a fast 
bus for FPGA ensure proper data buffering and fast data transfer. The resources available 
per acquisition channel have been maximised by application of a single FPGA and a single 
PC for each couple of acquisition channels. This solution ensures that the system is robust 
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Figure 7.1 Elements of the 
upgraded Neutron Camera 
DAQ. a) 5U-rack units, b) a 
4-slots backplane, c) a PC 
board mounted on the 
backplane, d) a two-
c h a n n e l d i g i t i s e r 
(X6-400M) with FPGA 
board [Riva 2017].

a) b)

c) d)



against data overload on the FPGA/CPU and minimises the risk of acquisition board/PC 
failure. Sampling rate can be flexibly adjusted. The possibility of downgrading the sample 
rate via software allows to easily select between high performance settings (in terms of 
energy resolution, pile-up analysis etc.) or  data reduction. The custom FPGA firmware, 
specifically dedicated to pulse acquisition and pre-processing, has been designed in 
ENEA [Riva 2007]. The firmware takes advantage of a non-continuous acquisition mode in 
which a selectable number of samples (data window) are acquired when a pulse is 
detected and the size of the window is dynamically extended depending on the presence 
of additional pulses. Such a procedure reduces the amount of stored data and increases 
the maximum count rate sustainable by the system. Figure 7.2 shows a layout of 
the whole system. Each detector signal passes through a fast amplifier and is then split in 
two paths, the first connected to the digital system and the other to the old analogue 
system. The reference CLOCK/GATE signals and network are routed to each acquisition 
board/PC by means of dedicated distribution units.

The new system was at first tested and calibrated with 22Na gamma sources embedded 
in the neutron camera detector boxes. Further tests were conducted with Frascati Neutron 
Generator and the final tests were performed by registering neutrons from ~50 DD plasma 
discharges at JET (#87291 - #87595). Pulse height spectra from these discharges were 
summed up in order to obtain satisfactory statistics for 14 MeV burn-up neutrons. 
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Figure 7.2 Block diagram of the JET neutron camera data acquisition system.
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Figure 7.3 shows the collected pulse height spectrum with highlighted different regions 
related to DD neutrons, DT neutrons and gamma rays. Indeed, since BC418 detectors 
have no neutron gamma discrimination capabilities, 14 MeV neutron detection is obtained 
by setting a threshold (typically 10 MeV) on the energy. Above this threshold, the counts in 
the spectra are considered as originating solely from 14 MeV neutrons.

Since SXR and HXR emitted from a plasma provide complementary information, it is 
beneficial to construct a detector capable of a simultaneous registration of radiation in 
both energy regions. Recently a conceptual design of such a detector has been proposed 
for studying of SXR and HXR emission from dense magnetised plasma in the Plasma 
Focus PF-24 device (PF-24) [Bielecki 2016]. In order to reconstruct the SXR and HXR 
emissivity in a radial cross-section of the plasma column, the experimental setup 
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Figure 7.3 Pulse height 
spectrum of neutrons 
collected from ~50 DD 
JET plasma discharges. 
Three regions related to 
DD and DT neutrons as 
well as to gamma rays are 
highlighted [Riva 2017].

	

 
Fig. 7b.  E	Vs.	ADC	channel	plot	 for	the	vertical	 JET	
neutron	cameras	

As a test on sampling rate requirements pulses from  
22Na sources were acquired at 400 Ms/s and 250 Ms/s 

(figure 8). A slight reduction in pulse height resolution is 
observed which does not translate into a relevant change 
in the calculated position of the Compton edges (i.e. in 
the calibration lines) and therefore into a significant 
change in the position of the 10 MeV threshold normally 
used for or DT counting; 250 MS/s and 400 Ms/s appear 
therefore equally suitable for sampling of BC418 
detector pulses from JET NC. 

 
Fig. 8. Energy calibrated Na22 PHS acquired at 250 
Ms/s and 400 Ms/s. 

About 50 DD plasma discharges (in the range 
#87291 - #87595) were also acquired coupling the 
digitizer to a central NC channel (#15); PHS data from 
these discharges were summed in order to have enough 
statistics on 14 MeV burn-up neutrons. In figure 9 the 
overall PHS is shown, highlighting the different regions 
in which contributions from DD neutrons, DT neutrons 
and gammas are expected. Indeed, since BC418 
detectors have no neutron gamma capabilities, 14 MeV 
detection with BC418 is obtained by setting a threshold 
(typically 10 MeV) on the energy above which one can 
consider the counts in the PHS to be due solely to 14 
MeV neutrons. 

 

Figure 9. Energy calibrated BC418 PHS from the sum of ~50 
JET discharges. 

5. Conclusions 
A new digital acquisition system for the JET neutron 

camera detectors devoted to the measurement of 14 MeV 
neutrons was designed in the frame of work-package 
JET4 (JET enhancements), with the objective of 
overcoming the limitations of the presently running 
analogue system (no storage of pulse data, no provision 
of pulse height spectra) and matching the demanding 
data throughput requirements of future DT campaigns.  

The key design elements of the proposed system are: 
separate resources for processing (FPGA/PC), fast data 
transfer (PCIe x8 bus) and data storage allocated to 
couples of neutron camera channels; selectable sampling 
rate up to 400Msps; large FPGA on-board memory; 
custom FPGA firmware for non-continuous acquisition 
of scintillator pulses.  

Preliminary tests performed at JET with a single 2 
channels acquisition board identical to that to be used for 
the final system indicate adequacy of ADCs input range 
to enable 14 MeV neutron measurements when using 
default HV settings of BC418 detectors and suitability of 
sampling rates lower than 400Ms/s for setting of energy 
thresholds for 14 MeV neutrons counting. 
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composed of three X-ray pinhole cameras has been designed. The geometrical layout of 
the setup is shown in Figure 7.4. Each of the three cameras with a magnification factor = 2 
and a horizontal field of view (FoV) ≈ 5∘ is equipped with a pair of 16-element Si 
photodiode linear arrays arranged in two layers. This layout of the detectors enables 
a  dual-energy imaging (i.e. registration of the line-integrated signals of SXR and HXR 
during a single discharge of the plasma focus device [Bielecki 2015b]) and a tomographic 
inversion of X-ray emission in 2D cross-section of the plasma column. The pinhole 
diameter of the cameras has been chosen to be 0.4 mm. This implies the spatial resolution 
of 0.6 mm and the geometrical blur of a point source = 1.2 mm. The geometrical blur is 
comparable to the dimensions of a single sensitive element of the array (1.2 mm × 2 mm). 
The design of the camera’s detection system is shown in Figure 7.5. The soft X-ray 
detector is based on a 16-element Si photodiode array without any additional scintillation 
element, while for HXR detection a similar photodiode array covered by a layer of NaI(Tl) 
scintillator (common for each element of the array) is used. The applied Si photodiode 
arrays exhibit low optical and electrical cross-talk between the neighbour elements, what 
ensures signal purity.
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Figure 7.5 The design of the dual-energy detection system [Bielecki 2016]. 
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In order to prevent the attenuation of SXR, all three cameras are designed to operate 
in  vacuum. The walls of the camera must be opaque for the X-rays generated by 
the  plasma focus device. These conditions are fulfilled adequately when walls 
of  the camera are shielded by 4 mm of lead (∼1.5% transmittance for 200 keV X-rays). 
In  order to reduce the thickness of pinhole structure and consequently to suppress 
the additional blurring effect, the pinhole plate is designed to be made of 0.5 mm thick Bi, 
ensuring ∼1%, ∼6% and ∼60% transmittance for 50, 100 and 200 keV X-rays, respectively. 
Moreover, the  diameter of the pinhole plate is kept small (2 mm) to prevent entering 
of  the  penetrating HXR radiation from the outside of the pinhole into the camera. 
The X‑rays emitted by the plasma are transferred from the PF-24 experimental chamber 
to each of the cameras by an 8 µm thick Be window. The thickness of the Be windows 
was selected to ensure a transmittance >0.4 for the 1 keV X-rays and the necessary 
mechanical strength in the conditions of shock wave influence. The parameters 
of  the  detection system have been chosen and optimised by means of the Geant4 
calculations [Bielecki 2016]. The dedicated signal processing integrate circuits have been 
also designed. The photodiode arrays, managed by commercial driver circuits, are 
coupled to a read-out system based on a FPGA development board and an analog I/O 
module. The tomographic system can be used with the reconstruction method based 
on  the Tikhonov regularisation to study spatially- and temporally-resolved simultaneous 
emission of SXR and HXR from a plasma pinch [Bielecki 2016].

The current trends in plasma tomography seem to point toward the real-time 
reconstructions for on-line control of a fusion device or to mitigate MHD instabilities 
[Loffelmann 2016]. The real-time capabilities of inversion techniques go hand in hand with 
hardware developments. To make such reconstructions possible it is necessary to utilise 
dedicated machines (e.g. based on FPGA or GPUs) or high-performance computing 
clusters. In [Carvalho 2008] a tomographic method based on the Fourier-Bessel series 
expansion was implemented into a dedicated FPGA, for a real-time (i.e. reconstruction 
time < 0.1 ms) plasma control in the ISTTOK tokamak. Techniques for real-time 
tomographic reconstruction from sparse data sets based on neural networks seem to be 
c o m p u t a t i o n a l l y l e s s d e m a n d i n g . H o w e v e r, n e u r a l n e t w o r k s re q u i re 
a well‑prepared, sufficiently large and general training set. When the network is properly 
trained, the  subsequent inversion is rapid. In [Ronchi 2010], the authors proposed 
a  method based on neural networks for real-time tomographic inversion of neutron 
emissivity at JET tokamak. Neural networks were also applied, with a perspective of real 
time application, for bolometric tomography at JET [Barana 2002]. Recently, Matos and 
co-authors applied deep learning techniques for plasma tomography using the bolometer 
system at JET [Matos 2017].
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8. Summary

Computed tomography methods have been in use for over 40 years and completely 
changed the approach to medical imaging and diagnostics. Further developments in CT 
technology have led to a widening of its area of use: from its primary medical application 
to many areas like material science, archaeology, geophysics, atmospheric science, 
oceanography, and other fields. Also, plasma physics and fusion research benefit from 
these advances. As it was shown, the methods specific to plasma tomography inherit 
some features from medical CT, however due to the different nature of measurement 
systems available for fusion devices, some dedicated approaches have to be developed. 
Very often the reconstruction process is based on regularisation. This regularisation 
is performed either explicitly, as it was presented in Sec. 6.6 and Sec. 6.7, or using other 
methods that utilise e.g. Tikhonov-like objective function (Sec. 6.9 and Sec. 6.10). In this 
monograph a few novel and original approaches to plasma tomography have been 
presented (e.g. novel approach to Tikhonov regularisation, application of genetic 
algorithms or Metropolis-Hasting Monte Carlo method) along with their applications.

It was shown that the plasma tomographic methods are invaluable tools in modern 
tokamak experiments. Neutron plasma tomography provides information on spatially 
resolved reaction rates and alpha particle profile birth. Gamma tomography played 
the crucial role in ‘three-ion scenario’ experiment where the spatial distribution of energetic 
ions was reconstructed, allowing for evaluation of the efficiency of radio-frequency 
resonance heating (Sec. 6.11). Soft X-ray plasma tomography provides valuable 
information on particle transport as shown in Sec. 6.7. Complementary, hard X-ray plasma 
tomography gives an insight into the energy distribution function of runaway electrons.

A lot of effort has been recently devoted to test, validate and compare results obtained 
with different methods. This is because the problem of tomographic inversion in plasma 
physics is usually highly ill-posed and it is never possible to obtain exact solutions. Thus, 
the presented methods can be used in a complementary manner. For instance, as it was 
show in Sec. 6.6 and Sec. 6.7, using two methods based on Tikhonov reconstruction, but 
with different forms of the functional, can lead to enhancement of different features 
of the reconstructed emissivity. 

A researcher who develops or uses a tomographic method in plasma research must be 
critical towards the results and must try different approaches to understand which kind 
of  reliable information can be obtained. It was shown that the most crucial element 
of a reliable inversion method is the choice of objective function and the included a priori 
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knowledge. It seems to be beneficial to base this knowledge on results of physical 
measurements from other available plasma diagnostics (as shown in Sec. 6.6). Then, 
an objective function that describes a physical property together with optimisation that 
takes knowledge of the experiment into account (e.g. estimated noise level) can help 
to obtain physically meaningful solutions.

Although the choice of the regularisation parameter may be seemingly quite arbitrary, it is 
another important factor for a successful retrieving of the plasma emissivity. Again, when 
the standard methods fail, physical information from other diagnostics can be helpful 
(Sec.  6.6.) Furthermore, a special care has to be taken with the discretisation because 
a  limited effort (e.g. better numerical implementation) can lead to large computational 
gains. On the contrary, too fine discretisation grid can significantly increase computational 
demands without significant improvement of the solution.

Similarly, special care has to be taken during construction of new tomographic 
diagnostics. An engineer or a scientist who designs and constructs such a system must 
take into consideration the geometrical aspects of LoS, adequate knowledge the LoS 
layout as well as alignment and calibration of the instrumentation to avoid channel 
cross‑talks and correlated drifts.

The development and application of new detectors enhanced capabilities of the plasma 
tomographic systems. Both, count-rate capabilities, and higher energy resolution have 
been achieved. The rapid development in electronics and computer science allowed 
to build fast data acquisition systems. In plasma tomography, application of such systems 
opened possibilities of real-time data acquisition and processing. However, at the same 
time, a progress in development of real-time reconstruction methods must be made. This 
process has already started and a few new approaches appeared (e.g. fast 
implementation of Tikhonov regularisation or application of neural networks).

I strongly believe that the progress in both plasma tomography instrumentation and 
plasma tomography inversion methods will continue and speed up. Upcoming ITER 
operation will bring new challenges. Some knowledge and experience on plasma 
tomography, gained at the existing tokamaks, will be certainly utilised at ITER. However, 
ITER will work in completely different conditions, i.e. it is a much bigger device (major 
radius = 6.2 m), with higher magnetic field (toroidal field = 5.3 T) and much higher 
expected neutron flux (fusion power up to 400 MW) [Aymar 2002]. This implies much more 
harsh environment for measurements which will result in higher radiation background, 
increased noise from high-power heating systems, requirement of additional shielding 
against the tokamak magnetic field and backscattered radiation, etc. Some of these 
aspects will be partly tested and mitigated based on the experience from the upcoming 
second DT campaign at JET. Some of them will have to be overcome during future 
operation of ITER. 
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9. Appendices 

The convolution of functions f (x, y) and h (x, y) is given by:

g (x, y) = ∬
∞

−∞
h (x −t, y −s)f (t, s)d td s = h * f, (9.1.1)

where * denotes convolution of functions.

Let F(ξ, η) be the Fourier transform of f (x, y):

F(ξ, η) = ∬
∞

−∞
f (x, y)e(−2πi(ξx+ ηy))d xd y =          F          ( f (x, y)), (9.1.2)

and H(ξ, η) be the Fourier transform of h (x, y) :

H(ξ, η) = ∬
∞

−∞
h (x, y)e(−2πi(ξx+ ηy))d xd y =          F          (h (x, y)), (9.1.3)

then the Fourier transform of g (x, y) is given as:

G(ξ, η) = ∬
∞

−∞
g (x, y)e(−2πi(ξx+ ηy))d xdy = ∬

∞

−∞
[∬

∞

−∞
h (x −t, y −s)f (t, s)d td s]e(−2πi(ξx+ ηy))d xd y =

= ∬
∞

−∞
f (t, s)e(−2πi(ξt+ ηs))[∬

∞

−∞
h (x −t, y −s)e(−2πi(ξ(x−t)+ η(y−s)))d xd y]d td s =

= ∬
∞

−∞
f (t, s)e(−2πi(ξt+ ηs))H(ξ, η)d td s = H(ξ, η)F(ξ, η) =          F          (h (x, y) * f (x, y)) (9.1.4)

Thus, the Fourier transform of the convolution of functions f (x, y) and h (x, y) is the 
pointwise product of Fourier transforms F(ξ, η) and H(ξ, η).

∎	
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9.2 Proof of relationship 4.8.9

          F          (g (r, θ)) =          F           ( 1
|r | (h (θ + π /2)mod π)) =  ∫

π

0 ∫
∞

−∞
g (r, θ)e−i2πrρcos(θ−Θ) |r |drdθ =

= ∫
π

0
h (θ + π /2)mod π)[∫

∞

−∞
e−i2πρcos(θ−Θ)dr]dθ = ∫

π

0
h ((θ + pi /2)mod π)δ(ρcos(θ −Θ)dθ =

= 1
|ρ | ∫

π

0
h (θ′�)δ(sin(θ′�−Θ))dθ′ � = 1

|ρ |
h (Θ), (9.2.1)

where θ′� = (θ + π /2)mod π and the following property of Dirac delta was used:

δ(sin(t)) = ∑
k

δ(t + πk) . (9.2.2)

∎

The above proof is not strict since the function 1/ |r |  is not square integrable in 2D, so its 
2D Fourier transform exists only in the sense of distributions.
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9.3 Filter functions commonly used in CT

Ram-Lak: A(ν) = rect( ν
2ν0 ) (9.3.1)

Shepp-Logan:  A(ν) = |Sinc( ν
2ν0 ) | (9.3.2)

Henning: A(ν) = 1
2 + 1

2 cos(πν/ν0)rect( ν
2ν0 ) (9.3.3)

Hamming: 

A(ν) = 0.54 + 0.46cos(πν/ν0)rect( ν
2ν0 ) (9.3.4)

Butterworth: A(ν) = 1

1 + (ν/ν0)2n
, n≥ 0 (9.3.5)

Parzen: A(ν) =
1 −6(ν/ν0)2(1 −|ν | /ν0); |ν | ≤ ν0 /2
2(1 −|ν | /ν0)3; ν0 /2 ≤ |ν | ≤ |ν0
0; otherwise

(9.3.6)
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Figure 9.1 Plot of the filter functions multiplied by the ramp function |!| in the frequency domain



9.4 Tuy’s condition

The FDK reconstruction algorithm presented in Sec. 4.13 is exact only when the source 
trajectory Γ in IR3 satisfies the Tuy’s condition relative to the object, i.e. if every plane 
which intersects the object also intersects Γ transversely.

The conventional single planar orbit (Fig. 9.2a) obviously does not satisfy this condition, 
whereas two orbits arranged as illustrated in Figure 9.2b, as well as a helical orbit 
in Figure 9.2c do satisfy the condition. The use of FDK algorithm with planar orbit can 
introduce some artefacts. In fact, in this case only the central plane is reconstructed 
exactly.
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Figure 9.2 Illustration of Tuy’s conditions. a) circular orbit does not satisfy the Tuy condition, 
b) two orbits satisfying the condition and c) helical orbit also satisfying the condition.



9.5 Singular Value Decomposition (SVD) and 
Generalised Singular Value Decomposition (GSVD)

An m × n (m > n) real matrix A can be written as the so-called Singular Value 
Decomposition of the form:

A = USV−1, (9.5.1)

where in general U is an m × p orthogonal matrix, S is an p × p diagonal matrix and V is an 
p × n orthogonal matrix. A pictorial representation of the SVD is shown in Figure 9.3. 
The  diagonal elements of matrix S are singular values σi of the original matrix A. 
The singular values are non-negative and arranged in descending order:

0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σp ≤ 1. (9.5.2)

Columns of U are the left singular vectors and VT are the right singular vectors. The SVD 
represents an expression of the original matrix A in the coordinate system where 
the covariance matrix is diagonal. Calculating the SVD consists of finding the eigenvalues 
and eigenvectors of AAT and ATA. The eigenvectors of ATA make up the columns of V 
while the eigenvectors of AAT make up the columns of U. Also, the singular values σi in S 
matrix are square roots of eigenvalues from AAT or ATA.
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Figure 9.3 A pictorial representation of the SVD.

(m × n) (m × p) (p × p) (p × n)

A U S VT=



The generalisation of SVD for an m × n (m > n) real matrix Ā and a p × n matrix B̄ ( m ≥ n≥ p 
and rankĀ = p) is the following decomposition (Generalised Singular Value 
Decomposition): 

Ā = Ū(S̄ 0
0 In−p)X̄−1, 	 B̄ = V̄(̄M 0)X̄−1 . (9.5.3)

In the above equation In−p is an (n−p) × (n−p) identity matrix, Ū is an m × n orthogonal 
matrix, V̄ is a p × p orthogonal matrix and X̄ is an n× n non-singular matrix. S̄ is a p × p 
diagonal matrix with elements λi such that:

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λp ≤ 1. (9.5.4)

M̄ is a p × p diagonal matrix with elements μi such that:

1 ≥ μ1 ≥ μ2 ≥ . . . ≥ μp ≥ 0. (9.5.5)

The values of λi and μi are normalised, i.e.:

λ2
i + μ2

i = 1, i = 1,2,...,p . (9.5.6)

The generalised singular values of (Ā, B̄) pair are defined as the following ratios:

γi = λi

μi
. (9.5.7)

Moreover, the following conditions hold for Ā, B̄ and X̄ matrices:

X̄TĀTĀX̄ = (S̄2 0
0 I), X̄TB̄TB̄X̄ = (M̄2 0

0 0) (9.5.8)

Note that the example of GSVD application presented in Sec. 6.6 was a special case when 
p = n.
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9.6 Discrete Laplace operator

On an m × n grid, the second-order centred-difference approximation of the Laplace 
operator acting on a function f can be written as:

∇2f =
fi+ 1, j −2fi, j + fi−1, j

Δx2 +
fi, j+ 1 −2fi, j + fi, j−1

Δy2 , (9.6.1)

where (i,j) specify the grid point and Δx and Δy are grid spacing in x and y directions, 
respectively. If Δx = Δy (uniform grid), then Eq. 9.6.1 can be written as:

∇2f = 1
Δx2 ( fi+ 1, j + fi−1, j + fi, j+ 1 + fi, j−1 −4fi, j), (9.6.2)

where 2 ≤ i ≤ m −1 and 2 ≤ j ≤ n−1.

Assuming the following ordering of f vector elements:

f = [ f11, f21, . . . , fm1, f12, f22, . . . , fm2, . . . , fmn]T, (9.6.3)

the discrete representation of the Laplace operator is:

∇2 =

T −I 0 . . . 0
−I T −I . . . 0
0 −I T . . . 0
0 0 −I . . . 0. . . . . . . . . . . . . . .
0 0 0 . . . T

, (9.6.4)

where I is an m × m identity matrix and T is the following m × m matrix: 

T =

−4 −1 0 . . . 0
−1 −4 −1 . . . 0
0 −1 −4 . . . 0
0 0 −1 . . . 0. . . . . . . . . . . . . . .
0 0 0 . . . −4

. (9.6.5)
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10. Afterword

After I finished this book I have had a strong feeling that much more information could still 
be included, existing chapters could forever be tinkered with and the overall content could 
be improved. There is always something that could be changed or added. But at some 
point it is necessary to say stop. In fact, the topic of plasma tomography is so wide that it 
can be divided in a series of monographs. The interested Reader may wish to consult 
some of books and articles listed in references as further readings.

There is no real ending. It’s just the place where you stop the story.

― Frank Herbert
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