INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

ul. Radzikowskiego 152, 31-342 Kraków

www.ifj.edu.pl/publ/hab

Badania struktury jąder neutrono-nadmiarowych produkowanych w głęboko nieelastycznych reakcjach ciężkich jonów na wiązkach stabilnych i radioaktywnych

Wojciech Królas

Rozprawa habilitacyjna

Studies of neutron-rich nuclei produced in deep-inelastic heavy ion collisions with stable and radioactive beams

Kraków, sierpień 2013

Wydano nakładem Instytutu Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Kraków 2013

Recenzent: dr hab. Bogdan Fornal (IFJ PAN)

ISBN 978-83-63542-16-0

Abstract:

A novel experimental method exploiting the production of neutron-rich fragments in deepinelastic heavy ion collisions was used to extend the in-beam γ -ray spectroscopic studies towards previously inaccessible neutron-rich nuclei. The γ - γ coincidence analysis of reaction products was used to obtain new information on the mechanism of deep-inelastic collisions, in particular on the neutron-to-proton ratio equilibration process. These results were compared to theoretical predictions based on a liquid-drop energy minimization model and a heavy ion phase space exploration model.

Neutron-rich potassium isotopes were studied in the bombardments of thick ²³⁸U and ²⁰⁸Pb targets with the ⁴⁸Ca beam. Excited states in the ⁴⁸K and ⁴⁹K isotopes were identified for the first time in experiments with the PRISMA-CLARA spectrometer. Based on those identifications the level schemes of predominantly yrast excited states were established from the analysis of GAMMASPHERE γ coincidence data collected for the same reactions. A new 5⁺ isomer was identified in ⁴⁸K, the analog of the 7/2⁻ isomer in ⁴⁷K. Important information on the coupling of the proton-hole and neutron-particle states in the neutron-rich ⁴⁸K and ⁴⁹K isotopes were extended beyond the *N* = 28 line. These results confirm a reordering of the s_{1/2} and d_{3/2} proton-hole orbitals for neutron-rich potassium isotopes which was interpreted in terms of the evolution of single-particle energies caused by the monopole effect of the tensor force.

Experimental efforts aimed at the establishing of the yrast excitations in the series of even neutron-rich nickel isotopes reaching toward the double closed-shell ⁷⁸Ni isotope are described including the search for the missing 8⁺ isomeric state in ⁷²Ni. In the analysis of the GAMMASPHERE γ coincidence data from experiments with the ⁷⁶Ge beam the ground-state band in ⁷²Ni was extended to the 8⁺ state concluding that this level has a half-life not longer than 20 ns. Based on the established level scheme a large enhancement of the *B*(*E2*) transition probability for the 8⁺ \rightarrow 6⁺ transition in ⁷²Ni compared to ⁷⁰Ni was calculated. This effect is compatible with the predictions of the van Isacker model suggesting a significant lowering of the 6⁺ seniority $\nu = 4$ level which is calculated to be near the 6⁺ $\nu = 2$ state. Recent spectroscopic results for less exotic even-even nickel isotopes ^{64, 66, 68}Ni are presented including new spin and parity assignments based on the analysis of angular correlations of γ rays emitted from fragments produced in deep-inelastic collisions with the ⁶⁴Ni beam.

Prospects of new studies of neutron-rich nuclei produced in deep-inelastic collisions using radioactive ion beams of fission fragments are also discussed. Basic technical aspects of the production of such beams are described based on the Holifield Radioactive Ion Beam Facility RIB project. The design and construction details of the Isomer-scope detection setup for the identification and spectroscopy of the isomeric decays in fragments produced in deep-inelastic collisions are presented. Results of the test experiment with a stable ⁷¹Ga beam performed at HRIBF are shown. Plans for an upgrade of the Isomer-scope device and its future application for experiment at Oak Ridge and elsewhere are discussed.

Można zawsze osiągnąć cel, jeśli się do niego konsekwentnie dąży. Tylko tyle, że staje się to zazwyczaj znacznie później niż oczekiwaliśmy.

Henryk Niewodniczański

SPIS TREŚCI

1.	Wstęp	7
2.	Elementy modelu powłokowego jądra atomowego	10
	2.1 Podstawowe założenia powłokowego modelu struktury jądra	12
	2.2 Schemat <i>seniority</i>	16
3.	Reakcje głęboko nieelastyczne ciężkich jonów	17
	3.1 Charakterystyka reakcji głęboko nieelastycznych	18
	3.2 Rozkłady produktów reakcji głęboko nieelastycznych	19
	3.3 Przekaz protonów i neutronów w reakcjach głęboko nieelastycznych	23
	3.4 Opis przekazu protonów i neutronów przy pomocy modelu reakcji	
	ciężkich jonów HIPSE	26
4.	Wykorzystanie reakcji głęboko nieelastyczne ciężkich jonów do badania	
	struktury jąder neutrono-nadmiarowych	28
	4.1 Pomiary promieniowania γ emitowanego przez produkty reakcji	
	w eksperymentach z grubą tarczą	29
	4.2 Użycie spektrometru magnetycznego do identyfikacji produktów reakcji	
	w zderzeniach głęboko-nieelastycznych	30
5.	Badania struktury stanów wzbudzonych neutrono-nadmiarowych izotopów potasu	33
	5.1 Struktura stanów wzbudzonych w jądrze ⁴⁷ K o zamkniętej powłoce	
	neutronowej N=28	34
	5.2 Struktura stanów wzbudzonych w jądrze ⁴⁸ K	35
	5.3 Określenie spinów i parzystości stanów oraz interpretacja schematu	
	poziomów jądra ⁴⁸ K	41
	5.4 Struktura stanów wzbudzonych w jądrze ⁴⁹ K	43
	5.5 Systematyka najniższych stanów wzbudzonych w nieparzystych	
	izotopach potasu	46
6.	Badanie struktury stanów wzbudzonych neutrono-nadmiarowych izotopów niklu	48
	6.1 Produkcja jąder egzotycznych w procesie fragmentacji oraz badania	
	rozpadu fragmentów	49
	6.2 Struktura stanów wzbudzonych parzystych izotopów Ni: stany izomeryczne 8 ⁺	
	w jądrach ⁷⁰ Ni i ⁷⁶ Ni oraz stany pasma podstawowego w ⁷² Ni i ⁷⁴ Ni	50
	6.3 Struktura stanów wzbudzonych jądra ⁷² Ni	52
	6.4 Nowe badania struktury stanów wzbudzonych izotopów ⁶⁴ Ni, ⁶⁶ Ni i ⁶⁸ Ni	56

7.	Wykorzystanie wiązek radioaktywnych produktów rozszczepienia do badania		
	struktury jąder neutrono-nadmiarowych	61	
	7.1 Uzyskiwanie neutrono-nadmiarowych wiązek radioaktywnych metodą ISOL	61	
	7.2 Układ Isomer-scope do badania rozpadów stanów izomerycznych w pomiarach		
	z wykorzystaniem wiązek radioaktywnych	66	
	7.3 Eksperymenty testowe układu <i>Isomer-scope</i> z wiązką stabilną	71	
	7.4 Plany i perspektywy eksperymentów z wiązkami radioaktywnymi	77	
8.	Podsumowanie	79	
Poo	Podziękowania		
Bił	3ibliografia		

1. Wstęp

Struktura jąder neutrono-nadmiarowych jest jednym z najbardziej aktualnych tematów badań fizyki jądrowej. Wynika to między innymi z tego, że obszar nuklidów bogatych w neutrony jest potencjalnym terenem doświadczalnym, na którym będzie można sprawdzić poprawność opisu egzotycznych jąder za pomocą modeli jądrowych opracowanych na bazie wcześniej poznanych, mniej asymetrycznych układów. Dodatkowo, przez środek obszaru jąder z nadmiarem neutronów biegnie ścieżka astrofizycznego szybkiego procesu wychwytu neutronów, tak zwanego procesu *r*. Obszar jąder po neutrono-nadmiarowej stronie ścieżki stabilności jest jednak słabo zbadany ze względu na ograniczone eksperymentalne możliwości dotarcia do nuklidów z nadmiarem neutronów. Badania w tej części mapy nuklidów do niedawna ograniczały się do badania rozpadów i wzbudzeń produktów rozszczepienia.

W kontekście opisu struktury jądrowej za pomocą modelu powłokowego szczególnie ważne są obszary mapy nuklidów położone wokół jąder podwójnie magicznych, takich jak ⁴⁸Ca czy ⁷⁸Ni. Obszary te są dobrym polem do testowania przewidywań modelu powłokowego, gdyż stosunkowo proste konfiguracje nisko leżących stanów pozwalają na dokładne wykonanie obliczeń modelowych. Tym samym, możliwe jest porównanie i weryfikacja poprawności obliczeń wykonanych z różnymi oddziaływaniami modelu powłokowego, zarówno empirycznymi, jak i z realistycznymi wyprowadzonymi z potencjału nukleon-nukleon. Innym ciekawym zagadnieniem szczególnie dotyczącym obszaru jąder neutrono-nadmiarowych, jest zjawisko ewolucji struktury orbitali modelu powłokowego wraz ze wzrostem asymetrii liczby neutronów do protonów w jądrze, a więc wraz z oddalaniem się od dobrze poznanych jąder stabilnych. Liczby magiczne znane dla jąder z okolicy ścieżki stabilności niekoniecznie muszą obowiązywać w egzotycznych obszarach mapy nuklidów. Możliwe jest pojawienie się szczelin energetycznych przy innych wartościach liczb *Z* i *N*, a więc także istnienie nowych liczb magicznych.

Ponieważ do badań egzotycznych izotopów neutrono-nadmiarowych standardowa metoda wykorzystująca procesy syntezy zderzających się jąder nie może być skutecznie stosowana (ze względu na to, że produkty takich reakcji ulokowane są w większości po neutrono-deficytowej stronie ścieżki stabilności), należało uciec się do innych technik. W ostatnich latach opracowano szereg metod eksperymentalnych pozwalających na dotarcie do struktur wzbudzonych w jądrach bogatych w neutrony. Są to: reakcje transferu nukleonów w zderzeniach głęboko nieelastycznych, procesy rozszczepienia (spontanicznego lub indukowanego), a także w proces fragmentacji.

W niniejszej pracy opisano badania neutrono-nadmiarowych jąder produkowanych w zderzeniach głęboko nieelastycznych. Metoda ta, polegająca na pomiarach koincydencyjnych promieniowania γ emitowanego z produktów reakcji, zatrzymanych w grubej tarczy, została opracowana i zastosowana w wielu eksperymentach przez krakowską grupę fizyków z Zakładu Struktury Jądra Instytutu Fizyki Jądrowej PAN [Bro94, For95, For99, Bro06]. Kluczowe dla zastosowania reakcji głęboko nieelastycznych jako narzędzia do badania jąder neutrononadmiarowych było zrozumienie wybranych aspektów związanych z transferem protonów i neutronów w tych reakcjach [Bro94, Kro03, Bro06, Kro10], prowadzącym do stanów wysokospinowych, oraz wielolicznikowych układów detektorów germanowych pojawienie się z osłonami antykomptonowskimi, pozwalającymi na prowadzenie pomiarów i badań dla izotopów produkowanych w bardzo słabych kanałach reakcji. W ramach opartego o przedstawioną technikę programu badań uzyskano szereg istotnych wyników. Do najważniejszych rezultatów zaliczyć należy: odkrycie zamknięcia podpowłoki neutronowej przy liczbie N = 40 w jądrze ⁶⁸Ni [Bro95], identyfikacja zamknięcia podpowłoki neutronowej przy liczbie N = 32 [Jan02, For04, For05, For08], identyfikacja struktur yrastowych w jądrach z okolicy podwójnie magicznego ²⁰⁸Pb wraz z wyznaczeniem ładunku polaryzacyjnego dla dziury protonowej na orbitalu h_{11/2} w jądrze ²⁰⁶Hg [For01, Wrz01, For03, Wrz04]. Uzyskano też wiele danych spektroskopowych dotyczących innych neutrono-nadmiarowych jąder: izotopów niklu ^{65, 66, 67}Ni [Paw94, Bro12], jąder powłoki *sd* i *sdf* takich jak ³³Si i ³⁴P [For94], ³²Si i ³²Al [For97] oraz ⁴⁴Ar [For00].

Prezentowana praca zawiera wyniki będące kontynuacją wyżej zarysowanego programu badań w zakresie neutrono-nadmiarowych izotopów potasu [Kro08, Bro10, Kro11] oraz parzystych izotopów niklu [Maz05, Chi11, Bro12]. Prace rozpoczyna rozdział, w którym wprowadzone sa podstawowe elementy modelu powłokowego istotne dla opisu struktury badanych jąder takie jak: uśredniony potencjał oddziaływania nukleonu z pozostałymi nukleonami jądra, model wielocząstkowy i schemat seniority. W kolejnym rozdziale omówiono mechanizm wykorzystywanych w badaniach reakcji głęboko nieelastycznych. Szczególnie dużo miejsca poświęcono omówieniu zjawiska wyrównywania liczby neutronów do protonów we fragmentach tworzonych w reakcjach głęboko nieelastycznych. Efekt ten, w zderzeniach odpowiednio dobranych par jąder pocisku i tarczy, prowadzi do produkcji egzotycznych neutrono-nadmiarowych izotopów. Przedstawiono dwa alternatywne modele opisujące proces równoważenia się stosunku liczby neutronów do protonów i oceniono ich zgodność z wynikami eksperymentów. Szczegóły metody badania neutrono-nadmiarowych jąder produkowanych w zderzeniach głęboko nieelastycznych, przy użyciu wielolicznikowych układów detektorów germanowych oraz za pomocą spektrometru magnetycznego, opisano w czwartym rozdziale pracy. Użycie w części pomiarów spektrometru magnetycznego połączonego z detektorami promieniowania γ pozwoliło na wstępną identyfikację przejść w nowych izotopach, których stany wzbudzone nie były wcześniej znane. Zidentyfikowane nowe przejścia y zostały następnie wykorzystane w analizie koincydencyjnej danych uzyskanych w eksperymentach z grubą tarcza. Połączenie wzajemnie uzupełniających się zestawów danych eksperymentalnych umożliwiło stworzenie rozbudowanych schematów stanów wzbudzonych wcześniej nieznanych, trudno dostępnych jąder.

Następne rozdziały zawierają prezentację uzyskanych wyników spektroskopowych. Nowo wyznaczone i zaprezentowane w pracy schematy stanów wzbudzonych neutrono-nadmiarowych izotopów ⁴⁷K, ⁴⁸K i ⁴⁹K [Kro08, Bro10, Kro11] posłużyły do dyskusji systematyki najniższych stanów wzbudzonych nieparzystych izotopów potasu. W szczególności omówiono zmianę wzajemnego położenia orbitali protonowych s_{1/2} i d_{3/2} w funkcji zapełnienia powłoki neutronowej f_{7/2} prowadzącą do przecięcia się tych dwóch orbitali przy liczbie neutronów N = 28. Zjawisko to opisano, w ramach oddziaływania pomiędzy nukleonami znajdującymi się na wybranych orbitalach neutronowych i protonowych, czyli w ramach tak zwanego efektu monopolowy sił tensorowych [Ots05]. W rozdziale dotyczącym badań struktury neutrono-nadmiarowych parzystych izotopów niklu omówiono historię odkryć i poszukiwań izomerów 8⁺ odpowiadających konfiguracjom (vg_{9/2})² w tych jądrach [Grz98, Saw03, Maz05] oraz przedyskutowano możliwe powody, dla których stany 8⁺ w jądrach ⁷²Ni i ⁷⁴Ni nie są izomeryczne [Chi11]. Przedstawiono także nowe wyniki spektroskopowe dla mniej egzotycznych izotopów niklu ⁶⁴Ni, ⁶⁶Ni i ⁶⁸Ni [Bro12, Chi13]. Na ich przykładzie omówiono wyniki analizy korelacji kierunkowych γ - γ dla przejść w produktach reakcji głęboko nieelastycznych, która umożliwia wyznaczenie spinów i parzystości stanów wzbudzonych.

W ostatniej części pracy zaprezentowano program badania egzotycznych izotopów produkowanych w zderzeniach głęboko nieelastycznych przy użyciu neutrono-nadmiarowych wiązek radioaktywnych [Kro09A]. Opisano metodę produkcji neutrono-nadmiarowych wiązek radioaktywnych uzyskiwanych z rozszczepienia jąder tarczy uranowej bombardowanej silną wiązką protonów, tak zwaną metodę ISOL, oraz przedstawiono szczegóły projektu *Isomer-scope*, który zakłada wykorzystanie wiązek radioaktywnych do zasilania i badań stanów izomerycznych w egzotycznych neutrono-nadmiarowych izotopach z obszaru wokół jądra ⁷⁸Ni. Projekt polegał na skonstruowaniu wyspecjalizowanego układu pomiarowego, oraz poddaniu go testom na wiązce. Wyniki pierwszych próbnych pomiarów oraz dyskusję nad możliwościami użycia układu do dalszych badań zaprezentowane są w siódmym rozdziale pracy.

2. Elementy modelu powłokowego jądra atomowego

Sukces opisu jądra atomowego przez model powłokowy jest zaskakujący. Inaczej niż w przypadku elektronów, które w atomie nie są ułożone gęsto, materia jądrowa jest zbiorem ściśle upakowanych nukleonów, zamkniętych w obszarze o rozmiarach rzędu kilku femtometrów. Pomiary gęstości wskazują na prawie jednorodny jej rozkład w jądrze. Te fakty, w połączeniu z wysokimi energiami wiązania nukleonów sprawiają, że opis struktury jądra poprzez model powłokowy może wydawać się nienaturalny.

Najważniejszym odkryciem, które doprowadziło do powstania i rozwoju modelu powłokowego, były badania energii wiązania jąder wskazujące na istnienie jądrowych liczb magicznych: 2, 8, 20, 28, 50, 82 i 126 [Wei90].

Rys. 2.1. Energie separacji neutronów dla jąder z nieparzystą (a) i parzystą (b) liczbą neutronów z przedziału 79 < N < 91 [For04A]. Rysunek pokazuje skokowe obniżenie energii separacji przy przekroczeniu liczby magicznej N = 82.

Te jądra, które są wyjątkowo silnie związane, są jądrami magicznymi. Można zobrazować to wykreślając energię separacji, czyli energię potrzebną do oderwania neutronu lub protonu od jądra, w funkcji liczby masowej jądra. Energia separacji wykazuje gwałtowny spadek w momencie przekroczenia liczby magicznej, patrz na przykład rys. 2.1, na którym przedstawiono ten efekt dla nuklidów z obszaru wokół N = 82.

Inna cechą charakterystyczną jąder o liczbach magicznych N lub Z jest wysoka energia wzbudzenia pierwszego stanu wzbudzonego 2⁺. Zależność ta zobrazowana jest na rys. 2.2 i 2.3 dla jąder o parzystych liczbach neutronów i protonów w funkcji N (rys. 2.2) i Z (rys. 2.3).

Rys. 2.2. Energie pierwszego stanu wzbudzonego 2^+ (a) oraz zredukowane prawdopodobieństwa przejścia $0^+ \rightarrow 2^+ B(E2)$ (b) w funkcji liczby neutronów w jądrze. Linie łączą wartości dla izotopów poszczególnych pierwiastków. Wskazano liczby magiczne. Rysunek z pracy [Ram01].

Rys. 2.3. Energie pierwszego stanu wzbudzonego 2^+ (a) oraz zredukowane prawdopodobieństwa przejścia $0^+ \rightarrow 2^+ B(E2)$ (b) w funkcji liczby protonów w jądrze. Linie łączą wartości dla izotonów. Wskazano liczby magiczne. Rysunek z pracy [Ram01].

2.1 Podstawowe założenia powłokowego modelu struktury jądra

Model struktury jądra wyjaśniający występowanie magicznych liczb nukleonów opracowany został poprzez analogię do fizyki atomowej [May49, Hax49]. W modelu tym wprowadzono uśredniony potencjał oddziaływania nukleonu z pozostałymi nukleonami jądra. Rozwiązując równanie Schrödingera dla nukleonu związanego w takim potencjale, otrzymuje się układ poziomów energetycznych. Następnie, zakładając niezależność ruchów poszczególnych nukleonów, konstruuje się jądro, obsadzając nukleonami stany o coraz wyższych energiach.

Jądro atomowe może być opisane hamiltonianem zawierającym energię kinetyczną każdego nukleonu (T_i) i oddziaływanie wielociałowe nukleon-nukleon (W_{ik}) , z którego w pierwszym przybliżeniu uwzględnimy jedynie oddziaływanie dwuciałowe.

$$H = \sum_{i=1}^{N} \frac{\vec{p_i}^2}{2m_i} + \sum_{i=1}^{N} \sum_{i>k=1}^{N} W_{ik}(\vec{r_k} - \vec{r_i})$$

gdzie *N* jest całkowitą liczbą nukleonów w jądrze. Uproszczenie modelu powłokowego pozwala na podział części hamiltonianiu zawierającej oddziaływanie dwuciałowe na dwa człony w następujący sposób:

$$H = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m_i} + \sum_{i=1}^{N} U_i(\vec{r}) + \left(\sum_{i=1}^{N} \sum_{i>k=1}^{N} W_{ik}(\vec{r}_k - \vec{r}_i) - \sum_{i=1}^{N} U_i(\vec{r})\right)$$
$$H = H_0 + H_{res}$$

gdzie U(r) oznacza uśredniony potencjał oddziaływania nukleonu ze wszystkimi pozostałymi nukleonami w jądrze. Wprowadzenie do hamiltonianu potencjału jednocząstkowego sprawia, że możliwe jest rozwiązanie równania Schrödingera z pierwszą częścią hamiltonianu H_0 . Druga część hamiltonianu H_{res} odpowiada tak zwanym oddziaływaniom resztkowym i, jak sama nazwa wskazuje, jest to różnica pomiędzy sumą oddziaływań dwuciałowych (W_{ij}) a potencjałem uśrednionym (U_i), jaki działa na nukleon w jądrze.

Realistyczny potencjał uśredniony spełniać musi następujące warunki fenomenologiczne: musi być symetryczny i w przybliżeniu stały w otoczeniu środka jądra, zaś w okolicy powierzchni jądrowej jego wartość powinna gwałtownie spadać do zera. Warunki te wynikają z krótkozasięgowego charakteru oddziaływań jądrowych. Najbardziej realistycznie potencjał uśredniony odtwarza potencjał Saxona-Woodsa z płaskim dnem studni potencjału i rozmytym brzegiem:

$$V_{WS}(r) = -V_{WS}\left[1 + exp\left(\frac{r - R_0}{a}\right)\right]^{-1}$$

gdzie jako typowe wartości parametrów przyjmuje się: $R_0 = 1.27 A^{1/3}$, a = 0.67 fm, $V_{ws} = (51 + 33 (N - Z) / A)$ MeV. Dodatkowo, dla protonów pamiętać należy o potencjale oddziaływania kulombowskiego:

$$V_{Coul} = \begin{cases} \frac{Ze^2}{r} & dla & r \rangle R_0 \\ \frac{Ze^2 r^2}{R_0^3} & dla & r \langle R_0 \end{cases}$$

Ponieważ potencjał modelu powłokowego jest potencjałem uśrednionego oddziaływania pomiędzy nukleonami, musi on zawierać wszystkie zależności znajdujące się w oddziaływaniu

nukleon-nukleon. Zarówno wszystkie człony centralnej części potencjału nukleon-nukleon, jak i część tensorowa, po uśrednieniu dają stały przyczynek dla danej orbity nukleonu, a zatem są włączone do centralnej części potencjału uśrednionego. Z drugiej strony oddziaływanie spin-orbita dla zewnętrznych nukleonów nie uśrednia się i jest zależne od wzajemnego ustawienia wektorów l i s. Uwzględnia się to przez dodanie do uśrednionego potencjału centralnego $V_C(r) + V_{coul}$ członu spin-orbita:

$$V_{LS} = V_{ls} R_0^2 \frac{1}{r} \frac{dV(r)}{dr} \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}$$

,

gdzie $V_{ls} = 0.44$ MeV.

Stosując taki potencjał modelu powłokowego i rozwiązując równanie Schrödingera wyliczyć można funkcje własne odpowiadające stanom związanym nukleonów. Układ poziomów w studni potencjału Saxona-Woodsa, otrzymany z uwzględnieniem członu spin-orbita, przedstawiony jest na rysunku 2.4.

Najprostsza wersja modelu powłokowego, w której stopniowo zapełnia się nukleonami kolejne poziomy, nosi nazwę modelu jednocząstkowego. Model ten poprawnie odtwarza obserwowane liczby magiczne oraz wyjaśnia spiny i parzystości jąder stanem nieparzystego nukleonu. Natomiast inne własności, takie jak momenty elektromagnetyczne, czy stany wzbudzone, tłumaczy jedynie w przybliżeniu i tylko w pobliżu jąder podwójnie magicznych.

Modyfikacją modelu jednocząstkowego jest model wielocząstkowy, w którym przyjmuje się, że nukleony całkowicie zapełniające powłoki stanowią zamknięty rdzeń, natomiast nukleony znajdujące się na powłoce niezapełnionej mogą ze sobą oddziaływać. To oddziaływanie między nukleonami wiąże się z występowaniem sił resztkowych, które nie są uwzględnione w potencjale centralnym. Rozwiązanie pełnego równania Schrödingera z hamiltonianem $H_0 + H_{res}$ uzyskuje się traktując oddziaływanie resztkowe jako małe zaburzenie.

W przybliżeniu pierwszego rzędu możemy zapisać:

$$\begin{aligned} \left| \boldsymbol{\Phi}_{\Gamma} \right\rangle &= \left| \boldsymbol{\Phi}_{\Gamma}^{(0)} \right\rangle + \left| \boldsymbol{\Phi}_{\Gamma}^{(res)} \right\rangle \\ E_{\Gamma} &= E_{\Gamma}^{(0)} + E_{\Gamma}^{(res)}, \end{aligned}$$

gdzie $/\Phi_{\Gamma}^{(o)}>$ oznacza rozwiązanie równania Schrödingera z zespołem liczb kwantowych Γ dla niezaburzonego potencjału uśrednionego, zaś $E_{\Gamma}^{(0)}$ jest energią własną tego rozwiązania. Ponieważ można wykazać, że:

$$E_{\Gamma}^{(res)} = \left\langle \boldsymbol{\Phi}_{\Gamma}^{(0)} \left| V^{(res)} \right| \boldsymbol{\Phi}_{\Gamma}^{(0)} \right\rangle$$

zatem obliczenie poprawki pierwszego rzędu do energii niezaburzonej można wyrazić poprzez:

$$E_{\Gamma} = \sum_{k=1}^{A} e_{a_k} + \left\langle \boldsymbol{\varPhi}_{\Gamma}^{(0)} \left| \boldsymbol{V}^{(res)} \right| \boldsymbol{\varPhi}_{\Gamma}^{(0)} \right\rangle$$

lub

$$E_{\Gamma} = \sum_{k=1}^{A} e_{a_k} + \left\langle \boldsymbol{\varPhi}_{\Gamma}^{(0)} \left| \sum_{i < j}^{A} V_{ij} \right| \boldsymbol{\varPhi}_{\Gamma}^{(0)} \right\rangle$$

gdzie e_a są to przyczynki do energii, uzyskane dla funkcji składowych oznaczonych wskaźnikami (a_1 , a_2 , ... a_A) dla rozwiązania niezaburzonego równania Schrödingera, zaś czynnik po prawej stronie wzoru oznacza wartość oczekiwaną operatora $V^{(res)}$ w stanie niezaburzonym.

Rys. 2.4. Orbitale modelu powłokowego wyliczone z rozwiązania równania Schrödingera dla potencjału uśrednionego Saxona-Woodsa (S-W) z członem spin-orbita (*l.s*).

2.2 Schemat seniority

Liczba *seniority* została zaproponowana w latach czterdziestych przez Giulio Racah [Rac43] w odniesieniu do fizyki atomowej jako dodatkowa liczba kwantowa rozróżniająca pomiędzy stanami konfiguracji elektronów o tych samych wartościach L, S i J (orbitalnego, spinowego i całkowitego momentu pędu). Schemat *seniority* opiera się o łączenie elektronów (cząsteczek) w pary w stany o L = 0 (J = 0). W atomach, ze względu na odpychający potencjał oddziaływania elektronów konfiguracje o największej liczbie elektronów połączonych w pary leżą przy wysokich energiach i stąd nie są interesujące fizycznie. Liczba *seniority* okazała się bardziej przydatna do opisu układów jądrowych [Rac51, Rac52], w których energia łączenia nukleonów w pary jest duża i przyciągająca, stąd stany zawierające nukleony połączone w pary są szczególnie silnie związane. Jej zastosowanie pozwoliło na uproszczony opis oraz interpretację konfiguracji, w których szereg nukleonów na najwyższej powłoce sprzężony jest w pary. Było to szczególnie przydatne we wczesnych latach rozwoju modelu powłokowego gdy nie dysponowano narzędziami obliczeniowymi pozwalającymi na modelowanie pełnej przestrzeni konfiguracyjnej.

W badaniach struktury stanów wzbudzonych izotopów położonych w pobliżu jąder magicznych, o zamkniętych powłokach, najbardziej interesujące są nisko leżące stany o prostej strukturze powłokowej. Na wzbudzenia te zwykle składa się maksymalna możliwa liczba cząstek umieszczonych na najniższej dostępnej powłoce *j*. Taką konfigurację *n* jednakowych nukleonów na powłoce *j* oznaczamy j^n . W jądrach, w których poza zamkniętymi powłokami występują zarówno neutrony jak i protony oddziaływania *n-p* komplikują opis, wprowadzając mieszanie konfiguracji oraz dopuszczając nisko leżące wzbudzenia kolektywne. Dla prostego opisu i interpretacji struktury stanów wzbudzonych w jądrach w pobliżu jąder magicznych konfigurację j^n ogranicza się więc do *n* nukleonów jednego rodzaju.

Przez liczbę *seniority n* określa się jako liczbę tych nukleonów, które nie są połączone w pary sprzężone do spinu $J = 0^+$ [Gra04]. Tam gdzie to możliwe *seniority* może być użyte jako dodatkowa liczba kwantowa do redukcji przestrzeni konfiguracyjnej w układach z nukleonami walencyjnymi o j > 7/2. Schemat *seniority* nakłada istotne zasady symetrii. Po pierwsze, energia wzbudzenia jest niezależna od obsadzenia powłoki *n*. Oznacza to, że energia wzbudzenia układu $j^{\nu + 2}$ cząstek jest taka sama jak układu j^{ν} cząstek. Ponieważ $(n - \nu) / 2$ par sprzęga się do spinu J = 0, oznacza to, że konfiguracja j^n zostaje zredukowana do konfiguracji j^{ν} . Dla określonych wartości *n* i ν , na ustalonej powłoce *j*, maksymalny spin konfiguracji jest dany przez wyrażenie $I_{max} = \nu (j - (\nu-1) / 2)$ [Gra04]. Na przykład, rozważmy zastosowanie schematu *seniority* dla powłoki j = 9/2. Jeżeli liczba seniority wynosi $\nu = 2$ to maksymalny spin konfiguracji jest równy $I_{max} = 8$. Dla *seniority* $\nu = 2$ zasady sprzęgania spinów pozwalają na uzyskanie wartości $J = 8^+$, 6^+ , 4^+ , 2^+ . Niezależnie od obsadzenia powłoki, to znaczy dla każdego n = 2, 4, 6 lub 8, stan o *seniority* $\nu = 2$ będzie miał takie same wartości J, jak te wymienione wyżej.

3. Reakcje głęboko nieelastyczne ciężkich jonów

Reakcje jądrowe zachodzące podczas zderzeń ciężkich jonów przy energiach rzędu 5-10 MeV/nukleon scharakteryzować można w funkcji parametru odległości najmniejszego zbliżenia r_{min} i relacji między tą wielkością, a tak zwanym promieniem oddziaływania R_{int} [Sch84]. Wyniki eksperymentów wskazują, że oddziaływanie jądrowe pojawia się przy odległościach pomiędzy środkami zderzających się jąder mniejszych lub równych od promienia oddziaływania $R_{int} = R_1 + R_2 + R_2$ 3 fm, gdzie R_1 i R_2 są promieniami zderzających się jąder. Dla odległości najmniejszego zbliżenia r_{min} > R_{int} nie dochodzi do oddziaływania jądrowego. Zderzające się jądra ulegają rozpraszaniu elastycznemu bądź wzbudzeniu kulombowskiemu. Dla zderzeń peryferyjnych o $r_{min} \approx R_{int}$ możliwe są wzbudzenia nieelastyczne lub transfer jednego lub kilku nukleonów. W zderzeniach, w których r_{min} jest znacznie mniejsze od Rint dochodzi do kontaktu obu jąder. W zależności od energii wiązki oraz mas jąder biorących udział w zderzeniu, a także od całkowitego momentu pędu układu, reakcja ma charakter binarny lub tworzy się jądro złożone. W pierwszym przypadku ma miejsce duża strata energii kinetycznej, która to energia ulega dyssypacji i zamianie na wzbudzenia wewnętrzne, a także wymiana części nukleonów pomiędzy zderzającymi się jądrami. Ten typ reakcji ciężkich jonów został po raz pierwszy zaobserwowany w 1959 r. [Kau59, Kau61] – nadano mu nazwę reakcji głęboko nieelastycznych. Jednym z pionierów teoretycznego opisu reakcji głęboko nieelastycznych jest Janusz Wilczyński [Wil73].

Na rys. 3.1 przedstawiono schematycznie klasyfikację reakcji jądrowych w zderzeniach ciężkich jonów w funkcji parametru zderzenia b, który jest proporcjonalny do odległości najmniejszego zbliżenia r_{min} .

Rys. 3.1. Charakterystyka procesów jądrowych zachodzących w zderzeniach ciężkich jonów o energii 5-10 MeV/nukleon w funkcji parametru zderzenia *b*.

3.1 Charakterystyka reakcji głęboko nieelastycznych

W reakcjach głęboko nieelastycznych dochodzi do kontaktu materii jądrowej obu zderzających się nuklidów, podczas którego znaczna część nukleonów jest wymieniana pomiędzy uczestnikami zderzenia. W wyniku reakcji powstają dwa fragmenty, które mogą znacznie różnić się od jąder początkowych. Duża część energii kinetycznej zderzenia oraz momemtu pędu układu zamieniana jest na energię wzbudzenia i spin jąder końcowych. Wzbudzone produkty rozpadają się przez emisję neutronów i lekkich cząstek lub ulegają rozszczepieniu, a w końcowej fazie rozpadu emitują kaskady kwantów γ. Reakcje te charakteryzują się następującymi cechami [Sch84]:

- W kanale wyjściowym reakcji obserwowane są dwa fragmenty (proces binarny). Jądra końcowe mogą mieć masę i ładunek znacznie odbiegający od masy i ładunku pocisku i tarczy, jednak fragmenty te "zachowują pamięć" kanału wejściowego, to znaczy, że można wyróżnić spośród nich fragment powstały z jądra pocisku (*projectile like fragment* PLF) oraz fragment powstały z jądra tarczy (*target like fragment* TLF).
- Większa część energii kinetycznej zderzenia ulega dyssypacji oraz przekształca się w energię wzbudzenia produktów. W zderzeniach głęboko nieelastycznych energia kinetyczna fragmentów w kanale wyjściowym może być tak niska, jak energia potencjalna, którą posiadają fragmenty w momencie rozdzielenia się.
- Ponieważ reakcje głęboko nieelastyczne zachodzą dla zderzeń o stosunkowo dużym parametrze zderzenia, utworzony w ich wyniku system podlega rotacji. W momencie rozdzielenia się fragmenty uzyskują własny kręt. Wartość krętu wewnętrznego fragmentów może sięgać kilkudziesięciu jednostek ħ.
- Rozkład kątowy produktów reakcji głęboko nieelastycznych jest wzmocniony w kierunku do
 przodu. Wraz ze wzrostem energii zderzenia wzrost przekroju czynnego dla małych kątów jest
 bardziej wyraźny. Charakter rozkładu kątowego jest skorelowany ze stratą energii kinetycznej.
 W przypadku dyssypacji niewielkiej ilości energii rozkład kątowy zbliżony jest do rozkładu
 kątowego produktów procesów szybkich; jest wąski z wyraźnym maksimum wokół kąta
 grazing. W przypadku dyssypacji dużej ilości energii kinetycznej rozkład kątowy staje się
 bardziej izotropowy, świadcząc o długim czasie orbitowania systemu złożonego.

Dla opisu reakcji głęboko nieelastycznych istotna jest korelacja pomiędzy dyssypacją energii kinetycznej zderzenia a innymi obserwablami. Na rys. 3.2 zaprezentowano mapę przekroju czynnego $d^2\sigma/d(TKE) dZ$ dla produktów reakcji ⁸⁶Kr (8.18 MeV/u) + ¹⁶⁶Er w funkcji całkowitej energii kinetycznej fragmentów w kanale wyjściowym TKE (*Total Kinetic Energy*) oraz liczby atomowej produktów Z. Punkty oznaczone V_{Coul} odpowiadają kulombowskiej energii potencjalnej dwóch stykających się jąder sferycznych w kanale wyjściowym, tak więc określają one sytuację, w której miała miejsce całkowita dyssypacja dostępnej energii kinetycznej zderzenia. Punkty Q_{gg} wyznaczają dla każdego Z punkt, od którego mierzy się energię dyssypacji [Rud79].

Rys. 3.2. Mapa przekroju czynnego $d^2\sigma/d(TKE) dZ$ produktów reakcji ⁸⁶Kr (8.18 MeV/u) + ¹⁶⁶Er w funkcji całkowitej energii kinetycznej fragmentów w kanale wyjściowym TKE (*Total Kinetic Energy*) oraz liczby atomowej produktów Z [Rud79].

3.2 Rozkłady produktów reakcji głęboko nieelastycznych

Jedną z podstawowych cech charakteryzujących reakcje głęboko nieelastyczne jest duży przekaz nukleonów pomiędzy zderzającymi się nuklidami. Do omówienia procesów odpowiadających za kierunek i siłę wymiany nukleonów użyjemy doświadczalnie określonych rozkładów produktów dwóch reakcji, w których tarcza ²⁰⁸Pb bombardowana była wiązkami jonów ⁶⁴Ni i ⁵⁸Ni o energiach przewyższających nieznacznie barierę kulombowską. Wybrane izotopy ⁶⁴Ni i ⁵⁸Ni to najbardziej neutrono-nadmiarowy i najbardziej neutrono-deficytowy stabilny izotop niklu. Porównanie rozkładów produktów tych dwóch reakcji jest szczególnie pouczające dla opisu mechanizmu przekazu protonów i neutronów w reakcjach głęboko nieelastycznych.

Rozkłady produktów reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb [Kro03] oraz ⁵⁸Ni (345 MeV) + ²⁰⁸Pb [Kro10] zostały określone w eksperymentach, w których wiązka niklu użyta była do bombardowania tarczy ²⁰⁸Pb o grubości kilkudziesięciu mg/cm². W tak grubej tarczy zatrzymywane były wszystkie produkty reakcji. Ich rozkład został ustalony poprzez pomiary koincydencyjne kwantów γ emitowanych w rozpadach radioaktywnych produktów reakcji, rozpadach stanów wzbudzonych w jądrach końcowych, a także poprzez pomiary rozpadu długożyciowych izotopów radioaktywnych nagromadzonych w tarczy po eksperymencie. Ze względu na bardzo dobrą zdolność rozdzielczość współczesnych detektorów germanowych promieniowania γ , a także przez użycie nowoczesnych układów wielolicznikowych takich detektorów o dużej wydajności, pomiary koincydencyjne promieniowania γ pozwalają na rozdzielenie i dokładną analizę ilościową przejść γ emitowanych nawet przez słabo populowane jądra. Jest to szczególnie ważne w przypadku badania produktów procesów głęboko nieelastycznych, w których przekrój czynny reakcji rozkłada się na bardzo dużą liczbę izotopów. Szczegółowy opis eksperymentów, a także wstępne wyniki analizy zostały przedstawione w pracy [Kro96].

Na rys. 3.3 przedstawiono rozkład ciężkich (zbliżonych do jąder tarczy) produktów reakcji 64 Ni (350 MeV) + 208 Pb, zaś na rys. 3.4 przedstawiono podobny rozkład dla produktów lekkich (zbliżonych do pocisku). Przy wybranej energii wiązki dla układu 64 Ni + 208 Pb nie zachodzi reakcja

fuzji – rozkład produktów zawiera więc wyłącznie produkty reakcji kwazielastycznych, które na rozkładzie skupione są w bezpośrednim sąsiedztwie jąder pocisku i tarczy, oraz produkty procesów głęboko nieelastycznych, których rozkład rozciąga się daleko od jąder początkowych. Można zauważyć trend do redukcji asymetrii masy jąder początkowych, to znaczy, że większość produktów ciężkich jest lżejsza od jądra tarczy ²⁰⁸Pb, zaś większość produktów lekkich jest cięższa od jądra pocisku ⁶⁴Ni. Widać również wyraźnie tendencję do równoważenia stosunku liczby neutronów do protonów N / Z, która ma silny wpływ na rozkład produktów reakcji głęboko nieelastycznych i zostanie omówiona w następnym rozdziale. W szczególności bardzo wyraźna jest produkcja neutrono-nadmiarowych izotopów Fe, Co, Ni, Cu czy Zn mających wartość stosunku N / Z większą niż jądro pocisku ⁶⁴Ni (patrz rys. 3.4). Na przeciwległym końcu rozkładu, wokół jądra tarczy ²⁰⁸Pb (rys. 3.3), produkowane są izotopy Hg, Tl, Pb, Bi oraz Po mające stosunek N / Z mniejszy niż ²⁰⁸Pb.

Rozkłady ciężkich i lekkich produktów reakcji ⁵⁸Ni (345 MeV) + ²⁰⁸Pb przedstawiono na rys. 3.5 i 3.6. W porównaniu z wcześniej prezentowanymi rozkładami produktów reakcji z wiązką ⁶⁴Ni widoczna jest znaczna redukcja populacji ciężkich, pochodzących od tarczy, fragmentów. Z drugiej strony zaznacza się silna populacja fragmentów w obszarze masy 80 < A < 130. Jądra z tego obszaru powstają w wyniku rozszczepienia ciężkiego partnera reakcji, który został wzbudzony w procesie głęboko nieelastycznym. Efekt ten może być jeszcze lepiej zaobserwowany jeśli porównamy rozkłady masowe produktów obu reakcji przedstawione na rys. 3.7 i 3.8.

Ta drastyczna różnica w kształcie rozkładów produktów dwóch niewiele różniących się reakcji wskazuje na to, jak istotną rolę w określeniu kierunku i intensywności transferu nukleonów w reakcjach głęboko nieelastycznych ma stosunek liczby neutronów do protonów zderzających się jąder. Efekt ten, nazywany często wyrównywaniem stosunku neutronów do protonów (N / Z equilibration) omówiony jest szczegółowo w następnym rozdziale.

Rys. 3.3. Rozkład względnego przekroju czynnego na produkcję ciężkich (zbliżonych do tarczy) fragmentów w reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb [Kro03]. Powierzchnia czarnego kwadratu jest proporcjonalna do przekroju czynnego na produkcję danego izotopu.

Rys. 3.4. Rozkład względnego przekroju czynnego na produkcję lekkich (zbliżonych do pocisku) fragmentów w reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb [Kro03]. Powierzchnia czarnego kwadratu jest proporcjonalna do przekroju czynnego na produkcję danego izotopu.

Rys. 3.5. Rozkład względnego przekroju czynnego na produkcję ciężkich (zbliżonych do tarczy) fragmentów w reakcji ⁵⁸Ni (345 MeV) + ²⁰⁸Pb [Kro10]. Powierzchnia czarnego kwadratu jest proporcjonalna do przekroju czynnego na produkcję danego izotopu.

Rys. 3.6. Rozkład względnego przekroju czynnego na produkcję lekkich (zbliżonych do pocisku) fragmentów w reakcji ⁵⁸Ni (345 MeV) + ²⁰⁸Pb [Kro10]. Powierzchnia czarnego kwadratu jest proporcjonalna do przekroju czynnego na produkcję danego izotopu.

Rys. 3.7. Rozkład masowy produktów reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb [Kro03]. Przerywanymi liniami oznaczono masę pocisku i tarczy.

Rys. 3.8. Rozkład masowy produktów reakcji ⁵⁸Ni (345 MeV) + ²⁰⁸Pb [Kro10]. Przerywanymi liniami oznaczono masę pocisku i tarczy.

3.3 Przekaz protonów i neutronów w reakcjach głęboko nieelastycznych

Pierwsze rozważania na temat kierunku przekazu protonów i neutronów pomiędzy jądrami zderzającymi się w reakcjach głęboko nieelastycznych zostały zaprezentowane przez Władysława Świąteckiego już w 1972 roku [Swi72]. Świątecki wskazał, że jeśli dwa jądra o różnych stosunkach N/Z zetkną się, to nastąpi pomiędzy nimi redystrybucja protonów i neutronów. Zakładając sferyczny kształt stykających się jąder oraz korzystając z formuły na energię jądra zgodną z modelem kroplowym jądra, wyprowadzona została zależność podająca optymalną wartość stosunku N/Z dla fragmentu o podanej masie [Kro03]. Po zapoznaniu się ze wstępnymi wynikami omawianych tutaj badań, formuła dopuszczająca, aby stykające się w reakcji jądra były zdeformowane, została uzupełniona przez W. Świąteckiego [Swi95]. W najprostszym przypadku deformację symulować może układ jąder sferycznych odległych od siebie, połączonych stożkami (patrz rys. 3.11). Odległość pomiędzy ich środkami, większa od sumy promieni jąder jest miarą deformacji. W tym podejściu deformacja prowadzi do zmniejszenia energii odpychania kulombowskiego, która jest głównym składnikiem energii takiego układu w formule modelu kroplowego. Ponieważ wzór modelu kroplowego opisuje jedynie uśrednione właściwości jąder, do bardziej realistycznej minimalizacji energii układu stykających się jąder użyć można eksperymentalnie wyznaczonych mas jąder [Wap88].

Dla porównania przewidywań modelowych wyrównywania stosunku neutronów do protonów w jądrach zderzających się w reakcjach głęboko nieelastycznych z wynikami doświadczalnymi wykorzystano określone wcześniej rozkłady produktów reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb i ⁵⁸Ni (345 MeV) + ²⁰⁸Pb. W tym celu dla fragmentów o danej masie wyliczono średnią wartość N / Z. Tak otrzymane wykresy średniego N / Z w funkcji masy fragmentu wskazują na przebieg procesu równoważenia stosunku N / Z w funkcji przekazu nukleonów pomiędzy zderzającymi się jądrami. Szczegóły procedury wyznaczania średniej wartości N / Z w funkcji masy fragmentu opisane zostały w pracy [Kro03].

Na rys. 3.9 przedstawiono średnie wartości N / Z określone eksperymentalnie dla lekkich i ciężkich fragmentów produkowanych w reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb. Przerywane linie oznaczają wartości N / Z dla jądra pocisku (⁶⁴Ni), tarczy (²⁰⁸Pb), a także dla układu złożonego. Rysunek ten wskazuje na to, że pewna, częściowa, ekwilibracja stosunku N / Z w produkowanych fragmentach występuje nawet dla małych przekazów masy. Tym niemniej, nawet największe zaobserwowane przekazy masy nie prowadzą do pełnego wyrównania liczby neutronów w stosunku do liczby protonów i wartość N/Z dla układu złożonego nie jest osiągana.

Rys. 3.9. Średnie wartości stosunku liczby neutronów do protonów (N / Z) w funkcji masy fragmentów produkowanych w reakcji ⁶⁴Ni (350 MeV) + ²⁰⁸Pb [Kro09]. Przerywanymi liniami oznaczono wartość stosunku N / Z dla jądra pocisku (⁶⁴Ni), tarczy (²⁰⁸Pb) oraz dla układu złożonego (C.N.).

Porównanie określonych eksperymentalnie średnich wartości N / Z dla ciężkich fragmentów produkowanych w obydwu dyskutowanych reakcjach z przewidywaniami formuły modelu kroplowego przedstawiono na rys. 3.10. Zarówno przewidywania modelu kroplowego, jak i minimalizacji energii układu stykających się sferycznych jąder, przy uwzględnieniu eksperymentalnych mas jąder, nie odtwarzają obserwowanego przebiegu wyrównywania stosunku N / Z. Dla uzyskania opisu zgodnego z eksperymentem konieczne jest przyjęcie nienaturalnie dużej deformacji stykających się jąder w chwili oddziaływania, wyznaczonej przez odległość pomiędzy środkami jąder D = 22 fm, która jest o blisko 10 fm większa od sumy promieni jądrowych ⁶⁴Ni / ⁵⁸Ni i ²⁰⁸Pb: $R_1 + R_2 \approx 12$ fm (patrz schemat na rys. 3.11). Konieczność wprowadzenia do obliczeń tak dużej odległości pomiędzy środkami oddziałujących jąder świadczy o istotnym wpływie deformacji zderzających się jąder na przebieg procesu redystrybucji protonów i neutronów [Kro09].

Rys. 3.10. Średnie wartości N/Z dla ciężkich fragmentów produkowanych w reakcjach tarczy ²⁰⁸Pb z wiązką ⁶⁴Ni (lewa strona) i ⁵⁸Ni (prawa strona) w funkcji masy fragmentu. Dwa dolne rysunki przedstawiają porównanie doświadczalnie wyznaczonych wartości z przewidywaniami formuły energii modelu kroplowego. Linie przerywane wyliczono dla układu dwóch stykających się jąder sferycznych, których środki znajdują się w odległości $R_1 + R_2 = 12$ fm. Linie ciągłe wyliczono dla układu dwóch zdeformowanych jąder, których środki znajdują się w odległości 22 fm. Dwa górne rysunki przedstawiają porównanie wartości doświadczalnych z przewidywaniami minimalizacji energii układu zdeformowanych jąder, do której użyto eksperymentalnych mas jąder [Wap88].

Rys. 3.11. Schemat układu dwóch zdeformowanych, stykających się stożkami jąder, jaki użyty był do obliczenia oczekiwanych wartości N / Z w funkcji masy fragmentów. Jak omówiono w tekście, dla odtworzenia wyników eksperymentów konieczne było przyjęcie, że odległość D pomiędzy środkami jąder jest większa od sumy promieni jądrowych.

3.4 Opis przekazu protonów i neutronów przy pomocy modelu reakcji ciężkich jonów HIPSE

Inny, dynamiczny opis przegrupowania nukleonów pomiedzy cieżkimi jonami zderzającymi się w reakcjach głęboko nieelastycznych został zaproponowany w ramach modelu HIPSE (Heavy-Ion Phase-Space Exploration) [Lac04, Lac05]. W modelu tym zderzenie ciężkich jonów opisane jest w trzech etapach: fazie zbliżania, fazie tworzenia nowego podziału układu oraz fazie separacji. Na pierwszym etapie zderzenia (faza zbliżania) rozwiązywane są klasyczne równania ruchu dwóch jąder, które opisane są jako zbiory nukleonów z rozkładami pędu i rozkładami przestrzennymi odpowiadającymi ich stanom podstawowym. Do opisu oddziaływania zbliżających się jąder użyto potencjału oddziaływania Randrupa, Świąteckiego i Błockiego [Ran74, Blo77]. Ta część zderzenia uznawana jest za zakończoną w chwili gdy dochodzi do maksymalnego przekrycia przestrzennego obu jąder. W fazie tworzenia nowego podziału układu, na podstawie reguł koalescencji w przestrzeni pędów i pozycji obliczany jest podział nukleonów na fragment podobny do jądra tarczy (TLF) i podobny do jądra pocisku (PLF). W podziale tym uwzględniane jest także tworzenie klastrów nukleonów i lekkich cząstek. W rezultacie, po fazie podziału powstają fragmenty, które zachowały cechy jąder początkowych, pocisku i tarczy, a także energię kinetyczną i rozkłady katowe zgodne z kinematyką kanału wejściowego. Na końcowym etapie obliczeń określony rozdział nukleonów na fragmenty i lekkie klastry propaguje się w przestrzeni przy uwzględnieniu możliwych efektów ich ponownego łączenia pod wpływem oddziaływań jądrowych i kulombowskich. Ponieważ fragmenty i lekkie klastry produkowane są w stanach wzbudzonych, w fazie tej uwzględnia się ich możliwy rozpad, na przykład przez wyparowanie nukleonów.

Na rys. 3.12 porównano określone eksperymentalnie średnie wartości N / Z dla ciężkich fragmentów produkowanych w reakcjach ⁶⁴Ni (350 MeV) + ²⁰⁸Pb i ⁵⁸Ni (345 MeV) + ²⁰⁸Pb z przewidywaniami modelu HIPSE [Kro12].

Rys. 3.12. Średnie wartości N / Z dla ciężkich fragmentów produkowanych w reakcjach tarczy ²⁰⁸Pb z wiązką ⁶⁴Ni (lewa strona) i ⁵⁸Ni (prawa strona) w funkcji masy fragmentu porównane z obliczeniami modelu HIPSE.

Dla reakcji ⁵⁸Ni (345 MeV) + ²⁰⁸Pb zgodność przewidywań modelu HIPSE z obserwowanym wyrównywaniem stosunku liczby neutronów do protonów w funkcji masy jest bardzo dobra. Warto zauważyć, że ze względu na największy zakres zmienności stosunku N/Z (1.54 dla ²⁰⁸Pb wobec 1.07 dla ⁵⁸Ni) właśnie ta reakcja lepiej nadaje się do badania zjawiska wyrównywania liczby N/Z pomiędzy fragmentami produkowanymi w zderzeniach głęboko nieelastycznych.

W przypadku reakcji z wiązką ⁶⁴Ni obserwowana zgodność nie jest tak dobra. Być może jest to związane z faktem, że dla wiązki ⁶⁴Ni po stronie lekkich fragmentów produkowane są izotopy

neutrono-nadmiarowe, z obszaru odległego od jąder stabilnych. Nie jest wykluczone, że mechanizm wyparowania cząstek z populowanych w zderzeniach neutrono-nadmiarowych fragmentów nie jest poprawnie uwzględniony w kodzie modelu HIPSE. Problem ten jest przedmiotem dalszych rozważań i będzie przedyskutowany w przygotowywanej pracy [Kro13A].

4. Wykorzystanie reakcji głęboko nieelastyczne ciężkich jonów do badania struktury jąder neutrono-nadmiarowych

Opisany mechanizm równoważenia stosunku liczby neutronów do protonów we fragmentach populowanych w zderzeniach głęboko nieelastycznych ma kluczową rolę dla użycia tych reakcji do badania struktury jąder neutrono-nadmiarowych. Dla dotarcia do konkretnego izotopu, bądź grupy jąder neutrono-nadmiarowych, używając reakcji tego typu, należy przede wszystkim uwzględnić kierunek produkcji fragmentów wyznaczony przez równoważenie się N / Z. W reakcji, w której cząstką bombardującą jest lekkie jądro (N_P , Z_P) neutrono-nadmiarowe, zaś cząstką tarczy jest jądro ciężkie (N_T , Z_T), proces równoważenia się stosunku N / Z podczas zderzenia preferuje przechodzenie neutronów z jądra tarczy do jądra pocisku, zaś przekaz protonów odbywa się w przeciwnym kierunku. Wynika to z relacji $N_P / Z_P < N_T / Z_T$, która określona jest przez przebieg ścieżki stabilności na płaszczyźnie (N, Z). W efekcie takiej reakcji produkty lekkie są jądrami jeszcze bardziej neutrononadmiarowymi niż samo neutrono-nadmiarowe jądro wiązki.

Opisany schemat produkcji neutrono-nadmiarowych fragmentów jest przedstawiony graficznie na rys. 4.1. Podana wartość N/Z (C.S.) = 1.47 odnosi się do stosunku liczby neutronów do protonów systemu złożonego z jąder tarczy i pocisku.

Rys. 4.1. Schemat produkcji jąder neutrono-nadmiarowych w reakcjach głęboko nieelastycznych opierający się na procesie równoważenia stosunku N / Z fragmentów na przykładzie reakcji ⁶⁴Ni + ²⁰⁸Pb. Podano wartości liczby N / Z dla jąder pocisku, tarczy oraz dla układu złożonego. Dalsze objaśnienia w tekście.

Identyfikacja stanów wzbudzonych w produktach reakcji głęboko nieelastycznych jest ułatwiona, jeżeli jedno lub kilka najniżej leżących przejść yrastowych w jądrze jest znanych z wcześniejszych badań. Warunki koincydencyjne stawiane na znanych energiach przejść γ pozwalają zaobserwować przejścia γ emitowane z wyżej leżących poziomów, a tym samym pozwalają na wyznaczenie położenia tych stanów. Często, wśród produkowanych w reakcji jąder są też izotopy, na temat których nie ma żadnej informacji spektroskopowej. Ze względu na to, że najczęściej dotyczy to najbardziej neutrono-nadmiarowych, a więc egzotycznych i poszukiwanych w eksperymencie

izotopów, konieczna jest identyfikacja kwantów γ pochodzących z tych jąder i przyporządkowanie ich do konkretnych nuklidów.

Technika pomiarów koincydencyjnych promieniowania γ emitowanego przez produkty reakcji głęboko nieelastycznych w eksperymentach, w których dochodzi do zatrzymania fragmentów w materiale tarczy, czyli w tak zwanych eksperymentach z grubą tarczą, opisana jest w następnym rozdziale. W kolejnym rozdziale opisano metodę identyfikacji przejść γ w jądrach, na temat których nie istniała wcześniej żadna informacja spektroskopowa. Jest to metoda z użyciem spektrometru magnetycznego połączonego z detektorami promieniowania γ . Wspomnieć warto o jeszcze jednej, nowatorskiej metodzie identyfikacji nieznanych przejść γ z produktów reakcji głęboko nieelastycznych, która została zaproponowana przez krakowska grupę spektroskopii γ , zwanej metodą koincydencji krzyżowych [Bro94, Bro06].

4.1 Pomiary promieniowania γ emitowanego przez produkty reakcji w eksperymentach z grubą tarczą

Do pomiarów koincydencyjnych promieniowania γ emitowanego z jąder produkowanych w reakcjach głęboko nieelastycznych z gruba tarcza używane sa wielolicznikowe systemy złożone z detektorów germanowych. W środku takiego układu umieszczona jest tarcza z wybranego materiału o grubości od kilku do kilkudziesięciu mg/cm². W przypadku gdy pożądane jest stosowanie cieńszej tarczy, jest ona umieszczana na podkładce o grubości kilkudziesieciu mg/cm². Ze wzgledu na opisany mechanizm produkcji jąder neutrono-nadmiarowych najbardziej pożądane jest użycie tarcz z ciężkich materiałów o wysokich wartościach stosunku N / Z, na przykład ²⁰⁸Pb lub ²³⁸U. Wybrana wiązka ciężkich jonów bombarduje tarczę z energią przewyższającą barierę kulombowską o 15-30%. Natężenie wiązki ograniczone jest najczęściej możliwościami akceleratora. Innym ograniczeniem jest wielkość strumienia danych, które mogą być wstępnie przetworzone i zapisane przez układ akwizycji. Typowe natężenia wiązek używanych w eksperymentach z grubą tarczą opisanych w tej pracy to około 1 pnA (*particle*-nA) co odpowiada liczbie rzędu 10¹⁰ jonów na sekundę. Struktura czasowa wiązki jest ustalana w zależności od potrzeb eksperymentu. Często używana jest wiązka impulsowa, w której impulsy o czasie trwanie około 1 ns następują w odstępach kilkudziesięciu bądź kilkuset nanosekund. Taka struktura wiązki pozwala na oddzielenie przypadków natychmiastowej, skorelowanej z impulsem wiązki, emisji kwantów γ od przypadków opóźnionych, gdy emisja promieniowania γ następuje w wyniki rozpadu stanów izomerycznych lub rozpadów radioaktywnych jader niestabilnych.

Użycie grubej tarczy w opisywanych eksperymentach zapewnia, że wszystkie produkty reakcji jądrowych są zatrzymywane w materiale tarczy lub w podkładce. Typowy czas hamowania fragmentów wynosi kilka pikosekund. Tym sposobem, kwanty γ emitowane ze stanów jądrowych, które posiadają czasy życia lub czasy zasilania dłuższe niż kilka pikosekund, zostaną wyemitowane z jąder, które zostały już zatrzymane. Jest to bardzo ważne, gdyż jedynie kwanty γ emitowane z jąder pozostających w spoczynku rejestrowane są w detektorach germanowych w postaci wąskich, dyskretnych linii. Gdy produkt reakcji będący źródłem promieniowania γ porusza się, przesunięcie dopplerowskie zmienia jego energię. Ponieważ detektory germanowe używane do pomiaru ustawione są pod różnymi kątami względem kierunku wiązki przesunięcie dopplerowskie prowadzi do rozmycia energii przejść γ emitowanych przez jądra niezatrzymane w rejestrowanym widmie. Okazuje się, że większość stanów jądrowych tworzonych w omawianych reakcjach ciężkich jonów posiada czasy życia lub czasy zasilania dłuższe od czasu zatrzymania produktu. Kwanty γ pochodzące z

rozpadów tych stanów występują w widmach jako łatwe do identyfikacji i interpretacji wąskie linie o ściśle określonych i charakterystycznych dla danego nuklidu energiach.

Rys. 4.1. Schemat układu 110 detektorów germanowych GAMMASPHERE [Lee90] używanego do pomiarów koincydencyjnych promieniowania γ w eksperymentach z grubą tarczą (lewa strona). Fragmenty układu i umieszczona w jego centrum gruba tarcza (lub tarcza i podkładka) (prawa strona).

W reakcjach z grubą tarczą tracona jest całkowicie informacja o kinematyce reakcji. Widma koincydencyjne zawierają promieniowanie γ emitowane z produktów wszystkich typów reakcji zachodzących podczas zderzenia. Jedyny sposób identyfikacji pojedynczych produktów polega na analizie widm koincydencyjnych γ i poszukiwaniu w nich kaskad przejść charakterystycznych dla danych izotopów.

4.2 Użycie spektrometru magnetycznego do identyfikacji produktów reakcji w zderzeniach głęboko-nieelastycznych

Użycie spektrometru magnetycznego sprzężonego z układem detektorów γ pozwala na przyporządkowanie mierzonego promieniowania γ do konkretnych izotopów produkowanych w zderzeniach głęboko-nieelastycznych. Jest to potrzebne do ustalenia energii najsilniejszych przejść γ w izotopach, na temat których brak jakichkolwiek informacji spektroskopowych. Uzyskane tak informacje – energie przejść γ – mogą być następnie użyte do ustalenia schematu wzbudzeń poprzez analizę danych koincydencyjnych uzyskanych w eksperymentach z grubą tarczą.

W badaniach opisanych w niniejszej pracy wykonano pomiary przy użyciu spektrometru magnetycznego PRISMA [Ste02] sprzężonego z układem detektorów germanowych CLARA [Gad03]. Spektrometr PRISMA-CLARA zaprojektowano i zbudowano w laboratorium w Legnaro (LNL) specjalnie dla eksperymentów, w których egzotyczne fragmenty produkowane są w zderzeniach głęboko nieelastycznych.

Urządzenie PRISMA jest spektrometrem o dużej akceptancji, który pozwala na identyfikację produktów dwuciałowych reakcji ciężkich jonów przebiegających przy energiach 5-20 MeV/nukleon. Na rys. 4.2 pokazane są składowe spektrometru. Są to dwa elementy optyczne: magnes kwadrupolowy i magnes dipolowy, oraz system detektorów mierzących pozycję, energię oraz czas przelotu fragmentu: detektor wejściowy typu *Micro-Channel Plate* (MCP), komora wielodrutowa *typu Multi-*

Wire Parallel Plate Avalanche Counter (MWP-PAC) umieszczona w płaszczyźnie ogniskowej spektrometru oraz komora jonizacyjna.

Rys. 4.2. Schemat spektrometru magnetycznego PRISMA. Układ detektorów germanowych CLARA znajduje się wokół tarczy, która umieszczona jest przed wlotem do spektrometru (lewa strona rysunku).

Spektrometr PRISMA [Ste02] pozwala na pełną identyfikację produktów reakcji przez wyznaczenie ich ładunku (Z) i masy (A) oraz dokonuje pomiaru kierunku i prędkości przelotu fragmentów. Magnesy kwadrupolowy i dipolowy ogniskują jony w osi pionowej do płaszczyzny dyspersji i zakrzywiają ich trajektorie w stronę detektorów płaszczyzny ogniskowej. Trzy podstawowe detektory spektrometru: detektor wejściowy MCP, komora wielodrutowa MWP-PAC oraz komora jonizacyjna na płaszczyźnie ogniskowej dostarczają informacji o pozycji wejścia i wyjścia jonu ze spektrometru, czasie przelotu, o energii kinetycznej utraconej przy przejściu przez kolejne segmenty komory jonizacyjnej, a także o zasięgu jonu w komorze. Informacje te pozwalają na odtworzenie trajektorii przelotu i prędkości jonu, to zaś pozwala na wyznaczenie jego ładunku i masy.

Rys. 4.3. Schemat położenia detektorów germanowych układu CLARA.

Układ detektorów germanowych CLARA [Gad03] składa się z 25 detektorów typu *Clover*, z których każdy zawiera 4 kryształy germanowe. Zdolność rozdzielcza układu wynosi około 3 keV dla kwantów γ o energii 1.3 MeV. Układ CLARA otacza komorę, w której umieszczona jest tarcza i ma kształt połówki sfery pokrywającej kąt bryłowy 2π – patrz rys. 4.3. Układ CLARA wyróżnia się dużą segmentacją, zaś jego pełna wydajność wynosi około 3% dla emitowanych z tarczy kwantów γ o energii 1.3 MeV.

W eksperymentach na spektrometrze PRISMA-CLARA stosuje się cienkie tarcze. Zgrupowane wokół tarczy detektory germanowe mierzą promieniowanie γ emitowane przez produkowany w reakcji fragment, który traci w tarczy tylko część energii i porusza się w kierunku detektora wyjściowego MCP. Fragment ten jest następnie identyfikowany w spektrometrze PRISMA. Ponieważ mierzone jest promieniowanie γ emitowane przez fragment będący w ruchu otrzymywane energie kwantów γ podlegają przesunięciu ze względu na efekt Dopplera. Dla odtworzenia prawdziwej energii kwantów γ konieczne jest uwzględnienie poprawki dopplerowskiej. W tym celu używane są wyznaczone przez spektrometr wartości prędkości oraz kierunku emisji każdego fragmentu.

Część wyników opisanych w dalszej części pracy uzyskana została w eksperymencie, w którym przy pomocy spektrometru PRISMA-CLARA zmierzono czas życia krótko-życiowych stanów jądrowych. W tym celu w miejscu tarczy umieszczono specjalne urządzenie typu *Plunger* [Kru01] służące do pomiarów czasów życia stanów składające się z tarczy i układu degradatorów. Szczegóły tego pomiaru opisane zostały w rozdziale poświęconym strukturze stanów wzbudzonych jądra⁴⁸K.

5. Badania struktury stanów wzbudzonych neutrono-nadmiarowych izotopów potasu

Struktura yrastowych stanów wzbudzonych w izotopach bliskich jądrom magicznym jest cennym źródłem informacji o energiach jednocząstkowych i oddziaływaniach resztkowych modelu powłokowego. W szczególności, znajomość stanów wzbudzonych w jądrach neutrono-nadmiarowych umożliwia sprawdzenie modeli jądrowych rozwijanych w ostatnich latach dla takich egzotycznych układów – patrz na przykład [Dob07, Ots05, Ots08].

Jeden z kluczowych dla tych badań obszar izotopów to jądra wokół podwójnie magicznego izotopu ⁴⁸Ca. Dotychczasowe badania eksperymentalne i teoretyczne koncentrowały się na wyjaśnieniu struktury wzbudzeń obejmujących neutrony i protony powyżej powłok N = 28 i Z = 20[Jan02, Lid04, For05, Hon02] w sąsiedztwie ⁴⁸Ca, przy jednoczesnym braku danych na temat wzbudzeń poniżej powłoki protonowej Z = 20. W tej sytuacji, szczególnie pożądane jest zgromadzenie informacji na temat struktury stanów wzbudzonych neutrono-nadmiarowych izotopów potasu (Z =19), gdyż mogą one posłużyć do opisu teoretycznego stanów zawierających dziury protonowe w rdzeniu ⁴⁸Ca.

W jądrach potasu (Z = 19) najniższej leżące stany wzbudzone odpowiadają konfiguracjom zawierającym dziury protonowe ulokowane na orbitalach s_{1/2} i d_{3/2} – patrz rys. 5.1. Przyczynek od następnego, bardziej związanego orbitalu protonowego d_{5/2} jest znikomy. W przypadku neutrononadmiarowych izotopów potasu o N > 28, te konfiguracje oparte o dziury protonowe sprzęgają się z cząstkami-neutronami zajmującymi najniższy dostępny orbital neutronowy p_{3/2}. Ustalenie dokładnych energii stanów, w których dziury protonowe ulokowane na orbitalach s_{1/2} i d_{3/2} sprzęgają się z neutronami zajmującymi orbital p_{3/2} pozwoli na wyznaczenia efektywnych oddziaływań dwuciałowych pomiędzy nimi, a tym samym ulepszy opis jąder z tego obszaru przez obliczenia modelu powłokowego.

Rys. 5.1. Schemat położenia orbitali modelu powłokowego dla jąder o liczbach protonów i neutronów $8 \le N$, $Z \le 40$. Wskazano szczeliny energetyczne przy liczbach *N*, Z = 20 i 28.

5.1 Struktura stanów wzbudzonych w jądrze 47 K o zamkniętej powłoce neutronowej N = 28

Dyskusję struktury stanów wzbudzonych w neutrono-nadmiarowych izotopach potasu rozpoczynamy od jądra ⁴⁷K o zamkniętej powłoce neutronowej N = 28. W związku z zamkniętą powłoką neutronową, w jądrze tym, w obszarze najniżej położonych stanów, obserwować możemy czyste konfiguracje protonowe.

Spin i parzystość stanu podstawowego jądra ⁴⁷K została określona jako 1/2⁺ na podstawie pomiarów spektroskopii laserowej [Tou82], zaś pierwszy poziom wzbudzony o energii 360 keV został zidentyfikowany jako stan 3/2⁺ w badaniach rozpadu β jądra ⁴⁷Ar [Wei04]. Określone w ten sposób spiny i parzystości tych dwóch poziomów identyfikują je jako stany jednocząstkowe – dziury protonowe – w powłokach s_{1/2} i d_{3/2} odpowiednio dla stanu podstawowego 1/2⁺ i pierwszego stanu wzbudzonego 3/2⁺. Jest to zgodne z prostymi oczekiwaniami wynikającymi z położenia orbitali modelu powłokowego dla liczby protonów *Z* = 19 – patrz rys. 5.1.

Na rys. 5.2 przedstawiono schemat stanów wzbudzonych ⁴⁷K ustalony na podstawie danych z eksperymentu ⁴⁸Ca (210 MeV) + ⁴⁸Ca [Bro01], w którym izotop ⁴⁷K produkowany był w procesie transferu jednego protonu. W pomiarze zastosowano tarczę ⁴⁸Ca o grubości 1.2 mg/cm² umieszczoną na podkładce z ²⁰⁸Pb o grubości kilkudziesięciu mg/cm². Oznacza to, że pomiar ten można traktować jako pomiar z grubą tarczą. Do detekcji promieniowania γ wykorzystano układ 40 detektorów germanowych GASP [Baz92] znajdujący się w laboratorium w Legnaro.

Rys. 5.2. Schemat poziomów yrastowych jądra 47 K opracowany na podstawie danych z eksperymentu 48 Ca (210 MeV) + 48 Ca [Bro01].

Charakterystycznym elementem schematu stanów wzbudzonych ⁴⁷K zaprezentowanego na rys. 5.2 jest długożyciowy izomer o energii wzbudzenia 2020 keV i czasie połowicznego rozpadu 6.3 ns. W połączeniu ze znanymi wcześniej oznaczeniami spinu i parzystości dwóch niżej leżących stanów izomer ten zidentyfikowane jako stan $7/2^-$ odpowiadający konfiguracji, w której jeden proton przeniesiony jest poprzez szczelinę energetyczną i zajmuje miejsce na orbitalu $f_{7/2}$, zaś na orbitalu $s_{1/2}$

lub d_{3/2} znajduje się para dziur protonowych. Pełną konfigurację jednocząstkową izomeru można oznaczyć jako zmieszanie konfiguracji $\pi f_{7/2} \otimes (\pi s_{1/2}^{-2})_{0+}$ i $\pi f_{7/2} \otimes (\pi d_{3/2}^{-2})_{0+}$. Oznacza to, że rozpad izomeru przebiega przez przejście typu *M2* do stanu 3/2⁺ lub przejście typu *E3* do stanu podstawowego 1/2⁺. Obszerniejsza dyskusja na temat struktury izomeru 7/2⁻ wraz z wyliczeniem prawdopodobieństw tych dwóch przejść zawarta jest w następnym rozdziale, w którym omawiany izomer porównywany jest z analogicznym stanem zidentyfikowanym w jądrze ⁴⁸K.

Stany wzbudzone leżące powyżej izomeru 7/2⁻ nie poddają się równie prostej interpretacji. We fragmentach produkowanych w reakcjach głęboko nieelastycznych dominuje zazwyczaj populacja yrastowych stanów wzbudzonych. Na tej podstawie wnioskować można, że obserwowane w eksperymencie stany przy energii wzbudzenia 2287, 3339 i 4433 keV należą do sekwencji stanów yrastowych.

5.2 Struktura stanów wzbudzonych w jądrze ⁴⁸K

W ⁴⁸K, izotopie potasu o liczbie neutronów N = 29, opisane dla ⁴⁷K stany o konfiguracji dziury protonowej sprzęgać się będą z pojedynczym neutronem walencyjnym, który zajmować będzie miejsce na orbitalu vp_{3/2}. Jedyne informacje na temat ⁴⁸K dostępne w literaturze przed opisywanymi pracami dotyczyły stanu podstawowego tego izotopu. Na podstawie badań rozpadu β ⁴⁸K populowanego w reakcji ⁴⁸Ca(*n*, *p*) [Mul75], a także w reakcjach fragmentacji [Det78] ustalono, że możliwe są konfiguracje spinu i parzystości stanu podstawowego 1⁻, 2⁻ lub 3⁻, przy czym za najbardziej prawdopodobne przyjęto oznaczenie (2⁻) [Bur06].

Do ustalenia struktury stanów wzbudzonych w jądrze ⁴⁸K użyto danych z trzech eksperymentów. We wszystkich tych pomiarach wykorzystano mechanizm populowania stanów wzbudzonych w izotopie potasu polegający na wykorzystaniu procesów głęboko-nieelastycznych. Pierwszy eksperyment przeprowadzony został na akceleratorze ATLAS w Argonne National Laboratory. Był to pomiar, w którym wiązka ⁴⁸Ca o energii 330 MeV uderzała w tarczę ²³⁸U o grubości 50 mg/cm² umieszczoną pośrodku układu pomiarowego detektorów germanowych GAMMASPHERE. Do pomiaru użyto wiązki pulsowanej o okresie pulsowania 412 ns, co pozwoliło na odrębną obserwację natychmiastowych koincydencji promieniowania γ skorelowanych z przyjściem wiązki (zdarzenia *in-beam*) oraz koincydencji promieniowania γ następujących pomiędzy pulsami wiązki (zdarzenia *off-beam*). W eksperymencie zaobserwowano charakterystyczne przejścia γ z wielu jąder w obszarze wokół jądra pocisku, w tym także znanych z rozpadu β ⁴⁸K koincydencji kwantów γ w izotopie ⁴⁸Ca. Tym sposobem pośrednio stwierdzono, że izotop ⁴⁸K był w reakcji produkowany. Ze względu na brak jakiejkolwiek wcześniejszej informacji na temat stanów wzbudzonych w ⁴⁸K, na tym etapie niemożliwa była identyfikacja i analiza przejść γ w samym jądrze ⁴⁸K.

Identyfikacja została przeprowadzona na podstawie danych z drugiego eksperymentu przeprowadzonego w laboratorium Laboratori Nazionali di Legnaro przy użyciu wiązki przyspieszonej przez układ akceleratorów Tandem-ALPI. W eksperymencie, ta sama wiązka ⁴⁸Ca o energii 330 MeV uderzała w cienką tarczę ²³⁸U o grubości 0.6 mg/cm². Produkty reakcji były identyfikowane przez spektrometr magnetyczny PRISMA [Ste02], zaś emitowane przez nie promieniowanie γ mierzone było przy użyciu detektorów germanowych układu CLARA [Gade03]. W eksperymencie zmierzono proste widma promieniowania γ skorelowane z poszczególnymi izotopami produkowanymi w reakcji. Na rysunku 5.3 pokazano takie widmo dla jądra ⁴⁸K.

Rys. 5.3. Widmo promieniowania γ emitowanego przez fragmenty ⁴⁸K produkowane w reakcji ⁴⁸Ca + ²³⁸U zmierzone przy pomocy spektrometru PRISMA-CLARA. (a) Wyznaczony przez spektrometr rozkład populacji izotopów potasu. (b) Powiększona część widma zawierająca słabe przejścia γ o energii 1409 i 1449 keV [Kro11].

Rys. 5.4. Wybrane widma koincydencyjne promieniowania γ zmierzone w eksperymencie z grubą tarczą w reakcji ⁴⁸Ca + ²³⁸U przy użyciu detektorów układu GAMMASPHERE. (a)–(c) Widma kwantów γ pochodzących z izotopu ⁴⁸K z różnymi warunkami koincydencyjnymi. (d) Widmo natychmiastowych kwantów γ bramkowane przez opóźnione przejścia 449 i 1449 keV. (e) Krzywa rozpadu izomeru z wyznaczonym czasem połowicznego rozpadu 7.1(5) ns [Kro11].
Na rysunku 5.3 rozpoznano trzy silne, wcześniej nieznane przejścia γ o energii 143, 279 i 449 keV. Ta identyfikacja umożliwiła analizę koincydencyjną danych uzyskanych w eksperymencie z układem GAMMAPSHERE, której szczegóły przedstawione są na rysunku 5.4. Na podstawie analizy relacji koincydencyjnych nowopoznanych przejść γ ustalono, że dwa z przejść o energii 279 i 449 keV sa w koincvdencii ze soba oraz z trzecim przejściem γ o energii 1449 keV – patrz rys, 5.4(a) i (b). Ślad przejścia o tej energii jest widoczny także w widmie uzyskanym w pomiarze spektrometru PRISMA-CLARA – rys. 5.3(b). Co więcej, stwierdzono, że będące w koincydencji silne przejścia o energii 279, 449 i 1449 keV występują jako zdarzenia opóźnione względem pulsu wiązki, czyli "off-beam". Wskazuje to, że w jądrze ⁴⁸K, podobnie jak w ⁴⁷K, znajduje się stan izomeryczny. W izotopie ⁴⁷K stan izomeryczny rozpada się przez przejście γ o energii 1660 keV i multipolowości M2. Przez analogię, naturalne jest założenie, że izomer w 48 K rozpada sie przez emisje kwantów γ o energii 1449 keV. Opóźniony charakter tego przejścia tłumaczy jego słabe natężenie w widmie z rys. 5.3 zmierzonym przy użyciu spektrometru PRISMA-CLARA. Dzieje się tak dlatego, że fragmenty produkowane w zderzeniach w czasie 1-2 nanosekund opuszczają obszar obserwacji detektorów układu CLARA. Nawet krótki czas życia izomeru, rzędu kilku nanosekund, sprawia, że kwanty γ emitowane w jego rozpadzie są dla detektorów układu CLARA praktycznie niewidoczne.

Dokładna analiza widm koincydencyjnych, w szczególności widma promieniowania γ emitowanego w koincydencji z przejściami 279 i 449 keV, ujawniła obecność dwóch dodatkowych przejść o energii 1409 i 2675 keV – patrz rys. 5.4(c). Dodatkowo stwierdzono, że przejście o energii 1409 keV jest silnie wzmocnione, gdy do analizy użyto macierzy koincydencyjnych, w których kwanty γ wyemitowane w chwili przyjścia pulsu wiązki *in-beam* skorelowane są z przejście o energii 1409 keV wyprzedza przejścia γ o energii 279 i 449 keV i należy umieścić je w schemacie poziomów ponad stanem izomerycznym. Tym samym, wyznaczono w ⁴⁸K stan o najwyższej zaobserwowanej w opisywanym eksperymencie energii wzbudzenia 3586 keV – patrz proponowany schemat stanów wzbudzonych ⁴⁸K, rys. 5.5.

Rys. 5.5. Schemat stanów wzbudzonych jądra ⁴⁸K opracowany na podstawie danych z reakcji ⁴⁸Ca + ²³⁸U przy pomocy układu GAMMASPHERE oraz spektrometru PRISMA-CLARA [Kro11].

Obserwacja przejścia zasilającego izomer pozwoliła na precyzyjne wyznaczenie jego czasu życia przy użyciu parametru $t_{\gamma\gamma}$, czyli różnicy czasu pomiędzy rejestracją dwóch kwantów γ . Wynik tej analizy, na podstawie której wyznaczono czas połowicznego rozpadu izomeru 5⁺ $T_{1/2} = 7.1(5)$ ns, pokazano na rys. 5.4(e).

Stwierdzono także, że przejście γ o energii 2675 keV jest w koincydencji wyłącznie z przejściami 279 i 449 keV, a także, że nie ma ono składowej opóźnionej. W związku z tym zostało ono umieszczone w schemacie poziomów jako przejście zasilające stan 728 keV z wysokoenergetycznego poziomu o energii wzbudzenia 3403 keV. Z drugiej strony, przejście γ o energii 143 keV, obserwowane jako przejście o dużej intensywności w eksperymencie ze spektrometrem PRISMA-CLARA, nie pojawia się w widmach koincydencyjnych z przejściami 279 i 449 keV. Na tej podstawie zostało ono umieszczone w dolnej części schematu poziomów jako linia zasilająca stan podstawowy ⁴⁸K. Grubości linii na rys. 5.5 są proporcjonalne do natężeń przejść γ obserwowanych w eksperymencie z układem GAMMASPHERE. Szczegółowe dane dotyczące zmierzonych natężeń oraz precyzyjnie wyznaczone energie przejść zostały podane w tabeli w pracy [Kro11].

Dla określenia spinów i parzystości stanów, a więc dla pełnej interpretacji przedstawionego schematu poziomów ⁴⁸K, wykonano dodatkowe poszukiwania możliwych słabych przejść pomiędzy wyznaczonymi poziomami. Do analizy wykorzystano dane z opóźnionymi koincydencjami promieniowania γ zarejestrowanymi w wąskim oknie czasowym od 8 do 45 ns po pulsie wiązki. Taka selekcja pozwoliła na bardzo wybiórczą obserwację linii występujących w rozpadzie izomeru 7.1 ns. Dokładna analiza widm uzyskanych przy podwójnych warunkach koincydencyjnych wskazała na obecność słabego przejścia γ o energii 585 keV, które zasila poziom o energii wzbudzenia 143 keV – patrz widma na rys. 5.6(a) i 5.6(b).

Rys. 5.6. Wybrane widma koincydencyjne γ zmierzone przy użyciu układu GAMMASPHERE, które posłużyły do identyfikacji słabych przejść w jądrze ⁴⁸K. Przejście γ o energii 209 keV wskazane w panelu (c) pochodzi z rozpadu izomeru 8⁺ w jądrze ⁶⁸Ni, który był również zasilany w tym eksperymencie i ma w rozpadzie przejście o energii zbliżonej do 2034 keV [Kro11].

Dodatkowo, opisana analiza posłużyła także do pełniejszego porównania rozpadu izomeru zaobserwowanego w ⁴⁸K z odpowiadającym mu izomerem 7/2⁻ o energii wzbudzenia 2020 keV w ⁴⁷K. W tym ostatnim przypadku, z dominującym rozpadem przez przejście o charakterze *M2* do pierwszego stanu wzbudzonego $3/2^+$ konkuruje słabe przejście *E3*, przez które izomer rozpada się bezpośrednio do stanu podstawowego $1/2^+$. W danych z eksperymentu GAMMASPHERE, w którym izomer w ⁴⁷K jest silnie zasilany, wyznaczono natężenie przejścia *E3* o energii 2020 keV jako 5.9% dominującego rozpadu *M2* o energii 1660 keV (patrz schemat poziomów ⁴⁷K na rys. 5.2). Do poszukiwania podobnego przejścia w rozpadzie izomeru w ⁴⁸K użyto opóźnionych widm koincydencyjnych. W widmie γ uzyskanym w koincydencji z przejściem 279 keV nie zaobserwowano śladu linii 1898 keV, z drugiej strony widmo koincydencyjne z bramką postawioną na przejściu o energii 143 keV ujawniło istnienie słabego przejścia o energii 2034 keV, które może być emitowane w rozpadzie izomeru w konkurencji do przejścia o energii 1449 keV – patrz widma na rys. 5.6(c) i 5.6(d).

Trzeci eksperyment, który dostarczył dodatkowych informacji na temat struktury poziomów w jądrze ⁴⁸K wykonany został także w laboratorium w Legnaro. W zderzeniach wiązki ⁴⁸Ca o energii 310 MeV z tarczą ²⁰⁸Pb o grubości 1 mg/cm² na podkładce Ta o grubości 1 mg/cm² wykonano pomiary czasów życia stanów w jądrach populowanych w procesach głęboko-nieelastycznych. Zastosowana metoda, będąca modyfikacją metody Plunger (ang. suwak), pozwala na pomiar czasów życia stanów w zakresie pikosekundowym. W eksperymencie za tarczą umieszczono folie degradatora wykonaną z naturalnego magnezu o grubości 4 mg/cm², która była przesuwana w kontrolowany sposób w przedziale odległości od 30 do 1240 um od tarczy. Produkty reakcji po przejściu przez degradator były analizowane przez spektrometr magnetyczny PRISMA, za pomocą którego identyfikowano izotopowo produkty, a także wyznaczano wektor prędkości każdego fragmentu. Zmierzony wektor prędkości użyty był do poprawienia zarejestrowanej energii kwantów y na przesunięcie dopplerowskie. Było to możliwe w przypadku kwantów y wyemitowanych z produktu po przejściu przez folię degradatora. W przypadku kwantów y wyemitowanych przed przejściem przez degradator, zastosowana poprawka nie odtwarzała poprawnie energii kwantu z powodu innej predkości jonu w chwili emisji. W efekcie, dla kwantów γ emitowanych ze stanów o czasie życia porównywalnym z czasem przelotu od tarczy do degradatora, w widmie obserwuje się dwie składowe przejść γ – z właściwie i niewłaściwie uwzględnioną poprawką na przesunięcie dopplerowskie [Val09, Men10, Kro11].

Dla izotopu ⁴⁸K w opisanym eksperymencie wyznaczono czasy życia (w przedziale pikosekundowym) trzech stanów rozpadających się przez emisję kwantów o energii 143, 279 i 449 keV. Na rys. 5.7 pokazano widma kwantów γ zmierzone dla czterech odległości degradatora od tarczy. Dla każdego z trzech przejść γ wskazano linię o dobrze i źle poprawionej energii. Stosunek natężeń tych dwóch składowych zmienia się w zależności od odległości degradatora od tarczy co dobrze ilustruje skuteczność opisanej metody.

W kolejnym kroku analizy dla wyznaczenia czasów życia stanów wyliczono stosunek *R* natężenia przejść o poprawnie uwzględnionej poprawce (kwanty γ wyemitowane po przejściu przez degradator), do sumy natężeń obydwu przejść, zdefiniowany jako $R = I_{after} / (I_{before} + I_{after})$. Wartości te pokazane są na rys. 5.8 wraz z dopasowaniem krzywych eksponencjalnych $R = \exp(-d / v \tau)$, gdzie *d* oznacza odległość degradatora od tarczy, v - prędkość jonu przed przejściem przed degradator zaś τ – czas życia stanu. W przypadku dopasowania krzywej rozpadu dla stanu o energii 279 keV konieczne było uwzględnienie zasilania tego stanu przez przejście o energii 449 keV. W wyniku analizy otrzymano następujące wartości czasów życia trzech stanów wzbudzonych: $\tau = 31(8)$ ps dla stanu o energii 728 keV rozpadającego się przez przejście γ o energii 449 keV.

Rys. 5.7. Widma promieniowania γ ⁴⁸K z uwzględnioną poprawką dopplerowską. (a)-(d) Przejścia o energii 143, 279 i 449 keV pokazano dla czterech różnych odległości degradatora od tarczy. Widoczna jest separacja składowych pochodzących od kwantów γ emitowanych przed degradatorem (przejścia przesunięte do niższych energii) oraz emitowanych po degradatorze (przejścia o poprawnie uwzględnionej poprawce dopplerowskiej). Stosunek natężeń tych dwóch składowych posłużył do wyznaczenia czasów życia stanów [Kro11].

Rys. 5.8. Zmierzone w eksperymencie wartości stosunku *R* dla różnych odległości degradatora od tarczy oraz dopasowania, na podstawie których wyznaczono czasy życia stanów, które rozpadają się poprzez przejścia γ o energii 143, 279 i 449 keV. W wyznaczaniu czasu życia stanu o energii wzbudzenia 279 keV uwzględniono zasilanie tego stanu przez przejście γ o energii 449 keV [Kro11].

Dla wszystkich trzech stanów wyliczono zredukowane prawdopodobieństwa przejść przy założeniu, że przejścia γ o energii 143, 279 i 449 keV mają charakter magnetycznych przejść dipolowych *M1*. W tym celu uwzględniono stosunki rozgałęzień dla przejść o energii 449 i 585 keV. Otrzymano następujące wartości zredukowanych prawdopodobieństw przejść *B(M1)* wyrażone w jednostkach Weisskopfa: 0.35(9) W.u., 0.19(4) W.u. oraz 0.07(1) W.u., odpowiednio dla przejść o energii 143, 279 i 449 keV. Ponadto określono, że zredukowane prawdopodobieństwo przejścia *B(M1)* o energii 585 keV wynosi 0.0007(3) W.u. i jest zbliżone do wartości *B(M1)* dla przejścia o energii 360 keV w⁴⁷K, która jest równa 0.0004(1) W.u. Pełna procedura oraz otrzymane w jej wyniku wartości są opisane i podane w tabeli w pracy [Kro11].

5.3 Określenie spinów i parzystości stanów oraz interpretacja schematu poziomów jądra ⁴⁸K

Izotop ⁴⁸K jest jednym z najbliższych sąsiadów podwójnie magicznego jądra ⁴⁸Ca i jako taki posiada stosunkowo prostą strukturę najniżej leżących stanów wzbudzonych. Wychodząc od przedstawionego na rys. 5.1 schematu położenia orbitali modelu powłokowego dla jąder o liczbach protonów i neutronów $8 \le N$, $Z \le 40$ widzimy, że widmo stanów wzbudzonych jądra ⁴⁸K, charakteryzującego się liczbami Z = 19 i N = 29, będzie zawierało stany, w których dziura protonowa zajmuje miejsce na orbitalu s_{1/2} lub d_{3/2}, zaś pojedynczy neutron znajduje się na orbitalu p_{3/2}. Ustalenie wzajemnego położenia stanów odpowiadających poszczególnym kombinacjom tych prostych konfiguracji przyniesie istotne informacje na temat oddziaływań dwuciałowych pomiędzy cząstkami neutronowymi a dziurami protonowymi na tych powłokach.

Wstępnej informacji na temat wzajemnego położenia wymienionych orbitali dostarcza analiza najniżej położonych stanów wzbudzonych w sąsiadujących izotopach. W szczególności, stwierdzenie, że dla najniższych stanów wzbudzonych w ⁴⁸K pojedynczy neutron zajmować może miejsce jedynie na orbitalu p_{3/2}, oparte jest o znany schemat wzbudzeń ⁴⁹Ca [Bur95], z którego wnioskować można, że stany związane z następnymi orbitalami p_{1/2} i f_{5/2} położone są przy energiach wzbudzenia wyższych o 2 MeV. Podobnie, z obserwacji najniżej położonych poziomów ⁴⁷K (patrz rozdz. 5.2) wywnioskować można, że dominujące konfiguracje protonowe odpowiadają dziurom protonowym na orbitalach s_{1/2} i d_{3/2}, z których pierwsza związana jest ze stanem podstawowym 1/2⁺, druga z pierwszym stanem wzbudzonym 3/2⁺ o energii 360 keV, zaś następny stan wzbudzony przy energii 2020 keV jest stanem izomerycznym 7/2⁻ powstałym przez wzbudzenie jednej cząstki protonowej przez szczelinę przy Z = 20 do wyżej położonego orbitalu f_{1/2} [Wei04].

Podsumowując te rozważania, w jądrze ⁴⁸K spodziewać się należy, że przy niskich energiach wzbudzenia zlokalizowanych będzie sześć stanów o parzystości ujemnej: dublet (1⁻, 2⁻) powstały ze sprzężenia $\pi s_{1/2}^{-1} \otimes v p_{3/2}$ oraz kwadruplet (0⁻, 1⁻, 2⁻, 3⁻) powstały ze sprzężenia $\pi d_{3/2}^{-1} \otimes v p_{3/2}$. Stany zawierające w konfiguracji dziurę protonową w orbitalu s_{1/2} powinny znajdować się poniżej stanów, które odpowiadają konfiguracji $\pi d_{3/2}^{-1}$. Natomiast najniżej leżące stany o parzystości dodatniej odpowiadać będą konfiguracji, w której neutron na orbitalu p_{3/2} sprzężony będzie z protonem (cząstką) na pierwszym dostępnym orbitalu f_{7/2}. To sprzężenie stworzyć może kwadruplet stanów o dodatniej parzystości o wartościach spinu *I* = 2 do 5. Stan 5⁺ o maksymalnym uszeregowaniu spinów powinien wystąpić przy najniższej energii wzbudzenia i być stanem yrastowym rozpadającym się do niżej leżącego stanu o parzystości ujemnej i najwyższym możliwym spinie 3⁻.

Schemat poziomów ⁴⁸K wyznaczony w pracy [Kro11] i przedstawiony na rys. 5.5 jest zgodny z przedstawionymi rozważaniami. Główna kaskada przejść γ o energii 1449, 449 i 279 keV emitowanych w rozpadzie stanu izomerycznego odpowiada przewidywanej sekwencji stanów 5⁺ \rightarrow 3⁻ \rightarrow 2⁻ \rightarrow 1⁻. Energia wzbudzenia 2177 keV oraz czas połowicznego rozpadu 7.1 ns izomeru w ⁴⁸K są

zbliżone do energii wzbudzenia 2020 keV oraz czasu połowicznego rozpadu 6.3 ns odpowiadającego mu izomeru $7/2^-$ w ⁴⁷K. Dla przejścia 1449 keV, będącego dominującym kanałem rozpadu izomeru, wyznaczono zredukowane prawdopodobieństwo przejścia B(M2) = 0.051 W.u., co jest porównywalne z wartością B(M2) = 0.028 W.u. zmierzoną dla linii 1660 keV w rozpadzie izomeru w ⁴⁷K.

Z drugiej strony, zmierzone pikosekundowe wartości czasów życia stanów o energiach wzbudzenia 728 i 279 keV wskazują na multipolowość *M1* i wykluczają multipolowość *E2* dla przejść o energii 449 i 279 keV. To z kolei ustala spiny i parzystości 3⁻ i 2⁻ dla stanów o energii wzbudzenia 728 i 279 keV, jak również określa spin i parzystość 1⁻ stanu podstawowego. Proponowane oznaczenie spinu i parzystości stanu podstawowego różni się od podanego wcześniej w literaturze oznaczenia 2⁻ [Bur06]. Zaobserwowana struktura stanów wzbudzonych nie pozwala na przyporządkowanie spinu i parzystości 2⁻ dla stanu podstawowego. Dodatkowo, wcześniejsze oznaczenie 2⁻ stanu podstawowego było oparte wyłącznie na obserwacji rozpadu β ⁴⁸K, który został niedawno ponownie przeanalizowany [Bro08]. W rozpadzie nie zaobserwowano bezpośredniego zasilania znanych stanów 3⁻ w jądrze ⁴⁸Ca, co jest zgodne z obecnie proponowanym oznaczeniem 1⁻ stanu podstawowego ⁴⁸K.

Proste przewidywania modelu powłokowego wyróżniają konfigurację $\pi d_{3/2}^{-1} \otimes vp_{3/2}$ dla stanów oznaczonych jako 3⁻ i 2⁻ oraz konfigurację $\pi s_{1/2}^{-1} \otimes vp_{3/2}$ dla stanu podstawowego 1⁻. Pozostałe z pierwszego kwadrupletu stany 1⁻ i 0⁻ nie zostały zaobserwowane, zapewne z powodu nieyrastowego położenia, natomiast silnie zasilany poziom o energii wzbudzenia 143 keV jest naturalnym kandydatem na stan 2⁻ z dubletu konfiguracji $\pi s_{1/2}^{-1} \otimes vp_{3/2}$. Za taką interpretacją przemawia obserwacja słabego przejścia *M1* w rozpadzie stanu 3⁻ o energii wzbudzenia 728 keV. Określone dla tego przejścia prawdopodobieństwo przejścia *B(M1)* jest około 100 razy mniejsze niż dla głównego przejścia *M1* o energii 360 keV w ⁴⁷K (patrz wartości podane w poprzednim rozdziale oraz tabela w pracy [Kro11]). Drugim argumentem, który ustala oznaczenie 2⁻ dla poziomu 143 keV, jest obserwacja przejścia *E3* o energii 2034 keV zasilającego ten stan bezpośrednio z izomeru 5⁺. Wyznaczone prawdopodobieństwo *B(E3)* tego przejścia jest podobne do prawdopodobieństwa *B(E3)* odpowiadającego mu przejścia o energii 2020 keV w ⁴⁷K (patrz tabela w pracy [Kro11]).

Powyższa interpretacja oznaczeń najniższych stanów wzbudzonych ⁴⁸K nie budzi większych wątpliwości. Oznaczenie dwóch wyżej położonych stanów ⁴⁸K o energii wzbudzenia 3403 i 3586 keV jest w większym stopniu oparte na spekulacji. Przejścia γ o energii 2675 i 1409 keV, przez które rozpadają się wspomniane stany, zostały zaobserwowane w danych koincydencyjnych z eksperymentu z grubą tarczą. Oznacza to, że obydwa stany muszą mieć czasy życia dłuższe od czasu zatrzymania produktów reakcji w tarczy, czyli około 1 ps. Ta obserwacja praktycznie wyklucza multipolowość *M1* dla przejść o tak wysokiej energii i sugeruje charakter *E2* dla obu tych przejść. To z kolei sugeruje spin i parzystość 7⁺ dla stanu o energii wzbudzenia 3586 keV i 5⁻ dla stanu 3403 keV. Wyżej położony stan 3586 keV może być zinterpretowany jako wzbudzenie 2⁺ pary dziur protonowych, które w stanie izomerycznym 5⁺ sprzężone są do spinu 0⁺. Obserwowana energia przejścia 7⁺ \rightarrow 5⁺ dobrze zgadza się z energią wzbudzenia 1553 keV analogicznego stanu 2⁺ w jądrze ⁴⁶Ar. Z drugiej strony stan 5⁻ o energii wzbudzenia 3403 keV. Może być porównany do stanu 7/2⁻ o konfiguracji vf_{7/2} w ⁴⁹Ca o energii wzbudzenia 3357 keV.

5.4 Struktura stanów wzbudzonych w jądrze ⁴⁹K

W ⁴⁹K, izotopie potasu o liczbie neutronów N = 30, podobnie jak w jądrze ⁴⁷K, za dwa najniżej leżące poziomy, stan podstawowy jądra oraz pierwszy stan wzbudzony, odpowiadają konfiguracje jednocząstkowe – dziury protonowe – w orbitalach s_{1/2} i d_{3/2}. Są one sprzężne z parą neutronów ulokowaną na najniższej dostępnej powłoce neutronowej vp_{3/2}. Wyższe wzbudzenia w tym jądrze mogą być tworzone zarówno przez przeniesienie protonu do powłoki f_{7/2}, jak i przez rozerwanie pary neutronowej.

Informacje eksperymentalne na temat jądra ⁴⁹K zebrano w eksperymentach opisanych w rozdziale 5.2. Analiza przebiegała w podobny sposób jak dla izotopu ⁴⁸K. Zmierzone w eksperymencie przy użyciu układu PRISMA-CLARA proste widmo promieniowania γ skorelowane z produkowanymi w reakcji fragmentami ⁴⁹K pokazano na rys. 5.9. Na wykresie tym warto zwrócić uwagę na dużo mniejszą liczbę zliczeń odnotowanych w widmie promieniowania dla ⁴⁹K w porównaniu ze statystyką uzyskaną dla ⁴⁸K (rys. 5.3). Wynika to wprost z dużo słabszej produkcji tego bardziej egzotycznego oraz bardziej oddalonego od jądra pocisku, izotopu.

Rys. 5.9. Widmo promieniowania γ emitowanego przez fragmenty ⁴⁹K produkowane w reakcji ⁴⁸Ca + ²³⁸U zmierzone przy pomocy spektrometru PRISMA-CLARA [Bro10].

Do ustalenia schematu poziomów ⁴⁹K wykorzystano dane koincydencyjne z eksperymentu z grubą tarczą wykonanego przy użyciu układu GAMMASPHERE, które analizowano nakładając podwójne warunku koincydencyjne. Analiza, opisana szczegółowo w pracy [Bro10], wykazała, że zidentyfikowane w widmie prostym przejścia γ o energii 92 i 771 keV są w koincydencji; dodatkowo w koincydencji z nimi pozostają przejścia γ o energii 575 i 1241 keV. Zaobserwowana w widmie prostym linia o energii 1011 keV jest w koincydencji wyłącznie z przejściem o energii 92 keV.

Wyznaczony schemat poziomów ⁴⁹K zaprezentowany jest na rys. 5.10. Szczególnie ważna jest zaproponowana w tym schemacie kolejności przejść o energii 92 i 771 keV, która ustala energię pierwszego stanu wzbudzonego w tym jądrze. Mała intensywność przejścia γ o energii 92 keV w widmie uzyskanym przy pomocy spektrometru PRISMA-CLARA (rys. 5.9) sugerować może, że przejście to znajduje się powyżej przejścia o energii 771 keV. Taka kolejność jest jednak sprzeczna z obserwowanym natężeniem przejść o energii 575 i 1241 keV, z których każde jest w koincydencji zarówno z linią 92 keV jak i 771 keV. W analizie zwrócono uwagę na to, że przejście γ o energii 92 keV pojawia się z dużą statystyką w widmach koincydencyjnych uzyskanych w eksperymencie z grubą tarczą, stąd też można przypuszczać, że przejście to jest w pewien sposób tłumione w pomiarze

widma prostego spektrometrem PRISMA-CLARA. Istotnie jest to możliwe, jeśli założymy, że stan o energii 92 keV ma stosunkowo długi czas życia, rzędu kilku nanosekund, i, w związku z tym, część przejść γ o energii 92 keV emitowana jest w locie, w czasie kiedy fragment opuścił już środek układu PRISMA-CLARA, a więc pomiar tych przejść wykonywany jest ze zmniejszoną wydajnością. Ta cecha pomiarów układem PRISMA-CLARA jest doskonale zobrazowana przez prawie całkowity brak przejścia izomerycznego 1449 keV w widmie odpowiadającym fragmentom ⁴⁸K na rys. 5.3.

Rys. 5.10. Schemat stanów wzbudzonych jądra ⁴⁹K opracowany na podstawie danych z reakcji ⁴⁸Ca + ²³⁸U przy pomocy układu GAMMASPHERE oraz spektrometru PRISMA-CLARA [Bro10].

Potwierdzenie faktu, że przejście y o energii 92 keV jest istotnie zredukowane w widmie ze spektrometru PRISMA-CLARA ze względu na czas życia stanu, zostało uzyskane w eksperymencie, w którym mierzono czasy życia stanów metoda Plunger. Pomiar ten został opisany szczegółowo w części dotyczącej izotopu ⁴⁸K. Ponieważ fragmenty tworzone w tym eksperymencie przechodziły przez folię Mg o grubości 4 mg/cm², ich prędkość była dużo niższa, niż w pierwszym pomiarze spektrometrem PRISMA-CLARA. W efekcie, przejścia y emitowane ze stanów o czasach życia rzędu nanosekund były rejestrowane z większą wydajnością. Na rys. 5.11 zaprezentowano widmo promieniowania γ dla ⁴⁹K zmierzone w eksperymencie *Plunger*, w którym określono czasy życia stanów wzbudzonych. Pokazane widmo jest sumą pomiarów wykonanych dla różnych odległości pomiędzy tarczą a degradatorem. Zwraca uwagę wyraźne wzmocnienie przejścia γ o energii 92 keV w porównaniu do poprzedniego eksperymentu (patrz rys. 5.9). Natomiast widoczne również na widmie przejścia γ o energii 575 i 771 keV wykazuja podwójna strukture wynikająca z emisji kwantów γ przed i po przejściu fragmentu przez degradator, co wskazuje, że stany, w rozpadzie których emitowane są te przejścia, mają czasy życia w przedziale pikosekund. Przez porównanie prędkości fragmentów oraz geometrii obydwu eksperymentów oszacowano, że czas połowicznego rozpadu stanu o energii 92 keV jest nie mniejszy niż 3 ns. Górne ograniczenie czasu połowicznego rozpadu wynoszące 13 ns zostało uzyskane z obserwacji rozkładów czasowych koincydencji y-y przejść o energii 92 i 771 keV zmierzonych w eksperymencie z grubą tarczą. Cała procedura opisana jest szczegółowo w pracy [Bro10].

Niezależnie od oszacowania czasu połowicznego rozpadu stanu o energii 92 keV, w tym samym eksperymencie z układem *Plunger* zmierzono czasy życia stanów rozpadających się poprzez emisję kwantów γ o energii 771 i 575 keV, które wynoszą odpowiednio $\tau = 3.2(6)$ dla stanu wzbudzonego o energii 863 keV i $\tau = 4.9(10)$ ps dla stanu wzbudzonego o energii 1438 keV. Zastosowano przy tym procedurę identyczną do tej opisanej w rozdziale 5.2, dotyczącej pomiaru czasów życia stanów w ⁴⁸K. Zmierzone czasy życia obydwu stanów mieszczą się w przedziale typowym dla przejść *M1* o porównywalnych energiach przejścia znanych w sąsiednich jądrach, tak jak na przykład przejście *M1* o energii 780 keV w ⁴⁸Ca o czasie życia 1.7 ps. Z drugiej strony, zmierzone czasy życia są o rząd wielkości niższe od czasów życia typowych dla porównywalnych przejść *E2*, na przykład 70.7 ps dla przejścia *E2* o energii 1026 keV w jądrze ⁵⁰Ca.

Rys. 5.11. Widmo promieniowania γ dla fragmentów ⁴⁹K z eksperymentu *Plunger*, w którym określono czasy życia stanów wzbudzonych. Widmo uzyskano poprzez dodanie widm zmierzonych dla różnych odległości degradatora od tarczy. Obserwowane wzmocnienie przejścia γ o energii 92 keV w porównaniu z widmem z rys. 5.9 świadczy o długim, co najmniej nanosekundowym, czasie życia tego stanu. Przejścia γ o energii 575 i 771 keV wykazują podwójną strukturę wynikającą z emisji kwantów γ przed i po przejściu fragmentu przez degradator co wskazuje na pikosekundowe czasy życia stanów, które rozpadają się poprzez te przejścia [Bro10].

Schemat stanów wzbudzonych ⁴⁹K przedstawiony na rys. 5.10 zakłada, że stan podstawowy tego jądra ma spin i parzystość $1/2^+$, zaś pierwszy stan wzbudzony to $3/2^+$. Odwrócona sekwencja tych dwóch stanów została wykluczona ze względu na strukturę obserwowanych przejść γ . W szczególności, obserwacja przejścia γ o energii 863 keV pozostaje w zgodzie z zaproponowanymi oznaczeniami spinu i parzystości. Poziom o energii 863 keV jest to najprawdopodobniej stanem $5/2^+$, który rozpada się przez silne przejście o energii 771 keV i multipolowości *M1* do stanu $3/2^+$ i dużo słabsze przejście 863 keV o multipolowości *E2* do stanu $1/2^+$. Obserwowany stosunek natężeń tych dwóch przejść γ nie pozwala na odwrócenie kolejności stanów $1/2^+$ i $3/2^+$. Założenie, że stan odpowiadający dziurze w powłoce protonowej $s_{1/2}$ jest stanem podstawowym ⁴⁹K, zaś stan odpowiadający dziurze w orbitalu protonowym $d_{3/2}$ jest pierwszym stanem wzbudzonym o energii 92 keV zgodne jest także z obserwowanym czasem życia stanu $3/2^+$. W izotopie ⁴⁷K występuje podobna sekwencja spinów a pierwszy stan wzbudzony o energii 360 keV charakteryzuje się czasem połowicznego rozpadu $T_{1/2} = 1.1(3)$ ns. Długi czas życia tego stanu odzwierciedla zabroniony charakter przejścia *M1* pomiędzy powłokami $d_{3/2} \rightarrow s_{1/2}$. Innym argumentem potwierdzającym

oznaczenie $3/2^+$ dla pierwszego stanu wzbudzonego o energii 92 keV jest silna bezpośrednia populacja tego stanu w reakcjach głęboko-nieelastycznych. Dominująca populacja stanów yrastowych jest jedną z podstawowych cech charakteryzujących te reakcje.

Należy wspomnieć, że wcześniejsze próby wyznaczenia spinu i parzystości stanu podstawowego izotopu ⁴⁹K w pomiarach rozpadu β sugerowały oznaczenie 3/2⁺ [Car82]. Autorom cytowanej pracy nie udało się jednak wyznaczyć populacji stanów końcowych w jądrze ⁴⁹Ca ponieważ dominujący kanał rozpadu ⁴⁹K to β -n (86%). Na podstawie tych danych oznaczenie spinu stanu podstawowego 1/2⁺ jest także możliwe.

W otrzymanym schemacie poziomów jądra ⁴⁹K stan o energii 2104 keV wydaje się być kandydatem na poziom uzyskany w wyniku przeniesienia jednego protonu przez szczelinę energetyczną Z = 20 do powłoki $\pi f_{7/2}$ przy utrzymaniu dwóch walencyjnych neutronów sprzężonych w parę o spinie i parzystości 0⁺. W takim układzie stan ten będzie miał spin i parzystość 7/2⁻. Pozostałe wyznaczone stany ⁴⁹K można zinterpretować jako konfiguracje związane z dziurą w powłoce protonowej $\pi s_{1/2}$ lub $\pi d_{3/2}$ sprzeżną ze wzbudzoną parą neutronów walencyjnych o spinie i parzystości 2^+ . Takie sprzężenie pozwala na utworzenie stanów $3/2^+$, $5/2^+$ w pierwszym przypadku oraz stanów $1/2^+$, $3/2^+$, $5/2^+$ i $7/2^+$ w drugim przypadku. Tylko stany o najwyższych spinach będą obserwowane w opisywanym eksperymencie ze wzgledu na dominujące zasilanie stanów vrastowych. Stad też oczywiste jest oznaczenie $5/2^+$ dla stanu wzbudzonego o energii 863 keV – patrz dyskusja wyżej. W takim układzie, wyżej leżący stan o energii 1438 keV może być oznaczony jako 7/2⁺ i będzie odpowiadał konfiguracji $\pi d_{3/2}^{-1} v p_{3/2}^{2}$. Zmierzone dla obydwu tych stanów czasy życia sugerujące multipolowości M1 przejść 771 keV i 575 keV potwierdzają te oznaczenia. Oznaczenie stanu wzbudzonego o energii 1103 keV, który nie jest połączony z główną kaskadą schematu poziomów, jest najbardziej watpliwe. Dominujące w reakcji zasilanie stanów yrastowych sugeruje możliwe oznaczenie $5/2^+$, a, jak wskazano na rys. 5.10, możliwe jest także alternatywne oznaczenie $3/2^+$.

5.5 Systematyka najniższych stanów wzbudzonych w nieparzystych izotopach potasu

Spiny i parzystości stanów podstawowych i nisko leżących stanów wzbudzonych w izotopach potasu są dobrze znane w przypadku izotopów nieparzystych od stabilnego izotopu ³⁹K o liczbie neutronów N = 20 do neutrono-nadmiarowego izotopu ⁴⁷K o liczbie neutronów N = 28. W opisywanych tutaj pracach zidentyfikowano i zbadano strukturę stanów wzbudzonych kolejnych izotopów potasu: ⁴⁸K i ⁴⁹K. Na rys. 5.12 zebrano systematykę energii wzbudzenia najniżej leżących stanów wzbudzonych $1/2^+$, $3/2^+$ i $7/2^-$ w nieparzystych izotopach potasu od ³⁹K do ⁴⁹K.

Wzajemne położenie orbitali protonowych $s_{1/2}$ i $d_{3/2}$ zmienia się znacząco począwszy od izotopu ³⁹K o liczbie neutronów N = 20, w którym stan odpowiadający dziurze protonowej w orbitalu $\pi d_{3/2}$ jest stanem podstawowym, zaś wzbudzenie stanu $\pi s_{1/2}^{-1}$ wymaga energii ponad 2.5 MeV. Wraz z zapełnianiem powłoki neutronowej $f_{7/2}$ w coraz cięższych nieparzystych izotopach potasu energia stanu $\pi s_{1/2}^{-1}$ obniża się, aż do przecięcia ze stanem $\pi d_{3/2}^{-1}$ dla jądra ⁴⁷K o liczbie neutronów N = 28. Ta kolejność dwóch najniżej leżących stanów, stanu podstawowego $1/2^+$ i pierwszego stanu wzbudzonego $3/2^+$, zachowana jest także dla kolejnego nieparzystego izotopu ⁴⁹K, przy czym, w tym ostatnim jądrze odległość pomiędzy dwoma stanami zredukowana jest do 92 keV. Efekt ten został wcześniej opisany na przykładzie energii stanów jednocząstkowych izotopów Ca i wyjaśniony poprzez oddziaływanie pomiędzy nukleonami znajdującymi się na wybranych orbitalach neutronowych i protonowych, tak zwany efekt monopolowy sił tensorowych [Ots05]. Ostatnio, zasugerowano, że za obserwowaną

zmianę wzajemnego położenia orbitali s_{1/2} i $d_{3/2}$ odpowiadają zarówno część tensorowa jak i centralna część oddziaływania jądrowego [Uts09, Uts11].

Rys. 5.12. Systematyka najniższych stanów wzbudzonych $1/2^+$, $3/2^+$ i $7/2^-$ w nieparzystych izotopach potasu od ³⁹K do ⁴⁹K [Bro10].

Na rys. 5.12 zaprezentowano także systematykę energii wzbudzenia pierwszego stanu 7/2⁻ w nieparzystych izotopach potasu. Stan ten odpowiada konfiguracji, w której jeden proton przeniesiony jest poprzez szczelinę energetyczną i zajmuje miejsce na orbitalu $f_{7/2}$, zaś na orbitalu $s_{1/2}$ lub $d_{3/2}$ znajduje się para dziur protonowych. Warto zwrócić uwagę, że energia wzbudzenia stanu 7/2⁻ jest najniższa dla izotopu ⁴³K o liczbie neutronów N = 24, a więc w sytuacji gdy orbital neutronowy $f_{7/2}$ jest zapełniony w połowie i wynosi wtedy 738 keV. Zarówno dla ³⁹K, jak i dla ⁴⁷K, a więc przy pustym i zapełnionym w pełni orbitalu neutronowym $f_{7/2}$, energia wzbudzenia potrzebna do utworzenia takiego stanu jest większa od 2 MeV.

6. Badanie struktury stanów wzbudzonych neutrono-nadmiarowych izotopów niklu

Badania izotopów potasu bliskich jądra ⁴⁸Ca dostarczają informacji spektroskopowych, które mogą być użyte do testowania opisu bogatych w neutrony jąder z okolicy Z = 20 przy pomocy modelu powłokowego. Jeszcze bardziej interesująca pod tym względem jest struktura jąder z obszaru podwójnie magicznego jądra ⁷⁸Ni, którego natura do tej pory jest niezbadana. Wysiłki fizyków idą w tym przypadku w dwóch kierunkach: a) nowe badania neutrono-nadmiarowych jąder z obszaru ⁷⁸Ni tradycyjnymi metodami, czyli za pomocą reakcji fragmentacji lub przy użyciu procesów głęboko nieelastycznych, b) rozwijanie nowych metod badań przy użyciu wiązek radioaktywnych.

Badaniom struktury stanów wzbudzonych neutrono-nadmiarowych izotopów niklu o zamkniętej powłoce protonowej Z = 28 poświęcono wiele uwagi począwszy od publikacji pracy Rafała Brody i innych [Bro95], w której udowodniono istnienie zamkniętej podpowłoki neutronowej przy liczbie neutronów N = 40 w jądrze ⁶⁸Ni. Praca ta, była wielokrotnie wskazywana jako pierwszy przykład zastosowania reakcji głęboko nieelastycznych do badania struktury jąder neutrono-nadmiarowych. Dla neutrono-nadmiarowych izotopów Ni mamy do czynienia z liczbami neutronów zmieniającymi się od N = 40 dla ⁶⁸Ni do N = 50 dla jądra ⁷⁸Ni. Przy przejściu od N = 40 do 50 zapełniany jest sukcesywnie kolejny dostępny orbital neutronowy vg_{9/2}. Kolejność orbitali w jądrach z tego obszaru wraz z zaznaczonymi szczelinami energetycznymi przy liczbach protonów i neutronów odpowiadających zamkniętym powłokom pokazana jest schematycznie na rys. 6.1.

Rys. 6.1. Schemat położenia orbitali modelu powłokowego dla jąder o liczbach protonów $20 \le Z \le 40$ i neutronów $20 \le N$, $Z \le 50$. Wskazano szczeliny energetyczne przy liczbach Z = 28 oraz N = 28, 40 i 50.

Publikacja wyników wskazujących na zamknięcie podpowłoki neutronowej N = 40 dla ⁶⁸Ni sprowokowała dalsze badania neutrono-nadmiarowych izotopów niklu. Kolejne izotopy niklu badano

wykorzystując mechanizm produkcji egzotycznych jąder w procesie fragmentacji. W ten sposób poznano między innymi strukturę stanów wzbudzonych parzystych izotopów niklu od ⁷⁰Ni do ⁷⁶Ni. Uzyskane wyniki opisane są w następnym rozdziale poprzedzonym krótkim wstępem przybliżającym technikę przeprowadzonych pomiarów. W ostatnich latach użycie zaawansowanych układów detektorów germanowych pozwoliło na rozszerzenie badań opartych o reakcje głęboko-nieelastyczne o izotopy ⁷⁰Ni i ⁷²Ni. Rezultaty tych badań dyskutowane są w kolejnym podrozdziale. W przyszłości, wykorzystanie wiązek radioaktywnych pozwoli na przesunięcie granicy badań produktów reakcji głęboko nieelastycznych dalej, w kierunku podwójnie magicznego jądra ⁷⁸Ni.

Jądro ⁷⁸Ni ma strukturę o dwóch zamkniętych powłokach – protonowej i neutronowej. Sprawia to, że do analizy i interpretacji struktury stanów wzbudzonych izotopów niklu o 68 < A < 78 może być użyty schemat *seniority* dla powłoki neutronowej g_{9/2} przy zamkniętej powłoce protonowej f_{7/2}. Zasada równoważnego traktowania cząstek i dziur pozwala także na interpretację struktury izotopów bliskich ⁷⁸Ni przez schemat *seniority*, w którym w miejsce cząstek rozważa się obsadzanie powłoki g_{9/2} dziurami neutronowymi.

6.1 Produkcja jąder egzotycznych w procesie fragmentacji oraz badania rozpadu fragmentów

W typowym eksperymencie wykorzystującym proces fragmentacji ciężkich jonów stabilna wiązka, przyspieszona do wysokiej energii rzędu kilkudziesięciu lub kilkuset MeV na nukleon, rozpraszana jest na grubej tarczy zwanej tarczą produkcyjną. Ze względu na wysoką energię wiązki pierwotnej produkty reakcji wychodzą z tarczy produkcyjnej jako zmieszana wiązka izotopów stabilnych i radioaktywnych o znacznym i stosunkowo dobrze określonym pędzie skierowanym do przodu, zbliżonym do pędu wiązki pierwotnej. Taka zmieszana wiązka jest następnie analizowana w separatorze produktów przez układ odpowiednio dobranych pól magnetycznych i elektrycznych by wybrać z niej interesujące fragmenty. Są one następnie spowalniane lub też dostarczane do eksperymentu jako wiązka wtórna wysokiej energii. Zasada produkcji wiązek radioaktywnych w procesie fragmentacji pokazana jest w postaci schematu blokowego na rys. 6.2.

Rys. 6.2. Schemat ilustrujący produkcję wiązek radioaktywnych w procesie fragmentacji.

Sam proces fragmentacji zachodzący w tarczy produkcyjnej wykorzystuje zjawisko obdzierania jąder wiązki z nukleonów w peryferyjnych zderzeniach jąder pocisku z jądrami tarczy przy wysokich energiach zderzenia. Stożek rozpraszania wiązki wtórnej jest ograniczony ze względu

na dużą masę i wysoką energię jonów wiązki pierwotnej. W procesie tym tracona jest tylko niewielka część energii kinetycznej wiązki pierwotnej, zwykle mniej niż 10%, dlatego wiązka wtórna ma także wysoką energię rzędu kilkudziesięciu lub kilkuset MeV na nukleon.

W opisywanych w kolejnych rozdziałach eksperymentach wybrane izotopy wiązki wtórnej implantowane były do detektorów krzemowych służących bezpośrednio do obserwacji rozpadów radioaktywnych. Ponieważ dla osiągnięcia maksymalnej wydajności układu pomiarowego ważne jest, aby jony implantowane były w środek detektora, jony wiązki były wcześniej spowalniane do wybranej energii przy pomocy degradatora o zmiennej grubości. Detektory krzemowe otoczone były zestawem detektorów germanowych do pomiaru kwantów γ emitowanych w rozpadach. W ten sposób obserwowano zarówno kwanty γ towarzyszące rozpadom radioaktywnym β , jak i rozpady stanów izomerycznych. W przypadku rozpadów β , o zajściu rozpadu świadczyła detekcja elektronu w detektorze krzemowym, do którego zaimplantowano radioaktywny fragment.

Ważną cechą tego typu pomiarów jest czułość na rozpady o czasach życia z określonego przedziału. Dolną granicę przedziału czasów życia określa średni czas przelotu fragmentów od tarczy produkcyjnej do detektora oraz czas martwy samego detektora krzemowego po implantacji fragmentu. Typowa wartość dolnej granicy czasu życia to kilkadziesiąt do stu nanosekund. Przedział czułości tej metody ograniczony jest także od góry przez zjawisko koincydencji przypadkowych, które, przy długich czasach rozpadu, uniemożliwiają właściwą korelację przejść obserwowanych w rozpadzie z mającą miejsce wcześniej implantacją fragmentu. W zależności od segmentacji użytego detektora, a także od zastosowanej elektroniki i akwizycji, górna granica przedziału czułości tej metody może sięgać wartości od kilku do kilkuset milisekund.

W produkcji i badaniach jąder egzotycznych w procesach fragmentacji wyspecjalizowały się laboratoria GANIL Caen oraz GSI Darmstadt w Europie, laboratorium NSCL przy Michigan State University w Stanach Zjednoczonych oraz ośrodek badań jądrowych RIKEN w Japonii.

6.2 Struktura stanów wzbudzonych parzystych izotopów Ni: stany izomeryczne 8⁺ w jądrach ⁷⁰Ni i ⁷⁶Ni oraz stany pasma podstawowego w jądrach ⁷²Ni i ⁷⁴Ni

Pierwsze badania struktury stanów wzbudzonych parzystego izotopu ⁷⁰Ni przeprowadzono przy użyciu separatora produktów fragmentacji składającego się ze spektrometrów Alpha i LISE3 w laboratorium w GANIL [Grz98]. W eksperymencie użyto wiązki ⁸⁶Kr o energii 60 MeV/nukleon i tarczy produkcyjnej ^{nat}Ni o grubości 100 μ m. Wyselekcjonowane produkty implantowane były do planarnych detektorów krzemowych otoczonych układem detektorów germanowych rejestrujących promieniowanie γ . W pomiarach możliwa była pełna identyfikacja izotopowa produktów oraz przyporządkowanie im przejść γ emitowanych w rozpadzie stanów izomerycznych o czasach życia z przedziału od kilkuset nanosekund do setek mikrosekund [Grz95]. W eksperymencie zaobserwowano rozpady szeregu znanych wcześniej stanów izomerycznych w jądrach z tego obszaru, w tym izomeru 5⁻ w ⁶⁸Ni. Zidentyfikowano także nieznaną wcześniej kaskadę będących w koincydencji przejść γ , którą przyporządkowano do kolejnego parzystego izotopu niklu ⁷⁰Ni.

Na rys. 6.3(a) pokazany jest zaproponowany w pracy [Grz98] schemat rozpadu izomeru w ⁷⁰Ni, którego spin i parzystość określono jako 8⁺. Obserwowana kaskada przejść γ ustala strukturę nisko leżących stanów yrastowych tego jądra. Wyznaczono także czas połowicznego rozpadu izomeru, który wynosi 210(50) ns.

Izomer 8⁺ w ⁷⁰Ni został zinterpretowany jako jeden z serii izomerów *seniority* v = 2, w których spin 8⁺ jest maksymalnym spinem możliwym do uzyskania z konfiguracji $(vg_{9/2})^2$, to jest pary

neutronów znajdujących się na orbitalu $g_{9/2}$. Występowanie izomerów o tej samej strukturze przewidziane zostało przez obliczenia modelowe także dla kolejnych parzystych neutrononadmiarowych izotopów Ni: ⁷²Ni, ⁷⁴Ni i ⁷⁶Ni [Pfu97, Grz98, Lew99], w których walencyjne neutrony zajmują w pierwszej kolejności miejsca na orbitalu $g_{9/2}$. Stany te są odpowiednikiem protonowych izomerów *seniority* v = 2 8⁺ w izotonach N = 50: ⁹²Mo, ⁹⁴Ru, ⁹⁶Pd i ⁹⁸Cd [Grz97, Gor97]. Ich izomeryczność wynika wprost ze wzbronionego charakteru przejść *E2* pomiędzy stanami o tej samej liczbie *seniority* v. Właściwość ta zaznacza się szczególnie mocno, gdy powłoka zawierająca *n* walencyjnych nukleonów zapełniona jest mniej więcej w połowie [Ch84].

Rys. 6.3. Schematy stanów wzbudzonych jąder ⁷⁰Ni (a) i ⁷⁶Ni (b) wskazujące położenie izomerów 8⁺ zidentyfikowanych w badaniach rozpadów produktów fragmentacji [Grz98, Maz05].

Kolejne badania parzystych, neutrono-nadmiarowych izotopów Ni przyniosły informacje na temat yrastowych stanów wzbudzonych w jądrach ⁷²Ni i ⁷⁴Ni, jednak nie ujawniły istnienia stanów izomerycznych [Saw03, Maz05]. W eksperymentach tych wykorzystywano także mechanizm produkcji egzotycznych izotopów w procesie fragmentacji, jednak, wobec niezaobserwowania stanów izomerycznych, strukturę stanów wzbudzonych jąder Ni badano w pomiarach rozpadów β izotopów Co. Ze względu na relatywnie wysokie spiny stanów podstawowych nieparzysto-nieparzystych izotopów Co (postulowane I^π = 6⁻ lub 7⁻ dla stanu podstawowego ⁷²Co), w rozpadach tych zasilane są nisko leżące stany yrastowe jądra produktu. W ten sposób zidentyfikowano strukturę pasm podstawowych do stanu o 6⁺ w jądrze ⁷²Ni [Saw03], patrz rys. 6.4(a), oraz do stanu 4⁺ w jądrze ⁷⁴Ni [Maz05], patrz rys. 6.4(b).

W przypadku kolejnego parzystego izotopu ⁷⁶Ni dość wcześnie uzyskano wskazówkę, że w jądrze tym może istnieć stan izomeryczny o czasie życia rzędu kilkuset nanosekund [Saw04], jednak w pierwszym pomiarze, ze względu na uzyskaną niewystarczającą statystykę w widmie γ , nie udało się ustalić schematu jego rozpadu. Dokładne dane potwierdzające istnienie izomeru, a także wyznaczające strukturę pasma podstawowego ⁷⁶Ni, pochodzą z eksperymentu [Maz05] wykonanego przy użyciu układu o większej wydajności. W pomiarze wykonanym w laboratorium NSCL w Michigan State University wykorzystano reakcję fragmentacji wiązki ⁸⁶Kr o energii 140 MeV/nukleon na tarczy ⁹Be o grubości 440 mg/cm². Produkowane fragmenty były separowane i identyfikowane przy użyciu spektrometru A1900, a następnie implantowane do krzemowego detektora paskowego typu DSSD. Detektor DSSD umieszczony był wewnątrz układu do pomiaru elektronów emitowanych w rozpadzie β oraz otoczony segmentowanymi detektorami germanowymi układu SeGA, co

umożliwiało pomiar kwantów γ skorelowanych z implantacją fragmentu lub w koincydencji z rozpadem β tego fragmentu [Maz05].

Rys. 6.4. Schematy stanów wzbudzonych neutrono-nadmiarowych izotopów ⁷²Ni (a) oraz ⁷⁴Ni (b) wyznaczone w badaniach rozpadów β izotopów ⁷²Co [Saw03] i ⁷⁴Co [Maz05] produkowanych w procesie fragmentacji.

Schemat stanów wzbudzonych jądra ⁷⁶Ni zaproponowany w tej pracy pokazany jest na rys. 6.3(b). Uwzględnia on dwa wcześniej zaobserwowane przejścia γ o energiach 144 i 930 keV [Saw04], oraz pokazuje dwa kolejne zidentyfikowane w koincydencji przejścia, które wyznaczają stan izomeryczny przy energii 2.4 MeV o czasie połowicznego rozpadu 590 ns. Sekwencja obserwowanych przejść γ jest podobna do tej obserwowanej w jądrze ⁷⁰Ni, co wzmacnia proponowane oznaczenie stanu izomerycznego 8⁺.

Istnienie izomeru 8⁺ przewidziano we wszystkich neutrono-nadmiarowych parzystych izotopach Ni [Pfu97, Grz98, Lew99]. Brak obserwacji izomerów w jądrach ⁷²Ni i ⁷⁴Ni można wyrazić ilościowo poprzez określenie limitów czasów życia takiego stanu. I tak, w pracy [Saw03] wykluczono istnienie w tych dwóch jądrach stanów izomerycznych o czasach połowicznego rozpadu w przedziale od 20 ns do 3 ms.

6.3 Struktura stanów wzbudzonych jądra ⁷²Ni

Po identyfikacji izomerów 8⁺ o strukturze $(vg_{9/2})^2$ w jądrach ⁷⁰Ni i ⁷⁶Ni oraz wobec braku dowodów na istnienie takich stanów w izotopach ⁷²Ni i ⁷⁴Ni konieczne stało się zbadanie struktury tych jąder przy pomocy innych technik, które pozwoliłyby na wyznaczenie struktury yrastowych stanów wzbudzonych nieobsadzanych w rozpadach β izotopów Co.

Jednym z możliwych scenariuszy wyjaśniających brak stanu izomerycznego w ⁷²Ni jest sytuacja, w którym zwiększona kolektywność stanów o najniższych spinach spowodowałaby znaczne obniżenie energii stanu bądź stanów 6⁺. Taka sytuacja ma miejsce w jądrze ⁸⁶Zr o liczbie protonów Z = 40, które jest izotonem jądra ⁷⁴Ni (N = 46). W izotopie ⁸⁶Zr szczelina energetyczna pomiędzy stanami 8⁺ a 6⁺ wynosi 629 keV, to jest znacznie więcej niż 77 keV obserwowane dla sąsiedniego

jądra ⁸⁸Zr. W efekcie, czas połowicznego rozpadu stanu 8⁺ wynosi 46 ps dla ⁸⁶Zr, zaś dla ⁸⁸Zr stan ten jest izomeryczny i ma czas połowicznego rozpadu 1.7 μ s. Innym czynnikiem, który mógłby spowodować krótki czas życia stanu 8⁺ w ⁷²Ni byłaby obecność stanu 6⁺ o *seniority* v = 4 w małej odległości od poziomu 6⁺ _{v=2}. Obecność takiego poziomu 6⁺ _{v=4} pozwoliłaby na szybki rozpad stanu 8⁺ z prawdopodobieństwem przejścia *B*(*E*2) dużo większym niż w przypadku rozpadu do czystego stanu 6⁺ _{v=2} [Gra02].

Dla określenia struktury stanów yrastowych jądra ⁷²Ni wykonano eksperyment, w którym układ detektorów germanowych GAMMASPHERE użyty został do pomiarów koincydencyjnych promieniowania γ emitowanego w zderzeniach głęboko nieelastycznych jąder wiązki ⁷⁶Ge z jądrami tarczy ²⁰⁸Pb i ¹⁹⁸Pt [Chi11]. Wiązka ⁷⁶Ge o energii 450 MeV przyspieszana była w akceleratorze ATLAS w Argonne National Laboratory, zaś użyte tarcze ²⁰⁸Pb i ¹⁹⁸Pt miały grubość odpowiednio 56 mg/cm² i 31 mg/cm², tak więc spełniały warunki typowego eksperymentu z grubą tarczą, którego technika została opisana w rozdziale 4.1. Dodatkowo, pulsowanie wiązki z interwałem 412 ns pozwoliło na separację zdarzeń natychmiastowych *in-beam*, skorelowanych z pulsem wiązki, od koincydencji opóźnionych *off-beam*, pochodzących od rozpadów radioaktywnych i izomerycznych.

W reakcjach z wiązką ⁷⁶Ge izotop ⁷²Ni jest produkowany w procesach, w których z jądra pocisku usuwane są cztery protony, a więc w kanale –4p. Proces taki może w odpowiednich warunkach mieć przekrój czynny wyższy od przekroju czynnego na produkcję tego samego izotopu w reakcjach, w których transferowana są same neutrony, a jako pocisku używa się mniej neutrononadmiarowego izotopu tego samego pierwiastka. Sytuacja ta opisana została w pracy [Bro06], gdzie wykazano, że przekrój czynny na produkcję neutrono-nadmiarowych izotopów Ni w procesach transferu neutronów do jądra wiązki ⁶⁴Ni szybko spada wraz z oddalaniem się od stabilnego jądra pocisku i już dla izotopu ⁷⁰Ni jest mniejszy od przekroju czynnego na produkcję tego jądra w procesach obejmujących usunięcie protonów i neutronów z cięższego jądra wiązki ⁷⁶Ge, patrz rys. 6.5. W przypadku badań, których celem jest izotop ⁷²Ni, porównać należy produkcję tego izotopu w kanale –4p przy użyciu wiązki ⁷⁶Ge z jego populacją w kanale +8n przy użyciu wiązki ⁶⁴Ni, tak więc można założyć, że użycie wiązki ⁷⁶Ge jest w tym przypadku wyborem optymalnym.

Rys. 6.5. Porównanie przekrojów czynnych na produkcję neutrono-nadmiarowych izotopów Ni w reakcjach wiązek ⁶⁴Ni oraz ⁷⁶Ge rozpraszanych na tarczy ²⁰⁸Pb [Bro06].

Silne przekroje czynne kanału -4p w procesach głęboko nieelastycznych zostały wcześniej wykorzystane w badaniach izotopu ⁶⁰Cr przy użyciu wiązki ⁶⁴Ni rozpraszanej na tarczy ²³⁸U

[Zhu2006], a także izotopu ⁶⁶Fe w reakcji wiązki ⁷⁰Zn z tarczą uranową [Fio10]. Dodatkowym argumentem za użyciem obok tarczy ²⁰⁸Pb także tarczy z izotopu ¹⁹⁸Pt, jest spodziewane wzmocnienie kanału –4p w reakcji na tarczy Pt o liczbie protonów Z = 78. W kanale tym cztery protony będą transferowane do jądra tarczy tworząc szczególnie stabilne fragmenty o zamkniętej powłoce protonowej Z = 82.

Rys. 6.6. Wybrane widma pochodzące z analizy koincydencyjnej potrójnych koincydencji kwantów γ z eksperymentu ⁷⁶Ge (450 MeV) + ¹⁹⁸Pt. (A) Widma koincydencyjne bramkowane parami przejść γ z kaskady 454 keV \rightarrow 843 keV \rightarrow 1095 keV w ⁷²Ni ze wskazanym trzecim przejściem potwierdzającym identyfikację tego izotopu. (B) Widma w przedziale niskich energii bramkowane parami przejść z tej kaskady oraz ich suma ze wskazanym nowo zidentyfikowanym przejściem γ o energii 199 keV [Chi11].

W poszukiwaniu stanu izomerycznego nowych stanów wzbudzonych w jądrze ⁷²Ni wykorzystano zidentyfikowane wcześniej w rozpadzie β energie przejść γ pasma podstawowego, patrz zaproponowany schemat rozpadu z rys. 6.4(a) [Saw03]. W danych pochodzących z reakcji ⁷⁶Ge (450 MeV) + ²⁰⁸Pb nie stwierdzono zdarzeń odpowiadających koincydencjom przejść γ o energiach 454, 843 i 1095 keV. Analizę przeprowadzono, stawiając podwójne bramki koincydencyjne na wszystkich trzech kombinacjach przejść γ i szukając śladów trzeciego przejścia γ o znanej energii. Procedurę tę wykonano dla zestawów danych odpowiadających natychmiastowej emisji przejść γ w zderzeniach *in-beam*, a także, celem wykluczenia istnienia stanu izomerycznego, dla danych obejmujących zdarzenia opóźnione względem impulsu wiązki *off-beam*. Podobną procedurę przeprowadzono dla zestawów danych zmierzonych dla reakcji ⁷⁶Ge (450 MeV) + ¹⁹⁸Pt. W tym przypadku zaobserwowano zdarzenia odpowiadające koincydencji trzech znanych wcześniej przejść γ

w danych *in-beam*. Na rys. 6.6(A) pokazano wybrane fragmenty widm koincydencyjnych bramkowanych parami przejść, w których w każdym wypadku wyróżnić można linie odpowiadające energią trzeciemu przejściu γ z kaskady pasma podstawowego $6^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$ w jądrze ⁷²Ni. Wynik ten dowodzi, że izotop ⁷²Ni był produkowany w reakcji wiązki ⁷⁶Ge z tarczą ¹⁹⁸Pt. Fakt, że koincydencji tych nie zaobserwowano w reakcji z tarczą ²⁰⁸Pb sugeruje, że kanał –4p reakcji jest tak jak zakładano wzmocniony, w sytuacji gdy transfer po stronie jąder tarczy prowadzi do tworzenia szczególnie stabilnych fragmentów o liczbie protonów Z = 82.

Koincydencje trzech przejść stanu podstawowego jądra ⁷²Ni zaobserwowano wyłącznie w danych in-beam. Nie stwierdzono ich w danych off-beam odpowiadających zdarzeniom opóźnionym, czyli na przykład rozpadom izomerycznym. Aby wykluczyć obecność w badanym jądrze izomeru o krótkim, nanosekundowym czasie życia wyprodukowano dodatkowy zestaw danych koincydencyjnych, w którym ograniczono obszar off-beam do koincydencji zachodzących krótko po impulsie wiązki, do 50 ns opóźnienia. Jednak i w tak wybranych danych, w których dodatkowy warunek pozwolił na redukcję tła pochodzącego od zdarzeń przypadkowych, nie stwierdzono koincydencji trzech znanych przejść y. Ponieważ kaskada ta została odnaleziona jedynie w zdarzeniach natychmiastowych *in-beam*, możliwe było stwierdzenie, że w jadrze ⁷²Ni nie istnieje yrastowy stan izomeryczny o czasie połowicznego rozpadu dłuższym od około 20 ns [Chi11].

Dalsza analiza danych koincydencyjnych pozwoliła na uzupełnienie schematu poziomów ⁷²Ni o kolejne przejście γ o energii 199 keV. Jak pokazano na rys. 6.6(B) linię o tej energii zidentyfikowano we wszystkich widmach odpowiadających parom bramek 1095-843 keV, 1095-454 keV i 843-454 keV. Przez analogię do znanych struktur stanów wzbudzonych jąder ⁷⁰Ni i ⁷⁶Ni stan o energii 2590 keV, rozpadający się przez emisję kwantu γ o energii 199 keV, oznaczono jako poziom 8⁺. Z wcześniejszej analizy wynika, że w jądrze ⁷²Ni czas połowicznego rozpadu stanu 8⁺ jest krótszy niż 20 ns [Saw03]. W analizie koincydencyjnej nie zaobserwowano przejść γ o energiach 1195 i 1069 keV, które zostały w ostatnim czasie zidentyfikowane i przypisane do jądra ⁷²Ni w badaniach rozpadu β ⁷²Co [Raj11], jednak nieobecność tych przejść może być związana z ich nieyrastowym charakterem.

Rys. 6.7. Systematyka stanów wzbudzonych pasm podstawowych parzystych neutrono-nadmiarowych izotopów niklu od ⁷⁰Ni do ⁷⁶Ni. Dla izotopu ⁷²Ni pokazano omówiony w tym rozdziale schemat poziomów zaproponowany w pracy [Chi11].

Schemat poziomów jądra ⁷²Ni zaproponowany w pracy [Chi11] pokazany jest na rys. 6.7, wraz ze schematycznie pokazaną strukturą stanów wzbudzonych sąsiednich izotopów parzystych Ni ⁷⁰Ni, ⁷⁴Ni oraz ⁷⁶Ni. Energia wzbudzenia stanu 8⁺, wynosząca 2590 keV, jest podobna do energii wzbudzenia stanów 8⁺ w izotopach ⁷⁰Ni: 2860 keV, oraz w ⁷⁶Ni: 2420 keV.

Porównując czasy życia stanów izomerycznych 8⁺ w izotopach ⁷⁰Ni i ⁷⁶Ni oraz skalując je energią przejść 8⁺ \rightarrow 6⁺ w prostym schemacie *seniority*, to jest zakładając *seniority* v = 2 dla stanów 6⁺, otrzymujemy oczekiwany czas połowicznego rozpadu stanu 8⁺ rozpadającego się przez przejście γ o energii 199 keV w ⁷²Ni około 1 µs [Chu84]. Ponieważ obserwowany stan 8⁺ ma czas połowicznego rozpadu krótszy niż 20 ns prawdopodobieństwo przejścia $B(E2; 8^+ \rightarrow 6^+)$ jest wzmocnione o czynnik około 50 lub więcej.

Takie wzmocnienie prawdopodobieństwa przejścia zgodne jest z modelem zaproponowanym przez van Isackera, który przewiduje obniżenie energii stanu 6⁺ o liczbie *seniority* v = 4 do wartości porównywalnej z $6^+_{v=2}$ [Isa11]. W modelu tym wskazano, że w jądrach, w których cztery identyczne cząstki (protony lub neutrony) zajmują miejsca na powłoce $g_{9/2}$ występować będą pary stanów $4^+_{\nu=2,4}$ oraz $6^+_{v=2, 4}$, co więcej, obydwa stany 6^+ ulokowane będą poniżej poziomu 8^+ . Takie obniżone położenie stanów $4^+_{y=4}$ i $6^+_{y=4}$ oznacza duże wartości prawdopodobieństw przejść B(E2) dla przejść $8^+_{\nu=2} \rightarrow 6^+_{\nu=4}$ oraz $6^+_{\nu=4} \rightarrow 4^+_{\nu=4}$ i wskazuje na dominującą ścieżkę rozpadu stanu 8^+ . Zaproponowany model został użyty do interpretacji obserwowanych prawdopodobieństw przejść w parzystych izotonach N = 50: ⁹⁴Ru i ⁹⁶Pd, które mają cztery walencyjne protony lub dziury protonowe w powłoce g_{9/2} [Isa08]. Ze względu na stosunkowo wysoką energię wzbudzenia pierwszych stanów wzbudzonych 2^+ w tych jądrach, które wynosi około 1.5 MeV, stany 4^+ i 6^+ o *seniority* v = 4 są w tych jądrach położone powyżej stanów 4⁺ i 6⁺ o *seniority* v = 2 i pewnie też powyżej stanu 8⁺. Jednak w przypadku izotopów ^{72, 74}Ni niższe energie wzbudzenia pierwszych stanów 2⁺, wynoszące około 1.1 MeV, obniżają energie wzbudzenia stanów 4⁺ i 6⁺ o *seniority* v = 4 tak, że mogą one znajdować się nawet poniżej ich odpowiedników o liczbie seniority v = 2. Szczegółowa dyskusja modelu algebraicznego PSQ (Pairing, Seniority, and Quasi-spin algebra calculations) dla izotopów Ni zawarta jest w pracy [Isa11], zaś porównanie obliczeń modelu z zaproponowanym schematem poziomów ⁷²Ni ujęte jest w pracy [Chi11].

6.4 Nowe badania struktury stanów wzbudzonych izotopów ⁶⁴Ni, ⁶⁶Ni i ⁶⁸Ni

Równolegle z badaniami jąder egzotycznych, znajdujących się na granicy zasięgu współczesnych metod badawczych, prowadzone są prace poszerzające i uzupełniające wiedzę na temat struktury mniej egzotycznych, choć także neutrono-nadmiarowych izotopów. W ostatnich latach, dzięki rozwojowi układów wielolicznikowych detektorów germanowych, a także za sprawą lepszego opanowania technik eksperymentalnych i metod analizy, możliwe stało się zweryfikowanie oraz znaczne uzupełnienie informacji spektroskopowych na temat wcześniej zbadanych izotopów niklu. W przypadku izotopów niklu od ⁶⁴Ni do ⁶⁸Ni, większość informacji na temat struktury yrastowych stanów wzbudzonych w tych jądrach pochodzi z badań wykorzystujących reakcje głęboko nieelastyczne, wykonanych w latach dziewięćdziesiątych [Paw94, Bro95]. W pionierskich w owym czasie eksperymentach wykorzystywano układy detektorów germanowych poprzedniej generacji, takie jak OSIRIS (12 detektorów) czy GASP (40 detektorów). Współczesne układy detektorowe pozwalają na znaczne pogłębienie tych badań. W obecnym rozdziale opiszemy pomiary i uzyskane nowe wyniki dla tych izotopów niklu, które są pomostem pomiędzy jądrami stabilnymi, a bardzo neutrono-nadmiarowymi izotopami z obszaru wokół ⁷⁸Ni.

W omawianym eksperymencie do produkcji izotopów niklu wykorzystano pulsowaną wiązkę ⁶⁴Ni o energii 430 MeV uderzającą w tarczę ²³⁸U o grubości 55 mg/cm². Emitowane z tarczy promieniowanie γ mierzone było przy użyciu opisanego wcześniej układu 110 detektorów germanowych GAMMASPHERE. W pomiarze zapisywano zdarzenia koincydencyjne $\gamma\gamma\gamma$ zarówno skorelowane z impulsem wiązki *in-beam*, jak i zarejestrowane pomiędzy pulsami wiązki *off-beam*. W analizie koincydencyjnej korzystano ze znanych z wcześniejszych prac schematów stanów wzbudzonych badanych jąder. Dzięki dużej statystyce, a także wysokiej czystości zebranych danych możliwe było uzupełnienie tych schematów o szereg istotnych, nieznanych wcześniej przejść γ , jak również rozwinięcie ich poprzez identyfikację nowych stanów o wyższych energiach wzbudzenia.

W kolejnym kroku analizy, wykorzystując symetryczną konstrukcję układu GAMMASPHERE, zebrane dane koincydencyjne użyto do określenia korelacji kierunkowych pomiędzy parami przejść γ emitowanymi w kaskadzie. W tym celu obliczono kąty pomiędzy wszystkimi możliwymi parami detektorów układu, a następnie podzielono pary detektorów na cztery grupy odpowiadające średnim kątom pomiędzy nimi o wartościach 19°, 45°, 69° i 85°. Dla tych czterech wartości kątów pomiędzy detektorami sporządzono macierze koincydencyjne $\gamma\gamma$, które znormalizowano, uwzględniając liczbę par detektorów wliczanych do każdej grupy. Do otrzymywanych przebiegów korelacji kierunkowych dopasowywano standardowe wielomiany Legandre'a postaci

$$W(\vartheta) = a_0 \left[1 + a_2 P_2 \left(\cos \vartheta \right) + a_4 P_4 \left(\cos \vartheta \right) \right],$$

wyznaczając współczynniki a_2 i a_4 dla każdej pary odpowiednio silnych przejść γ będących w koincydencji. Otrzymywane współczynniki korelacji kierunkowych posłużyły do wyznaczenia multipolowości obserwowanych przejść, a tym samym dla określenia spinów i parzystości stanów [Bro12].

Działanie metody analizy korelacji kierunkowych najlepiej zilustrować na przykładzie nowych informacji uzyskanych dla izotopu ⁶⁴Ni. W jądrze ⁶⁴Ni, będącym w tym eksperymencie jądrem wiązki, stany wzbudzone populowane były zarówno w reakcjach głęboko nieelastycznych, jak i w procesach kwazielastycznych. Stąd też w jądrze ⁶⁴Ni zaobserwowano zarówno typową dla procesów głęboko nieelastycznych populację stanów yrastowych, jak i znaczący udział nisko leżących stanów nieyrastowych. Uzyskanie z analizy korelacji kierunkowych informacji na temat spinów i parzystości stanów było więc szczególnie potrzebne do ustalenia, bądź potwierdzenia wcześniej zaproponowanych oznaczeń.

Na rys. 6.8 przedstawiono wykresy korelacji kierunkowych dla czterech par przejść γ w jądrze ⁶⁴Ni. Położenie omawianych przejść wskazano we fragmencie schematu stanów wzbudzonych jądra po prawej stronie rysunku. Pełny zaproponowany schemat stanów wzbudzonych ⁶⁴Ni znajduje się w pracy [Bro12]. W każdym przypadku przejściem bramkującym była najsilniejsza w tym jądrze linia o energii 1346 keV, odpowiadająca przejściu *E2* pomiędzy pierwszym stanem wzbudzonym 2⁺, a stanem podstawowym: 2⁺ \rightarrow 0⁺. W dwóch pierwszych pokazanych przykładach, (a) i (b), uzyskane wartości współczynników a_2 i a_4 posłużyły do potwierdzenia znanych oznaczeń multipolowości przejść γ o energii 1264 keV – jest to przejście kwadrupolowe 4⁺ \rightarrow 2⁺, oraz 1239 keV – jest to przejście dipolowe 5⁻ \rightarrow 4⁺. Trzeci pokazany wykres (c) odnosi się do przejścia o energii 1522 keV, które zidentyfikowane było wcześniej w rozpadzie β izotopu ⁶⁴Co [Sin07]. Jest to ciekawy przypadek, w którym pomimo niewielkiej liczby zliczeń w koincydencji udało się dokładnie wyznaczyć korelacje kątowe o bardzo wysokiej amplitudzie. Wartości współczynników korelacji a_2 i a_4 otrzymane z dopasowania wynoszą $a_2 = 0.42(15)$ oraz $a_4 = 0.75(20)$. Takie wysokie wartości są charakterystyczne dla kaskady przejść γ pomiędzy stanami 0⁺ \rightarrow 2⁺ \rightarrow 0⁺, zaś otrzymany wynik potwierdza wcześniejsze wstępne oznaczenie stanu o energii 2867 keV jako 0⁺ [Sin07]. Na czwartym pokazanym wykresie (d)

korelacje kierunkowe dla przejść γ o energii 1346 i 931 keV wskazują na to, że obserwowana linia 931 keV jest zmieszanym przejściem $\Delta I = 0$; *M1/E2* o współczynniku zmieszania $\delta \sim -0.9$. Wartości te są zgodne z oczekiwaniami dla kaskady $2^+_2 \rightarrow 2^+_1 \rightarrow 0^+$, co ustala oznaczenie stanu o energii wzbudzenia 2277 keV jako drugi stan wzbudzony 2^+ .

Rys. 6.8. Przykłady analizy korelacji kierunkowych γ - γ dla par przejść z jądra ⁶⁴Ni w pracy [Bro12]. Na rysunku wskazano pary analizowanych przejść oraz wartości współczynników korelacji kierunkowych uzyskane z dopasowania. Po prawej stronie fragment schematu poziomów ⁶⁴Ni obejmujący przejścia γ wybrane do analizy.

Analiza danych uzyskanych dla kolejnego parzystego izotopu niklu ⁶⁶Ni pozwoliła na wyznaczenie najwyżej leżącego znanego stanu yrastowego 12⁺, a także umożliwiła weryfikację położenia niskoenergetycznego przejścia γ o energii 58 keV. Przejście to zostało zidentyfikowane w jądrze ⁶⁶Ni już we wcześniejszej pracy [Paw94], lecz ze względu na trudności w analizie spowodowane jego niską energią zostało ono niewłaściwie umieszczone w schemacie poziomów. Analiza nowego zestawu danych jednoznacznie wykazała, że przejście o energii 58 keV nie jest emitowane w rozpadzie izomeru o krótkim czasie połowicznego rozpadu $T_{1/2} = 4.3$ ns w jądrze ⁶⁶Ni, lecz zasila ten izomer. Poprawiony i uzupełniony o nowe stany schemat poziomów ⁶⁶Ni zaprezentowano w pracy [Bro12].

Jeszcze więcej nowych informacji uzyskano dla izotopu ⁶⁸Ni, najbardziej neutrononadmiarowego z serii izotopów badanych w tym eksperymencie. W jądrze ⁶⁸Ni znane są dwa stany izomeryczne: stan 5⁻ o długim czasie połowicznego rozpadu $T_{1/2} = 0.86$ ms [Bro95] oraz położony wyżej izomer 8⁺ o czasie połowicznego rozpadu $T_{1/2} = 23$ ns [Ish00]. Pomimo mniejszej niż dla jąder ⁶⁴Ni i ⁶⁶Ni statystyki danych, analiza koincydencyjna potwierdziła schemat poziomów ⁶⁸Ni znany wcześniej z badań rozpadów izomerów oraz rozpadów β wysokospinowych stanów izomerycznych ⁶⁸Co [McC12]. Schemat ten uzupełniono o jedno wcześniej nieobserwowane przejście γ o energii 1086 keV – patrz rys. 6.9. Dodatkowo, analiza korelacji kątowych, która w tym przypadku możliwa była wyłącznie dla pary najsilniejszych przejść 2033-1115 keV, potwierdziła wcześniejsze oznaczenie tej kaskady jako $4^+ \rightarrow 2^+ \rightarrow 0^+$.

Rys. 6.9. Schemat stanów wzbudzonych jądra ⁶⁸Ni zaproponowany w pracy [Bro12] obejmujący stany izomeryczne 5⁻ i 8⁺ i ich rozpady oraz nowo zidentyfikowane poziomy powyżej izomeru 8⁺. Grupa poziomów i przejść po prawej stronie schematu oznaczonych kursywą została zaobserwowana w pracy [Chi12, Chi13].

Istotne nowe wyniki dla izotopu ⁶⁸Ni uzyskane w tej pracy to pierwsza identyfikacja stanów położonych powyżej izomeru 8⁺. W tym celu przygotowano trójwymiarową macierz koincydencyjną typu PDD *prompt-delayed-delayed* zawierającą zdarzenia, w których jeden kwant γ zarejestrowany był wraz z nadejściem impulsu wiązki (*in-beam*), zaś co najmniej dwa kwanty γ były względem niego opóźnione (*off-beam*). Taka struktura danych pozwala na analizę zdarzeń koincydencyjnych zachodzących poprzez stany izomeryczne o stosunkowo krótkich, nanosekundowych czasach życia. Na rys. 6.10 zaprezentowano widmo przejść natychmiastowych *in-beam* bramkowane wszystkimi parami silnych przejść opóźnionych *off-beam* występujących w rozpadzie izomeru 8⁺. Zidentyfikowano nieznane wcześniej przejścia γ o energii 288, 1171, 1567 i 1697 keV. Dalsza analiza koincydencji potrójnych PPD *prompt-prompt-delayed*, z bramkami postawionymi na wszystkich

silnych przejściach opóźnionych występujących w rozpadzie izomeru, wykazała, że trzy z tych przejść są we wzajemnej koincydencji i stanowią jedną kaskadę. Zaproponowany schemat stanów wzbudzonych jądra ⁶⁸Ni wraz z nową rodziną przejść γ powyżej izomeru 8⁺ pokazano na rys. 6.9 [Bro12].

Rys. 6.10. Widmo koincydencyjne promieniowania γ uzyskane z potrójnych danych koincydencyjnych PDD z eksperymentu ⁶⁴Ni (430 MeV) + ²³⁸U bramkowane parami opóźnionych przejść γ emitowanych w rozpadzie izomeru 8⁺ w jądrze ⁶⁸Ni. Widmo posłużyło do identyfikacji nowych przejść γ znajdujących się powyżej izomeru 8⁺ [Bro12].

Uzyskanie informacji na temat tak wysoko położonych stanów yrastowych w stosunkowo egzotycznym jądrze ⁶⁸Ni było możliwe dzięki zastosowaniu specjalnych metod analizy koincydencyjnej (trójwymiarowe macierze koincydencyjne PDD i PPD) oraz dzięki wysokiej jakości i statystyce zestawu danych uzyskanych z eksperymentu.

7. Wykorzystanie wiązek radioaktywnych produktów rozszczepienia do badania struktury jąder neutrono-nadmiarowych

Rozwijane od dekady wiązki izotopów niestabilnych – wiązki radioaktywne – otwierają przed badaniami egzotycznych, odległych od ścieżki stabilności jąder nowe perspektywy. W ciągu najbliższych lat szereg kolejnych ośrodków oferować zacznie wiązki radioaktywne o intensywnościach pozwalających na użycie ich do pomiarów spektroskopowych. Dlatego też zasadne jest zaplanowanie badań i przygotowanie oraz przetestowanie odpowiednich urządzeń pomiarowych do eksperymentów z wiązkami radioaktywnymi. W niniejszym rozdziale opisano rozwijany, niezakończony program badania rozpadów stanów izomerycznych w jądrach neutrono-nadmiarowych z obszaru wokół podwójnie magicznego jądra ⁷⁸Ni, zasilanych w procesach głęboko nieelastycznych przy użyciu wiązek radioaktywnych.

Wyróżnić można dwie podstawowe metody uzyskiwania wiązek radioaktywnych. Jedna z nich, to metoda *In-flight Separation* (IFS), w której jądra niestabilne uzyskuje się w procesie fragmentacji wiązki ciężkich jonów o wysokiej energii – tę metodę omówiono w rozdz. 6.1. W produkcji wiązek radioaktywnych w procesie fragmentacji przodują laboratoria GANIL Caen oraz GSI Darmstadt w Europie, laboratorium NSCL przy Michigan State University w Stanach Zjednoczonych oraz ośrodek badań jądrowych RIKEN w Japonii.

Druga metoda nazywana jest często ISOL: *Isotope Separation On-Line*. Polega ona na wytworzeniu jąder egzotycznych w reakcji jądrowej – może to być na przykład reakcja fuzji, transferu lub rozszczepienia indukowanego wiązką lekkich cząstek – a następnie na umieszczeniu tych jąder w źródle jonów, separacji wybranych izotopów i przyspieszeniu ich do wybranej energii w akceleratorze. Zaletą metody uzyskiwania wiązek radioaktywnych ISOL, w porównaniu do metody IFS, są dobre parametry tak wytworzonej wiązki: jej czystość, ogniskowanie, dokładne określenie energii, oraz możliwość uzyskania wiązek o stosunkowo wysokiej intensywności. Wadą metody ISOL jest konieczność użycia dwóch akceleratorów, a także to, że natężenie wiązki jest zależne od właściwości fizycznych i chemicznych wybranego pierwiastka, a w szczególności od czasu życia przyspieszania nie jest natychmiastowy, wiązki takie ze względów praktycznych ograniczone są do izotopów o czasach połowicznego rozpadu nie krótszych od kilkudziesięciu do kilkuset milisekund.

Laboratoria, w których wytwarza się wiązki radioaktywne metodą ISOL to między innymi REX-ISOLDE w CERN, SPIRAL i SPIRAL2 w GANIL, Louvain-la-Neuve, a także ISAC TRIUMF w Kanadzie i do niedawna HRIBF w Oak Ridge w Stanach Zjednoczonych.

7.1 Uzyskiwanie neutrono-nadmiarowych wiązek radioaktywnych metodą ISOL

Neutrono-nadmiarowe wiązki radioaktywne uzyskiwać można metodą ISOL, wykorzystując reakcję rozszczepienia ciężkiej tarczy indukowanego wiązką lekkich cząstek. Przedstawimy tą metodę

na przykładzie laboratorium Holifield Radioactive Ion Beam Facility w Oak Ridge, w którym produkcja neutrono-nadmiarowych wiązek radioaktywnych rozwijana była od 1996 roku [Str04, Tat05]. Na rys. 7.1 przedstawiono schematycznie kolejne etapy uzyskiwania takich wiązek. Pierwotna wiązka lekkich cząstek protonów, deuteronów lub cząstek a przyspieszana jest w cyklotronie ORIC oznaczonym jako driver accelerator. W przypadku wiązki protonów jej maksymalna energia wynosi 42 MeV, zaś prad wiazki osiąga maksymalną wartość 10 µA. Wiązka protonów kierowana jest na tarczę produkcyjną, w której, w reakcjach jądrowych, powstają izotopy wiązki radioaktywnej. Dla uzyskania wiązek neutrono-nadmiarowych typową reakcją jest rozszczepienie jąder uranu ²³⁸U indukowanego protonami. Szczególne badania poświęcono właściwemu przygotowaniu tarczy produkcyjnej. Najlepsze wyniku uzyskano dla tarczy z materiału UC2, która uzyskiwana jest metodą osadzania przez odparowanie cienkich warstw UC₂ o grubości 8-10 µm na polimerowych włóknach węglowych o porowatej strukturze [Tat05, Car08]. Na rys. 7.2 pokazano obraz struktury mikroskopowej takiej tarczy uzyskany ze skaningowego mikroskopu elektronowego. Same włókna polimerowe matrycy mają średnicę około 60 µm, a po nałożeniu związku UC₂ uzyskuje się bardzo porowatą tarczę uranową o efektywnej grubości 2.1 g/cm². Tak ukształtowany, silnie porowaty materiał pozwala na wydajną ekstrakcję jąder produktów z wnętrza tarczy, równocześnie zachowuje on swoją strukturę mikroskopową w warunkach bombardowania silną wiązką protonów oraz w wysokiej temperaturze do 2000 °C.

Rys. 7.1. Schemat produkcji wiązek radioaktywnych metodą ISOL *Isotope Separation On-Line* w laboratorium HRIBF w Oak Ridge [HRI12].

Tarcza produkcyjna, źródło jonów, separator masowy oraz komora przeładowania znajdują się na platformie wysokiego napięcia umieszczonej w potencjale +200 kV. Dodatkowo, tarcza i źródło jonów odizolowane są elektrostatycznie od reszty platformy wysokiego napięcia i umieszczone w potencjale podwyższonym o 40 kV. Ta część układu produkcji wiązek radioaktywnych jest całkowicie niedostępna podczas wyprowadzania wiązki ze względu na ogromną aktywność tarczy UC₂ podczas naświetlania wiązką protonów o dużej intensywności. Także po

eksperymencie tarcza produkcyjna jest bardzo aktywna i cały proces jej demontowania z platformy oraz instalowania nowej tarczy jest zautomatyzowany i wykonywany przez zdalnie sterowane roboty.

Rys. 7.2. Struktura mikroskopowa tarczy UC₂ uzyskiwanej przez odparowanie cienkich warstw UC₂ o grubości kilku μ m na włóknach węglowych typu RVC o porowatej strukturze.

Produkty rozszczepienia są wyzwalane z materiału tarczy uranowej i transportowane do źródła jonów. Do wydajnej ekstrakcji i transportu jonów używa się rurek z tantalu, które rozgrzewane są pradem o napięciu kilkuset amperów do temperatur rzędu 1800 °C. Samo źródło jonów opiera się o standardowa technologie EBPIS Electron-Beam-Plasma Ion Source. Wytwarza ono dodatnio zjonizowane jony produktów rozszczepienia, które po wyjściu ze źródła jonów mają energię 40 keV. Wiązka takich jonów przechodzi przez magnes analizujący wybierający jądra o zadanej masie. Zdolność analizująca tej wstępnej separacji masowej nie jest bardzo wysoka i wynosi około $m / \Delta m \sim$ 1000. Wstępnie oczyszczona wiązka jonów dodatnich przechodzi następnie przez komorę przeładowania, charge exchange cell, która wypełniona jest gazem o gestości około 10¹⁵ atomów/cm². Najczęściej używanym gazem są opary cezu pod ciśnieniem około 10⁻² Torr. Gęstość dobrana jest optymalnie dla wywołania wielokrotnych zderzeń jonów wiązki z cząsteczkami gazu, w wyniku których następuje przeładowanie elektryczne jonów ze stanu ładunkowego X^+ do stanu ładunkowego X^{-} . Typowa wydajność takiego procesu przy właściwym doborze gęstości gazu wynosi od 10 do 50%. Równocześnie, taka gęstość zastosowanego gazu nie powoduje dużego rozmycia energetycznego i kierunkowego wiązki. Przeładowanie elektryczne jonów wiązki do ujemnego stanu ładunkowego jest potrzebne do ich późniejszej akceleracji w akceleratorze typu Tandem, który przyspiesza wyłącznie jony ujemne.

Tak przygotowana wiązka jonów ujemnych, opuszczając platformę wysokiego napięcia, ma energię 200 keV. Ze względu na charakter reakcji rozszczepienia, w której produkowane są setki izotopów radioaktywnych oraz stabilnych, w pierwotnej wiązce opuszczającej platformę wysokiego napięcia z dużym prawdopodobieństwem znajdować się będzie kilka rodzajów jonów o prawie identycznych wartościach stosunku m / q. Ponieważ w eksperymencie pożądana jest wiązka o jak największej czystości, konieczne jest użycie separatora masowego drugiego stopnia. Jest to separator o wysokiej nominalnej zdolności rozdzielczej $m / \Delta m \sim 20000$ pozwalający na separację izobarów, stąd nazwa *isobar separator*. W praktyce taka rozdzielczość nie jest zawsze osiągana, jest ona ograniczona przez rozmycie energii wiązki. Po separatorze izobarów wiązka o energii 200 keV może być bezpośrednio użyta do eksperymentów, do których nie jest potrzebne jej przyspieszenie, na przykład do pomiarów rozpadów β i β -*n* neutrono-nadmiarowych izotopów wiązki [Ily11, LeR12]. Większość eksperymentów wymaga jednak wiązki przyspieszonej.

W laboratorium HRIBF wiązka radioaktywna wyseparowana po wyjściu z platformy wysokiego napięcia jest kierowana do akceleratora liniowego typu Tandem o napięciu 25 MV. Jest to akcelerator o konstrukcji pionowej, wykorzystujący jako izolator gaz SF₆ pod ciśnieniem 4.5-5.5 bar. Jony ujemne wchodzące do akceleratora przyspieszane są napięciem o maksymalnej wartości 25 MV. Na szczycie kolumny akceleracyjnej (patrz rys. 7.3) o wysokości 30 m znajduje się magnes zakrzywiający wiązkę o 180°, oraz zestaw folii zmieniających ładunek wiązki z ujemnego na dodatni poprzez obdzieranie jonów wiązki z elektronów. Magnes zakrzywiający dodatkowo służy do odrzucania jonów o niepożądanych stanach ładunkowych stanowiących zanieczyszczenie wiązki. Akcelerator Tandem 25 MV charakteryzuje się wysoką akceptancją i dobrymi parametrami przyspieszanej wiązki.

Użycie akceleratora Tandem o napięciu 25 MV pozwala na przyspieszanie wiązek o masach $A \sim 70 - 80$ do energii rzędu 5 MeV/nukleon przy użyciu pojedynczej folii obdzierającej (*stripping foil*), a więc z minimalną stratą intensywności wiązki. Taka energia wiązki pozwala na prowadzenie pomiarów powyżej bariery kulombowskiej w zderzeniach z jądrami tarczy o masach $A \sim 100 - 130$. W przypadku jąder tarczy o większej masie i większym ładunku, dla uzyskania energii wiązki przewyższającej barierę kulombowską konieczne jest zastosowanie układu dwóch folii obdzierających (*double stripping foil*), co skutkuje znacznym zmniejszeniem intensywności wiązki. Przykładowe wartości intensywności wiązek radioaktywnych uzyskiwanych w laboratorium HRIBF z rozszczepienia podane są w tabeli I. Podano intensywności wiązek w postaci liczby jonów wiązki na sekundę. Są to wartości niższe o kilka rzędów wielkości od intensywności standardowo używanych wiązek stabilnych, które wynoszą $10^8 - 10^9$ jonów na sekundę. Zaprezentowane intensywności wiązek

radioaktywnych są typowe dla obecnie działających laboratoriów, w których produkowane są wiązki pochodzące z rozszczepienia jąder tarczy uranowej. Dopiero uruchomienie akceleratorów wiązek radioaktywnych drugiej generacji, takich jak SPIRAL2 w GANIL czy SPES w Legnaro pozwoli na radykalne zwiększenie intensywności przyspieszanych wiązek.

Tabela I. Intensywności wiązek radioaktywnych wybranych izotopów uzyskiwanych w laboratorium HRIBF w Oak Ridge dla różnych energii przyspieszanej wiązki przy użyciu pojedynczej lub podwójnej folii obdzierającej [HRI2012].

wiązka	Intensywność (ion/s) pojedyncza folia energie wiązek do około 420 MeV	Intensywność (ion/s) podwójna folia energie wiązek powyżej 420 MeV
⁷⁸ Ge	2×10^{6}	5 x 10 ⁵
⁸⁰ Ge	$2 \ge 10^5$	$4 \ge 10^4$
132 Sn	9 x 10 ⁵	$2 \ge 10^5$
¹³² Te	$6 \ge 10^7$	$1 \ge 10^7$
¹³⁴ Te	2×10^{6}	3×10^5

Wobec tak niskich dostępnych intensywności bardzo istotnym parametrem wiązek radioaktywnych jest ich czystość izotopowa. W przypadku laboratorium HRIBF, pomimo użycia separatora izobarów o dużej zdolności analizującej, rozmycie energii wiązki przy wyjściu z platformy wysokiego napięcia jest rzędu 100 eV, co sprawia, że ostatecznie wyprowadzona i przyspieszona wiązka jest zwykle mieszaniną izobarów, izotopów o tej samej masie. Fakt ten utrudnia, bądź uniemożliwia eksperymenty ze szczególnie rzadkimi wiązkami: w mieszaninie izobarów najbardziej neutrono-nadmiarowe, a więc egzotyczne izotopy, mają zwykle najmniejszy udział, dominują zaś mniej egzotyczne izotopy o tej samej masie, położone bliżej ścieżki stabilności lub wręcz jądra stabilne. Przykładowo, w wyprowadzanej standardowo wiązce izobarycznej o masie A = 132 znajduje się 5% jonów ¹³²I, 80% jonów ¹³²Te, 14% jonów ¹³²Sb i zaledwie 1% najbardziej neutrono-nadmiarowych izotopów ¹³²Sn. Ten stosunek intensywności poszczególnych składników wiązki można w pewnym stopniu regulować poprzez ustawienia magnesu separującego, jednak w ten sposób nie jest możliwe całkowite usunięcie dominującej składowej wiązki, jonów ¹³²Te.

Dla uzyskania wiązek czystych izotopowo opracowano metody ekstrakcji wiązki ze źródła jonów w postaci molekularnej, w związku chemicznym z odpowiednio dobranym składnikiem. Dopiero po wstępnej analizie masowej, w komorze przeładowania, dochodzi do rozerwania czasteczki i dalej przyspieszane są już jony ujemne właściwego pierwiastka. Kluczowy dla tej metody jest optymalny dobór związku chemicznego czy pierwiastka, który tworzył będzie wraz z jonami wybranego pierwiastka molekuły. Opisana metode opracowano po raz pierwszy dla uzyskania czystych wiązek Sn i Ge [Str04]. Pierwiastki te mają podobne właściwości chemiczne i silnie wiążą się z jonami siarki. Stąd też do źródła jonów dodawana jest siarka w postaci rozpylonego siarkowodoru H₂S. Ze źródła jonów EBPIS wyprowadzane są cząsteczki SnS⁺ lub GeS⁺, a więc na przykład dla uzyskania wiązki ¹³²Sn wstępny separator masowy ustawiony jest na masę cząsteczki SnS, czyli 164 w miejsce 132. W komorze przeładowania w wyniku zmiany ładunku następuje rozerwanie cząsteczki $SnS^+ \rightarrow Sn^-$ i dalej separowana i przyspieszana jest już wiązka cyny o wybranej masie. Ponieważ sasiadujące z cyną pierwiastki takie jak Te, Sb i I nie tworzą cząsteczek z jonami siarki można w ten sposób uzyskać prawie czystą wiązkę wybranego izotopu Sn. Podobnie, przez dodanie H₂S do źródła jonów uzyskuje się czyste izotopowo wiązki germanu. Na rys. 7.4 przedstawiono działanie opisanej metody przez porównanie składu izotopowego wiązki o masie A =80 składającej się ze wszystkich izobarów masy 80 tworzonych w rozszczepieniu i wiązki o A = 80 wyprowadzanej ze źródła jonów w postaci cząsteczek z jonami siarki. W pierwszym przypadku dominującym składnikiem wiązki o udziale ponad 90% jest stabilny izotop ⁸⁰Se, zaś udział izotopu ⁸⁰Ge w wiązce wynosi około 5%. Z drugiej strony, wyprowadzenie ze źródła wiązki molekularnej pozwala na uzyskanie 95% czystości wiązki ⁸⁰Ge.

Rys. 7.4. Porównanie składu wiązki A = 80 jonów uzyskanych z rozszczepienia bez dodatkowej selekcji chemicznej z wiązką wyprowadzoną ze źródła jonów w postaci cząsteczek z jonami siarki, głównie GeS [Str04A].

Odpowiedni dobór składnika dodawanego do źródła jonów, pozwalającego na wyprowadzanie ze źródła cząsteczek wybranych pierwiastków zależy głownie od właściwości chemicznych pożądanych jonów. Oprócz wiązek Sn oraz Ge w HRIBF opracowano metody uzyskiwania czystych izotopowo wiązek Ga oraz In, oraz ziem rzadkich, na przykład Eu, wyprowadzanych w związkach z chlorem. W tym przypadku chlor do źródła jonów dodawany jest w postaci gazu CH₃Cl.

7.2 Układ *Isomer-scope* do badania rozpadu stanów izomerycznych w pomiarach z wykorzystaniem wiązek radioaktywnych

Wiązki radioaktywne nie mogą być w prosty sposób użyte do eksperymentów z grubą tarcza, w których wszystkie produkty reakcji, a także część wiązki zostają zatrzymane w tarczy. W takim przypadku nastąpiłaby szybka aktywacja tarczy i komory reakcji, która uniemożliwiłaby pomiar promieniowania γ z produktów reakcji wytwarzanych z niskimi przekrojami czynnymi. Stąd też niemożliwe jest bezpośrednie użycie opisanej w rozdz. 4.1 metody populowania i badania jąder egzotycznych w reakcjach głęboko nieelastycznych, która opiera się o pomiary koincydencyjne promieniowania γ emitowanego z fragmentów zatrzymanych w grubej tarczy. Dodatkowym powodem, dla których takie proste pomiary nie są wykonalne, są zbyt słabe intensywności wiązek radioaktywnych w połączeniu z podwyższonym tłem promieniowania, które zwykle jest wyższe niż w przypadku eksperymentów z wiązką stabilną. Oznacza to jakościową zmianę i wymusza weryfikację metodyki prowadzenia pomiarów. Aby badać fragmenty produkowane w reakcjach głęboko nieelastycznych ze słabymi wiązkami radioaktywnymi, konieczne jest wprowadzenie do warunków eksperymentu dodatkowej selekcji. Takim dodatkowym selektywnym czynnikiem może być, na przykład, ograniczenie pomiarów do zdarzeń *off-beam*, związanych z rozpadami krótko- i długożyciowych stanów izomerycznych.

Ciekawą metodę poszukiwania i badania stanów izomerycznych w neutrono-nadmiarowych jądrach produkowanych w procesach głęboko nieelastycznych, w których w zderzeniach używano wiązek stabilnych, zaproponował w końcu lat dziewięćdziesiątych Tetsuro Ishii. Jego grupa skonstruowała układ pomiarowy *Isomer-scope* opierający się o detektory krzemowe typu $\Delta E-E$, służące do identyfikacji izotopowej fragmentów, połączone z zestawem czterech detektorów germanowych rejestrujących opóźnione promieniowanie γ emitowane z zatrzymanych fragmentów [Ish97]. Na rys. 7.5 przedstawiono schematycznie geometrię układu pomiarowego. Układ ten pozwalał na rejestrację rozpadów izomerów o czasach połowicznego rozpadu w zakresie od kilku nanosekund do kilku mikrosekund, zaś główne wyniki prac z układem *Isomer-scope* dotyczyły jąder z obszaru masy $A \sim 70$, między innymi ⁶⁸Ni, ⁶⁹Cu i ⁷¹Cu [Ish98, Ish00, Ish02].

Rys. 7.5. Schemat układu *Isomer-scope* grupy T. Ishii et al., skonstruowanego do poszukiwania i identyfikacji stanów izomerycznych w produktach reakcji głęboko nieelastycznych z wiązkami stabilnymi [Ish01].

Wzorując się na tym podejściu, w laboratorium HRIBF w Oak Ridge zaprojektowano i zbudowano układ *Isomer-scope* przeznaczony do poszukiwania i identyfikacji stanów izomerycznych w produktach reakcji głęboko nieelastycznych w pomiarach z wiązkami radioaktywnymi [Kro09A, Kro13]. W układzie tym, w miejsce detektorów krzemowych zastosowano podwójny detektor *Microchannel Plate* (MCP) [Sha00, Sha02, Kro02, Raj09], który służy do rejestracji produktów reakcji emitowanych z tarczy w określonym zakresie kątów. W układ ten włączono detektory germanowe typu Clover, służące do pomiaru opóźnionych kwantów γ emitowanych w rozpadach izomerów we fragmentach, produktach reakcji, patrz schemat na rys. 7.6.

W układzie na wprost tarczy umieszczona jest metalizowana folia mylorowa o grubości 2 μ m, co odpowiada gęstości około 260 μ g/cm², z centralnym otworem pozwalającym na przejście nierozproszonej i rozproszonej pod niewielkimi kątami wiązki bez oddziaływania z folią. Fragmenty produkowane w reakcji, emitowane z tarczy pod pewnym kątem w stosunku do kierunku wiązki, przechodzą przez folię, wybijając z niej elektrony. Elektrony te kierowane są przez specjalnie ukształtowane pole elektrostatyczne do jednego z dwóch detektorów, w których wyzwalają kaskadę elektronową dającą sygnał przejścia fragmentu przez folię. Tarcza jest mieszczona w specjalnej obudowie i otoczona bloczkami silnych magnesów samarowo-kobaltowych typu SmCo₅, które

zakrzywiają tory elektronów emitowanych z tarczy przy przejściu przez nią jonów wiązki tak, by te nie trafiały do detektorów MCP. Dodatkowo zapobiega temu odpowiednio ukształtowane pole elektrostatyczne. Zarówno tarcza, jej osłona, folia a także przód detektorów MCP znajdują się na odpowiednio dobranym potencjale kształtującym pole elektrostatyczne tak, aby zapewnić szybki i wydajny transport elektronów z folii do detektorów MCP [Raj09, Raj09A, Kro09A], patrz rys. 7.7, oraz wysoką wydajność całego układu na detekcję produktów reakcji.

Rys. 7.6. Schemat układu *Isomer-scope* zaprojektowanego i zbudowanego w HRIBF Oak Ridge do identyfikacji i badania stanów izomerycznych we fragmentach produkowanych w reakcjach głęboko nieelastycznych z wiązkami radioaktywnymi. Układ łączy detekcję fragmentów emitowanych z tarczy w wybranym przedziale kątów przez detektory MCP z rejestracją kwantów γ emitowanych w rozpadach w detektorach germanowych. Szczegółowy opis budowy i zasady działania układu znajduje się w pracach [Raj09, Kro09A, Kro13].

Produkowane w reakcjach głęboko nieelastycznych fragmenty emitowane są w większości pod kątem bliskim kąta *grazing* reakcji. Kąt ten zależy od wybranej kombinacji jąder wiązki i tarczy, a także od energii zderzenia. W przypadku wiązek o masie $A \sim 80$, zderzających się z cięższymi jądrami tarczy o masach $A \sim 130$ przy energii przekraczającej barierę kulombowską, kąt ten zmienia się w zakresie od kilkunastu do 30-40° w układzie laboratoryjnym. Można oszacować, że w takim przypadku ponad 80% interesujących fragmentów podobnych do jąder wiązki będzie emitowanych pod kątem mieszczącym się w zakresie od 10 do 30°, a więc objętym działaniem folii rejestrującej przelot fragmentu [Win94, Win02].

Fragmenty przechodzące przez folię i dające sygnał w detektorze MCP zostają zatrzymane na ściankach komory, które stanowią pasywny łapacz *catcher*. W tym miejscu komora reakcji została skonstruowana z cienkiego aluminium, zaś na zewnątrz komory umieszczono cztery detektory germanowe typu Clover stanowiące układ CARDS (*Clover Array for Recoil Decay Spectroscopy*) [Kro02, Bat03]. Detektory germanowe umieszczono w konfiguracji o maksymalnie zwartej geometrii dla zapewnienia wysokiej wydajności rejestracji kwantów γ emitowanych z zatrzymanych fragmentów. Oszacowano, że przy zastosowaniu czterech detektorów germanowych typu Clover wydajność układu wyniesie około 5% dla kwantów γ o energii od 400 do 800 keV. Czoła detektorów odsunięte są od siebie na odległość około 11 cm. Pomiędzy nimi znajduje się jonowód, którym rozproszona i

nierozproszona wiązka wylatuje z komory reakcji w kierunku osłoniętej puszki Faradaya. Zdjęcia fragmentów układu *Isomer-scope* przygotowywanego do eksperymentu przedstawiono na rys. 7.8.

Rys. 7.7. Rysunek przebiegu linii pola elektrostatycznego w komorze układu *Isomer-scope*. Pole kształtowane jest przez umieszczenie elementów układu takich jak tarcza, osłona tarczy, folia, przody detektorów MCP na odpowiednio dobranych potencjałach i zapewnia szybki transport elektronów wybijanych z folii przez fragmenty do detektorów MCP [Raj09A, Men10].

Rys. 7.8. Zdjęcia elementów układu *Isomer-scope* zbudowanego w HRIBF Oak Ridge do identyfikacji i badania izomerów w eksperymentach z wiązkami radioaktywnymi [Kro09A, Kro13]. Lewa strona: część układu składająca się z tarczy, jej osłony oraz dwóch detektorów MCP wraz z dzielnikami napięcia widziana od strony przychodzącej wiązki. Środek: te same elementy widoczne z drugiej strony, na pierwszym planie widoczna jest folia mylorowa z otworem przepuszczającym wiązkę rozproszoną po przejściu przez tarczę. Prawa strona: CARDS, układ czterech detektorów germanowych typu Clover do detekcji promieniowania γ [Kro02, Bat03]. W otwór pomiędzy czołami detektorów mieści się jonowód wyprowadzający rozproszoną wiązkę.

Zalety tak skonstruowanego układu Isomer-scope opartego o detektory MCP są szczególnie istotne w przypadku eksperymentów z wiązkami radioaktywnymi. Zastosowanie detektorów MCP i folii oraz odpowiednio ukształtowanego pola elektrostatycznego daje blisko 100% wydajność detekcji ciężkich produktów reakcji, emitowanych w wybranym zakresie kątów. Liczniki MCP działają dobrze w reżimie małej liczby zliczeń, są jednak odporne na duże obciążenia, które mogą się pojawić w przypadku niedokładnego prowadzenia wiazki. Dodatkowo, detektory MCP sa stosunkowo niedrogie i łatwo dostępne, możliwa jest więc ich szybka wymiana, na przykład w przypadku aktywacji wiązką. Zastosowanie pasywnego łapacza fragmentów pozwala na prostą wymianę również tego fragmentu układu w przypadku jego aktywacji na skutek złego prowadzenia lub ogniskowania wiazki. W praktyce wnętrze komory, które służy jako catcher, wykładane jest przed eksperymentem cienką folią aluminiowa, która może być szybko wymieniona przy każdorazowym otwarciu komory reakcji. Do zapewnienia dobrego ogniskowania i dokładnie centralnej pozycji wiazki na tarczy używany jest standardowy układ diagnostyczny składający się z umieszczanego w osi optycznej jonowodu próbnika świecacego pod wpływem wiązki wraz z obserwująca go kamera. Dodatkowa zaleta układu jest możliwość łatwej zmiany jego geometrii, pozwalająca na zastosowanie go do pomiarów dla różnych kombinacji wiązki i tarczy. W zależności od tej kombinacji i wyliczonego kąta grazing reakcji możliwa jest zmiana odległości folii od tarczy, zmiana wielkości otworu w folii przepuszczającego rozproszoną wiązkę, jak również przesunięcie całego układu tarcza-folia względem komory reakcji, czyli zmiana odległości pomiędzy tarcza, a łapaczem fragmentów.

Ograniczeniem tak skonstruowanego układu *Isomer-scope* jest brak identyfikacji izotopowej fragmentów. Założono, że w większości przypadków możliwa będzie identyfikacja i przyporządkowanie obserwowanych w koincydencji kaskad kwantów γ pochodzących z rozpadów do właściwych izotopów w oparciu o znane energie najniższych stanów wzbudzonych.

Akwizycja danych z układu *Isomer-scope* oparta jest w całości o elektronike cyfrowa w postaci modułów Pixie-16 produkcji firmy XIA [XIA10, Mil11]. Moduły Pixie-16 rejestrują nadchodzące impulsy z detektora MCP oraz detektorów germanowych z taktowaniem o częstotliwości 100 MHz i zapisują je na dysku z danymi ze stemplem czasowym time stamp. W czasie analizy, zarówno on-line podczas eksperymentu, jak i off-line wyszukiwane są skorelowane zdarzenia, w których po sygnale przejścia fragmentu przez detektor MCP nastąpiła rejestracja jednego lub więcej kwantów y w detektorach germanowych. Dla uzyskania większej wydajności na detekcję zdarzeń koincydencyjnych cztery segmenty składowe każdego detektora typu Clover są traktowane jako pojedyncze detektory. Nie zmieniając sumarycznej wydajności układu CARDS zwiększa to jego segmentację do 16 elementów. W zależności od natężenia wiązki, a co za tym idzie od obciążenia detektorów MCP, układ Isomer-scope może być czuły na izomery o czasach połowicznego rozpadu z przedziału od kilku nanosekund do kilkuset mikrosekund. Dokładne wyznaczenie czułości i wydajności układu na detekcję izomerów o różnych czasach życia będzie możliwe po wykonaniu pomiarów testowych. Warto w tym miejscu wspomnieć, że akwizycja danych, polegająca na zapisie wszystkich niebramkowanych zdarzeń z detektorów MCP i detektorów germanowych na dysku ze stemplem czasowym, pozwala na dużą elastyczność w późniejszej analizie off-line. Możliwe jest zastosowanie różnych algorytmów odjęcia tła γ będącego w koincydencji lub w antykoincydencji z sygnałami detektorów MCP, możliwe jest także zwiększenie czułości na detekcję rozpadów izomerycznych o czasach rozpadu dłuższych od 100 ns, na przykład mikrosekundowych, przy założeniu, że kaskada obejmuje więcej niż dwa kwanty γ.

W przyszłości, w zależności od doświadczeń zebranych podczas pierwszych eksperymentów z układem *Isomer-scope*, można rozważyć zastąpienie folii i detektorów MCP przez układ detektorów krzemowych. W ostatnim czasie komercyjnie dostępne stały się cienkie detektory krzemowe o grubości 20 μ m, które mogą być użyte jako liczniki ΔE nie zatrzymujące fragmentów produktów

reakcji głęboko nieelastycznych o energii rzędu kilkunastu MeV. W takiej konfiguracji rolę detektorów *E* pełnić mogłyby standardowe detektory krzemowe typu CD, z dziurą w środku. Układ detektorów krzemowych ΔE -*E* stanowiący aktywny *catcher*, oprócz rejestracji czasu implantacji fragmentu pozwalałby na jego identyfikację izotopową oraz, w przypadku zastosowania detektorów segmentowanych, dostarczałby informacji o pozycji implantowanego fragmentu. Wadą takiego rozwiązania byłaby jego wysoka cena, stosunkowo skomplikowana konstrukcja, niebezpieczeństwo aktywacji i zniszczenia detektorów krzemowych przez źle prowadzoną wiązkę oraz mała elastyczność raz zaprojektowanej geometrii.

7.3 Eksperymenty testowe układu Isomer-scope z wiązką stabilną

Pierwszą ocenę działania układu *Isomer-scope* uzyskano z pomiarów przy użyciu źródła kalibracyjnego promieniowania α emitującego cząstki α o energiach 5.1, 5.5 oraz 5.8 MeV. Za folią detektora MCP umieszczono pozycyjny detektor krzemowy PSSD. W pomiarze, dla zbadania wydajności detektora MCP, użyto folii bez centralnego otworu. W dwóch górnych panelach na rys. 7.9 pokazano dwuwymiarowe wykresy pozycji cząstek α , które przeszły przez folię i zostały zarejestrowane w detektorze PSSD w koincydencji z górnym (lewy panel) oraz dolnym (prawy panel) detektorem MCP. W lewym dolnym panelu rys. 7.9 pokazano wykres pozycji wszystkich cząstek α zarejestrowanych w tym samym czasie w detektorze PSSD. Przez porównanie liczby zliczeń oszacowano, że wydajność rejestracji cząstek α przez układ dwóch detektorów MCP wyniosła 64% [Raj08, Raj09]. Wartość ta jest zgodna z oczekiwaniami dla detekcji cząstek α o energii około 5 MeV, które przechodząc przez folię wybijają z niej zaledwie kilka elektronów. Wydajność układu przekracza 90% dla rejestracji jonów ciężkich fragmentów o energii kilkunastu MeV, które w tych warunkach wybijają kilkanaście i więcej elektronów, a co za tym idzie dają silniejszy sygnał w detektorze MCP.

Rys. 7.9. Pozycje cząstek α zarejestrowane w krzemowym detektorze pozycyjnym PSSD w koincydencji z górnym (panel górny, lewy) i dolnym (panel górny, prawy) detektorem MCP oraz profil pionowy detektora PSSD koincydencji z górnym i dolnym detektorem MCP (panel dolny, prawy) [Raj08, Raj09].

Głównym celem budowy układu *Isomer-scope* jest poszukiwanie izomerów w neutrononadmiarowych jądrach z obszaru pomiędzy ścieżką stabilności, a podwójnie magicznym jądrem ⁷⁸Ni. Dlatego też do próbnego pomiaru z wiązką stabilną wybrano kombinację wiązki i tarczy zbliżoną do planowanych pomiarów z wiązką radioaktywną. Wiązkę stabilnego izotopu ⁷¹Ga przyspieszano przy pomocy akceleratora Tandem 25 MV, pracującego w tym eksperymencie przy napięciu 23.1 MV, do energii 460 MeV. W komorze układu *Isomer-scope* umieszczono tarczę z naturalnej folii Sn o grubości 2 mg/cm². Wybór tarczy ^{nat}Sn podyktowany był głównie jej dostępnością, a także dużą trwałością i łatwością obchodzenia się z metalicznymi tarczami cyny. W docelowych eksperymentach z wiązkami radioaktywnymi użyta będzie tarcza ¹³⁰Te. Izotop ¹³⁰Te, o stosunku liczby neutronów do liczby protonów N/Z = 1.50, jest dużo bardziej neutrono-nadmiarowy od naturalnej cyny o średniej masie A = 118.7 i liczbie N/Z = 1.38, a więc zapewni silniejszą produkcję egzotycznych fragmentów przez transfer dodatkowych neutronów do jąder wiązki. Tarcze z izotopu ¹³⁰Te są jednak drogie i trudne do sporządzenia, zwłaszcza przy wymaganej grubości tarczy 1-2 mg/cm², podlegają też szybkiemu utlenianiu.

Energia wiązki ⁷¹Ga 460 MeV w reakcji na tarczy Sn przekracza barierę kulombowską o nieco ponad 50%. Energia ta obniża się wraz z przejściem wiązki przez tarczę, osiągając wartość około 410 MeV dla wiązki wychodzącej z tarczy o grubości 2 mg/cm². Energia wiązki została wybrana dla zapewnienia właściwej kinematyki reakcji. Przy tej energii kąt *grazing* reakcji, a więc kąt, pod którym emitowanych jest najwięcej fragmentów produkowanych w procesach głęboko nieelastycznych, wynosi 33°. Zastosowanie folii rejestrującej fragmenty o średnicy otworu 16 mm pozwoliło na pokrycie przez układ *Isomer-scope* szerokiego zakresu kątów, od 17 do 48°, obejmującego kąt *grazing*, co zapewniało rejestrację większości produkowanych w reakcji fragmentów. Równocześnie, duża rozwartość kątowa otworu centralnego, wynosząca 17°, pozwoliła na praktycznie całkowite wyeliminowanie zdarzeń, w których jony wiązki rozproszone przy przejściu przez tarczę byłyby rejestrowane przez folię i detektory MCP. Szczegóły dotyczące parametrów wiązki, tarczy i kinematyki eksperymentu testowego zebrane zostały w tabeli II.

rabela n. Poustawowe parametry problego eksperymentu układu <i>isomer-scope</i> .			
Wiązka	⁷¹ Ga		
Energia wiązki	460 MeV (6.5 MeV/nukleon)		
Energia bariery kulombowskiej (LAB)	295 MeV		
Strata energii wiązki w tarczy dE / dx	25 MeV / 1 mg/cm ²		
Tarcza	$^{nat}Sn \ (<\!A\!>=118.7)$		
Grubość tarczy	2 mg/cm^2		
Kąt grazing reakcji	33°		
Zakres kątowy otworu w folii	0-17°		
Zakres kątowy łapacza fragmentów	17-48°		
Śradni prad wiazki	300-900 enA (jony 22+)		
Steam piąd wiązki	tj. 1 – 2.5 x 10 ⁸ jonów/s		
Czas trwania pomiaru	36 h		
Liczba detektorów germanowych Clover	3		

Tabela II. Podstawowe parametry próbnego eksperymentu układu Isomer-scope.

Warto zauważyć, że użycie zazwyczaj stosowanych w podobnych eksperymentach ciężkich tarcz o masach A > 200, takich jak ²⁰⁸Pb czy ²³⁸U, nie jest w laboratorium HRIBF możliwe ze względu na dostępne energie wiązek. Aby przyspieszać wiązki o masie $A \sim 70-80$ do odpowiednio wysokiej energii, przekraczającej barierę kulombowską w reakcji na tarczy ²⁰⁸Pb czy ²³⁸U, wymagane jest zastosowanie podwójnej folii obdzierającej wiązkę z elektronów, tak zwany *double stripping*, co
zmniejsza natężenie wiązki o rząd wielkości. W przypadku słabych wiązek radioaktywnych takie postępowanie nie jest możliwe.

W eksperymencie testowym celowo użyto wiązki stabilnej o bardzo niskiej intensywności: zaledwie 0.05 pnA, co odpowiada strumieniowi 3 x 10⁸ jonów na sekundę. Ułatwia to odniesienie wyników testu do pomiarów z jeszcze słabszymi wiązkami radioaktywnymi. Łącznie, pomiar testowy przy tej energii wiązki trwał około 36 godzin przy różnych parametrach działania akwizycji danych. Wykonano także krótszy pomiar przy energii wiązki obniżonej do 340 MeV. Miał on na celu sprawdzenie oszacowań zależności rozpraszania jonów wiązki przy przejściu przez tarczę od energii wiązki. Ze względu na próbny charakter eksperymentu, liczbę detektorów germanowych Clover układu CARDS ograniczono do trzech (maksymalnie cztery), co znacznie zmniejszyło wydajność detekcji promieniowania γ . Łącznie w pomiarze zebrano 20 GB danych składających się z pojedynczych, oznaczonych stemplem czasowym zdarzeń odpowiadających rejestracji fragmentu w jednym lub obu detektorach MCP i/lub rejestracji kwantu γ w jednym lub więcej z dwunastu segmentów detektorów germanowych. Opracowanie danych po eksperymencie polegało na analizie prostych i koincydencyjnych widm γ w korelacji i w antykorelacji z rejestracją fragmentów przy różnych warunkach czasowych, pozwalających na obserwację zdarzeń opóźnionych, takich jak rozpady stanów izomerycznych we fragmentach zatrzymanych przed detektorami germanowymi.

Wybór wiązki ⁷¹Ga pozwolił na sprawdzenie wydajności układu do rejestracji rozpadów stanów izomerycznych o różnych czasach życia. W izotopach z obszaru jąder wokół ⁷¹Ga znane są stany izomeryczne o czasach połowicznego rozpadu od kilkudziesięciu nanosekund do kilkuset mikrosekund. W ich rozpadzie emitowane są znane kaskady kwantów γ . W tabeli III zebrano informacje na temat wybranych izomerów.

Izotop	Izomer	Czas połowicznego	Energie przejść y	Zaobserwowano
		rozpadu $T_{1/2}$	w rozpadzie (keV)	TAK / NIE
⁶⁴ Cu	6-	20 ns	159, 203, 212, 1019	TAK
⁶⁶ Cu	6-	600 ns	89, 186, 316, 563	TAK
⁶⁷ Ni	$9/2^{+}$	13 µs	313, 694	NIE
⁶⁸ Ni	5^{-}	860 µs	814, 2033	NIE
⁶⁸ Ni	8^+	23 ns	209, 275, 377, 709, 851,	NIE
			1114, 1152, 2033	
⁶⁹ Cu	$13/2^{+}$	360 ns	190, 680, 1871	NIE
⁶⁸ Ga	7-	62 ns	120, 126, 175, 201, 607	TAK
⁷⁰ Ga	4^{-}	24 ns	188, 691	TAK
^{72}As	7-	87 ns	96, 167, 199, 213	TAK
⁷³ As	7^-	5.7 µs	67, 361	TAK
⁷⁴ As	4^-	27 ns	76, 183	TAK
⁷⁷ As	$9/2^{+}$	114 µs	211, 264	TAK

Tabela III. Wybrane stany izomeryczne w jądrach z obszaru wokół ⁷¹Ga, które mogły być zasilane w reakcji ⁷¹Ga (460 MeV) + ^{nat}Sn w testowym eksperymencie układu *Isomer-scope*. W drugiej części tabeli, poniżej kreski, wymieniono stany izomeryczne w izotopach As, których zasilania nie oczekiwano, lecz ich rozpady zostały również zidentyfikowane w eksperymencie.

We wstępnej analizie danych z eksperymentu potwierdzono, poprzez obserwację charakterystycznych przejść γ , zasilanie stanów izomerycznych w izotopach ⁶⁴Cu, ⁶⁶Cu, ⁶⁸Ga i ⁷⁰Ga o czasach połowicznego rozpadu mieszczących się w przedziale od 20 do 600 ns. Najsilniej populowany jest izomer w jądrze ⁶⁶Cu o czasie połowicznego rozpadu 600 ns [Tul10], którego rozpad

zidentyfikować można nawet na podstawie prostego widma γ opóźnionego w stosunku do zatrzymania fragmentu o czas od 100 do 500 ns – patrz rys. 7.10. Oprócz charakterystycznych przejść γ o energiach 88, 186, 316 i 563 keV z rozpadu izomeru (patrz fragment schematu poziomów ⁶⁶Cu pokazany na rys. 7.10), w widmie tym widoczne są także przejścia γ pochodzące z rozpadów innych izomerów o zbliżonych czasach rozpadu. Zastosowanie analizy koincydencyjnej pozwoliło na czystą identyfikację wymienionych izomerów. Na rys. 7.11 pokazano wyniki analizy koincydencyjnej dla izomerów w ⁶⁶Cu, ⁶⁴Cu, ⁶⁸Ga oraz ⁷²As. Każde z widm bramkowane było jednym z przejść γ występujących w rozpadzie odpowiedniego izomeru. W widmach widoczne są pozostałe charakterystyczne przejścia γ – dla każdego jądra pokazano także część schematu poziomów zawierającą sekwencję przejść γ emitowanych w rozpadzie izomerów.

Rys. 7.10. Widmo koincydencyjne kwantów γ z rozpadu izomeru 6⁻ w ⁶⁶Cu zmierzone przy pomocy układu *Isomer-scope* składającego się z trzech detektorów germanowych typu Clover oraz detektorów fragmentów MCP w eksperymencie testowym w laboratorium HRIBF w reakcji ⁷¹Ga (460 MeV) + ^{nat}Sn. Schemat rozpadu izomeru na podstawie pracy [Loz11].

Ciekawym rezultatem tej wstępnej analizy jest zupełny brak charaterystycznych przejść z rozpadów izomerów w jądrach ⁶⁷Ni, ⁶⁸Ni i ⁶⁹Cu, a więc w izotopach bardziej neutrono-nadmiarowych. Zamiast nich zidentyfikowano populację stanów izomerycznych w jądrach cięższych od jądra pocisku, położonych po neutrono-deficytowej stronie ścieżki stabilności: ⁷²As, ⁷³As ⁷⁴As oraz w bardziej neutrono-nadmiarowym izotopie ⁷⁷As. Ten pozornie zaskakujący efekt może mieć dwa źródła. Po pierwsze, w eksperymencie testowym zastosowano tarczę z naturalnej folii Sn, która nie jest tarczą neutrono-nadmiarową, a więc nie służy dobrze do produkcji w procesach głęboko nieelastycznych fragmentów neutrono-nadmiarowych. Po drugie, ze względu na optymalizację kinematyki reakcji wybrano stosunkowo wysoką energią zderzenia. Przy energii zderzenia przekraczającej barierę kulombowską o 40-50% produkowane w procesach głęboko nieelastycznych fragmenty są silnie wzbudzone i w pierwszym rzędzie tracą energię wzbudzenia przez wyparowanie nukleonów, głównie neutronów, zaś emisja kaskad kwantów γ następuje dopiero wtedy, gdy energia wzbudzenia fragmentów jest mniejsza od energii separacji neutronu. Efekt ten tłumaczyć może silną populację stanów izomerycznych w jądrach ⁶⁶Cu i ⁶⁴Cu, odległych od jądra pocisku o 5 i 7 nukleonów.

Rys. 7.11. Widmo koincydencyjne kwantów γ z rozpadu izomerów w ⁶⁶Cu, ⁶⁴Cu, ⁶⁸Ga oraz ⁷²As zmierzone przy pomocy układu *Isomer-scope* w eksperymencie testowym w reakcji ⁷¹Ga (460 MeV) + ^{nat}Sn. Po prawej stronie pokazano schematy rozpadu izomerów zaczerpnięte z literatury [Loz11, Sin08, Ish97, Rag77].

Na rys. 7.12 pokazano fragment mapy nuklidów z zaznaczonym, użytym w eksperymencie testowym jądrem pocisku ⁷¹Ga oraz izotopami, w których zaobserwowano rozpady izomerów. Dla zobrazowania efektu wyrównywania stosunku liczby N / Z w przypadku reakcji z różnymi jądrami tarczy zaznaczono linię N/Z dla układu złożonego pocisku ⁷¹Ga oraz tarczy ^{nat}Sn (N/Z = 1.34), oraz dla pierwotnie planowanej, neutrono-nadmiarowej tarczy ¹³⁰Te (N / Z = 1.42). Z porównania przebiegu obu linii wynika, że, istotnie, w eksperymencie z tarczą ^{nat}Sn stany w bardzo neutrono-nadmiarowych izotopach Cu oraz Ni nie mogą być populowane. Rysunek ten pokazuje jak ważne jest dla uzyskania silnej populacji jąder neutrono-nadmiarowych zastosowanie w podobnych eksperymentach jak najcięższych dostępnych tarcz, które służą jako rezerwuar neutronów przekazywanych w zderzeniu do jądra pocisku. Najlepiej nadające się do tego izotopy to, w przypadku jąder o średniej masie, ¹³⁰Te o liczbie N/Z = 1.50, zaś w przypadku ciężkich jąder ²⁰⁸Pb o liczbie N/Z = 1.54 oraz ²³⁸U o liczbie N/Z = 1.59

Rys. 7.12. Fragment mapy izotopów wokół zastosowanego w eksperymencie testowym jądra pocisku ⁷¹Ga. We wszystkich podpisanych izotopach znane są stany izomeryczne. Izomery zaobserwowane w eksperymencie zaznaczono kółkami. Przerywane linie poprowadzono dla wartości stosunku liczby neutronów do protonów N / Z = 1.34 oraz 1.42 odpowiadającym liczbom N / Z układu złożonego z pocisku ⁷¹Ga oraz tarczy ^{nat}Sn oraz neutrono-nadmiarowej tarczy ¹³⁰Te.

W prezentowanym eksperymencie wykorzystano tylko trzy z czterech dostępnych w układzie CARDS detektorów germanowych typu Clover. Dla zwiększenia wydajności pomiaru koincydencyjnego poszczególne segmenty były traktowane w analizie jako osobne detektory. Niewielka liczba kanałów odpowiadających 12 segmentom detektorów sprawiła, że analiza ograniczona została do badania widm prostych i podwójnych widm koincydencyjnych. Ze względu na małą statystykę nie była możliwa analiza koincydencji potrójnych. Analiza koincydencji podwójnych połączona z wyborem odpowiedniego, dostosowanego do czasu połowicznego rozpadu izomeru przedziału czasu po rejestracji fragmentu, pozwoliła na otrzymanie stosunkowo czystych widm o niewielkim tle promieniowania, pochodzącym od zdarzeń przypadkowych. Jedynie w widmach prostych, w obszarze niskich energii, poniżej 150 keV (patrz rys. 7.10), odnotowano ciągłe tło promieniowania co związane jest z użyciem w pomiarze detektorów germanowych bez osłon

antykomptonowskich. Osłony antykomptonowskie standardowo nie są używane w układzie CARDS, który dla uzyskania jak największej wydajności zaprojektowany został w bardzo zwartej geometrii. Efekt ciągłego tła promieniowania w obszarze niskich energii znika w przypadku analizy koincydencyjnej z właściwym odjęciem tła.

Bezwzględna wydajność detekcji promieniowania y w omawianym pomiarze jest trudna do wyliczenia, można ją jedynie oszacować. Uwzględniając fakt użycia tylko trzech detektorów oraz zakładając emisję fragmentów ⁶⁶Cu z tarczy w kierunku wokół kąta grazing reakcji, wynosi ona pomiędzy 2 a 3.5% dla kwantów y o energii od 200 do 600 keV. Przekrój czynny na produkcję izotopu ⁶⁶Cu w tej reakcji można oszacować, zakładając, że cała populacja tego jądra równa jest obserwowanemu natężeniu rozpadu izomeru 6. Założenie to jest uzasadnione, gdyż w procesach głęboko nieelastycznych, w których tworzone są fragmenty odległe od jąder tarczy i pocisku o więcej niż kilka nukleonów, dominuje populacja stanów yrastowych. W omawianym eksperymencie oszacowano, że przekrój czynny na produkcję fragmentu ⁶⁶Cu wynosi pomiędzy 2 a 10 mb. Duży błąd oszacowania wynika z szeregu założeń, między innymi dotyczących rozkładu katowego emitowanych z tarczy fragmentów i jego relacji do przedziału katów obejmowanych przez układ Isomer-scope. Wybór wiazki ⁷¹Ga miał na celu sprawdzenie wydajności układu do rejestracji rozpadów stanów izomerycznych o różnych czasach życia. Wstępna analiza danych z eksperymentu pozwoliła na identyfikację szeregu znanych izomerów w izotopach ⁶⁴Cu, ⁶⁶Cu, ⁶⁸Ga, ⁷⁰Ga, ⁷²As, ⁷³As, ⁷⁴As oraz ⁷⁷As o czasach połowicznego rozpadu mieszczących się w zakresie od 20 ns do 114 µs. Wyniki wskazują na to, że wybór właściwych warunków czasowych koincydencji wpływa na zmniejszenie tła pochodzącego od zdarzeń przypadkowych oraz poprawia czułość układu.

W eksperymencie testowym użyto wiązki ⁷¹Ga o średnim natężeniu zmieniającym się od 300 do 900 epA, co przy stanie ładunkowym 22+ odpowiada intensywności wiązki 1 – 2.5 x 10⁸ pps. Wydaje się, że do eksperymentu z wiązkami radioaktywnymi można będzie wykorzystać wiązki ^{77, 79}Ga lub ^{78, 80}Ge, które dostępne są z intensywnościami mniejszymi o dwa rzędy wielkości. Przy dłuższym czasie pomiaru trwającym kilka dni, możliwa będzie identyfikacja najsilniej populowanych izomerów w neutrono-nadmiarowych izotopach Zn, Cu i Ni.

Pełne opracowanie danych z eksperymentu testowego z wiązką stabilną potwierdzi przydatność układu *Isomer-scope* do identyfikacji rozpadów izomerów o czasach życia od kilku ns do kilkuset mikrosekund. Wyniki te, wraz z opisem technicznym projektu, znajdą się w przygotowywanej publikacji [Kro13].

7.4 Plany i perspektywy eksperymentów z wiązkami radioaktywnymi

Zastosowanie układu *Isomer-scope* do badania izomerów w eksperymentach z wiązką radioaktywną zostało opóźnione przez niespodziewane zamknięcie akceleratorów w laboratorium HRIBF w Oak Ridge jesienią 2012 roku. Decyzja ta, wymuszona została przez zmniejszenie budżetu laboratorium finansowanego w większej części przez Departament Energii U.S.A. Obecnie podejmowane są próby przywrócenia pełnego finansowania laboratorium. Z tego względu akceleratory w laboratorium HRIBF nie zostały zdemontowane, także infrastruktura oraz cała aparatura badawcza jest w pełni sprawna. Tandem 25 MV jest gotowy do uruchomienia w krótkim czasie, istnieją też plany zastąpienia przestarzałego cyklotronu ORIC służącego do przyspieszania wiązki protonowej używanej do rozszczepienia tarczy ²³⁸U przez nowy akcelerator protonowy. Planuje się wykorzystanie do tego celu dostępnego komercyjnie cyklotronu C70 produkcji firmy IBA. Cyklotrony typu C70 pozwalają na przyspieszanie protonów do energii 75 MeV z wysokim prądem wiązki do 750 µA. Dla porównania, prąd wiązki protonowej wyprowadzanej z cyklotronu ORIC był

ograniczony do 30 µA przy energiach z zakresu 42-54 MeV. Przy wyższej energii wiązki protonowej zwiększa się przekrój czynny na rozszczepienie jąder uranu tarczy produkcyjnej będącej źródłem wiązek radioaktywnych. Przy tej energii silnie produkowane są w reakcji (p, n) szybkie neutrony, które dodatkowo zwiększają przekrój czynny na rozszczepienie jąder uranu. Zwiększone intensywności wiązek radioaktywnych po ponownym uruchomieniu laboratorium w Oak Ridge pozwolą na przesunięcie granicy eksperymentów z układem *Isomer-scope* w stronę jeszcze bardziej egzotycznych jąder neutrono-nadmiarowych. W szczególności, w projekcie *Isomer-scope* zaplanowano użycie czystych izotopowo wiązek galu ^{76, 78}Ga oraz germanu ^{78, 80}Ge o natężeniach rzędu $10^6 - 10^5$ jonów na sekundę – patrz Tabela I. Po podniesieniu natężenia dostępnych wiązek możliwe będą pomiary z wiązkami ⁸¹Ga i ⁸²Ge, a więc izotopami o N = 50, położonymi w bezpośrednim sąsiedztwie podwójnie magicznego jądra ⁷⁸Ni.

W przypadku przedłużającego się zamknięcia laboratorium HRIBF doświadczenie zdobyte przy projektowaniu i budowie układu *Isomer-scope* zostanie wykorzystane do prac w innych ośrodkach dysponujących wiązkami radioaktywnymi. W ramach programu współpracy laboratoriów polskich i francuskich LEA COPIGAL prowadzony jest projekt badań jąder neutrono-nadmiarowych w reakcjach głęboko nieelastycznych z użyciem wiązek radioaktywnych. Projekt zakłada przeniesienie istniejącego układu *Isomer-scope* do laboratorium w GANIL lub też budowę nowego, bazującego na dotychczasowych doświadczeniach układu do pracy na wiązce systemu akceleratorów SPIRAL2, który rozpocznie działanie w 2016 roku (faza 2 projektu).

W międzyczasie, wymuszona przerwa w eksperymentach projektu *Isomer-scope* jest wykorzystywana do pracy nad samym układem. Ze wstępnej analizy wyników eksperymentu testowego z wiązką stabilną wydaje się, że brak identyfikacji izotopowej fragmentów może być główną wadą obecnego układu, szczególnie przy próbach identyfikacji nowych izomerów populowanych w słabych kanałach reakcji. Dlatego rozważana jest obecnie koncepcja zastąpienia układu folii i detektorów MCP przez szereg segmentowanych, cienkich detektorów krzemowych o grubości 20 μ m. Zastosowanie cienkich detektorów krzemowych ΔE oraz grubego detektora krzemowego typu CD o symetrii sferycznej z otworem w środku, jako aktywnego łapacza i detektora *E* jednocześnie, pozwoliłoby na uzyskanie podstawowej identyfikacji i określenie liczby Z fragmentu. Koszt takiego układu przewyższyłby znacznie cenę obecnie działającego układu *Isomer-scope*, wymagałby on także dużo większej precyzji w użyciu w eksperymencie, jednakże przy założeniu, że obszar przyszłych pomiarów skoncentrowany byłby na izotopach sąsiadujących z ⁷⁸Ni, taka konstrukcja jest możliwa i warta rozważenia.

8. Podsumowanie

Jednym z głównych wyzwań stawianych przed współczesną fizyką jądrową jest opis struktury egzotycznych, odległych od ścieżki stabilności jąder. Jądra egzotyczne odgrywają wielką rolę w procesach astrofizycznych, które odpowiadają za powstanie stabilnych ciężkich pierwiastków. Są one także laboratorium, w którym możliwa jest weryfikacja podstawowych modeli jądrowych powstałych w oparciu o zgromadzoną wiedzę na temat jąder stabilnych i bliskich stabilności. Informacje na temat struktury jąder egzotycznych mogą być bezpośrednio porównywane z rozwijanymi w ostatnich latach mikroskopowymi obliczeniami jądrowymi *ab-initio*, inspirując nowe podejścia teoretyczne do układów o dużej asymetrii izospinu. Podejmowane wysiłki, które zmierzają do rozciągnięcia badań struktury jądra na odległe od stabilności izotopy, polegają na rozwoju technik eksperymentalnych, takich jak produkcja wiązek radioaktywnych, czy budowa nowych, wydajniejszych układów pomiarowych, oraz wykorzystanie niestandardowych reakcji jądrowych.

W prezentowanej pracy przedstawiono rezultaty badań struktury jąder neutrononadmiarowych z obszaru wokół podwójnie magicznego jądra ⁴⁸Ca oraz neutrono-nadmiarowych izotopów niklu produkowanych w reakcjach głęboko nieelastycznych. Przedyskutowano wybrane aspekty mechanizmu reakcji głęboko nieelastycznych oraz omówiono perspektywy zastosowania w przyszłych badaniach wiązek izotopów radioaktywnych.

Duże zainteresowanie strukturą odległych od ścieżki stabilności jąder neutrono-nadmiarowych doprowadziło w ostatnich dwóch dekadach do poszukiwań nowych metod produkcji i badania tych egzotycznych izotopów. Eksperymenty, w których interesujące izotopy produkowane są w zderzeniach głęboko nieelastycznych przy energiach nieznacznie przekraczających energię bariery kulombowskiej, zostały po raz pierwszy zastosowane do badania struktury jader neutrononadmiarowych w latach dziewiećdziesiatych. W niniejszej pracy opisano badania tych aspektów mechanizmu reakcji głęboko nieelastycznych, które są istotne dla produkcji takich jąder. Efektem decydującym o produkcji jąder odległych od ścieżki stabilności jest równoważenie asymetrii liczby neutronów do protonów w zderzających się jądrach. Zjawisko to zbadano poprzez ustalenie pełnych rozkładów produktów kilku wybranych reakcji głęboko nieelastycznych, a następnie określenie przebiegu procesu równoważenia stosunku N/Z w zależności od wielkości transferu masy pomiędzy zderzającymi się jądrami. Otrzymane wyniki porównano z przewidywaniami dwóch modeli reprezentujących całkowicie odmienne podejścia do reakcji głęboko nieelastycznych: statycznego modelu rozważającego minimalizację energii końcowego układu dwóch fragmentów produktów reakcji w funkcji transferu nukleonów, oraz dynamicznego modelu rozważającego przebieg reakcji w kategoriach przegrupowania nukleonów pomiędzy fragmentami w zależności od dostępnej w zderzeniu przestrzeni fazowej. Obydwa modele odtwarzają zasadnicze trendy obserwowane w eksperymentach, jednak nie we wszystkich przypadkach potrafią opisać ilościowo ich zasięg. W szczególności, model oparty o minimalizację energii końcowej powstałych w zderzeniu fragmentów wskazuje, że obserwowany zasięg przegrupowania nukleonów silnie zależy od deformacji jąder w czasie zderzenia.

W pracy opisano szereg wyników spektroskopowych uzyskanych dla izotopów z obszaru wokół podwójnie magicznych jąder ⁴⁸Ca i ⁷⁸Ni. W badaniach tych zastosowane zostały reakcje ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U oraz ⁷⁶Ge + ²⁰⁸Pb i ⁷⁶Ge + ²³⁸U. Jako systemów detekcyjnych wykorzystano

wielolicznikowy układ detektorów germanowych GAMMASPHERE oraz spektrometr magnetyczny PRISMA-CLARA służący do identyfikacji izotopowej fragmentów. Przedstawiono wyznaczone w pomiarach schematy stanów wzbudzonych izotopów ⁴⁷K, ⁴⁸K i ⁴⁹K. Na ich podstawie przedyskutowano systematyke najniżej położonych stanów wzbudzonych w neutrono-nadmiarowych izotopach potasu, która wskazuje na zmiane wzajemnego położenia w energii orbitali protonowych $s_{1/2}$ i $d_{3/2}$ wraz ze wzrastającą liczbą neutronów, aż do inwersji tych orbitali dla N = 28. Wyznaczenie spinu i parzystości stanu podstawowego jądra ⁴⁹K jako $1/2^+$ wskazuje, że przegrupowanie orbitali s_{1/2} i d_{3/2} jest trwałe i utrzymuje się także dla izotopów potasu o N > 28. Schemat stanów wzbudzonych otrzymany dla nieparzysto-nieparzystego izotopu⁴⁸K pozwolił zweryfikować spin i parzystość stanu podstawowego tego jądra na 1⁻. Na przykładzie ⁴⁸K zaprezentowano metodę pomiaru czasów życia stanów wzbudzonych w jądrach populowanych w procesach głęboko nieelastycznych, która jest modyfikacją metody Plunger. Pomiary czasów życia stanów w obszarze pikosekundowym, pozwoliły na określenie multipolowości przejść γ emitowanych w rozpadzie tych poziomów, a co za tym idzie na wyznaczenie spinów i parzystości stanów wzbudzonych. Wyznaczone schematy stanów wzbudzonych zinterpretowano za pomocą prostych rozważań modelu powłokowego zakładającego sprzężenie dziury protonowej w powłoce Z = 20 ze wzbudzeniami cząstek neutronów powyżej liczby N = 28. Dla odtworzenia wyżej leżących poziomów konieczne było uwzględnienie wzbudzenia protonu poprzez szczeline energetyczna Z = 20. Powstałe w ostatnich latach nowe podejścia teoretyczne [Hag12, Dug12, For13] pozwalają na modelowanie struktury stanów wzbudzonych jąder z tego obszaru metodami ab-initio. Uzyskane wyniki eksperymentalne dotyczące egzotycznych izotopów potasu, są idealnym polem do testowania i weryfikacji tych obliczeń.

W części pracy poświęconej neutrono-nadmiarowym izotopom niklu zaprezentowano pomiary, które doprowadziły do identyfikacji izomerów 8+ odpowiadających konfiguracji $(vg_{9/2})^2$ w izotopach ⁷⁰Ni i ⁷⁶Ni. Eksperymenty te wykonane były przy użyciu techniki pomiarowej opartej o badanie rozpadów wzbudzonych jąder produkowanych w procesie fragmentacji. Omówiono także badania rozpadów ß neutrono-nadmiarowych izotopów kobaltu, w wyniku których uzyskano informacje na temat stanów wzbudzonych jąder ⁷²Ni i ⁷⁴Ni. Wobec braku dowodów na istnienie stanów izomerycznych 8⁺ w izotopach ⁷²Ni i ⁷⁴Ni, zbadano strukturę yrastowych stanów wzbudzonych jądra ⁷²Ni produkowanego w zderzeniach głęboko nieelastycznych wiązki ⁷⁶Ge z ciężkimi tarczami. Potwierdzono, że w jadrze ⁷²Ni nie istnieje długożyciowy yrastowy stan izomeryczny, a zidentyfikowany w eksperymencie poziom 8⁺ ma czas połowicznego rozpadu krótszy niż 20 ns. Na podstawie wyznaczonego schematu poziomów pasma podstawowego wykazano znaczne wzmocnienie prawdopodobieństwa przejścia B(E2) pomiędzy stanami 8⁺ i 6⁺ w ⁷²Ni, w porównaniu do ⁷⁰Ni i ⁷⁶Ni. Takie wzmocnienie prawdopodobieństwa przejścia zgodne jest z modelem zaproponowanym przez van Isackera, który przewiduje obniżenie energii stanu 6^+ o liczbie *seniority* y = 4 do wartości porównywalnej ze stanem 6⁺ o liczbie *seniority* v = 2. Tak więc wzmocnienie prawdopodobieństwa przejścia B(E2) pomiędzy stanami 8⁺ i 6⁺ w ⁷²Ni może być wytłumaczone przez silne zmieszanie stanów 6⁺ o $\nu = 2$ i $\nu = 4$.

Przedstawiono także ostatnie wyniki badań spektroskopowych dla mniej neutrononadmiarowych izotopów niklu ⁶⁴Ni, ⁶⁶Ni i ⁶⁸Ni produkowanych w zderzeniach głęboko nieelastycznych w reakcji ⁶⁴Ni + ²³⁸U. Omówiono metodę analizy korelacji kierunkowych kwantów γ emitowanych w rozpadach stanów wzbudzonych tych jąder, na podstawie której oznaczono spiny i parzystości szeregu wcześniej niezidentyfikowanych stanów. Pełne opracowanie zebranego w tym eksperymencie zestawu danych koincydencyjnych o szczególnie dużej statystyce pozwoliło na wyznaczenie najwyższych znanych stanów yrastowych w jądrach ⁶⁶Ni i ⁶⁸Ni o spinach odpowiednio 12⁺ i 13⁻. W niedawno opublikowanej pracy na temat nieparzystego izotopu ⁶⁷Ni [Zhu12] udowodniono, że opis struktury izotopów niklu z tego obszaru za pomocą najnowszych obliczeń modelu powłokowego jest niesatysfakcjonujący. Trwają poszukiwania najwłaściwszych efektywnych oddziaływań nukleon-nukleon, które użyte w obliczeniach pozwoliłyby na spójne odtworzenie obserwowanych schematów stanów wzbudznych; rozważane jest także poszerzenie przestrzeni modelowej. Nowo uzyskane dane na temat izotopów ⁶⁴Ni, ⁶⁶Ni i ⁶⁸Ni pozwolą na dokładniejsze przetestowanie proponowanych oddziaływań. Wyznaczenie najwyższych znanych stanów yrastowych o spinach 12–13 \hbar pozwoli, w połączeniu z obliczeniami modelowymi, na ocenę udziału wzbudzeń kolektywnych w stanach o pośrednich wartościach spinu.

dalszej części pracy omówiono perspektywy badań egzotycznych izotopów W produkowanych w reakcjach głęboko nieelastycznych przy użyciu neutrono-nadmiarowych wiązek radioaktywnych pochodzących z rozszczepienia. Na przykładzie laboratorium HRIBF wyjaśniono metodę uzyskiwania neutrono-nadmiarowych wiązek radioaktywnych metodą ISOL, metody uzyskiwania wiązek czystych izotopowo oraz zagadnienia związane z akceleracją wiązek radioaktywnych. Przedstawiono założenia układu Isomer-scope skonstruowanego do badania rozpadu stanów izomerycznych w pomiarach z wykorzystaniem wiązek radioaktywnych. Działanie układu omówiono na przykładzie pomiarów testowych z wykorzystaniem kalibracyjnych źródeł promieniowania α , a także na przykładzie eksperymentu z wiązką stabilną ⁷¹Ga. Parametry eksperymentu z wiązką stabilną zostały dobrane specjalnie tak, by umożliwić bezpośrednie określenie wydainości układu, która bedzie osiagana w warunkach pomiaru z wiazka radioaktywna. Działanie poszczególnych elementów i wydajność układu Isomer-scope omówiono na przykładzie zidentyfikowanych w eksperymencie testowym znanych izomerów w jądrach z obszaru wokół 71 Ga, izotopach Cu, Ga oraz As, o czasach połowicznego rozpadu mieszczących się w przedziale od 20 ns do 100 µs.

Pierwszym tematem badań przy użyciu nowego układu pomiarowego będzie poszukiwanie stanów izomerycznych w izotopach Cu i Zn w obszarze bliskim podwójnie magicznego jądra ⁷⁸Ni. Projekt ten będzie rozwinięciem i uzupełnieniem trwających badań rozpadów β jąder z tego obszaru. W odróżnieniu od rozpadów β , w których populowane są zazwyczaj nisko leżące stany nieyrastowe, zastosowanie w badaniach izomerów reakcji głęboko nieelastycznych pozwoli na identyfikację wyżej leżących stanów wzbudzonych o wyższych spinach. Sukces tych pomiarów otworzy dla badań nowe obszary jąder odległych od ścieżki stabilności, na przykład izotopów galu o N > 82, które również mogą być populowane w reakcjach z radioaktywnymi wiązkami neutrono-nadmiarowymi. Dla izotopów z tego obszaru właściwie nie istnieją dane eksperymentalne dotyczące yrastowych stanów wzbudzonych, a są one potrzebne do zweryfikowania jak dobrym jądrem magicznym jest ⁷⁸Ni. Od niedawna wiadomo bowiem, że w przypadku lekkich jąder, liczby magiczne nie muszą być zachowane wraz z oddalaniem się od ścieżki jąder stabilnych - mogą one zmieniać się wraz z rosnącą asymetrią liczby protonów i neutronów w jądrze.

Kolejnym powodem, dla którego obszar wokół ⁷⁸Ni przyciąga wiele uwagi, jest rola jąder z tego obszaru w astrofizycznym procesie szybkiego wychwytu neutronów zwanym *r process*. Proces szybkiego wychwytu neutronów zachodzi w wybuchach gwiazd supernowych i odpowiada za powstanie około połowy z obserwowanych neutrono-nadmiarowych jąder cięższych od żelaza. Zidentyfikowanie długożyciowych stanów wzbudzonych w jądrach leżących na trasie procesu szybkiego wychwytu neutronów pozwoli na udoskonalenie parametrów modeli astrofizycznych wyjaśniających tworzenie się pierwiastków we Wszechświecie.

W ostatnim czasie użycie układu *Isomer-scope* do badania izomerów w eksperymentach z wiązką radioaktywną zostało opóźnione przez zamknięcie akceleratorów w laboratorium HRIBF w Oak Ridge jesienią 2012 roku. W ciągu nadchodzącego roku spodziewana jest decyzja o częściowym otwarciu laboratorium dla wybranych eksperymentów w oparciu o dotychczasowe wyposażenie lub też o jego modernizacji przez zastąpienie starego akceleratora do produkcji wiązek radioaktywnych nowym cyklotronem. W międzyczasie rozważane jest przeniesienie układu *Isomer-scope* do

laboratorium w GANIL lub też budowa, w oparciu o zdobyte doświadczenie, nowego, ulepszonego detektora, który może powstać w ramach współpracy laboratoriów polskich i francuskich LEA COPIGAL. Taki detektor działając w GANIL byłby znakomitym uzupełnieniem prowadzonego tam programu poszukiwania stanów izomerycznych w jądrach neutrono-nadmiarowych w eksperymentach z użyciem spektrometru magnetycznego.

PODZIĘKOWANIA

Pragnę złożyć serdeczne podziękowania Profesorowi Rafałowi Brodzie, który zainspirował mnie do zajęcia się spektroskopią γ produktów reakcji głęboko nieelastycznych oraz wprowadził mnie w badania struktury jądra. Dziękuję Profesorom Adamowi Majowi i Bogdanowi Fornalowi, kierownikom Oddziału II Instytutu Fizyki Jądrowej PAN oraz Zakładu Struktury Jądra Instytutu, za stworzenie niepowtarzalnej atmosfery życzliwości i zaangażowania całego zespołu we wspólne przedsięwzięcia naukowe. Za wspólną pracę przy eksperymentach i przy opracowaniu danych serdecznie dziękuję kolegom Tomkowi Pawłatowi i Jackowi Wrzesińskiemu.

Niniejsza praca nie mogłaby powstać bez współpracy z międzynarodowymi zespołami badawczymi posiadającymi dostęp do najnowszych urządzeń i technik pomiarowych. Za owocną współpracę chciałbym podziękować kolegom z Argonne National Laboratory (USA) oraz Laboratori Nazionali di Legnaro (Włochy). Szczególne podziękowania kieruję do Profesorów Roberta Grzywacza oraz Carrola Bingham z University of Tennessee (USA) za współpracę przy opracowaniu i budowie układu pomiarowego Isomer-scope.

Praca została wykonana przy wsparciu Ministerstwa Nauki w ramach projektu NN202103333.

BIBLIOGRAFIA

A. Publikacje z własnym udziałem:

- [Bat03] J. C. Batchelder, J.-C. Bilheux, C. R. Bingham, H. K. Carter, J. D. Cole, D. Fong, P. E. Garrett, R. Grzywacz, J. H. Hamilton, D. J. Hartley, J. K. Hwang, <u>W. Królas</u>, D. Kulp, Y. Larochelle, A. Piechaczek, A. V. Ramayya, K. P. Rykaczewski, E. H. Spejewski, D. W. Stracener, M. N. Tantawy, J. A. Winger, J. Wood, E. F. Zganjar, *"The CARDS array for neutron-rich decay studies at HRIBF"*, Nucl. Instr. and Methods B 204, 625 (2003).
- [Bro95] R. Broda, B. Fornal, <u>W. Królas</u>, T. Pawłat, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, R. Menegazzo, G. de Angelis, P. Bednarczyk, J. Rico, D. De Acuna, P. J. Daly, R. H. Mayer, M. Sferrazza, H. Grawe, K. H. Maier, R. Schubart, "*The N = 40 neutron subshell closure in the*⁶⁸Ni nucleus", Phys. Rev. Lett. 74, 868 (1995).
- [Bro98] R. Broda, <u>W. Królas</u>, B. Fornal, T. Pawłat, K. H. Maier, H. Grawe, M. Schramm, R. Schubart, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, P. J. Daly, C. T. Zhang, Z. W. Grabowski, "Dynamical deformation of nuclei participating in deep-inelastic collisions", Acta Phys. Hung. N.S. 7, 71 (1998).
- [Bro04] R. Broda, B. Fornal, <u>W. Królas</u>, T. Pawłat, J. Wrzesiński, D. Bazzacco, G. de Angelis, S. Lunardi, C. Rossi Alvarez, "Hard-to-reach nuclei studied with deep-inelastic heavy ion reactions", Eur. Phys. J. A 20, 145 (2004).
- [Bro05] R. Broda, B. Fornal, <u>W. Królas</u>, T. Pawłat, J. Wrzesiński, D. Bazzacco, S. Lunardi, G. de Angelis, A. Gadea, C. Ur, N. Marginean, R. V. F. Janssens, M. P. Carpenter, S. J. Freeman, N. Hammond, T. Lauritsen, C. J. Lister, F. Moore, D. Seweryniak, P. J. Daly, Z. W. Grabowski, B. A. Brown, M. Honma, "*Yrast states in N = 30 ⁵⁰Ca and ⁵¹Sc isotones studied with deep-inelastic heavy ion reactions*", Acta Phys. Pol. B 36, 1343 (2005).
- [Bro10] R. Broda, J. Wrzesiński, A. Gadea, N. Marginean, B. Fornal, L. Corradi, A. M. Stefanini, <u>W. Królas</u>, T. Pawłat, B. Szpak, S. Lunardi, J. J. Valiente-Dobon, D. Mengoni, E. Farnea, M. P. Carpenter, G. De Angelis, F. Della Vedova, E. Fioretto, B. Guiot, R. V. F. Janssens, P. F. Mantica, P. Mason, G. Montagnoli, D. R. Napoli, R. Orlandi, I. Pokrovskiy, G. Pollarolo, E. Sahin, F. Scarlassara, R. Silvestri, S. Szilner, C. A. Ur, M. Trotta, and S. Zhu, "Proton-hole states in the N = 30 neutron-rich isotope ⁴⁹K", Phys. Rev. C 82, 034319 (2010).
- [Bro12] R. Broda, T. Pawłat, <u>W. Królas</u>, R. V. F. Janssens, S. Zhu, W. B. Walters, B. Fornal, C. J. Chiara, M. P. Carpenter, N. Hoteling, Ł W. Iskra, F. G. Kondev, T. Lauritsen, D. Seweryniak, I. Stefanescu, X. Wang, and J. Wrzesiński, "Spectroscopic study of the ^{64, 66, 68}Ni isotopes populated in ⁶⁴Ni + ²³⁸U collisions", Phys. Rev. C 86, 064312 (2012).
- [Chi11] C. J. Chiara, W. B. Walters, I. Stefanescu, M. Alcorta, M. P. Carpenter, B. Fornal, G. Gürdal, C. R. Hoffman, R. V. F. Janssens, B. P. Kay, F. G. Kondev, <u>W. Królas</u>, T. Lauritsen, C. J. Lister, E. A. McCutchan, T. Pawłat, A. M. Rogers, D. Seweryniak, N. Sharp, J. Wrzesiński, and S. Zhu, *"Seniority, collectivity, and B(E2) enhancement in ⁷²Ni"*, Phys. Rev. C 84, 037304 (2011).

- [Chi12] C. J. Chiara, R. Broda, W. B. Walters, R. V. F. Janssens, M. Albers, M. Alcorta, P. F. Bertone, M. P. Carpenter, C. R. Hoffman, T. Lauritsen, A. M. Rogers, D. Seweryniak, S. Zhu, F. G. Kondev, B. Fornal, <u>W. Królas</u>, J. Wrzesiński, N. Larson, S. N. Liddick, C. Prokop, S. Suchyta, H. M. David, and D. T. Doherty, "Low-spin states and the absence of the 2202-keV proton two-particle, two-hole 0⁺ isomer in ⁶⁸Ni", Phys. Rev. C 86, 041304 (2012).
- [Chi13] C. J. Chiara, W. B. Walters, R. V. F. Janssens, R. Broda, M. Albers, M. Alcorta, P. F. Bertone, M. P. Carpenter, C. R. Hoffman, T. Lauritsen, A. M. Rogers, D. Seweryniak, S. Zhu, F. G. Kondev, B. Fornal, <u>W. Królas</u>, J. Wrzesiński, N. Larson, S.N. Liddick, C. Prokop, S. Suchyta, H. M. David, D. T. Doherty, "Search for intruder states in ⁶⁸Ni and ⁶⁷Co", Acta Phys. Pol. B44, 371 (2013).
- [For95] B. Fornal, R. Broda, <u>W. Królas</u>, T. Pawłat, P. J. Daly, I. G. Bearden, Z. W. Grabowski, R. H. Mayer, D. Nisius, L. Richter, M. Sferrazza, M. P. Carpenter, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, D. Bazzacco, S. Lunardi, C. Rossi-Alvarez, G. de Angelis, P. Bednarczyk, H. Grawe, K. H. Maier, R. Schubart, "*Deep-inelastic reactions A new tool for nuclear spectroscopy*", Acta Phys. Pol. B 26, 357 (1995).
- [For97] B. Fornal, R. Broda, <u>W. Królas</u>, T. Pawłat, J. Wrzesiński, D. Bazzacco, D. Fabris, S. Lunardi, C. Rossi Alvarez, G. Viesti, G. de Angelis, M. Cinausero, D. R. Napoli, Z. W. Grabowski, "γray studies of neutron-rich N = 18,19 nuclei produced in deep-inelastic collisions", Phys. Rev. C 55, 762 (1997).
- [For99] B. Fornal, R. Broda, <u>W. Królas</u>, T. Pawłat, J. Wrzesiński, P. J. Daly, P. Bhattacharyya, Z. W. Grabowski, C. T. Zhang, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. Viesti, G. de Angelis, M. Cinausero, D. R. Napoli, "Spectroscopy at the neutron-rich edge of β stability valley", Acta Phys. Pol. B 30, 1219 (1999).
- [For00] B. Fornal, R. Broda, <u>W. Królas</u>, T. Pawłat, J. Wrzesiński, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. Viesti, G. de Angelis, M. Cinausero, D. Napoli, J. Gerl, E. Caurier, F. Nowacki, "New states in ^{44;46}Ar isotopes from deep-inelastic heavy ion reaction studies", Eur. Phys. J. A 7, 147 (2000).
- [For03] B. Fornal, R. Broda, K. H. Maier, P. J. Daly, P. Bhattacharyya, Z. W. Grabowski, <u>W. Królas</u>, T. Pawłat, J. Wrzesiński, M. P. Carpenter, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, D. Seweryniak, I. Wiedenhöver, S. Lunardi, C. A. Ur, G. Viesti, M. Cinausero, N. Marginean, M. Rejmund, "γray spectroscopy of the proton neutron-hole nucleus ²⁰⁸Bi from deep-inelastic heavy ion reactions", Phys. Rev. C 67, 034318 (2003).
- [For04] B. Fornal, S. Zhu, R. V. F. Janssens, M. Honma, R. Broda, P. F. Mantica, B. A. Brown, M. P. Carpenter, P. J. Daly, S. J. Freeman, Z. W. Grabowski, N. J. Hammond, F. G. Kondev, <u>W. Królas</u>, T. Lauritsen, S. N. Liddick, C. J. Lister, E. F. Moore, T. Otsuka, T. Pawłat, D. Seweryniak, B. E. Tomlin, J. Wrzesiński, "Development of shell closures at N = 32; 34. II. Lowest yrast excitations in even-even Ti isotopes from deep-inelastic heavy ion collisions", Phys. Rev. C 70, 064304 (2004).
- [For05] B. Fornal, S. Zhu, R. V. F. Janssens, M. Honma, R. Broda, B. A. Brown, M. P. Carpenter, S. J. Freeman, N. J. Hammond, F. G. Kondev, <u>W. Królas</u>, T. Lauritsen, S. N. Liddick, C. J. Lister, S. Lunardi, P. F. Mantica, N. Marginean, T. Mizusaki, E. F. Moore, T. Otsuka, T. Pawłat, D. Seweryniak, B. E. Tomlin, C. A. Ur, I. Wiedenhover, J. Wrzesiński, "*Yrast structure of neutron-rich* ⁵³*Ti*", Phys. Rev. C 72, 044315 (2005).
- [For08] B. Fornal, R. V. F. Janssens, R. Broda, N. Marginean, S. Beghini, L. Corradi, M. P. Carpenter, G. De Angelis, F. Della Vedova, E. Farnea, E. Fioretto, A. Gadea, B. Guiot, M. Honma, <u>W. Królas</u>, T. Lauritsen, S. Lunardi, P. F. Mantica, P. Mason, G. Montagnoli, D. R. Napoli, T. Otsuka, T. Pawłat, G. Pollarolo, F. Scarlassara, A. M. Stefanini, D. Seweryniak, S. Szilner, C. A. Ur, M. Trotta, J. J. Valiente-Dobon, J. Wrzesiński, S. Zhu, *"Yrast structure of the neutron-rich N=31 isotones ⁵¹Ca and ⁵²Sc"*, Phys. Rev. C 77, 014304 (2008).

- [Ily11] S. V. Ilyushkin, J. A. Winger, K. P. Rykaczewski, C. J. Gross, J. C. Batchelder, L. Cartegni, I. G. Darby, R. Grzywacz, J. H. Hamilton, A. Korgul, <u>W. Królas</u>, S. N. Liddick, C. Mazzocchi, T. Mendez, S. Padgett, M. M. Rajabali, D. Shapira, D. W. Stracener, and E. F. Zganjar, "*The β decay studies of the transitional nucleus*⁷⁵Cu and the structure of ⁷⁵Zn", Phys. Rev. C 83, 014322 (2011).
- [Jan02] R. V. F. Janssens, B. Fornal, P. F. Mantica, B. A. Brown, R. Broda, P. Bhattacharyya, M. P. Carpenter, M. Cinausero, P. J. Daly, A. D. Davies, T. Glasmacher, Z. W. Grabowski, D. E. Groh, M. Honma, F. G. Kondev, <u>W. Królas</u>, T. Lauritsen, S. N. Liddick, S. Lunardi, N. Marginean, T. Mizusaki, D. J. Morrissey, A. C. Morton, W. F. Mueller, T. Otsuka, T. Pawłat, D. Seweryniak, H. Schatz, A. Stolz, S. L. Tabor, C. A. Ur, G. Viesti, I. Wiedenhöver, J. Wrzesiński, "Structure of ^{52;54}Ti and shell closures in neutron-rich nuclei above ⁴⁸Ca", Phys. Lett. B 546, 55 (2002).
- [Kro96] <u>W. Królas</u>, *"Heavy ion deep-inelastic collisions studied by discrete gamma-ray spectroscopy"*, Institute of Nuclear Physics IFJ Report No 1738/PL 1996.
- [Kro96A] W. Królas, R. Broda, B. Fornal, T. Pawłat, H. Grawe, J. Heese, K. H. Maier, M. Schramm, R. Schubart, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, "The N/Z ratio equilibration in deep-inelastic collisions", Acta Phys. Pol. B 27, 493 (1996).
- [Kro02] W. Królas, R. Grzywacz, K. P. Rykaczewski, J. C. Batchelder, C. R. Bingham, C. J. Gross, D. Fong, J. H. Hamilton, D. J. Hartley, J. K. Hwang, Y. Larochelle, T. A. Lewis, K. H. Maier, J. W. McConnell, A. Piechaczek, A. V. Ramayya, K. Rykaczewski, D. Shapira, M. N. Tantawy, J. A. Winger, C.-H. Yu, E. F. Zganjar, A. T. Kruppa, W. Nazarewicz, T. Vertse, "*First observation of the drip line nucleus*¹⁴⁰Dy: Identification of a 7 μs K isomer populating the ground state band", Phys. Rev. C 65, 031303 (2002).
- [Kro03] <u>W. Królas</u>, R. Broda, B. Fornal, T. Pawłat, H. Grawe, K. H. Maier, M. Schramm, R. Schubart, *"Gamma coincidence study of*²⁰⁸*Pb* + 350 *MeV*⁶⁴*Ni collisions"*, Nucl. Phys. A 724, 289 (2003).
- [Kro08] W. Królas, R. Broda, B. Fornal, T. Pawłat, J. Wrzesiński, R. V. F. Janssens, M. P. Carpenter, T. Lauritsen, D. Seweryniak, S. Zhu, A. Gadea, N. Marginean, L. Corradi, A. M. Stefanini, G. de Angelis, F. Della Vedova, E. Farnea, E. Fioretto, B. Guiot, D. R. Napoli, R. Orlandi, I. Pokrovskiy, E. Sahin, J. J. Valiente-Dobon, S. Beghini, S. Lunardi, G. Montagnoli, F. Scarlassara, P. Mason, C.A. Ur, M. Trotta, S. Szilner, *"Rearrangement of proton single particle orbitals in neutron-rich Potassium isotopes Spectroscopy of ⁴⁸K"*, Proc. of the Fourth Int. Conf. on Fission and Neutron-Rich Nuclei, Sanibel Island, Florida, November 11-17, 2007, J. H. Hamilton, A. V. Ramayya and H. K. Carter, editors, World Scientific, Singapore, p. 531 (2008).
- [Kro09] W. Królas, R. Broda, B. Fornal, T. Pawłat, J. Wrzesiński, "Heavy ion deep-inelastic collisions studied by discrete gamma-ray spectroscopy", Proc. of the Int. Conf. on Heavy Ion Collisions Near the Coulomb Barrier, Chicago, September 22-6, 2008, B. Back et al. editors, AIP Conf. Proc. 1098, 96 (2009).
- [Kro09A] <u>W. Królas</u>, "*Physics from DIC studies of sub-microsecond neutron-rich isomers*", HRIBF Upgrade for the FRIB Era, HRIBF Users Workshop, November 13-14, 2009, Oak Ridge, USA.
- [Kro10] W. Królas, R. Broda, B. Fornal, T. Pawłat, J. Wrzesiński, D. Bazzacco, G. de Angelis, S. Lunardi, D.R. Napoli, C. Rossi Alvarez, "Dynamical deformation of nuclei in deep-inelastic collisions: a gamma coincidence study of ¹³⁰Te + 275 MeV ⁶⁴Ni and ²⁰⁸Pb + 345 MeV ⁵⁸Ni heavy ion reactions", Nucl. Phys. A 832, 170 (2010).
- [Kro11] W. Królas, R. Broda, B. Fornal, R. V. F. Janssens, A. Gadea, S. Lunardi, J. J. Valiente-Dobon, D. Mengoni, N. Marginean, L. Corradi, A. M. Stefanini, D. Bazzacco, M. P. Carpenter, G. De Angelis, E. Farnea, E. Fioretto, F. Galtarossa, T. Lauritsen, G. Montagnoli, D. R. Napoli, R. Orlandi, T. Pawłat, I. Pokrovskiy, G. Pollarolo, E. Sahin, F. Scarlassara, D. Seweryniak,

S. Szilner, B. Szpak, C. A. Ur, J. Wrzesiński, and S. Zhu, "*Coupling of the proton-hole and neutron-particle states in the neutron-rich*⁴⁸K isotope", Phys. Rev. C 84, 064301 (2011).

- [Kro11A] <u>W. Królas</u>, "Neutron-rich nuclei populated in deep-inelastic collisions: new studies of the redistribution of protons and neutrons", Acta Phys. Pol. B 42, 689 (2011).
- [Kro13] <u>W. Królas</u>, R. Grzywacz, M. M. Rajabali, w przygotowaniu.
- [Kro13A] <u>W. Królas</u>, D. Lacroix, w przygotowaniu.
- [Maz05] C. Mazzocchi, R. Grzywacz, J. C. Batchelder, C. R. Bingham, D. Fong, J. H. Hamilton, J. K. Hwang, M. Karny, <u>W. Królas</u>, S. N. Liddick, A. F. Lisetskiy, A. C. Morton, P. F. Mantica, W. F. Mueller, K. P. Rykaczewski, M. Steiner, A. Stolz, J. A. Winger, "Low energy structure of even-even Ni isotopes close to ⁷⁸Ni", Phys. Lett. B 622, 45 (2005).
- [Men10] D. Mengoni, J. J. Valiente-Dobon, A. Gadea, S. Lunardi, S. M. Lenzi, R. Broda, A. Dewald, T. Pissulla, L. J. Angus, S. Aydin, D. Bazzacco, G. Benzoni, P. G. Bizzeti, A. M. Bizzeti-Sona, P. Boutachkov, L. Corradi, F. Crespi, G. de Angelis, E. Farnea, E. Fioretto, A. Goergen, M. Gorska, A. Gottardo, E. Grodner, A. M. Howard, <u>W. Królas</u>, S. Leoni, P. Mason, D. Montanari, G. Montagnoli, D. R. Napoli, A. Obertelli, R. Orlandi, T. Pawłat, G. Pollarolo, F. Recchia, A. Algora, B. Rubio, E. Sahin, F. Scarlassara, R. Silvestri, J. F. Smith, A. M. Stefanini, D. Steppenbeck, S. Szilner, C. A. Ur, P. T. Wady, and J. Wrzesiński, "Lifetime measurements of excited states in neutron-rich ^{44,46}Ar populated via a multinucleon transfer reaction", Phys. Rev. C 82, 024308 (2010).
- [Paw94] T. Pawłat, R. Broda, <u>W. Królas</u>, A. Maj, M. Ziębliński, H. Grawe, R. Schubart, K. H. Maier, J. Heese, H. Kluge, M. Schramm, "Spectroscopy of neutron-rich Ni isotopes produced in ²⁰⁸Pb + ⁶⁴Ni collisions", Nucl. Phys. A 574, 623 (1994).
- [Raj08] M. M. Rajabali, R. Grzywacz, <u>W. Królas</u>, D. Shapira, C. J. Gross, K. P. Rykaczewski, *"Dual MCP setup for deep-inelastic collisions in the search for isomers near ⁷⁸Ni"*, poster presented at the 15th Euroschool for Exotic Beams, Piaski, Poland, September 1-7, 2008.
- [Val09] J. J. Valiente-Dobon, D. Mengoni, A. Gadea, E. Farnea, S. M. Lenzi, S. Lunardi, A. Dewald, T. Pissulla, S. Szilner, A. M. Stefanini, R. Broda, F. Recchia, A. Algora, L. Angus, D. Bazzacco, G. Benzoni, P. G. Bizzeti, A. M. Bizzeti-Sona, P. Boutachkov, L. Corradi, F. Crespi, G. de Angelis, E. Fioretto, A. Gorgen, M. Gorska, A. Gottardo, E. Grodner, B. Guiot, A. Howard, <u>W. Królas</u>, S. Leoni, P. Mason, R. Menegazzo, D. Montanari, G. Montagnoli, D. R. Napoli, A. Obertelli, T. Pawlat, B. Rubio, E. Sahin, F. Scarlassara, R. Silvestrini, A. M. Stefanini, J. F. Smith, D. Steppenbeck, C. A. Ur, P. T. Wady, J. Wrzesinski, E. Maglione, I. Hamamoto, "Lifetime measurements of the neutron-rich N = 30 isotones ⁵⁰Ca and ⁵¹Sc: Orbital dependence of effective charges in the fp shell", Phys. Rev. Lett. 102, 242502 (2009),
- [Wrz01] J. Wrzesiński, K. H. Maier, R. Broda, B. Fornal, <u>W. Królas</u>, T. Pawłat, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, A. Gadea, J. Gerl, M. Rejmund, "*High-spin states in ²⁰⁸Pb*", Eur. Phys. J. A 10, 259 (2001).
- [Wrz04] J. Wrzesiński, R. Broda, B. Fornal, <u>W. Królas</u>, T. Pawłat, M. P. Carpenter, R. V. F. Janssens, D. Seweryniak, S. Lunardi, C. A. Ur, G. Viesti, M. Cinausero, N. Marginean, K. H. Maier, "*The* $\pi h_{11/2}^{-1} \pi i_{13/2}^{-2}$ three-hole isomeric state and octupole core excitation in the ²⁰⁵Tl nucleus", Eur. Phys. J. A 20, 57 (2004).
- [Zha98] C. T. Zhang, P. Bhattacharyya, P. J. Daly, Z. W. Grabowski, R. H. Mayer, M. Sferrazza, R. Broda, B. Fornal, <u>W. Królas</u>, T. Pawłat, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, *"Yrast excitations in A = 126-131 Te nuclei from deep-inelastic ¹³⁰Te + ⁶⁴Ni reactions"*, Nucl. Phys. A 628, 386 (1998).

- [Zhu06] S. Zhu, A. N. Deacon, S. J. Freeman, R. V. F. Janssens, B. Fornal, M. Honma, F. R. Xu, R. Broda, I. R. Calderin, M. P. Carpenter, P. Chowdhury, F. G. Kondev, <u>W. Królas</u>, T. Lauritsen, S. N. Liddick, C. J. Lister, P. F. Mantica, T. Pawłat, D. Seweryniak, J. F. Smith, S. L. Tabor, B. E. Tomlin, B. J. Varley, J. Wrzesiński, *"Level structure of the neutron-rich ^{56;58;60}Cr isotopes: Single-particle and collective aspects"*, Phys. Rev. C 74, 064315 (2006).
- [Zhu07] S. Zhu, R. V. F. Janssens, B. Fornal, S. J. Freeman, M. Honma, R. Broda, M. P. Carpenter, A. N. Deacon, B. P. Key, F. G. Kondev, <u>W. Królas</u>, J. Kozemczak, A. Larabee, T. Lauritsen, S. N. Liddick, C. J. Lister, P. F. Mantica, T. Otsuka, T. Pawłat, A. Robinson, D. Seweryniak, J. F. Smith, D. Steppenbeck, B. E. Tomlin, J. Wrzesiński, X. Wang, "One-particle excitations outside the ⁵⁴Ti semi-magic core: The ⁵⁵V and ⁵⁵Ti yrast structures", Phys. Lett. B 650, 135 (2007).
- [Zhu12] S. Zhu, R. V. F. Janssens, M. P. Carpenter, C. J. Chiara, R. Broda, B. Fornal, N. Hoteling, <u>W. Królas</u>, T. Lauritsen, T. Pawłat, D. Seweryniak, I. Stefanescu, J. R. Stone, W. B. Walters, X. Wang, and J. Wrzesiński, "*Nature of yrast excitations near* N = 40: Level structure of ⁶⁷Ni ", Phys. Rev. C 85, 034336 (2012).

B. Pozostałe prace:

- [Baz92] D. Bazzacco, in Proceedings of the International Conference on Nuclear Structure at High Angular Momentum, Ottawa, 1992, Proc. AECL 10613, vol. 2, 1992.
- [Ble72] J. Bleck, R. Butt, K. H. Lindenberger, W. Ribbe, W. Zeitz, Nucl. Phys. A 197, 620 (1972).
- [Blo77] J. Błocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977).
- [Bro94] R. Broda, C. T. Zhang, P. Kleinheinz, R. Menegazzo, K. H. Maier, H. Grawe, M. Schramm, M. Schubart, M. Lach, S. Hoffman, Phys. Rev. C 49, 575 (1994).
- [Bro01] R. Broda, Acta Phys. Pol. B 32, 2577 (2001).
- [Bro06] R. Broda, J. Phys. G: Nucl. Part. Phys. 32, 151 (2006).
- [Bro08] R. Broda, informacja własna, 2008.
- [Bur95] Evaluated by T. W. Burrows, Nucl. Data Sheets 76, 191 (1995).
- [Bur06] Evaluated by T. W. Burrows, Nucl. Data Sheets 107, 1747 (2006).
- [Bur07] Evaluated by T. W. Burrows, Nucl. Data Sheets 108, 923 (2007).
- [Car82] L. C. Carraz, Phys. Lett. B 109, 419 (1982).
- [Car08] H. K. Carter, D. W. Stracener, Nucl. Instr. Meth. in Phys. Res. B 266, 4702 (2008).
- [Cas00] R. F. Casten, "*Nuclear Structure from a Simple Perspective*", Oxford University Press, second edition, 2000.
- [Chu84] Y. H. Chung et al., Phys. Rev. C 29, 2153 (1984).
- [Det78] C. Detraz, D. Guillemaud, G. Huber, R. Klapisch, M. Langevin, F. Naulin, C. Thibault, L. C. Carraz, and F. Touchard, Nucl. Phys. A 302, 41 (1978).
- [Dob07] J. Dobaczewski, N. Michel, W. Nazarewicz, M. Ploszajczak, J. Rotureau, Prog. Part. Nucl. Phys. 59, 432 (2007).
- [Dug12] T. Duguet, and G. Hagen, Phys. Rev. C 85, 034330 (2012).
- [Fio10] E. Fioretto et al., J. Phys.: Conf. Series 205, 012038 (2010).
- [For94] B. Fornal et al., Phys. Rev. C 49, 2413 (1994).
- [For01] B. Fornal et al., Phys. Rev. Lett. 87, 212501 (2001).
- [For04A] B. Fornal, Institute of Nuclear Physics IFJ Report No 1939/PL 2004.
- [For13] C. Forssen, G. Hagen, M. Hjorth-Jensen, W. Nazarewicz, and J. Rotureau, Phys. Scr. T 152, 014022 (2013).
- [Gad03] A. Gadea et al., Eur. Phys. J. A 20, 193 (2003).
- [Gor97] M. Górska et al., Phys. Rev. Lett. 79, 2415 (1997).
- [Gra02] H. Grawe et al., Nucl. Phys. A 704, 211c (2002).
- [Gra04] H. Grawe, "Shell Model from a Practitioner's Point of View", Lect. Notes Phys. 651, 33 (2004).
- [Grz95] R. Grzywacz et al., Phys. Lett. B 355, 439 (1995).
- [Grz97] R. Grzywacz et al., Phys. Rev. C 55, 1126 (1997).
- [Grz98] R. Grzywacz et al., Phys. Rev. Lett. 81, 766 (1998).
- [Hag12] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

- [Hax49] O. Haxel, J. H. D. Jensen, H. E. Suess, Phys. Rev. 75, 1766 (1949).
- [Hon02] M. Honma, T. Otsuka, B. A. Brown, T. Mizusaki, Phys. Rev. C 65, 061301 (2002).
- [HRI12] <u>http://www.phy.ornl.gov/hribf</u>
- [Isa08] P. Van Isacker and S. Heinze, Phys. Rev. Lett. 100, 052501 (2008).
- [Isa11] P. Van Isacker, Int. J. Mod. Phys. E 20, 191 (2011).
- [Ish97] T. Ishii, M. Itoh, M. Ishii, A. Makishima, M. Ogawa, I. Hossain, T. Hayakawaa, T. Kohno, Nucl. Instr. Meth. in Phys. Res. A 395, 210 (1997).
- [Ish98] T. Ishii, M. Asai, I. Hossain, P. Kleinheinz, M. Ogawa, A. Makishima, S. Ichikawa, M. Itoh, M. Ishii, J. Blomqvist, Phys. Rev. Lett. 81, 4100 (1998).
- [Ish00] T. Ishii, M. Asai, A. Makishima, I. Hossain, M. Ogawa, J. Hasegawa, M. Matsuda, S. Ichikawa, Phys. Rev. Lett. 84, 39 (2000).
- [Ish01] T. Ishii, M. Asai, M. Matsuda, S. Ichikawa, A. Makishima, I. Hossain, P. Kleinheinz, M. Ogawa, Acta Phys. Pol. B32, 739 (2001).
- [Ish02] T. Ishii, M. Asai, A. Makishima, I. Hossain, P. Kleinheinz, M. Ogawa, M. Matsuda, and S. Ichikawa, Eur. Phys. J. A 13, 15 (2002).
- [Kau59] R. Kaufmann and R. Wolfgang, Phys. Rev. Lett. 3, 232 (1959).
- [Kau61] R. Kaufmann and R. Wolfgang, Phys. Rev. 121, 192 (1961).
- [Kru01] R. Krücken et al., Phys. Rev. C 64, 017305 (2011).
- [Lac04] D. Lacroix, A. Van Lauwe, D. Durand, Phys. Rev. C 69, 054604 (2004).
- [Lac05] D. Lacroix, V. Blideanu, D. Durand, Phys. Rev. C 71, 024601 (2005).
- [LeR12] http://www.phy.ornl.gov/hribf/equipment/leribss/
- [Lew99] M. Lewitowicz et al., Nucl. Phys. A 654, 687c (1999).
- [Lid04] S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004).
- [Lis04] A. F. Lisetskiy et al., Phys. Rev. C 70, 044314 (2004).
- [Loz11] R. L. Lozeva et al., Phys. Lett. B 694, 316 (2011).
- [May49] M. Göppert-Mayer, Phys. Rev. 75, 1969 (1949).
- [McC12] E. A. McCutchan, Nucl. Data Sheets 113, 1735 (2012).
- [Men10] A. J. Mendez II, D. Shapira, informacja własna, 2010.
- [Mil11] D. Miller et al., AIP Conf. Proc. 1409, 145 (2011).
- [Mul75] L. G. Multhauf, K. G. Tirsell, S. Raman, and J. B. McGrory, Phys. Lett. B 57, 44 (1975).
- [Ots05] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005).
- [Ots08] T. Otsuka, Eur. Phys. J. Special Topics 156, 169 (2008).
- [Pfu97] M. Pfützner et al., Nucl. Phys. A 626, 259c (1997).
- [Rac43] G. Racah, Phys. Rev. 63, 367 (1943).
- [Rac51] G. Racah, Phys. Rev. 84, 910 (1951).
- [Rac52] G. Racah and I. Talmi, Physica 18, 1097 (1952).
- [Rag77] P. Raghavan, R. S. Raghavan, D. E. Murnick, Phys. Rev. C 15, 1583 (1977).
- [Raj09] M. M. Rajabali, Ph.D. Thesis, University of Tennessee, 2009.

- [Raj09A] M. M. Rajabali, "Dual Microchannel Plate detector system (DMCP)", HRIBF Upgrade for the FRIB Era, HRIBF Users Workshop, November 13-14, 2009, Oak Ridge, USA.
- [Ram01] S. Raman, C. W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).
- [Ran74] J. Randrup, W. J. Swiatecki, and C. F. Tsang, Lawrence Berkeley Laboratory Report No. LBL-3603, 1974.
- [Saw03] M. Sawicka et al., Phys. Rev. C 68, 044304 (2003).
- [Saw04] M. Sawicka et al., Eur. Phys. J. A 22, 455 (2004).
- [Sch84] W. U. Schröder and J. R. Huizenga, "Damped Nuclear Reactions" in "Treaties of Heavy Ion Science", vol. 2, p. 115, edited by D. A. Bromley, Plenum Press, New York, 1984.
- [Sha00] D. Shapira, T. A. Lewis, L. D. Hulett, Nucl. Instr. Meth. in Phys. Res. A 454, 409 (2000).
- [Sha02] D. Shapira, T. A. Lewis, P. E. Miller, Nucl. Instr. Meth. in Phys. Res. A 490, 159 (2002).
- [Sin07] Barlaj Singh, Nucl. Data Sheets 108, 197 (2007).
- [Ste02] A. Stefanini, Nucl. Phys. A 701, 217c (2002).
- [Str03] D. W. Stracener, Nucl. Instr. Meth. in Phys. Res. B 204, 42 (2003).
- [Str04] D. W. Stracener, Nucl. Instr. Meth. in Phys. Res. A 521, 126 (2004).
- [Str04A] D. W. Stracener, informacja własna, 2004.
- [Swi72] W. J. Swiatecki, J. Phys. Colloq. C5 33, 45 (1972).
- [Swi95] W. J. Swiatecki, J. Błocki, informacja własna, 1995.
- [Tat05] B. A. Tatum, Nucl. Instr. Meth. in Phys. Res. B 241, 926 (2005).
- [Tou82] F. Touchard et al., Phys. Lett. B 108, 169 (1982).
- [Tul10] Evaluated by J. K. Tuli, E. Browne, Nucl. Data Sheets 111, 1093 (2010).
- [Uts09] Y.Utsuno, T.Otsuka, B.A.Brown, M.Honma, T.Mizusaki, AIP Conf. Proc. 1120, 81 (2009).
- [Uts11] Y.Utsuno, T.Otsuka, B.A.Brown, M.Honma, T.Mizusaki, AIP Conf. Proc. 1355, 161 (2011).
- [Wap88] A. H. Wapstra, G. Audi, R. Hoekstra, At. Data Nucl. Data Tables 39, 281 (1988).
- [Wei90] H. A. Weidenmüller, Nucl. Phys. A 507, 5 (1990).
- [Wei04] L. Weissman et al., Phys. Rev. C 70, 024304 (2004).
- [Wil73] J. Wilczyński, Phys. Lett. B 47, 484 (1973).
- [Win94] A. Winther, Nucl. Phys. A 572, 191 (1994).
- [Win95] A. Winther, Nucl. Phys. A 594, 203 (1995).
- [Win02] A. Winther, "GRAZING_9 code for for estimating reactions in collision between Heavy Nuclei", http://personalpages.to.infn.it/~nanni/grazing
- [XIA10] <u>http://www.xia.com/DGF_Pixie-16.html</u>