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Abstract

A complex model of energy transfer from ionized gas through a weld-pool to
a heat affected zone (HAZ) is considered here. The model consists of three
sub-models: a model of the arc column with skin layers - sheaths coating elec-
trodes, a model of liquid metal flow in a weld-pool, and a model of coupled
thermo-mechanical-metallurgical processes in HAZ. These sub-models are de-
scried in three reports. The first report is devoted to a short review of welding
plasma models based mostly on the Magneto-Hydro-Dynamics (MHD) the-
ory successfully applied to the simulation of welding process. This report is
illustrated by arc models for TIG and PAW welding. The description of ther-
mal energy transfer between three sub-regions of the complex welding domain
refers to a large number of processes observed in gaseous electronics, ther-
modynamics of reacting gases, electro-dynamics of fluid, micro-metallurgy.



Chapter 1

Introduction

Relatively few models of plasma arc welding (MPAW) are based purely on
the physics of plasma arc and the fluid dynamics. Usually, MPAW’s are con-
structed on the basis of fundamental physical principles and empirical results.
Models constructed on physical principles only are more flexible for applica-
tions for which they were not envisaged. Although the welding technology
is the subject of research for many years the phenomenological description
and numerical simulation of the arc in welding is not fully understand. The
reason of this is that the arc formation and natural arc column instabilities
caused by eg. droplet formation or droplet spraying, are processes with a
various time scales. We would like to see them as a sole processes but in
reality they should be considered as a bunch of parallel processes of various
time scales ranging from nuclear processes (eg. ion formation, and atom, ion
and electron streams interactions) via fluid dynamic processes (MHD-plasma
flow) to mechanical interactions between droplets and plasma and electro-
magnetic field. However, the simulation of parallel processes of various time
scales is very difficult. One of acceptable approaches is based on the idea that
the longest time scale should be selected as the basic and processes of a small
time scale could contribute to the total energy of a process by energy fluxes
governed by time integrated parameters controlling the large scale model.

In gas metal arc welding (GMAW) an arc is burned between a filler electrode
and the weld pool. The electrode is continuous and consumable. For GMAW
several models of metal transfer were proposed including various metal trans-
fer modes ranging from spray, globular, and short-circuit. These models are
developed for the following forces:

• detaching forces: drag force and electromagnetic force,

• gravity force,

1



• surface tension.

Two models for droplet formation and detachment based on the static force
balance theory were proposed by Lancaster [33] in the paper published in
the middle of sixties and Waszink and Graat [59] in the beginning of eight-
ies. Two other models based on the magnetic pinch instability theory were
proposed by Allum [4] and [5] in the middle of eighties. The combination
of concepts of the static force balance theory and the magnetic pinch insta-
bility theory was used by Kim and Edgar [28] to show that the influence of
the electromagnetic force becomes dominating for increasing current. The
first prediction of droplet shape as a function was proposed by Simpson and
Zhu [47] but for the one-dimensional force interaction. A time dependent
two-dimensional model for droplet formation in the arc with definition of
conditions for the transition from the globular transfer mode to the spray
transfer mode was proposed by Heidar [24] and Haidar and Lowke [23]. Un-
fortunately, the model does not simulate the droplet detachment. Assuming
a Gaussian current density distribution on a free surface of a drop, Wang
at al [55] simulated the transition form a globular to a spray transfer mode.
Another Wang at al [56] predicted the geometry of the melting interface
confirmed by experimental tests. In the second model, the authors do not
consider the Marangoni’s effect and drag effects on a droplet surface. Several
authors: Zaharia et al [63], Tsai and Kou [50], Kim et al [29], Wang and Tsai
[57], and Fan and Tsai [16] attempted to model a heat transfer and fluid flow
in the weld pool mostly for the gas tungsten arc welding (GTAW). The fluid
flow and heat transfer in the weld pool, in most cases, are controlled by the
surface tension force. Influence of various driving forces on heat and mass
transfer in gas tungsten arc weld pool was investigated by Kim et al [29].
The GMAW molten pool is less investigated than the GTAW one, because
of the interaction between droplets and arc as well as base metal. Molten
metal droplets are rippling the free surface of the GMAW weld pool. In ad-
dition these droplets are upsetting the convective heat transfer in the weld
pool. A stationary two-dimensional model of GMAW weld pool was pro-
posed by Tsao and Wu [51]. They assumed that the weld pool surface was
flat and considered the thermal energy exchange between droplets and the
weld pool. A three-dimensional quasi steady model for GMAW process was
proposed by Kim and Na [30]. They predicted the size and profile of the weld
pool without taking into consideration the interaction between the droplet
and the weld pool free surface. Ushio and Wu [53] attempted to solve the
problem of interaction between a droplet and the GMA weld pool surface
assuming a constant interaction force, although, the impingement process is
not continuous. Approximating the current density distribution in a droplet,
Fan and Kovacevic [17] [18] developed the model of droplet formation, de-
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tachment and impingement on the weld pool. Wang and Tsai [?] proposed
the non-isothermal model of a droplet impingement on the weld pool surface
with accounting for a consequent fluid flow in the weld pool. They did not
consider processes of the droplet formation and detachment.

The weld pool model should be considered as coupled with the welding arc
model as both of them are subsequent parts of the general welding model.
The first model of the column of TIG welding arc based on the momentum
equations for magnetic and viscous forces and gravitational effects was pro-
posed by Allum [3] in the beginning of eighties. Lowke [36] at the end of
seventies solved the arc problem stabilized by convection and obtained tem-
perature and velocity similar to experimental results. Kovitia and Cram [32]
in the middle of eighties developed a model for two-dimensional GTAW and
they indicated that the rate flow of shielding gas has a minor influence on
the arc behaviour. Lancaster [34] considered this interesting result as well.
Modeling heat transfer, plasma arc flow and melted droplets transportation
in plasma beam are well documented in papers by Choo et al [14]. Lee and
Na [35], Zhu et al [66], Fan et al [19], and Lowke et al [37]. A model of
high current arcs with a deformed anode surface was proposed by Choo et
al [14] where specified weld pool shapes were approximated stepwise and the
cathode tip shape was assumed to be flat-ended. A current density profile
over the surface plane of the cathode was assumed in [14] and [35] but models
proposed in [66], [19] and [14] were without any assumptions on the current
density at the cathode surface and this density was calculated with the com-
bined arc-cathode system. A simplified unified theory of GTAW plasma arc
was developed in [37] where the non-equilibrium sheath near the cathode
could be neglected completely subject that optimal grid size would be cho-
sen near electrodes. The GMAW arc plasma is less popular as the subject
of investigations but several papers were attempting to model such plasma
flow, eg. works by Jonsson et al [26] and[27]. Jonsson et al developed a two-
dimensional steady-state mathematical model which could evaluate temper-
ature, velocity and electric potential of the arc plasma. Unfortunately, the
droplet formation and the electrode shape were not considered there. One of
the most complex model was proposed by Haidar and Lowke [23] [24] where
transport phenomena in the arc plasma, the effect of droplet detachment
and the interaction between the arc plasma and the molten pool were con-
sidered. Recently, Fan and Kovacevic [20] proposed the most complex model
combining the electrode effects, arc plasma and workpiece. The authors at-
tempted to describe the growth and detachment of droplets, transport and
the interaction between the droplets and the weld pool.
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Chapter 2

Thermal Plasma Produced by
Welding Arc

All welding plasmas are classified as hot plasmas in the American and Euro-
pean literature, while Russian literature refers also to low temperature plas-
mas to distinguish them from thermonuclear fusion plasmas. We consider
here the plasma that occurs during TIG welding. Welding plasmas belong to
the sub-group known as the thermal plasmas which are by definition in local
thermodynamic equilibrium (LTE) or close to such a state. It is assumed
that a plasma in LTE is in kinetic equilibrium, excitation equilibrium, and
ionization equilibrium, that is summarized in the following table:
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Type of equilibrium Assumptions Requirements
Kinetic equilibrium Each of the species of the dense,

collision-dominated, high-temperature
plasma assumes a Maxwellian temper-
ature distribution

The amount of energy that elec-
trons pick up along one mean
free path has to be very small
compared with thermal energy
of the electrons

Excitation equilibrium Every process that may lead to excita-
tion and de-excitation is taken into ac-
count:

• Excitation:

– Electron collisions,

– Photo-absorptions,

• De-excitation:

– Collisions of the second
kind,

– Photo-emissions,

The sum of mechanisms of ex-
citation and mechanisms of de-
excitation have to be equal for
dominated collisional processes
(Boltzmann distribution of pop-
ulation density).

Ionization equilibrium Only the most prominent mechanisms
leading to ionization and recombination
are considered:

• Ionization:

– Electron collisions,

– Photo-absorptions

• Recombination:

– Three-body recombina-
tion (fast electron, heavy
ion and slower electron
or neutral particle com-
bination),

– Photo-recombination.

• For sufficiently large
electron densities the
particle densities are
evaluated from the
Saha equation.

• For smaller electron
densities the corona
formula is used.

Thermal plasmas are at near-atmospheric pressure and they are considered
to be in kinetic equilibrium due to the very high number of collisions. They
are not in radiative equilibrium.

Generally the state of the thermal plasma is defined by constitutive variables:

velocity temperature plasma composition

v = (vr, vz) T n = (n(e), n(i))

where the plasma composition (n(e), n(i)) is defined by

pressure enthalpy current density electric potential magnetic field
P h J V B

This state description is true for the so called one-fluid description of plasma
flow in the frame of Magneto-Hydro-Dynamics (MHD) when the temperature
of electrons is assumed to be the same as that of ions, i.e. T (e) ≡ T (i) = T

The plasma composition and density are unique functions of the tempera-
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ture in regions, where plasma states can be qualified as close to LTE. When
a plasma interacts with a solid or liquid boundary, the boundary layers are
non-equilibrium regions. Therefore, the region of the welding arc is split into
various sub-regions: cathode space charge sheath, cathode pre-sheath, arc
column, anode pre-sheath, anode space charge sheath. The arc column can
be quite well described by two-dimensional models due to the symmetry and
quasi-laminar flow in the arc root. The plasma behavior in cathode and anode
regions, which are turbulent (in the sense of the magneto-hydro-dynamic fluid
not the ordinary fluid) with strong deviations from LTE, should be described
by three-dimensional models. In thermal plasma descriptions, two terms are
necessary: magnetically induced forces J×B in the equation of momentum,
and the Joule heating term J · E in the energy equation. The balance equa-
tions for plasma are nonlinear PDEs because of the strong dependence of the
thermodynamic characteristics and plasma transport properties on temper-
ature and composition. The presence of Joule heating term requires Ohm’s
law providing the relation between current density & potential, and current
conservation for dc arcs or Maxwell equations for radio-frequency (rf) dis-
chargers. The Clapeyron ideal gas law for plasmas, that are reactive (ionized)
gases, is supplemented by equations giving the composition. In LTE regions,
e.g. in the arc column and electrode pre-sheaths, the equation describing
electron densities, the product of thermal ionization, is known as the Saha
equation. It can be derived from the minimization of Gibbs’s free energy. In
electrode boundary layers which are non-equilibrium regions with recombi-
nation processes, a set of evolution equations for electro-chemical reactions
should be used. There are several models of boundary layers given by [25],
[39], [62], [64], [65]. Unfortunately, none of them is so general to be valid for
all situations of thermal plasma generation.

2.1 Weld Pool Phenomena

Heat flux from the arc to the weld pool is important for the evaluation of weld
penetration in arc welding process [49] and [13]. The penetration is coupled
with characteristics of liquid metal flow in the weld pool. It is well known
that penetration and the weld shape control the weld quality. There are four
driving forces for a liquid metal in the pool: the drag force of the cathode jet
on the surface, the buoyancy force, the electromagnetic force due to the self-
magnetic field of welding current, and the surface tension of the weld pool.
The driving forces are dependent both on the weld metal physical properties
and plasma characteristics. Therefore, the complex model of TIG welding is
required for the simulation of the arc and the weld pool interactions. Such
complex and coupled problem has been solved in [52] and [13] following some
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simplified solutions in [12], [22] obtained without plasma-pool couplings. A
unified numerical model of stationary TIG arc welding can be applied in
our analysis following the model and the procedure given in [46] improved
by including anode melting and convective effects in the weld pool. Two-
dimensional distributions of temperature and velocity in all regions of TIG
welding and the profile of weld penetration together with quantitative values
of energy balance for various plasma and electrode regions will result from
the simulation. The metal vaporization and the depression of the weld pool
surface should also be considered.

2.2 Thermo-Mechano-Metallurgical Processes

in Steel

The most important phenomena occurring in HAZ are: heating and cool-
ing, thermal dilatation, elastic and inelastic deformation, solidification of
a weld pool, solid phase transformations, and transformation-induced plas-
ticity accompanying volumetric strain effects. The state of material in the
thermo-mechano-metallurgical (TMM) process is defined by four constitutive
variables:

strain rate stress temperature phase fractions
tensor or deviator tensor or deviator

L̇ Ė T S θ y = {y(i)}, i = 1, ..., 5

The state variables (constitutive variables) are defined for a dispersed particle
with internal multiphase structure called the microregion. The microregion is
considered here as a material portion like a particle in the classical continuum
mechanics. The size of dispersed particle is of several grains. The HAZ or
weld joint consists of several microregions and is called the mesodomain.

State variables are coupled via a system of equations expressing the bal-
ance of virtual work, the balance of internal energy, and evolution laws for
phase fractions. The reaction of welded material during the TMM process
is determined by evolution laws for phase fractions, hardening parameters,
constitutive equations for thermo-elasticity, classical plasticity, and trans-
formation induced plasticity. These equations show the influence of stress,
strain, strain rate, and temperature on kinetics of phase transformation and,
reversely, the effect of multi-phase material composition on material reac-
tion under combined thermo-mechanical loading. Microstructural evolution
laws are derived [45] from the basic assumption of the proportionality of
a daughter phase increment to the decrement of a transformation ”driving
force“.
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The coupled and mathematically consistent thermo -mechano -metallurgical
(CTMM) problem is formulated as a variational problem and solved by the
Galerkin type FE technique following [45].

The real material microstructure is not projected into the Finite Element
(FE) structure and thus the concept of hybrid isobaric finite elements is
used to follow the idea of dispersed particles. In hybrid elements the phase
composition of welded material is represented at Gaussian points where the
FE system is integrated.

2.3 Subregions of Thermal Plasma in Weld-

ing

Welding plasmas are generated by passing an electric current through a gas.
The gas is not conducting a current unless a sufficient number of charge
carriers is generated and then electrical breakdown establishes a non-unique
conducting path between electrodes. The welding plasma exist in the area of
high intensity arc where the potential distribution drops in front of the elec-
trodes and shows relatively small potential gradient in the arc column. This
observation gives rise for splitting the arc into parts: solid or liquid electrodes
and their surfaces, thermal plasma column considered to be in one of forms of
thermal equilibrium (local or partial local), and boundary layers, where any
form of equilibrium is not possible. The anode and cathode boundary layers
can be split further into space charge sheaths, cathode ionization pre-sheath,
and diffusion layer of anode produced by the vaporization of the weld pool.
Regions of thermal plasma in TIG welding, shown in Fig. 4.1, are listed in
the following table:

Physical regions in TIG welding Sub-regions sub-sub-regions

tungsten cathode tungsten rod (non-consumable)
tungsten cone (disintegration)
cathode layers space charge sheath

cathode pre-sheath (ionization
zone)

gas tungsten welding arc arc column

anode layers anode pre-sheath (diffusion
layer)
space charge sheath

weld pool
anode (workpiece) fusion zone

heat affected zone
base metal

Processes occurring in subregions in TIG welding plasma, weld pool and heat
affected zone (HAZ) have a thermo-mechanical or an electrical nature and
could be split into two groups:
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Physical Subre-
gions

Thermodynamics and Fluid Dynamics Electricity and Gaseous Electronics

tungsten rod

• conduction and Ohmic heating,

• radiation and convection

cathode surface
(solid body),
tungsten cone • conduction and Ohmic heating,

• black body radiation

• convection

• energy flux towards the cathode
surface balanced by heat con-
duction into the solid

• cooling due to thermionic emis-
sion of electrons from the sur-
face,

• heating due to ions emission
from the plasma impacting on
the cathode,

• ions recombination

cathode sheath
(charge im-
balance area,
Debye length,
collision free)

• convection,

• radiation

• space charge zone screening off
the wall potential,

• electrical boundary layer,

• sheath potential drop,

• acceleration of ions towards
cathode,

• electron emission at the sheath
edge,

• electrons repelling by a sheath
potential

cathode pre-
sheath (collision
dominated) • Local Thermodynamic Equilib-

rium (LTE) of plasma at the
plasma side of pre-sheath,

• constant thermal pressure

• Ionization in electron collision
with neutrals,

• electron-ion collisions,

• energy transfer between the
beam of electrons (emitted by
cathode) and heavy particles
(ions),

• potential drop,

• three-body recombination,

• electron self-diffusion,

• thermal conductivity of elec-
trons
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Physical Subre-
gions

Thermodynamics and Fluid Dynamics Electricity and Gaseous Electronics

arc column

• laminar fluid flow,

• turbulent flow at the arc fringes,

• LTE

• governing equations deduced
from magneto-hydro-dynamics
(MHD),

• convection (loss),

• radiation (loss),

• two separate fluids flow (elec-
trons and ions),

• transport of metal vapor (from
anode),

• thermo-diffusion of metal vapor
into the shielding gas,

• heat flux given by conduction,
enthalpy transport (by the cur-
rent carrying electrons), and
thermo-diffusion,

• free of space charges,

• current driven by the electric
field and the Hall-current,

• transport of ionization energy,

• thermal split of electrons and
heavy ions,

anode pre-
sheath

• LTE would prevail throughout
this zone,

• transport of metal vapor (from
anode),

• convection,

• radiation

• diffusion of charge carriers,

• potential drop,

• ion-electron collisions

anode sheath
(charge im-
balance area,
Debye length)

• convection,

• radiation

• metal evaporation from the
weld pool surface

• space charge zone screening off
the wall potential,

• electrical boundary layer,

• strong electric field due to
deviations from the quasi-
neutrality,

• almost zero electrical conduc-
tivity in the front of anode,
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Physical Subre-
gions

Thermodynamics and Fluid Dynamics Electricity and Gaseous Electronics

weld pool

• Marangoni convective flow,

• Marangoni force driven by spa-
tial (gradient) variation of sur-
face tension

• heat transfer,

• surface tension,

• buoyancy driven by spatial vari-
ation of liquid metal density
and variations of local composi-
tion (temperature dependent),

• generation of magnetic field by
divergent current path,

• Lorentz force,

• viscous drag from plasma,

fusion zone

• solidification,

• solid-phase transformations,

• conduction,

• convection,

• radiation,
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Chapter 3

Comprehensive theory of
thermal plasma

3.1 General notions

Several processes occur in plasma and they are listed below respectively to
principal species:

particle process particle process particle process
electrons Ionization ions charge exchange photons photo excitation

excitation elastic scattering photo dissociation
penning ionization ionization photo ionization
elastic scattering excitation
dissociation recombination atoms elastic scattering
dissociative ionization dissociation ionization
dissociative attachment chemical reaction dissociation

photo emission

Plasma [8], [48] consists of a very large of interacting particles and a statistical
approach is appropriate to reduce the amount of information required for the
development of a phenomenological model of thermal plasma and to provide
a macroscopic description of plasma phenomena. The distribution function
for specific particle species is defined as the density of particles in phase
space f(x,v, t) = dn(x,v, t)/dxdv, where f(x,v, t) ∈ C, f is finite for any
t, f → 0 as v → ∞. All macroscopic variables, in the thermal plasma
model, are deduced from the distribution function because the moments of
this statistical function are related to: number density n(x,v, t), average
velocity, momentum of flow , and energy of flow.

The Boltzmann equation [9], [10] gives the dependence of the distribution
function on the independent variables {x,v, t}. The Boltzmann equation for
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particles of species i is

∂

∂t
fj +∇x(vjfj) +∇v(

Fj

mj

fj) =
∑

j

Cjk (3.1)

∇x(vjfj) net flow

∇v(
Fj

mj
fj) external forces

Cjk net rate of increase of particles in the control volume
as a result of collisions between particles of species j with particles of species k

Fj either electric or magnetic forces acting perpendicular to v
vj velocity of species j
mj mass of j species
∇v, ∇x divergence operator defined in Cartesian coordinates x or v

Assuming f to be a function of energy E , the solution of Eq.(3.1) is called
the Boltzmann distribution of energy and describes the energy distribution
f(E) among classical, eg. distinguishable particles

f(E) = Ae−E/kBT (3.2)

where A is a normalization constant. It can be used to evaluate the average
energy 〈E〉 = kBT per particle when there is no energy-dependent density of
states to skew the statistics of the distribution.

The dynamics of plasma [8], [10] can be approximately described considering
that the motion of plasma particles is controlled by the applied external
fields in addition to the macroscopic average fields (smooth in space and
time) generated to the presence and motion of all plasma particles.

Same approximate methods for derivation of macroscopic variables are needed
because of difficulties in solution of the time dependent Boltzmann equation.
Directly from this equation and without solving it, one can derive differential
equations governing the temporal and spatial variation of the macroscopic
variables. These differential equations are called the macroscopic transport
equations and can be obtained by taking moments of the Boltzmann equa-
tion, Eq.(3.1). The first three moments are

balance equation equation type obtained by multiplying LHS & RHS of Eq.(3.1) by
conservation of mass continuity equation m
conservation of momentum equation of motion mv

conservation of energy energy equation mv2

2

Unfortunately, the resulting set of transport equations is not complete on
each stage of moments hierarchy. Attempting to obtain a complete set of
transport equations for a higher moment of the Boltzmann equation leads to
the introduction of a new macroscopic variable:

equation added new macroscopic variable
equation of motion dyad of kinetic pressure
energy equation heat flow vector
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Therefore, it is necessary to introduce a simplifying assumption concerning
the highest moment of the distribution function that appears in the sys-
tem. Such assumption can truncate the system of equations at some stage
of moments hierarchy and create the closed system of transport equations.

The basic plasma theories can be classified according to the level of compli-
cation in the basic equations:

level of plasma theory equations for each macroscopic variables approximations
difficulty particle species
low cold plasma conservation of mass number density kinetic pressure dyad

conservation of momentum mean velocity i, j = 1...K, pij = 0
temperature = 0

medium warm plasma conservation of mass number density heat flux vector = 0
conservation of momentum mean velocity non-diagonal terms
balance of adiabatic energy scalar pressure of pressure dyad

i 6= j, pij = 0
diagonal terms
of pressure dyad

high hot plasma conservation of mass, number density i 6= j, pij = 0
conservation of momentum mean velocity i = j, pij = p
conservation of energy scalar pressure

temperature

Using simplified forms of Boltzmann’s transport equations and Maxwell’s
electrodynamic equations: Faraday’s law, Ampere’s law, Poisson’s equation,
and the continuity of magnetic field equation, the magneto-hydro-dynamic
(MHD) theory can be developed. Further approximations could be done
either on the cold or warm plasma levels:

type of plasma or particles approximations and assumptions
isotropic plasma no external magnetic field
anisotropic plasma external magnetic field present
collisional plasma wave dumping
plasma particles only electron gas considered

or electron and one or more ion species gas mixture considered
or whole plasma considered as conducting fluid

3.2 Transmission of plasma characteristics from

the molecular- via microscopic- to the macro-

theory of ionized fluid

Analysis of kinetic equations defined on the molecular level in plasma and
based on the concept of probability density in the six-dimensional phase space
(6-D PS) combining three-dimensional real geometrical space and three-
dimensional velocity space is rather difficult and not very practical for the
simulation of manufacturing by welding. Therefore, thermal plasma theories
for the analysis on the macroscopic level [11] are more attractive for this
purpose. The flow-chart illustrating the information transmission from the
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molecular- to macro-level
molecular state
state state of a particle defined by quantum numbers,

quantum numbers defined for the permitted values of particle momentum, i.e. pj = n̂j
h
2L

n̂j = {njx, njy , njz} where L - side length of a control volume, h - Planck’s constant
energy levels can be imagined as the set of shelves at different elevations,

defined for different possible values of n̂2
j , issued from

the kinetic energy Ekj =
p2

j

2m
= n̂2

j
h2

8mL2 ,

compartment can be considered as the box of particles with different states,
but all with the same energy,

energy states can be shown as the set of compartments on each shelve,
degeneracy gj of number of compartments of the corresponding shelf,
energy level j
micro-state specification of the total number of particles in each energy state
macro-state specification of the total number of particles Nj in each energy level

is supporting the table linking notions appropriate for various levels of plasma
modelling

Notion Definition
state of every particle Position and momentum of every particle in the system of N

particles can be represented by a point in six-dimensional phase space
{X× p} = {x1, x2, x3, p1, p2, p3} or {X× v} = {x1, x2, x3, v1, v2, v3}
x -position vector, p = mv -momentum, m -mass of a particle

compartment in phase space Specified by six coordinates within a cell by g =
(dVl)min

h3 À 1,

where (dVl)min is the minimum size of volume element in phase space.
Within the compartments only the number of phase points can be
specified. There is no specification of coordinates of an individual
phase point within a compartment.

cell in 6-D space {X× p} Consists of many compartments g.
Small volume element dVl = dx1dx2dx3dp1dp2dp3, l = 1...k but large
enough to contain a large number of phase points necessary for appli-
cation of statistical laws

micro-state of the system Defined by a complete specification of coordinates of compartments
in quantum statistics in cells. Coordinates of phase points can not be specified.

All microstates are equally possible.
macro-state of the system Given macro-state corresponds to large number of various micro-states.
in Newtonian mechanics Distribution of phase points in phase space for

∑
Nk = N is such that

N1 phase points fall into cell number 1,
Nj phase points fall into cell number j,
Nk phase points fall into cell number k.
Only the number of phase points per cell is specified.
Individual coordinates of phase points within a cell are not specified.

thermodynamic probability W The number of micro-states W =
∏

k
(gk+Nk−1)!
(gk−1)!Nk!

is associated with any

given macro-state, where gk represents the number of compartments
in cell k or the multiplicity (degeneracy) of energy state Ek,
or statistical weight of excited atoms in quantum state k.
Max. thermodynamic probability defines the max. number of micro-
states for the particular macro-state that corresponds to the
state of max. entropy S = kB logW that defines the equilibrium state.

Maxwell-Boltzmann Describes the fractional population of excited states

distribution of energy in terms of phase points Nk ⇒ Nk
N

= gk
Q

exp(−Ek/kBT )

of identical but or number densities n ⇒ nk
n

= gk
Q

exp(−Ek/kBT )

distinguishable particles nk = Nk
V - number density

V - volume of the system
Q =

∑
k gk exp(−βEk) -partition function,

β = 1/kBT [J−1]-Lagrangian multiplier

The partition functions Qj, j ∈ (1, ...,J ) for the plasma composed with J
species establish the link between the six-dimensional, 6-D, microscopic sys-
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tem and macroscopic thermodynamic plasma properties in three-dimensional,
3-D, space.

Thermodynamic and transport properties of plasma depend on the plasma
composition. For singly ionized atoms the composition of plasma is defined
by the Saha-Eggert equation, Dalton’s law, and the condition for plasma
quasi-neutrality. Formulas for plasma composition are given in the table

Name of the relationship Equation

1 Saha-Eggert equilibrium for thermal ionization n(e)n(i)

n
= 2Q(i)

Q
( 2πm(e)kBT

h2 ) exp(− E(i)

kBT
)

derived by minimizing of Gibbs free energy n(e) -electron number density, [m3],

n(i) -ion number density, [m3]
n -neutral number density,
h = 6.6261× 10−34, [Js] -Planck’s constant,

E(i) -ionization energy,

Q, Q(i) -partition functions of ions and neutrals,

Q(i) =
∑

s g
(i)
s exp(−E

(i)
s /kBT )

Q =
∑

s gs exp(−Es/kBT )

g
(i)
s , gs -statistical weights of energy levels

of ions and neutrals

E
(i)
s , Es -energy levels of ions and neutrals

m(e) -mass of electrons
kB -Boltzmann constant

2 Dalton’s law p = (n(e) + n(i) + n)kBT

3 quasi-neutrality of plasma n(e) = n(i)

The Saha-Eggert equation can be used for evaluation of n(e) by using the
following algorithm

• define function f(T ) =RHS of the Saha-Eggert equation, ie. f(T ) = 2Q(i)

Q
( 2πm(e)kBT

h2 ) exp(− E(i)

kBT
)

• assume an initial value of n(e) = inin(e)

• find E(i)

• solve equation (n(e))2 + 2f(T )n(e) − Pf(T )
kBT

= 0

• find the new kn(e)

• iterate unless (k+1)n(e) − kn(e) < δiter

Thermodynamic properties of plasma are defined by: mass density, inter-
nal energy, enthalpy, specific heat, and entropy. The following table shows
expressions for these properties both for the classical and plasma thermody-
namics.
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property classical thermodynamic forms for plasma physics
variables and parameters variables and parameters

1 mass density ρ - density ρ = Σlnlml

independent variable nl - number density of
various species in plasma
ml - species mass

2a internal energy U = F + TS Helmholtz free energy [38]

U -energy needed to create F − F0 = −∑
j NjkBTj(1 + ln(Qj/Nj))− kBTV

12πλ3
D

the system
for system F -Helmholtz free energy F0 -reference energy
characterized by T -absolute temperature Nj -total number of particles of species j
T&V S -final entropy kB-Boltzmann constant, 1.3807× 10−23 [JK−1]

TS-energy imported from T -kinetic temperature 3
2
kBTj = 1

2
mj v̄2

j

1/2

system’s environment v̄2
j

1/2
- rms or effective velocity of particle j

by heating Qj -partition function of species
V -volume of the plasma [m3]
λ3

D - Debye length [m]
kBTV
12πλ3

D

-Debye correction for interaction energy due

to long-range Coulomb interactions between species
2b internal energy U = G + TS − PV Gibbs free energy [38]

U -energy needed to create G−G0 = pV + F − F0

the system = −∑
j NjkBT ln(Qj/Nj)− kBTV

8πλ3
D

for system G -Gibbs free energy
characterized by P -absolute pressure G0 -reference energy

T&p V -final volume p =
NjkBT

V − kBT

24πλ3
D

-pressure

PV - work to give kBTV
8πλ3

D

-Debye correction

the system final λD = ε0kBTV
e2 ∑2

j=1 Z2
j Nj

volume V at constant ε0 -permittivity of free space (vacuum)
pressure P e -elementary charge, 1.6022× 10−19[C]

Zj -number of ionic charges of species j

3 specific heat c = q
m4T

cp =
∂Hg

∂T
|p

q -heat added Hg =

∑k
j=1 xjHj∑k
j=1 xjMj

-specific enthalpy, [kJ/kg]

m -mass xj = Nj/Ntot -molar fraction of chemical species j
∆T -change in temperature Ntot -total number of all species

Hj -enthalpy of one mole of species j
Mj -mass of one mole of species j

4a enthalpy H = U + PV 1. when cp available from tables

H −H0 =
∫ T
0 cp(T )dT

energy for creation of the H -total enthalpy of mixture at T and P
system plus the work needed H0 -total enthalpy at reference state T = 0, P = Pa

to make room for it Pa -ambient pressure
cp(T ) -specific heat (capacity), [kJ/kgK]
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property classical thermodynamic forms for plasma physics
variables and parameters variables and parameters

4b enthalpy 2. when cp calculated through partition functions
Example for nitrogen N2:
composition of 1 mole of N2 at (T, p) gives
N2 → Nmol

N2
N2 +Nmol

N N +Nmol
N+ N+ +Nmol

e e−

Nmol
j = Nj/NA -number of moles of species j

NA - Avogadro number
Only two reactions occur:
N2 → 2N -dissociation
N → N+ + e− -ionization
Total enthalpy at (T, p)

H = Nmol
N2

HN2 +Nmol
N HN +Nmol

N+ HN+ +Nmol
(e)

H(e)

Enthalpy change to produce plasma
4H = H −H0

N2
H0

N2
-enthalpy at (T0, p0)

4H = 4HN2 + 1
2
(Nmol

N +Nmol
N+ )HD

N +Nmol
N+ HI

N+

4HN2 - frozen enthalpy with no reaction
while N2 heated from T0 to T
HD

N - reaction enthalpy due to dissociation
HI

N+ - reaction enthalpy due to ionization

5 entropy ∆S = q
T

S = kB logW
measure of energy amount and also

which is unavailable to S =
∫ T
0

cp(T )

T
dT

do work when cp is available from tables
1
T

= ( ∂S
∂V )V,N -alternative

definition of temperature

3.3 Fluid and MHD theory of thermal plasma

for the arc beam

The plasma state in the arc column area is close to LTE and such state is
called the partial local thermodynamic equilibrium (PLTE) and following
that observation it can be approximated by one of MHD theories. Unfor-
tunately the plasma theory for electrode sheaths is much more complicated
and can be based on the analysis presented in [8], [58] [60] and [61]. The
theory of plasma in sheaths is not general and refers deeply to the molecular
physics and the nature of plasma transport coefficients which are related to
the Coulomb collisions of species.

3.3.1 Distribution functions

In this theory the following distribution functions are fundamental issues:

distribution expression-definition
particle distribution function total number of particles f(x,v, t)d3xd3v in differential

six-dimensional phase space element d3xd3v
particle number density number of particles per unit volume n(x, t) =

∫
f(x,v, t)d3v

The other quantities
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quantity definition
fluid velocity us = 〈vs〉
mean thermal velocity Vs = 〈(vs − us)2〉 1

2

mass density ρ = Σsmsns

vector of mean mass velocity Us = 1
ρ
Σsmsnsus

velocity of particle relative to mean mass velocity ws = vs − Us; 〈ws〉 = us − Us

pressure tensor Ps,jk = msns〈ws,jws,k〉

are defined for particle species s relatively to these two basic notions as
moments following the general definition of a moment of quantity Q(v):

〈Q(v)〉 =
1

n(x, t)

∫
f(x,v, t)Q(v)d3v (3.3)

The distribution function fs(x,v, t) for species s satisfies the Boltzmann
equation [10]that is written here both in the vector and componential form

∂fs

∂t
+ vs · ∂fs

∂x
+

qs

ms

(E + vs ×B) · ∂fs

∂vs

+ g · ∂fs

∂vs

= ∂fs

∂t
|coll (3.4)

∂fs

∂t
+ vj

∂fs

∂xj

+
qs

ms

(Ej + εjklvkBl)
∂fs

∂vj

+ gj
∂fs

∂vj

= ∂fs

∂t
|coll (3.5)

∂fs
∂t

+ vs · ∂fs
∂x

+ qs
ms

(E + vs ×B + ms
qs

g) · ∂fs
∂vs

total time derivative of the distribution function
∂fs
∂t
|coll five-fold integral term accounting for

the change in fs due to molecular collisions
qs(E + v ×B) Lorentz force on charge qs

E electric field [volt/m]
B magnetic induction [tesla]
qs charge of species s, [coulomb]
ms mass of species s, [kg]
vs, vj velocity of species s and velocity component,
g, gj mass force per unit mass (eg. gravitational)
εjkl unit permutation tensor

coll subscript for collision-related quanitites

3.3.2 Basic integro-differential system of equations

When external fields E and B are known Eq.(3.4) can be solved as the
linear differential equation. However in plasma case, fields E and B are self-
consistent and then the Boltzmann equation is associated with Maxwell’s
equations which describe how charge and current densities affect the magnetic
and electric fields. The velocity of a particle injected into a plasma varies
under the influence of E and B fields due to interacting forces and that induce
currents which in turn alter the external fields. Maxwell’s equations read in
the form appropriate for SI-unit system

∇× E = −∂B
∂t

Fraday’s law (3.6)
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∇×H = ∂D
∂t

+ J Ampere’s law (3.7)

∇ ·D = ρch Poisson’s equation (3.8)

∇ ·B = 0 absence of magnetic monopoles (3.9)

with constitutive relations

εE = D transformation of electric field E, [V/m] to displacement D, [C/m2]
µH = B transformation of magnetic induction B, [T ] to magnetic intensity H, [H]

and symbols

symbol physical quantity Value Units
µ0, µ magnetic permeability µ ≈ µ0 = 4π × 10−7 Hm−1,

H - henry, magnetic inductance
ε0, ε electric permittivity ε ≈ ε0 = 8.8542× 10−12 Fm−1,

F - farad, electric capacitance

and charge and current densities defined by

ρch = Σsqsns charge density (3.10)

J(x, t) = Σsqsns〈vs〉 current density (3.11)

Integro-differential Eqs. (3.4) (or (3.5)), (3.7), (3.8) and Eqs.(3.6), (3.9) with
relations Eq.(3.10) and (3.11) are basic expressions both for the kinetic and
the fluid theories of plasma.

3.3.3 Fluid theory

Assuming that only flow of electrons and ions is involved in the transportation
of energy in a welding plasma beam, equations of motion for the two-fluid flow
theory are derived here. These equations are fundamental for the formulation
of MHD theory.

By taking moments of Boltzmann’s equation Eq.(3.5), the particle velocity
distribution is replaced by values averaged over velocity space in the descrip-
tion of plasma as a fluid. Moment equations are obtained by multiplying
Eq.(3.5) by an arbitrary function of velocity Q(v) and integrating each term
of the equation following the Eq.(3.3). Moments of three LHS terms of
Eq.(3.5) are following

∫
∂fs

∂t
Q(v)d3v =

∂

∂t
(ns〈Q〉) (3.12)

∫
vj

∂fs

∂xj

Q(v)d3v =
∂

∂xj

(ns〈vjQ〉) (3.13)
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∫
qs

ms

(Ej +
εjklvkBl

c
+

ms

qs

gj)
∂fs

∂vj

Q(v)d3v =

− qs

ms

Ejns〈∂Q
∂vj

〉 − qs

msc
εjklBl〈∂Q

∂vj

vk〉 − gjns〈∂Q
∂vj

〉 (3.14)

The general moment equation for the Boltzmann Eq.(3.5) called also the
general equation of change [7] reads

∂

∂t
(ns〈Q〉) +

∂

∂xj

(ns〈vjQ〉)− qs

ms

Ejns〈∂Q
∂vj

〉

− qs

msc
εjklBl〈∂Q

∂vj

vk〉 − gjns〈∂Q
∂vj

〉 =

∫
(
∂fs

∂t
)|collQd3v (3.15)

The zeroth moment, useful in derivation of two conservation equations, is
obtained by assuming Q(v) = 1 in Eq.(3.15) and is expressed in the form

∂ns

∂t
+

∂(nsuj)

∂t
= 0 (3.16)

where uj is a component of fluid velocity and RHS is zero assuming ideal
plasma, ie. ignoring ionization, three-body recombination and charge ex-
change effects that can be expressed by relations: (∂ni

∂t
)|coll = 0, (∂ne

∂t
)|coll = 0,

where superscript i stands for ions and e for electrons. Two conservation
equations: a mass conservation equation, and a charge conservation equation,
are obtained by multiplying Eq.(3.16) by mass ms or charge qs, respectively,
and summation over s:

∂ρ

∂t
+∇ · (ρU) = 0 with mass density ρ =

∑
j

njmj (3.17)

∂ρch

∂t
+∇ · J = 0 (3.18)

The first moment of Boltzmann equation with Q = v is obtained by multi-
plying Eq.(3.5) by vm and integrating over velocity space,

∂(msnsum)

∂t
+

∂(msns〈vjvm〉)
∂x

− nsqs(Em − εmjkujBk)− nsgm = ±Pm (3.19)
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where the sign of the RHS momentum density is opposite for electrons and
ions and reads

Pm = m(i)

∫
(
∂f (i)

∂t
)|collv

(i)
m d3v(i) = m(e)

∫
(
∂f (e)

∂t
)|collv

(e)
m d3v(e) (3.20)

with quantities appropriate for electrons and ions marked with the upper-
script e or i respectively. Eq.(3.20) can be written when assuming that the
total momentum density of the system do not vary due to collisions between
electrons and ions.

The fluid equation of motion can be derived from Eq.(3.19) by using fluid
quantities:

notation components of
uj fluid velocity
Uj mean mass velocity
wj particle velocity relative to mean mass velocity
Pjk pressure tensor

together with the relation for velocity dyad

〈vjvk〉 = 〈(Uj + wj)(Uk + wk)〉 =
1

nm
Pjk + Ujuk + Ukuj − UjUk. (3.21)

and finally it can be written in forms appropriate for ions and electrons

∂

∂t
(m(i)n(i)um) +

∂

∂xm

(P
(i)
jm + m(i)n(i)(Ujum + Umuj − UjUm))

−n(i)q(i)Em − n(i)q(i)εmjkujBk − n(i)gm = ±P(i)
m (3.22)

∂

∂t
(m(e)n(e)um) +

∂

∂xm

(P
(e)
jm + m(e)n(e)(Ujum + Umuj − UjUm))

−n(e)q(e)Em − n(e)q(e)εmjkujBk − n(e)gm = ±P (e)
m (3.23)

3.3.4 Magneto-hydro-dynamic (MHD) equations

Magneto-hydro-dynamic theory of plasma is the further simplification of fluid
theory. Two simplifications of MHD are the most popular: two-fluid hy-
drodynamics, and one-fluid hydrodynamics. In both of them the following
assumptions are involved:

ions and electron fluids are combined
possess a common flow velocity U

relevant time scales long in comparison to microscopic particle motion time scales
spatial scale lengths long in comparison to the Debye length λD

long in comparison to the thermal ion gyro-radius
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The equation of motion for the MHD fluid can be derived by adding Eq.(3.22)
and (3.23). The MHD equation of motion can be expressed both in terms of
components or vectors and reads in forms

∂

∂t
(ρUm) +

∂

∂xm

(Pjm + ρUjUm)− ρchEm − εmjkJjBk − ρgm = 0 (3.24)

ρ

[
∂U
∂t

+ (U · ∇)U
]

= −∇P + ρchE + J×B + ρg (3.25)

where pressure is a scalar P when velocity distribution is sufficiently random
and P = P

(e)
jm +P

(i)
jm = Pjm. The Eulerian velocity of fluid U(x, t) refers to the

velocity of fluid element and it is contrasted with the Langrangian velocity of
fluid which is related to the velocity of individual particles constituting that
fluid element at any time. The Lagrangian velocity is the time derivative of
the position vector of a particle and is only a function of time.

The relation linking the current density J with B,E and U , ie. the generalized
Ohm’s law, is obtained in the form

J +
σm(i)m(e)

ρe2

∂J

∂t
+

σm(i)

ρe
J×B = σ(E + U ×B +

m(i)

ρe
∇P ) (3.26)

following the procedure:

multiply Eq.(3.22) by (−e/m(e))

multiply Eq.(3.23) by (e/m(i))
add two equations and ignore terms with Ujuk, Ukuj , UjUk

write the equation ∂Jm
∂t

= e
m(e)

∂P (e)

∂xm
− e

m(i)
∂P (i)

∂xm
+ e2( n(i)

m(i) + n(e)

m(e) )Em

e2

c
εmjk(

n(i)u
(i)
j

m(i) +
n(e)u

(e)
j

m(e) )Bk + e( 1
m(i) + 1

m(e) )Pm

approximate n(e) ≈ n(i) ≈ ρ

m(i) , u
(i)
m ≈ Um

u
(e)
m ≈ Um − m(i)c

ρe
Jm

assume momentum exchange between electrons and ions
proportional to the relative velocity

approximate Pm = eρJm

m(i)σ

where

σ = ε0
ω2

pi

ωpe
, S/m electrical conductivity

ε0 = 8.8542× 10−12, F/m permittivity

ωpi = 4.20π × 102Zµ
−1/2
i/p

(n(i))1/2, Hz ion plasma frequency

ωpe = 18.96π × 103(n(e))1/2, Hz electron plasma frequency
Z ion charge state

µi/p = m(i)

m(p) ion-proton mass ratio

m(p) = 1.6726× 10−27, kg proton mass

m(e) = 9.1094× 10−31, kg electron mass

m(i) ion mass
e = 1.6022× 10−19, C elementary charge (charge of an electron)
c = 2.9979× 108, ms−1 speed of light in vacuum

Ohm’s law Eq.(3.26) can be further simplified assuming
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assumption approximation

ωpi ¿ ωpe
σm(i)m(e)

ρe2
∂J
∂t

= 0

cyclotron frequency Ω(e) ¿ ωpe
σm(i)

ρe
J×B = 0

insignificant pressure gradient ∇P ≈ 0 m(i)

ρe
∇P = 0

and then written in the form

J = σ(E + U ×B) (3.27)

Assuming that an internal energy of a fluid element does not change when it
propagates with pressure P proportional to ρI (I -adiabatic index), ie. as-
suming the adiabatic process and taking the second order moment of Boltz-
mann equation Eq.(3.4), the equation of energy conservation reads in the
form

∂

∂t

(
ρ‖U‖2 +

2P

I − 1
+
‖B‖2

µ0

+ ε0‖E‖2

)
+ (3.28)

∇ ·
(

ρ‖U‖2U +
2I
I − 1

PU +
2

µ0

E×B

)
= 0

where the adiabatic index for a mono-atomic gas is I = 5
3

and ‖ · ‖ is the
vector quadratic norm.

The formulation of complete system of equations in MHD requires further
assumptions:

• neglecting the displacement term ∂D
∂t
≈ 0 in Ampere’s law gives

∇×H = J (3.29)

• taking the divergence of Eq.(3.29) gives LHS equal to zero and ∇·J = 0

• using ∇ · J = 0 in Eq.(3.18) leads to ∂ρch

∂t
≡ ˙ρch = 0

• eliminate E from the approximate Ohm’s law Eq.(3.27) and Faraday’s
law from Eqs.(3.6

– apply the operator curl∇× to Eq.(3.27), ie. ∇×J = σ (∇× E +∇× (U ×B))

– ∇×J in terms of B can be obtained by taking ∇2B = ∇(∇·B)−
∇×∇×B

– the first RHS term ∇(∇ · B) = 0 because of ∇ · B = 0 from
Eq.(3.9)

– the second RHS term ∇×∇×B = µ0∇×J because of Eq.(3.29)
and H = 1

µ0
B
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– then ∇× J = 1
µ0
∇2B

– finally the induction equation can be expressed in terms of B or
H

∂B

∂t
= ∇× (U ×B) + 1

µ0σ
∇2B (3.30)

∂H

∂t
= ∇× (U ×H) + 1

µ0σ
∇2H (3.31)

• assuming the charge neutrality ρch = 0 (with ∂ρch

∂t
= 0)the Poisson’s

equation Eq.(3.8) is not contributing to the final system of equations

• Eq.(3.9) can be treated as the initial condition because

– taking divergence of Eq.(3.6) ∇·∇×E = −∇· ∂B
∂t

, note that LHS
equals zero

– RHS can be re-formulated ∇ · ∂B
∂t

= ∂
∂t

(∇ ·B) to show that ∂
∂t

(∇ ·
B) = 0 during the process

The final set of MHD equations [15] which determine the time evolution
reads:

∂B

∂t
= ∇× (U ×B) +

1

µ0σ
∇2B induction equation

∂ρ

∂t
+∇ · (ρU) = 0 conservation of mass

ρ

[
∂U
∂t

+ (U · ∇)U
]

= −∇P + J×B + ρg equation of motion

∂

∂t

(
ρ‖U‖2 +

2P

I − 1
+
‖B‖2

µ0

+ ε0‖E‖2

)
+ (3.32)

∇ ·
(

ρ‖U‖2U +
2I
I − 1

PU +
2

µ0

E×B

)
= 0 energy conservation

with two scalar quantities: P and ρ, and two vector quantities: B (or H)and
U , as unknown ”evolution” quantities. The electric field E and the current
density J are determined by

µ0J = ∇×B modification of Eq.(3.29) (3.33)

E = −U ×B modification of Eq.(3.27) when (3.34)

the magnetic Reynolds numberRm = ‖U‖‖B‖
σ‖J‖ À 1
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The auxiliary relations, that are subject of the plasma-fluid approximation,
in the case of the single-fluid MHD theory are expressed by

mass density n(i) = n(e) = n ⇒ ρ = m(i)n (3.35)

fluid velocity U = U (i) (3.36)

temperature T = T (e) + T (i) (3.37)

pressure P = P (e) + P (i) = kB(n(e)T (e) + n(i)T (i)) = nkBT (3.38)

In MHD plasma literature there are several variations of MHD theory with
various sets of variables:

variables references
single-fluid ”evolution” variables ρ, P , U , J, T [21]

two-fluid ”evolution” variables n, U(i), U(e), P (i), P (i), J, T (i), T (e) [21]
one-fluid all variables ρ, P , U ,B, E, J [41]
single-fluid ”evolution” variables ρ, P , U , B [15]
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Chapter 4

Plasma Arc Models in Welding

Three complex thermal plasma theories for TIG welding shown in [12], [46]
and [60] and one for plasma arc welding (PAW) described in [1] can be iden-
tified in literature as the most welding-engineering oriented models. These
theories are presented here in the form of scheme with equations and rela-
tions expressing the continuity of fluxes and balances of energy transmission
from the cathode (or anode - PAW) to HAZ. Fundamental assumptions and
appropriate boundary conditions are listed in tables for each presented the-
ory.

4.1 Scheme of TIG and plasma arc model

proposed by Wendelstorf, Decker, Wohlfahrt

and Simon [60]

Physical regions for the plasma model proposed by Wendelstorf, Decker,
Wohlfahrt and Simon [60] are shown in Fig.4.1.

The fundamental assumptions for this model are extracted in the following
table

Figure 4.1: Physical regions for the TIG welding arc
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arc column
1 the fluid flow is laminar and Re < 400
2 the fluid flow at arc fringes can become turbulent (in MHD theory sense)
3 is in local thermodynamic equilibrium (LTE)
4 is quasi neutral, i.e. free of space charges
5 the fluid flow is 2-D in cylindrical coordinates (r, z)

cathode region

1 electron temperature T (e) is equal to the heavy particle temperature T (i)

pre-sheath
1 this zone is quasi-neutral
2 two-fluid flow is appropriate
3 radiation losses can be neglected
4 thermal pressure is constant and equal to the atmospheric

sheath
1 ions are mono-energetic
2 is collision free
3 field emission is negligible
4 ions re-combine at the cathode surface
5 velocity distribution of electrons at the sheath-edge is Maxwellian

anode region
1 appreciable deviations from LTE prevails throughout the zone
2 modelling of anode layer is similar to the cathode modelling
3 excess pressure (deduced from the column modelling) is constant within the zone

The flow problem for plasma species and the energy transmission consists of
equations depicted in Figs. 4.2, 4.3.

The boundary conditions are given originally only for the transition from the
cathode to LTE (or PLTE) thermal plasma and can be listed as follows

Arc subregion T P
Arc plasma - far from TP = 21000K

cathode surface dTP
dx

= −2.7 · 107k/m

Pre-sheath 1.013 · 105Pa
cathode surface either Tc = 3000K

The additional conditions for this model are
Arc subregion ddot Φc Jtot

Pre-sheath 1 · 10−4 m
cathode surface 2.63eV 1.2 · 108A/m2

4.2 Scheme of TIG and plasma arc approved-

model proposed by Haidar and Lowke [23]

and Sansonnens, Haidar and Lowke [46]

The plasma arc model proposed by Haidar and Lowke [23] and Sansonnens,
Haidar and Lowke [46] is illustrated by the scheme in Fig. 4.4 where balance
equations and continuity requirements are appropriate for the single-fluid
MHD model. Boundary conditions for the arc column, depicted in Fig. 4.6,
are listed below
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Cathode Sheath
(space charge zone)

Total electric current density
Jtot = Jemi + Jion + Jrep

Electrons emitted from
cathode surface

Jemi = JR(Tc, Φc) =

ART 2
C(− Φc

kBTc
)

Ions accelerated
towards cathode

Jion = en
(e)
ed uBohm =

en
(e)
ed (

kT
(e)

ed

mion
)1/2

Electrons repelled

Jrep = −enrep
ed

√

kBT
(e)

ed

2πm(e) ×

exp(− eVed

kBT
(e)

ed

)

6 6

��

Cathode Pre-sheath

(1)Electron flux Γ(e) = n(e)u(e) =

−( D(e)

m(e)T (e) + m(e)nn(e)Dee

ρT (e) )∇T (e) − m(e)n
ρ

Dee∇n(e) + m(e)nn(e)

ρkBT (e) eDee∇V

(2)Energy balance of electrons in cathode pre-sheath eΓ(e) · ∇V =

−∇ · (λ(e)∇T (e)) + 5
2
kBαΓ(e) · ∇T (e) + (5

2
kBT (e)α + Eion)ṅ(e) + Weh

(3)Ion flux Γ(i) = n(e)u(i) =
−1

ρ(namaDia∇n(e) + n(e)m(i)Dia∇na + P−1n2n(e)m(i)Diae∇V )

P = n(e)kBT (e) + Σh=i,an(h)kBT (h)

(4)Energy balance of ions in cathode pre-sheath

−eΓ(i) · ∇V + Weh = −∇ · (κ(h)∇T (h))

?

�

?

?

Arc column

(5)Continuity of mass:
∂
∂tρ + ∇ · (ρv) = 0

For Mach numbers Ma = |v|/vc ≤ 0.3
∇ · v = 0, ρ = const

(6)Balance of momentum
ρ D

Dtv = −∇P −∇ · τ + J ×B + ρ · g

(7)Energy balance for electrons

ρ(e) D
DtH

(e) = ∇ · q(e) + J · E − SR − Ėeh

Electron heat flux q(e) =
κ
cp
∇H(e) + 5kB

2e
J

cp
H(e)

(8)Energy balance for

heavy particles (ions)

ρ D
DtH

(h) = ∇ · q(h) + Ėeh

Heat flux for heavy particles q(h) =
κs

cp
∇H(h) + ∇ · [

∑(i)
(ρD − κ

cp
)(H(i))∇C(i)]

Diffusion of the metal vapor into the shielding gas

ρ D
DtC

(i) = ∇ · [D∇(ρC(i))]

(9)Maxwell’s equations:
Ohm’s law

J = σ · [E + v × B− 1
en(e)J × B + 0.41kB

2e ∇T ]

Current continuity
∇ · J = 0

Ampere’s law
∇× B = δA = −µ0J; ∇ ·A = 0

(10)Saha equation: Thermal ionization equilibrium

n(e)(n(h)

na
)T (h)/T (e)

= 2g(i)

ga
(m(e)kBT (e)

2πH2 )3/2 exp(−Eion−∆Eion

kBT (e) )

�

�

�

�

?

Anode pre-sheath

?

Variables for fully ionized plasma are: P, ρ, vr, vz, Br , Bθ, H
(e), H(h), E, J

where n(e), n(h) = n(i) can be evaluated from P and ρ by formulas

and T (e), T (h) can be determined from tables H(e)(T ), H(h)(T )

Figure 4.2: The first part of the scheme of TIG plasma arc model proposed
by Wendelstorf, Decker, Wohlfahrt, and Simon [60] and [61]
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Anode pre-sheath
together with
anode sheath

Heat flux to the anode (Dinulescu’s formula for energy flux density)
qa = qa,elec + qa,conv + qa,rad

Electronic contribution of energy flux density

qa,elec = Ja(5
2

+ eΦc

kBσ(e) )
kBT (e),a

e
+ JaW + JaVa

Radiative contribution of energy flux density

qa,rad = εSBCSBT 4
a ; CSB ≈ 5.67 · 10−8 [W/m2]

εSB = −0.0266 + 1.8197 · 10−4 · Ta − 2.1946 · 10−8 · T 2
a

Convective contribution of energy flux density

qa,conv = 0.515
Prw

(µ(e)ρ(e)

µwρw
)0.11(µwρw

dvr

dr )0.5(H(e) − Hw)

Weld pool

Heat affected zone
(HAZ)

6

�

?

?

Figure 4.3: The second part of the scheme of TIG plasma arc model proposed
by Wendelstorf, Decker, Wohlfahrt, and Simon [60] and [61]

Subregion vr vz T V P Jz n(e)

AaBa 0 ∂vz
∂r

∂T
∂r

= 0 ∂V
∂r

= 0 ∂n(e)

∂r
= 0

BaCa 0 n(e) = JR
evth

|JR| = AT 2 exp(−Φ(e)e
kBT

)

vth = (
8kT

B

πm(e) )1/2

CaDa vgif

BCDa ?
DaEa

EaFa 300 K
FaGa 300 K
GaHa 300 K
Ha 101 kPa
HaIa

IaAa 0
within
BCDEOBa 0

? indicates the assumption of uniformity of Jz over the circular plane at the cold top face
of the cylindrical cathode

in addition it is assumed that within BCDEOB D(e) = 0

The boundary conditions for the weld-pool are

Weld pool subregion vr vz T V p Jz n(e)

CpDp 0
within ABCDEFAp 0

in addition within BCDEOB D(e) = 0

Equations used in Fig.4.4 and Fig.4.5 are denoted by the following symbols:
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Cathode surface
|J| = |J(e)| + |J(i)|

Energy flux to cathode

qc = εkBT 4 − |J(e)|Φ + |J(i)|V (i)

Current densities: |J(e)|, |JR|

|J(e)| < |JR| and then |J|(i) = |J| − |JR|

|JR| = AT 2 exp[−Φ(e)e/(kBT )]

Total current density (TCD)

|J| = (Jr , Jz);
1
r

∂
∂r (rJr) + ∂

∂z (Jz) = 0

� �

6

Arc Column

(1)Mass continuity (MC)
1
r

∂
∂r (rρvr) + ∂

∂z (ρvz) = 0

Amper’s equation to evaluate Bθ
1
r

∂
∂r (rBθ) = µ0Jz

(2)Energy conservation (EC)
∂ρH
∂t + 1

r
∂
∂r (rρvrH) + ∂

∂z (ρvzH) = 1
r

∂
∂r ( rκ

cp

∂H
∂r ) + ∂

∂z ( κ
cp

∂H
∂z ) + JrEr + JzEz − U ;

Electric field components Er = −∂V
∂r ; Ez = −∂V

∂z

(3)Radial momentum conservation (RMC)
1
r

∂
∂r

(rρv2
r ) + ∂

∂z
(ρvzvr) = 1

r
∂
∂r

(2rη ∂vr

∂r
) + ∂

∂z
(η ∂vz

∂z
+ η ∂vz

∂r
) − ∂p

∂r
− JzBθ − 2η vr

r2

(4)Axial momentum conservation (AMC)
1
r

∂
∂r (rρvrvz) + ∂

∂z (ρv2
z) = ∂

∂z (2η ∂vz

∂z ) + 1
r

∂
∂r (rη ∂vr

∂z + rη ∂vz

∂r )c − ∂p
∂z − JrBθ + ρg

(5)Current continuity (CC)
1
r

∂
∂r (rJr) + ∂

∂z (Jz) = 0

(6)Current density (CD)

Jr = −σ ∂V
∂r + eD(e) ∂n(e)

∂r ; Jz = −σ ∂V
∂z + eD(e) ∂n(e)

∂z

(7)Electron current continuity (ECC) equation for ambipolar diffusion
1
r

∂
∂r

(rDa
∂n(e)

∂r
) + ∂

∂z
(Da

∂n(e)

∂z
) + αrec[Gn(e)n(a) − (n(e))3] = 0; G = (n(e)?

)2/n(a)?

Three-body recombination coefficient

if T > 3200K then αrec = 1.29× 10−32(1.353×105

T + 2) × exp(4.78×104

T )cm6s−1

if T < 3200K then αrec = 1.1× 10−8T−4.5cm6s−1

�

?

Anode surface
|J| = |J(e)|

Energy flux to anode

qa = εkBT 4 + |J(e)|Φ

Current densities |J(e)|, |JR|

|J(i)| = 0 because |J| < |JR|

|JR| = AT 2 exp[−Φ(e)e/(kBT )]

Current density

|J| = (Jr , Jz);
1
r

∂
∂r (rJr) + ∂

∂z (Jz) = 0

� �

6

?

Weld pool

Heat affected
zone (HAZ)

?

?

Model variables
vr, vz, P , H , Jr, Jz, Bθ, V

n(e), T - evaluated from the auxiliary relations

Figure 4.4: Scheme for the model of thermal plasma for TIG welding pro-
posed by Haidar and Lowke [23] and Sansonnens, Haidar and Lowke [46]
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Acronym in the scheme for
Haidar and Lowke model [23] Equation

ECC electron current continuity
CD current density
CC current continuity
TCD total current density
MC mass continuity
AMC axial momentum conservation
RMC radial momentum conservation
EC energy conservation

Other symbols used in Fig.4.5 are:

Acronym in the scheme for
Haidar and Lowke model [23] description

gtd(T) ionized gas transport data
CFC check for convergence
h−1(T) tables temperature/enthalpy

The rough idea of the strategy for the solution of the plasma problem for-
mulated by Haidar and Lowke [23], and by Sansonnens, Haidar and Lowke
[46] and shown in Fig. 4.5 is described in [31] and can be listed as follows:

• set the ionized gas transport data as temperature dependent material
and process parameters either in the form of discrete or continuous
temperature functions,

• identify both initial distributions of temperature and the axial compo-
nent of velocity, that fulfill the requirement of continuity T (ini), v

(ini)
z ∈

C2

• define gtd(T (ini)),

• evaluate electron current density n(e) from ECC equation,

• evaluate current density Jz from CD equation,

• substitute Jz into CC equation and evaluate Jr,

• evaluate the total current density j(Jr,Jz) from TCD equation,

• substitute v
(ini)
z (later v

(i+1)
z ) both into MC and RMC equations and

evaluate v
(1)
r and p(1) (later v

(i)
r and p(i)),

• substitute v
(1)
r and p(1) (later v

(i)
r and p(i))into AMC equation and

evaluate v
(2)
z (later v

(i+1)
z ),

• substitute v
(2)
z and v

(1)
r (later v

(i+1)
z and v

(i)
r )into EC equation and

evaluate h(T(2)) (later h(T (i+1))),

• determine T(2) (later T (i+1)),
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• determine gtd(T ) for T(2) (later for T (i+1)),

• evaluate the energy flux to anode surface qa,

• evaluate the energy flux to cathode surface qc,

The effective algorithm for the solution of plasma problem stated in [23] and
[46] was proposed by [42], [43] [44] and [54]. The solution technique is known
as the volume-control method that is one of the first examples of using the
finite-volume method in fluid dynamics.

4.3 Scheme of TIG arc model proposed by

Choo, Szekely and Westhoff [12]

The welding problem formulated and solved by Choo, Szekely and Westhoff
in [12] is the most complex and covers the problem of energy transfer from the
arc column to both the weld pool and the cathode surface. The fundamental
assumptions for the weld pool model are given in the following table

1 the weld pool is small and thus the laminar flow assumption is appropriate
2 the surface is a gray body
3 the surface tension is a linear function of temperature
4 physical, electrical and transport properties of liquid and solid parts of a

weld pool are constant and independent of temperature
5 upper boundary on liquid temperature is 500 K below boiling point

and the assumptions for modelling of TIG arc are listed below

1 the arc is radially symmetric
2 the arc is in steady-state conditions
3 the arc is in local thermodynamic equilibrium i.e. temperatures of heavy

particles and electrons are not significantly different
4 the arc plasma consists of pure argon at atmospheric pressure
5 the effect of metal vapors from electrode and workpiece is neglected
6 the flow is laminar
7 the plasma is optically thin so that radiation may be accounted

for using an optically thin radiation loss per unit volume
8 the heating effect of viscous dissipation is neglected
9 buoyancy forces due to gravity are neglected

The governing equations for the theory of welding arc with a deformed anode
surface are listed in schemes shown in Figs 4.7 and 4.8.

The boundary conditions for the arc model subregion in terms of (v(a), h(a))
or (T (a), V ) and the weld pool model subregion (v(l), T (l), V ) are listed in the
following table
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Additional energy flux to cathode
qc = εkBT 4 − |je|Φ + |ji|Vi

ECC

(CD)

(CC)

Ionized gas transport data gtd(T)
cp, kB , Da, U, αrec, η, κ, µ0, ρ, σ

(MC)

(AMC)

(RMC)

Energy flux to anode surface
qa = εkBT 4 + |je|Φ

(EC)h−1(T)
Tables

CFC
gtd(T )
jr, jz

(TCD)
j(jr, jz);

CFC

?
ne

?
jz

je
ji

6
qc

?
qa

v(2)
z

v(i+1)
z

6

v(2)
z

v(i+1)
z

6

?

p(1)

p(i)

v(1)
r

v(i)
r

T (ini) = T(1)

?
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?

jr
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? ?

jr

jz

T (ini) = T(1)

T (i+1)

T (i+1)

-gtd
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-jz

-jr

�h(T(2))�T(2)
�T

(i+1)
��v

(2)
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v(i+1)
z

�v
(i+1)
z

�

�
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z = v(1)

z
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z = v(1)

z

�

�

-

-

�v
(1)
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, v(i)
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-v(1)
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, v(i)
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r
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z
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Figure 4.5: Strategy for the solution of plasma problem in the model proposed
by Haidar and Lowke [23] and Sansonnens, Haidar and Lowke [46]
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Figure 4.6: Boundary conditions for the model proposed by Haidar and
Lowke [23] and Sansonnens et al [46]
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Cathode surface
Energy flux to cathode

qc = |Jc|Vc

Cathode fall voltage

Vc = 2.5kBT (e)

e

Cathode current density

Jc = { 1
πR2

c
if r < Rc or 0 if r > Rc}

� �

6

Arc Column

(1)Mass continuity
1
r

∂
∂r (ρrvr) + ∂

∂z (ρvz) = 0

(2)Radial momentum conservation
1
r

∂
∂r(ρrv2

r ) + ∂
∂z (ρvrvz) = −∂P

∂r + 2
r

∂
∂r [ηr(∂vr

∂r )] − η 2vr

r2 +

+ ∂
∂z [η(∂vr

∂z + ∂vz

∂r )] − JzBθ

(3)Axial momentum conservation
1
r

∂
∂r

(ρrvrvz) + ∂
∂z

(ρv2
z ) = 1

r
∂
∂r

[rη(∂vz

∂r
+ ∂vr

∂z
)] − ∂P

∂z
+

+ 2 ∂
∂z

(η(∂vz

∂z
) + JrBθ

(4)Thermal energy conservation in terms of enthalpy
1
r

∂
∂r(ρrvrH) + ∂

∂z (ρvzH) = 1
r

∂
∂r ( rκ

cp

∂H
∂r ) + ∂

∂z ( κ
cp

∂H
∂z )+

+ {
j2

z+j2
r

σ − SR + 2.5kB

e (Jz
1
cp

∂H
∂z + Jr

1
cp

∂H
∂r )}; H(T ) ⇒ T

(5)Current continuity in terms of electric potential
1
r

∂
∂r (σr ∂V

∂r ) + ∂
∂z (σ ∂V

∂z ) = 0

(6)Current density from def. of electric potential

J = −σ∇V , i.e. Jr = −σ ∂V
∂r , Jz = −σ ∂V

∂z

(7)Ampere’s law for self magnetic field

Bθ = µ0

r

∫ r

0 Jzrdr
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?

Anode surface
Heat flux to anode surface
qa = qa,rad + qa,conv + qa,elec

Heat flux due to electron flow qa,elec

= Ja(2.5 + eD(e)

kBσ )kBT (e)

e + JaW

Convective heat flow qa,conv =

0.515
Prw

(η(e)ρ(e)

ηwρw
)0.11(ηwρw

vr

r )0.5(h(e) − hw)

Radiative heat flow
{qa,rad}i,j =

∫

Ωj

Sr

4πr2
ij

cosψdωj
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6
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JrBθJzBθ

6

Weld pool
Boundary conditions for ApF p region

−k ∂T
∂z = qtot

vap − qa

Heat loss from anode due to vaporization

qtot
vap = qFe

vap + qMn
vap ; qi

vap =
hmasshvapLi

vapP (i)

(hmass+hvap)RTswp

Mass transfer coefficients

hvap = [(2π)−1RTs](m
−1/2
Fe +m

−1/2
Mn ); hmass = hheat[ρCp(
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Pr )nLe ]−1

hheat = 0.515
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Prw
(η(e)ρ(e)

ηwρw
)0.11
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ηwρw
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; Cp = (T (e) − Tw)−1
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6

Model variables
vr, vz, P,H(T ) ⇒ T, Jr , Bθ, V

Figure 4.7: The first part of the scheme for the model of thermal plasma for
TIG welding proposed by Choo, Szekely and Westhoff [12]
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Weld pool (1)Conservation of mass
1
r

∂rvr

∂r + ∂vz

∂z = 0

(2)Conservation of axial momentum

ρ(∂vz

∂t
+ vr

∂vz
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+η 1
r

∂vz

∂r
− ρrgβ(T − Tr) + JrBθ − Kvz ; η ∂vz

∂r
|swp = τzr

Drag term
if T > TL then K = 0

if TS ≤ T ≤ TL then K = Kmax
TL−T
TL−TS

if T < TS then K = ∞

(3)Conservation of radial momentum

ρ(∂vr

∂t + vr
∂vr
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∂r + η(∂2vr

∂r2 + 1
r
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+η ∂
∂z (∂vr

∂z ) − JzBθ − Kvr ; η ∂vr

∂z |swp = τrz

(4)Conservation of thermal energy
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∂t
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∂T
∂r
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∂T
∂z

) = D(∂2T
∂r2 + 1

r
∂T
∂r

+ ∂2T
∂z2 ) − ∆H

cp

∂fl

∂t

Volume fraction of liquid
if T > TL then fl = 1

if TS ≤ T ≤ TL then fl = T−TS

TL−TS

if T < TS then fl = 0

Heat affected
zone (HAZ)

JrBθ

JzBθ

�

?

6

?

6

66

�

�

Model variables
vr, vz, P, T

Figure 4.8: The second part of the scheme for the model of thermal plasma
for TIG welding proposed by Choo, Szekely and Westhoff [12]
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Figure 4.9: Boundary conditions for the plasma discharge model proposed
by Choo, Szekely and Westhoff [12]

Arc subregion vr vz h or T V

AaBa 0 ∂vz
∂r

= 0 ∂h
∂r

= 0 ∂V
∂r

= 0

BaCa 0 0 T = 3000K, (qc = JcVc) Jc = 1
πR2

c

CaDa 0 0 T = 3000K ∂V
∂z

= 0

DaEa 0 0 T = 3000K ∂V
∂r

= 0

EaFa 0 ρ ∂vz
∂z

= 0 T = 1000K ∂V
∂z

= 0

FaGa ∂vr
∂r

= 0 ∂vz
∂z

= 0 T = 1000K ∂V
∂r

= 0

GaHa ∂vr
∂r

= 0 ∂vz
∂z

= 0 ∂h
∂r

= 0 ∂V
∂r

= 0

HaIa 0 0 T = 1000K V = const
IaAa 0 0 T = 1000K V = const

Boundary conditions for Choo’s at al model [12] in the weld pool subregion,
shown in Fig. 4.9, are listed in the following table

Weld pool subregion vr vz T V

ApBp 0 ∂vz
∂r

= 0 ∂T
∂r

= 0 ∂V
∂r

= 0

BpCp 0 0 ∂T
∂r

= 0 ∂V
∂r

= 0

CpDp 0 0 T = 288K ∂V
∂z

= 0

DpEp 0 0 T = 288K 0

EpFp 0 0 ∂T
∂z

= −qa Ja = −σ(e) ∂V
∂z

F pAp η ∂vr
∂z
|l = ∂γ

∂T
∂T
∂r

0 −k ∂T
∂z

= −qa + qvap Ja = −σ(e) ∂V
∂z
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4.4 Scheme for transferred arc in plasma arc

welding proposed by Aithal, Subrama-

niam, Pagan and Richardson [1]

The model of the transferred plasma arc consists of two regions: the internal
flow within a torch, and the external jet impinging on the surface of a work-
piece.

Such model is applied to plasma arc welding (PAW) and is presented in [1],
[2] and [6].

The discharge in plasma arc welding (PAW) is initiated between the inner
electrode - cathode and the constricting nozzle - anode. It is initiated by
applying a high frequency voltage superimposed on a dc bias between elec-
trodes. The main arc - transferred arc, is subsequently struck between the
workpiece (grounded) and the inner electrode by transferring the discharge.
The inner cathode is biased negative with respect to the workpiece - anode,
by approximately 30V.

The fundamental assumptions of PAW model [1] are listed in the table below

1 plasma flow is laminar, the maximum of Reynold’s number for the transferred arc is less then 100
2 plasma consists of neutral Ar atoms, singly ionized atoms, and electrons
3 workpiece is considered a boundary of the fluid domain
4 modelling of the arc is not coupled with the weld pool

5 plasma is assumed to be quasi-neutral, i.e., n(i) ≈ n(e)

6 sheath regions adjacent to electrodes are not considered
7 standard assumptions for MHD flow are assumed
8 plasma geometry is two-dimensional and axisymmetric
9 only the azimuthal component of the magnetic induction, Bθ, is significant
10 single temperature can represent the plasma
11 the above justifies the assumption of the local thermodynamic equilibrium (LTE)

The problem is formulated using the compressible Navier-Stokes equations
that include the Lorentz force terms: JzBθ and JrBθ, in momentum conser-
vation equations and additional terms in the energy equation representing
ohmic heating and work done by the Lorentz body forces. Equations con-
trolling the internal and external plasma flow in PAW are shown in Fig.
4.11.

Boundary conditions for two sub-domains: internal and external, are shown
in Figs. 4.12 and 4.10.

The boundary conditions for the internal flow problem are listed in the fol-
lowing table
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Figure 4.10: The domain for the external plasma flow problem

Region ρ vr vz T n(e) Bθ

ABCD ∂ρ
∂r

= 0 0 0 ∂T
∂r
|r=r0 =

a1(T |r=r0 − Tco),
a1 = −0.0347[m],

Tco = 300K ∂2n(e)

∂r2 = 0

DE ma(n(e) + na) ∂2vr
∂z2 = 0 ∂2vz

∂z2 = 0 ∂2T
∂z2 = 0 ∂2n(e)

∂z2 = 0 ∂Bθ
∂r

= 0

EF ∂ρ
∂r

= 0 0 ∂vz
∂r

= 0 ∂T
∂r

= 0 ∂n(e)

∂r
= 0 0

FGH ∂ρ
∂r

= 0 0 0 ∂2T
∂r2 = 0 ∂2n(e)

∂r2 = 0

HA ma(n(e) + na) 0 ∂2vz
∂z2 = 0 T0

∂2n(e)

∂z2 = 0

GBCD Bθ = µ0I
2πr

FG Bθ = rµ0I
2πr2

ca

Boundary conditions for the external flow problem are listed below
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Region ρ vr vz T n(e) Bθ

AB Sol.IFP Sol.IFP Sol.IFP Sol.IFP Sol.IFP Sol.IFP

BD ma(n(e) + na) −vz tan[α(r)] qadr. distr. 500 K Sol.IFP
of vz

such that∫ r2
r1

vzrdr =

0.1127[m3/h]

DE ma(n(e) + na) 0 0 500 K ∂2n(e)

∂r2 = 0

EF ma(n(e) + na) ∂2vr
∂r2 = 0 ∂2vz

∂r2 = 0 ∂T
∂r

= 0 ∂2n(e)

∂r2 = 0

FH ∂ρ
∂z

= 0 0 0 ∂T
∂z

= ∂n(e)

∂z
= 0

−a1(T |z=L − Tpl)

a1 = 75e
−5r
r0 [ 1

m
]

r0 = 12.7[mm]
Tpl = 500K

HA ∂ρ
∂r

= 0 0 ∂vz
∂r

= 0 ∂T
∂r

= 0 ∂n(e)

∂r
= 0

BC µ0I
2πr

CG µ0I
2πrcath

GH ∂B
∂z

= 0

AH 0

4.5 Notations used in schemes

Symbols used in schemes for TIG thermal plasma has been listed and de-
scribed in Tables 4.1, 4.2, 4.3.
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Internal
plasma arc

External
plasma arc

(1)Mass continuity (MC)
∂ρ
∂r

+ 1
r

∂
∂r

(rρvr) + ∂
∂z

(ρvz) = 0

(2)Magnetic transport eq. (from Maxwell’s eq.) (ME)
1
r

∂
∂r

( r
σ

∂Bθ

∂r
) + ∂

∂z
( 1

σ
∂Bθ

∂z
) + Bθ

r
∂
∂r

( 1
σ
) − µ0

∂
∂z

(vzBθ) − µ0
∂
∂r

(vrBθ) = 0

Amper’s equations AE

Jr = − 1
µ0

∂Bθ

∂z and Jz = − 1
µ0

∂
∂r (rBθ)

(3)Total internal energy (TIE)

UT = U + 1
2ρ(v2

r + v2
z); U = 3

2nT kBT + ṅ(e)Eion

P = nT kBT ; nT = na + 2n(e); ṅ(e) = kfn(e)na − kr(n
(e))3

∂UT

∂t
+ 1

r
∂
∂r

([UT + Pvr]r) + ∂
∂z

(UT + Pvz) =

1
r

∂
∂r (rkT

∂T
∂r ) + ∂

∂z (kB
∂T
∂z ) + ηφ + JrvzBθ − JzvrBθ +

J2
r +J2

z

σ

(4)Radial momentum conservation (RMC)
∂
∂t(ρvr) + 1

r
∂
∂r (rρv2

r ) + ∂
∂z (ρvrvz) =

−∂P
∂r + ∂

∂r [2η ∂vr

∂r − 2
3η(1

r
∂vr

∂r + ∂vz

∂z )] − JzBθ + ∂
∂z [η(∂vr

∂z + ∂vz

∂r )] + 2η
r (∂vr

∂r + vr

r )

(5)Axial momentum conservation (AMC)
∂
∂t(ρvz) + 1

r
∂
∂r (rρvrvz) + ∂

∂z (ρv2
z ) =

−∂P
∂z + ∂

∂z [2η ∂vz

∂z − 2
3η(1

r
∂vr

∂r + ∂vz

∂z )] − JrBθ + 1
r

∂
∂r [ηr(∂vr

∂z + ∂vz

∂r )]

(6)Current continuity (CC)
1
r

∂
∂r (rJr) + ∂

∂z (Jz) = 0

Current density CD

Jr = − 1
µ0

∂Bθ

∂z = −σ ∂V
∂r + eD(e) ∂n(e)

∂r ; Jz = − 1
µ0

∂
∂r (rBθ) = −σ ∂V

∂z + eD(e) ∂n(e)

∂z

(7)Electron current continuity (ECC)

∂n(e)

∂t
+ 1

r
∂
∂r

(vrn
(e)r) + ∂

∂z
(n(e)vz) + 1

r
∂
∂r

(−rn(e)µ(e)E′

r −
rD(e)

kT
∂
∂r

(n(e)kT ))

+ ∂
∂z (−n(e)µ(e)E′

z −
rD(e)

kT
∂
∂z (n(e)kT )) = ṅ

(e)
prod

E′

r = Er − vzBθ; E′

z = Ez + vrBθ

Mass density MD

ρ = mana + m(i)n(i) + m(e)n(e) ≈ ma(na + n(e)) = man

�

�

Anode surface

Weld pool

Heat affected
zone (HAZ)

?

?

?

?

Model variables
ρ, vr, vz, T, n(e), Bθ

Figure 4.11: The scheme for the model of plasma arc welding (PAW) pro-
posed by Aithal, Subramaniam, Pagan and Richardson [1]
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Symbol Description
A thermionic emission constant for a surface of cathode
AR Richardson’s constant
Bθ azimuthal magnetic field
cp specific heat at constant pressure

C(i) particle concentration of species i = e, h, a

Cp, Cp integrated mean heat capacity, heat capacity
D diffusion coefficient or thermal diffusivity (m2/s)
Dia diffusion coefficient of ions in neutral atoms,

D(e), Dee thermal diffusion coefficient of electrons, self diffusion coefficient of electrons
DMn−Ar binary diffusion coefficient of Mn in Ar gas
Da ambipolar coefficient

D(e) electron diffusion coefficient
e elementary charge and also index for electrons

Ėeh energy exchange
Eion, Eion,r ionization energy

Er = ∂V
∂r

, Ez = − ∂V
∂z

radial and axial components of the electric field

fl fraction of fluid
g acceleration due to gravity
gr statistical weight of excited state or multiplicity of energy state called also

the degeneracy in Saha eq.: r = 1 for ions, r = 0 for neutrals
G Saha function

H, H(i), H(e), Hw total, ion, electron, and at wall enthalpy
Jemi, Jrep, Jtot current density of emitted and repelled electrons, total current density
JR, Jion Richardson density, ions density accelerated towards cathode

J(i), J(e) ion and electron current densities
Jc, Ja current density ”to cathode” and ”to anode”
k entropy of vapor segregation
kB Boltzmann constant
kf rate constant for net production of electrons due to electron impact ionization

defined in [40]
kr rate constant for net production of electrons due to three-body recombination

defined in [40]
K, Kmax drag index and maximum drag index in the source term

Li
vap heat of vaporization of species i

Lr boundary layer radius

ma, m(e), mion mass of particle

n, n(e), n(i) number densities: total, electron, ion

ṅ
(e)
prod production of electrons due to chemical reactions, ionization and recombination

n
(e)
ed density of electrons and ions at the sheath edge,

nrep
ed density of plasma electrons at the sheath edge

na, nr number density of neutral atoms, in Saha equation: for r = 1 number
density of ions, for r = 0 number density of neutral atoms

(n(e))?, n?
a number density of electrons and neutral atoms under conditions of LTE at T

Table 4.1: Symbols used in [1], [12], [23], [46]
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P pressure
Prw Prandtl number at the boundary surface (wall)

Prw =
Cpη

k
Prandtl number

Prw =
CpηAr

k
|surf Prandtl number at anode surface

qa , qc energy flux density to anode and to cathode
qa,elec, qa,rad, qa,conv electronic, radiative, and conductive contributions to energy flux density to anode
qrad,i,j radiative energy density flux received by surface element i from volume element j
qvap heat loss from cathode due to vaporization
ri,j direction vector from Sj to Ωj

r, z cylindrical coordinates
R ideal gas constant
Rc radius of cathode spot
Sr differential surface in the radiation view factor relation
SR radiation source
SR,i,j plasma radiation emission coefficient
Sc = ν

DMn−Ar
Schmidt number

T , T (e), T (e),a temperature, temperature of electron gas,

T
(e)
ed , Tc temperature of the electron gas at the sheath edge, cathode temperature

Tr reference temperature for Bousinesq’s approximation (1523K)
TL, TS liquidus and solidus temperature
uBohm Bohm velocity
u specific internal energy
U radiation emission coefficient
UT total internal energy
vr, vz axial and radial velocities
vc local speed of sound
ve

r radial velocity at the edge of anode boundary layer
vgif flow at the region of input flow

V (i) ionization potential of plasma
V , Va, Vc, Ved electric potential, voltage, anode and cathode fall voltages, voltage of electrons repelled
w subscript of values taken at the wall
W work function of the anode material
Weh energy exchange per volume unit due to elastic collisions of electrons with heavy particles
A vector potential for magnetic field
B magnetic field
E electric field,
J electric current density vector {Jr, Jz , Jθ}
q(e), q(h) heat flux vector

u(e), u(i) drift velocities for electrons and ions
v velocity vector {vr, vz , vθ}

Table 4.2: Symbols used in [1], [12], [23], [46]
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Figure 4.12: The domain for the internal plasma flow problem

α α = 1 + 2ρD(e)/5n(e)nm(e)maDee

αrec three-body recombination coefficient
γ weld pool surface tension

Γ(e), Γ(i) electron and ion fluxes
ε surface emissivity

κ, κ(e), κ(h), κs thermal conductivity: total and for species
η viscosity
µ0 = 4π × 10−7 [Hm−1], µw permeability of free space and permeability of the material
ν kinematic viscosity

ρ, ρ(e), ρw mass density: electron, ion, in the edge of boundary layer
ρr reference density for Bousinesq’s approximation (7200 kg/m2)

σ, σ(e) electrical conductivity
τ stress tensor corresponding to strain rate tensor in [60] scheme
Φc Cathode work function, and coefficient of thermal diffusion for the electrons

Φ, Φ(e) effective work function of the electrode materials at room temperature
ψ angle between a direction of radiation and a surface unit vector
ωsv specific volume
Ωj , ωj differential volume in the radiation view factor relation

swp index for values taken on the surface of weld pool

Table 4.3: Symbols used in [1], [12], [23], [46]
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