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Preface	

In this work soft matter is represented by polymers: substances of considerable, multilevel 

structural complexity. Through describing results obtained in course of a number of research 

projects, both published and unpublished, this report presents several neutron scattering 

techniques applicable in the study of short range order in soft matter. Among these techniques 

one is well known and routinely used: Small Angle Neutron Scattering (SANS). However, the 

report focuses on relatively rarely exploited methods, requiring rare instrumentation and a lot of 

effort in data analysis, first of all on diffuse scattering of polarized neutrons with polarization 

analysis. Chapter 6 illustrates this method at work, starting from a simple proof that short range 

order is partly destroyed in miscible polymer blends and ending on co-operation of diffuse 

scattering and small angle scattering in revealing spatial correlations in ionomer networks. An 

example of the application of diffuse scattering of polarized neutrons to solving a practical 

problem in applied materials science makes Chapter 7. To the author’s knowledge, this is the 

only such experiment known in literature. 

Some inelastic neutron scattering techniques have also been counted among those probing local 

order, although indirectly. Indeed, in many soft matter systems, particularly in liquid crystals, 

quasielastic neutron scattering (QENS) is a powerful source of information on the coupling 

between stochastic molecular dynamics and their polymorphism [1-5]. 

The last chapter shortly mentions two “exotic” techniques: SANS under zero average contrast 

condition (ZAC) and deep inelastic (Compton) scattering. Experimental material illustrating 

these techniques did not reach far beyond test measurements and feasibility studies. Anybody 

attempting this type of experiments as a typical user of large scale research facilities, faces bidding 

for beam time via a procedure of submitting proposals to selection panels that operate on the 

peer-review principle. Consequently, competing proposals that guarantee leading-edge 



 

publishable results at the cost of much less beam time are nearly always the winners. The fact that 

both experiments described in Chapter 9 were found interesting and ambitious, and finally got 

the green light, although in case of ZAC-SANS the time allocated was order of magnitude less 

than needed, justifies the space they take in this report.  

Theoretical and descriptive introductory parts are kept to absolute minimum, needed for clarity 

of the main text. The choice of particular issues covered in these parts has been driven by the 

author’s subjective opinion of what is a worth mentioning. For example, the origin of coherent 

and incoherent scattering lengths for a single nucleus, the importance of understanding multiple 

scattering effects or how the neutron beam can be polarized are shortly treated. 

Neutron scattering techniques are expensive and not available at the asking. They are called when 

none of simpler ones can do the job. This is why samples subjected to neutron experiments must 

have been thoroughly investigated by other methods, especially “desktop” ones (such as DSC).  

This principle is illustrated here by choosing polymers and their modifications that are known 

with respect to their physical and chemical properties.  

 

  



 

Contents:	
1  Introduction .................................................................................................................................... 9 

1.1  Key to symbols and abbreviations .......................................................................................... 9 

1.1.1  List of symbols ................................................................................................................ 9 

1.1.2  List of abbreviations ..................................................................................................... 11 

1.2  Properties of the neutron and naming conventions ............................................................ 13 

1.3  The scattering geometry ...................................................................................................... 16 

2  Theoretical introduction ............................................................................................................... 17 

2.1  Basic formulae ...................................................................................................................... 17 

2.2  Separation of coherent and incoherent cross sections ........................................................ 20 

3  Experimental diffuse scattering of polarized neutrons with polarization analysis ...................... 25 

3.1  Polarizing a neutron beam ................................................................................................... 25 

3.2  The instrument ..................................................................................................................... 26 

3.3  Multiple scattering in diffuse scattering of polarized neutrons with polarization analysis . 28 

4  Fundamentals of Small Angle Neutron Scattering ....................................................................... 34 

5  Short Range Order in Atactic Polystyrene .................................................................................... 39 

6  Miscibility of Polymer Blends and the Short Range Order ........................................................... 43 

6.1  Introduction .......................................................................................................................... 43 

6.2  Destruction of short range order in PC‐SPS blends .............................................................. 43 

6.3  SANS study of SPBT‐PCd blends ............................................................................................ 48 

6.4  The influence of counterion valency upon the short range order in ionomers ................... 53 

6.5  Appendix. The upper critical solution temperature. ............................................................ 58 

7  Neutron polarization analysis in practical materials research problems ..................................... 60 

7.1  Introduction .......................................................................................................................... 60 

7.2  Residual strains in ceramic‐elastomer composites .............................................................. 60 

7.3  Deducing from the coherent peak width ............................................................................. 63 

8  Stochastic motions in the presence of various degrees of structural order ................................ 65 

8.1  Inelastic scattering ................................................................................................................ 65 

8.2  Stochastic motions.  Quasielastic neutron scattering. ......................................................... 67 

9  Neutron scattering techniques less common with respect to short range order in soft matter . 73 

9.1  Zero average contrast SANS ................................................................................................. 73 

9.2  Neutron deep inelastic (Compton) scattering ...................................................................... 77 

 

  



 

 

 



  1. Introduction  9 
 

 

 

1 Introduction	

1.1 Key	to	symbols	and	abbreviations	

1.1.1 List	of	symbols	

ϑ Scattering angle (the angle between the incidence direction and the 
reflecting plane) 

θ The angle between the incidence direction and the scattering direction 
(θ  = 2 ϑ) 

  Neutron flux 

J Neutron current 

k, k Wave vector and its modulus 

Q, Q Wave vector transfer (scattering vector) and its modulus 

q, q Momentum transfer and its modulus 

 Effective mass 

 V r  The Fermi pseudopotential 

 Scattering cross section, measured in barns. 1 barn = 10–24cm2 = 10–28m2 

A The “zero-angle scattering” (SANS, Debye-Bueche model) 

a Distance parameter  

ca  correlation length (SANS, Debye-Bueche model) 

B  Scattering length operator 

fD  Fractal dimension (in SANS scattering law) 
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d Characteristic spacing (in the context of diffraction) 

b Scattering length 

  2
F Q  Particle form factor (in SANS) 

 G r  Radial distribution function, also particle-particle correlation function 

(in SANS) 

 ,sG tr  Self-correlation function 

1,2  Interaction parameter (theory of mixing) 

  Composition (of a blend) 

 The volume fraction 

FWHM Full width at half maximum 

,m mixG G  Gibbs free energy of mixing 

I Nuclear spin 

 I Q  Scattering intensity 

 ,incI tQ  Intermediate scattering function 

 J Y  Compton profile 

N Number density of nuclei 

n Refractive index 

s  Nuclear spin vector 

Pin, Pout Beam polarization (incoming, outgoing) 

R Flipping ratio, also the radius (by general convention) 

gR  Radius of gyration 

( )S Q  Structure factor (in SANS) 

  r  Scattering length density 

 System-characteristic length scale (in SANS scattering law) 
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1.1.2 List	of	abbreviations	

DSC Differential scanning calorimetry 

EISF Elastic Incoherent Structure Factor 

PBT Poly(butylene terephthalate) 

PEO Poly(ethylene oxide) 

PMMA Poly(methyl metacrylate) 

PC Polycarbonate (bisphenol-A-polycarbonate) 

PS Polystyrene 

QENS Quasielastic Neutron Scattering 

SALS Small Angle Light Scattering 

SANS Small Angle Neutron Scattering 

SAXS Small Angle X-Ray Scattering 

SLD Scattering length density 

SPBT Sulphonated poly(butylene terephthalate) 

SPS Sulphonated polystyrene 

UCST Upper critical solution temperature 

WANS Wide Angle Neutron Scattering 

ZAC-SANS Small Angle Neutron Scattering under Zero Average Contrast 
Condition 

 

 

  



12  1.  Introduction   
 

   



  1. Introduction  13 
 

 

1.2 Properties	of	the	neutron	and	naming	conventions		
 

Properties of the neutron 

Quantity Symbol Value 

Rest mass mn 1.674927211(84) x 10–27 kg 
 mn 1.00866491597(43) at.u. 
 mnc2 939.565346(23) MeV 
Spin I ½ 
Charge  0 
Magnetic moment n -0.96623641∙10–27 J∙T 
 n -1.0418756272∙10–3 B 
Mean life time (free)  879.9±0.9 s (very recent value by [6]) 

(Numerical values used for calculations after [7]) 

 

Useful relations 

Particle properties 
Energy – momentum relations: 

Wave properties 
Frequency – wavelength relations 
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Fig.  1‐1.Neutron wavelength – energy – velocity relation. 

 

A generally accepted classification with respect to neutron temperature, i.e. free neutron’s kinetic 
energy (various sources may give slightly different classification borders): 

Energy Wavelength Energy classification 
[meV] [Å] [nm]  

< 310–4 > 520 > 52 ultra cold 
310–4 ÷ 0.05 40 ÷ 520 4 ÷ 52 very cold 

0.05 ÷ 10 3 ÷ 40 0.3 ÷ 4 cold 
10 ÷ 100 0.9 ÷ 3 0.09 ÷ 0.3 thermal 
100 ÷ 500 0.4 ÷ 0.9 0.04 ÷ 0.09 hot 
500 ÷ 105 0.03 ÷ 0.4 310–3 ÷ 0.04 epithermal 

< 400 > 0.5 <0.05 slow 
> 1000 < 0.3 > 0.03 fast 
< 1000 > 0.3 < 0.3 low energy region 

1000 ÷ 107 310–3÷ 0.03 310–4 ÷ 310–3 resonance region 
107÷ 2.51010 510–5  ÷ 310–3 510–6  ÷ 310–4 continuum region 
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Assuming that the neutrons emerging from the source are in thermal equilibrium with the 
moderator kept at the desired temperature, their flux is described by the Maxwellian distribution 
[8]:  

  
 0 3 2

2 exp
BB

E E
E dE dE

k Tk T
 

    
 

 (1.1) 

This is shown in Fig. 1-2 for temperatures corresponding to four typical moderators. 
Contemporary neutron sources have various moderatos installed to suit specific needs, and such 
that they can cope with extreme working conditions. The actual flux at the beam exit ports may 
therefore differ due to particular moderating properties of a given substance. 
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1.3 The	scattering	geometry	

Schematic representation of the scattering geometry concludes the introductory chapter on 
naming conventions. 

 

 

Fig.  1‐4. “Scattering triangles” for elastic and inelastic events. 

 

The angle between the incident and scattering directions is usually denoted 2θ, as in the case of 

reflection from a crystal plane it is twice the scattering angle between the incident (or reflected) 

beam and the plane in question.  

On the other hand, the same angle between the incident and scattering directions is the polar 

angle (colatitude) in the spherical system of coordinates (z-axis pointing towards the incident 

direction). In this case it is denoted by θ.  

In order to avoid confusion, in this work the scattering angle is denoted by ϑ, while the 

colatitude receives the θ symbol. 

Fig.  1‐3. Schematic representation of the scattering geometry.
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2 Theoretical	introduction	

2.1 Basic	formulae	

Theory of neutron scattering is covered in detail in a number of worldwide known texts (see e.g.  

[8-11]) and numerous review articles, reports and study monographs1. Here, some principles are 

outlined that are relevant to the analysis of scattering from soft and partially disordered matter, 

with the emphasis on an application of scattering of polarised neutrons with spin polarisation 

analysis. 

Theoretical treatment of neutron scattering usually starts with the quantum mechanical 

description of a two-body collision. The incident beam is represented by a travelling plane wave: 

  ·i k r t

in ae


 
 

. (2.1) 

Here a is determined by normalization condition. The scattered wave, which results from the 

interaction in the region of the centrosymmetric potential  V r , takes the form of an outgoing 

spherical wave: 

  
 i kr t

sc

e
f a

r






  , (2.2) 

where  f  , which has the dimension of length, denotes the amplitude of scattering in the 

direction of angle   relative to the direction of incidence (see Figs 1-3 and 1-4). 

In order to describe the scattering process quantitatively, it is most convenient to define the cross 

section via the scattering amplitude and then to work out the latter (cf. e.g. [8,12]). Given the 

                                                            
1 Excellent lecture handouts from e.g.  

 Summer School on the Fundamentals of Neutron Scattering, NIST Center for Neutron Research 
 National School on Neutron & X‐ray Scattering, Oak Ridge National Laboratory 
 The Jülich Centre for Neutron Science (JCNS) Laboratory Course ‐ Neutron Scattering 
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particles in state  , their current density J, being the number of particles of mass m passing 

through a perpendicular unit area in unit time  is defined by: 

 
2
i

m
       J 

 (2.3) 

For the incident beam this, together with (2.1), gives:  

 2;in

k
J va v


 


, (2.4) 

where v is the speed of an effective particle of mass  . The number of particles per second 

scattered through an element of surface area d  about the direction Q  on a unit sphere, is 

expressed through the scattered flux: 

     2
·sc d v f d  J Ω . (2.5) 

Now the corresponding angular differential cross section takes the form: 

 
    2·sc

in

d
f

d J

 
 


J Ω

. (2.6) 

This is the fundamental expression relating the scattering amplitude to the cross section. The task 

of calculating the scattering amplitude is then accomplished through the formal solution of the 

Schrödinger equation, and finally through taking the first Born approximation.  

In the Born approximation the scattering amplitude is given by the Fourier transform of the 

interaction potential (see Fig. 2-1): 

    3 ·
02

2 with .
4

if d re V r



    Q r Q k k


 (2.7) 

The Fourier transform variable Q is a wave vector, the difference between the wave vectors of the 

scattered and incident waves k and k0, respectively. It is referred to as the wave vector transfer or 

the scattering vector. In the neutron scattering jargon, one often finds the term “momentum 

transfer” applied to the vector Q or to its modulus. Although formally incorrect, it is nevertheless 
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understood unambiguously. Momentum transfer (in this report denoted by q) is related to the 

scattering vector via the Plank’s constant: 

 
q

Q 


. (2.8) 

For an elastic scattering  0k k , the magnitude of the scattering vector is given by: 

  0 02 sin 2 1 cos
2

Q k k
    Q . (2.9) 

Therefore, in the Born approximation the dependence on the scattering angle enters through the 

wave vector transfer. 

The simplicity of the result of the Born approximation makes it widely useful. The theory of 

thermal neutron scattering depends critically on the use of this approximation.  

However, strictly speaking the condition for the validity of the Born approximation with the 

“true” interaction potential is not fulfilled in the case of thermal neutron scattering. This was first 

noticed and solved by E. Fermi. The Fermi’s idea involves the introduction of a pseudopotential 

in place of the actual neutron-nucleus interaction. The fictitious Fermi potential  V r , or 

pseudopotential, has the well depth and range scaled so that  V r  is a spherical well with depth 

0V  and range 0r
 . In other words, the suggestion of Fermi was in effect to distort the neutron-

nucleus interaction by extending the range and decreasing the depth in such a way that the 

transformation preserves the scattering length, namely: 

    
22

V r b r
m

  


 (2.10) 

A virtue of Eq. (2.10) is that the correct scattering cross section is already built into the potential. 

In general, b is a complex number: b b ib   . Since it refers to the fixed nucleus, it is called the 

bound scattering length. In the low-energy limit the scattering (s-wave) cross section and the 

absorption cross section far form resonant capture are given by: 
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 2

0

44 ; as b b
k

      (2.11) 

 

2.2 Separation	of	coherent	and	incoherent	cross	sections	

Given an ensemble of nuclei, we may combine (2.6) and (2.7) to calculate the differential cross 

section: 

      
2 22 3 ·

2

2
4

id
f d re V r

d

  


    


  Q r


, (2.12) 

where   indicates the ensemble average. For each nucleus, its scattering length bi can be 

expressed in terms of the ensemble average b  separated out: 

 i ib b b  . (2.13) 

Then, after substitution of the explicit expression for  V r

 and a few algebraic transformations, 

one arrives at: 

          22

,
exp ij i

i j i coh inc

d d d
b i b

d d d

     


   
           

 Qr , (2.14) 

i.e. at the formula expressing 
 d

d

 


in terms of coherent and incoherent components. Here 

ij i j r r r denotes the relative position of nucleus j with respect to nucleus i. 

Both coherent and incoherent processes contribute to the total scattering.  There are two sources 

of incoherence: the isotope incoherence and the spin incoherence. The former arises from the 

presence of different isotopes of the same element in an ensemble of nuclei, whereas the latter is 

due to various possible mutual orientations of neutron and nuclear spins. For an ensemble of 

nuclei, the isotope incoherent and the spin incoherent contributions to the incoherent scattering 

 22b b  are expressed by: 
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        
2 2 22 21 1

3
spin incoherentisotope incoherent

b b b b B I I    


 (2.15) 

If the target nucleus has a non-zero spin then the neutron and nuclear spins could be either 

parallel or antiparallel during the scattering process. The neutron, being a fermion with spin ½, 

couples to the nuclear spin I to give: 

  2 1I   degenerate states for the eigenvalue of 1
2

I  , corresponding to parallel arrange-

ment of the neutron and nucleus spins, with the scattering length conventionally denoted 

by b , 

 2I  degenerate states for the eigenvalue of 1
2

I  , corresponding to antiparallel arrange-

ment of both spins. The related scattering length is denoted by b . 

Therefore there are altogether  2 2 1I  states with the following relative weights: 

 
   
2 2 1 2 ; 1

2 2 1 2 1 2 2 1 2 1
andI I I I

W W W W
I I I I   

 
     

   
 (2.16) 

Coherent scattering length is the weighted average of b and b , while incoherent scattering 

length is given by the variance of  b and b : 

  22;c ib W b W b b W W b b            (2.17) 

The corresponding cross sections are (cf. (2.11)): 

 2 24 4c ic ib b    and  (2.18) 

Coherent scattering is Q-dependent and therefore it contains structural information. 

In the case of hydrogen, (1H) the following numerical values have been measured [13,14]: 

b+ = 10.817(5) fm, b– = –47.420(14) fm, hence: bc = –3.7406 fm, bi = 25.274 fm, 

σc = 1.7583 barn, σi = 80.27 barn.  It is now clear that doing neutron experiments with 
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hydrogen-rich samples one deals with predominant incoherent scattering. Neutron diffraction on 

well-ordered materials does not suffer very much from incoherent background which can be 

estimated and subtracted leaving “pure” Bragg peaks with good enough counting statistics. 

Nevertheless, a serious difficulty arises when disordered samples are under consideration, i.e. 

when attention is focused on short-range order (spatial correlations of the order of 1 nm), and 

isotopic substitution (hydrogen – deuterium) is either impossible or undesirable. In this case a 

polarized neutron beam can be used with polarization analysis of the scattered neutrons [15]. A 

comprehensive coverage of this subject can be found in [16] and references therein. In what 

follows, the principles of the method are briefly outlined (cf. [17,18]).   

Let I be the non-zero nuclear spin and let b and b  denote scattering lengths associated with the 

1
2

I   and 1
2

I   compound states of the nucleus-neutron system. Let B denote the scattering 

length operator. Then b and b  are its eigenvalues. It can be shown that (cf. [8]): 

  1 ·
2 NB b b I   . (2.19) 

Here   is the Pauli spin operator and I  is the nuclear spin operator. b and Nb  are expressed in 

terms of b and b through: 

 
   1 2

2 1 2 1
and N

I b Ib b b
b b

I I
     

 
 

 (2.20) 

Further calculations are carried out by means of the density matrix formalism, and lead to the 
expression for the differential nuclear scattering cross-section (refs. [16,17] and references 
therein): 

     † †
ˆ· ·B ITr I

d
B

d       
   (2.21) 

Let ns denote the spin vector of an individual (“n-th”) neutron in the ensemble  1 2n s , and 

then let us define the beam polarization P  as the ensemble average over all the neutron spin 
vectors, normalised to their modulus:  

 2
1 2

n
n 

s
P s  (2.22) 
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In the presence of an external field, providing the natural quantization axis, the beam 
polarization becomes a scalar value:  

 ,N N
P

N N
 

 





 (2.23) 

where N  and N  are the number of neutrons with spin-up and spin-down with respect to the 

field direction. Let us take this opportunity to define the so called flipping ratio, R, a measurable 
quantity we will refer to later in the next chapter: 

 N
R

N




  (2.24) 

Using definition (2.24), the expression (2.23) becomes: 

 1
1

R
P

R





 (2.25) 

Now the differential cross section (2.21) can also be expressed as a function of incoming beam 

polarization  inP : 

        † † ˆ1 ind
B I I i I

d
B I

       
P   (2.26) 

If nuclear spins are unpolarized, which is normally the case, averaging over nuclear spin 
orientations must be performed. Then, after taking into account the properties of the nuclear 

spin operator and I  one obtains for the differential cross section [16]: 

  † ( 1) ,d
B BI I

d


 


 (2.27) 

and for the scattered polarization: 

       † †
ˆ· · ,out B I

d
B

d
P Tr I 

        
   (2.28) 

where the index  denotes a particular direction in space. Again, evaluation of the right-hand side 

of Eq. (2.28), followed by averaging over nuclear spin orientation, gives [16]: 

       †1 1
3

out ind
P P I I B

d
B


  


 (2.29) 
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Let us introduce the conventional notation I   and I   for the scattered intensity with and 

without the spin flip. Then by definition: 

 
d

I I I I
d  
       


 (2.30) 

and: 

    out I Id
P I I I I

d I I
 

    
 

  
   

 


   

 
 (2.31) 

Combining Eqns. (2.27) and (2.31) gives: 

    
†

1d
I IB BI I

d

     


 (2.32) 

and:  

        
†1 1

3
 out I Id

P I I I I I I
d I

B B
I

 
    

 

  
   

 


      

 
 (2.33) 

Finally: 

    2 21 21 , : 1
3 3

andI B I I I B I I     . (2.34) 

Thus the outgoing scattering intensity from unpolarized nuclear spins is always one third 

without, and two thirds with flip of the neutron spin from the polarized beam.  

The coherent scattering Icoh and incoherent scattering Iinc are linearly related to the measured 

spin-flip and non-spin-flip scattering [8]: 

 
1 3
2 2

andcoh incI I I I I     . (2.35) 

Total scattering is a sum of the two. In this way, shining a polarized neutron beam upon the 

sample and separately recording neutrons scattered with their spin conserved and with spin 

flipped, the experimenter can separate coherent from incoherent scattering right at the 

instrument level.  
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3 Experimental	diffuse	scattering	of	polarized	neutrons	with	
polarization	analysis	

3.1 Polarizing	a	neutron	beam	

There are three types of neutron polarizers in general use, all of them having their advantages in 

particular types of experiments [19]: 

1. Polarizing crystals (e.g. Co92Fe8, Heusler crystals (Cu2MnAl)) using preferential Bragg 

reflection), 

2. Polarizing mirrors and supermirrors, (using preferential reflection from a set of 

alternating magnetic and non-magnetic layers of increasing thickness) usually arranged so 

that they resemble Soler slits, and slightly bent to ensure reflection under a very small 

angle for each passing neutron, [20,21], 

3. Polarizing filters (e.g. preferential absorption by polarized 3He nuclei) [20,22-24].   

ad 2.: The operation of this type of neutron polarizer relies on the spin dependence of the 

refractive index 1 2

2 1

k
n

k




  :  

  
2

1 ,
2

N
n b p




 
   

 
 (3.1) 

where N is the number density of scattering nuclei, and and b p  are the parameters of the Fermi 
pseudopotential for nuclear and magnetic scattering (cf. Eq. (2.10))  [25]: 

 
2 22 2andNucl MagnV Nb V N p

m m

   
 

 (3.2) 

 Expression (3.1) means that there are two critical angles for total external reflection (note that 
for neutrons usually 1n  ): 

  .crit N
b p 

    (3.3) 
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The beam reflected between the two (very small) critical angles is fully polarized. The wavelength 
and N dependences in Eq. (3.3) imply that in practice magnetic multilayers must be prepared in 
order to ensure operation in a reasonable range of  [25]. 

ad 3.: For a polarizing filter we define: 0 – spin-independent absorption cross section, and p – 
spin-dependent absorption cross section. Then for the two possible spin states: 

 0 p      (3.4) 

3He nuclei are best suited for that polarizing filters, since for 3He: 0 p  , and hence only one 

spin state is transmitted through a filter with polarized 3He. 

 

3.2 The	instrument	

Diffuse coherent scattering experiments aimed at the study of short range order in polymers, 

reported here, were carried out on the D7 instrument at the Institute Laue-Langevin in 

Grenoble, whose layout is shown in Fig. 3-1 [21,26].   

 

Fig.  3‐1. Layout of the D7 diffuse neutron scattering instrument at the ILL, Grenoble 
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Monochromatized neutrons (  0.312 nm, 0.4855 nm, 0.580 nm, or 3.12 Å, 4.855 Å , 5.8 Å) 

are passing through a polarizer on their way to the sample. Polarization analysers in front of the 

detectors are selecting neutrons with their spin direction identical to that after the polarizer. The 

weak guide field prevents neutron depolarization while travelling towards analysers. 

Since such analysers have their analysing directions fixed in space, a “spin-flipper” is placed 

between the polarizer and the sample, and the instrument is operated in flip/non-flip alternating 

modes. The spin flipper (of Mezei type) is a coil with steady current so tuned that a neutron 

performs a half-period of Larmor precession on its way through it [27]. Although the device is 

very efficient, a correction for finite flipping ratio must be measured and included in data 

analysis. The flipping ratio is assessed by measuring a standard quartz sample which is an 

incoherent scatterer: 

 
   
   

1

1

1

1

corr

corr

I I R I I

I I R I I

   

   

   

   
 (3.5) 

Eq. (2.35) is then changed accordingly: 

 
1 3
2 2

andcoh corr corr inc corrI I I I I      (3.6) 

An important virtue of this method of direct measuring coherent scattering is that the latter can 

be normalized so that it is expressed in absolute units (e.g. barns per monomer per steradian). For 

this purpose the incoherent scattering intensity is used along with the calculated incoherent cross 

section per chemical unit (e.g. per monomer). Since in such experiments the incoherent 

scattering can be considered isotropic in space, we have [28]: 

 
4

coh inc coh

inc

I

I

 






 (3.7) 

Coherent scattering expressed in absolute units may prove helpful in the detailed study of certain 

semi-ordered systems (e.g. paracrystallinity in isotactic or syndiotactic polymers) [29]. It is also 

important to know the coherent scattering cross section when a reliable estimation of multiple 
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scattering is to be performed (see below).  An example of relative contribution of the coherent 

and incoherent components to the total scattering is given in Fig. 3-2. The incoherent 

component has been corrected for the Debye-Waller factor. No multiple scattering corrections 

have been carried out for this example, what leads to significant background in the coherent 

component (see below). If such an experiment were performed without polarization analysis but 

with reliable estimation of the incoherent background, the details of coherent spectrum would be 

of the order of the resulting error bars of experimental uncertainty. In the example below the 

error bars are of the size of the point symbol.  

 

Fig.  3‐2. An example of relative contributions of coherent and incoherent scattering in case of poly(ethylene oxide) [17]. 

 

3.3 Multiple	scattering	in	diffuse	scattering	of	polarized	neutrons	with	
polarization	analysis	

Theoretical considerations and model-building in the field of thermal neutron scattering usually 

rely on the implicit assumption that the neutron, once scattered by the sample nucleus, makes it 

towards the detector with no further interaction with other sample nuclei. Otherwise stated, it is 

assumed that the neutrons, whose wave vectors differ from initial values, registered by a detector, 

have exactly one scattering event in their history. This assumption is usually incorrect, and it 

depends on the particular experiment, whether this fact can be neglected or not. Consequently, 

approaches specific to particular fields of neutron scattering research have been developed, e.g. 
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for diffraction experiments [30], inelastic scattering [31,32], or deep inelastic (Compton) 

scattering [33]. Researchers have been aware of the problem of multiple scattering for more than 

half of a century [34], and carried out systematic experimental studies in this field ([35] and 

reference therein). It is tempting to accept that the “thinner” (in terms of beam transmission) the 

sample the better. However, the use of very thin samples results in poor signal-to-noise ratio and 

requires long measuring time. Moreover, extrapolation to zero thickness may not at all lead to 

plausible results [35], and the problem becomes more serious while working with flat samples. 

A fairly coarse method of estimating the influence of double scattering in cylindrical samples  

(isotropic, elastic scattering) is due to Blech and Averbach ([36], also outlined in [37]) and 

consists in applying tabularized corrections to the experimental data.  

Analytical formulae by Sears ([38], also outlined in [37])  allow one to calculate small multiple 

scattering correction for non-axially-symmetric samples, but they are by no means convenient or 

easy to implement.  

It soon became apparent that the most versatile approach to multiple neutron scattering should 

rely on Monte Carlo “ray-tracing” calculations. Two well-known computer codes were then 

published nearly at the same time [39,40]. Out of these two, DISCUS by M. Johnson from 

Harwell [40] became the most widely used and the most frequently modified/tailored for 

particular needs, due to its high efficiency. 

The idea of the separation of coherent and incoherent scattering relies on independent 

registration of neutrons with their spin flipped and those with their spin conserved. In real 

experiments, especially those with hydrogen-rich materials of non-negligible thickness, there is a 

significant probability of incoherent scattering on hydrogen nuclei, which always implies neutron 

spin flip. Consequently, there is quite a number of multiply scattered neutrons registered in the 

non-spin-flip channel that in fact never took part in coherent scattering.  

Taking into consideration multiple scattering events, the spin-flip and spin-conserved scattering 

intensities will be “cross-populated”, as schematically shown in Fig. 3-3: 
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Fig.  3‐3. Influence of multiple scattering upon population of spin‐flip and non‐spin‐flip scattering intensities “c” stands 
for coherent scattering, and “I” for incoherent . 

Although elastic incoherent scattering may, in first approximation, be considered isotropic (Q-

independent), the coherent intensity is usually a rapidly varying function of Q.  From Fig. 3-3 it 

is evident that multiple scattering will not only add a flat background to coherent intensity but in 

case of a thick or non-cylindrical sample will also modify the peak shapes [41].    

In general, multiple scattering of neutrons can be approached through a set of transport 

equations describing scattering [34]: 

        1 1· , , , , ; 0,1, 2, ; 0,n T n d nP P d P n P           s r s r s s s r s  (3.8) 

where  ,nP r s  is the number of neutron per unit volume at r, which have already been scattered 

n times, and which are now proceeding in the direction of the unit vector s,  ,d s s  differential 

scattering cross section per unit volume, while scattering from direction s to s’, d d    total 

scattering cross section per unit volume, integration over the solid angle 4, and T   total 

scattering, including absorption. Although a format set of solutions to Eq. (3.8) exists [34], the 

only practical solution taking into account the sample shape, its real dimensions and the 

experimental geometry consists in Monte Carlo “ray-tracing” calculations.  For this purpose a 

flagship code DISCUS implementing this method [40], was subsequently modified and adopted 

at the ILL for the interaction of neutron spin with nuclear spin, i.e. for experiments with neutron 

polarization analysis [37]. A comprehensive account of this subject is given by [41].  
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In order to illustrate real-life effects of multiple scattering, calculations have been performed 

assuming a previously measured differential coherent cross section for atactic polystyrene, 

expressed in terms of absolute units (barns per monomer per steradian). In Monte Carlo “ray-

tracing” calculations both multiple scattering and self-extinction effects are treated 

simultaneously, as the distance travelled by a neutron inside the sample volume is correlated with 

the number of scattering events and the sample geometry.  

Calculations have been carried out for two sample shapes: for a hollow cylinder of outer diameter 

of 20 mm, and for a slab 2050 mm, placed under the angle of 45° to the initial beam direction. 

For each geometry, “thin sample” and “thick sample” cases were considered. The results are 

presented in Figs. 3-4 and 3-5.  Abscissae represent the magnitude of scattering vector (wave 

vector transfer), while ordinates show scattering probabilities. For a slab sample, self-extinction 

makes certain scattering angles unusable.  On the D7 instrument (see Fig. 3-1), these scattering 

angles can be covered by the use of the fourth detector bank, positioned as in Fig. 3-1. 

The first rows in Figs. 3-4 and 3-5 compare “ideal” single scattering probabilities for hypothetical 

samples without self-absorption with “real” probabilities for samples with transmission calculated 

from their physico-chemical data.  The second and third rows show contributions to apparent 

coherent scattering arising from double and triple scattering, respectively. In the fourth rows 

probabilities for single scattering are compared with apparent coherent scattering arising from the 

first four orders of scattering. The term “apparent coherent” refers to the formula (3.6) applied to 

the “spin-flip” and “non-spin-flip” intensities, cross-populated by multiple scattering as shown in 

Fig. 3-3.  

In real-life treatment of experimental data, the true coherent cross-section as a function of Q is 

unknown. In fact, it is the quantity being sought in the measurement. This poses a problem if 

one wants to carry out multiple scattering corrections. A practical solution consists in first 

guessing this cross section from preliminary data analysis and taking it as a first approximation. 

The Monte Carlo program is then run, resulting in Q-dependent multiplicative corrections to 

I   and I  . A corrected coherent cross section is then calculated and taken as the next 

approximation. If the first guess was good, then this iterative procedure converges after several 

steps. This route was successfully taken during data analysis in paper [18].  
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Fig.  3‐4. Illustration of multiple scattering and self‐extinction effects on coherent scattering from a hollow cylinder 
sample of atactic polystyrene. Left column: thin sample,  right column: thick sample. Unpublished results. More 
explanation in text. 
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Fig.  3‐5. Illustration of multiple scattering and self‐extinction effects on coherent scattering from a flat sample of 
atactic polystyrene. Left column: thin sample,  right column: thick sample. Unpublished results. More explanation in 
text. 
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4 Fundamentals	of	Small	Angle	Neutron	Scattering	
 

Small Angle Neutron Scattering is a routine neutron scattering technique, widely used to 
characterize large scale molecular systems in chemistry, polymer sciences and biology. This 
subject is covered in virtually all academic texts on neutron scattering [8], and in dedicated 
books, e.g. [42]. One of the most useful and friendly introductions is due to S. M. King [43]. 
Consequently, this short chapter is aimed at mere introducing the subject, and is left without 
details on model data analysis.  

If the coherent cross section is given by: 

    
2

2 expcoh

d
b i n d

d


 

  Qr r r  (4.1) 

then at very small Q:       

 All nuclei within a given volume will scatter in phase (no significant changes to the phase 
factor among the neighbouring atoms) 

 One can average the nuclear scattering potential (the scattering length) over length scales 
2

10Q

 . This average is called the scattering length density (sometimes SLD) and usually 

denoted   r . 

At very small Q the coherent scattering will then be probing spatial fluctuations of   r . In the 

rest of this chapter the term particle will refer to a defined region in space with  different from 
the surrounding (e.g. molecular aggregates in solution). After transformation of (4.1) one 
obtains: 

      22 ·
0

i
P P

space

d
F N G e d

d

   
  Q rr rQ  (4.2) 

where G is the particle-particle correlation function (the probability that there is a particle at r if 

there is one at the origin) and   2
F Q  is the particle form factor: 

  
2

2 ·

particle
orientation

i dF e  Q xQ x  (4.3) 
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The expression for the cross section is the same as that for nuclear scattering except for the 
addition of a form factor that appears because the scattering is no longer from point-like centres. 
Introducing the sample volume V, the particle volume VP, and the number of particles we may 
write the expression for the scattering intensity (identical particles): 

    
2

2 2
0

1

particle

 i
p p

p

N
I V e d

V V
    QrQ r . (4.4) 

The expression  2 2
0  p p

N
V

V
  is called the contrast factor.  Scattering at Q = 0 will then read: 

    2 2
00 p p

N
I V

V
    (4.5) 

The particle form factor is determined by the particle shape. For a sphere of radius R, ( )F Q  only 
depends on the magnitude of Q: 

  
 

 0
0 1 03

3sin cos3 0atsphere

VQR QR QR
F Q V j QR V Q

QRQR

 
    

  
 (4.6) 

Form factors for other typical shapes such as cylinder, hollow cylinder, rod, disk, flat slab, etc. 
have been calculated analytically and are available from neutron scattering texts e.g. [43]. 

Eq. (4.2) can be once again rewritten in the following form, this time assuming the sample is 
isotropic [43]. Incoherent background is included explicitly. In most cases the latter can be 
eliminated by measuring a proper standard. More on this issue below. 

        22
p p incQ N V F Q S Q B

 
  


 (4.7) 

Fig.  4‐1. The concept of contrast in SANS.
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In the formulation of Eq. (4.7), the cross section is expressed in terms of the product of form 
factor ( )F Q  and the structure factor ( )S Q . The form factor is a function that describes how the 
scattering cross section is modulated by the interference effects of the radiation scattered on 
different parts of the same object. In particular, it depends on the shape of the object. Its general 
formulation is due to Van de Hulst [44].  

The structure factor: 

      
0

4
1 1 sinpN

S Q g r r Qr dr
QV

 

      (4.8) 

is a function that describes how the scattering cross section is modulated by the interference 
effects of the radiation scattered on different objects. In particular, it depends on a degree of 
local order in the sample. Hence SANS gives information on the relative position of scattering 
objects at least via the  radial distribution function:  

    
24 pN r

G r g r
V


  (4.9) 

Here  g r  can be obtained by the Fourier transform of the structure factor  S Q  (Eq. (4.8)), 

and Np is the number density of scattering objects. Small angle neutron scattering is in many 
cases the art of isotopic substitution. Not only is it important to maximize the contrast factor in 
(4.4), but in multiphase systems that pose unnecessary difficulties through more than one particle 
type, through isotopic substitution one can make a part of the system invisible to SANS through 
equating its mean scattering length to that of the surrounding. The operation of choosing the 
best contrast for a given experiment is called the contrast match. Isotopic substitution is unique 
for neutron scattering, hence the power this technique as compared to SAXS, small angle X-Ray 
scattering. 

SANS data are conventionally analysed and displayed by means of specific approximations 
(sometimes referred to as “laws”), depending on the sample measured, its solution concentration 
(if applicable), and the Q region. The most common are due to Guinier, Zimm, Porod, Kratky. 

 The Guinier approximation consists in plotting   2ln  vs.I Q Q   under the assumption 

that the scattering intensity depends upon the gyration radius via: 

  
2 2

0 exp ,
3

gQ R
I Q I

 
   

 
 (4.10) 
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where gR is the radius of gyration, measuring the “effective size” of the scattering object. The 

Guinier approximation is valid for 3gQR  . There exist shape-specific variants of Guinier 

plots, e.g. for elongated or flat (lamellae) objects. 

 The Porod, or “log-log” plot involves plotting    log log  vs.I Q Q    (base-10 logarithm) 

and yields information about the so-called “fractal dimension” of the scattering objects. It relies 
on this approximation valid for high-Q region of SANS: 

   n

A
I Q B

Q
   (4.11) 

 An estimate for the fractal dimension is obtained through 6n D  . Moreover, for polymer 
samples n is related to the excluded volume parameter ν via 1n v . 

 The Zimm plot contains the graph of 1 2 vs.I Q and originates from the field of light 
scattering, where it is widely used. Here the Q-dependence of the scattering intensity is assumed 
Lorentzian: 

   0
2 21

I
I Q

Q 



 (4.12) 

 with  being the correlation length.  The linear 1 2 vs.I Q  plot will have 01 I for its intercept 

and 2
0I for its slope. At low-Q region the Zimm plot provides another estimate for the radius 

of gyration: 3gR  . So: 

  
2 2

0
02 2 1

3
1

3

g

g

Q RI
I Q I

Q R

 
    

  
  (4.13) 

Inhomogeneous or chain-branched polymer samples render Zimm plots deviating from a straight 
line at low Q, and phase-separated samples yield negative intercepts. 

The Zimm plot works also in high-Q region providing another estimate for the excluded 
volume. 

 The Kratky plot   2   vs.Q I Q Q  works in the high-Q region of SANS. In polymer physics, 

it provides a good measure of Gaussian nature of polymer coils. Assuming that the scattering law 

for a Gaussian coil varies like   21I Q Q  in the high-Q region, the Kratky plot for such a 

sample should tend to a plateau. Any deviation from this is a signature of non-Gaussian nature of 
the polymer coil. 
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Many properties of polymer systems are measured by small angle scattering of the material in 
solution, often extrapolating to zero concentrations (e.g. Zimm, Guinier approximations). 
However, some characteristic of bulk polymer samples, such as fluctuations of scattering length 
density resulting from aggregating interactions in solid polymer electrolytes can also be analysed 
using SANS [45], however with much effort: Bulk polymer samples are never quite as 
homogenous as e.g. polycrystalline metals. Often a density distribution occurs on a microscopic 
scale, giving rise to parasitic scattering on voids, which has to be accounted for separately. 

Many polymers exhibit small angle scattering characteristic for self-similar or fractal systems (the 
corresponding form factors are known [43]). In order to fully explore such systems it is desirable 
to measure coherent scattering over a very large span of Q. This means combining data from 
various instruments. In view of what has been said on the separation of coherent and incoherent 
scattering, SANS instruments equipped with polarization analysis would be of use, especially 
those operating at higher Q.  The need for such an option is illustrated in Fig. 4-2, presenting 
data taken for the same sample on D7, the diffuse scattering instrument with polarization 
analysis, and LOQ, the SANS instrument at ISIS, Rurherford Appleton Laboratory. 

At present, SANS instruments with polarization analysis are already available at some neutron 
sources (e.g. at Helmholtz-Zentrum, Berlin, or at LLB), or are planned (HFR2). 
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Fig.  4‐2. Coherent neutron scattering from a sample of PBT, poly(butylene 
terephthalate) measured with polarized neutrons on D7, ILL and on LOQ 
instrument (high Q detector bank) at ISIS, RAL. Private communication from 
S.M.King. 
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Fig.  5‐1.  Structure of PEO ∙ LiClO4 complexes dependent on the salt concentration. Measurement at D7, ILL  at ambient 
temperature. Unpublished. 

5 Short	Range	Order	in	Atactic	Polystyrene	
 

The term short range order usually refers to spatial correlations within the range of ca. 1 nm. Most 

often the use of this term implicitly suggests the lack of long range order, as otherwise one would 

speak of ordered phases or crystal structures and would use standard diffraction techniques in the 

study thereof. Polymers are often amorphous materials, although crystal or semicrystalline 

structures are not a rarity. Sometimes there are ordered regions coexisting with amorphous ones 

in chemically homogenous materials, or copolymers may exist, where one of the components 

forms an ordered phase. Such is the case of poly(urea urethane) elastomers discussed in Chapter 

7, where hard segments tend to order and soft segments undergo order-disorder transitions, as 

revealed in DSC scans [18]. Complexation of poly(ethylene oxide) with a lithium salt (material 

of interest to the battery industry), PEO ∙ LiClO4 leads to the development of complex ordered 

structure, dependent on the salt concentration and on the molecular weight of PEO, as shown in 

Fig. 5-1. 
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temperature of 350K were allowed for the time long enough to reach equilibrium. The resulting 

structures are shown in Fig. 5-2. Coherent neutron scattering spectra were then calculated for 

such objects, from the first principles. 

Unlike proposed in [37,51], the polymer coil was not treated as composed of monomer building 
units treated as scattering objects of averaged properties, because such an approach, although 
simplifies the calculations, effectively eliminates a significant number of atom-atom correlations 
from being considered.  

In studying neutron scattering from polymer chains, most of the theory presented in Veinshtein’s 
book on X-Ray diffraction from chain molecules [52] can be utilized, especially in case of 
partially ordered chains of isotactic or syndiotactic PS, as proposed in [37]. Here, for a Gaussian 

polymer chain, being an ensemble of  N nuclei a coordinates ri ,it is enough to calculate  cohI Q  

from Eq. (2.14), assuming various atomic species: 

      
,

1 exp
N

coh i j ij
i jcoh

d
I Q b b i

d N

  
   

 Qr , (5.1) 

where angular braces indicate spherical averaging over all possible spatial orientations of the 
polymer coil. It can be shown [51], that Eq. (5.1) then simplifies to: 

  
,

sin1 N
ij

coh i j
i j ij

Qr
I Q b b

N Qr
   (5.2) 

Averages ib , jb  include isotopic diversity. Fig. 5-3 displays the result in its left panel, and for 

comparison it presents coherent scattering from a sample of atactic PS measured on the D7 
instrument at the ILL (right panel). 

10 20 30 40
0

1

2

3

4

5

6

7

C
oh

er
en

t 
cr

os
s 

se
ct

io
n 

 [
b/

f.
u.

]

Q  [nm–1]

Simulated random chain of atactic PS (400-mer)

0 5 10 15 20 25
0

2

4

6

8

10

12

C
oh

er
en

t 
cr

os
s 

se
ct

io
n 

 [
b/

m
on

om
/s

r]

Q  [nm–1]

Atactic PS  (D7 data)

Fig.  5‐3. Left graph: Calculated coherent neutron scattering from a computer‐generated 400‐mer of atactic PS. Right graph: 
Coherent scattering from atactic PS. D7 data. 
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Excess coherent intensity at low Q in Fig. 5-3 can be explained by the small size of the “sample” 
and it being isolated, i.e. by the lack of interchain correlations. This region has therefore to be 
considered unphysical. The main feature (above 10 nm–1), however, resembles real data 
surprisingly well. The only difference can be found in its position on the Q-axis. It is very likely, 
that a computer-generated PS chain is a more sparse structure than a real PS sample, which could 
lead to larger correlation distances and, consequently, to coherent scattering maxima at lower Q 
values. Density calculated for a chain depicted in Fig. 5-2 is unreliable due to difficulties in 
estimation of its true volume, and therefore cannot be compared to the value known for atactic 
polystyrene. 

A conclusion can therefore be drawn from the results of [49] and from the above example that 
the central twin peak in the coherent scattering from atactic PS cannot be uniquely attributed to 
intra- or interchain correlations. Rather, it results from the proximity of the polymer building 
units and their mutual preferred arrangement, no matter to which chain they belong. This, in 
turn, indicates that interactions leading to the onset of short-range order may involve small 
polymer subunits, or maybe chemical sub-structures (groups).   

Another reason for presenting Fig. 5-2 is the illustration that real polymer networks may display 
features of limited self-similarity. This is why the description of e.g. small angle scattering data 
from “swollen coils” of certain polymers involves the use of formulae derived for fractal objects.  
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6 Miscibility	of	Polymer	Blends	and	the	Short	Range	Order	

6.1 Introduction	

Blending of polymers is an important means, widely used by industry, to obtain a product of 

desired properties, better than constituent polymers. Improved physical and chemical properties, 

such as clarity, solvent resistance, mechanical endurance or capability of shock absorbing, can be 

obtained without having to synthesise new materials. The successful mixing of several polymers 

can be described by their miscibility, and that in turn can be determined by various experimental 

techniques. Traditionally, miscibility is a macroscopic quantity calculated from thermodynamical 

theories [53] and measured by several techniques such as differential scanning calorimetry 

(DSC). It is however a question of scale: the miscibility is as good as the technique used to 

determine it. There is no guarantee that the optically miscible blend remains thoroughly mixed 

on the molecular level. In order to approach the miscibility from the microscopic point of view, 

techniques such as small angle neutron scattering (SANS) are widely applied to the studies of 

blends [53]. SANS accesses large-scale structures and allows one to determine the extent of phase-

separation, which is then linked to the miscibility [54]. In order to descend to the molecular 

level, wide angle (or diffuse) scattering techniques, both X-ray and neutrons, can be used to 

probe the structure [53,55]. The known problems with the interpretation of “amorphous halo” 

(X-ray)and dominant incoherent neutron scattering from hydrogen-rich samples mean that these 

techniques were used relatively little to date, especially for the studies of such complex materials 

as blends. However, the application of the wide angle scattering of polarised neutrons with spin 

polarisation analysis to ionomers [56] and their blends [57-59] offers a way to change this. 

6.2 Destruction	of	short	range	order	in	PC‐SPS	blends	

In general, polymers do not mix well and they often require the including of ionic groups (see 

e.g. [60]) or compatibilizing agents in order to make a good mixture. A large number of factors 

influence the miscibility of polymer blends, and the tendency of the components to assume 
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The first peak in the PC spectrum around Q = 6 nm–1 (Fig. 6-3, left panel) is attributed to the 

correlations between the carbonate groups, with added influence of the isopropylidene groups 

[63]. Correlation between adjacent chains produce the tall peak around Q = 16 nm–1 [63,64]. 

The peak position measures the mean spacing between chains 2
D

Q


 , while its width provides 

an estimate to the correlation length 4
Q

 


. 

The results for pure PC are presented in Table 6-1, along with those of other authors: 

Table 6‐1. Short range order parameters of polycarbonate (cf. [57]) 

 This work Lamers et al. [64] Eilhard et al. [63] 

(measured) 

Eilhard et al. [63]

(simulated) 

Spacing, D  [nm] 0.5  (±0.01) 0.495 0.493 0.519 

Corr. l.,   [nm] 3.53  (±0.01) 2.8 2.76 2.243 

 

The obtained results are in excellent agreement with literature data, taking into account the 

possible influence of sample preparation details, which could have differed.  
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Fig. 6-4 illustrates the dependence of short-range order in three blends of polycarbonate with 

pure and lithium-sulphonated polystyrene upon the blend composition. At room temperature all 

these blends are immiscible (PS/PC is immiscible at all temperatures). The addition of 

immiscible PS or SPS results in the disappearance of the small peak around Q = 16 nm–1 with 

hardly any effect upon the main peak, other than its intensity connected with the blend 

composition.   

9%Li SPS /PC blends exhibit upper critical solution temperature (UCST) properties  (see 

Appendix to this chapter) with typical critical temperatures ranging from 170°C to 260°C, 

depending on the sulphonation level of the ionomer and on the molecular weight of the 

polymers. Critical temperatures for the samples used here were estimated to be ca. 443K [61]. 

Miscibility of polystyrene ionomers – polycarbonate blends depends not only upon the properties 

of polymers in question (including degree of sulphonation): an important role is also played by 

the counterion, even same valency [61].   

Diffuse (wide angle) scattering (WANS) of polarised neutrons was measured for three 

compositions of 9%Li SPS/PC (25/75%, 50/50%, 75/25%) at room temperature (RT) and well 

above the critical point. For reference, the same compositions at same temperatures were 

measured for immiscible 5.1%Na SPS/PC blends. The resulting WANS spectra are shown in 

figures 6-5 and 6-6. The “destructive” effect of mixing upon the short range order is well seen. 
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Fig.  6‐4. Coherent neutron scattering from three PS/PC and three Li SPS/PC blends as obtained by diffuse scattering of 
polarized neutrons with polarization analysis. (cf. [57]) 
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Comparison with the immiscible 5.1%Na SPS/PC system provides an evidence that the effect is 

indeed due to the mixing and not any other factor. 
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Fig.  6‐5.  Coherent neutron scattering spectra for 9%Li 
SPS/PC blends at room temperature and above the critical 
point. (cf. [57]) 

Fig.  6‐6. Coherent neutron scattering spectra for 5.1Na 
SPS/PC blends at room temperature and at 470K. (cf. [57], 
partially unpublished) 
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From the WANS spectra shown in Fig. 6-4 one can deduce the following decrease in the mean 

correlation length of neighbouring PC chains: 

Table 6‐2. Interchain correlation lengths in 9% Li SPS/PC blends . (cf. [57]) 

composition 75/25 50/50 25/75 

, Phase-separated region  [nm] 2.08 4.96 5.51 

, Single phase region  [nm] 1.69 1.15 0.76 

 

To the author’s knowledge, this was the first approach to the study of correlation of polymer 

blend miscibility with the degree of short range order by means of diffuse (wide angle) neutron 

scattering of polarized neutrons with polarization an analysis. A carefully planned experiment of 

this type may prove helpful in solving puzzles in this field of materials science. 

6.3 SANS	study	of	SPBT‐PCd	blends		

Polymer blends are routinely studied by small angle neutron scattering. With this method one 

can assess whether the blend under consideration is miscible, partly miscible or immiscible. In 

case of more complex compositions, the contrast variation through isotopic substitution helps 

one to extract the needed information. In phase-separated systems one can study spatial 

properties of the volume occupied by a given phase. Such a study was undertaken for a relatively 

little known blend of sulphonated poly(butylene terephthalate) (SPBT) with amorphous 

polycarbonate [54]. Poly(butylene terephthalate) (PBT) is a technologically important 

thermplastic, yet in order to improve its properties, it is blended with other components. 

However, its semicrystalline structure makes it opaque and results in poor mixing. Random 

sulphonation of PBT (a random copolymer of PBT and sulphonated PBT) counteracts 

crystallization and makes mixing easier.  

The influence of different levels of sulphonation upon the properties of poly(butylene 

terephthalate) had been previously studied by wide angle X-ray scattering (WAXS), polarised 

light microscopy and small angle light scattering (SALS). The type of spherulitic structure found 



  8. Miscibility and the short range order  49 

in these polyesters depends upon the sulphonation level, as does the degree of crystallinity; the 

latter decreases with ionic content while the spherulite radius remains relatively constant.  

Blends used for the SANS experiment (ISIS, Rutherford Appleton Laboratory, instrument: LOQ 

[65,66] ) contained fully deuterated polycarbonate (PCd).  

Table 6‐3. Samples used in the SANS study of SPBT/PCd blends. (cf. [54]) 

Sample 
Blend 

composition
% w/w 

PCd 100 
PBT 100 
3.5mol % SPBT  
7.9mol% SPBT  
11.1mol% SPBT  
PBT/ PCd 75/25 
PBT/ PCd 50/50 
3.5 mol % SPBT/ PCd 75/25 
3.5 mol % SPBT/ PCd 50/50 
7.9 mol % SPBT/ PCd 75/25 
7.9 mol % SPBT/ PCd 50/50 
11.1 mol % SPBT/ PCd 90/10 
11.1 mol % SPBT/ PCd 75/25 

 

From the small angle neutron scattering point of view, a phase-separated mixture is composed of 

scattering objects of unidentified size and shape. If so, then the SANS data can be described using 

the Debye–Bueche expression [67]: 

Fig.  6‐7. Chemical structures of PBT (left) and SPBT (right). 
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  
 22 21 c

A
I Q

Q a



 (6.1) 

where ac is the corresponding correlation length of the blend, which may be interpreted as the 

size of the density fluctuations, and the parameter A – the zero-angle scattering – is related to the 

thermodynamic properties of the blend. Sample fits to this mode in linearizer representations are 

shown in Fig. 6-8. 

The ac parameter in Eq. (6.1) is also a measure of the average size of heterogeneity [68]. Knowing 

the correlation length, the average transversal lengths through the two phases can be calculated. 

Hence 1 1cL a   for the crystalline phase and 2 2cL a   for the amorphous phase, where  is 

the composition (cf. discussion and references within [54]). The degree of miscibility between 

the phases can be quantified through the second derivative of the Gibbs free energy of mixing, 

2

2
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; ( is the volume fraction of one phase) and the interaction parameter, 1,2, calculated 

from [69]: 
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 (6.2) 

From the Debye-Bueche model, when applicable, the following results were obtained: 
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Table 6‐4. Parameters obtained from the Debye‐Bueche model fits to the data (when applicable), [54]. 

Sample Blend composition Temperature A ac L1 L2 2

2


 mixG

1,2  

 % w/w K cm-1 nm nm nm /10-3 /10-3

PBT/PCd 50/50 438 332 7.1  0.1 12.4 16.5 1.19 12.32

PBT/PCd 50/50 473 290 6.8  0.1 11.9 15.8 1.37 12.24

PBT/PCd 50/50 488 199 6.3  0.1 11.0 14.6 1.98 11.93

3.5 mol% SPBT/PCd 75/25 488 527518.0  0.3 59.4 25.8 0.08 20.22

 

The Debye-Bueche approach worked well at small momentum transfers. For all but one 

PBT/PCd blends this model proved satisfactory at all temperatures studied. However, for most 

SPBT/PCd compositions examined, it failed to reproduce experimental data, and a two-

correlation-lengths model [68,70] had to be applied: 
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This situation is illustrated in Fig. 6-9, and it appears typical of blends that are only partially 
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miscible, but not completely phase separated [71]. A single correlation length cannot describe 

scattering from such blends.  

The derivation of Eq. (6.3) is straightforward if we notice that the Debye-Bueche model Eq. 

(6.1) is the Fourier transform of a simple correlation function assumed for the system: [70] 
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a
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 (6.4) 

In case of systems that cannot be described by a single correlation function of type (6.4),  e.g. in 

semicrystalline blends, the following two-term correlation function was developed [72]: 
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leading to Eq. (6.3) through the Fourier transform, with the relative contribution f  connected 

with a1, a2, A1 and A2 via: 
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In the two-correlation-lengths model (6.3), a1 accounts for the short range, and a2 for long range 

correlation lengths. Then, the A1 and A2 coefficients may be related to the relative contributions 

of amorphous and crystalline behaviour. Fits of the quality shown in Fig. 6-9 lead to the values 

for parameters of interest listed in table 6-5.  

Extensive discussion of the measurements on this particular system, data analysis and the 

meaning of the derived parameters is given in [54]. Small angle neutron scattering provided data 

sufficient to carry out a quantitative description of the miscibility of the SPBT/PCd blends, being 

controlled by temperature, composition and particularly sulphonation levels. The values of L1 

(crystalline phase size) and L2 (amorphous phase size) showed that the proportion of crystalline 

phase in the PBT/PCd blend is consistent with the results obtained from DSC [73]. 
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These materials still remain new and relatively little information is available among published 

papers. A somewhat corresponding study by small angle X-ray scattering was published in 2005 

[74]. This does not mean that leading industrial laboratories are short of information on 

miscibility of technologically important blends. High quality samples used in this study were 

kindly provided by Exxon Research & Engineering. 

Table 6‐5. Parameters obtained from the two‐correlation length model fits to the data [54]. 

Sample Blend Comp. Temp. A1 A2 a1 a2 2

2


 mixG

1,2   

 % w/w K cm-1 cm-1 nm nm /10-3 /10-3

PBT/PCd 75/25 433 481 0.15 1.13.6 7.30.14 0.83 20.11

3.5mol% SPBT/PCd 75/25 438 16869 8.72 6.30.1 23.72.2 0.02 20.25

3.5mol% SPBT/PCd 75/25 473 21143 11.58 6.50.1 25.62.9 0.02 20.25

3.5mol% SPBT/PCd 50/50 438 4292 0.53 4.50.1 19.60.3 0.09 13.95

3.5mol% SPBT/PCd 50/50 473 5870 6.11 5.70.1 21.31.8 0.07 13.97

3.5mol% SPBT/PCd 50/50 488 29092 9.27 5.60.1 34.414. 0.01 13.99

7.9mol% SPBT/PCd 75/25 303 498 0.15 3.60.2 138.0.2 0.82 19.56

7.9mol% SPBT/PCd 75/25 433 5384 1.66 5.10.1 22.71.5 0.08 19.93

7.9mol% SPBT/PCd 75/25 488 481 0.99 5.10.1 13.70.3 0.85 19.54

7.9mol% SPBT/PCd 50/50 438 497 0.31 3.90.1 14.10.1 0.83 12.34

7.9mol% SPBT/PCd 50/50 473 265 0.58 4.70.1 11.20.2 1.55 11.97

7.9mol% SPBT/PCd 50/50 488 322 1.34 5.10.1 12.20.2 1.27 12.11

11.1mol% SPBT/PCd 90/10 30 476 1.31 5.80.1 13.00.4 0.88 44.25

11.1mol% SPBT/PCd 90/10 433 618 0.94 4.80.2 19.20.8 0.68 44.35

11.1mol% SPBT/PCd 75/25 433 2220 0.75 5.30.15 14.50.4 0.19 19.66

 

6.4 The	influence	of	counterion	valency	upon	the	short	range	order	in	
ionomers	

The success of the Debye-Bueche and two-correlation-lengths models in the study of miscibility 

of PBT/PC and SPBT/PC blends was partly due to the semicrystallinity of PBT and its 
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subsequent destruction by sulphonation, i.e. to a well-defined and strong mechanism preventing 

the creation of a homogenous mixture down to molecular level. It is not uncommon, however, 

that neither of the two correlation functions: Eqns. (6.4) or (6.5) satisfactorily describes the short 

range order in a phase-separated blend. In order to see this, we will now return to the systems 

discussed at the beginning of this chapter, i.e. to SPS/PC ionomer blends. Having established 

that a miscible blend exhibits much less short-range (local) order than do the components and an 

immiscible blend, we will now turn to small angle region of scattering [75]. 

As previously, the experiment was performed at ISIS Spallation Neutron Source, Rutherford 

Appleton Laboratory, instrument: LOQ [65,66]. Debye-Bueche plots of the measured data are 

presented in Fig. 6-10. It is evident that this approximation does not hold, especially at ambient 

temperature – top-left graph. The plots are nowhere linear. At 453K (180°C), the sample may be 

a combination of miscible and phase-separated regions due to possible peritransition effects. The 
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Fig.  6‐10. SANS spectra of 9%Li‐SPS/PC blends in the Debye– Bueche representation (cf. [75]). 
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situation at 493K (220°C) should not be surprising perhaps, as at this temperature the blend had 

been characterized as miscible and no phase separation was expected. However, data for the 

25/75% composition look almost unchanged, and the 75/25% blend points reproduce the main 

course of 25/75%. 

And what if the problem is caused by 

the ionomer itself rather than the 

interactions within the mixture?  

Analysing a Debye-Bueche plot of the 

pure SPS may be a strange idea, since 

this is to be expected a single-phase 

system. However, the graphs look 

linear, as if they represented a phase-

separated system. This is illustrated in 

Fig. 6-11. 

It is now evident that there are 

interactions within the ionomer such that they result in fluctuations of microvolume-averaged 

scattering length, similar to that seen in a phase-separated system. Properties of a random 

ionomer may depend not only upon the attached ionic group but also on the neutralizing 

counterion. This seems to be the case in sulphonated polystyrene. Aggregating interactions, if 

any, could show as additional short-range order in the coherent WANS spectra of the ionomer. 
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Such additional coherent intensity is indeed seen on either side of the main WANS peak. Left 

graph of Fig. 6-12 compares WANS spectrum of 9% Li SPS with that of atactic PS. A similar 

comparison with zinc-sulphonated PS shows no such effect. A behaviour similar to that in 

lithium-sulphonated PS can be found also in 

8.45% H SPS (Fig. 6-13). This may suggest 

that what matters is the valency of the 

counterion. The presence of ionic groups and 

counterions may lead to a number of 

interactions, depending on the sulphonation 

level and the counterion valency. Zhou et al. 

[76] report on this while studying the phase 

behaviour of sulphonated polystyrene systems. 

During the investigation of properties of 

random poly(lactic acid)-based ionomers Ro et al. [77] indicated the role of metallic counterion 

valency. Moreover, they found that the solubility of carboxylic acid-functionalized copolymer 

(COPOLYSA) increased as the valency of the cation increased, which they consider 

counterintuitive since higher-valency ions should form stronger ionic pairs. Complexation of acid 

groups in SPS is a known cause for poor miscibility of highly sulphonated polymer in blends.  

In search for the possible source of aggregating interactions in SPS a plausible hypothesis was put 

forward that such additional correlations may be caused by the presence of monovalent 

counterions: then the sulphonic groups are likely to enter into so-called -complexes with -

electrons of the phenyl rings of polystyrene [78]. Another feasible mechanism involves 

interactions within closely positioned sulphonic groups. Acceptor-donor-type interactions may 

lead to the onset of “intermediate” chemical structures, as shown in Fig. 6-14 (top-right inset) 

[78]. These speculations are certainly inspiring and further research would shed more light on the 

interesting matter.  
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Fig.  6‐14. Schematic illustration of possible complexation mechanisms in SPS neutralized with a monovalent counterion. 

This type of complexation apparently leads to the SANS spectra that are not tractable with either 

Debye-Bueche, or two correlation lengths models. The latter, when least-squares fitted to the 

data, yields meaningless or unphysical values.  

At this point we may speculate whether in the presence of polycarbonate the -complexation 

changes so upon blending that it also involves the benzene rings of PC. Is it possible that we have 

a distribution of correlation lengths? An idea of such distributions can be encountered in the 

literature, e.g. in bimodal polymer gels [79]. 
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6.5 Appendix.	The	upper	critical	solution	temperature.		

Spinodal curve separates a metastable region from an unstable region in the coexistence region of 

a binary mixture. On the Gibb’s free energy of mixing curve vs. composition, Gm(), the 

spinodal points are the zeros of the second derivative : 
2

2 0mG







.  In real systems, fluctuations 

result in spinodal curve being not a sharp boundary. 

Binodal curve defines the region of composition and temperature in a phase diagram for a binary 

mixture across which a transition occurs from miscibility of the components to conditions where 

single-phase mixtures are metastable or unstable. Binodal compositions are defined by pairs of 

points on the curve of Gibbs free energy of mixing vs. composition that have common tangents 

(Fig. 6-7). They correspond to compositions of equal chemical potentials of each of the two 

components in two phases (cf. e.g. [80]). 

 Upper Critical Solution Temperature (UCST) is the common maximum of spinodal and 

binodal curves (if both curves have maxima). If the common point of spinodal and binodal is the 

minimum of both, we speak of Lower Critical Solution Temperature (LCST). 

Fig.  6‐15. Construction of the binodal and spinodal curves and the Upper Critical Solution Temperature point. Redrawn 
after a figure in [98]. 
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A two component blend is miscible if and only if the following condition holds: 

 
2

2
,

0,mix

T p

G


  

  
 (6.7) 

where Gmix is the Gibbs free energy of mixing and  is the volume fraction of one component. 

One can calculate Gmix from several theoretical models, of which the best known is Flory–

Huggins theory [81]. 
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7 Neutron	polarization	analysis	in	practical	materials	research	
problems		

 

7.1 Introduction	

Neutron scattering techniques are more and more often used in solving problems in applied 

sciences such as materials engineering. A good example here is the analysis of residual strains and 

stresses in bulk samples (e.g. parts of machinery), neutron reflectometry used the studies of 

materials for microelectronics, or investigation of large scale macromolecular structures via small 

angle scattering. In all cases use is being made of some unique properties of neutrons, namely: 

 The refractive index for neutrons of a material against vacuum, 
2

1

0

1
2

k
n

k

 


    ( – is 

the scattering length density of the material) is less than 1, and therefore it implies “total 

external reflection” as opposed to total internal reflection one is used to e.g. lightguides. 

This is what neutron reflectometry (or grazing angle scattering) relies on.  

 Neutrons are deeply penetrating particles, hence analysis of residual strains deep inside 

large samples is possible. The same principle makes neutron radiography possible. 

 Small angle neutron scattering largely profits from isotopic substitution. 

7.2 Residual	strains	in	ceramic‐elastomer	composites	

Residual strains and stresses are by no means restricted to polycrystalline metallic samples of 

interest to metallurgists, or e.g. aircraft turbine manufacturers.  For example, they can also 

develop in complexes involving rigid porous ceramics ad soft matter fillers. The difference is that 

the latter type of internal strains are much more difficult to measure since due to lack of crystal 

structure in soft filler, typical diffraction techniques are of little use. X-ray analysis would access 

only the outer thin layer of material, where internal strains are usually relaxed. However, diffuse 

scattering of polarized neutrons proved successful in this case [18].  

Diffuse scattering of polarized neutrons with polarization analysis was applied to study complexes 

of SiO2 ceramics with poly(urea-urethane) elastomers. They are obtained via infiltration of 
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porous ceramics by elastomer prior to the curing at elevated temperature. The resulting material 

combines the hardness of a ceramic with elasticity of the polymer, and hence remains of broad 

interest to the industry. However, the useful properties of the composite are at risk from internal 

strains arising both from cooling the material and from the curing processes in the elastomer, 

which may lead to unwanted delamination at the pore walls or even cracking of the ceramic 

skeleton.  

The poly(urea-urethane) elastomer is a copolymer composed of hard and soft segments: 

 

Fig.  7‐1. Building units of poly(urea‐urethane) elastomer. 

In order to understand the possible correlations on microscopic lever, the structure of an isolated, 

unconstrained soft segment been simulated numerically. It appeared that the preferred 

arrangement of the chain was kind of a “twisted sheet” composed of helices as in Fig. 7-2 below. 

 

Fig.  7‐2. "Twisted sheet" arrangement of an isolated soft segment. Energy‐minimized computer simulation. Unpublished 
results. 
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 Even though in a real elastomer, especially that confined in 50 or 70 m pores, such an idealized 

structure never appears, the soft segments retain their piecewise-helical form, responsible for 

rubbery elasticity of the material: 

 

 

. 

 

The pitch of such a helix is responsible for the coherent neutron scattering peak and thus its 

displacement could serve as the internal strain gauge. Indeed, if the peak position may be related 

to the corresponding real-space correlated distances in a semi-ordered matter through:  

 
2

Q
d


  (7.1) 

then very small changes in d result in coherent peak displacement: 

 
2

Q
d


 


. (7.2) 

Two elastomers were used in this study of hard/soft segments ratios equal 0.25 and 1.5 and 

nicknamed PU125 and PU25, respectively.  Diffuse scattering spectra for bulk samples of PU125 

and PU25 measured with polarization analysis on the D7 instrument (ILL, Grenoble) are shown 

in Fig. 7-4. They contain peaks originating from highly correlated domains of hard segments as 

well as a tall peak, whose height compared 

with other peaks indicates that it comes from 

the phase being dominant in the sample, hence 

attributed to spatial correlations outside hard 

segment domains, whose position corresponds 

to the real space distance of 0.308±0.002nm, 

roughly the pitch of the helix shown in Fig. 7-

3. Hard domains tend to develop crystalline 

Fig.  7‐3. Soft segment helix formed in a computer‐simulated structure from fig. 7‐2. 

Fig.  7‐4. Coherent neutron scattering spectra from bulk 
samples of PU125 and PU25 elastomers. 
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order due to interactions involving polar groups of short hard segments [82].  

Both elastomers were then studied inside pores of two types of SiO2 ceramic: the one with pore 

sizes of ca. 20 m (denoted ceramic A) and the one with 70 m pores (denoted ceramic B). 

Neutron coherent scattering spectra of elastomer PU25 inside type A ceramic  and of PU125 

inside type B ceramic are shown in Fig. 7-5.  Displacement of the elastic segment peak is clearly 

seen and can be measured. It is attributed to the increase of 0.0063 ± 0.0028 nm in characteristic 

correlation distance within the soft segment of the elastomer. This effect was observed in the 

composite of ceramic A with the PU25 elastomer only. 

To the author’s knowledge this is the only example known in literature of the application of 

diffuse scattering of polarized neutrons to the study of residual strains in soft matter. 

7.3 Deducing	from	the	coherent	peak	width	

Research undertaken in course of the above work revealed that precise measurement of the 

coherent peak width in disordered soft matter may be a source of useful information of practical 

meaning. An interesting conclusion can be drawn out of comparison of the PU25 soft-segment 

peak width between composites of both ceramic types: A and B (Fig. 7-6).   
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Let us first recall a general principle. In a random structure where the n-th diffraction peak comes 

from the n-th nearest neighbours shell, if a given peak position corresponds to the mean distance 

a then its width Q  is related to the dispersion a  of a through [37]: 

 2 22 a
Q n

a Q

 
 

    
, (7.3) 

where n is the diffraction peak order. In this way Q  becomes and effective “measure of 

crystallinity”. Moreover, detailed study of the Q-dependence of the peak width, supplemented 

with proper model calculations can classify a given structure as paracrystalline as opposed to 

affected by a mere distribution of correlation lengths [37]. 

Pores in type A ceramic are more than three times smaller than those in type B ceramic. The soft-

segment peak is markedly broader in composite with type A ceramic demonstrating that, in this 

case the mean correlation distance is much shorter than in the other composite. The influence of 

mean pore size upon the correlation length is, 

however, indirect. Indeed, it can be easily 

estimated that, in the case shown in Fig. 7-6, 

the change in correlation length is three orders 

of magnitude smaller than the difference in 

pore sizes. Pore size must therefore influence 

rather the very domain structure of the 

elastomer and, through it, mean correlation 

lengths. The reason might be sought in 

surface-to-volume ratio being markedly 

greater in small pores, and hard segments engaged in hydrogen bond associations with hydroxyl 

groups available on the SiO2 surface, are located next to this surface. 
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8 Atomic	motions	in	the	presence	of	various	degrees	of	structural	
order	

 

8.1 Inelastic	scattering		

In this chapter attention will be focused on inelastic scattering of thermal neutrons. Exchanging 

momentum end energy with atomic nuclei (nuclear scattering) or atomic spin systems (magnetic 

scattering) neutrons are an excellent measuring probe for molecular vibrations, including 

collective phenomena, or stochastic motions.  

Fig. 8-1 provides a schematic overview of such motions (nuclear scattering only), accessible to 

inelastic neutron scattering techniques.  

 

Fig.  8‐1. “Anatomy” of a neutron inelastic scattering spectrum, showing elastic, quasi‐ and inelastic parts. Inset shows 
inelastic component in more detail. 
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For inelastic incoherent scattering, the intensity is proportional to the space and time Fourier 

transforms of the self-correlation function,  ,sG tr , i.e. the probability of finding a particle at 

position r time t when the same particle was at 0r  at 0t   [8,83]: 

      ·1, ,
2

i t
i sS G t e d dt


  Q rQ r r


 (8.1) 

and: 

        1, 0s j j
j

G t t d
N

    r ρ r ρ r r ρ  (8.2) 

Inelastic incoherent neutron scattering is a very broad and highly explored field of research, using 

dedicated instruments and reach in voluminous literature. The scattering cross-section for 

phonon creation process at low temperatures can be written in the incoherent one-phonon 

scattering approximation in a commonly accepted notation (cf. [8,83]): 

          
2 2, , exp 2

, , ,
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i f nf n

inc i f
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 





, (8.3) 

where  , ,i fQ E E  is the neutron momentum transfer,  i fE E    is the neutron energy 

transfer, nM  is the mass of the n-th atom, and  exp 2 nW is the Debye-Waller factor. The 

quantity being of interest in this type of experiments is  G  , the so called atomic-

displacement-weighted phonon or vibration density of states:  
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, or:n
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j n
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   

      




 (8.4) 

 G   may be seen as a projection of a family of dispersion curves upon the energy (vertical) 

axis. Being free from selection rules, it is a complementary technique to other vibrational 

spectroscopic methods, such as infrared or Raman. In molecular systems simpler than complex 

polymer structures, it is now routinely accompanied by ab initio calculations of vibrational states.  
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High resolution  / ~ 2 3%E E   incoherent inelastic neutron scattering spectra of 

polyisobutylene and cis-1,4 polyisoprene have been obtained on the TFXA spectrometer at the 

ISIS pulsed neutron scattering facility [84]. The observed bands were assigned with reference to 

available infrared and Raman data and the differences observed were discussed. Methyl group 

torsions were identified, which could not be observed with the optical techniques. These bands 

were significantly broadened compared to the instrumental resolution and this was attributed to 

a Gaussian distribution of local environment potentials for the methyl group.  

 

8.2 Stochastic	motions.		Quasielastic	neutron	scattering.	
 

Since we are now dealing with stochastic motions [85], there is no correlation between the 

positions of a given nucleus at 0t   and t  . The space-Fourier transform of (8.2) gives the so 

called intermediate scattering function  ,incI tQ , which can be separated into its time-

dependent and time-independent parts: 

      , , ,inc inc incI t I I t  Q Q Q  (8.5) 

Taking both Fourier transforms gives: 

    
21, exp ·inc j

j

I i
N

  Q Qr  (8.6) 

and: 

        , , ,qel
inc inc incS I S     Q Q Q  (8.7) 

Elastic part of Eq. (8.7) (proportional to    ) vanishes for stochastic motions unrestricted in 

space, e.g. for linear (Brownian) diffusion. Spatial averaging results in the dependence of the 

scattering law on the modulus of Q. For a motion confined in space,  ,incS Q   contains an 

elastic contribution, and for a simple rotation it takes the following form: 

          , 1 L ,incS Q A Q A Q         , (8.8) 



68  8. Stochastic motions   
 

where  L ,  is a Lorentzian with the full width at half maximum (FWHM) equal to . 

 L ,  arises as a Fourier transform of the following form of the time-dependent part of the 

intermediate scattering function: 

   2, expinc

t
I Q t Q


    
 

 (8.9) 

Here  is the characteristic time of a given type of motion. E.g. for stochastic jumps over 
equidistant sites on a circle, this will be a mean residence time in one position.  

It can be seen from Eq. (8.8) that  ,incS Q  depends upon Q only through the amplitude 

 A Q . Since the time characteristic of a motion under study is expressed by the line width, the 

spatial characteristic can be deduced from the so called Elastic Incoherent Structure Factor 
(EISF): 

    
   

EISF el

el qel

I Q
Q

I Q I Q



, (8.10) 

where  elI Q  and  qelI Q  are the elastic and quasielastic scattering intensities, respectively. 

EISF(Q) (8.10) is therefore a very important quantity derived from the QENS experiment, and 

any perturbation to its dependence upon Q  may affect the identification of the motion 

geometry. The most frequent source of such perturbation is the superposition of diffraction 

(Bragg) peak upon the elastic incoherent one. Central elastic peak (at 0  ) is in such a case a 

sum of elastic coherent and elastic incoherent components. In well-ordered materials the Bragg 

peaks are narrow in Q, and it is usually enough to exclude the corresponding scattering angles 

from consideration.  On the other hand, modern neutron scattering instruments produce high 

quality data collected in a large number of points in the Q-space so that more options for analysis 

are available, especially when diffraction peaks contaminating the elastic incoherent intensity are 

broad. An example of such a situation is presented in Fig. 8-2 (lower graph, labelled 4BT at 250 

K). The graph represents scattering intensity integrated over a close vicinity of the elastic peak for 

each of the QENS spectra taken at different wave-vector transfers (so called “elastic window 

scan”). The substance being studied was the smectic E phase of 4-butyl-4’-isothiocyanato-

biphenyl (4BT in short). Diffraction peaks from the well-established smectic order of molecules 
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are clearly seen on top of a “clean”  .incoh
elastic QENSI Q  dependency,  and can be easily taken account 

of in further QENS data analysis, as suggested by the linear fit performed in “clean” regions.  

Somewhat more difficult case is shown in upper graph of Fig. 8-2, labelled 6BT. This is the data 

obtained in the same way as before, this time for a rapidly cooled sample of 6-butyl-4’-

isothiocyanatobiphenyl (6BT in short). Here almost the whole range of the wavevector transfer 

seems to be “contaminated” with coherent scattering rendering the estimation of EISF(Q) (8.10) 

difficult and less reliable. 

 

Fig.  8‐2. Diffraction peaks over elastic incoherent intensity in QENS data of smectic E phase of 4‐butyl‐4’‐isothiocyanato‐
biphenyl and 6‐butyl‐4’‐isothiocyanatobiphenyl. ILL, Grenoble, instrument IN6. (E. Juszyńska, W. Zając, to be published.) 

When studying stochastic motions in polymers, we are not quite as lucky as in the above example 

of 4BT, and even 6BT. Coherent intensity will usually make broad diffuse maxima that are 

intractable in a simple way, nor can the corresponding scattering angles be removed since almost 

nothing would be left. One can always argue that in hydrogen-rich samples with little coherent 

scattering the effect of coherent contamination is highly negligible. Indeed, in many cases this is 

true.  
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Figs 8-3 and 8-4 illustrate this case, with polycarbonate as an example. Theoretical expressions 

for EISF in case of -flips of the phenyl rings and jump-reorientation of CH3 groups around 

their 3-fold axes were plotted. Black dots are would-be EISF values if coherent intensity added to 

elastic incoherent scattering. Coherent intensity measured on D7 instrument in barns per 

monomer per unit solid angle was used.  

There are, however, cases, where without a method of separating coherent from incoherent 

scattering, no information on spatial  characteristic of a motion can be deduced from the QENS 

experiment. A study of such a case has been presented in [86]. The material used was selectively 

deuterated syndiotactic poly(methyl metacrylate) (deuterated in -methyl groups). This is an 

example of relatively large coherent cross section.  

Selective deuteration is a procedure routinely used in QENS studies 

in order to focus attention on particular type of reorientation, 

involving hydrogen nuclei. Syndiotactic structure of the polymer 

adds to the short-range order, further enhancing coherent 

scattering intensity. Relative contribution to both types of 

scattering: coherent and incoherent are presented in Fig. 8-6.  
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Fig.  8‐5. PMMA building unit.

Fig.  8‐3. Phenyl ring flips in polycarbonate. Calculated EISF 
with experimental coherent contamination. 

Fig.  8‐4. Methyl group 120‐deg. reorientation around C3 
axis in polycarbonate. Calculated EISF with experimental 
coherent contamination. 
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Fig.  8‐7. QENS spectra of pure poly(ethylene oxide), PEO and a complex PEO ∙ LiClO4 obtained on the D7 instrument (ILL, 
Grenoble) operated in time‐of‐flight mode. Counting time for each sample: 12 hours. Neutron polarization analysis used 
to separate out incoherent scattering. (unpublished results) 

Fig. 8-7 shows the simulated effect that coherent contamination may have upon the elastic 

incoherent structure factor [86] in case syndiotactic partially deuterated PMMA.  

At this point one may feel tempted to proposing a QENS experiment with polarized neutrons 

with the aim to separate out incoherent scattering. In principle, such an experiment is possible on 

the D7 instrument at the ILL, operating in pulsed, time-of-flight mode. For that purpose the 

chopper is installed on the flightpath of incoming neutrons (cf. Fig. 3-1). However, test runs 

performed in time-of-flight set-up were quite discouraging due to extremely low counting rates 

achieved in particular time channels, and in fact, never published (Fig. 8-8).  
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Fig.  8‐8. Simulated influence of ‘‘coherent contamination’’ 
upon EISF(Q). 
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Consequently, unreasonably long measuring times would have to be considered if meaningful 

counting statistics were to be attained.  Significant improvements to the neutron optics may in 

future change this. Meanwhile, if dealing with partially disordered systems of significant diffuse 

scattering one has to follow an indirect path: first to measure coherent and incoherent 

components to the total scattering (as in Fig. 8-6) and use this information to correct the 

apparent EISF(Q) for the estimated coherent contamination. 

 

 



  9. Less common techniques  73 

Fig.  9‐1. The principle of the zero average contrast condition

 

9 Neutron	scattering	techniques	less	common	with	respect	to	short	
range	order	in	soft	matter	

Neutron scattering techniques presented in this chapter are called “exotic” with respect to short 

range order in soft matter because they address rather specific issues and are rarely used due to 

their limited accessibility or because they are very demanding or beam time hungry. Here they 

are: (i) small angle scattering under zero average contrast condition (ZAC-SANS), and (ii) deep 

inelastic (Compton) scattering. Their proper use requires a well-defined physical problem (e.g. 

Compton scattering) and very much experimental time followed by a precise, method-specific 

calibration and detailed data analysis (ZAC-SANS). 

9.1 Zero	average	contrast	SANS		

The concept of contrast match was introduced in Chapter 4. Now we are dealing with system 

composed of particles inhomogenous in terms of scattering length density. According to the 

principle of contrast match their average scattering length should be contrasted against that of the 

surrounding (e.g. solvent). However, if the very structure of the complex particles is being 

studied, then the opposite may be chosen, namely the surrounding (solvent) put at zero average 

contrast with respect to the particle. 

A comprehensive description of his technique is given in [87]. 



74  9. Less common techniques   
 

SANS at zero average contrast condition was attempted as a method-of-choice to study self-

organization phenomena in low molecular weight telechelic polystyrene zwitterions of general 

formula 1 2x y m
R C H R     , namely [88] : 

      3 6 4 2 6 5 6 5 2 32 3
,

n
Br Me N C H CH CH C H C C H CH SO Li           

following a preliminary SANS analysis of this ionomer in solutions: in a non-polar 

solvent(toluene) and a polar one (cycohexanone) [89]. During this preliminary SANS study it 

became evident that zwitteionic polystyrene in both polar and non-polar solvents assumes far-

from-simple structures, and that the aggregation processes are strongly concentration-dependent, 

rendering e.g. uninterpretable in a standard way, curved Zimm plots, and nonlinear Guinier 

plots.  

Satisfactory fits to experimental data could only be achieved with the scattering law derived for 

fractal structures [43]:  

 
  1

/221
1 ,

3

fD

fD Q             
 (9.1) 

where fD  is the fractal dimension and  is a system-characteristic length scale. They are shown 

in (Fig. 9-4). The idea of attempting ZAC-SANS approach was triggered by the fact that 

zwitterionic PS was capable of creating complex spatial networks. These network were expected 

to be dependent upon polar properties of the solvent: in a polar solvent there should be ring-like 

Fig.  9‐2. Zimm (left) and Guinier plots of zwitterionic PS in deuterated toluene revealing concentration‐dependent, 
complex mechanism of aggregation. [89] 
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merit of the proposal and feasibility of the proposed experiment. The proposal, under which this 

experiment was performed at the LOQ instrument at ISIS neutron source (Rutherford Appleton 

laboratory), was granted beam time, that was considered generous for a standard SANS 

experiment, but in case of ZAC measurements it allowed for a mere test of the method. In order 

to enhance intrachain correlations, partially deuterated sample with deuterated PS at the amine 

end was used (hereafter denoted the D-series of samples). Labels of D1, D2, etc. refer to different 

molecular weights, i.e.: D1: Mw = 6100, D2: Mw = 11500, D3: Mw = 26100, D4: Mw = 56700. 

The quality of data subjected to proper reduction and pre-processing operations, is illustrated in 

Fig. 9-5. Experimental results were analysed in terms of the Zimm plots (example shown in Fig. 

9-6). Error bars are omitted from graphs in Fig. 9-6 as they would blur the plots considerably.  

Despite the low quality of data, some conclusions can be made.  The chains of zwitterionic 

polystyrene aggregate, assuming internal structure od aggregates dependent upon the polarity of 

the solvent, although not in such a simple way, as expected. No evidence for ring-like 

arrangement of chains has been found.  

SANS under zero average contrast condition is a very elegant but very challenging technique of 

addressing short range order phenomena in cases of intrachain correlations within respective 

ranges distances and object sizes. 

 

 

Fig.  9‐5. Sample of SANS data for zwitterionic PS under ZAC,  zero average contrast condition  (proper mixture of 
hydrogenous and deuterated solvents ensured the ZAC). 
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9.2 Neutron	deep	inelastic	(Compton)	scattering	
 

Deep inelastic (Compton) scattering is a neutron scattering technique, specific to pulsed sources, 

originally developed for studying quantum effects in matter [91-94]. It was first proposed in 

1966 by Hohenberg and Platzman  [95]. However, it may also be applied to certain structural 

problems in soft matter, whereby local atomic environment can be probed by measuring 

properties of kinetic energy of that atom [96]. Deep inelastic neutron scattering relies on the so 

called impulse approximation (IA), where the scattering cross section is simply related to the 

single-particle momentum distribution of atomic nuclei in the target. It requires neutrons of 

energies (much) greater than 1 eV, i.e. significantly higher than in other neutron scattering 

experiments probing condensed matter (cf. e.g.  [93]). 

Fig. 9‐6. Zimm plots generated from the SANS data of zwitterionic polystyrene under zero average contrast condition. Error 
bars omitted for clarity, original data quality to be assessed from the previous figure. Unpublished data. 
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In this experiment we measure an “effective” projection of nuclear momentum upon the 

direction of neutron momentum transfer, q. In neutron Compton scattering it is usually denoted 

by Y. The structure factor, ( , )S q ,  associated with the distribution of atomic momenta   n p  

for an isotropic sample is given by [92]:   

 
2

( , ) ( ), .
2

whereM M Q
S Q J Y Y

q q M
 

  
    
   

 (9.3) 

Here  J Y  is a probability distribution such, that  J Y dY is a measure of probability that the 

given atom has a momentum component along q. This function is sometimes called the 

Compton profile. 

The experiment is performed in the so called inverted geometry, and with large energy transfers, 

typically 1 – 100 eV.   

The dynamic structure factor ( , )S q  is connected with the distribution  n p  via: 
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S n h d p
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  
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pqq p  (9.4) 

If we chose the z direction so that it points along q, then (9.4) simplifies to: 

  ( , ) ( )z

M
S q Y hp n p dp

hq
    (9.5) 

and after integration: 
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If: 
2

2
M hq

Y
q M


  
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 (9.7) 

then by measuring the neutron momentum transfer and the energy loss one can determine the 

projection of atomic momentum upon the direction of q. From the energy conservation we have:  
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2 2( ) ,

2k

p
E

M

 

p q  (9.8) 

where ( )p q is the final momentum of the neutron.  

The method was applied to the sample of textured polyethylene [96]. The texture (preferred 

orientation of polymer chains) was introduced 

via high temperature stretching. Compton 

profiles were measured perpendicular to the 

texture direction (Fig. 9-7). The measured 

kinetic energies were in agreement with hose 

known from computer simulations. The results 

were promising: the method can add 

significant information to the analysis of 

vibrational states in directionally textured, or 

otherwise oriented material. 

Fig.  9‐7. Compton neutron scattering on textured 
polyethylene [96]. 
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